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Abstract 32 

Rationale: Iron isotopic signatures in pyrites are considered as a good proxy to reconstruct 33 

paleoenvironmental and local redox conditions. However, the investigation of micro-pyrites 34 

less than 20µm size has been limited so far by analytical techniques. The development of the 35 

new brighter radio-frequency plasma ion source (Hyperion-II source) enhances the spatial 36 

resolution by increasing the beam density 10 times compared to the Duoplasmatron source. 37 

Methods: Here we present high spatial resolution measurements of iron isotopes in pyrites 38 

using a 3nA-3µm primary 16O- beam on two ion microprobes Cameca IMS 1280-HR2 at 39 

CRPG-IPNT (France) and at SwissSIMS (Switzerland) equipped with Hyperion sources. We 40 

tested analytical effects, such as topography and crystal orientation that could induce 41 

analytical biases perceptible through variations of the Instrumental Mass Fractionation (IMF).  42 

Results: The δ56Fe reproducibility for the Balmat pyrite standard is ±0.25‰ (2SD, standard 43 

deviation) and the typical individual internal error is ±0.10‰ (2SE, standard error). The 44 

sensitivity on 56Fe+ was 1.2x107cps/nA/ppm or better. Tests on Balmat pyrites revealed that 45 

neither the crystal orientation nor channeling effects seem to significantly influence the IMF. 46 

Different pyrite standards (Balmat and SpainCR) were used to test the accuracy of the 47 

measurements. Indium mounts must be carefully prepared with sample topography < 2µm, 48 

which was checked using an interferometric microscope. Such a topography is negligible for 49 

introducing change in the IMF. This new source increases the spatial resolution while 50 

maintaining the high precision of analyses and the overall stability of the measurements 51 

compared to the Duoplasmatron source.  52 

Conclusions: We developed a reliable method to perform accurate and high-resolution 53 

measurements of micrometric pyrites. The investigation of sedimentary micro-pyrites will 54 

improve our understanding of the processes and environmental conditions during pyrite 55 

precipitation, including contribution of primary (microbial activities or abiotic reactions) and 56 

secondary (diagenesis and/or hydrothermal fluid circulation) signatures. 57 

  58 



1. Introduction   59 

Iron stable isotope geochemistry has been developed rapidly over the last 15 years, 60 

particularly because iron is a ubiquitous element that occurs in three oxidation states: Fe0, 61 

Fe2+ and Fe3+.  The redox state affects iron isotope fractionation of the four stable isotopes, 62 

54Fe (5.80%), 56Fe (91.72%), 57Fe (2.20%) and 58Fe (0.28%), following the mass- and 63 

temperature-dependent fractionation laws1-4. The iron isotopic composition is reported using 64 

the delta (δ) notation (in ‰) defined as deviations of the measured 56Fe/54Fe or 57Fe/54Fe 65 

ratios of the sample relative to the international standard IRMM-014 (56Fe/54Fe value of 66 

15.6986 and 57Fe/54Fe=0.3626) 5,6 : 67 
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where x is either 6 or 7. Accuracy and precision were determined by the analysis of in-house 70 

pyrite standards, Balmat and SpainCR (detailed in section 2.1). 71 

The difference of Fe isotopic compositions between 2 species defines the isotopic 72 

fractionation. Iron isotope systematics is used in numerous fundamental fields, such as in 73 

cosmochemistry and igneous petrology that focus on the accretion of planetary bodies, 74 

magmatic differentiation, and diffusion during crystal growth5,7-11, as well as in 75 

environmental geochemistry for understanding the past and modern redox marine cycle5,12-17. 76 

Iron is also a major element in numerous biological reactions leading to diagnostic isotopic 77 

fractionations and thus, can be a good proxy for biosignature recognition. The microbial iron 78 

cycle is controlled by Dissimilatory Iron Reduction (DIR) and bacterial iron oxidation 79 

leading to precipitation of diverse Fe(II)-bearing biominerals, including iron sulfides18,19. 80 

However, pyrites can also be formed through abiotic reactions. Both biological and abiotic 81 

pathways are associated with large mass-dependent Fe isotopic fractionations20-33. 82 

Consequently, biologically-precipitated pyrites record δ56Fe variations up to 6‰20,22-24, 83 

encompassing the entire range of terrestrial Fe isotopic fractionation (see e.g., Johnson et al,13 84 

and Beard and Johnson,34 for reviews). The formation of sedimentary pyrites is a complex, 85 

multi-stage process that includes dissolution of FeSm precursors such as mackinawite (FeS) 86 

or greigite (Fe2S3) e.g. 35,36. Importantly, biologically-mediated sulfides are typically very 87 

small, <1µm in size, as illustrated by FeS precipitates in microbial sulfate reducing bacteria 88 

cultures (reviewed in Rickard37). The dissolution of those FeS precursors leads to the 89 



precipitation of pyrites ranging from <1 to tens of micrometers in size (especially for 90 

sedimentary pyrite framboids)38, which induce analytical challenges for isotopic 91 

measurements in a single pyrite grain. 92 

Investigation of iron isotope variability started with application of Thermal Ionization 93 

Mass Spectrometry (TIMS) and was subsequently followed by Multi Collection Inductively 94 

Coupled Plasma Mass Spectrometry (MC-ICPMS) yielding higher sensitivity and higher 95 

precision measurements. As a result, the application of MC-ICPMS method on igneous rocks 96 

allowed the recognition of small iron isotope variations associated with high temperature 97 

fractionation processes8,32,33. However, only few studies focused on microscale isotope 98 

variations in biogeochemistry. For instance, depending of the technique, strong contrasts in 99 

Fe isotope compositions have been documented in pyrites from the 2.7 Ga Tumbiana 100 

Formation (Pilbara craton, Western Australia). Bulk rock analyses produced a narrow range 101 

of δ56Fe values of -0.02 ±0.26‰ (2SD, standard deviation)15, while in situ analyses by LA-102 

MC-ICPMS (Laser Ablation Multi Collector Inductively Coupled Plasma Mass 103 

Spectrometry) yielded a large range of δ56Fe values, from -2.9‰ to +1.5‰39,40. Similarly, in 104 

Archean pyrite nodules (2.7 Ga shale from Bubi Greenstone Belt, Zimbabwe), bulk δ56Fe 105 

values were around -1.4‰ whereas in situ measurements by Secondary Ion Mass 106 

Spectrometry (SIMS) described rim to core profiles from +0.5‰ to -2‰16. These two 107 

examples strongly support the importance of combining whole rocks and micrometer scale in 108 

situ analysis to constrain primary and/or secondary signals recorded in a pyrite.  109 

Available on the market since 2015, the new radio-frequency oxygen ion source on 110 

SIMS instruments, the Hyperion-II, has the primary beam current density improved 10 times 111 

compared to the usual Duoplasmatron oxygen source41. Characteristics of the primary beam 112 

and secondary transmission are documented in Liu et al.41. For a given primary beam 113 

intensity, the improvement of current density increases spatial resolution while maintaining 114 

analytical precision compared to the previous 16O- source performance. The improvement of 115 

the secondary ion transmission, higher precision and reproducibility measurements have been 116 

reported for Mg41,42 and Si43 isotope systems. For example, an external reproducibility of 117 

±0.2‰ (2SD) on Δ26Mg* (independent mass fractionation) is achieved with a primary beam 118 

size of 3-4µm41, much smaller compared to 15µm with the Duoplasmatron source44. The new 119 

source has also higher sensitivity per unit area for Pb isotopes with a 10nA primary beam, 120 

allowing the precision of U-Pb dating measurements of zircons to be enhanced41. Therefore, 121 

one of the main advantages of the Hyperion source is the improved spatial resolution 122 

achieved without a loss in precision required for resolving biogeochemical processes. 123 



Previously, the expected precision of ±0.2‰ (2SD) for iron isotope analysis was obtained 124 

with a 10nA primary intensity delivered by the Duoplasmatron, focused into a ~15µm spot to 125 

generate enough secondary ion intensity to be collected by Multi Collection Faraday Cups 126 

(MCFC). However, such spot sizes limited the investigation of Fe isotopes in micrometric 127 

grains, whereas the Hyperion source opens new possibilities for the studies of biochemical 128 

processes.  129 

In order to explore micrometric scale variations of iron isotope in pyrites, we have 130 

adapted a previously described analytical procedure by using the Hyperion source, combining 131 

the reduction of the spot size for a given intensity, and maintaining a precision of 0.2‰ 132 

(2SD). This protocol has been tested on two different SIMS instruments and will open a new 133 

analytical field to study iron isotope microscale variabilities in sedimentary pyrites. 134 

