
 

 

 

The Emerging Role of Radiomics in COPD and Lung
Cancer
Citation for published version (APA):

Refaee, T., Wu, G., Ibrahim, A., Halilaj, I., Leijenaar, R. T. H., Rogers, W., Gietema, H. A., Hendriks, L. E.
L., Lambin, P., & Woodruff, H. C. (2020). The Emerging Role of Radiomics in COPD and Lung Cancer.
Respiration, 99(2), 99-107. https://doi.org/10.1159/000505429

Document status and date:
Published: 01/01/2020

DOI:
10.1159/000505429

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 06 Jan. 2021

https://doi.org/10.1159/000505429
https://doi.org/10.1159/000505429
https://cris.maastrichtuniversity.nl/en/publications/47d3d23d-ed25-4bdf-aa79-d3a242f63f8a


Thematic Review Series

Respiration 2020;99:99–107

The Emerging Role of Radiomics in COPD 
and Lung Cancer

Turkey Refaee 

a, b    Guangyao Wu 

a    Abdallah Ibrahim 

a, c–e    Iva Halilaj 

a    

Ralph T.H. Leijenaar 

a    William Rogers 

a, g    Hester A. Gietema 

c    

Lizza E.L. Hendriks 

f    Philippe Lambin 

a, c    Henry C. Woodruff 

a, c    
a

 The D-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, 
Maastricht University, Maastricht, The Netherlands; b Department of Diagnostic Radiology, Faculty of Applied 
Medical Sciences, Jazan University, Jazan, Saudi Arabia; c Department of Radiology and Nuclear Medicine,  
GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 
The Netherlands; d Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Centre 
Hospitalier Universitaire de Liège, Liège, Belgium; e Department of Nuclear Medicine and Comprehensive Diagnostic 
Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany; f Department of Pulmonary 
Diseases, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht,  
The Netherlands; g Department of Thoracic Oncology, IRCCS Foundation National Cancer Institute, Milan, Italy

Received: September 30, 2019
Accepted after revision: December 12, 2019
Published online: January 28, 2020

Turkey Refaee
The D-Lab, Department of Precision Medicine
GROW – School for Oncology and Developmental Biology, Maastricht University 
NL–6229 ER, Universiteitssingel 40, Maastricht (The Netherlands)
E-Mail t.refaee @ maastrichtuniversity.nl

© 2020 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/res

DOI: 10.1159/000505429

Keywords
Radiomics · Chronic obstructive pulmonary disease · Lung 
cancer

Abstract
Medical imaging plays a key role in evaluating and monitor-
ing lung diseases such as chronic obstructive pulmonary dis-
ease (COPD) and lung cancer. The application of artificial in-
telligence in medical imaging has transformed medical im-
ages into mineable data, by extracting and correlating 
quantitative imaging features with patients’ outcomes and 
tumor phenotype – a process termed radiomics. While this 
process has already been widely researched in lung oncol-
ogy, the evaluation of COPD in this fashion remains in its in-
fancy. Here we outline the main applications of radiomics in 
lung cancer and briefly review the workflow from image ac-
quisition to the evaluation of model performance. Finally, we 
discuss the current assessments of COPD and the potential 
application of radiomics in COPD. © 2020 S. Karger AG, Basel

Introduction

Chronic obstructive pulmonary disease (COPD) is 
one of the most prevalent lung diseases, with an estimat-
ed 328 million people worldwide being affected, and in 
two decades it is expected to become the leading cause of 
death globally [1]. COPD is characterized by the limita-
tion of airflow, which can be measured using spirometry. 
It is not completely reversible and is often caused by ex-
posure to noxious particles or gas (e.g., cigarette smok-
ing) which creates an inflammatory response in the lung 
[2, 3]. COPD is a multicomponent disease comprising a 
combination of bronchiolitis, emphysema, and extrapul-
monary effects [4]. While spirometry can measure airflow 
limitation, the contributions of large and small airway in-
volvement and the extent and contribution of parenchy-
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ma destruction cannot be assessed [5]. Imaging by means 
of computed tomography (CT) has an increasing role in 
the evaluation of COPD since CT features can suggest the 
presence and severity of COPD. These features can be as-
sessed visually [6], but research is in advanced stages to 
automate the quantification of emphysema extent and 
distribution [7–10], airway wall thickness [11], and small 
airways disease [12].

