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E V O L U T I O N A R Y  B I O L O G Y

Robust inference of positive selection on regulatory 
sequences in the human brain
Jialin Liu1,2*† and Marc Robinson-Rechavi1,2†

A longstanding hypothesis is that divergence between humans and chimpanzees might have been driven more 
by regulatory level adaptations than by protein sequence adaptations. This has especially been suggested for 
regulatory adaptations in the evolution of the human brain. We present a new method to detect positive selection 
on transcription factor binding sites on the basis of measuring predicted affinity change with a machine learning 
model of binding. Unlike other methods, this approach requires neither defining a priori neutral sites nor detecting 
accelerated evolution, thus removing major sources of bias. We scanned the signals of positive selection for CTCF 
binding sites in 29 human and 11 mouse tissues or cell types. We found that human brain–related cell types have the 
highest proportion of positive selection. This result is consistent with the view that adaptive evolution to gene 
regulation has played an important role in  evolution of the human brain.

INTRODUCTION
It has long been suggested that changes in gene regulation have 
played an important role in human evolution and especially in the 
evolution of the human brain and behavior (1, 2). Many human and 
chimpanzee divergent traits (3) cannot be explained by protein 
sequence adaptations. For example, there is little evidence to link 
protein sequence adaptations to traits related to cognitive abilities 
(4). Conversely, there is some evidence of brain-specific gene ex-
pression divergence in humans (5), which is consistent with a role 
of regulatory evolution. However, a central question remains open: 
Which regulatory changes were adaptive, if any? A major limitation 
in answering this is the lack of a robust model of neutral versus 
adaptive evolution for regulatory elements.

One approach to detect adaptive evolution on regulatory elements 
is to detect noncoding regions with lineage-specific accelerated evo-
lutionary rates (6–8). For example, Gittelman et al. (8) found human 
accelerated regions close to genes annotated to terms such as brain 
or neuron development. A major caveat is that this acceleration may 
result from neutral mechanisms such as biased gene conversion (9) 
rather than from selection. A second approach is to use an MK 
(McDonald–Kreitman) test framework (10–14). This approach has 
two limitations. First, an expected neutral divergence to polymor-
phism ratio needs to be defined, whereas defining neutral sites for 
regulatory elements is difficult and can bias results (15). Second, it 
lacks power on individual elements, since many regulatory elements 
are short and present very few variable sites (14).

We have developed a new method to detect adaptive evolution 
of transcription factor binding sites (TFBSs) on the basis of predicted 
binding affinity changes. As a proof of principle, we first applied 
this method to well-known transcription factors, such as CEBPA and 
CTCF, in species triples focused on human, mouse, or fly. We vali-
dated it with three independent lines of evidence: Our evidence of 
positive selection is associated to higher empirical binding affinity, 
higher substitution-to-polymorphism ratio in sequence, and lower 

variance in expression of neighboring genes. Then, we used this 
method to detect positive selection of CTCF binding sites in 
29 human tissues or cell types. We found the highest positive selection 
in brain samples, followed by male reproductive system. The same 
analysis in mouse found the highest positive selection in the lung, 
with no special signal in the brain. Thus, we provide evidence for 
adaptive evolution of gene regulation in the human brain.

RESULTS
Detecting positive selection on TFBSs
We propose a computational model to detect positive selection on 
TFBSs, or any other elements for which we have experimental evidence 
similar to chromatin immunoprecipitation sequencing (ChIP-seq) 
(Fig. 1 and Materials and Methods). Briefly, a gapped k-mer support 
vector machine (gkm-SVM) classifier is trained on ChIP-seq peaks 
(here, TFBSs). This allows computing SVM weights of all possible 
10-mers, which are predictions of their contribution to transcription 
factor binding affinity (16). We can then predict the binding affinity 
impact of substitutions by calculating deltaSVM, the difference of 
sum weights between two homologous sequences. We compare each 
empirical TFBS to an ancestral sequence inferred from alignment 
with a sister species and an outgroup.