 135 

2. Experimental 136 

SIMS measurements were carried out using the Cameca® IMS 1280-HR2 ion probes 137 

at CRPG-IPNT (Nancy, France) and SwissSIMS (University of Lausanne, Switzerland), both 138 

equipped with the new Hyperion-II Radio frequency source. We performed four Fe isotope 139 

sessions at CRPG-IPNT (February 2018, April 2018, July 2018 and September 2020) and 140 

four sessions at SwissSIMS (July 2019, January 2020, March 2020 and June 2020).  141 

 142 

2.1. Standards 143 

The stability of both instruments was monitored by running multiple measurements of 144 

in-house pyrite standards, either Balmat or SpainCr pyrites, that were also used to correct a 145 

possible instrumental drift. The major element composition of Balmat pyrite is described in 146 

Marin-Carbonne et al.45 and it contains 46.5wt.% of iron and 53.6wt.% of S. This pyrite 147 

standard is extensively used for SIMS Fe and S isotopes analyses16,45-47. The major and trace 148 

element compositions of SpainCR pyrite was determined using a JEOL JXA-8530F electron 149 

microprobe at the University of Lausanne and data are available in supporting information 150 

A. The analytical parameters are described in supporting information B. SpainCR pyrite 151 

grains contain 46.6wt.% of Fe and 53.1wt.% of S. Co, Mn, Cr, Zn and Cu contents are below 152 

the detection limit. Pb, Ti and Ni contents are 1112ppm, 1003ppm and 354ppm, respectively. 153 

The SpainCR standard was previously used for SIMS S isotope analysis47,48. The Fe isotopic 154 

composition of SpainCR pyrite was determined at CRPG. Chemistry for Fe purification, and 155 

Fe isotopic analysis using the NeptunePlus MC-ICP-MS are detailed elsewhere45,49,50. In 156 

order to evaluate the homogeneity of Fe isotopic composition of SpainCR pyrite standard, 157 



core and rim separates have been chemically processed and analyzed. The bulk Fe isotope 158 

measurement sequence follows the sample/standard bracketing method, with IRMM-014 Fe 159 

as the normalizing standard. We obtained similar 56Fe (and 57Fe) values of +0.516 ±0.05‰ 160 

(+0.804 ±0.03‰) (2SD) and +0.521 ±0.02‰ (+0.795 ±0.01‰) (2SD) for core and rim, 161 

respectively, for n= 3 replicates of each. This gives a 56Femean reference value of 0.52 162 

±0.03‰ for this highly homogeneous SpainCR pyrite standard. Data accuracy and 2SD 163 

reproducibility are evaluated by replicate analyses of geostandards, with values of 56Fe = 164 

+0.648 ±0.129 ‰ and 57Fe = +0.960 ±0.163‰ (n=3) for IF-G (BIF Greenland), and 56Fe = 165 

+0.098 ±0.033‰ and 57Fe = +0.143 ±0.057‰ (n=15) for BIR-1 (USGS Iceland basalt) 166 

during the course of this study. These values are within the range of the reported reference 167 

values5. The homogeneity of SpainCR standard was tested by SIMS by measuring three 168 

different grains prepared in the same mount (July 2018 session at CRPG-IPNT). Based on 68 169 

measurements, the external reproducibility was ±0.28‰ (2SD) (Figure S1, supporting 170 

information B).  171 

As no chromium was detected in the pyrite reference materials, Russie magnetite 172 

standard was used to evaluate the degree of 54Cr interference on 54Fe, which was necessary 173 

for the natural samples due to the presence of Cr. Details are given in section 2.5. 174 

 175 

2.2. Sample preparation 176 

Standard grains were embedded in epoxy and polished with 0.5µm diamond paste. 177 

Those grains were carefully removed from epoxy and pressed into 1-inch indium mount. 178 

White light interferometric microscope (Bruker Contour GTK at University of Lausanne) was 179 

used to measure the sample topography. The relief across the analyzed surface was below 180 

5µm51. Samples were coated with a 35nm thick gold film to ensure the conductivity between 181 

the sample surface and the SIMS holder. 182 

 183 

2.3. Electron backscatter diffraction (EBSD): 184 

In order to check for the influence of crystallographic orientations on SIMS 185 

measurements, three Balmat pyrite grains were removed from the Indium mount, embedded 186 

in epoxy resin with the analyzed mineral surfaces facing upwards. To eliminate any residual 187 

surface damage, the mount was further polished for 40 min using the combined chemical and 188 

mechanical effect of an alkaline (pH=9.8) suspension of colloidal silica (0.05 µm). The 189 

sample was not carbon-coated before electron backscatter diffraction (EBSD) analysis in 190 



order to maximize the detected signal. The crystallographic orientation patterns were 191 

acquired at the University of Lausanne, Switzerland, using a Tescan Mira II LMU field 192 

emission-scanning electron microscope (FE-SEM) equipped with the Symmetry detector and 193 

the Aztec 4.2 software package, both released by Oxford Instruments®. Acquisition 194 

parameters included an acceleration voltage of 20 kV, a probe current of 1.1 nA, a working 195 

distance of 23 mm, and a 70° tilt of the sample surface with respect to the horizontal. As 196 

pyrite has a cubic crystal structure, [100], [010], and [001] axes are equivalent and 197 

orthogonal, and the maximum misorientation imposed by symmetry is 62.8°. The pyrite 198 

(m3)53 match unit (a = 5.4166Å) was used as a reference file for the indexing of the EBSD 199 

patterns, the high quality of which was attested by a mean angular deviation (MAD) value 200 

ranging between 0.2 and 0.6. Six to ten EBSD patterns per grain were collected and the 201 

average crystallographic orientations represented in an upper hemisphere equal area pole 202 

figure of Euler angle triplets (φ1,Φ,φ2). For more information on the basics of the EBSD 203 

technique, the reader is referred to Prior et al.53. 204 

 205 

2.4. SIMS settings: 206 

The samples were stored in the vacuum chamber at 2.5x10-8 mbar to 2x10-9 mbar. 207 

Samples were sputtered with a 3nA 16O- primary beam accelerated by a 13kV high voltage. 208 

The corresponding spot size was 2.5µm to 3µm (Figure 2). The primary beam was mainly 209 

focused through L3 and L4 lenses of the primary column in Gaussian mode and the 210 

aberration was reduced by using a PBMF aperture of 200µm. The L4 aperture was 211 

maintained open at 750µm. These settings of primary beam apertures were the same for both 212 

instruments and the main SIMS settings are summarized in Table 1. The entrance slit was set 213 

to 61µm at SwissSIMS and 85µm at CRPG-IPNT, corresponding to a mass resolving power 214 

(MRP) of M/ΔM~ 6700-7000 (slit 3) at SwissSIMS and M/ΔM~ 6100 (slit 3) at CRPG-IPNT 215 

resolving the interference of 53CrH+ on 54Fe+ (M/ΔM= 6088). The interference of 54Cr+ on 216 

54Fe+ (MRP~74,000) was monitored by analyzing 52Cr+ as described elsewhere45. Although 217 

pyrite standards have no detectable Cr, hundreds to a thousand of counts of 52Cr are measured 218 

in natural pyrites, calling for a need to estimate the 54Cr+ contribution at mass 54 and then 219 

correct for it. The correction scheme for Cr was established using a magnetite standard, 220 

which has a detectable amount of Cr, resulting in a final correction of ~0.15‰ on δ56Fe per 221 

1x104 counts per second (cps) of 52Cr+. The interference of 56FeH+ on 57Fe+, which requires a 222 

MRP of 7700 could not be clearly resolved with the chosen slit settings. However, this high 223 

spatial resolution method is developed in order to analyze δ56Fe values in micrometric 224 



pyrites. To obtain a maximum internal error of 0.3‰ (2SE standard error) on δ56Fe, the 225 

minimum 56Fe+ intensity on the pyrite standard should be 4x107cps, which cannot be attained 226 

under MRP>7000. Pyrite being nominally anhydrous mineral held under the chamber 227 

vacuum of ~2x10-9 mbar yields low interferences of 56FeH+ with the 57Fe+. When pyrites are 228 

prepared in an indium mount, the iron hydride was not detected on the faraday cup (FC) 229 

measurements (see section 2.5). The secondary ion beam was filtered by an energy slit of 50 230 

eV. A 2000µm square field aperture was used to clip ~10% of the signal and to remove off-231 

axis aberrations of the secondary ion beam. We used a transmission setting (Maximum Area 232 

(MA) 80) leading to a field of view of the sample of 20x20µm in the field aperture. The 233 

secondary 54Fe+, 56Fe+, 57Fe+ and 52Cr+ ions were accelerated at 10kV and analyzed on three 234 

off-axis FCs and one electron multiplier (EM) (detectors C, H1, H’2 and L2 respectively). 235 

