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� Pseudo-samples enable visualization
of the variable importance in random
forest (RF).

� Interpretation of variable importance
in RF and unsupervised random for-
est (URF).

� Possibility of obtaining so called bi-
plot for RF and URF.

� Relation between variables are ob-
tained using principal coordinates
analysis.
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Current technological developments have allowed for a significant increase and availability of data.
Consequently, this has opened enormous opportunities for the machine learning and data science field,
translating into the development of new algorithms in a wide range of applications in medical,
biomedical, daily-life, and national security areas. Ensemble techniques are among the pillars of the
machine learning field, and they can be defined as approaches in which multiple, complex, independent/
uncorrelated, predictive models are subsequently combined by either averaging or voting to yield a
higher model performance. Random forest (RF), a popular ensemble method, has been successfully
applied in various domains due to its ability to build predictive models with high certainty and little
necessity of model optimization. RF provides both a predictive model and an estimation of the variable
importance. However, the estimation of the variable importance is based on thousands of trees, and
therefore, it does not specify which variable is important for which sample group.

The present study demonstrates an approach based on the pseudo-sample principle that allows for
construction of bi-plots (i.e. spin plots) associated with RF models. The pseudo-sample principle for RF. is
explained and demonstrated by using two simulated datasets, and three different types of real data,
which include political sciences, food chemistry and the human microbiome data. The pseudo-sample bi-
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Netherlands.
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plots, associated with RF and its unsupervised version, allow for a versatile visualization of multivariate
models, and the variable importance and the relation among them.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The influence of machine learning algorithms spreads
throughout the scientific and business practices [1,2]. Credit risks
are routinely evaluated by using logistic regression [3]. Faulty
products are detected in industrial production by means of multi-
variate statistical process control [4]. Streaming services use neural
networks to recommend movies related to the user’s preferences.
Among hundreds of approaches, the ensemble learning [5,6]
methods have proved to be flexible and efficient. Ensemble
learning has been particularly popular since the introduction of
random forest (RF.) by L. Breiman in 2001 [7]. The underlying idea is
that the combination of multiple weak and uncorrelated classifiers
results in an improved ability to predict overall response. This
approach has been immensely successful because of its capacity to
construct a complexmodel with little to no parameter optimization
involved. Once a decision model has been established, it can be
used as a tool for prediction purposes. However, this approach is
valid only if one is interested is the final choice made by the deci-
sion trees. This is because the model does not provide any infor-
mation related to either biological or chemical meaning of the
compounds responsible for the final choice made. Oftentimes, it is
needed to understand what is driving the model towards a
particular decision. For example, an investment banker (and their
supervisors and regulators) may be interested in knowing why it is
wise to invest millions in a specific company. RF can provide an
estimation of the variable importance; although this quantitative
information is often too crude to provide a clear explanation of the
inner working of themodel. The model sees a variable as important,
but it does not indicate changes in the variable values, i.e. if its
amount increases or decreases, or whether it should be considered
in interaction with another variable.
In ensemble methods, detailed information on variables is
difficult to access because it is spread over the hundreds of weak
classifiers that form the model. InRF, the variable importance is
measured by calculating the increase in the model prediction error
after permuting the values of a variable. A variable is considered as
important if, after shuffling its original values, the prediction error
increases. The opposite also holds; a variable is unimportant if
permuting its value does not change the prediction error. Several
variation-of-variable-importance approaches have been proposed,
such as removing of a variable or retraining a model and in the
following step, compare its error. Fisher et al. [8] suggested a
model-agnostic form of variable importance, called model reliance,
where the dataset is split in half, and the value of a variable is swap
between the two halves. On the one hand, the classification trees
that form an RF are easy to understand, similarly to simple classi-
fication and regression trees [9]. On the other hand, interpreting
the decision rules present in an entire forest still remains a
daunting task.

In the current study, a simple approach that allows for con-
struction of bi-plots (i.e. spin plots) associated with RF models is
demonstrated. Bi-plots are among the most popular and versatile
visualization tool of multivariate models [10e13]. Bi-plots permit
for the simultaneous display of information on the samples and the
variables. The performance of the RF bi-plots is assessed by using
two types of simulated, and various real datasets, i.e. political sci-
ences, food chemistry and the human microbiome. These examples
demonstrate the potential of this visualization tool on both cate-
gorical and continuous data, in both supervised and unsupervised
analysis. The interpretation of the RF models employing bi-plots is
shown for supervised and unsupervised version [14] of the tree-
based techniques.
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2. Material and methods

2.1. Random forest and unsupervised random forest

RF is an ensemble technique introduced by Leo Breiman, and it is
based on the aggregation of a large number of uncorrelated and
weak decision trees [7]. The idea behind it is to create a training set
that consists of ~63% of samples (with replacement, i.e. bootstrap
aggregating) from the original data; the remaining samples are used
for internal validation of the RFmodel. Those samples are called out-
of-bag (OOB) samples, and the corresponding error calculated for
their prediction is called OOB error. The procedure is repeated t
times, where t indicates the number of grown trees. A set of t single
trees without pruning is created by using each of these bootstrap
datasets. At each node, a subset of variables is randomly selected to
choose the best binary split by implementing, e.g. Gini impurity
index evaluated for OOB cases. Each of the t classification trees is
next used to predict the OOB cases. The final decision is made by
majority voting of all the t trees. Each RF model presented here is
validated either internally by using OOB cases (microbiota data) or
externally by using a test set (wine data and senate vote data)
selected by employing the Kennard and Stone algorithm [15,16].

Similarly to RF, unsupervised random forest (URF) [14] uses a set
of t weak decision trees. URF assumes that if the data embraces any
possible trends (e.g. relevant class groupings), the data should be
differentiated from a randomly generated version of itself [17]. The
randomly generated data is, thus, created to perform a two-class RF
classificationmodel. The synthetic datawithin URF can be generated
in various ways [18]. The most common and most straightforward
approach used here is to permute the values of each predictor of the
original data. This procedure leads to the creation of a synthetic
dataset that has the same number of samples and variables as the
original dataset. The meaningful classification results can be further
visualized by using a proximity matrix, which can be considered as a
similarity measure among samples. It is created by measuring the
number of times that two samples end up in the same terminal node
during the RF classificationmodel. The final number is normalised by
the number of trees used in the RF model, leading to a matrix mxm,
where m is the number of samples in the data, with values varying
between 0 and 1. The proximity matrix is then transformed into a
dissimilarity matrix, and it can be used to perform any unsupervised
analysis, such as principal component analysis, for identifying any
relevant structure in the data.