Adaptive evolution on TFBSs is expected to push them from a 
suboptimal toward an optimal binding strength or from an old op-
timum to a new one (e.g., in response to changing environment). 
Thus, TFBSs evolving adaptively are expected to accumulate substi-
tutions that consistently change the phenotype to stronger or to 
weaker binding, whereas TFBSs evolving under purifying selection 
are expected to accumulate substitutions that increase or diminish 
binding in approximately equal measure, around a constant optimum. 
This reasoning follows the principle of a sign test of phenotypes 
(17, 18), although it uses the actual values and not just the sign. In 
practice, this should lead to a large absolute value of deltaSVM under 
adaptive selection. We estimate by randomization a P value specific 
to each individual TFBS and to its number of substitutions (see 
Materials and Methods). Thus, our method can infer the action of 
natural selection pushing a TFBS to a new fitness peak of either 
higher (positive deltaSVM) or lower (negative deltaSVM) binding 
affinity than its ancestral state.
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Detecting positive selection on liver TFBSs in Mus musculus
We first applied our method to a large set of TFBSs in the liver of 
three mouse species (M. musculus domesticus C57BL/6J, M. musculus 
castaneus CAST/EiJ, and M. spretus SPRET/EiJ), identified by 
ChIP-seq for three liver-specific transcription factors, CEBPA, FOXA1, 
and HNF4A (19). We inferred positive selection on the lineage lead-
ing to C57BL/6J after divergence from CAST/EiJ (Fig. 2A). For the 
sake of simplicity, we only present the results of CEBPA in the main 
text; results are consistent for FOXA1 and HNF4A (Supplementary 
Materials). We first trained a gkm-SVM on 41,945 CEBPA binding 
sites in C57BL/6J (see Materials and Methods). The gkm-SVM very 
accurately separates CEBPA binding sites and random sequences 
(Fig. 2B). On the basis of the experimental ChIP-seq peaks in the 
three species, using SPRET/EiJ as an outgroup, we identified three 
categories of CEBPA binding sites: conserved in all three species 
(“conserved,” 24,280 sites), lineage-specific gain in C57BL/6J (“gain,” 
6304 sites), and lineage-specific loss in C57BL/6J (“loss,” 6692 sites). 
On the basis of whole-genome pairwise alignments of C57BL/6J to 
CAST/EiJ and to SPRET/EiJ, we derived the substitutions accumu-
lated on the C57BL/6J lineage for each CEBPA binding site (see 
Materials and Methods). We only kept binding sites with at least 
two substitutions, leading to 5114, 1445, and 1497 TFBSs for con-
served, gain, and loss categories, respectively. For each binding site, 
we calculated a deltaSVM value and inferred its significance by ran-
dom in silico mutagenesis (see Materials and Methods).

We plot the distributions of deltaSVMs and their corresponding 
P values for each binding site evolutionary category (Fig. 2C). As 
expected, the distribution of deltaSVMs is symmetric for conserved, 
has a skew toward positive deltaSVMs for gain, and a skew toward 
negative deltaSVMs for loss. These results confirm that the gkm-SVM– 
based approach can accurately predict the effect of substitutions on 
transcription factor binding affinity change. For the distribution of 

P values, in all binding site categories, there is a skew of P values 
near zero, indicating some signal of positive selection. Gain has the 
most skewed distribution of P values toward zero. Hereafter, we will 
use 0.01 as a significant threshold to define positive selection, but 
results are robust to different thresholds (see the “Validation based 
on ChIP-seq binding intensity” section). This identifies almost 20% 
of gain having evolved under positive selection (Fig. 2D), relative to 
4% of loss and 2% of conserved. Random substitutions tend to de-
crease the binding affinity rather than increase it (fig. S1), because it 
is easier to break a function than to improve it. Thus, our method 
could be biased toward reporting as positive sites with more left- 
shifted null distributions. However, this is not the case (fig. S2).

In summary, we found widespread positive selection driving the 
gain of CEBPA binding sites. We also found some evidence of pos-
itive selection driving loss or increase in binding affinity in some 
conserved sites. For the other two transcription factors (FOXA1 
and HNF4A), we found very consistent patterns (figs. S3 and S4).

Validation based on ChIP-seq binding intensity
We expect that conserved or gained sites, which evolved under posi-
tive selection with positive deltaSVM, should have increased binding 
affinity. Thus, the positive binding sites (PBSs) should have higher 
binding affinity than nonpositive selection binding sites (non-PBSs) 
in the focal species C57BL/6J. This is indeed the case (Fig. 2, E and F). 
In addition, conserved TFBSs have higher activity than recently 
evolved ones (“gain”). For loss, however, the PBSs have a strong 
decrease in binding affinity, so we expect higher binding affinity of 
PBSs in the ancestor. Using CAST/EiJ as an approximation for 
ancestor binding affinity, this is indeed the case (Fig. 2G). Results 
are also consistent with different P value thresholds (fig. S5). We 
performed the same validations in FOXA1 and HNF4A, with con-
sistent results (fig. S6).