The C and H1 FCs were equipped with 1011Ω resistors. The H’2 FC was equipped with a 236 

1012Ω resistor at CRPG-IPNT and a 1011Ω resistor at SwissSIMS. The relative yields of the 237 

amplifiers of the FCs were calibrated before each session on both ion microprobes and the 238 

background noises of the FCs were measured for each analysis. The high voltage of the EM 239 

(EM HV) was adjusted before each session. No aging effect of the EM was observed during 240 

the session. Presputtering time is necessary to remove the 35nm of gold and potential surface 241 

contamination, to implant primary ions in the sample surface and to get a stable secondary 242 

signal. The intensity of 56Fe+ increased until it became stable after 90s (Figure S2, 243 

supporting information B). The intensity of the signal is then stable with a typical count 244 

rate between 4x107 and 5x107cps when using a 3nA primary beam intensity.  245 

The analytical routine then consisted of 90s of presputtering followed by 60 cycles (5s 246 

each) of collection separated by 0.08s waiting time, for a total of 7 min per analysis. After 247 

presputtering, automatic beam centering in the field and contrast apertures, the energy slit and 248 

transfer deflectors were performed routinely. The typical count rate of 54Fe+, 56Fe+ and 57Fe+ 249 

are 3.2x106, 4.8x107 and 1.1x106cps respectively for Balmat reference material measured at 250 

the SwissSIMS instrument tuned with a primary beam intensity of 3.05nA and 4.3x106, 251 

6.4x107 and 1.4x106cps, respectively, at the CRPG-IPNT instrument tuned with a primary 252 

beam intensity ranging from 3.2 to 3.5nA (Table 1). The difference in ion counting 253 

intensities between the two instruments is due to the higher primary current set at CRPG-254 

IPNT and also reflects a differential transmission due to the use of a larger entrance slit at 255 

CRPG-IPNT. The internal precision on δ56Fe of Balmat standard was ±0.10‰ (2SE). The 256 

reproducibility is reported in terms of 2SD, standard deviation. The external reproducibility 257 



ranges between ±0.24‰ (n=33) to ±0.30‰ (n=17, 2SD) at CRPG-IPNT and from 258 

±0.15‰(n=10) to ±0.28‰ (n=39, 2SD) at SwissSIMS (Table 2).  259 

 260 

2.5. Mass Interferences (53CrH+ and 56FeH+): 261 

The required MRP to resolve the isobaric interference of 54Cr+ on 54Fe+ is out of the 262 

ion microprobe capabilities (MRP~74,000), thus, the interference was indirectly quantified 263 

by measuring 52Cr+. The detailed procedure for Cr correction45 shows that the 53Cr/52Cr ratio 264 

measured by SIMS is similar to that determined from Cr isotopes natural abundances 265 

(52Cr=83.8%, 53Cr=9.5% and 54Cr=2.4%). We thus used the natural abundances of Cr 266 

isotopes combined with the measured 52Cr+ intensity to calculate the 54Cr+ intensity in 267 

standards and samples and then corrected the 54Cr contribution from the measured 54Fe 268 

signal. The 53CrH+ peak height was measured in Russie magnetite standard, on the axial EM 269 

(monocollection mode), using a 800pA primary beam intensity to obtain ~2x105cps on 54Fe+ 270 

and to not saturate the detector. Under a vacuum of 3.4x10-9mbar, 53CrH+ peak represents less 271 

than 0.05% of the 54Fe+ peak (Figure 1A). Tens of counts are detected for 52Cr+ in pyrite 272 

standards using a 3nA primary beam, meaning that this hydride contribution can be ignored. 273 

Accuracy of analysis can also be impacted by the interference of 56FeH+ on 57Fe+. In 274 

this study, the MRP was set lower (~6800) than that required to separate these two species. 275 

Getting a higher MRP to have accurate δ57Fe data would decrease the precision of 56Fe/54Fe 276 

ratios. However, the contribution from 56FeH+ hydride has been measured to evaluate the 277 

reliability of 57Fe/54Fe ratios. High resolution scan (MRP 7800) of the mass 57Fe was carried 278 

out on the axial EM using a 1nA primary beam intensity (Figure 1C). The magnitude of 279 

56FeH+ peak is 0.05% of the 57Fe+ peak height due to good vacuum conditions in the analysis 280 

chamber (~3.4x10-9mbar) but can be up to 0.2% of the 57Fe+ peak height when vacuum 281 

conditions deteriorate to 2x10-8mbar. The level of 56FeH+ formation is thus estimated to 282 

0.01‰-0.04‰. At MRP 6800, the mass scan shows that 57Fe flat top is affected by the tail of 283 

the hydride peak (Figure 1B). The hydride contribution on 57Fe signal is thus insignificant 284 

for measurements done in indium mounts. The contribution of hydrides to the Fe isotopic 285 

signal, in particular the interference of 56FeH+ with 57Fe+, can also be evaluated by the 286 

relationship between the 56Fe/54Fe and 57Fe/54Fe ratios. Pyrites from sedimentary rocks 287 

(Sonoma basin, USA) and standards (Balmat pyrite) measured during the July 2020 session 288 

are plotted in a three-isotopes diagram using the natural logarithm of the measured 56Fe/54Fe 289 

and 57Fe/54Fe ratios (Figure 1D, data available in Table S1, supporting information B). All 290 

the data define a slope of 0.679 (±0.007) with a correlation coefficient r2 of 0.987, which is 291 



consistent with the expected mass-dependent fractionation slope of 0.678. Since the measured 292 

slope is consistent with the terrestrial mass fractionation slope, the contribution of 56FeH+ to 293 

the 57Fe/54Fe ratio is assumed negligible. Sample mounting using indium rather than epoxy 294 

together with vacuum conditions below 5x10-9mbar are crucial for maintaining small hydride 295 

contributions and to produce reliable δ57Fe data and high precision δ56Fe values. 296 

 297 

2.6. IMF correction: 298 

The effect of a mass dependent fractionation due to the instrument, or instrumental 299 

mass fractionation (IMF), is defined as: 300 

𝛼𝑖𝑛𝑠𝑡 =
(
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approximation 𝛥 𝐹𝑒 
56

𝑖𝑛𝑠𝑡 ≈ ln (𝛼𝑖𝑛𝑠𝑡). 302 

The “measured” and “true” δ56Fe values are iron isotopic composition measured in the 303 

same reference material by SIMS and MC-ICP-MS. The typical IMF on pyrite is ~ -30 ±5‰, 304 

measured by both Hyperion-II and Duoplasmatron sources but the exact value depends on the 305 

instrument tuning. For example, a 4‰ shift in the IMF for Balmat pyrite was measured after 306 

retuning of the primary beam. Slight modifications of the primary beam (i.e. different high 307 

voltages on the primary lenses resulting in similar primary intensity but different beam 308 

densities) and entrance slit settings lead to the variation of the IMF on Balmat pyrite between 309 

-31.20 and -33.10‰ at CRPG-IPNT and highly variable, from -27.23 to -35.16‰ at 310 

SwissSIMS (Table 2). We measured the IMF using Balmat pyrite standard to monitor the 311 

stability of the ion probe during each session. 312 

 313 

3. Results and discussion  314 

 315 

3.1. Spot size: 316 

The resolution of ion images of a silicon grid on an electron multiplier is used to 317 

estimate the 16O- primary beam size. To find the best possible resolution of the image, (i.e., 318 

getting the smallest beam) we tested different combinations of primary lenses, and the best 319 

result was obtained by setting the voltage on L1 and L2 to 9800V and 9900V, respectively, 320 

and keeping the L3 close to 8500V. The results of the 30Si+ ion images are reported in Figure 321 

2A. Using a 3nA 16O- beam, the ability to differentiate two silicon bars on the 3µm grid 322 

indicates a spot comparable to 3µm size. The 2µm gap between the two horizontal Si bars is 323 



not completely resolved whereas the vertical bars are clearly visible, meaning the spot size is 324 

between 2.5 and 3µm. The spot size was verified with a scanning electron microscope (SEM) 325 

(Figure 2B) and an interferometric microscope (Figure 2C) after the SIMS measurements of 326 

a sedimentary micro-pyrite and the pyrite standard (Balmat). White light interferometric 327 

microscopy allows for the precise quantification of the beam size, by imaging the relief of the 328 

beam crater in both X and Y directions (Figures 2C and 2D). The primary beam size is 329 

measured at the bottom of the pit and corresponds to a ~3µm diameter spot.  This quantitative 330 

analysis is consistent with the beam size estimated through ion imaging of the Si grid. The 331 

sputtered area is extended over a diameter of 6 x 7-9µm depending on the session and the pit 332 

is ~3µm deep (Figure 2D). The asymmetric shape of the crater and the larger sputtered area 333 

compared to the real primary beam size are due to the incidence angle of the beam with the 334 

sample surface, which is characteristic of the Cameca® ion probes (except NanoSIMS) 335 

