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Abstract

We introduce the notion of expectational equilibrium in a very general specification

of the many-to-one matching with contracts model. The endogenous variables in an

expectational equilibrium are expectations about tradable contracts. Expectational

equilibrium outcomes are equivalent to stable outcomes. Substitutability of prefer-

ences is a sufficient condition for existence. Expectational equilibrium unifies all the

other approaches used in the literature so far, in particular Walrasian equilibrium,

Drèze equilibrium, and market clearing cutoffs. It also applies to cases where con-

tracts do not involve money as well as cases where there is a smallest monetary unit

of account.
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1 Introduction

There is a longstanding tradition in the economics literature to study the equivalence

between competitive equilibria and cooperative solution concepts. Such equivalence results

provide cooperative foundations for the equilibrium approach and equilibrium foundations

for the cooperative approach. A particular branch of the literature studies this question

within a matching framework.

A first paper that establishes an equivalence result in the matching set-up is Shapley

and Shubik (1971) in their study of the assignment model. Kaneko (1982) extends this

model to cover the case where utility functions are not assumed to be quasi-linear. Kelso

and Crawford (1982) study a model of job matching with salaries and find an equivalence

result for the many-to-one case. Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp

(2013) obtain an equivalence result for trading networks where agents have quasi-linear

utility functions. Fleiner, Jagadeesan, Jankó, and Teytelboym (2019) further generalize the

analysis to cover general utility functions. They find an equivalence between competitive

equilibrium and a cooperative solution concept called trail-stability. The papers in this

stream of the literature rely on the existence of a commodity money that can be transferred

between agents without limits.

In important applications like school choice, money is not part of the contract. In

other applications it is, but is subject to price controls. Finally, in reality there is always a

smallest unit of account, which rules out continuous transfers. For the school choice model,

Azevedo and Leshno (2016) demonstrate the equivalence between a market clearing cutoff

and a stable outcome. For models with price rigidities, the marriage problem of Gale and

Shapley (1962) being a special case, Herings (2018) shows an equivalence between Drèze

equilibria and stable outcomes.

This paper studies a very general specification of the many-to-one matching with con-

tracts model. The set of contracts is allowed to be uncountable. Preferences can have

indifferences and need not be substitutable. For many of our results, they need not even

be continuous. An important special case is Hatfield and Milgrom (2005), where the set of

contracts is finite and preferences are assumed to be strict.

The paper introduces the notion of an expectational equilibrium. At an expectational

equilibrium, agents hold expectations about the tradability of contracts, i.e., about the

willingness of a contract’s counterparty to sign it. When agents expect that certain trades

cannot be made, then we refer to this as rationing constraints. Given such expectations, all

agents optimize and choose an optimal bundle of contracts. At equilibrium expectations

are rational in the sense that if an agents expects to be rationed in a particular contract,

then the counterparty of the contract optimally chooses not to sign it, even though that

agent does not experience rationing. In other words, at equilibrium, for each contract, at
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most one side expects rationing.1

As in the model of Hatfield and Milgrom (2005), contracts may or may not involve the

delivery of money. Our notion of expectational equilibrium applies to all these cases and

does therefore not explicitly depend on prices. In a monetary economy, all contracts specify

an amount of money that the buyer of a contract has to pay to its seller. By analyzing the

contracts that are actively traded in an equilibrium, it is possible to infer the equilibrium

prices.2

As an illustration, consider the standard textbook case of partial equilibrium with

finitely many buyers and sellers, each with unit demand and unit supply, who trade a

perfectly homogeneous good. A contract consists of a buyer-seller pair and an amount of

money. Buyers and sellers form expectations about contracts that are tradable. Among

the contracts for which the buyer does not expect rationing, the one with the lowest price

is demanded, conditional on this price being below the reservation value of the buyer.

Similarly, among the contracts for which the seller does not expect rationing, the one with

the highest price is demanded, conditional on this price being above the reservation value

of the seller.

In an expectational equilibrium for the textbook case, for the effectuation of a contract

between a particular buyer and seller, both should expect this is the best price that can

be obtained. Next, it follows that all contracts that are signed in equilibrium have the

same price. Otherwise, it must be that a seller who is selling low and a buyer who is

buying high both expect rationing of the contract between them for all prices in between

the low and the high price. But that would contradict that at equilibrium at most one

side expects rationing for a given contract. The common price should be at least equal to

the reservation price of each buyer who does not trade at equilibrium and should also be

greater than or equal to the reservation price of each seller that does trade. Moreover, the

common price should be at most equal to the reservation price of each buyer who trades

at equilibrium and should also be less than or equal to the reservation price of each seller

that does not trade. The common price is therefore a market clearing price in the usual

sense of the word.

We refer to a free-contracting monetary economy if each possible trade can be accom-

1Richter and Rubinstein (2015) define the notions of unrestricted equilibrium and primitive equilibrium

for abstract economies. Their approach is based on an abstract notion of convexity and is quite different

from the one in this paper. A common feature with this paper is to think of a competitive equilibrium as

a method of creating harmony in an interactive situation with self-interested agents.
2In a very different set-up, the one of general equilibrium theory with incomplete assets markets that

allows for default and punishment, Dubey, Geanakoplos and Shubik (2005) show how competitive equi-

librium can be used to endogenously select the promises, default penalties, and quantity constraints of

actively traded assets.
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panied by an arbitrary amount of money. This implies that money is perfectly divisible

and that there are no legal restrictions like minimum wages that put bounds on monetary

transfers. We show that in a free-contracting monetary economy the set of expectational

equilibrium outcomes coincides with the set of Walrasian equilibrium outcomes. In the

more general case of price controls, where money is perfectly divisible but monetary trans-

fers are potentially subject to lower and upper bounds, expectational equilibrium outcomes

are shown to coincide with Drèze equilibrium outcomes.

