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Abstract

The number of people affected by Type 2 Diabetes Mellitus (T2DM) is close to half a
billion and is on a sharp rise, representing a major and growing public health burden. As
the case for many other complex diseases, early diagnosis is key to prevent irreversible
end-organ damages. However, given its mild initial symptoms, T2DM is often diagnosed
several  years  after  its  onset,  leaving half  of  diabetic  individuals undiagnosed.  While
several classical clinical and genetic biomarkers have been identified, improving early
diagnosis by exploring other kinds of omics data remains crucial. In this study, we have
combined  longitudinal  data  from  two  population-based  cohorts  CoLaus  and  DESIR
(comprising in  total  493 incident  cases vs 1’360 controls)  to  identify new or  confirm
previously  implicated metabolomic  biomarkers predicting T2DM incidence more than
five years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence
for valine, leucine, carnitine and glutamic acid being predictive of future conversion to
T2DM, and also confirmed to be causal by 2-sample Mendelian randomisation (based
on independent data). Interestingly, for valine and leucine a strong reverse causal effect
was  detected,  indicating  that  the  genetic  predisposition  to  T2DM may  trigger  early
changes of these metabolites, which appear well-before any clinical symptoms. These
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findings  indicate  that  molecular  traits  linked  to  the  genetic  basis  of  T2DM may  be
particularly promising early biomarkers.

1. Introduction

Type 2 Diabetes Mellitus (T2DM) is a major public health concern and its prevalence is
increasing. Almost 500 million individuals are currently affected worldwide by diabetes
and  almost  700  million  may  be  affected  by  2045
[https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html].  Diabetes
remains among the leading causes of cardiovascular disease, blindness, kidney failure,
and lower-limb amputation.  By the  time T2DM is  diagnosed,  many individuals  have
already  established  end-organ  damage  including  neuropathy,  kidney  failure  and/or
premature cardiac or brain atherosclerosis. Diabetes and pre-diabetes are diagnosed by
routinely  assessed  clinical  markers  (glycaemia  and  HbA1c  levels)  above  a  given
threshold.   Still, agreement between the different markers in diagnosing T2DM is not
optimal [1], and their screening capacity for pre-diabetes is low [2]. While these markers
are powerful predictors of the disease, they are far from perfect for the identification of
individuals who are prone to develop T2DM. Early detection of  individuals with high
T2DM  predisposition  is  important  as  non-pharmacological  approaches  (i.e.  lifestyle
changes) can reduce substantially (and at a reduced cost) the risk of developing T2DM
[3]. Thus, the use of predictive biological tests or clinical scores enabling a more precise
identification of individuals at risk is a pressing need so that preventive measures can be
applied to limit the increase of T2DM prevalence world-wide. Several predictive scores
using clinical data and/or biological markers have been developed (e.g.  [4]), but their
performance  (AUC  ~0.75)  is  far  from  optimal.  Over  90%  positive-  and  negative
predictive value would be clinically relevant, which is achievable for some diseases [5].
Recently,  polygenic scores based on cross-sectional  T2DM case-control  status have
been explored and may be of great value to enhance the predictive capacity  of the
disease onset and to better understand the clinical heterogeneity of T2DM [6]. Since
many metabolites and proteins are expected to be altered in pre-diabetic state, using
different omics profiles in addition to the classical clinical, biological and genetic risk
factors is expected to increase the prediction accuracy. 