(Figure 2B). 336 

 337 

3.2. Crystal orientation and topography effects on instrumental mass fractionation 338 

(IMF): 339 

The IMF is the main limitation in the accuracy of SIMS analysis54,55. It results from 340 

various processes occurring during secondary atom ionization, extraction, secondary ion 341 

transmission and detection55. The IMF is known to be greatly dependent on the sample 342 

characteristic (mineralogy, chemical composition and crystallographic orientation55-57). This 343 

effect is corrected by measuring reference material (same mineral, crystallography and major 344 

element chemical compositions) and samples in the same analytical conditions. The IMF 345 

variations occur in various isotopic systems, for example, the δ18O measurements of garnets 346 

are strongly affected by their Ca-Fe-Mg content58,59, as well as δ34S in Fe-Ni sulfides56,60,61, 347 

and Mg and Si isotopes in silicates (e.g. olivine, glass, pyroxene) with an IMF depending on 348 

their Mg content43,62. Crystal orientation may also have in some cases a strong influence on 349 

the IMF, as demonstrated for example on Fe isotopic compositions in magnetite57, on S 350 

isotope compositions in sphalerite and galena63 and on U-Pb dating in baddeleyite4.  351 

As pyrites are not affected by major element substitution, i.e. no solid solution or 352 

chemical variability, the potential variations of the IMF can only be the result of the crystal 353 

orientation and/or the topography. The EBSD pole figure shown in Figure 3B displays the 354 

crystallographic orientations of the three different grains of Balmat standard projected on a 355 

plane (XY) parallel to the surfaces analyzed by SIMS (and EBSD). With misorientation 356 

angles between [100] axes in Grain 1, 2, and 3 (G1-G3) and the reference direction Z (i.e. the 357 



normal to the page pointing towards the reader) of 14°, 6°, and 1°, respectively, the analyzed 358 

surfaces can be considered nearly parallel to the face of the pyrite unit cell (i.e. normal to the 359 

[100] axis). The misorientation angle between the [100] axes located in the middle of the pole 360 

figure is 18° between G1 and G2, and 15° between G1 and G3. Fe isotopic measurements 361 

show respective mean δ56Fe values and external reproducibility of -0.29 ±0.30‰ (2SD) / 362 

±0.13‰ (2SE, n=5), -0.59 ±0.42‰ (2SD) / ±0.19‰ (2SE, n=5) and -0.32 ±0.44‰ (2SD) / 363 

±0.20‰ (2SE, n=5), for G1, G2, and G3 (Figure 3A). Those δ56Fe values suggest that the 364 

inter-grain variability is lower than the reproducibility (2SD) and the uncertainty on the 365 

averages (2SE). Even though the EBSD measurements on a sample set of only three grains 366 

have no statistical significance, it can be said at this stage that no obvious relationship 367 

between the crystallographic orientation of pyrite and SIMS δ56Fe measurements has been 368 

observed. A thorough review (beyond the scope of this study) based on a wide range of 369 

crystallographic orientations is needed to confirm this initial statement. Our results are also 370 

consistent with the absence of crystal orientation effects on S isotopes57,65. 371 

The channeling effect of the primary ion beam as a function of atomic planes 372 

orientation has been shown to influence the secondary ion yields and thus the instrumental 373 

mass fractionation66,67. Similarly to magnetite that exhibits channeling effects and plane-374 

specific IMF for Fe and O isotopes57, pyrites are cubic minerals that could experience similar 375 

effects. This effect was evaluated by rotating the mount in the sample holder by 90°, 180° 376 

and 270°. We ran 3 to 6 analyses per rotation (Table S2, supporting information B). The 377 

mean IMF-corrected δ56FeIRMM014 values for P0, P1, P2 and P3 are -0.38 ±0.31‰ (2SD) / 378 

±0.13‰ (2SE, n=6) for P0, -0.49 ±0.37‰ (2SD) / ±0.21‰ (2SE, n=3) for P1, -0.38 ±0.12‰ 379 

(2SD) / ±0.07‰ (2SE, n=3) for P2 and -0.39 ±0.36‰ (2SD) / ±0.16‰ (2SE, n=5) (Figure 380 

4). Considering the external reproducibility (2SD) and the internal error (2SE) together, those 381 

data show a similar mean δ56Fe values across the four positions in the holder.  382 

Surface topography could also induce artificial iron isotopic variations, especially 383 

when pyrite grains are just slightly bigger than the primary spot size. Here, a core to rim 384 

profile on Balmat pyrites was performed in order to examine the edge effect on the reliability 385 

of δ56Fe analyses. Fe isotope analyses show similar δ56Fe values between the core and the rim 386 

of δ56FeBalmatPf1@01= -0.27 ±0.11‰ (2SE, n=1, core) and δ56FeBalmatPf1@8= -0.28 ±0.12‰ (2SE, 387 

n=1, rim) and an external reproducibility of ±0.18‰ (2SD) (Figure 5D, data available in 388 

Table S2 supporting information B). This profile (Pf1) is characterized by a topographic 389 

difference of 1.7µm (Figure 5C), which is not significant to introduce a bias. However, the 390 

last analysis is located at ~20µm from the grain edge that is ~7µm above the enclosing 391 



indium. Thus, this value was measured in the slightly tilted shade zone on the edge of the 392 

pyrite (Figure 5A and Figure 5B), demonstrating the reliability of δ56Fe values. 393 

 394 

3.3. Sensitivity: 395 

The sensitivity depends on the sputtering time, ionization, extraction of the Fe+ ion 396 

from the matrix and secondary ions transmission until the detectors. It is defined as count rate 397 

per ppm of Fe in the analyzed phase per nA of the primary beam (cps/ppm/nA). As the Fe 398 

content is constant in pyrites, the expression of the sensitivity is approximately proportional 399 

to the ion yield: 400 

56Fe yield = 56Fe+ / P intensity. 401 

The sensitivity calculation is commonly used to evaluate the transmission of an ion 402 

microprobe. Table 1 shows the 56+Fe ion yields on Balmat pyrite, obtained over the different 403 

sessions at CRPG-IPNT and SwissSIMS equipped with the Hyperion-II source. We 404 

compared these results to the sensitivity obtained with the conventional Duoplasmatron 405 

source45,46. The sensitivities determined on Balmat pyrite range from 1.56x107 to 406 

2.01x107cps/nA at CRPG-IPNT. Sessions performed at SwissSIMS (July 2019, January 407 

2020, March 2020 and September 2020) show similar sensitivities, ranging from 408 

1.49x107cps/nA to 1.61x107cps/nA. Higher sensitivities obtained at CRPG-IPNT compared 409 

to SwissSIMS are explained by different widths of the entrance slit. Sensitivities obtained 410 

with the Duoplasmatron source vary from 1.2x107cps/nA45 to 1.5x107cps/nA46. However, the 411 

resulting transmissions in the two Duoplasmatron-based studies are not directly comparable 412 

as the width of the field aperture (FA), the entrance and exit slit and the Maximum Area 413 

(MA) are different between these two studies (Table 1). In order to compare sensitivities 414 

obtained by Hyperion and Duoplasmatron, we performed two tests using (1) a MA 80 and 415 

field aperture closed at ~2500µm (comparable with sensitivity obtained previously45) and (2) 416 

a MA 160 and an opened field aperture to transmit 100% of the signal46. Using a MA of 80 417 

and similar FA, entrance and exit slit widths, the 56Fe sensitivity is 1.56x107cps/nA and better 418 

than the 1.2x107cps/nA obtained with the Duoplasmatron45. The higher sensitivity with the 419 

Hyperion is due to the use of a smaller beam, which is less clipped in the field aperture 420 

compared to the Duoplasmatron beam. Using a MA 160, we obtained a sensitivity of 421 

5.05x106cps/nA, which is lower than the 1.5x107cps/nA achieved by the Duoplasmatron46. 422 

However, these sensitivities are not directly comparable as O2
- and O-primary beams were 423 

respectively used in Whitehouse and Fedo46 and in the present study. The higher sensitivity 424 

obtained previously46 can be thus attributed to the more efficient sputtering rate of the O2
- 425 



beam. The use of smaller primary beam currents reduces the size of the crossover and off-426 

axis aberrations of the secondary ion beam, which helps to define a sharper slit image. 427 