A

B C

D

Fig. 1. Illustration of the procedure for inferring positive selection. The method includes two parts. Part I (left) is the gapped k-mer support vector machine 
(gkm-SVM) model training. The gkm-SVM classifier was trained by using TFBSs as a positive training set and randomly sampled sequences from the genome as a negative 
training set. Then, SVM weights of all possible 10-mers, the contributions of prediction transcription factor binding affinity, were generated from the gkm-SVM. Part II 
(right) is the positive selection inference. The ancestor sequence was inferred from sequence alignment with a sister species (species B) and an outgroup (species C). 
Then, the binding affinity change (deltaSVM) of the two substitutions accumulated in the red branch leading to species A was calculated on the basis of the weight list. 
The significance of the observed deltaSVM was evaluated by comparing it with a null distribution of deltaSVM, constructed by scoring the same number of random sub-
stitutions 10,000 times.
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Validating the inference of positive selection with human 
liver TFBSs
To further validate our method, we took advantage of the abundant 
population genomics transcriptomics data in humans. We inferred 
positive selection of CEBPA binding sites in the human lineage after 
divergence from chimpanzee, with gorilla as outgroup (Fig. 3A). As 
in mouse, the gkm-SVM trained from 15,806 CEBPA binding sites 
in human can very accurately separate TFBSs and random sequences 

(Fig. 3B). The distribution of deltaSVMs is slightly asymmetric, 
with a higher proportion of positive values (Fig. 3C). This is because 
these binding sites contain both conserved and gain, but no loss 
(since we detect only in the focal species). On the basis of the distri-
bution of P values, 7.5% of CEBPA binding sites are predicted to 
have evolved adaptively in the human lineage.

Using the MK framework (10), we predict that PBSs should have 
higher substitution-to-polymorphism ratios than non-PBSs. Note 

Fig. 2. Mouse CEBPA binding sites study. (A) Topological illustration of the phylogenetic relationships between the three mouse species used to detect positive selec-
tion on CEBPA binding sites. We want to detect positive selection that occurred on the lineage of C57BL/6J after divergence from CAST/EiJ, as indicated by the red branch. 
Ma, million years. (B) Receiver operating characteristic (ROC) curve for gkm-SVM classification performance on CEBPA binding sites (fivefold cross-validation). The AUC 
value represents the area under the ROC curve and provides an overall measure of predictive power. (C) The left-hand graphs are the distributions of deltaSVM. The right-
hand graphs are the distributions of deltaSVM P values (test for positive selection). (D) Proportion of CEBPA binding sites with evidence of positive selection. (E to G) The 
number of binding sites in each category is indicated below each box. The P values from a Wilcoxon test comparing categories are reported above boxes. Positive sites 
are binding sites with evidence of positive selection (deltaSVM P value <0.01). (E) Conserved binding sites. (F) Lineage-specific gain binding sites. (G) Lineage-specific loss 
binding sites. We compare the binding intensity from CAST/EiJ, as an approximation for ancestral binding intensity, between positive loss binding sites and nonpositive 
loss binding sites.
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that we do not need to define neutral sites a priori. As expected, we 
found that the PBSs have a significantly higher ratio of fixed nucleotide 
changes between human and chimpanzee to polymorphic sites in 
human than non-PBSs (Fig. 3D). This is an external validation that 
our method detects positive selection, as the input did not contain 
any information about polymorphism.

Besides a higher substitution-to-polymorphism ratio, we also expect 
that the expression of PBS putative target genes (see Materials and 
Methods) should be more conserved among human populations. If the 
expression of PBS target genes is an adaptive trait in humans, further 
changes in expression will reduce fitness. Moreover, recent adaptive 
sweeps are expected to have reduced variability for the regulation of these 
genes. As expected, we found that PBS target genes have significantly 
lower expression variance (adjusted variance, controlling for the 
dependency between mean and variance; see Materials and Methods) 
across human populations than non-PBS target genes (Fig. 3E).

Thus, results from different sources of information support the 
expectations of our PBS predictions. We performed the same analyses 
in HNF4A, and results are consistent (fig. S7). These results strongly 
suggest that our method is detecting real adaptive evolution signals.