2.2. Bi-plots for RF and URF

The within RF variable importance is obtained via variable
importance measure (VIM), which is calculated by permuting the
values of each variable in the OOB cases and then, predicting the
values of these samples [7]. If a data matrix X with “p” number of
variables is considered, VIM is obtained by first, randomly,
permuting the values in the predictor variable “p”, and thus, losing
the association with the class vector. If the prediction accuracy for
the cases in OOB decreases significantly in comparison with non-
permuted variables values, it indicates a strong relation of the
predictor variable “p”with the response (i.e. classes). The difference
in prediction accuracy before and after permuting the values of
variable “p”, averaged over all trees, is a measure of variable
importance; the higher the number is, the more important the
predictor variable “p” is. VIM allows for selecting the most infor-
mative predictors; however, it does not provide information on the
relation between predictors and the relative changes among the
different groups explored in the RF classification model. Moreover,
VIM values might be negatively affected by correlated variables
[19].
The pseudo-sample principle [20,21] is used, which is based on
the nonlinear plot idea described by Gower [22], to represent the
variable importance in RF In that regard, a set of artificial samples,
i.e. pseudo samples, is created to investigate the RF model. These
samples are constructed to evaluate each variable independently.
The graphical illustration of the pseudo sample approach is shown
in Fig. 1AeB. The described procedure starts (Fig. 1A) from creating
a proximity matrix (P within the RF model for data matrix X with
“m” number of observation and “p” variables. The latter is changed
into a dissimilarity matrix DP. After double-centering, the matrix
can be imputed into PCA analysis, and the sample groupings can be
visualized in a PCA score plot. In the further part of this tutorial, this
type of plot and analysis will be referred to as principal coordinate
analysis (PCoA) and its subsequent score plot. In Fig. 1B, a given
pseudo sample is shown, where all the values are set to zero except
for the variable being investigated. The latter is set to a particular
value, e.g. the range between the minimum and maximum value
observed for that variable in the real data. These values allow for
describing a complete trajectory for every variable.

Consequently, for each variable, a matrix of size “l � p” is
created, where “l” is the number of steps in the range of pseudo
samples used to span the complete array of the original variable,
and “p” is the number of original variables in data matrix X. Note
that, overall, “p” pseudo-sample matrices are created, and it is
possible to check the influence of these pseudo samples in the RF
model. Those pseudo samples are then put into the RF model,
where their proximity to the training samples can be estimated
(pseudo-sample proximity matrix PP of size “lxm”). After changing
the matrix PP into a dissimilarity matrix DPP, the position of the
artificial samples regarding the real data can be visualized in a PCoA
space (Fig. 2B). By changing the non-zero values of the artificial
samples, the procedure progressively constructs a complete tra-
jectory in the PCoA space, which allows for visualization of the
importance and behavior of this variable in the RF model. An
adequatemetaphor of this procedurewould be a chemical titration,
where the titrating solution here is the variable that is progressively
explored by increasing its value in the pseudo sample step by step
and observing the corresponding result at each step. The exact
procedure is applied to all variables. Ultimately, all variable tra-
jectories can be displayed on top of the scatter plot obtained from
the PCoA analysis of the proximity matrix, thus, leading to the RF
bi-plot. The same procedure can be applied in URF.

The graphical representation of the projection of the pseudo
samples proximities onto the PCoA space is shown in Fig. 2B. In
this simple example, four different variables are shown. Note that
in the case of linear techniques, such a plot is called a loading
plot. Each of the demonstrated variables in Fig. 2B has different
trajectories and influence in the model (taking into account
principal coordinate 1). The trajectories of the variables one and
three form a straight line; thus, it is expected that their influence
in the RF model is also linear. Although both variables demon-
strate a linear behavior, their importance is completely different.
Variable one exhibits long trajectories, while variable three has a
short trajectory fluctuating around zero. This indicates that var-
iable one has relatively higher importance in the model than
variable three. The trajectories of the variables two and four
exhibit a nonlinear behavior over the entire range, and similarly
to variables one and three, their importance in the model varies.
Variable two has high importance in all of its range, while vari-
able three reveals higher importance in the higher variable range.
It is possible to calculate the overall importance of each variable
by taking the absolute value of the difference between the
maximum and minimum value of each pseudo sample. The re-
sults can be then, graphically, shown as any traditional bar plot
used, for instance, in partial least square regression plot [23].



Fig. 1. Representations of the A) random forest proximity matrix of data matrix X; b) pseudo samples principle in the random forest model. The uniformly distributed range of
pseudo sample values is indicated as “I”; *The samples of data matrix X are svisualised in PCoA score plot, and the pseudo samples are projected into the same PCoA space using the
loading vector. **Note that there are “p” pseudo sample matrixes, “p” pseudo samples proximity matrixes and “p” pseudo sample dissimilarity.

Fig. 2. A) A graphical representation of the pseudo samples approach. B) An example of four pseudo samples proximities for four variables projected into PCoA space.
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The procedure used to obtain bi-plots for RF or URF is available
in the following repository https://github.com/LioB-FRNL/RF_URF_
biplots. The procedure is very fast, considering the fact that build-
ing an RF model of 1000 trees takes approximately a few minutes
on a regular laptop.

3. Datasets

3.1. The synthetic benchmark datasets 1 and 2

Two simulated datasets were created to represent the pseudo-
sample approach. The first simulated dataset consists of two classes,
which are put in the shape of a chessboard. The second simulated
dataset contains two classeswith two circles: the inner circle refers to
class one, and the outer circle refers to class two. Both cases are
visualized in Fig. 3AeB, respectively, and they consist of 400 samples,
200 in each class, and 224 variables. To make the simulated data
resembling the typicaleomics data, the simulations are based on the
covariance structured of the blood plasma metabolomics data [24].
The first dataset is simulated by creating two circles as sinus and
cosine function and adding an array of random numbers from a
normal distributionwith specific sigma and mean values. A different
level of noise was added as normally distributed pseudo-random
numbers. In the final step, the subgroupings were created in each
circle by taking the absolute values of the, randomly, selected 20% of
all variables. Thiswasdone for 70%of the samples, randomly selected.
The similar procedure was followed for the second dataset (Fig. 3B);
however, instead of using sinus and cosine functions as the basis, the
simulations created a set of random numbers from a normal distri-
butionwith different centroids to obtain the chessboard shape.