Therefore, for a given MRP, the entrance slit can be more opened using the Hyperion and this 428 

results in a gain of sensitivity compared to the Duoplasmatron. This test illustrates the ability 429 

of the source to provide enough secondary ion signals with a 3nA beam focused on a 3µm 430 

spot and to achieve a better sensitivity than that delivered by Duoplasmatron. The Fe 431 

secondary ion signals produced by the 3nA primary beam can be detected by MCFC and 432 

thus, provides high precision 56Fe measurements along with higher spatial resolution. 433 

 434 

3.4. Reproducibility and accuracy: 435 

The reproducibility of the δ56Fe measurements on the Balmat reference material was 436 

established over three sessions (February 2018, April 2018 and September 2020) at CRPG-437 

IPNT and four sessions (July 2019, January 2020, March 2020 and June 2020) at SwissSIMS 438 

Lausanne (Table 2). Balmat pyrite (same grain) displays a respective long-term 439 

reproducibility of ±0.25‰ (2SD) for 166 measurements (Figure 6) at CRPG-IPNT and 440 

±0.22‰ (2SD) for 185 measurements (June 2020) at SwissSIMS ion probe. The short-term 441 

reproducibility on Balmat pyrite varied from ±0.24‰ (2SD, February 2018, n=33, Table S3 442 

supporting information B) to ±0.26‰ (2SD, April 2018, n=133) at CRPG-IPNT and from 443 

±0.18‰ (2SD, March 2020, n=33) to ±0.35‰ (2SD, January 2020, n=16) at SwissSIMS. The 444 

reproducibility obtained on SpainCR standard (July 2018) is close to those measured in 445 

Balmat pyrite with a value of ±0.28‰ (2SD, n=61). Published data obtained using the 16O- 446 

Duoplasmatron source68 on three days of analysis show a reproducibility of ±0.44‰ (2SD, 447 

n=17) on the same grain of Balmat, which highlight the better stability of the Hyperion-II 448 

source compared to the Duoplasmatron. 449 

The accuracy of the SIMS technique was tested on two pyrite standards which have 450 

different isotopic compositions. We used Balmat as a reference standard and considered 451 

SpainCR as an unknown pyrite. The δ56Fe value for SpainCR was determined using the IMF 452 

calculated on Balmat reference material. The δ56Fe value for SpainCR pyrite calculated at 453 

+0.64 ±0.26‰ (2SD, n=2) is in quite good agreement with the value of δ56Fe= +0.52 ±0.03‰ 454 

determined by MC-ICP-MS, demonstrating the accuracy of the SIMS method.  455 

 456 

 457 

 458 



4. Conclusions 459 

An ion microprobe equipped with the new Hyperion-II Radio Frequency source is 460 

able to determine iron isotope ratios with high accuracy, at high precision (~0.25‰, 2SD) 461 

and high spatial resolution (3µm). We have detailed a procedure to achieve δ56Fe 462 

measurements a primary intensity 3 times lower than that traditionally delivered by the 463 

Duoplasmatron source, yet we achieved better precision. The MRP was intentionally set at a 464 

lower value than that required to resolve 56FeH+ from 57Fe+ to attain a minimum 56Fe+ count 465 

rate of 4x107cps on a pyrite reference material to produce high precision δ56Fe values. The 466 

level of 56FeH+ is low compared to the intensity of 57Fe+ under high vacuum. A MRP of 467 

~6700 is sufficient to limit its contribution to 57Fe signal. In our sample set, we demonstrated 468 

the absence of topography and crystal orientation effects. Currently, this new procedure is 469 

applied to major iron-bearing minerals to better constrain natural iron isotopic variabilities at 470 

micrometric scale in sedimentary pyrites. The future investigation of in situ δ56Fe signatures 471 

in minor iron-bearing phases such as oxides, carbonates and silicates will serve as a 472 

promising tool to answer fundamental questions in extraterrestrial and terrestrial petrology 473 

and to gain a better understanding of the biogeochemical iron cycles. 474 
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TABLE 1   SIMS settings for each Fe isotopes session at CRPG-IPNT (February 2018, 746 

April 2018 and September 2020) and SwissSIMS (July 2019, January 2020, March 2020 and 747 

June 2020) using the Hyperion-II source and resulting 56Fe+ intensities and ion yields 748 

measured on Balmat pyrite. Comparison with settings and 56Fe+ yields measured with the 749 

Duoplasmatron45,46. 750 

 
THIS STUDY 

PUBLISHED 

DATA 

 
CRPG-IPNT SwissSIMS 

CRPG-

IPNT 

Nord 

SIMS 

 Hyperion-II Hyperion-II Duoplasmatron 

Session Feb.18 Ap.18 Sep.20 Jul.19 Jan.20 Mar.20 Jun.20 Ref. 45 Ref.46 

Field Ap. 

(µm) 
2000 2400 2000 2500 3000 

Contrast 

Ap. (µm) 
400 400 400 

Max. Area 80 
80 

160 
80 80 160 

Entrance 

Slit (µm) 
85 61 61 - 60 

Energy slit 

(eV) 
50 50 50 60 

Slit Mode Circular Circular Circular 

Exit slit 150µm (slit 3) 150µm (slit 3) 
150µm 

(slit 3) 

250µm 

(slit 2) 

MRP 6100 6800 6700-6800 ~7000 <6000 

Primary 

Intensity 

(nA) 

3.40 3.70 3.00 3.14 3.05 

 

2.99 

 

2.80 10 10 

56Fe+ count 

rate on 

Balmat 

(cps) 

6.5E+7 7.45E+7 
4.70E+7 

1.51E+7 
4.90E+7 4.85E+7 

 

4.46E+7 

 

4.49E+7 ~ 1.2E+8 ~1.5E+8 

56Fe+ yield 

on Balmat 

(cps/nA) 

1.87E+7 2.01E+7 
1.56E+7 

5.05E+6 
1.56E+7 1.59E+7 

 

1.49E+7 

 

1.61E+7 ~1.2E+7 1.5E+7 



TABLE 2   True δ56Fe values of the standards (Balmat and SpainCR pyrites) and 751 

corresponding IMF during the different sessions at CRPG-IPNT and SwissSIMS and 752 

comparison with published IMF obtained with the Duoplasmatron45. True δ56Fe value of 753 

SpainCR standard was determined by MC-ICP-MS method at CRPG using a reported 754 

procedure50. The reproducibility is reported as 2SD, standard deviation. n= number of 755 

analysis; n.a= not available data. 756 
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 758 

INSTRUMENTAL MASS FRACTIONATION δ56FeIMF AND REPRODUCIBILITY (2SD, ‰) 

(#ANALYSIS) 
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Hyperion-II 
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IPNT 

Duoplas
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2018 

Apr. 

2018 
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2018 
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2020 
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2019 

Jan. 

2020 

Mar. 

2020 

Jun. 

2020 

ref.45 

Balmat 

Py. 

-33.10 

±0.24 

(n=33) 

-32.47 

±0.26 

(n=133) 

n.a 

-31.20 

±0.30 

(n=17) 

-35.16 

±0.28 

(n=41) 

-27.23 

±0.35 

(n=16) 

-32.34 

±0.18 

(n=33) 

-33.06 

±0.22 

(n=185) 

-32.00 

±0.20 

SpainCR 

Py. 
n.a n.a 

-33.21 

±0.28 

(n=68) 

n.a 

-35.50 

±0.32 

(n=2) 

n.a n.a n.a n.a 



 759 

FIGURE 1  A) Scan of the 54Fe signal on the axial EM, using a mass resolution of 6800 to reveal 760 

53CrH+ contribution. This scan was made on Russie magnetite standard which have a detectable Cr 761 

content.  B) Scan of the 57Fe signal on the axial EM, using a mass resolution of 6800 to reveal 56FeH+ 762 

contribution. C) High mass resolution (MRP 7800) scan of the 57Fe signal, where 57Fe+ and 56FeH+ 763 

peaks are separated. D) Three-isotope plot of the logarithm of the measured Fe isotope ratios in 764 

Balmat pyrite standard (white dots) and pyrites from sedimentary rocks (blue dots), corrected from 765 

the 54Cr contribution (July 2020 session at SwissSIMS). The regression line gives a slope of 766 

0.679±0.007, which is in good agreement with the theoretical slope of 0.678 within the error bar. The 767 

theoretical value represents the mass dependent fractionation law for Fe isotopes using a simple 768 

harmonic oscillator approximation. Data are available in Table S1 (supporting information B). 769 
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 779 

FIGURE 2  A) 30Si+ image of the Si-grid on electron multiplier. The spatial resolution of 780 

the primary 16O- beam is determined according to the ability to differentiate two silicon bars 781 

on the 4µm, 3µm or 2µm grid. B) SEM image of a sedimentary micro-pyrite after SIMS 782 

analyses. The shape of the spot is due to the position of the source which makes an angle with 783 

the sample surface. C) Image from interferometric microscope of the sputtering pit. D) X and 784 