Several  cross-sectional  and  longitudinal  metabolomic  studies,  focussing  on  blood
samples  using  targeted  approaches,  have  been  initiated  to  identify  candidate
biomarkers of pre-diabetes,  with a few exceptions employing untargeted approaches
(e.g.  a  cross-sectional  study  of  115  T2DM  individuals [7]).  In  the  population-based
cooperative health research of Augsburg (KORA), 140 metabolites were quantified for
4,297 participants and several metabolites altered in pre-diabetic individuals have been
identified [8].  Using  metabolite-protein  network  and  targeted  approaches  on  serum
samples, Wang-Sattler et al. identified seven T2DM-related genes associated with these
metabolites by multiple interactions with four enzymes. Lysophosphatidylcholine (18:2)
and glycine were strong predictors of glucose intolerance, even 7 years before disease
onset.  These  metabolites,  in  addition  to  sugar  metabolites,  acylcarnitines  and  other
aminoacids,  have  been  identified  as  predictors  of  T2DM  also  in  the  European
Prospective Investigation into Cancer and nutrition cohort [9]. More recently, Padberg et
al. described a metabolic signature that includes glyoxylate associated with T2DM and
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prediabetic individuals [10]. Wang et al, using longitudinal data on 201 incident T2DM
cases, identified a signature of five branched-chain and aromatic metabolites for which
individuals in the top quartile exhibited a five-fold higher risk to develop T2DM  [11].
Particularly,  a combination of three amino acids predicted future T2DM, with a more
than  five-fold  higher  risk  for  individuals  in  top  quartile,  suggesting  that  amino  acid
profiles could aid in diabetes risk assessment. These results were confirmed by a recent
meta-analysis from 8 prospective studies on 8’000 individuals, which found a higher risk
of T2DM for isoleucine, leucine, valine and phenylalanine [12].
By targeting serum carnitine metabolites on 173 incident  T2DM cases among 2’519
patients with coronary artery disease, Strand et al. demonstrated that trimethyl-lysine, g-
butyrobetaine, as both precursors on free carnitine and palmitoyl-carnitine, predict long-
term risk of T2DM independently of traditional risk factors [13]. 
As another example, shotgun lipidomics was applied in a transversal study on plasma of
pre-diabetic mice from different genetic backgrounds and revealed a group of ceramides
correlated  with  glucose  tolerance  and  insulin  secretion  [14].  These  results  were
interestingly confirmed by quantitative analysis in the plasma of individuals from two
population-based prospective cohorts showing that dihydro-ceramides were significantly
elevated in the plasma of individuals who will progress to diabetes up to 9 years before
disease onset [14]. Other studies have struggled to identify the contribution of individual
metabolites and focused more on metabolome-wide prediction [15], which are difficult to
replicate. 
The  previously  listed  studies  provide  several  important  candidate  metabolites  to
benchmark  our  experimental  and  modelling  setup.  Here,  we  used  a  subset  of  the
CoLaus study intentionally  enriched for  T2DM incident  cases to  maximise discovery
power of baseline metabolite levels being associated with developing T2DM at a later
follow-up  stage.  We  compared  our  findings  with  a  similarly  sized  population-based
cohort, DESIR, and also with bidirectional Mendelian randomisation using metabolite-
and T2DM QTLs as instruments.

2. Methods

2.1The CoLaus study

The CoLaus study (www.CoLaus-psycolaus.ch) is a population-based prospective study
based on a single random sample of 6’733 participants from the overall population aged
between 35-75 living in Lausanne (10). The baseline survey was conducted between
2003  and  2006.  Each  participant  was  extensively  phenotyped  regarding  personal,
lifestyle and cardiovascular risk factors; extensive blood and urine characterization was
performed, and over 500’000 SNPs were directly genotyped and a further 20.4 million
imputed (with r2-hat>0.3). The first follow-up was performed between April  2009 and
September 2012; median follow-up time was 5.4 (average 5.6, range 4.5-8.8) years; it
included 5’064 participants, and the 5.5-year incidence of T2DM was 6.5%, with 284
incident cases. The second follow-up was performed between May 2014 and April 2017;
median  follow-up  was  10.7  (average  10.9,  range  8.8-13.6)  years.  In  this  study,  we
selected 262 T2DM incident cases at the first follow-up and 524 controls matched for
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sex, age and baseline glucose. For each case, two types of controls were selected: one
with a very low risk of T2DM (as assessed by a multivariable T2DM risk score  [16]) and
one with pre-diabetes (with a high-risk score, but no T2DM at the CoLaus second follow-
up). Incident T2DM cases were defined as fasting glucose ≥ 7 mmol/L and/or presence
of  antidiabetic  drug  treatment  and/or  HbA1c  ≥  6.5%.  The  most  important  study
characteristics  are  included  in  Table  1.  The  study  protocols  were  approved  by  the
Ethical Committee of the Canton de Vaud and all participants provided written informed
consent.  