Most papers in the matching literature use cooperative solution concepts to study

matching outcomes. For many-to-one matching models, typical concepts are pairwise sta-

bility, stability, the core, and the strong core. Without putting any additional assumptions

on the primitives, we find that expectational equilibrium outcomes coincide with stable

outcomes. In particular this holds for preferences that may exhibit indifferences, discon-

tinuities, and may not be substitutable and for sets of contracts that could be countably

infinite and need not be compact or closed. Expectational equilibrium therefore singles

out the set of stable outcomes in many-to-one matching models.

Existence of expectational equilibria is guaranteed whenever stable outcomes are known

to exist. A well-known sufficient condition is substitutability as introduced in Kelso and

Crawford (1982) in terms of changes in an agent’s demand as prices change. We follow

the approach of Roth (1984) and formulate a choice-theoretic definition of substitutability.

As in Sotomayor (1999), we allow preferences to have indifferences. Our notion of substi-

tutability needs to hold for finite subsets of the set of contracts. More precisely, if a finite

set of contracts from which the agent can choose expands, then, given any optimal choice

for the original set of contracts, the agent has an optimal choice in the expanded set that

does not involve contracts that were available but not chosen before. Together with con-

tinuity of preferences, substitutability is sufficient to obtain existence of an expectational

equilibrium. Our existence proof involves an adjustment process in the style of Gale and

Shapley (1962), Crawford and Knoer (1981), Kelso and Crawford (1982), Demange, Gale

and Sotomayor (1986), and Hatfield and Milgrom (2005).

The existence results also opens up avenues for equilibrium existence for monetary

economies where money is not perfectly divisible and prices are denominated in a smallest

monetary unit of account. An important application concerns the analysis of the influence

of the tick size in financial markets, see Plott, Roll, Seo, and Zhao (2019). In such models it

is still true that Walrasian equilibrium outcomes are expectational equilibrium outcomes.

However, Walrasian equilibrium outcomes may fail to exist, as is easily demonstrated in a

simple example of partial equilibrium where supply and demand curves intersect at a price

which is not a multiple of the smallest unit of account. A more general set-up is provided by

the assignment model of Shapley and Shubik (1971) in the presence of a smallest monetary
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unit of account. Since that model satisfies substitutability, expectational equilibria always

exist, whereas Walrasian equilibria may not.

Section 2 introduces the notion of expectational equilibrium in a many-to-one matching

model with contracts. It shows how that model directly incorporates the marriage problem

(Gale and Shapley, 1962), the assignment model (Shapley and Shubik, 1971), matching un-

der price controls (Herings, 2018), job matching with salaries (Kelso and Crawford, 1982),

and matching with contracts (Hatfield and Milgrom, 2005) as special cases. In Section 3

we show how in the model of school choice studied by Abdulkadiroğlu, Che, and Yasuda

(2015) and Azevedo and Leshno (2016), expectational equilibrium outcomes correspond

to market clearing cutoffs. Section 4 demonstrates the equivalence between expectational

equilibrium outcomes and stable outcomes and explains that under the weak assumptions

we have made, stable outcomes may not coincide with pairwise stable outcomes, core out-

comes, or strong core outcomes. Expectational equilibria are shown to exist in Section 5

when preferences are substitutable and appropriate continuity assumptions are in place.

Section 6 studies monetary economies and demonstrates that any Walrasian equilibrium is

an expectational equilibrium. The reverse implication is shown to hold for free-contracting

monetary economies. Section 7 considers the set-up of monetary economies subject to

price controls and demonstrates the equivalence to Drèze equilibrium outcomes. Section 8

contains the conclusion.

2 Expectational Equilibrium

There is a finite set of firms F, a finite set of workers W, and a set of contracts Y . The set

Y is not necessarily finite and also uncountable sets Y are permitted. The set of agents is

then I = F ∪W. Each contract y ∈ Y is bilateral, so is associated with one firm f(y) ∈ F
and one worker w(y) ∈ W. A worker w ∈ W signs at most one contract, whereas a firm can

sign any number of contracts, though not more than one contract with any given worker.

For a given set of contracts Y ⊂ Y , the set of contracts involving firm f is equal to

Y f = {y ∈ Y | f(y) = f} and the set of contracts involving worker w equals Y w = {y ∈
Y | w(y) = w}. The sets f(Y ) = {f ∈ F | ∃y ∈ Y such that f(y) = f}, w(Y ) = {w ∈ W |
∃y ∈ Y such that w(y) = w}, and i(Y ) = {i ∈ I | ∃y ∈ Y such that f(y) = i or w(y) = i}
are the sets of firms, workers, and agents involved in Y, respectively.

The consumption set Xf of a firm f ∈ F is equal to

Xf = {Y f ⊂ Y
f | ∀y, y′ ∈ Y f with y 6= y′ it holds that w(y) 6= w(y′)}.