Lung cancer is the other predominant lung disease, be-
ing one of the world’s most prevalent cancers [13–16]. 
Globally, lung cancer is the most commonly diagnosed 
cancer (around 11% of all cancers in both sexes), and the 
world’s leading cause of cancer-related mortality (around 
18% of total cancer-related mortality) [17]. Lung cancers 

can be divided into two broad groups, small cell lung can-
cer and non-small cell lung cancer (NSCLC) [18]. NSCLC 
can be further divided into subgroups according to histo-
pathology into squamous cell carcinoma and adenocarci-
noma [19]. COPD has been shown to be a major addi-
tional risk factor for the development of lung cancer, spe-
cifically squamous cell carcinoma [20, 21]. Discovering 
the link between COPD and lung cancer has drawn sig-
nificant attention in recent years [22]. It has been shown 
that COPD and lung cancer share similar pathological 
processes [23], while smoking cigarettes is one important 
common factor that causes both COPD and lung cancer 
[20], and patients with COPD and NSCLC have poor sur-
vival outcomes compared to NSCLC patients without 
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Fig. 1. Different distributions of HU values extracted from the ROI (purple outline) for normal tissue (a), COPD 
tissue (b), and lung tumor (c).

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ite
it 

M
aa

st
ric

ht
13

7.
12

0.
15

5.
21

6 
- 

10
/2

1/
20

20
 9

:0
1:

21
 A

M



Lung Radiomics Review 101Respiration 2020;99:99–107
DOI: 10.1159/000505429

COPD [24]. The link of pathophysiological mechanisms 
between COPD and lung cancer is still not well under-
stood (Fig. 1) [25]. 

The treatment of patients suffering from either disease 
would be greatly improved by personalized approaches, 
where patients are treated based on their and their dis-
eases’ individual characteristics rather than subpopula-
tion statistics gained from clinical trials. Which role arti-
ficial intelligence will play on the path to this paradigm 
shift towards individualized treatment selection is being 
extensively investigated [26]. For example, biopsies are 
used in clinical practice to phenotype the tumor, but the 
heterogeneous nature of cancer cells limits the biopsy’s 
capacity to fully capture its condition [27, 28]. Medical 
imaging, on the other hand, has the potential to noninva-
sively assess the phenotypic differences of tumors in three 
dimensions [29] and has recently experienced great ad-
vances in the field of artificial intelligence [30, 31]. In par-
ticular, radiomics or quantitative image analysis – the 
high-throughput extraction of quantitative features from 
medical images and their correlation with diagnostic and 
prognostic outcomes – has been researched to decode tu-
mor phenotypes from a number of modalities such as CT, 

magnetic resonance imaging, and positron emission to-
mography (PET). Thousands of quantitative radiomic 
features can be extracted from each region of interest 
(ROI) and further analyzed using machine learning tools 
to investigate correlations with biological and clinical end 
points [32–37]. Therefore, the application of radiomics to 
both COPD and lung cancer may improve the clinical 
workflow in diagnosing, managing, and following up the 
patients. It can provide noninvasive, reliable, and cost-
effective clinical decision support systems, decreasing the 
need for invasive procedures.

The Workflow of Radiomics

The process of handcrafted radiomics consists of sev-
eral steps (Fig. 2): (1) collection of medical imaging (e.g., 
CT, magnetic resonance, PET/CT) for the target popula-
tion; (2) segmentation of the ROI to be investigated; (3) 
extraction of radiomic features from the ROI; (4) the se-
lection of radiomic features that best correlate with the 
outcome of interest ; (5) building the radiomics signature, 
and (6) evaluation of the model performance on various 

Image acquisition Feature extraction Modeling

PerformanceFeature selectionSegmentation

Fig. 2. Graphic depiction of the radiomics workflow.
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data sets using different metrics such as the receiver-op-
erating characteristic, area under the curve, and the pre-
cision-recall curve. The workflow has been previously de-
scribed in detail [30, 37, 38].