2.2The DESIR cohort 
The prospective D.E.S.I.R. cohort is a nine-year follow up study of 2,391 middle-aged
European ancestry participants  [17-19]. We analysed participants from  a case-cohort
design embedded within the larger cohort that includes 231 cases of incident T2DM and
836  participants  randomly  sampled  from  the  entire  cohort.  Baseline  and  follow-up
clinical characteristics of participants included in the training population are shown in [4]
(see Table 1).  T2DM was defined using one of the following criteria:  use of glucose
lowering medication, fasting plasma glucose [FG] ≥7 mmol/L, or glycated hemoglobin
A1c [HbA1c] ≥6.5% (48 mmol/mol). Clinical and biological evaluations were performed at
inclusion  and  after  three,  six,  and  nine  years,  as  previously  described  [20].  All
participants provided written informed consent and the study protocol was approved by
the Ethics Committee for the Protection of Subjects for Biomedical Research of Bicêtre
Hospital,  France.  Metabolites  measurements  have  been  described  elsewhere  in  full
details [20].

2.3Targeted Metabolomics analysis
Plasma  and  urine  samples  collected  at  the  baseline  of  the  CoLaus  cohort  were
processed  for  targeted  metabolomics  analysis  as  described  elsewhere  [21].  Briefly,
metabolites were extracted from 100 µL of plasma or urine samples and Quality Control
(QC)  samples  using  a  cold  methanol-ethanol  solvent  mixture  in  a  1:1  ratio.  After
centrifugation at 14’000 rpm for 15 minutes, supernatant was recovered, evaporated and
resuspended in 100µL (for plasma) or 200µL (for urine) of H2O:MeOH (9:1). 5µL of the
samples were analyzed by LC-MRM/MS on a hybrid triple quadrupole-linear ion trap
QqQLIT (Qtrap 5500, Sciex) hyphenated to a LC Dionex Ultimate 3000 (Dionex, Thermo
Scientific).  Analyses were performed in  positive and negative electrospray ionization
using  a  TurboV  ion  source.  The  chromatographic  separation  was  performed  on  a
Kinetex column C18 (100×2.1 mm, 2.6 µm). The mobile phases were constituted by A:
H2O with 0.1% FA and B: ACN with 0.1% FA for the positive mode. In the negative
mode, the mobile phases were constituted by A: ammonium fluoride 0.5 mM in H 2O and
B: ammonium fluoride 0.5 mM in ACN. The linear gradient program was 0-1.5 min 2%B,
1.5-15 min up to 98%B, 15-17 min held at 98% B, 17.5 min down to 2%B at a flow rate
of 250 µL/min.
The MRM/MS method included 299 and 284 transitions in positive and negative mode
respectively, corresponding to 583 endogenous metabolites. For each biological matrix,
the 786 samples were prepared and analyzed in 8 batches. In order to monitor the
signal drift and system performance over time, and to avoid repeated thawing-freezing
cycles of the study samples, quality control (QCs) surrogate samples were used. These
QC samples were prepared in the same way and at the same time of the study samples
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from aliquots of a pool of human plasma or urine that was the same for all the analytical
batches.  QC samples  were  injected  every  8  samples  in  both  positive  and negative
modes. 
The  MS  instrument  was  controlled  by  Analyst  software  v.1.6.2  (AB  Sciex).  Peak
integration was performed with MultiQuant software v.3.0 (AB Sciex). The integration
algorithm was MQ4 with a Gaussian smoothing of a half-width equal to 1.5 points. For
plasma samples, the analysis was narrowed to the 124 and 48 metabolites that were
detected in all samples with a noise percentage of 80% and a gaussian peak shape, in
positive and negative modes, respectively. For urine samples, we detected 124 and 77
metabolites in positive and negative modes, respectively. To correct for batch effect, raw
data were normalized with the dbnorm package [22], by using the ber model. 