The consumption set Xf consists of sets of contracts involving firm f that associate at

most one contract with any given worker w. A firm f has to choose an element of Xf , i.e.,
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has to choose a set of workers and sign a contract with each one of them. The empty set is

an element of Xf , so the firm may choose not to sign any contract at all. The consumption

set Xw of a worker w ∈ W is given by

Xw = {Y w ⊂ Y
w | |Y w| ≤ 1},

so Xw consists of the singleton subsets of Y
w

and the empty set.

The preferences of an agent i ∈ I are represented by a utility function ui : X i → R.
Without loss of generality it is assumed that ui(∅) = 0. When certain combinations of

contracts in Xf are not feasible for firm f, then it suffices to assign a negative utility level

to such a set. There are no further assumptions on the utility functions, so preferences

may exhibit indifferences and are not required to satisfy substitutability or continuity

assumptions.

A set of contracts A ⊂ Y is an outcome if for every i ∈ I it holds that Ai ∈ X i. So

in particular, every worker signs a single contract or no contract. A firm may sign many

contracts, but at most one contract with any given worker. Let A denote the set of all

outcomes. Utility functions are extended to outcomes in A by defining, for every A ∈ A,
ui(A) = ui(Ai).

The set of contracts and utility functions together define an economy E = (Y , (ui)i∈I).

We illustrate now how a number of important models studied in the literature before

fit in as special cases.

Example 2.1: Gale and Shapley (1962), marriage problem.

A community consists of the same number of men and women. Each person strictly ranks

those of the oppositive sex in accordance with his or her preferences for a marriage partner.

Monetary transfers are not allowed. We define F as the set of men, W as the set of women,

and Y = F ×W as the set of contracts. A marriage contract corresponds to a pair of a

man and a woman. Utility functions are now specified in accordance with each person’s

ranking of the partners of opposite sex and the prospect of remaining single. To guarantee

that a man marries at most one woman, it is sufficient to take, for every f ∈ F, for every

Y f ⊂ Y that has at least two elements, uf (Y f ) < 0. 4

Example 2.1 does not offer the men and the women the possibility to make monetary

transfers when contracting. The polar opposite is illustrated in the next example, where

unbounded monetary transfers are allowed for.

Example 2.2: Shapley and Shubik (1971), assignment model.

In the real estate market there is a finite set of homeowners W as well as a finite set

of prospective purchasers F. Homeowner w ∈ W values his or her house at cw dollars,
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while purchaser f ∈ F values the same house at hfw dollars. There are no restrictions on

monetary transfers between homeowners and prospective purchasers. The set of contracts

is equal to Y = F ×W × R. A contract y = (f, w,m) ∈ Y involves the sale of the house

of homeowner w to buyer f against an amount of money m. The utility of a buyer f ∈ F
of a contract (f, w,m) ∈ Y is given by

uf ({(f, w,m)}) = hfw −m

and the utility of a seller w ∈ W is equal to

uw({(f, w,m)}) = m− cw.

In the model of Shapley and Shubik (1971), each buyer is interested in buying at most

one house. We therefore define, for every f ∈ F, for every Y f ⊂ Y that has at least two

elements, uf (Y f ) < 0. 4

The next example is based on Herings (2018) and covers Examples 2.1 and 2.2 as spe-

cial cases by introducing price controls. It also contains the assignment model with price

controls as studied by Talman and Yang (2008) and Andersson and Svensson (2014) as a

special case.

Example 2.3: Herings (2018), matching under price controls.

There is a finite set of buyers F and a finite set of sellers W who trade commodities in

a finite set L against money. The amount of money involved in a contract is subject to

price controls. To be more precise, the price of a commodity ` ∈ L is subject to a price

floor p
`
∈ {−∞} ∪ R and a price ceiling p` ∈ R ∪ {+∞} such that p

`
≤ p`. Some agents

may not be able to trade certain commodities. This is captured by a set of feasible trades

T ⊂ F ×W × L. The resulting set of contracts is then equal to

Y = {(f, w, `,m) ∈ F ×W × L× R | (f, w, `) ∈ T and p
`
≤ m ≤ p`}.

In the model of Herings (2018), each buyer is interested in buying at most one commodity.

We therefore define, for every f ∈ F, for every Y f ⊂ Y that has at least two elements,

uf (Y f ) < 0. The concept of a commodity contains all utility relevant information. For

a buyer the utility of a commodity does not depend on the agent delivering it and for a

seller the utility of a commodity is independent of the identity of its buyer. By an appro-

priate definition of a commodity, this assumption is without loss of generality. All utility

functions are assumed to be continuous and strongly monotonic in m, decreasing in m for

buyers and increasing in m for sellers. There are limits to the monetary transfers buyers

are willing to make for commodities without price ceilings. For every f ∈ F, for every
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` ∈ L such that p` = +∞, there is m ∈ R such that uf ({(f, w, `,m)}) ≤ uf (∅). There are

limits to the monetary transfers sellers are willing to make for commodities without price

floors. For every w ∈ W, for every ` ∈ L such that p
`

= −∞, there is m ∈ R such that

uw({(f, w, `,m)}) ≤ uw(∅). Appropriate choices for the price controls reduce Examples 2.1

and 2.2 to special cases of this example. 4

Examples 2.1, 2.2, and 2.3 are examples of one-to-one matching. We now present a

many-to-one matching model.