Quality of Radiomics Studies 
Despite the potential of radiomics to facilitate preci-

sion medicine as highlighted in numerous publications, a 
number of obstacles still limits the generalizability of ra-
diomics signatures, and thus their translation to clinical 
applications. The most important and widely known lim-
itation is the lack of reproducibility for radiomics bio-
markers [39–41]. Several studies have investigated the 
stability of radiomic features with test-retest experiments 
[42–44] and reported that a considerable percentage of 
features is not reproducible in test-retest settings, i.e. us-
ing the same acquisition and reconstruction parameters 
on the same vendor for acquiring the scan. A study by 
Zhovannic et al. [45] demonstrated that 62 of radiomic 
features are sensitive to differences in acquisition and re-
construction parameters using the same imaging vendor. 
Other studies investigated the sensitivity of radiomic fea-
tures to differences in segmentations, or what is known 
as interobserver variability [46].

As such, efforts must be made to unify image acquisi-
tion and reconstruction across different centers to facili-
tate quantitative imaging analysis research and integrate 
these methods into clinical decision support systems. 

Several guidelines have been proposed to ensure that 
radiomic studies are methodologically sound and repro-
ducible. Clear reporting in radiomics research is required 
to minimize bias and enhance the general application  
of prediction models. For instance, the Transparent Re-
porting of a Multivariable Prediction Model for Individ-
ual Prognosis or Diagnosis (TRIPOD) initiative has es-
tablished several recommendations in terms of reporting 
of the methodology of prediction models [47]. The Ra-
diomics Quality Score is, however, established specifical-
ly for radiomics research [38]; it is a checklist that con-
tains 16 elements to evaluate the design and reporting of 
a radiomics study. The Radiomics Quality Score guide-
lines include robust segmentation, the stability of test-
retest, description of imaging protocol used, and internal/
external validation. Due to the fast pace of advancement 
in this field, further improvement in the standardization 
of this score is required to ensure a high-quality work-
flow. Furthermore, the Image Biomarker Standardization 
Initiative (IBSI) is a newly formed guideline to address 
the standardization of feature calculation and image pre-
processing [48].

Role of Radiomics in Lung Cancer

Diagnosis
Several studies have explored the use of radiomics in 

the screening of lung cancer. The advent of low-dose 
CT (LDCT) has altered the landscape of lung cancer 
screening. Studies indicate that LDCT imaging, unlike 
molecular markers in blood, sputum, and bronchial 
brushings, detects many tumors at early stages. For in-
stance, the National Lung Screening Trial (NLST) in the 
USA demonstrated in a large population of 53,454 par-
ticipants at a high risk for lung cancer a 20% relative 
reduction in mortality when participants underwent 
three annual screening (LDCT) scans instead of single-
view posterior-anterior chest radiography [49]. Kumar 
et al. [50] used a LIDC-IDRI data set in order to differ-
entiate between benign and malignant lesions, resulting 
in sensitivity and specificity of 79.06 and 76.11%, re-
spectively. Other publications have already shown 
promising results in the diagnosis of lung cancer [51–
53]. 

Staging
Tumor/node/metastasis (TNM) staging of lung cancer 

is also important for cancer treatment. Several studies 
showed the added value of radiomic features in lung can-
cer staging. A study by Aerts et al. [54] that included 1,019 
patients to extract 440 CT radiomics per patient reported 
that radiomic features were associated with the overall 
stage (TNM) of lung cancer. A study by Wu et al. [55] that 
used radiomic characteristics extracted from PET/CT to 
predict the early stage of distant metastasis (DM) in 101 
early-stage NSCLC patients showed that PET radiomic 
features correlated with DM and had added value in M 
staging. Coroller et al. [35] applied radiomics on 182 lung 
adenocarcinomas in order to predict DM showing that 
radiomics performed well on M staging. 

