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There is now strong clinical and preclinical evidence that lymphocytes, for example, CD8
T cells, are key effectors of immunotherapy and that irradiation of large blood vessels, the
heart, and lymphoid organs (including nodes, spleen, bones containing bone marrow, and
thymus in children) causes transient or persistent lymphopenia. Furthermore, there is
extensive clinical evidence, across multiple cancer sites and treatment modalities, that
lymphopenia correlates strongly with decreased overall survival. At the moment, we lack
quantitative evidence to establish the relationship between dose-volume and dose-rate to
critical normal structures and lymphopenia. Therefore, we propose that data should be sys-
tematically recorded to characterise a possible quantitative relationship. This might enable
us to improve the efficacy of radiotherapy and develop strategies to predict and prevent
treatment-related lymphopenia. In anticipation of more quantitative data, we recommend
the application of the principle of As Low As Reasonably Achievable to lymphocyte-rich
regions for radiotherapy treatment planning to reduce the radiation doses to these struc-
tures, thus moving toward “Lymphocyte-Sparing Radiotherapy.”
Semin Radiat Oncol 30:187−193� 2019 Published by Elsevier Inc.
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standardised nor optimised, as these were based only on inves-
tigator or radiation oncologist choice for each individual
patient (total dose 54 Gy-74 Gy). Separately, it has been
shown that RT is a double-edged sword regarding immune
effects: it has both an immunostimulatory effect but also an
immunosuppressive effect.2 IO might reduce or overrule this
RT-related immunosuppression.1,3 Furthermore, lower doses
to the heart, circulating blood pool, and lymphoid organs are
associated with reduced immunosuppressive effect.3,4 It can
thus be hypothesised that an optimised RT protocol has the
potential to decrease the immunosuppressive effects of RT, for
example, by reducing RT-related lymphopenia (LP).

Several studies have shown that low blood lymphocyte
count at baseline, across a range of cancer types, is a negative
predictor of outcome.5-11 Furthermore, the presence of
CD8+ tumour infiltrating lymphocytes on pathology review
is a well-established predictor of better overall survival.12-14

Additionally, preclinical experiments with lymphocyte
depletion, i.e. decreased CD4+ and CD8+ counts, have clearly
established a causal relationship with reduced efficacy of RT
and (radio)-IO.15

The effect of RT on LP is well-documented and has been
extensively described for several decades.16,17 Typically, LP
is a transient phenomenon with a recovery within 3 months
after RT, but in certain cases it can continue to persist even
years after treatment18 which has been correlated to RT dose,
RT sites, (hyper)fractionation, adjuvant chemotherapy, and
irradiated volume.4,11-13,19-23 A causal relationship between
RT-induced LP and adverse locoregional control or survival
has been speculated but not confirmed.24
The Radiobiology of
Lymphocytes

Lymphocytes are located in the blood (circulating lympho-
cytes), in reservoir lymphoid organs such as the spleen, and
the thymus (in children and teenagers), in lymph nodes, and
in the bone marrow, which is continuously producing new
lymphocytes. As noted, some tumours are infiltrated by lym-
phocytes. It is important to appreciate that lymphocytes are a
highly heterogeneous cell population comprised of subgroups
with different roles in the crosstalk of tumours and the host
immune system. The most prominent cell type in anti-tumour
immune responses are CD8+ effector T cells,25 reflected in their
prognostic significance26 and their use in adoptive T cell ther-
apy.27 TH1 polarised (CD4+),28 as well as CD4+ cytolytic T
cells, have also been shown to induce strong anti-tumour
responses.29 On the other hand, regulatory T cells30 and TH2
polarised CD4+ T cells31 have mostly been linked to pro-
tumour effects.29 There is contradictory data on the role of
TH17 T cells29 and cancer in cancer immune responses.32,33

It has long been known that lymphocytes are the most
radiosensitive cells of the hematopoietic system, as well as the
entire body.34 This radiosensitivity is surprising for a nondivid-
ing cell type, but may be related to robust apoptotic response
pathways. The lethal dose required to reduce the surviving
fraction of circulating lymphocytes by 90% (LD90) is only 3
Gy.35 0.5 Gy already leads to significant cell death induction in
lymphocytes. Such a dose could easily be reached in standard
RT schedules. Yovino et al found that with a standard treat-
ment of 60 Gy in 30 fractions for glioblastoma (GBM) treat-
ment, during every fraction of RT, 5% of circulating cells
receive >0.5 Gy,36 summing up to >95% of circulating cells
being exposed to >0.5 Gy over the 6 week treatment. The
induced cell death is predominantly apoptosis.37