Example 2.4: Kelso and Crawford (1982), job matching with salaries.

There is a finite set of firms F and a finite set of workers W. Each firm hires as many

workers as it wishes, but each worker is allowed to work only at one firm. The set of

contracts is equal to Y = F × W × R. A contract y = (f, w,m) ∈ Y involves a labor

contract between firm f and worker w against a salary m. The utility uw({(f, w,m)}) of

worker w ∈ W is assumed to be continuous and strictly increasing in m. The gross product

of a firm f ∈ F that hires a set of workers S ⊂ W is equal to vf (S). Let Y f ∈ Xf be

a set of contracts involving the workers in S, so w(Y f ) = S, and let the salary of worker

w ∈ S as specified in the contract be equal to mw. The utility firm f derives from signing

the contracts in Y f is given by

uf (Y f ) = vf (S)−
∑
w∈S

mw.

The utility function uf is assumed to satisfy the condition of gross substitutes to be ex-

plained next. Let m,m′ ∈ RW with m ≤ m′ be vectors of workers’ salaries and let

Y f = {(f, w,m) ∈ Y | m = mw} and Y ′f = {(f, w,m) ∈ Y | m = m′w} be sets of contracts

specifying salaries m and m′ for the workers, respectively. For a set of workers S ⊂ W,

the set U(S) = {w ∈ S | mw = m′w} contains those workers whose salaries did not change

between m and m′. Let Yf contain all the solutions to

arg max
Af⊂Y f

uf (Af )

and let Y ′f contain all the solutions to

arg max
Af⊂Y ′f

uf (Af ).

The condition of gross substitutes is satisfied if for every Af ∈ Yf there exists A′f ∈ Y ′f

such that U(w(Af )) ⊂ w(A′f ). Gross substitutes requires that increases in other workers’

salaries does not cause a firm to fire a worker whose salary has not risen. 4
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Shapley and Shubik (1971) and Kelso and Crawford (1982) observe that there is an

equivalence between the notion of competitive equilibrium and the notion of stability in

their respective models, explained in Example 2.2 and 2.4, respectively. The appropriate

notion of competitive equilibrium for the model of Example 2.3 has been introduced in Her-

ings (2018). That notion also applies to the model of Gale and Shapley (1962) discussed

in Example 2.1. The next example concerns a matching model with contracts. Unlike the

previous examples, there is no known notion of competitive equilibrium that applies to this

model.

Example 2.5: Hatfield and Milgrom (2005), matching with contracts.

There is a finite set of hospitals F and a finite set of doctors W. Each hospital hires as

many doctors as it wishes, but each doctor is allowed to work only at one hospital. The

set of contracts is a finite set Y . Preferences are assumed to be strict. For every f ∈ F, for

every Y f , Y ′f ∈ Xf such that Y f 6= Y ′f it holds that uf (Y f ) 6= uf (Y ′f ). For every w ∈ W,
for every Y w, Y ′w ∈ Xw such that Y w 6= Y ′w it holds that uw(Y w) 6= uw(Y ′w). The utility

function uf is assumed to satisfy the condition of substitutes to be explained next. Let

Y ′, Y ′′ ⊂ Y with Y ′ ⊂ Y ′′ be sets of contracts. Let A′f be the unique solution to

arg max
Af⊂Y ′

uf (Af )

and let A′′f be the unique solution to

arg max
Af⊂Y ′′

uf (Af ).

Next, we define the sets of rejected contracts as Rf (Y ′) = Y ′ \A′f and Rf (Y ′′) = Y ′′ \A′′f .
The condition of substitutes is satisfied if Rf (Y ′) ⊂ Rf (Y ′′). 4

Under the assumption of substitutability on the preferences, Echenique (2012) has

shown how Example 2.5 can be embedded as a special case of Example 2.4.

We now define a notion of equilibrium that applies to the many-to-one matching with

contracts model as introduced in this section and thereby to all the examples discussed so

far, so in particular to Example 2.5 introducing the model of Hatfield and Milgrom (2005).

Let Q ⊂ Y denote a set of rationing constraints as applying to firms. If a contract y

belongs to Q, then firm f(y) expects that it is not possible to trade contract y. The reason

is that firm f(y) expects that contract y does not belong to the demand set of worker

w(y). Similarly, let R ⊂ Y denote a set of rationing constraints as applying to workers.

If a contract y belongs to R, then worker w(y) expects that it is not possible to trade

contract y. The reason is that worker w(y) expects that contract y does not belong to the

demand set of firm f(y). Both Q and R are determined endogenously in an expectational
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equilibrium as defined in Definition 2.6. At equilibrium, the expectations embodied in Q

and R are rational.

Given a set of rationing constraints Q, the budget set of firm f ∈ F is given by

βf (Qf ) = {Af ∈ Xf | Af ∩Qf = ∅}.

The demand correspondence δf of firm f is defined by

δf (Qf ) = arg max
Af∈βf (Qf )

uf (Af ).

Given a set of rationing constraints R, the budget set of worker w ∈ W is given by

βw(Rw) = {Aw ∈ Xw | Aw ∩Rw = ∅}.

The demand correspondence δw of worker w is defined by

δw(Rw) = arg max
Aw∈βw(Rw)

uw(Aw).