Detecting positive selection of TFBSs in Drosophila melanogaster
By using an MK test framework (10), Ni et al. (20) detected signa-
tures of adaptive evolution on CTCF binding sites in D. melanogaster. 
They reported that positive selection has shaped CTCF binding 
evolution and that newly gained binding sites show a stronger signal 
of positive selection than conserved sites. We applied our method to 
the same data as used in Ni et al. (20). We detected positive selection 
in the D. melanogaster lineage after divergence from Drosophila 
simulans (fig. S8, A and B). Consistent with the findings of Ni et al. 
(20), we observed widespread positive selection for both conserved 
and gain (fig. S8C). In addition, the gain has a higher proportion of 
positive selection than conserved (fig. S8D). As Ni et al. (20) did not 
report specific sites, we cannot compare results more precisely. For 
lineage-specific loss binding sites, however, we did not detect any 
signal of positive selection (fig. S8C). The proportion of positive 
selection in D. melanogaster is much higher than in M. musculus. 
For example, we find almost 40% of gain under positive selection in 
D. melanogaster, twice the proportion in M. musculus. It should be 
noted that different transcription factors and tissues were used, which 
complicates direct comparison.
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Adaptive evolution of CTCF binding sites across tissues 
in human
To test whether there is stronger adaptive evolution of gene regulation 
in some human tissues, we applied our method to 80,074 CTCF 
binding sites across 29 adult tissues or primary cell types (hereafter 
“cell types”; see table S2). We chose CTCF because it was the factor 
with the largest number of tissues or primary cell types studied in a 
consistent manner by the ENCODE (Encyclopedia of DNA Elements) 
consortium (21, 22). CTCF is well known as a transcriptional re-
pressor, but it is also involved in transcriptional insulation and 
chromatin architecture remodeling (23). The gkm-SVM model 
trained from one cell type can accurately predict the binding sites in 
another cell type, and the model trained with all CTCF binding sites 
has better performance than the model trained with cell type–specific 
binding sites (fig. S9). Thus, we used a general gkm-SVM rather than 
different models for different cell types.

We detected 3.52% of PBSs for adaptation on the human lineage 
(fig. S10A). We found that PBSs have higher substitution-to- 
polymorphism ratio than non-PBSs (fig. S11). In addition, PBSs are 
associated with a lower number of active cell types (fig. S12A) than 
non-PBSs, consistent with the prediction that pleiotropy can limit 
adaptive evolution (24). We ranked cell types according to the pro-
portion of binding sites that exhibit statistically significant evidence 
of positive selection. Brain-related cell types have a higher propor-
tion of positive selection than other cell types (Fig. 4A). This pattern is 
consistent if we only use tissue-specific CTCF binding sites (fig. S13A). 
Choroid plexus epithelial cell, brain microvascular endothelial 
cell, and retinal pigment epithelial cell have notably high PBS fre-
quencies. Non–brain-related nervous system cell types do not share 
this high positive selection, nor does in vitro differentiated neural 
cell, which may reflect that they do not preserve the signal of specif-
ic in vivo differentiated cells. Notably, these brain-related cell types 
also have a higher fraction of substitutions fixed by positive selec-
tion (see Materials and Methods) than other cell types, except lower 
leg skin (fig. S14).

To check whether our test could be too liberal or conservative for 
some sites, we first analyzed the substitution rate of all possible sub-
stitutions and their corresponding affinity change (deltaSVM) in 
human CTCF binding sites. We split all substitutions into two cate-
gories: substitutions on CpG and substitutions not on CpG. Within 
each category, we found, as expected, that the transition rate is much 
higher than the transversion rate, but we did not find a trend for 
specific substitution types to strengthen or weaken binding affinity 
(figs. S15A and S16). Between categories, we found that there is generally 
higher substitution rate on CpG, again as expected. Substitutions on 
CpG tend to weaken binding affinity (figs. S15A and S16), indicating 
that our test could be conservative for sites with CpG substitutions. 
Second, we checked whether neighboring substitutions (dinucleotide 
substitutions) have a general tendency to change affinity in the same 
direction. Indeed, this is the case (fig. S15B), suggesting that our test 
could be too liberal or too conservative for dinucleotide substitutions, 
depending on the direction of affinity change.