2.4Statistical approaches

We performed logistic- and linear regression analysis to test for association between
baseline metabolite levels and T2DM incidence and glucose level changes, respectively.
We included the following covariates: family history of diabetes, smoking status, body-
mass index (BMI), HDL cholesterol, triglycerides, insulin, glucose and HOMA measure
at baseline. Since none of our association P-values passed strict Bonferroni correction
for  multiple  testing  (P<0.05/172,  we  declared  P-values  below  0.01  as  suggestively
significant.

2.5Bi-direction Mendelian Randomization

For each metabolite associated with glucose, we performed two-sample bidirectional
Mendelian  randomization  (MR),  an  instrumental  variable  method  to  distinguish
correlation from causation in observational data [23]. The idea of MR is to use genetic
variants  as  instrumental  variables  to  attempt  causal  inference  about  the  effect  of
modifiable risk factors, which can overcome some types of confounding and reverse
causation.

We tested whether genetically predicted levels of a particular metabolite affect the
risk for elevated glucose and type 2 diabetes and whether genetically increased risk of
type 2 diabetes or elevated glucose is associated with circulating levels of a particular
metabolite. The associations between the instrumental variables and the exposure and
the outcome are estimated from independent studies, either the metabolite GWAS or
fasting glucose/T2DM GWAS.

For each metabolite associated with glucose, we performed two-sample bidirectional
MR. We tested whether genetically varying levels of a particular metabolite affect the
risk for elevated glucose and T2DM (we call this MR) and whether genetically increased
risk of T2DM or elevated glucose is associated with circulating levels of a particular
metabolite  (we  call  this  reverse  MR).  The  associations  between  the  instrumental
variables and the exposure and the outcome are estimated from independent studies.
We used summary statistics from the UKBB for glucose and those published by the
DIAGRAM Consortium for  T2DM [24].  The metabolite  data are from a  large GWAS
performed on 7,824 adult individuals from European population studies. 
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3. Results

3.1Study characteristics

Selected basic features of the CoLaus study are listed in Table 1. We selected 788
participants, including 263 T2DM incident cases at the first follow-up and 525 controls
matched for sex, age and baseline glucose. Summary data are expressed either as
counts (and percentage) for categorical variables and as median [interquartile range] or
mean ± standard deviation for continuous variables.  
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CoLaus DESIR
Y0 Y5 Y10 Y0 Y3 Y6 Y9

N 788 788 673 984 961 932 957

Gender (woman) 268 (34.0) 268 (34.0) 240 (35.7) 469 (47.7) 455 (47.3) 442 (47.4) 462 (48.3)

Age (years) 56.2 ± 9.7 61.8 ± 9.7 66.7 ± 9.5 48.2 ± 10.1 51.2 ± 10.1 54.2 ± 10.1 57.2 ± 10.1

Smoking categories (%)           

Never 283 (35.9) 280 (36.0) 237 (38.4) 484 (49.2) 474 (49.3) 456 (48.9) 473 (49.4)

Former 302 (38.3) 339 (43.6) 284 (46.0) 278 (28.3) 272 (28.3) 264 (28.3) 270 (28.2)

Current 203 (25.8) 159 (20.4) 96 (15.6) 222 (22.6) 215 (22.4) 212 (22.7) 214 (22.4)

Alcohol consumption 
(g/week) 5 [1-11] 4 [0-10] 4 [0-10] 2.51 [0.14 - 3.29] 2.54 [0.29 - 4.04] 2.48 [0.29 - 4.04] 2.29 [0.29 - 3.52]

Body mass index (kg/m2) 27.1 ± 4.6 27.5 ± 4.9 27.8 ± 5.1 25.1 ± 4.0 25.6 ± 4.4 26.0 ± 4.5 26.2 ± 4.5

Waist (cm) 94.2 ± 13.1 97.1 ± 13.2 97.7 ± 13.9 84.5 ± 12.1 85.9 ± 12.6 87.5 ± 12.9 88.2 ± 13.1