Definition 2.6: An expectational equilibrium of the economy E = (Y , (ui)i∈I) is an

element (A∗, Q∗, R∗) ∈ A× 2Y × 2Y such that:

1. For every f ∈ F, A∗f ∈ δf (Q∗f ).

2. For every w ∈ W, A∗w ∈ δw(R∗w).

3. Q∗ ∩R∗ = ∅.

The first two conditions in Definition 2.6 correspond to standard optimization by firms

and workers. A firm f ∈ F only needs to know which contracts do not belong to Qf , i.e.,

the contracts for which it expects that trade is possible, and does not need to consider the

other agents in making its choices. A worker w ∈ W only needs to know which contracts

do not belong to Rw, i.e., the contracts for which the worker expects that trade is possible,

and does not need to consider the other agents when making a choice. From Conditions 1

and 2 of an expectational equilibrium, it follows that A∗ ∩Q∗ = ∅ and A∗ ∩R∗ = ∅.
Condition 3 of Definition 2.6 expresses that markets are transparent. For a given

contract, it cannot be that both sides of the market simultaneously expect to be rationed.

This condition also guarantees that expectations of firms and workers are rational. If, for

instance, y ∈ Q∗f , so the firm expects rationing for contract y, i.e., expects no demand for

contract y by worker w = w(y), then y /∈ R∗w by Condition 3 of Definition 2.6. Worker w is

therefore free to demand contract y, but chooses not to do so, since y ∈ Q∗f implies y /∈ A∗

and therefore y /∈ A∗w. The firm therefore correctly anticipates rationing for contract y.

The same kind of reasoning applies to contracts y ∈ R∗w.
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There is no need for an explicit market clearing condition. Since any contract y ∈ A∗

involves a firm f = f(y) and a worker w = w(y), market clearing follows from A∗f ∈
δ∗f (Q∗f ) and A∗w ∈ δ∗w(R∗w).

Expectational equilibria do not rely on the presence of money as part of the contract.

This makes the concept particularly suitable for application to the marriage problem of

Gale and Shapley in Example 2.1 and the matching with contracts model of Hatfield and

Milgrom (2005). We discuss the application of expectational equilibrium to the model of

school choice studied in Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno

(2016) in the next section and show how expectational equilibria are related to their notion

of a market clearing cutoff.

3 An Application to School Choice

Azevedo and Leshno (2016) consider a model of school choice, where the set of colleges

is finite and the set of students is either finite or a continuum. Here we present their

analysis of demand and supply for the case with a finite set of students and show how it

is related to expectational equilibrium. The set of contracts Y is identified with F ×W
and corresponds to all possible pairs of a college and a student. A student w ∈ W has

strict preferences over the colleges, which are represented by the utility function uw, where

uw({(f, w)}) > 0 corresponds to the utility provided by college f ∈ F. A college f ∈ F has

a capacity of qf seats. The preferences of college f over students are determined by the

score uf ({(f, w)}) ∈ (0, 1] college f assigns to student w. The preferences of the colleges

are assumed to be strict and responsive. We assign a utility of −1 to any set of students

with cardinality exceeding qf .

The cutoff of a college f ∈ F is the minimal score P f ∈ [0, 1] required for admission

at college f. A student w ∈ W can afford college f if P f ≤ uf ({(f, w)}), that is, college f

would accept student w. A student’s demand given a vector of cutoffs is her favorite college

among those she can afford or the empty set if no colleges are affordable. More formally,

with P = (P f )f∈F denoting the vector of cutoffs, we have

dw(P ) = arg max
{{(f,w)}∈Xw|uf ({(f,w)})≥P f}

uw({(f, w)}).

Because of the strictness of preferences, the set dw(P ) is a singleton. Aggregate demand

for college f is equal to

df (P ) = #{w ∈ W | {(f, w)} ∈ dw(P )}.

A market clearing cutoff P is a vector of cutoffs that clears supply of and demand for

colleges, i.e., for every f ∈ F, df (P ) ≤ qf and df (P ) = qf if P f > 0. Azevedo and Leshno
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(2016) show how market clearing cutoffs are related to pairwise-stable outcomes in the

model with a continuum of students and explain how to interpret the cutoffs as prices.

The analysis of school choice in terms of market clearing cutoffs has also been shown to

be very fruitful in Abdulkadiroğlu, Che, and Yasuda (2015), who use demand functions

dw to pin down the matching of a continuum of students to a finite set of schools and to

study the welfare properties of alternative ways to set priorities of the schools as a result

of lotteries and messages by students.

How are the market clearing cutoffs related to expectational equilibria? Assume that

P ∗ is a market clearing cutoff. For every w ∈ W, define R∗w as the set of colleges with a

cutoff above the score of student w, so

R∗w = {{(f, w)} ∈ Xw | P f > uf ({(f, w)})}. (3.1)

These are the colleges which are unaffordable for the student, so the student expects

rationing for these colleges. It is easily verified that dw(P ∗) = δw(R∗w). An expectational

equilibrium is obtained by defining

A∗ = {(f, w) ∈ Y | (f, w) ∈ δw(R∗w)}, (3.2)

Q∗f = {(f, w) ∈ Y \ A∗ | P ∗f ≤ uf ({(f, w)})}, f ∈ F, (3.3)

so the outcome A∗ corresponds simply to the set of college-student pairs as demanded by

the students and Q∗f is such that college f expects rationing on all students with a score

at least as high as the cutoff of college f that do not demand college f.