Importantly, different lymphocyte subtypes show distinct
radiosensitivity.38-40 Naive CD8+ effector T cells are more
sensitive than memory T cells,37,40,41 while regulatory T cells
are relatively resistant.40,42,43 Furthermore, the state of T
cells, the solid organs and the different location containing
CD8+ T cells also influences radiosensitivity.44,45 T cells that
are proliferating are more radioresistant than T cells in other
state.44 With regard to the organs, the parenchymal CD8+ T
cells in the solid lymphoid organs (lymph nodes and spleen)
are found most radiosensitive, followed by those residing in
liver and gut. The CD8+ T cells located intratumourally have
a higher radioresistance, an increased motility and IFN-ɣ
secretion compared to circulating CD8+ T cells and T cells in
unirradiated tumours.45 This may be due to changes in the
tumour microenvironment wherein TGF-b is a key regulator
in making the intratumoural T cells more radioresistant.45

Similar differential effects have been observed concerning
radiation dose rate46 with high dose rates leading to less lym-
phocyte death.47,48 These findings are well in line with clini-
cal observations of decreased naïve T cells and enriched
regulatory T cells in patients undergoing RT.14,49-51
Analysis of the Clinical Literature

In many trials, the Common Terminology Criteria for Adverse
Events (CTCAE) is used to differentiate between LP Grade 1
(<»1000-800/mm3), Grade 2 (<800-500/mm3), Grade 3
(<500-200 mm3), and Grade 4 (<200/mm3). Clinical factors
that are associated with LP and key findings regarding LP for
various cancers (GBM, head and neck squamous cell carci-
noma, nasopharyngeal cancer, NSCLC, SCLC, breast cancer,
esophageal cancer, pancreatic cancer, hepatocellular cancer,
cervical cancer)24 are summarised below.

Factors That Influences LP
A disbalance in immunosurveillance due to tumour suppres-
sor systems can contribute to LP that is present before treat-
ment.14 Also immunosuppressive medication or cancer-
related treatment can lead to pre- and post-treatment LP, for
example, corticosteroids, tyrosine-kinase inhibitors, and
immune checkpoint inhibitors.11,14 In addition, patients with
immune-related conditions, such as multiple comorbidities,
autoimmune diseases, genetic disorders in innate or adaptive
defense, or patients with a poor WHO performance state are
known to have worse PFS and overall survival (OS), probably
related to a sub-optimally functioning immune system.

Also, treatment factors such as RT and chemotherapy
have been shown to influence incidence and severity of LP.
Firstly, RT in general results in a lymphocyte reduction.
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More specifically, hypofractionation results in less reduction
than normo- or hyperfractionation. Yuan et al and Saito et al
have found in a breast and a palliative cohort, respectively,
that LP was correlated with the number of fractions, inde-
pendent of overall dose.52,53 Secondly, irradiating larger
Gross Tumour Volumes in NSCLC patients has been associ-
ated with lower lymphocyte count but not with lower total
leukocyte, neutrophil, or monocyte counts during RT.24

Thirdly, if lymphopoietic sites or organs containing large
blood volumes are within the planning target volume, it will
contribute to (longer duration of) LP.14 Several authors have
also found that higher spleen irradiation doses (total dose of
50-60 Gy) were significantly correlated with more patients
experiencing LP during RT for hepatocellular cancer or palli-
ative RT.53-56 Based on these results, Liu et al recommend
sparing of the spleen during abdominal irradiation.54 Fur-
thermore, a lower heart and lung dose resulted in less LP.57-
60 Increasing the heart and long dose, severe loss of cardio-
pulmonary performance was seen in preclinical studies.61-66

Lastly, another important factor is the use of concurrent che-
motherapy. Concurrent chemotherapy has been shown to
have an impact on the severity of LP,22 whereas adjuvant
chemotherapy may prolong the duration of LP.22 Impor-
tantly, different chemotherapy agents differ in LP impact.14
Predictive/Prognostic Factors for OS After
Radiation Induced LP
Many possible prognostic factors for OS and PFS have been
investigated, including the role of LP. Ladbury et al con-
cluded that estimated dose of radiation to immune cells, Kar-
nofsky performance status, not-otherwise-specified histology
in NSCLC, lack of completion of chemotherapy,9,23 and
smoking history23 are negative predictors for OS.