Y topographic profiles measured by interferometric microscope. The profiles refer to the 785 

Figure 2C and show the diameter of the pit, which corresponds to the real spot size (measured 786 

at the bottom of the pit), and the sputtered area (blue area on Figure 2D and dashed red circle 787 

on Figure 2C, measured at the top of the pit). 788 



 789 

FIGURE 3 Crystal orientation (September 2020) tests in Balmat pyrite standard. A) δ56Fe 790 

corrected from instrumental fractionation measured in three grains prepared in an indium 791 

mount. The reproducibility is given at 2SD and show no clear difference between the grains. 792 

Data are available in Table S2 (supporting information). B) Upper hemisphere equal area 793 

(i.e. with Z pointing to the reader) EBSD pole figure showing the averaged crystallographic 794 

orientations of {100} for the three pyrite grains of interest. Note the strong clustering of [100] 795 

axes close to Z. 796 
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 802 

FIGURE 4 δ56Fe values IMF-corrected of Balmat pyrite standard rotated by 90° (P1), 803 

180° (P2) and 270° (P3) compared to the initial position (P0). The external reproducibility is 804 

±0.30‰ (2SD) and the internal variability are ±0.10‰ to ±0.20‰ (2SE), allowing to rule out 805 

orientation (channeling) effect on IMF variations. Data are available in Table S2 806 

(supporting information). 807 
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 811 

FIGURE 5 Profiles in Balmat reference material. A) Interferometric microscope image 812 

showing Pf1 profile in the pyrite grain. B) Interferometric microscope 3D image of the pyrite 813 

standard. C) Topographic profile following Pf1 transect. This profile shows a topographic 814 

difference of ~1.5µm between the core (red star) and the rim (green star) of the grain. The 815 

gap after the green star (~7µm) highlights the boundary between the pyrite grain and the 816 

indium. D) δ56Fe values IMF-corrected in a core to rim profile performed in Balmat pyrite 817 

standard. Dashed black line is the true δ56Fe value of Balmat standard (δ56Fe= -0.399‰). The 818 

uncertainty on average is ±0.09‰ (2SE) and the external reproducibility is ±0.18‰ (2SD, 819 

grey area). Data are available in Table S2 (supporting information). 820 

 821 

 822 

 823 

100 µm

0.60 0.70 0.80 0.90 1.00 1.10
mm

-4000

-2000

0

2000

4000

6000

8000

10000
n
m

20630 nm

-12209 nm

B

P1

Analysis #

6000

4000

2000

0

-2000

n
m

0.60 0.70 0.80 0.90 1.00 1.10
mm

x profile: ∆Z= -1670.48 nm 

D

A

C

0    1     2    3    4    5    6    7     8    9

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

δ
5

6
F

e
 IR

M
M

0
1
4
 (
‰

) ±2SD

±2SD



 824 

  825 

FIGURE 6 Long term reproducibility on Balmat pyrite reference material (0.25‰, 2SD). 826 

Dots are δ56Fe measured with Hyperion-II Radio-Frequency plasma source in February 2018 827 

(blue dots) and April 2018 (white dots) session. Grey diamonds are δ56Fe data from the 828 

Duoplasmatron source68. Dash black line indicates the true δ56Fe value for Balmat (δ56Fe= -829 

0.399‰) and grey area represents the long-term reproducibility of ±0.25 at 2SD, standard 830 

deviation. February 2018 data are available in Table S3 (supporting information B). 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

Duoplasmatron source [ref. 68]

Hyperion-II source February 2018

Hyperion-II source April 2018

1.0

0.5

0

0.5

1.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Analysis #

δ
5

6
F

e
 I
R

M
M

0
1

4
 (
‰

)

±2SD

±2SD

δ56Fe
true

 Balmat= -0.399‰



Supporting information B: 845 

 846 

Electron Probe Microanalysis (EPMA) settings: 847 

The acceleration voltage was 15kV and beam current was 15nA focused in 3µm. 848 

Reference materials, including sulfides, oxides and silicates, were tested before the analysis 849 

of S, Fe, Co, Mn, Pb, Ti, Cr, Zn, Cu and Ni. Detection limits were 133ppm for S, 130ppm for 850 

Fe, 141ppm for Co, 129ppm for Mn, 327ppm for Pb, 79ppm for Ti, 145ppm for Cr, 238ppm 851 

for Zn, 199ppm for Cu and 150ppm for Ni. 852 

 853 

Supplementary figures: 854 

 855 

 856 

 857 

FIGURE S1 Reproducibility on Spain standard (n=68) during the July 2018 session 858 

(CRPG-IPNT) in three different grains. The reproducibility is ±0.28‰ (2SD) and was 859 

obtained by bracketing method.  The black dashed line represents the true value of the 860 

standard (δ56Fe= +0.52‰). 861 
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 862 

 863 

FIGURE S2  Intensity of 56Fe+ in Balmat pyrite reference material obtained with Hyperion 864 

RF using a 3nA primary beam. The 56Fe+ intensity increases and stabilizes after 90s, which 865 

corresponds to the necessary presputtering time before the analyses. 866 
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Analysis Name 
δ56Fecorr 

54
Cr 

2SE 
δ57Fecorr 

54
Cr 

2SE 

56Fe+ intensity 

(cps) 

ln(56/54Fe 

meas) 

ln(57/54Fe 

meas) 