HDL (mmol/L) 1.53 ± 0.42 1.53 ± 0.44 1.49 ± 0.46 1.61 ± 0.42 1.51 ± 0.39 1.62 ± 0.40 1.47 ± 0.34

Triglycerides (mmol/L) 1.3 [0.9-1.9] 1.3 [0.9-1.8] 1.2 [0.9-1.7] 1.2 [0.7 - 1.5] 1.3 [0.7 - 1.6] 1.3 [0.8 - 1.6] 1.3 [0.8 - 1.5]

Glucose (mmol/L) 5.68 ± 0.66 6.38 ± 1.13 5.98 ± 1.39 5.39 ± 0.57 5.53 ± 0.84 5.63 ± 1.04 5.67 ± 1.06

Insulin (μU/mL) 8.2 [5.1-12.4] 8.3 [5.2-13.5] 9.8 [5.9-14.8] 7.1 [4.2 - 8.3] 7.0 [4.2 - 8.4] 7.5 [3.9 - 9.0] 7.3 [4.1 - 8.7]

HOMA2-IR 2.1 [1.3-3.3] 2.4 [1.4-4.0] 2.6 [1.4-4.2] 1.1 [0.7 - 1.3] 1.1 [0.7 - 1.3] 1.2 [0.7 - 1.5] 1.2 [0.7 - 1.4]

Table 1. Sample characteristics of the CoLaus and DESIR studies. Yn denotes n years after baseline (e.g. Y3 means a follow-up 3
years after baseline). N stands for sample size. Values are either number (% of total), median [interquartile range] or mean ± standard
deviation.
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3.2Metabolites association scan

Based on quality criteria such as sensitivity and peak shape, we detected 172 urine and
plasma  metabolites  (MS)  in  the  788  selected  CoLaus  participants.  The  analytical
samples were collected at the baseline and included 525 participants without diabetes
and  263  participants  who  became  diabetic  over  the  following  10  years.  For  each
metabolite, we ran association scans to find those correlated to change in diabetes or
glucose  levels.  All  the  results  are  based  on  the  first  follow-up  which  is  the  most
predictive analysis. Indeed, when we compared the effects estimated in the first and
second follow-up we observed significant weaker effects in the second follow-up (Pt-test =
1.38 x10-05, see Figure1).

Figure1. Linear relationship between the effects estimated in the first (F1) and second
(F2) follow-up. The blue and grey lines represent the regression and the identity line
respectively.

The metabolome-wide  association  scan  revealed  seven  metabolites  associated  with
glucose change at suggestively significant level (P<0.01) in the CoLaus study, see Table
2.  When  we  meta-analysed  metabolome-wide  results  from the  CoLaus  and  DESIR
studies, we similarly found leucine and four additional suggestively significant (P<0.01)
metabolites associated with glucose change (Table 3).

Finally, three out of the seven metabolites associated with glucose were testable with
MR.  Interestingly,  T2DM  showed  a  significant  causal  effect  on  valine  (P  =  0.003),
leucine (P = 5.8 x 10-05) and glutamate (P= 2.8 x 10-06).
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Metabolite

Colaus DESIR CoLaus+DESIR
Metabolite ->
Glucose MR

Glucose ->
metabolite MR

Metabolite ->
T2DM MR

T2DM ->
Metabolite MR

effect
P-

value effect
P-

value P-value effect
P-

value effect
P-

value effect
P-

value effect P-value

Valine
(HMDB0000883) 0.167

9.00E-
04 0.005 0.853 0.069 0.000 1.000 0.104 0.023 0.023 0.008 0.115 0.003

Leucine
(HMDB0000687) 0.134

0.002
1 0.046 0.158 2.90E-03 0.002 0.372 0.042 0.360 0.007 0.011 0.159 5.79E-05

Sarcosine
(HMDB0000271) 0.144

0.003
9 0.014 0.581 0.076 x x x x x x x x

4-Hydroxyproline
(HMDB0006055) 0.122

0.004
2 -0.039 0.116 0.94 x x x x x x x x

Glutamic acid
(HMDB00148) 0.105 0.009 -0.038 0.185 0.656 0.01 0.147 0.069 0.134 0.012 0.12 0.18 2.84E-06