Proposition 3.1: If P ∗ is a market clearing cutoff, then (A∗, Q∗, R∗) as defined in

(3.1)–(3.3) is an expectational equilibrium.

Proof: To show that (A∗, Q∗, R∗) is an expectational equilibrium, we verify the three

conditions of Definition 2.6.

Consider a college f ∈ F. It holds that

βf (Q∗f ) = {Af ∈ Xf | Af ∩Qf = ∅}
= {Af ∈ Xf | ∀y ∈ Af , y ∈ A∗f or P ∗f > uf ({y})}.

If dAf (P ∗) = qf , then #A∗f = qf , so δf (Q∗f ) = A∗f since A∗f consists of those qf students

in the budget set of college f with the highest scores and preferences of the college are

responsive. If dAf (P ∗) < qf , then it holds by the definition of a market clearing cutoff that

P ∗f = 0, so βf (Q∗f ) = {Af ∈ Xf | Af ⊂ A∗f} and δf (Q∗f ) = A∗f , where we use that

college f finds all students acceptable.

Clearly, by the definition of A∗, it holds that, for every w ∈ W, A∗w ∈ δw(R∗w).

Finally, we show that Q∗ ∩ R∗ = ∅. Suppose (f, w) ∈ Q∗ ∩ R∗. Since (f, w) ∈ Q∗f , we

have that P ∗f ≤ uf ({(f, w)}). Since (f, w) ∈ R∗w, it holds that P ∗f > uf ({(f, w)}), so we
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obtain a contradiction. Consequently, we have that Q∗ ∩R∗ = ∅. 2

We also have the other direction. Let (A∗, Q∗, R∗) be an expectational equilibrium.

Now, for every f ∈ F, define the cutoff P ∗f by

P ∗f = min
(f,w)∈A∗f

uf ({(f, w)}), if #A∗f = qf , (3.4)

P ∗f = 0, otherwise, (3.5)

so P ∗f is taken equal to the lowest score of a student that has been accepted by college f.

Proposition 3.2: If (A∗, Q∗, R∗) is an expectational equilibrium, then P ∗ as defined

in (3.4)–(3.5) is a market clearing cutoff.

Proof: To show that P ∗ = (P ∗f )f∈F is a market clearing cutoff, we have to argue

that, for every f ∈ F, dAf (P ∗) ≤ qf and dAf (P ∗) = qf if P ∗f > 0. We achieve this by showing

that (f, w) ∈ A∗w if and only if {(f, w)} ∈ dw(P ∗). The fact that the utility of a college

f ∈ F is equal to −1 if the cardinality of the set of students exceeds qf , whereas uf (∅) = 0,

then implies dAf (P ∗) ≤ qf . It follows from (3.4) and (3.5) that dAf (P ∗) = qf if P ∗f > 0.

Let (f, w) ∈ A∗w. It holds by (3.4) and (3.5) that uf ({(f, w)}) ≥ P ∗f .

Suppose there is f ′ ∈ F such that uf
′
({(f ′, w)}) ≥ P ∗f

′
and uw({(f ′, w)}) > uw({(f, w)}).

Since A∗w ∈ δw(R∗w) it follows that (f ′, w) ∈ R∗w. By Condition 3 of Definition 2.6, it

follows that (f ′, w) /∈ Q∗f ′ . From (f ′, w) /∈ A∗f ′ , we have that uf
′
({(f ′, w)}) < P ∗f

′
, leading

to a contradiction. Consequently, for every f ′ ∈ F, it holds that uf
′
({(f ′, w)}) < P ∗f

′
or

uw({(f ′, w)}) ≤ uw({(f, w)}). It follows that {(f, w)} ∈ dw(P ∗).

Let w ∈ W be such that A∗w = ∅. It holds that ∅ ∈ δw(R∗w). For every f ∈ F, by

the assumption that uw({(f, w)}) > 0, it follows that (f, w) ∈ R∗w, so by Condition 3 of

Definition 2.6 (f, w) /∈ Q∗f . From A∗w = ∅, it follows that, for every f ∈ F, (f, w) is not

part of the set in δf (Q∗f ), so uf ({(f, w)}) < P ∗f . It follows that dw(P ∗) = ∅. 2

We have shown the equivalence between an expectational equilibrium and a market

clearing cutoff in a model of school choice. Our notion of expectational equilibrium is

defined for a much wider class of models, allowing for a potentially uncountable set of

contracts and completely general preferences.

4 Equivalence between Expectational Equilibria and

Stable Outcomes

In this section, we show that an outcome A∗ is part of some expectational equilibrium if

and only if it is a stable outcome. We first give the definition of a stable outcome.
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The choice correspondence Ci of agent i ∈ I is defined by

Ci(Y ) = arg max
{Ai∈Xi|Ai⊂Y i}

ui(Ai), Y ⊂ Y .

The set Ci(Y ) consists of all sets of contracts in Y i that maximize the utility of agent i.

As defined in Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013), an out-

come is stable if it is individually rational and there is no blocking set of contracts.