Standards        

Balmat@8 -33.68 0.14 -50.17 0.36 3.91E+07 2.7199 -1.0647 

Balmat@9 -34.10 0.13 -50.44 0.40 3.95E+07 2.7195 -1.0650 

Balmat@10 -34.09 0.15 -50.63 0.41 3.95E+07 2.7195 -1.0652 

Balmat@11 -33.90 0.16 -50.17 0.40 3.91E+07 2.7197 -1.0647 

Balmat@12 -33.47 0.12 -49.49 0.37 4.12E+07 2.7201 -1.0640 

Balmat@13 -33.69 0.12 -49.87 0.37 4.06E+07 2.7199 -1.0644 

Balmat@14 -33.74 0.14 -49.77 0.39 4.08E+07 2.7198 -1.0643 

Balmat@15 -33.75 0.14 -49.72 0.33 4.05E+07 2.7198 -1.0643 

Balmat@16 -33.62 0.13 -49.55 0.34 4.02E+07 2.7199 -1.0641 

Balmat@17 -34.10 0.13 -51.09 0.41 4.53E+07 2.7195 -1.0656 

Balmat@18 -34.09 0.11 -50.94 0.30 4.54E+07 2.7195 -1.0655 

Balmat@19 -34.16 0.14 -51.15 0.32 4.54E+07 2.7194 -1.0657 

Balmat@20 -33.98 0.13 -50.89 0.33 4.47E+07 2.7196 -1.0654 

Balmat@21 -34.16 0.13 -50.91 0.29 4.47E+07 2.7194 -1.0654 

BalmatMI83@01 -33.61 0.11 -49.93 0.38 4.09E+07 2.7200 -1.0645 

BalmatMI83@10 -34.12 0.13 -50.40 0.36 4.29E+07 2.7194 -1.0649 

BalmatMI83@11 -34.14 0.12 -50.32 0.37 4.28E+07 2.7194 -1.0649 

BalmatMI83@12 -34.06 0.15 -50.37 0.39 4.36E+07 2.7195 -1.0649 

BalmatMI83@13 -33.76 0.10 -50.07 0.45 4.29E+07 2.7198 -1.0646 

BalmatMI83@14 -34.14 0.12 -50.60 0.32 4.33E+07 2.7194 -1.0651 

BalmatMI83@15 -34.00 0.12 -50.56 0.37 4.23E+07 2.7196 -1.0651 

BalmatMI83@16 -33.79 0.12 -50.26 0.34 4.37E+07 2.7198 -1.0648 

BalmatMI83@17 -34.12 0.12 -51.02 0.38 4.32E+07 2.7194 -1.0656 

BalmatMI83@18 -33.77 0.13 -50.34 0.37 4.36E+07 2.7198 -1.0649 

BalmatMI83@19 -33.90 0.11 -50.22 0.31 4.31E+07 2.7197 -1.0648 

BalmatMI83@2 -33.45 0.13 -49.54 0.36 4.12E+07 2.7201 -1.0641 

BalmatMI83@3 -33.68 0.12 -49.97 0.36 4.03E+07 2.7199 -1.0645 

BalmatMI83@4 -33.86 0.11 -50.18 0.33 4.08E+07 2.7197 -1.0647 

BalmatMI83@5 -33.75 0.11 -50.03 0.38 4.07E+07 2.7198 -1.0646 

BalmatMI83@6 -33.72 0.11 -50.00 0.40 4.09E+07 2.7198 -1.0645 



BalmatMI83@7 -34.13 0.12 -50.28 0.30 4.52E+07 2.7194 -1.0648 

BalmatSTWanas@01 -33.83 0.12 -50.04 0.32 4.31E+07 2.7197 -1.0646 

BalmatSTWanas@10 -33.98 0.11 -50.75 0.37 4.28E+07 2.7196 -1.0653 

BalmatSTWanas@11 -33.99 0.11 -50.85 0.45 4.28E+07 2.7196 -1.0654 

BalmatSTWanas@12 -33.56 0.13 -50.12 0.42 4.28E+07 2.7200 -1.0647 

BalmatSTWanas@13 -33.77 0.11 -50.04 0.37 4.31E+07 2.7198 -1.0646 

BalmatSTWanas@15 -33.69 0.14 -49.95 0.37 4.29E+07 2.7199 -1.0645 

BalmatSTWanas@16 -33.73 0.12 -50.13 0.36 4.28E+07 2.7198 -1.0647 

BalmatSTWanas@17 -33.94 0.14 -50.65 0.42 4.21E+07 2.7196 -1.0652 

BalmatSTWanas@2 -34.04 0.14 -50.66 0.36 4.26E+07 2.7195 -1.0652 

BalmatSTWanas@3 -34.23 0.11 -51.01 0.33 4.25E+07 2.7193 -1.0655 

BalmatSTWanas@4 -34.15 0.12 -50.90 0.34 4.27E+07 2.7194 -1.0654 

BalmatSTWanas@5 -33.90 0.13 -50.14 0.35 4.28E+07 2.7197 -1.0647 

BalmatSTWanas@6 -34.01 0.10 -50.39 0.41 4.25E+07 2.7196 -1.0649 

BalmatSTWanas@7 -33.85 0.11 -50.29 0.39 4.28E+07 2.7197 -1.0648 

BalmatSTWanas@8 -33.96 0.10 -50.48 0.39 4.30E+07 2.7196 -1.0650 

BalmatSTWanas@9 -33.77 0.11 -50.33 0.36 4.34E+07 2.7198 -1.0649 

Samples        

MI83@01 -32.96 0.14 -49.19 0.41 3.76E+07 2.7206 -1.0637 

MI83@10 -32.41 0.17 -48.05 0.37 3.74E+07 2.7211 -1.0626 

MI83@11 -32.54 0.13 -48.14 0.35 3.88E+07 2.7210 -1.0627 

MI83@12 -33.13 0.11 -48.83 0.36 3.83E+07 2.7204 -1.0634 

MI83@13 -32.33 0.15 -47.79 0.39 3.67E+07 2.7212 -1.0623 

MI83@14 -33.10 0.15 -49.01 0.44 3.73E+07 2.7205 -1.0635 

MI83@15 -31.74 0.13 -46.88 0.40 3.56E+07 2.7218 -1.0614 

MI83@16 -32.42 0.11 -47.95 0.39 3.89E+07 2.7211 -1.0625 

MI83@17 -33.12 0.13 -48.78 0.42 3.84E+07 2.7204 -1.0633 

MI83@18 -32.08 0.16 -47.28 0.44 3.80E+07 2.7215 -1.0618 

MI83@19 -32.73 0.12 -48.35 0.37 3.90E+07 2.7208 -1.0629 

MI83@2 -32.90 0.11 -48.63 0.34 3.83E+07 2.7207 -1.0632 

MI83@20 -32.54 0.15 -48.32 0.44 3.78E+07 2.7210 -1.0629 

MI83@21 -31.55 0.14 -46.73 0.37 3.80E+07 2.7220 -1.0613 

MI83@22 -32.32 0.11 -47.94 0.35 4.15E+07 2.7212 -1.0625 



MI83@23 -31.56 0.20 -47.04 0.51 3.82E+07 2.7220 -1.0616 

MI83@24 -32.09 0.15 -47.80 0.42 4.03E+07 2.7215 -1.0623 

MI83@25 -31.84 0.12 -47.15 0.36 4.11E+07 2.7217 -1.0617 

MI83@26 -32.03 0.13 -47.58 0.37 4.04E+07 2.7215 -1.0621 

MI83@27 -31.26 0.14 -46.82 0.39 4.13E+07 2.7223 -1.0614 

MI83@28 -31.59 0.13 -46.97 0.33 4.14E+07 2.7220 -1.0615 

MI83@29 -32.34 0.13 -48.15 0.30 4.20E+07 2.7212 -1.0627 

MI83@3 -32.00 0.13 -47.57 0.34 3.94E+07 2.7216 -1.0621 

MI83@30 -31.68 0.14 -47.34 0.42 4.11E+07 2.7219 -1.0619 

MI83@31 -32.61 0.13 -48.28 0.33 4.18E+07 2.7209 -1.0628 

MI83@32 -32.20 0.15 -47.84 0.41 3.82E+07 2.7214 -1.0624 

MI83@33 -32.65 0.19 -48.18 0.44 3.23E+07 2.7209 -1.0627 

MI83@34 -32.66 0.12 -48.60 0.35 4.08E+07 2.7209 -1.0631 

MI83@35 -32.57 0.16 -48.13 0.39 3.95E+07 2.7210 -1.0627 

MI83@36 -32.33 0.14 -47.94 0.32 4.04E+07 2.7212 -1.0625 

MI83@37 -32.04 0.12 -47.81 0.39 3.82E+07 2.7215 -1.0624 

MI83@39 -31.35 0.12 -46.70 0.35 3.98E+07 2.7222 -1.0612 

MI83@4 -32.71 0.15 -48.55 0.40 3.74E+07 2.7208 -1.0631 

MI83@40 -30.82 0.12 -45.85 0.36 3.95E+07 2.7227 -1.0604 

MI83@41 -29.48 0.34 -43.79 0.56 4.03E+07 2.7240 -1.0583 

MI83@42 -31.36 0.14 -47.11 0.40 4.05E+07 2.7222 -1.0616 

MI83@43 -31.87 0.11 -47.73 0.40 4.13E+07 2.7217 -1.0623 

MI83@44 -30.99 0.19 -45.96 0.51 3.50E+07 2.7225 -1.0605 

MI83@7 -32.34 0.14 -47.96 0.38 3.89E+07 2.7212 -1.0625 

MI83@8 -32.42 0.12 -47.98 0.34 3.80E+07 2.7211 -1.0625 

MI83@9 -32.28 0.13 -47.82 0.42 3.89E+07 2.7213 -1.0624 

STWanas@01 -31.35 0.13 -46.69 0.34 4.23E+07 2.7222 -1.0612 

STWanas@10 -31.53 0.12 -46.68 0.48 3.81E+07 2.7220 -1.0612 

STWanas@11 -30.79 0.13 -45.85 0.38 4.19E+07 2.7228 -1.0604 

STWanas@12 -31.11 0.13 -46.67 0.35 4.19E+07 2.7225 -1.0612 

STWanas@13 -30.97 0.12 -46.31 0.34 4.22E+07 2.7226 -1.0608 

STWanas@14 -31.21 0.12 -46.54 0.37 4.19E+07 2.7223 -1.0611 

STWanas@15 -31.33 0.13 -46.61 0.38 4.20E+07 2.7222 -1.0611 



STWanas@16 -31.29 0.13 -46.13 0.31 4.20E+07 2.7223 -1.0607 

STWanas@17 -31.02 0.14 -46.16 0.38 4.26E+07 2.7225 -1.0607 