Homoserine
(HMDB0000719) 0.123

0.009
4 x x x x x x x x x x x

Table 2. Metabolites associated with glucose change in the CoLaus cohort. For each metabolite we report its effect size on glucose in
the CoLaus and DESIR cohorts, the combined P-value and the forward and reverse causal effect on glucose and T2DM estimated by
Mendelian Randomisation. “X” indicates missing value, i.e. when the metabolite was not available for the respective analysis. The ID for
the Human Metabolome Database is indicated for each metabolite.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20222836doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20222836
http://creativecommons.org/licenses/by-nc-nd/4.0/


Metabolite

Colaus DESIR
CoLaus+DESI

R
Metabolite ->
Glucose MR

Glucose ->
metabolite MR

Metabolite ->
T2DM MR

T2DM ->
Metabolite MR

effec
t

P-
value

effec
t P-value P-value

effec
t P-value

effec
t P-value

effec
t P-value effect P-value

L-carnitine
(HMDB00062)

0.075 0.111 0.091 3.26E-04 8.30E-05 0.00 0.358 0.05 0.314 0.00 0.199 0.09 0.027

Leucine
(HMDB0000687) 0.134 0.002 0.046 0.158 0.003 0.00 0.372 0.04 0.360 0.01 0.011 0.16 5.79E-05

Phenylacetylglutamin
e

(HMDB0006344)

-
0.036 0.204

-
0.058 0.013 0.006

-
0.001 0.429 0.037 0.415 -0.01 0.2 0.008 0.836

Pantothenic acid
(HMDB00210) 0.047 0.114 0.065 0.026 0.007 x x x x x x x x

Cortisol
(HMDB00063)

-
0.072 0.061

-
0.046 0.059 0.009 -0.01 0.116 -0.02 0.669 -0.01 0.198 -0.07 0.086

Table 3. Additional metabolites found significantly associated with glucose change after combining CoLaus and DESIR Cohort results.
For each metabolite we report its effect size on glucose in CoLaus and DESIR cohorts, the combined P-value and the forward and
reverse causal effect on glucose and T2DM estimated by Mendelian Randomisation.  The ID for the Human Metabolome Database is
indicated for each metabolite.
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4. Discussion