Disadvantageous prognostic factors for PFS and OS are
baseline LP,5-11,14 early LP after chemotherapy treatment (5
or 15 days),14 LP after RT14 or LP after IO.7 Post-treatment
LP has been negatively associated with poor tumour specific
outcome in multiple cancer types for example, GBM,
HNSCC, cervical, esophageal, NSCLC, and pancreatic.11
Effect of Combination Treatment
(RT + chemo, RT + chemo and/or IO)
As described previously, RT alone can induce or worsen LP.
However, combining RT with systemic treatment has an
even bigger impact on LP and treatment outcome. Cho et al
found that RT + checkpoint inhibitor -treated NSCLC
patients with LP pre-IO treatment had a significant poorer
PFS (2.2 vs 5.9 months) and OS (5.7 vs 12.1 months)10

compared to patients who had normal lymphocyte counts
before IO treatment. Furthermore they found that RT signifi-
cantly increased LP before start of IO, however irradiating
with SABR, proton beam therapy, hypofractionation or
radiosurgery reduced the risk on (increasing) RT-induced
LP.10,14,60 The combination of RT with immunocytokines
like IL2, IL7, or IL15 could eliminate LP due to their simulat-
ing effect to let the T cells develop, proliferate and survive.14
Joseph et al found that after concurrent chemo-radiotherapy
the absolute lymphocyte count dropped significantly compared
to absolute lymphocyte count pretreatment,4 but did not alter
treatment outcome. In contrast, Grossman et al observed worse
tumour control and shorter OS in GBM patients with depleted
CD4+ T cell counts pre- and post-chemo-radiotherapy treat-
ment.67 Furthermore, a prolonged duration of LP was also seen
with RT. Similar results were found retrospectively by Wang et
al, with almost 50% of SCLC patients experiencing severe LP
and 70.4% prolonged LP of 3 months minimum after chemo-
radiotherapy.21 For reasons not currently well understood, LP
following RT can last from several months up to several years,
whereas LP seen after sepsis or even chemotherapy alone tends
to resolve more quickly.68,69

It is reasonable to hypothesise that transient LP has a dif-
ferent effect on the outcome than persistent LP. Thus, the
negative influence of RT on LP might be abolished by combi-
natorial approaches with IO, which could result in differen-
ces in the timing, the length and probably the grade of LP.
This effect also depends on type of IO agent applied. On the
other hand, it might indicate that the effect of adding IO to
RT schedules lies primarily in a better functioning immune
system, which in turn will be crucial to slow down the pace
of microscopic disease spread in at least some patients.
Modelling Approaches to Predict the
Incidence and Severity of LP
Taking into account the negative effect of LP on clinical out-
comes, it is important to identify high-risk patients timely
and possibly adapt the treatment. Models predicting grade 4
RT-induced LP during chemo (radio) therapy for esophageal
cancer, or acute and late LP for prostate cancer have already
been published,70,71 although the prostate model is yet to be
validated.19,72 Also for NSCLC, a predictive risk model has
been developed where clinical and genetic factors, for exam-
ple, lung V5 > 48%, age >65 years, >40 pack-years, and
XRCC1 rs25487 AA genotype, are associated with severe
RT-induced LP.73

Several recent analyses have indicated that irradiation of
cardiovascular structures may lead not just to heart-related
morbidities but to unexplained reductions in OS following
RT for NSCLC. A key question is whether this is mediated
primarily through immune suppression. Contreras et al
showed that adjuvant chemotherapy and heart V50 > 25%
are associated with LP at 4 months post-RT.3 Thor et al
observed that out-of-treatment-field regional recurrence was
statistically linked to LP at 2 months post-RT.74 However,
details of the relationship between patient/disease/treatment
factors and LP, as well as the impact on disease progression
remain elusive and need further study.
Recommendations for Clinical
Trials

There is a large body of literature evidence showing that inci-
dence and severity of LP are associated with patient and



Figure 1 Example of segmentation for lung cancer treatment: left:
delineation of the Lymphocyte-related Organs At Risk (LOAR),
right delineation of the LOAR and the planning target volume.

Figure 3 Hypothetical model linking radiation to lymphopenia and
to inferior oncological outcomes.
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treatment characteristics, but also showing the importance
for clinical outcomes. Moreover, we have identified 437 trials
listed in clinicaltrial.gov combining IO with RT, September
2019, indicating that combining RT with IO is being increas-
ingly adopted as treatment strategy. To improve clinical out-
comes, but also to gain the most of RT-IO combination
treatment, it is of utmost importance to establish recommen-
dations for RT planning with regard to lymphocyte dose.
However, as indicating absolute dose constraints is not (yet)
possible, we propose to apply the As Low As Reasonably
Achievable principle to Lymphocyte-related Organs At Risk
(LOARs) without compromising irradiation of the planning
target volume (see Figs. 1 and 2) and keeping the constraints
for “conventional” organs at risk such as lung, heart and spi-
nal cord, as recommended in clinical protocols (Fig. 3). Fur-
thermore, systematic recording of dose-volume and dose-
rate statistics for those LOARs, as well as longitudinal lym-
phocyte counts is recommended. These data, routinely avail-
able at most treatment centres, would allow the design of
strategies to predict and to some extent prevent RT-induced
LP. It would also help to answer the main remaining hypoth-
esis whether maintaining and/or restoring optimal lympho-
cyte counts may improve treatment RT outcomes, or
increase the efficacy of IO.