To check whether these biases (substitutions on CpG and dinu-
cleotide substitutions) affect the pattern we found, first, we split all 
CTCF binding sites into two categories: sites with neither CpG sub-
stitutions nor dinucleotide substitutions and sites with either CpG 
substitutions or dinucleotide substitutions. For both categories, the 
proportion of positive selection binding sites (PBSs) detected is 
highly correlated with the original pattern (fig. S17, A and B). In 

addition, as expected, there is a higher proportion of PBSs for sites 
without substitutions on CpG, cofirming that our test is conserva-
tive for sites with CpG substitutions. Second, we both excluded all 
CpG sequences and dinucleotide substitution sequences from all 
binding sites, and we integrated the transition and transversion rate 
(4:1, estimated from fig. S15A) into our null model. Patterns of re-
sults were very robust to these changes (fig. S17C).

To test whether the high regulatory adaptive evolution in brain 
is general to mammals, we performed the same analysis on CTCF 
binding data from 11 mouse adult tissues (table S2 and fig. S18). We 
investigated adaptive evolution in the M. musculus branch after di-
vergence from M. spretus, a similar evolutionary divergence to that 
between human and chimpanzee (5). Similarly to human, we de-
tected 3.54% binding sites that evolved under positive selection 
(fig. S10B) and found PBSs associated with a lower number of active 
cell types (fig. S12B). However, no tissue type had especially high 
adaptive evolution, and brain-related tissues were among the 
lowest (Fig. 4B). When restricting to tissue-specific CTCF binding 
sites, lung has notably high adaptive evolution (fig. S13B).

DISCUSSION
A robust test for positive selection on regulatory elements
Detecting positive selection on regulatory sequences has long been 
a difficult problem (15). Nearby noncoding regions are often used 
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as a neutral reference (13, 14, 25), but this neutrality is difficult to 
establish. Our approach does not require defining a priori neutral 
sites but instead considers the effects of variation on activity (26–28). 
Moreover, positive selection on a background of negative selection 
might not elevate the evolutionary rate above the neutral expecta-
tion, yet consistent changes in binding affinity can still be detect-
able. Indeed, the TFBSs of cell types detected under selection do not 
necessarily evolve faster (fig. S19). In principle, our method can also 
be applied to other genomic regions for which experimental peaks 
are available, such as open chromatin regions or histone modifica-
tion regions.

Because positive selection on regulatory sequences is difficult to 
determine, it is important to validate our predictions with indepen-
dent evidence. The most important validation is that predictions 
made independently of population data verify the expectations of 
higher substitution-to-polymorphism ratio (Fig. 3D). Both this and 
the lower expression variance of neighboring genes (Fig.  3E) are 
consistent with the prediction that positive selection will increase 
divergence but remove polymorphism (10) and that recently select-
ed phenotypes will be under stronger purifying selection. More-
over, binding affinity change occurs in the direction predicted by 
our model (Fig. 2, E  to G), and we can verify the prediction that 
pleiotropy limits adaptation (fig. S12) (24).

Despite its advantages, our method can still be improved. For 
example, in the null model of sequence evolution, we assume inde-
pendent mutation patterns at each base pair (bp) site and a uniform 
mutation rate over all sites. However, both mutation rate and pat-
tern can depend on neighboring nucleotides (29). These limitations 
of our null model might explain why the observed P values do not 
quite follow the expected uniform distribution for high values.

Importance of regulatory adaptation on 
human brain evolution
Our results support the long proposed importance of adaptive reg-
ulatory changes in human brain evolution (1). They are consistent 
with accelerated gene expression evolution in the human brain, but 
neither in human blood or liver nor in rodents, from Enard et al. 
(5). Previous studies on human regulatory sequence evolution re-
ported acceleration in brain-related functions but could not demon-
strate adaptive evolution nor direct activity in the brain (5–8, 25). 
The reported link between human accelerated regions and function 
was very indirect, depending both on the attribution of a region to 
the closest gene and on the functional annotation of that gene.

The brain-related cell types for which we detect a high propor-
tion of positive selection are functionally related with cognitive abil-
ities. For example, for astrocyte, abnormal astrocytic signaling can 
cause synaptic and network imbalances, leading to cognitive im-
pairment (30). In addition, for choroid plexus epithelial cell, its 
atrophy has been reported to be related with Alzheimer’s disease (31).