Both benchmark datasets demonstrated nonlinear relations
among variables; thus, the linear techniques were not able to find
the proper separation between the two classes. Themost important
set of variables was selected by taking 80% of themaximumvalue of
the absolute value of the difference between the maximum and
minimum value of each pseudo sample.

https://github.com/LioB-FRNL/RF_URF_biplots
https://github.com/LioB-FRNL/RF_URF_biplots


Fig. 3. The scatter score plot of synthetic data: A) dataset 1 representing two classes arranged in chessboard; B) dataset 2 consisting of two inner circles. Each dataset contains 400
samples and 224 variables.
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3.2. Real datasets

3.2.1. Wine data
Three different real datasets were used to demonstrate the flexi-

bility of the pseudo samples. The first data was a wine dataset, a
benchmark dataset freely available from the UC machine learning
repository [25,26]. The data consisted of 178 wine samples obtained
from the same region of Italy (Piedmont), and using three grape va-
rieties (59Barolo,71Grignolino,48Barbera).A total of 13constituents
were analyzed in each sample: alcohol, malic acid, ash, the alkalinity
of ash, magnesium, total phenols, flavonoids, non-flavonoid phenols,
proanthocyanins, color intensity, hue, proline, and the ratio of the
optical density at 280 over 315 nm of diluted wines.

3.2.2. US senate votes
TheUS Senate vote dataset compiled the votes of eachUS senators

over 2015. All information was obtained by using the application
programming interface (API) of GovTrack.us, whichmakes legislative
data freely available. The data consisted of 100 samples, each being
one senator, and 339 votes held in 2015. The votes were encoded
either as 1 for yes, �1 for no and zero for abstention or missing vote.

3.2.3. Microbiota data
The last dataset used here is microbiota data obtained by

amplicon sequencing using 454 pyrosequencing, as described
before [27]. Shortly, metagenomic DNA obtained from fecal sam-
ples of 20 individuals with Crohn’s disease (CD) and Ulcerative
Colitis (UC) was used to sequence the V1eV3 hypervariable region
of the 16S rRNA gene. Each individual delivered two fecal samples,
one at disease remission state and a second one after subsequent
development of exacerbation during a one-year follow-up period.
The sequences were clustered into operational taxonomic units
(OTUs) or phylotypes based on 97% sequence similarity (i.e. species
level) against the Greengenes reference set by using the UCLUST
algorithm leading to 2869 OTUs [28]. Inverse hyperbolic sine
transformation and centering per individual were applied to the
microbiota data before the actual analysis took place. After
removing OTUs that were present in less than 20% of the samples,
the final datasets consisted of 40 samples and 648 OTUs.

4. Results

4.1. The synthetic benchmark datasets 1 and 2

The simulated data were first used to show the feasibility of the
RF bi-plot. The URF analysis was first performed on both datasets,
and the final set of the most discriminatory variables were selected.
In the case of the synthetic benchmark dataset one, thefinal number
of the top discriminatory variables was 15, while for the synthetic
benchmark data set two, it was 17. The top discriminatory variables
were selected by taking the top 80% of the trajectories exhibiting the
longest trajectories in the PCo1 and PCo2, i.e. directionswhich show
the separation between the classes. Note that representing the tra-
jectories for thewhole set of variables canobscure the interpretation
due to overcrowding of the plot. The corresponding bi-plots ob-
tained from PCoA analysis performed on the proximity matrix ob-
tained from URF are shown in Fig. 4AeB. Despite the nonlinear
relation among variables, a separation between the two groups,
class1 and class2, was achieved for both simulated datasets. How-
ever, the separation of the classes for chessboard dataset was ob-
tainedby taking the combinationof thefirst twosPCo’s, in caseof the
simulated dataset two, with two inner circles; PCo1 only suffices to
get the clear distinction between class1 and class2.

The results obtained for the benchmark data set 1 demonstrate
two subgroups of variables (Fig. 4A). The first group consisted of
variables 4, 5, 6, 8, 10 and 11 exhibited longer trajectories than the
remaining variables. This suggested higher importance of those var-
iables inseparating the twoclasses. The trajectories followed fromthe
negative (i.e. lower) values for class1 and further to positive (i.e.
higher)values forclass2. Itwasalsoclearly seen that the trajectoriesof
these two groups of variables followed very closely, indicating that a
correlation might exist among the original variables.

The trajectories obtained for the benchmark dataset 2 (Fig. 4B)
indicate that the majority of variables found as being important
make a complete turn between the two groups, i.e. the variables
have the positive and negative sides of the trajectories in the cloud of
the points that belong to class1. Only a few variables, i.e. 2,4,6,14, and
17, changed the sign of their trajectory between class1 and class2.
4.2. Real datasets

4.2.1. Wine dataset
The wine dataset is a benchmark dataset, which allowed for

validation of the RF bi-plots. In that regard, the RF bi-plot was
compared with linear discriminant analysis bi-plot (Fig. 5AeB,
respectively). Both models successfully discriminated the three
classes of wines with a correct overall prediction for the test set of
100% for each class. As seen in Fig. 5B, the RF bi-plot displays
nonlinear trajectories, which is an expected feature of an RF model.
Each trajectory was labelled twice, once at each extremity to



Fig. 4. PCoA bi-plot acquired from proximity obtained from the URF model using the most important variables for A) synthetic benchmark dataset one (chessboard shape); B)
synthetic benchmark dataset two (two circles). Each variable is represented as one trajectory with positive (þ) and negative (�) side.
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picture the minimal and maximal values. Both approaches per-
mited to conclude that the concentration of flavonoids was lower in
the Grignolino group, or that alcohol level was higher in Barbera
groups. As seen in Fig. 5B, the length of the trajectories of the wine
data reflects the importance of each variable in themodel. Similarly
to the linear discriminant analysis (LDA) results, Barbera wines
were characterized by higher amounts of proline and flavonoids.
This can be observed since the sign of the trajectories points with
its positive site to the direction of this class. The opposite trend was
observed for Grignolino wine, which was characterized by lower
concentrations of flavonoids, whose trajectory points with their
negative values to that class of wine.