Definition 4.1: An outcome A ∈ A of the economy E = (Y , (ui)i∈I) is stable if:

1. For every i ∈ I, Ai ∈ Ci(A).

2. There is no non-empty B ⊂ Y \ A such that for every i ∈ I(B), for every Y i ∈
Ci(A ∪B), it holds that Bi ⊂ Y i.

Condition 1 of Definition 4.1 corresponds to individual rationality. Each worker w ∈ W
is weakly better off signing the contract in Aw than not signing it in case Aw is non-empty.

Each firm f ∈ F is weakly better off keeping all the contracts in Af than canceling some

of them.

The requirement Bi ⊂ Y i for every Y i ∈ Ci(A ∪ B) in Condition 2 implies that the

blocking set B contains a single contract for each worker w ∈ w(B). Moreover, that contract

is strictly preferred to Aw by worker w. All firms f ∈ f(B) are strictly better off by signing

all the contracts in Bf and potentially keeping some of the contracts in Af than by sticking

to the contracts in Af . A firm may have multiple optimal choices regarding the contracts

in Af it wants to keep. It is straightforward to verify that for every firm f ∈ f(B) involved

in blocking set B, Bf is a blocking set as well.

The concepts of expectational equilibrium and stable outcomes cannot be directly com-

pared. An expectational equilibrium provides more information as it also specifies rationing

constraints, i.e., expectations regarding the impossibility to trade particular contracts. We

therefore focus on the set of outcomes that can be supported by an expectational equilib-

rium and compare them to the set of stable outcomes. The set of outcomes Aee that can

be supported by an expectational equilibrium of an economy E is defined as

Aee = {A ∈ A | ∃(Q,R) ∈ 2Y ×2Y such that (A,Q,R) is an expectational equilibrium}.

The set of all stable outcomes is denoted by Aso.

The next result shows that every stable outcome is supported by an expectational

equilibrium. More precisely, given an outcome A ∈ A, define Q(A) ⊂ Y and R(A) ⊂ Y by

Q(A) = {y ∈ Y \ A | uw(y)({y}) ≤ uw(y)(A)},
R(A) = Y \ (A ∪Q(A)).
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The set Q(A) consists of those contracts which provide the worker with a utility less than

or equal to the utility of A. These are contracts for which the firms do not expect trade

with the workers. The set R(A) consists of all contracts outside A and Q(A). We show

that if A∗ is a stable outcome, then (A∗, Q(A∗), R(A∗)) is an expectational equilibrium.

Theorem 4.2: Consider an economy E = (Y , (ui)i∈I). If A∗ ∈ Aso, then (A∗, Q(A∗), R(A∗))

is an expectational equilibrium, so Aso ⊂ Aee.

Proof: Let A∗ ∈ Aso. Define Q∗ = Q(A∗) and R∗ = R(A∗). We show first that, for

every f ∈ F, A∗f ∈ δf (Q∗f ).
Suppose there is f ∈ F and Af ∈ βf (Q∗f ) such that uf (Af ) > uf (A∗f ). Since Af∩Q∗f =

∅, it holds by definition of Q∗ = Q(A∗) that, for every y ∈ Af \A∗f , uw(y)({y}) > uw(y)(A∗).

Let Y ∗f ∈ Cf (Af ∪A∗) be an element in Cf (Af ∪A∗) such that Y ∗f \A∗f is minimal,

i.e., there is no Y f ∈ Cf (Af ∪A∗) such that Y f \A∗f is a proper subset of Y ∗f \A∗f . Since

Af ∩ A∗ is finite, such a minimal element exists. It holds that

uf (Y ∗f ) ≥ uf (Af ) > uf (A∗f ).

Suppose Y ∗f ⊂ A∗f . Then A∗f /∈ Cf (A∗), so Condition 1 of Definition 4.1 is violated, and

we obtain a contradiction to the stability of A∗. Consequently, Y ∗f \ A∗f is a non-empty

subset of Af \ A∗f .
We defineB = Y ∗f\A∗f and we use the minimality of Y ∗f\A∗f to conclude that for every

Y f ∈ Cf (A∗∪B) it holds that B = Bf ⊂ Y f . Since Y ∗f ⊂ Af∪A∗, it holds that Y ∗f∩Q∗f =

∅, so by the definition of Q(A∗) we have for every y ∈ B that uw(y)({y}) > uw(y)(A∗). We

conclude that for every w ∈ w(B), Cw(A∗ ∪ B) = {Bw}. Therefore B is a blocking set of

contracts, Condition 2 of Definition 4.1 is violated, and we obtain a contradiction to the

stability of A∗. Consequently, it holds for every f ∈ F that A∗f ∈ δf (Q∗f ).
We show next that, for every w ∈ W, A∗w ∈ δw(R∗w).

Suppose there is w ∈ W and Aw ∈ βw(R∗w) such that uw(Aw) > uw(A∗w). Since

Aw∩R∗w = ∅ and Aw 6= A∗w, we have Aw ⊂ Q∗w and therefore, by the definition of R(A∗),

uw(Aw) ≤ uw(A∗) = uw(A∗w), a contradiction. Consequently, it holds for every w ∈ W

that A∗w ∈ δw(R∗w).