While we did not find a similar pattern by applying the same 
analysis to mouse, it is not possible yet to conclude to a human- or 
primate-specific pattern. Indeed, the mouse analyses have two po-
tential caveats. First, for the olfactory bulb and cortical plate in the 
mouse analyses, there are no corresponding anatomical structures 
in the human analyses. It is an open question whether the human 
olfactory bulb and cortical plate also have high adaptation. Second, 
the human analyses were based on ChIP-seq at cell type level, but 
the mouse analyses were based on ChIP-seq at tissue level. In 
mouse, the astrocyte in cerebellum may also have high adaptation 

like the astrocyte in human, but the signal might be diluted by other 
cell types in cerebellum.

Regulatory adaptation differs between tissues
Outside of brain cell types, we found that male reproduction system 
(prostate and foreskin) has higher adaptive regulatory evolution 
than female reproduction system (ovary, uterus, and vagina). This 
is consistent with the observation of high adaptive sequence evolu-
tion in human male reproduction (32, 33) and probably caused by 
sexual selection–related selective pressures, such as sperm competi-
tion. However, testis has a relatively low proportion of adaptive 
evolution, similar to ovary. This suggests that the high expression 
divergence in testis (34) is mainly caused by relaxed purifying selec-
tion, maybe due to the role of transcription in testis for “transcrip-
tional scanning” (35). Outside of the brain, the top adaptive regulatory 
evolution systems seem to be the same as found for adaptive protein 
evolution, i.e., male reproduction, immune, and endocrine systems 
(32, 36–38). The high fraction of substitutions fixed by positive 
selection in the skin is interesting (fig. S14), since the skin is both 
involved in defense against pathogens and has evolved specifi-
cally in the human branch with loss of fur (39). The lack of adaptive 
protein sequence evolution despite high adaptive regulatory evo-
lution might be related to selective pressure on proteins in the 
brain (40, 41).

MATERIALS AND METHODS
Mutagenesis for positive selection
Training of the gkm-SVM
gkm-SVM is a method for regulatory DNA sequence prediction by 
using k-mer frequencies (42). For the gkm-SVM training, we fol-
lowed the approach of Lee et al. (16). First, we defined a positive 
training set and its corresponding negative training set. The positive 
training set is ChIP-seq narrow peaks of transcription factors. The 
negative training set is an equal number of sequences, which ran-
domly sampled from the genome with matched the length, GC (guanine- 
cytosine)  content, and repeat fraction of the positive training set. This 
negative training set was generated by using “genNullSeqs,” a func-
tion of gkm-SVM R package (43). Then, we trained a gkm-SVM with 
default parameters except −l = 10 (meaning, we use 10-mer as fea-
ture to distinguish positive and negative training sets). The classi-
fication performance of the trained gkm-SVM was measured by 
using receiver operating characteristic (ROC) curves with fivefold 
cross-validation. The gkm-SVM training and cross-validation were 
achieved by using the “gkmtrain” function of “LS-GKM: A new 
gkm-SVM software for large-scale datasets” (44). For details, please 
check https://github.com/Dongwon-Lee/lsgkm.
Generate SVM weights of all possible 10-mers
The SVM weights of all possible 10-mers were generated by using 
the “gkmpredict” function of “LS-GKM.” The positive value means 
increasing binding affinity, the negative value means decreasing 
binding affinity, and the value close to 0 means functionally neutral.
Infer ancestor sequence
The ancestor sequence was inferred from sequence alignment with 
a sister species and an outgroup.
Calculate deltaSVM
We calculated the sum of weights of all 10-mers for ancestor sequence 
and focal sequence, respectively. The deltaSVM is the sum weights 
of focal sequence minus the sum weights of ancestor sequence. The 

https://github.com/Dongwon-Lee/lsgkm
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positive deltaSVM indicating substitutions increased the binding 
affinity in the focal sequence, vice versa.
Generate empirical null distribution of deltaSVM
First, we counted the number of substitutions between the ancestor 
sequence and the focal sequence. Then, we generated a random 
pseudo-focal sequence by randomly introducing the same number 
of substitutions to the ancestor sequence. Last, we calculated the 
deltaSVM between the pseudo-focal sequence and the ancestor se-
quence. We repeated the above processes 10,000 times to get 10,000 
expected deltaSVMs.
Calculate P value of deltaSVM
For lineage-specific gain TFBSs, the P value was calculated as the 
probability that the expected deltaSVM is higher than the observed 
deltaSVM (higher-tail test). For lineage-specific loss TFBSs, the 
P value was calculated as the probability that the expected deltaSVM 
is lower than the observed deltaSVM (lower-tail test). For conserved 
TFBSs, we primarily focused on selection to increase binding affin-
ity, and thus, we performed higher-tail test. The motivation for this 
is that when we have ChIP-seq data in only one species, which is the 
most common case, the observed peaks are a mix of conserved and 
gained sites, and thus, very little signal of decrease of binding is ex-
pected. The P value can be interpreted as the probability that the 
observed deltaSVM could arise by chance.