4.2.2. US senate votes
The variables in the previous datasets were all continuous. One

attractive feature of RF is its ability to deal with either continuous or
categorical data. The US Senate votes dataset allows one to
demonstrate the use of RF bi-plots on categorical data. Moreover,
the RFmodel was built here in an unsupervised fashion to show the
potential of this approach as an exploratory data analysis method.
In Fig. 6A, the URF score plot is shownwith each senator denoted as
a sample. A strong clustering was observed among the first prin-
cipal coordinate which unsurprisingly corresponded to the
Republican and Democrats parties. The moderates of both sides
were relatively closer to each other at the bottom of the plot. In
contrast, senators supported by the tea party (represented by Ted
Fig. 5. A) Linear discriminant analysis bi-plot of wine data with clearly projected test sample
plot acquired from proximity obtained from RF model with projected test samples. Each va
Cruz) clustered at the upper right of the figure, and the most lib-
erals clustered on the top left (represented by Kirsten Gillibrand).
The URF bi-plots providedus with additional information. We were
able here to evaluate which votes were most significant for this
clustering. In most cases, the clustering seemed to be more defined
by the opposition to some votes rather than the support for others,
as shown by the fact that the negative side of the trajectories was
more clearly pointing towards each group. For example, voting
against the vote 105 (Senate Amendment. 817:To establish a deficit-
neutral reserve fund to provide tax benefits to patriot employers
that invest in American jobs and provide fair pay and benefits to
workers and to eliminate tax benefits for corporations that ship jobs or
profits overseas) was an important feature for the Republicans.

The analysis of the US Senate votes can go further and look at
additional information captured by the URF model. Fig. 6BeC pre-
sents the score plot and bi-plot, respectively, obtained on the plane
formed by the third and fourth dimension of the PCoA of the URF
proximity matrix. A different pattern is visible here; the two parties
mostly overlap. The Republican Party seems to stretch along the
third dimension, whereas the democrats are spread along the
fourth one. The URF bi-plot shown next to the score plot associates
the latter spread with, for instance, the votes 189 and 276, which
concern, respectively, the need for approval by the congress of the
addition of new countries to the Trans Pacific Partnership and a
motion on budgetary discipline.
s. Each variable is indicated as a line originating from the middle of the plot B) PCoA bi-
riable is represented as a trajectory.



Fig. 6. A) PCoA bi-plot using the first two PCo’s acquired from the proximity obtained from the URF model. B) PCoA score and; C) bi-plot obtained on the plane defined by the third
and fourth PCo. Each variable is represented as a trajectory.

Table 1
Taxonomy of 12 fecal bacterial taxa that have the highest contribution to
differentiating between UC and CD individuals.

Variable Numbe Taxa names

1 Ruminococcaceae
2 Lachnospiraceae
3 Clostridiales
4 Roseburia
5 Holdemania
6 Roseburia/Eubacteriumrectale
7 Clostridiales
8 Clostridium
9 Roseburia
10 Roseburia
11 Ruminococcaceae
12 Roseburia
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4.2.3. Microbiota data
The last example shown here is microbiota data, which consisted

of 40 samples and 648 variables (OTUs). Fecal microbiota is used as a
non-invasivebiomarkerparticularly relevant foranumberofdiseases
affecting the gastrointestinal tract [27,29]. The RF analysis led to the
selection of the 12 most discriminatory variables with a correct
overall prediction rate obtained fromOOB cases of 88%. The names of
the selected fecal bacterial taxa are reported in Table 1, while the
correspondingRFbi-plot is shown in Fig. 7A. The individuals assigned
as UC and CD created distinct groups, well separated along the first
principal coordinate, explaining 72% of the variance.

As shown in Fig. 7A, the two groups demonstrate diverse vari-
ations. The CD group showed a more extensive spread than the UC
group. Each group contained samples taken from the patient in
both the active and inactive stage of the disease. The disease stages
did not showany clustering withing themain classes, i.e. CD and UC
(data not shown). The trajectories shown in the bi-plot exhibited
various behaviours. Variable 6 shows a nonlinear trajectory, moving
from the CD group (with a positive site) to the UC group (with the
negative site). Moreover, this variable had the longest trajectory,
indicating the relevance of this variable in discriminating CD and
UC. It is relevant to notice that the large variation in the CD group
seemed to be also expressed in the behavior of the trajectories.
Variable 12 exhibits behavior seen in the simulation dataset 2,
where its values make the complete turn (positive and negative
sites end in the cloud of the CD group). This indicated that variable
12 is more informative about differences in variance between the
two groups than the differences in the mean amount of that vari-
able. PCoA bi-plot revealed that variables, 1,3,7, and 8 that are
scattered in the middle of the plot, suggesting little importance of
those variables (short trajectories). However, removing those
variables led to a decreased prediction accuracy of the RF model.
These two statements might seem contradictory; although upon
further inspection, one can notice that these variable trajectories
are very close to each other, and thus, suggesting a relation among
them. The presence of this correlation implied that their overall
importance is divided among them. All three variables belong to
the same order-level Clostridiales; however, genus and species
were not defined. For comparison purposes, the VIM obtained from
the RF analysis for the most discriminatory fecal bacterial taxa (as
indicated in Table 1) is shown in Fig. 7B. The VIM of fecal bacterial
taxa was comparable to the importance demonstrated in the PCoA
bi-plot (Fig. 7A). As can be seen, the most important bacteria taxa is
variable number 6, while the variables 1,2,3, 7, and 8 exhibit the
smallest importance in the classification model.