These data can only be obtained if relevant organs are sys-
tematically delineated. These include the large vessels, heart,
Figure 2 A standard dose distribution of a clinically applied radiation
treatment plan (left), and an example of an optimised radiation
plan applying the As Low As Reasonably Achievable (ALARA) prin-
ciple (right), demonstrating that sparing of LOAR is feasible without
compromising dose coverage of the target volume or increasing
dose to OARs important in clinical radiotherapy planning.
and any irradiated lymphoid organs such as bone marrow
(eg, pelvic bones, vertebrae, large long bones), nodal regions
not included in the clinical target volume, spleen, and thy-
mus in children. To facilitate the segmentation of large ves-
sels, we propose to explore the use of contrast-enhanced
computed tomography, acquiring data during the early
blood dominated phases. Automatic segmentation methods
based on deep learning will certainly facilitate this process.75

Dose, fractionation, dose rate, and mean doses to LOARs
should be reported as a minimum. Blood can be seen as a
“moving OAR”, therefore long irradiation times should be
avoided. Instead, high-dose rate irradiation, following the
principle of “As High As Reasonably Achievable” should be
favoured, for example, using flattening filter-free
irradiation.76,77
Prospects

As it is clear that the role of the immune system is very impor-
tant for clinical outcomes, much research currently focuses on
unraveling the complex interplay between treatment character-
istics and the immune system and how to influence this rela-
tionship. In an attempt to preserve the immune system from
the effects of radiation and chemotherapy, lymphocytes were
isolated before treatment, stored, and administered again to the
patient upon treatment completion (NCT01653834).67 Inter-
estingly, the promising therapeutic effect of immunoadjuvant
therapy with IL7 (essential for lymphocyte proliferation and
survival) has been explored in for example, immunocompro-
mised patient and in some cancer trials, however the data
regarding IL7 and LP during, pre, and post cancer treatment
are scarce.14,78-82

New imaging methods may also become important. New
magnetic resonance (MR) sequences may enable the investiga-
tor to quantify blood volume in vessels and organs using non-
contrast MR imaging such as a venography technique or veloc-
ity-selective pulse trains.83,84 These new approaches will allow
us not only to quantify blood volume without contrast in the
vascular system but also in organs such as liver, brain and

ctgov:NCT01653834
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spleen. New positron emission tomography tracers that can
precisely track CD8+ T cells are also under development.85 Fur-
thermore, the combination of new strategies and precise tech-
nological developments,20 such as a MR linear accelerator
(MR-linac),86 will make it possible to not only more precisely
identify and track LOARs, but also avoid or restrict radiation
dose to these LOARs. To facilitate comparable analyses, new
autosegmentation and artificial intelligence methods could be
distributed using portable container technology to extract dosi-
metric characteristics of the LOARs.87
Conclusion

The breakthrough improvement in outcomes by IO alone, or
in combination with RT, has renewed the interest of the scien-
tific community in strategies to predict and avoid RT-associated
LP that may be immunosuppressive. There is a convergence of
preclinical and clinical evidence correlating unintentional irra-
diation of LOARs with LP and poor outcomes. Preclinical stud-
ies definitively show an established causal relationship between
lymphocyte depletion and the effectiveness of IO. However,
accurate, individualised normal tissue complication probability
models for LP are currently lacking. Therefore, we propose
that the As Low As Reasonably Achievable principle should be
applied to LOARs, and dose rates should be kept as high as
practical possible to spare peripheral blood lymphocytes, in
particular in the context of clinical trials combining RT with
IO. Furthermore, we urge investigators of clinical RT trials
with an immune component to systematically record the
potentially-relevant dosimetric and hematopoietic parameters.
Such unique data will hopefully lead to predictive models that
will allow us to predict and prevent RT-induced LP in an indi-
vidualised approach for each patient in order to answer the key
unresolved question: whether maintaining and/or restoring
optimal lymphocyte counts independently improves RT or IO
outcomes.
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