Mouse validation analysis
ChIP-seq data
The narrow ChIP-seq peaks and their corresponding intensity 
(normalized read count) datasets of three liver-specific transcrip-
tion factors (CEBPA, FOXA1, and HNF4A) in three mouse species 
(C57BL/6J, CAST/EiJ, and SPRET/EiJ) were downloaded from 
www.ebi.ac.uk/research/flicek/publications/FOG09 [accessed in 
May 2018; (19)]. Peaks were called with SWEMBL (https://github.
com/stevenwilder/SWEMBL). To account for both technical and 
biological variabilities of peak calling, Stefflova et al. (19) carried 
out the following approaches. For each transcription factor in each 
species, they first called three sets of peaks: one for each replicate 
(replicate peek) and one for a pooled dataset of both replicates 
(pooled peak). Then, the peaks detected from the pooled dataset 
were used as a reference to search for overlaps in the two other 
replicates. When a pooled peak overlapped with both replicate 
peeks (at least 1-bp overlap), it was kept for downstream analyses. 
For the number of peaks and average peak length, please check 
table S1.
Peak coordinates transfer
On the basis of pairwise genome alignments between C57BL/6J and 
CAST/EiJ or SPRET/EiJ, Stefflova et al. (19) transferred the coordi-
nates of ChIP-seq peaks in both CAST/EiJ and SPRET/EiJ to its cor-
responding coordinates in C57BL/6J.
Sequence alignment files
The sequence alignment files between C57BL/6J and CAST/EiJ or 
SPRET/EiJ were downloaded from www.ebi.ac.uk/research/flicek/
publications/FOG09 [accessed in May 2018; (19)].
Define different types of binding sites
Conserved binding sites. The conserved binding sites were defined 
as peaks in C57BL/6J, which have overlapping peaks (at least 1-bp 
overlap) in the other two species by genome alignment.

Lineage-specific gain binding sites. The lineage-specific gain binding 
sites defined as peaks in C57BL/6J with no overlapping peaks (at 
least 1-bp overlap) in the other two species.

Lineage-specific loss binding sites. The lineage-specific loss binding 
sites defined as peaks in CAST/EiJ, which have overlapping peaks in 
SPRET/EiJ but not in C57BL/6J.

Human validation analysis
ChIP-seq data
The narrow ChIP-seq peak datasets of two liver-specific transcription 
factors (CEBPA and HNF4A) in human were downloaded from 
www.ebi.ac.uk/research/flicek/publications/FOG01 [accessed in 
October 2018; (45)]. Peaks were called with SWEMBL (https://
github.com/stevenwilder/SWEMBL). Negligible variation was ob-
served between the individuals in terms of peak calling, so Schmidt et al. 
(45) pooled replicates into one dataset for peak calling.
Sequence alignment files
The pairwise whole-genome alignments between human and chim-
panzee or gorilla were downloaded from http://hgdownload.soe.
ucsc.edu/downloads.html (accessed in December 2018).
Single-nucleotide polymorphism data
Over 36 million single-nucleotide polymorphisms (SNPs) for 1092 indi-
viduals sampled from 14 populations worldwide were downloaded from 
phase 1 of the 1000 Genomes Project (ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase1/analysis_results/integrated_call_sets/) [accessed in 
December 2018; (46)]. As suggested by Luisi et al. (47), we only used SNPs 
of a subset of 270 individuals from YRI (Yoruba in Ibadan), CEU 
(Utah residents with Northern and Western European ancestry), and 
(Han Chinese in Beijing) populations.
Liver expression data
The library site normalized expression data of 175 livers were 
downloaded from The Genotype-Tissue Expression (GTEx) project 
https://gtexportal.org/home/ [Release V7, accessed in December 2018; 
(48)]. We further transformed it with log2.
Putative target genes of TFBSs
We assigned the nearest gene to each TFBS as its putative target gene.
Adjusted variance
There is a very strong dependency between mean and variance for 
gene expression (fig. S20A). To remove this dependency, as previ-
ously proposed (49, 50), we calculated the adjusted variance. Specif-
ically, we fitted a polynomial model to predict the variance from the 
mean in the log space. We increased the degrees of the model until 
there was no more significant improvement [tested with analysis 
of variance (ANOVA), P < 0.05 as a significant improvement]. The 
adjusted variance is the ratio of the observed variance over the vari-
ance component predicted by the mean expression level. After 
this adjustment, there is no correlation between mean and variance 
(fig. S20B).