Fig. 7. A) PCoA bi-plot of microbiota data obtained from the proximity obtained from the RF model using the most discriminatory variables. Each variable is represented as a
trajectory. B) The variable importance measures derived from the RF model using the most discriminatory variables of microbiota data.
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5. Discussion and conclusions

The rapid development in many areas of science and technology
has caused an enormous growth of data. Subsequently, this has
becomeanessential opportunity in themachine learningfield,where
data is the core of it. RF, as an ensemble technique, has become
frequently a method of choice for Kaggle competitions, and often, it
has exceeded the popularity of another ensemble method, such as
AdaBoost. Despite its popularity, the main disadvantage of RF, and
also URF, is the lack of visualization of the variable importance. In-
formation on the importance of the different variables is spread over
several trees that are used in RF and URF. Both techniques allow for
obtaining overall variable importance; however, quantitative infor-
mation is missing. The possibility to obtain a so-called bi-plot, a
typical representation of variable importance in various techniques
including PCA or PLS, is lacking. The current tutorial demonstrates a
novel approach to represent variables importance by using the
pseudo-sample approach and the nonlinear bi-plot theory [11,20].
Theutilityof pseudo samples has been successfully applied tounravel
the variable importance in various chemometrics techniques such as
support vector machine [20,30], kernel-PLS (kPLS) [21,31], and
dissimilarity-PLS [32]. Nonetheless, their application in ensemble
techniques has not been studied thus far.

Here, pseudo-sample approachwasused tovisualize the variables
importanceand the relationamong themforbothRFandURFmodels.
The results presentedhere demonstrate that thismethodologycanbe
applied to various data types, including continuous, count, and cate-
gorical. The main advantage of the proposed approach is its inde-
pendency on the scaling of the data, and the presence of outliers or
subgroups within the groups of interest. Moreover, the ability of RF
and URF to model both linear and nonlinear relations is expressed in
the shape of the individual trajectories. The pseudo samples shown
here are particularly relevant for URF. As indicated already, the vari-
able significance obtained in the standard URF represents the
importanceofdifferentiating the realdata fromarandomlygenerated
version of itself [14]. Therefore, the utility of pseudo samples allows
for defining which variables drive the differences in the PCoA score
plot for the groups present in the dataset. In the datasets shownhere,
thiswas particularly visible for the simulated dataset one and dataset
two, where several variables displayed linear trajectories; however,
manyshoweda curved shape, suggesting a complexbehaviourof that
variables in the datasets. Interestingly, behavior was discovered for
variables in the simulation dataset two, where several variables
exhibited the complete turn of the trajectory. Those variables had
positive and negative values for the same class. This behavior might
be related to the structure of the data, i.e. the concentric spherical
arrangement of the two classes. This suggests that many variables
span a similar range for class 1 and class 2. This could be already seen
in Fig. 3B, where the original values of variable 16 and 17 are shown.
Asit is illustrated, both variables demonstrate positive and negative
values for both classes. This behavior is remarkable since, in various
metabolomics studies, it is usually seen that a compound (i.e. a vari-
able) is relevant for group separation due to changes in their amount.
Here, however, it is observed that those variables differ between
classes not due to their relative difference in amount but due to
changes in variance between the two classes. As indicated earlier, the
variables can change their values between the classes. The same
behavior was observed in the microbiota data, i.e. variable 12, rep-
resenting Roseburia fecal bacterial taxa. A similar observation was
found in the studybyVitale et al. [33,34],wherepseudo sampleswere
combined with k-PLS for regression analysis frommixture designs of
experiments.

The results shown for the wine data using RF in combination
with pseudo samples are in line with the outcome of LDA, i.e. the
important parameters for each wine type and their changes in the
amount. Moreover, if one looks at the relation among some wine
parameters, for instance, the amount of flavonoids and the amount
of ratio OD280/OD315 of diluted wine, they see that a high corre-
lation is present in the LDA bi-plot. The same relation can be seen in
PCoA bi-plot; however, in comparison to LDA, a more complex
relation can be observed. The above-mentioned wine parameters
exhibit a more substantial relation in the higher range of the pa-
rameters (i.e. on the positive sign of the trajectory) than in the
lower range (i.e. on the negative sign of the trajectory). The useful
element of pseudo samples is the possibility to investigate the
behavior of each variable over its entire range. Therefore, it would
be possible to define a cut-off for each variable to describe any
groups or subgroups of samples seen in the bi-plots. Additionally,
one could extend the values of the pseudo samples beyond the
original values. The standard approach for creating pseudo samples
is based on utilization of the original variables range. Nevertheless,
it is possible to evaluate the behavior of the pseudo samples by
using values that do not necessarily cover the values of the original
variables, which is equivalent to extrapolation in the loading space
for linear bi-plots. This property of the pseudo samples could be
further examined, however, it is beyond the scope of this tutorial.

The results obtained from the US senate votes indicate that all
variables used in the analysis reveal a linear trend. This is not
surprising since the Senate votes are represented in values of 0 or 1.
As seen in Fig. 6A, pseudo samples permitted for the identification
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of variables that differentiate the two parties (variable 105 repre-
senting amendment 817). On the contrary, Fig. 6C enabled inden-
tifing votes that were similar for both parties (variables 189 and 276
which correspond to the need for approval by the congress of the
addition of new countries to the Trans Pacific Partnership and
motion on budgetary discipline, respectively).

In the case of the microbiota data, the RF analysis combined
with pseudo samples led to a set of 12 fecal taxa that differenti-
ated UC and CD individuals. The importance of the fecal taxa that
discriminated UC and CD shown in PCoA bi-plot is in line with VIM
obtained from the RF classification model. The identified fecal
bacterial taxa were, previously, identified as related to UC and CD
[35e38]. Three relevant variables have been identified as Rose-
buria, one coming from the butyrate-producing bacteria, which
has been previously reported as a primary candidate for microbial
therapeutics in inflammatory bowel disease [35,38]. Interestingly,
two of them exhibited very similar trajectories, indicating a pos-
itive correlation, and the possibility of belonging to the same
bacteria species. Worth noting, variable 6, identified as Roseburia
Eubacteriumrectale, has been found as the most important variable
to distinguish UC and CD, and it displayed a complex trajectory
when compared to variables 9 and 10. This might suggest that
variables 9 and 10 belong to different bacteria species than
Eubacteriumrectale.