Using  mass-spectrometry  targeted  metabolomics  analysis,  we  identified  a  panel  of
metabolites  whose  levels  are  associated  with  glucose  changes  before  the  onset  of
T2DM in the CoLaus Cohort. We replicated our findings in an independent study (from
DESIR),  which  reassuringly  revealed  five  metabolites  with  combined  P-value  below
0.01. While we focused our analysis on predicting T2DM for a 5-years follow-up period,
we observed that  the effect  of  the potentially  predictive metabolites diminished over
time.  This  is  unsurprising  as  risk  factors  change  over  time,  hence  more  and  more
unknowns contributing to diabetes conversion accumulate with time. We have noticed,
furthermore,  that  more  than  80%  (140/172)  of  the  metabolite  effects  are  positive,
meaning that generally an increased level of  metabolites represents a risk factor for
diabetes. This observation needs to be considered with caution, since it might be due to
a latent diabetes-associated confounding factor,  which is linked to overall  metabolite
concentration. This explanation is rather unlikely since we accounted for metabolomic
principal components in all association scan.
The  confirmed  metabolites  have  been  repeatedly  supported  by  various  types  of
evidence in both human and model organisms. Individuals with obesity and T2DM have
elevated levels of branched-chain amino acids (leucine, isoleucine and valine) [11, 25-
28]. Such changes are already present before the onset of diabetes [11, 12] and their
causal  role  is  believed  to  be  exerted  via  the  modulation  of  the  mTOR  pathway.
Increased leucine  levels  can lead to  insulin  resistance via  activation  of  the  TORC1
pathway,  with  induction  of  beta  cell  proliferation  and  insulin  secretion  [11,  29] and
disruption of insulin signal in skeletal muscle [30]. On the other hand, insulin resistance
enhances  protein  catabolism in  skeletal  muscle,  which  can  increase  the  release  of
branched-chain amino acids [31]. Moreover,  hyperglycemia negatively correlates with
adipose tissue expression of genes involved in branched-chain amino acid oxidation,
which can further contribute to raise the levels of BCAA  [31]. Thus, so far it remains
unclear whether the observed BCAA changes are only a consequence of hyperglycemia
or if they have a causative role in the development of T2DM. 
Another metabolite which is displaying a significant association with glucose changes in
the CoLaus cohort is glutamic acid, although this is not replicated in the DESIR study. A
link  between  increased  glutamate  levels  and  insulin  resistance  traits  was  already
observed in multiple cohorts [26, 32], and more recently, a meta-analysis conducted in
18 prospective studies highlighted glutamate as positively correlated with T2DM  [33].
Glutamate is a glucogenic aminoacid, which can enter into the Krebs cycle through its
conversion to  α-ketoglutarate. In addition, it can favour gluconeogenesis by increasing
the  transamination  of  pyruvate  to  alanine [34],  and  can  directly  stimulate  glucagon
release  from  pancreatic  α-cells [35].  However,  its  possible  causal  role  remains
controversial  and  several  reports  suggest  that  it  is  rather  a  reduced  ratio  between
glutamine, a glutamate derivative, and glutamate itself, that is informative of metabolic
risk [32, 36].   
In our study, free carnitine, cortisol, phenylacetylglutamine and pantothenic acid also
appeared as significantly associated to the development of T2DM, although only when
our  data  were  combined  with  the  French  cohort  (CoLaus+DESIR).  Carnitine
esterification  with  fatty  acids  is  required  for  the  shuttling  of  the  latter  into  the
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mitochondria  for  fatty  acid  oxidation.  Lower levels  of  free carnitine were reported in
diabetic  individuals [13,  37,  38],  while  changes  of  acylcarnitines  and/or  carnitine
precursors were highlighted in several studies as indicators of prediabetes/T2DM [8, 9,
27],  although data are not  always consistent.  Our  targeted LC-MS method included
several  of  these  acylcarnitines,  such  as  acetylcarnitine,  propionylcarnitine,  and
isovalerylcarnitine,  but  no  significant  association  was  found  with  subsequent
development of T2DM.   
Cortisol  dysregulation  has  been  linked  to  T2DM  in  cross-sectional  and  longitudinal
studies [39, 40]. More specifically, diabetic individuals present a flattened diurnal cortisol
curve compared to non-diabetic ones [41], with lower morning and higher afternoon and
evening  concentrations [42].  Interestingly,  high  levels  of  evening  cortisol  were  also
shown to  be predictive  of  T2DM development  in  an  occupational  cohort  [43].  Even
though  the  mechanisms  underlying  this  association  are  not  completely  understood,
cortisol contributes to many metabolic processes that can potentially perturb glucose
homeostasis [44].  Cortisol  has  a  major  role  in  raising  glucose  levels  through
gluconeogenesis activation. Moreover, it induces lipolysis, thus increasing the release of
free fatty acids that may favour the impairment of glucose uptake. Of note, diabetes is
considered  a  common  complication  in  clinical  states  characterized  by  prolonged
hypercortisolaemia,  such as  in  Cushing disease [45].  However,  the  causality  of  this
association  remains  to  be  determined.  Phenylacetylglutamine  is  a  nitrogenous
metabolite  almost  exclusively  derived  from  the  gut  microbiota  conversion  of
phenylalanine [46]. Its accumulation is known to occur in uraemia and was shown to be
increased in type 2 diabetic patients, particularly in association with renal damage  [47,
48].  Other  findings  with  variable  degree  of  evidence  in  our  study  have  also  solid
corroborating literature. Sarcosine (N-methylglycine) is an intermediate and by-product
in glycine synthesis and has been found to be a moderately strong (OR=1.3) predictor of
T2DM  incidence [49].  More  specifically,  the  addition  of  urine  sarcosine  to  other
established predictors of incident T2DM was shown to improve model performance and
T2DM risk prediction in a cohort of 4’164 patients with suspected stable angina pectoris.
Diabetic individuals have higher circulating proline levels and, moreover, proline-induced
insulin  transcription impairment may contribute to  the  β-cell  dysfunction observed in
T2DM [50]. 