Genetics and Histopathology
Besides diagnosing and staging lung cancer, the use of 

radiomics has been extended to predict gene mutation or 
different pathology types of lung cancer. A study by 
Zhang et al. [56] that included 298 patients found a cor-
relation between epidermal growth factor receptor muta-
tion and CT radiomics features. Liu et al. [57, 58] achieved 
the same results. Rios Velasquez et al. [59] developed a 
radiomic model that classifies mutations in patients with 
lung adenocarcinoma. The research found that the ra-
diomic signature based on CT images can predict epider-
mal growth factor receptor status effectively. Wu et al. 
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[52] used two NSCLC cohorts from the Netherlands to 
predict the histological types of lung cancer (adenocarci-
noma, squamous cell carcinoma). 

Response to Therapy
The use of radiomics signatures could be used to pre-

dict the response of patients to a particular therapy. In a 
study by Aerts et al. [60], it was reported that radiomics 
features obtained from CT images before treatment were 
able to predict the mutation status of epidermal growth 
factor receptor in NSCLC and correlated with gefitinib 
response. Coroller et al. [61] showed that radiomic fea-
tures-based CT images acquired prior to treatment could 
predict the pathological response to chemoradiation in 
NSCLC patients. Mattonen et al. [62, 63] predicted the 
recurrence of lung cancer following receiving stereotactic 
ablative radiation therapy using radiomics. Another 
study that utilized δ-radiomics, a method of analyzing the 
difference of radiomic features obtained from longitudi-
nal scans, in stage III NSCLC patients to predict the out-
come during radiation therapy, reported that the change 
in radiomic features values might be linked to the tumor 
response due to exposure to radiation [64]. Hao et al. [65] 
used radiomic characteristics of peritumoral tissue de-
rived from PET images to study its correlation with dis-
tant failure in NSCLC and cervical cancer. The results 
showed a relationship between tumor boundaries and 
distant failure, suggesting that such an approach might be 
useful in predicting early response to radiotherapy in 
NSCLC and cervical cancer patients. In a recent study by 
Khorramin et al. [66], CT-based radiomic features were 
extracted from peri- and intratumoral lung adenocarci-
noma tissue and shown to have the potential to predict 
the response to chemotherapy, and this correlated with 
both time to progression and overall survival for patients 
with NSCLC.

Prognosis
Several studies investigated the prognosis of lung can-

cer using a radiomics approach. Coroller et al. [35] found 
a prognostic relation between radiomics features and DM 
and survival in patients with lung cancer. Aerts et al. [54] 
found an association between the prognosis of lung can-
cer and radiomics features. Balagurunathan et al. [42] 
showed a correlation between the prognosis of lung can-
cer and radiomic features. Song et al. [67] showed a con-
nection between features extracted from CT images and 
overall survival in NSCLC patients.

Potential Translation of Radiomics in COPD 

The heterogeneous nature of COPD makes diagnosis 
challenging. However, it is crucial to unravel this variety 
of presentations to achieve an accurate diagnosis in early 
stages and help improve patients’ outcomes [5]. Different 
COPD assessments are used in clinical practice, including 
pulmonary function test and quantitative CT (QCT). Pul-
monary function tests are essential to diagnose and clas-
sify COPD. A commonly used pulmonary function test is 
spirometry, which is used to measure the forced expira-
tory volume in 1 s (FEV1) and the forced vital capacity 
(FVC) as the primary parameters [68]. However, spirom-
etry alone does not provide any locational information 
regarding emphysema [68]. QCT is a promising approach 
that is able to quantify emphysema, airways abnormali-
ties, and air trapping [5]. QCT has already demonstrated 
the capacity to evaluate the existence and degree of em-
physema [69–75]. For example, CT densitometry param-
eters such as relative low-attenuation area [76–81] and 
percentile of the frequency-attenuation distribution [9, 
82–84] are usually used to assess the degree of emphyse-
ma. Airways abnormalities are commonly measured by 
the calculation of the square root at an internal perimeter 
of 10 mm using linear regression [85–88]. It is considered 
the gold standard tool and has already demonstrated a 
significant correlation with the histological measurement 
of small airways [89]. Air trapping appears as decreased 
attenuation on expiratory CT images [90], making it the 
best way to evaluate air trapping in COPD [87]. The mea-
surements of gas trapping using CT are highly correlated 
with pulmonary function tests in COPD patients [91].