Fly validation analysis
ChIP-seq data
The narrow ChIP-seq peaks of transcription factor CTCF in three 
drosophila species (D. melanogaster, D. simulans, and Drosophila 
yakuba) were downloaded from www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE24449 [accessed in January 2019; (20)]. 
Peaks were called with QuEST (51) at a false discovery rate <1%. 
We obtained 2182, 2197, and 2993 peaks with average length of 243, 
240, and 201 bp for D. melanogaster, D. simulans, and D. yakuba, 
respectively.
Peak coordinates transfer
The peaks identified in D. simulans and D. yakuba were translated 
onto D. melanogaster coordinates by using pslMap (52).

https://www.ebi.ac.uk/research/flicek/publications/FOG09
https://github.com/stevenwilder/SWEMBL
https://github.com/stevenwilder/SWEMBL
https://www.ebi.ac.uk/research/flicek/publications/FOG09
https://www.ebi.ac.uk/research/flicek/publications/FOG09
https://www.ebi.ac.uk/research/flicek/publications/FOG01
https://github.com/stevenwilder/SWEMBL
https://github.com/stevenwilder/SWEMBL
http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
https://gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24449
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24449
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Sequence alignment files
The pairwise whole-genome alignments between D. melanogaster and 
D. simulans or D. yakuba were downloaded from http://hgdownload.
soe.ucsc.edu/downloads.html (accessed in January 2019).
Define different types of binding sites
These were defined as in mouse, using D. melanogaster versus 
D. simulans and D. yakuba.

Human CTCF analysis
ChIP-seq data
The narrow ChIP-seq peaks of transcription factor CTCF across 
29 tissues or cell types (table S2) were downloaded from ENCODE 
(21). We did not use ChIP-seq datasets from cell lines and only kept 
ChIP-seq datasets from tissues and primary cells. Briefly, peaks were 
called with MACS (model-based analysis of ChIP-Seq) (53) sepa-
rately for each replicate. Irreproducible discovery rate (IDR) analy-
sis was then performed (54). Final peaks are the set of peak calls that 
pass IDR at a threshold of 2%. Peaks identified in different tissues 
or cell types were integrated by intersecting all peaks across datasets, 
with at least 1-bp overlap used as the merge criteria. Overall, we ob-
tained 118,970 merged peaks.
Sequence alignment files
The pairwise whole-genome alignments between human and 
chimpanzee or gorilla were downloaded from http://hgdownload.
soe.ucsc.edu/downloads.html (accessed in December 2018).
Proportion of substitutions fixed by positive selection
We calculated the proportion of substitutions fixed by positive se-
lection, a measure of effect size of selection, under the MK test 
framework (10, 55)

   = 1 −   
DnpPp

 ─ DpPnp    

Dnp is the substitution number in non-PBSs, Pp is the poly-
morphism number in PBSs, Dp is the substitution number in PBSs, 
and Pnp is the polymorphism number in non-PBSs.
Estimate substitution rate
The substitution rate, for example C→T, was estimated as the number 
of C→T divided by the number of nucleotide C in the ancestor sequence.

Mouse CTCF analysis
ChIP-seq data
The narrow ChIP-seq peaks of transcription factor CTCF across 11 tis-
sues (table S2) were downloaded from ENCODE (21). Briefly, peaks 
were called with MACS (53) separately for each replicate. IDR analysis 
was then performed. Final peaks are the set of peak calls that pass 
IDR at a threshold of 2%. Peaks identified in different tissues/cell 
types were integrated by intersecting all peaks across datasets, with 
at least 1-bp overlap used as the merge criteria. Overall, we obtained 
112,657merged peaks.
Sequence alignment files
The sequence alignment file between C57BL/6J and SPRET/EiJ 
(please check the “Mouse validation analysis” section in Materials 
and Methods). The sequence alignment files between C57BL/6J and 
Caroli/EiJ were downloaded from www.ebi.ac.uk/research/flicek/
publications/FOG09 [accessed in May 2018; (19)].

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabc9863/DC1
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