The approach proposed here opens many possibilities for
future investigations. The nonlinear bi-plots have various advan-
tages, but due to the complexity of the procedure, they also bring
multiple shortcomings. The most obvious one is the investigation
of the correlation among variables. It has been indicated here that
for variables whose trajectories follow a similar trend, a relation
might be assumed. The direct investigation of the correlation
among variables in nonlinear space is multifactorial since the
variables might exhibit a relation only in a certain range and show
very different behavior in another [34]. Furthermore, the
approach demonstrated here consists of creating each variable on
its own, while the other variables values are kept zeros. The choice
of the “zero values” is intuitive since, for mean-centered data, one
variable is varied while the rest of the variables are set to themean
value. As shown previously, this is particularly relevant for PLS and
PCA models [20,21,31]. Nevertheless, it is worthwhile mentioning
that due to the nature of RF any linear scaling of the data does not
affect the model, thus, mean-centering of data is not necessary.
Selecting another value is possible, and it would lead to the same
trajectories, though, shifted to another position in the PCoA space.
The inability of directly investigating the correlation among var-
iables is a definite disadvantage when compared to standard
linear bi-plots. If one wants to examine the direct relation among
variables, it is necessary to vary two, or more, variables in pseudo
samples simultaneously. This, however, is very challenging,
mainly because the relation can change if one selects two vari-
ables or more to investigate.

The current study has demonstrated the possibility to visualize
the variables importance and their changes in RF and URF models
by using the pseudo-sample approach. This is the first study that
shows the possibility of unrevealing the relation among important
variables in RF and URF, applicable to various data types. The
approach presented here is relevant for a possible definition of
variable cuteoff in biomarker discovery field.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Acknowledgement

This work was supported by Netherlands Organisation for Sci-
entific Research (NWO, the Netherlands) (grant number:
016.Veni.178.064).
References

[1] D. Boughaci, A.A.K. Alkhawaldeh, A new variable selection method applied to
credit scoring, Algorithmic Finance 7 (1e2) (2018) 43e52.

[2] W.B. Xiao, Q. Zhao, Q. Fei, A comparative study of data mining methods in
consumer loans credit scoring management, J. Syst. Sci. Syst. Eng. 15 (4)
(2006) 419e435.

[3] M. Berlin, L.J. Mester, Retail credit risk management and measurement: an
introduction to the special issue, J. Bank. Finance 28 (4) (2004) 721e725.

[4] M. Kharbach, Y. Cherrah, Y. Vander Heyden, A. Bouklouze, Multivariate sta-
tistical process control in product quality review assessment - a case study,
Ann. Pharm. Fr. 75 (6) (2017) 446e454.

[5] D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algo-
rithms with their applications in bioinformatics, Adv. Exp. Med. Biol. 696
(2011) 191e199.

[6] Z. Yin, H. Ai, L. Zhang, G. Ren, Y. Wang, Q. Zhao, H. Liu, Predicting the cyto-
toxicity of chemicals using ensemble learning methods and molecular fin-
gerprints, J. Appl. Toxicol. 39 (10) (2019).

[7] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5e32.
[8] A. Fisher, R. Cynthia, F. Dominici, All Models Are Wrong but Many Are Useful:

Variable Importance for Black-Box, Proprietary, or Misspecified Prediction
Models, Using Model Class Reliance, 2018 arXiv arXiv:1801.01489 [stat.ME].

[9] L. Breiman, J. Friedman, R. Olshen, C. Strone, Classification and Regression
Trees, Chapman & Hall/CRC, Belmont, New York, 1984.

[10] J. Blasius, P.H.C. Eilers, J. Gower, Better biplots, Comput. Stat. Data Anal. 53 (8)
(2009) 3145e3158.

[11] J.C. Gower, Generalized biplots, Biometrika 79 (3) (1992) 475e493.
[12] J.C. Gower, 3-Dimensional biplots, Biometrika 77 (4) (1990) 773e785.
[13] J.C. Gower, S.A. Harding, Nonlinear biplots, Biometrika 75 (3) (1988) 445e455.
[14] N.L. Afanador, A. Smolinska, T.N. Tran, L. Blanchet, Unsupervised random

forest: a tutorial with case studies, J. Chemometr. 30 (5) (2016) 232e241.
[15] M. Daszykowski, B. Walczak, D.L. Massart, Representative subset selection,

Anal. Chim. Acta 468 (2002) 91e103.
[16] R.W. Kennard, L.A. Stone, Uniform subset selection - Kennard and Stone al-

gorithm, Comput. Aided Des. Exp. Technometr. 11 (1969) 137e148.
[17] T. Shi, S. Horvath, Unsupervised learning with random forest predictors,

J. Comput. Graph Stat. 15 (1) (2006) 118e138.
[18] S. Nembrini, On the behaviour of permutation-based variable importance

measures in random forest clustering, J. Chemometr. 33 (8) (2019).
[19] K.K. Nicodemus, J.D. Malley, C. Strobl, A. Ziegler, The behaviour of random

forest permutation-based variable importance measures under predictor
correlation, BMC Bioinf. 11 (2010) 110.

[20] P.W. Krooshof, B. Ustun, G.J. Postma, L.M. Buydens, Visualization and recovery
of the (bio)chemical interesting variables in data analysis with support vector
machine classification, Anal. Chem. 82 (16) (2010) 7000e7007.

[21] A. Smolinska, L. Blanchet, L. Coulier, K.A. Ampt, T. Luider, R.Q. Hintzen,
S.S. Wijmenga, L.M. Buydens, Interpretation and visualization of non-linear
data fusion in kernel space: study on metabolomic characterization of pro-
gression of multiple sclerosis, PloS One 7 (6) (2012), e38163.

[22] J. Gower, S. Harding, Nonlinear biplots, Biometrika 78 (1988) 445e455.
[23] A.K. Smilde, M.J. van der Werf, S. Bijlsma, B.J. van der Werff-van der Vat,

R.H. Jellema, Fusion of mass spectrometry-based metabolomics data, Anal.
Chem. 77 (20) (2005) 6729e6736.