Despite the ability of QCT to quantify COPD, the in-
terpretation of QCT is still time-consuming, qualitative, 
requires experts, and is prone to variability in the diagno-
sis between experts. The CT image metric (radiomics) ap-
proach could potentially quantify COPD and uncover the 
disease’s hidden mechanism and the link between lung 
cancer and COPD in a better nuanced and more powerful 
phenotypic classification. A radiomics signature would 
be easier to apply as a clinical decision support system and 
less time consuming compared to the currently used 
QCT. Therefore, several potential applications for ra-
diomic features in COPD are suggested. Texture analysis 
for example has shown its effectiveness in assessing the 
degree of emphysema. A study by Ginsburg et al. [92] 
demonstrated the effectiveness of a texture-based ap-
proach in classifying between the lungs of never-smokers, 
smokers without emphysema, and smokers with emphy-
sema, indicating that an early stage of smoking-related 
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lung injury could potentially be identified before emphy-
sema develops. Another study by Castadi et al. [93] used 
a local histogram-based technique to quantify the distinct 
emphysema pattern using CT scans from 9,313 smoker 
subjects in the COPODGene study. The results of the 
study suggest that information extracted from CT pat-
terns of emphysema were more predictive than thresh-
old-based emphysema measurements such as “low atten-
uation area less than –950”. As described above, the ap-
plications of radiomics in the screening of lung cancer 
showed interesting results. Automated screening of rou-
tine chest CT to diagnose COPD is therefore one possible 
use, with the ability to detect suspected sarcopenia not 
only in the lung, but also in the muscle tissue. Detection 
and differentiation between COPD stages and pheno-
types, especially in early stages, will allow for the early and 
suitable treatment for the patient. In a study by Lafata et 
al. [94], the authors reported on the potential of radiomic 
features extracted from CT images to quantify the chang-
es in lung function and associated with a spirometry test. 
The same approach using radiomics could be extended to 
investigate its relationship with other gold standard 
COPD markers such as waking exams, FEV/FVC ratio 
(Tiffeneau index) or the frequency of exacerbations as-
sociated with COPD patients, enabling an accurate diag-
nosis of COPD severity. In addition, the use of radiomics 
could improve the performance of the existing multifac-
torial models (nomograms) by adding radiomics features 
to existing clinical factors (age, sex, number of pack-
years, current smoking, performance score, wheezing) as 
already shown in a previous publication [95]. δ-radiomics 
has already demonstrated its ability to predict the re-
sponse to therapy in lung cancer. Therefore, such a tech-
nique could be used to identify quantitatively the evolu-
tion of the disease and the effect of (new) treatment. Ad-
ditionally, δ-radiomics could be applied to assess the 
difference between inspiration and expiration scans and 
to explore hidden information that could help in evaluat-
ing the extent and severity of pulmonary emphysema, air 
trapping, and airway abnormalities. The use of radiomics 
could potentially be used to predict whether the patient 
will respond to certain interventions, such as endoscopic 
lung volume reduction and inhalation steroids. 

Conclusion

The field of radiomics is rapidly growing and has al-
ready shown its potential in assessing lung cancers in 
terms of detection, treatment response, and prognosis. 

Different QCT measurements have been used to quantify 
COPD abnormalities such as emphysema, air trapping, 
and airway remodeling. Applying radiomics in COPD 
has not been extensively investigated yet. We show ex-
amples of the potential use of radiomics in the diagnosis, 
treatment, and the follow-up of COPD and future direc-
tions for further research.
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