STWanas@18 -30.36 0.12 -45.26 0.32 4.15E+07 2.7232 -1.0598 

STWanas@19 -31.08 0.15 -46.14 0.30 4.15E+07 2.7225 -1.0607 

STWanas@2 -30.91 0.11 -45.89 0.32 4.18E+07 2.7227 -1.0604 

STWanas@21 -31.17 0.12 -46.37 0.35 4.23E+07 2.7224 -1.0609 

STWanas@22 -31.30 0.15 -46.22 0.34 4.19E+07 2.7223 -1.0608 

STWanas@23 -31.08 0.13 -46.31 0.30 4.26E+07 2.7225 -1.0608 

STWanas@25 -31.21 0.12 -46.55 0.35 4.28E+07 2.7224 -1.0611 

STWanas@26 -29.54 0.18 -43.80 0.42 3.64E+07 2.7240 -1.0583 

STWanas@29 -31.11 0.13 -46.40 0.32 4.27E+07 2.7225 -1.0609 

STWanas@30 -30.35 0.17 -45.14 0.49 3.86E+07 2.7232 -1.0597 

STWanas@32 -31.03 0.10 -46.35 0.40 4.21E+07 2.7225 -1.0609 

STWanas@33 -31.14 0.13 -46.30 0.40 3.63E+07 2.7224 -1.0608 

STWanas@34 -31.56 0.13 -46.95 0.38 4.24E+07 2.7220 -1.0615 

STWanas@35 -31.24 0.12 -46.34 0.42 4.23E+07 2.7223 -1.0609 

STWanas@36 -31.24 0.14 -46.52 0.40 3.95E+07 2.7223 -1.0611 

STWanas@37 -31.18 0.14 -46.42 0.38 4.21E+07 2.7224 -1.0610 

STWanas@38 -31.12 0.13 -46.55 0.35 4.22E+07 2.7224 -1.0611 

STWanas@39 -30.87 0.13 -46.06 0.37 4.20E+07 2.7227 -1.0606 

STWanas@4 -31.62 0.13 -46.99 0.39 4.28E+07 2.7219 -1.0615 

STWanas@40 -31.18 0.13 -46.68 0.38 3.92E+07 2.7224 -1.0612 

STWanas@5 -31.73 0.13 -47.32 0.29 4.22E+07 2.7218 -1.0619 

STWanas@6 -31.44 0.14 -46.86 0.42 4.24E+07 2.7221 -1.0614 

STWanas@8 -31.33 0.12 -47.05 0.40 4.23E+07 2.7222 -1.0616 

STWanas@9 -30.81 0.12 -45.78 0.32 4.25E+07 2.7228 -1.0603 

 880 

TABLE S1  δ56Fe and δ57Fe values (corrected from 54Cr interference), intensity of the 881 

56Fe+ signal and logarithm of the measured 56Fe/54Fe and 57Fe/54Fe ratios in Balmat pyrite 882 

standard and geological samples (pyrites) during July 2020 session (SwissSIMS). The 2SE 883 

(standard error) reports the internal uncertainty.  884 

 885 

 886 

 887 



Analysis Name δ56FeRAW (‰) δ56FeIRMM014 (‰) 2SE 

X-Y test 

Position 0° (P0) 

Balmat@25 -31.71 -0.52 0.09 

Balmat@26 -31.77 -0.58 0.11 

Balmat@27 -31.60 -0.41 0.09 

Balmat@31 -31.38 -0.20 0.10 

Balmat@32 -31.48 -0.29 0.11 

Balmat@33 -31.44 -0.26 0.12 

Position 90° (P1)    

Balmat@34 -31.48 -0.30 0.10 

Balmat@35 -31.69 -0.50 0.10 

Balmat@36 -31.86 -0.67 0.12 

Position 180° (P2)    

Balmat@38 -31.49 -0.31 0.10 

Balmat@39 -31.60 -0.41 0.10 

Balmat@40 -31.60 -0.41 0.12 

Position 270° (P3)    

Balmat@45 -31.82 -0.64 0.11 

Balmat@46 -31.70 -0.51 0.10 

Balmat@47 -31.41 -0.22 0.12 

Balmat@48 -31.45 -0.26 0.12 

Balmat@49 -31.49 -0.30 0.09 

    

Crystal orientation test 

 

Grain #1 (G1) 

   

BalmatG1@38 -29.81 -0.12 0.12 

BalmatG1@39 -29.92 -0.23 0.12 

BalmatG1@40 -30.21 -0.52 0.10 

BalmatG1@41 -29.94 -0.25 0.13 

BalmatG1@43 -30.01 -0.32 0.11 

 

 

   



TABLE S2  Raw δ56Fe and IMF-corrected δ56Fe values measured by SIMS on Balmat 888 

pyrite in four different position (0°, 90°, 180° and 270°) to test orientation (channeling) effect 889 

(data acquired during September 2020 session); in three Balmat grains mounted in random 890 

orientations to test a possible crystal orientation effect (data acquired during September 2020 891 

session); and a core to rim profile in a Balmat grain. The internal uncertainties of the 892 

measurements are reported as 2SE. 893 

 894 

 895 

 896 

Grain #2 (G2) 

BalmatG2@9 -30.25 -0.57 0.11 

BalmatG2@10 -30.31 -0.62 0.10 

BalmatG2@11 -30.43 -0.74 0.10 

BalmatG2@12 -29.93 -0.24 0.10 

BalmatG2@13 -30.45 -0.76 0.13 

Grain #3 (G3)    

BalmatG3@24 -30.09 -0.41 0.09 

BalmatG3@25 -30.20 -0.51 0.10 

BalmatG3@26 -30.18 -0.49 0.11 

BalmatG3@27 -29.69 0.00 0.10 

BalmatG3@28 -29.88 -0.20 0.10 

Profile Pf1 

BalmatPf1@01 -27.37 -0.27 0.11 

BalmatPf1@02 -27.62 -0.52 0.12 

BalmatPf1@03 -27.52 -0.42 0.12 

BalmatPf1@04 -27.60 -0.50 0.10 

BalmatPf1@05 -27.50 -0.41 0.11 

BalmatPf1@06 -27.49 -0.40 0.13 

BalmatPf1@07 -27.49 -0.39 0.12 

BalmatPf1@08 -27.38 -0.28 0.12 

    

    



Analysis Name 56Fe+ intensity δ56FeRAW (‰) δ56FeIRMM014 (‰) 2SE 

 

Balmat-3nA@22 6.13E+07 -33.50 -0.38 0.09 

Balmat-3nA@23 6.09E+07 -33.50 -0.38 0.10 

Balmat-3nA@24 5.97E+07 -33.60 -0.48 0.08 

Balmat-3nA@25 6.23E+07 -33.53 -0.41 0.10 

Balmat-3nA@26 6.17E+07 -33.47 -0.35 0.10 

Balmat-3nA@39 6.11E+07 -33.39 -0.23 0.08 

Balmat-3nA@40 6.18E+07 -33.52 -0.36 0.11 

Balmat-3nA@41 6.07E+07 -33.38 -0.22 0.10 

Balmat-3nA@42 6.27E+07 -33.45 -0.29 0.10 

Balmat-3nA@43 6.33E+07 -33.77 -0.61 0.09 

Balmat-3nA@44 6.21E+07 -33.66 -0.50 0.09 

Balmat-3nA@45 6.32E+07 -33.75 -0.59 0.07 

Balmat-3nA@50 6.63E+07 -33.97 -0.63 0.09 

Balmat-3nA@51 6.31E+07 -33.65 -0.30 0.11 

Balmat-3nA@53 6.12E+07 -33.57 -0.22 0.09 

Balmat-3nA@54 6.47E+07 -33.79 -0.44 0.08 

Balmat-3nA@55 6.28E+07 -33.90 -0.55 0.08 

Balmat-3nA@56 6.32E+07 -33.61 -0.26 0.09 

Balmat-3nA@57 6.51E+07 -33.44 -0.50 0.09 

Balmat-3nA@58 6.48E+07 -33.11 -0.18 0.09 

Balmat-3nA@59 6.57E+07 -33.31 -0.38 0.08 

Balmat-3nA@60 6.53E+07 -33.29 -0.36 0.08 

Balmat-3nA@61 6.66E+07 -33.51 -0.58 0.10 

Balmat-3nA@62 6.37E+07 -33.35 -0.41 0.07 

Balmat-3nA@63 6.28E+07 -33.45 -0.51 0.13 

Balmat-3nA@64 6.26E+07 -33.19 -0.25 0.09 

Balmat-3nA@65 6.09E+07 -33.26 -0.32 0.10 

Balmat-3nA@66 6.30E+07 -33.43 -0.49 0.09 

Balmat-3nA@67 6.58E+07 -33.34 -0.41 0.07 

Balmat-3nA@69 6.64E+07 -33.50 -0.47 0.09 

Balmat-3nA@70 6.44E+07 -33.48 -0.46 0.10 



Balmat-3nA@71 6.73E+07 -33.35 -0.32 0.09 

Balmat-3nA@72 6.63E+07 -33.37 -0.35 0.10 

Mean IMF (‰) 
 

-33.10  
 

Mean Repro (‰, 

2SD)  0.39 

 

 

Repro. bracketing (‰, 2SD) 0.24  
 

 897 

TABLE S3  56Fe+ intensity, raw and IMF-corrected δ56Fe values associated with Balmat 898 

pyrite standard analyses (February session in CRPG-IPNT, 57Fe/54Fe ratios were not acquired 899 

during this session). The internal uncertainties are given as 2SE.  900 

 901 

 902 

 903 

 904 

 905 


	High spatial resolution measurements of iron isotopes in pyrites by SIMS using the new Hyperion-II Radio-Frequency Plasma source.