[24] A. Smolinska, J.M. Posma, L. Blanchet, K.A. Ampt, A. Attali, T. Tuinstra,
T. Luider, M. Doskocz, P.J. Michiels, F.C. Girard, L.M. Buydens, S.S. Wijmenga,
Simultaneous analysis of plasma and CSF by NMR and hierarchical models
fusion, Anal. Bioanal. Chem. 403 (4) (2012) 947e959.

[25] M. Forina, C. Armanino, M. Castino, M. Ubigli, Multivariate data analysis as a
disriminating method of the origin of wines, Vitis -Geilweilerhof 25 (1986)
189e201.

[26] Wine Data Set, UCI, 1991. https://nam03.safelinks.protection.outlook.com/?
url¼https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;
data¼02%7C01%7CA.Achuthan%40elsevier.com%
7Ce01c257a12634b5f1d7008d821fc0e14%
7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%
7C637296713740644300&amp;sdata¼hAVZ78y1rLEATgs4RqfPtmFF%
2BIaq05JmswHCBnRG6HI%3D&amp;reserved¼0.

[27] E.S. Wills, D.M. Jonkers, P.H. Savelkoul, A.A. Masclee, M.J. Pierik, J. Penders,
Fecal microbial composition of ulcerative colitis and Crohn’s disease patients
in remission and subsequent exacerbation, PloS One 9 (3) (2014), e90981.

[28] D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst,
G.L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy
with explicit ranks for ecological and evolutionary analyses of bacteria and
archaea, ISME J. 6 (3) (2012) 610e618.

[29] D.I. Tedjo, A. Smolinska, P.H. Savelkoul, A.A. Masclee, F.J. van Schooten,
M.J. Pierik, J. Penders, D.M. Jonkers, The fecal microbiota as a biomarker for

http://refhub.elsevier.com/S0003-2670(20)30691-7/sref1
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref1
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref1
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref1
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref2
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref2
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref2
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref2
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref3
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref3
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref3
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref4
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref4
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref4
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref4
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref5
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref5
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref5
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref5
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref6
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref6
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref6
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref7
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref7
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref8
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref8
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref8
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref9
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref9
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref9
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref10
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref10
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref10
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref11
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref11
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref12
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref12
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref13
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref13
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref14
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref14
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref14
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref15
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref15
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref15
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref16
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref16
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref16
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref17
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref17
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref17
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref18
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref18
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref19
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref19
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref19
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref20
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref20
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref20
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref20
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref21
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref21
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref21
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref21
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref22
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref22
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref23
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref23
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref23
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref23
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref24
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref24
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref24
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref24
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref24
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref25
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref25
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref25
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref25
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Farchive.ics.uci.edu%2Fml%2Fdatasets%2Fwine&amp;data=02%7C01%7CA.Achuthan%40elsevier.com%7Ce01c257a12634b5f1d7008d821fc0e14%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637296713740644300&amp;sdata=hAVZ78y1rLEATgs4RqfPtmFF%2BIaq05JmswHCBnRG6HI%3D&amp;reserved=0
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref27
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref27
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref27
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref28
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref28
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref28
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref28
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref28
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref29
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref29


L. Blanchet et al. / Analytica Chimica Acta 1131 (2020) 146e155 155
disease activity in Crohn’s disease, Sci. Rep. 6 (2016), 35216.
[30] G.J. Postma, P.W. Krooshof, L.M. Buydens, Opening the kernel of kernel partial

least squares and support vector machines, Anal. Chim. Acta 705 (1e2) (2011)
123e134.

[31] R. Vitale, D. Palací-L�opeza, H.H.M. Kerkenaard, G.J. Postma, L.M.C. Buydens,
A. Ferrera, Kernel-Partial Least Squares regression coupled to pseudo-sample
trajectories for the analysis of mixture designs of experiments, Chemometr.
Intell. Lab. Syst. 175 (2018) 37e46.

[32] J. Engel, G.J. Postma, I. van Peufflik, L. Blanchet, L.M.C. Buydens, Pseudo-
sample trajectories for variable interaction detection in dissimilarity partial
least squares, Chemometr. Intell. Lab. Syst. 146 (2015) 89e101.

[33] R. Vitale, O.E. De Noord, A. Ferrer, A kernel-based approach for fault diagnosis
in batch processes, J. Chemometr. 28 (8) (2014) S697eS707.

[34] R. Vitale, O.E. de Noord, A. Ferrer, Pseudo-sample based contribution plots:
innovative tools for fault diagnosis in kernel-based batch process monitoring,
Chemometr. Intell. Lab. Syst. 149 (2015) 40e52.

[35] S. Paramsothy, S. Nielsen, M.A. Kamm, N.P. Deshpande, J.J. Faith, J.C. Clemente,
R. Paramsothy, A.J. Walsh, J. van den Bogaerde, D. Samuel, R.W.L. Leong,
S. Connor, W. Ng, E. Lin, T.J. Borody, M.R. Wilkins, J.F. Colombel, H.M. Mitchell,
N.O. Kaakoush, Specific bacteria and metabolites associated with response to
fecal microbiota transplantation in patients with ulcerative colitis, Gastroen-
terology 156 (5) (2019) 1440e1454 e2.

[36] H. Nagao-Kitamoto, N. Kamada, Host-microbial cross-talk in inflammatory
bowel disease, Immune Netw. 17 (1) (2017) 1e12.

[37] H.C. Mirsepasi-Lauridsen, K. Vrankx, J. Engberg, A. Friis-Moller, J. Brynskov,
I. Nordgaard-Lassen, A.M. Petersen, K.A. Krogfelt, Disease-specific enteric
microbiome dysbiosis in inflammatory bowel disease, Front. Med. 5 (2018)
304.

[38] S. Coufal, N. Galanova, L. Bajer, Z. Gajdarova, D. Schierova, Z. Jiraskova
Zakostelska, K. Kostovcikova, Z. Jackova, Z. Stehlikova, P. Drastich,
H. Tlaskalova-Hogenova, M. Kverka, Inflammatory bowel disease types differ
in markers of inflammation, gut barrier and in specific anti-bacterial response,
Cells 8 (7) (2019).