4.1 Causal inference 
Drawing  causal  inference  is  extremely  difficult.  While  most  human  studies  are
observational  and  cross-sectional  predominantly,  only  correlations  are  calculated
between a disease status and the levels of various predictors. Such a simple measure
cannot  tease apart  forward-,  reverse  causation  or  confounding.  Longitudinal  studies
provide  more  specific  directional  link  (called  Granger  causality)  between a  potential
biomarker and disease outcomes. With its roots in differential equation modelling, an
association between the baseline level of a predictor and the change of the outcome
over time may imply a causal relationship. An orthogonal axis of evidence for causality
can be provided by Mendelian randomization (MR), where exposure-associated genetic
markers act as instruments to tease out the causal relationship between a potential risk
factor  and an  outcome [23].  Interventional  studies,  due  to  their  intrusive  nature  are
performed  mostly  in  model  organisms  and  can  help  triangulating  causal  evidence.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20222836doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20222836
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparisons between the different approaches for causality have been very scarce due
to the little overlap between the respective scientific communities. A pioneering work
[51] in  this  aspect  has  shown  good  agreement  between  disease-to-biomarker  MR
results,  observational  correlation  and  longitudinal  associations.  However,  their
longitudinal  association included exposure (adiposity)  change regressed on outcome
(metabolite level) change, which implies no directionality and is not the intuitive way to
perform  such  analysis.  Among  the  metabolites  that  we  identified  here  as  early
biomarkers of T2D, we have shown that leucine has bidirectional causal relationship
with diabetes, with a reverse (diabetes to metabolite) causal effect that seems to be
stronger. Interestingly, (predisposition to) diabetes has a significant causal effect also on
glutamate and valine, while their direct effect on diabetes is not significant. Hence small
molecules targeting these metabolites may be more effective for treating downstream
organ damage of T2DM, such as cardiovascular disease, neuropathies or nephropathy.
In line with this hypothesis, glutamate accumulation in the retina can cause neurotoxicity
and the development of diabetic retinopathy [52, 53], even though the actual connection
between plasma and retinal glutamate levels remains to be assessed [36].  

4.2 Strengths and limitations
Our  study  has  numerous  strengths.  First,  is  our  use  of  two  well  characterized
prospective  cohorts  (one  for  replication),  whose  participants  have  been  followed
longitudinally for more than ten years. This approach allowed us to investigate potential
biomarkers  in  blood  samples  collected  when  individuals  were  still  free  of  diabetes.
Second, the robustness of our targeted methods and of our results is evidenced by the
fact  that  we  confirm  many  previous  findings.  Third,  we  triangulate  evidence  by
combining these longitudinal association results with other causal inference techniques,
such as Mendelian Randomisation.
The major limitation of this study is the relatively low number of incident diabetes cases
that  we  could  analyse,  which  prohibited  us  from new discoveries  with  unequivocal
statistical  evidence.  In  the  light  of  these  findings,  we  recommend  future  research
focussing more on untargeted metabolomic approaches better exploring the vast space
of metabolite species and the investigation of other omics biomarkers in parallel.

4.2 Conclusions
Our study has confirmed most of the identified-to-date metabolites in a medium-sized
longitudinal  population-based  study  (enriched  for  incident  cases)  and  provided
complementary  evidence  from bi-directional  Mendelian  randomisation.  However,  the
quest for early metabolic biomarkers predicting the development of T2DM require more
research effort  including larger  studies in  order  to  understand the potentially  minute
contributions of many circulating metabolites.
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