Lionel Blanchet received his M.Sc. from the engineering
school Polytech’Lille, France, in 2005. He completed his
PhD in 2008 on the application of chemometrics on
spectroscopic data at the universities of Lille, France, and
Barcelona, Spain. After multiple years of post-doctoral
research at Radboud University (The Netherlands), Maas-
tricht University (The Netherlands) and Dartmouth College
(USA); he joined Philips in 2016 as a senior data scientist,
currently focussing on the application of deep learning in
the clinical workflow.
Raffaele Vitale graduated in Analytical Chemistry in 2012
(Universit�a degli Studi di Roma “La Sapienza”, Italy) and
obtained his PhD in Statistics and Optimization in 2017
(Universitat Polit�ecnica de Val�encia, Spain). He has auth-
ored more than 23 publications. He has been granted with
several awards including Siemens Process Analytics Prize
for Young Scientist in 2017, the III Jean-Pierre Huvenne
Award for the Best PhD thesis in 2019 and the XVI Euro-
pean Network for Business and Industrial Statistics Young
Statistician Award in 2020. His main research interests are
statistics and multivariate data analysis/ chemometrics for
complex data in applied sciences.
Robert van Vorstenbosch studied Forensic Science and
Chemistry at the University of Amsterdam and VU Uni-
versity Amsterdam (The Netherlands). The topic of these
studies ranged from the analysis of human hair for human
provenancing, the detection of explosives, to studying
Vacuum Ultra-Violet Spectroscopy, to finally correlating
molecular information to sensory characteristics of foods
and beverages. He has been working as PhD student in
the field of volatile organic compounds and its relation
to detect colorectal cancer at early stage. His main research
of interest is multivariate data analysis for eomics related
problems.
Georgios Stavropoulos studied chemistry at the Univer-
sity of Patras, department of chemistry, Greece, where he
obtained his Bachelor degree. In August 2015, he moved to
The Netherlands for his Master studies, where he studied
Chemistry: Analytical Sciences at the University of
Amsterdam, department of chemistry. Since 2017 he has
been doing his PhD at the University of Maastricht,
department of Pharmacology and Toxicology, where he is
using advanced machine learning techniques to compre-
hensively understand and profile primary sclerosing
cholangitis disease.
A/Prof John Penders is an expert in molecular epidemi-
ology and microbial ecology. His research group integrates
metagenomic methods within the context of prospective
epidemiological studies using various longitudinal statis-
tical and bioinformatics tools to elucidate the role of the
microbiome in health and disease. His group (at Maas-
tricht University, The Netherlands) is currently funded by
The Netherlands Organization for Scientific Research, The
Netherlands Organization for Health Research and Devel-
opment and the Joint Programming Initiative on Healthy
Diet for Healthy Living. He has authored more than 120
publications, including in leading journals like Nature
Biotechnology, Lancet Infectious Diseases, Gastroenter-
ology, Gut, Mucosal Immunology and Microbiome.
Prof Daisy Jonkers has studied Health Sciences at Maas-
tricht University (1987-1992) and obtained her PhD-
degree in 1997. Since March 2019, she is appointed as Pro-
fessor of Intestinal health . Her main research topic is to
understand intestinal health in the context of common in-
testinal disorders with a special focus on GI function, diet
and the microbiome.She is PI of several cohort and (nutri-
tional) intervention studies in IBD and IBS. She participates
in the Carbohydrate Competence Center (wwwcccre-
search.nl), is board member of the Experimental Section
of Gastroentrology of the Dutch Society, PI of TKI project
Well on Wheat and partner in H2020/EU DISCOVeRIE
project.
Prof Frederik-Jan van Schooten Prof. Van Schooten
studied biology at the Free University of Amsterdam, The
Netherlands. In 1991 he obtained his PhD in Chemical
Carcinogenesis at the University of Leiden, The
Netherlands. Since 1999 he is Head of the Department, and
since 2000 Leader of the Division IV within the Nutrition
Toxicology and Environment Research Institute Maastricht
(NUTRIM). His research interests are in unravelling
nutrition-gene interactions with respect to the carcino-
genic and atherosclerotic process as well the use of
exhaled breath as new matrix for disease diagnosis and
monitoring. He has authored more than 400 publications.
Agnieszka Smolinska studied Chemistry at Silesian Uni-
versity in Katowice, Poland. In 2012 she obtained her PhD
from Radboud University in Nijmegen, The Netherlands in
metabolomics filed and advanced machine learning/che-
mometrics. After her PhD, she has been working as post-
doc at Dartmouth University in USA. Her current research
group (at Maastricht University, The Netherlands) is
focused on the multiple applications of volatile metabo-
lites in exhaled air and other biofluids and finding their
relation to the gut microbiome using machine learning/
multivariate statistics. She was granted with various
awards (best PhD thesis, metabolomics young scientist)
and has authored more than 45 publications.

http://refhub.elsevier.com/S0003-2670(20)30691-7/sref29
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref30
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref30
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref30
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref30
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref30
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref31
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref32
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref32
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref32
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref32
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref33
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref33
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref33
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref34
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref34
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref34
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref34
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref35
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref36
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref36
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref36
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref37
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref37
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref37
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref37
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref38
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref38
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref38
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref38
http://refhub.elsevier.com/S0003-2670(20)30691-7/sref38

	Constructing bi-plots for random forest: Tutorial
	1. Introduction
	2. Material and methods
	2.1. Random forest and unsupervised random forest
	2.2. Bi-plots for RF and URF

	3. Datasets
	3.1. The synthetic benchmark datasets 1 and 2
	3.2. Real datasets
	3.2.1. Wine data
	3.2.2. US senate votes
	3.2.3. Microbiota data


	4. Results
	4.1. The synthetic benchmark datasets 1 and 2
	4.2. Real datasets
	4.2.1. Wine dataset
	4.2.2. US senate votes
	4.2.3. Microbiota data


	5. Discussion and conclusions
	Declaration of competing interest
	Acknowledgement
	References