By construction, it holds that Q∗ ∩R∗ = ∅.
We conclude that (A∗, Q∗, R∗) is an expectational equilibrium of the economy E . 2

The proof of Theorem 4.2 relies on the construction of particular rationing constraints

Q(A∗) and R(A∗), which may not be unique in supporting a particular stable outcome

A∗. Nevertheless, the next result shows the converse of Theorem 4.2. If (A∗, Q∗, R∗) is an

expectational equilibrium of the economy E , then A∗ is a stable outcome.
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Theorem 4.3: Consider an economy E = (Y , (ui)i∈I). If (A∗, Q∗, R∗) ∈ A × 2Y × 2Y

is an expectational equilibrium of E , then A∗ is a stable outcome, so Aee ⊂ Aso.

Proof: Let (A∗, Q∗, R∗) ∈ A× 2Y × 2Y be an expectational equilibrium of E . Suppose

A∗ is not a stable outcome. Then there is i ∈ I such that A∗i /∈ Ci(A∗) or there is a

non-empty B ⊂ Y \ A∗ such that for every i ∈ I(B), for every Y i ∈ Ci(A∗ ∪ B), it holds

that Bi ⊂ Y i.

In the first case, take Ai ∈ Ci(A∗). If i ∈ F, then Ai ⊂ A∗i implies Ai ∈ βi(Q∗i), so

A∗i /∈ δi(Q∗i), a contradiction to Condition 1 of Definition 2.6. If i ∈ W, then Ai ⊂ A∗i

implies Ai ∈ βi(R∗), so A∗i /∈ δi(R∗i), a contradiction to Condition 2 of Definition 2.6.

In the second case, for every w ∈ w(B) it holds that uw(Bw) > uw(A∗w), so it follows

from A∗w ∈ δw(R∗w) that Bw ⊂ R∗, so by Condition 3 of Definition 2.6 it holds that

Bw ∩Q∗ = ∅. Thus we have B ∩Q∗ = ∅. Take some f ∈ f(B) and some Y f ∈ Cf (A∗ ∪B).

It holds that uf (Y f ) > uf (A∗) and, since A∗ ∩ Q∗ = ∅ and B ∩ Q∗ = ∅, it holds that

Y f ∈ βf (Q∗f ), so A∗f /∈ δf (Q∗f ), a contradiction to Condition 1 of Definition 2.6.

Consequently, A∗ is a stable outcome. 2

Combining the results of Theorems 4.2 and 4.3 leads to the following corollary.

Corollary 4.4: Consider an economy E = (Y , (ui)i∈I). It holds that Aso = Aee.

The matching concept of stability and the equilibrium concept of expectational equi-

librium lead to exactly the same conclusions. The equivalence holds for infinite sets of

contracts and for completely general preferences. Preferences are not required to be strict

or to satisfy substitutability assumptions and may in fact exhibit discontinuities.

It is remarkable that expectional equilibrium singles out stability as the relevant con-

cept from matching theory. Other concepts that are frequently used in matching theory

are pairwise stability, the core, and the strong core. Shapley and Shubik (1971), Craw-

ford and Knoer (1981), Kelso and Crawford (1982), and Roth (1984) have shown that in

two-sided matching environments with substitutable preferences competitive equilibrium is

equivalent to pairwise stability, which under these circumstances is equivalent to stability.

However, under our general conditions, the concepts of pairwise stability, the core, and the

strong core lead to different predictions than stability. The notion of pairwise stability was

introduced in Gale and Shapley (1962). In our notation, it is defined as follows.

Definition 4.5: An outcome A ∈ A of the economy E = (Y , (ui)i∈I) is pairwise stable

if:

1. For every i ∈ I, Ai ∈ Ci(A).
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2. There is no singleton B ⊂ Y \A such that for every i ∈ I(B), for every Y i ∈ Ci(A∪B),

it holds that Bi ⊂ Y i.

Condition 1 of Definition 4.5 is the requirement of individual rationality. No agent will

stick to a set of contracts if it is better not to sign any of them. Condition 2 of Defini-

tion 4.5 requires that no pair of agents can sign a contract which, together with a suitable

selection of the existing contracts in A, gives both a strictly higher utility.

Example 4.6: Consider a firm f and two workers w1 and w2. Contracts are completely

standardized, resulting in the set Y = {(f, w1), (f, w2)} of possible contracts. The utility

function of the firm is specified by

uf (∅) = 0,

uf ({(f, w1)}) = 0,

uf ({(f, w2)}) = 0,

uf ({(f, w1), (f, w2)}) = 1.

The utility function of worker w1 is given by

uw1(∅) = 0,

uw1({(f, w1)}) = 1,

and of worker w2 by

uw2(∅) = 0,

uw2({(f, w2)}) = 1.

The firm strictly prefers hiring both workers to hiring a single worker or no worker and is

indifferent between all options different from hiring both workers. Each worker prefers to

sign the contract to not signing it. The only stable outcome is A = {(f, w1), (f, w2)} and

(A,Q,R) with Q = R = ∅ is an expectational equilibrium.

Consider now the outcome A′ = ∅. It is clearly individually rational and it is impossible

to find a singleton B as in Condition 2 of Definition 4.5 since the firm will not get a positive

utility when signing a contract with a single worker. We find that A′ is pairwise stable. The

outcome A′ = ∅ is not stable against general deviations B. In particular, it is not stable

against a deviation involving contracts with both workers. By Corollary 4.4 it follows that

A′ cannot be supported as an expectational equilibrium. A direct argument is as follows.

The firm will demand both contracts, unless (f, w1) ∈ Q or (f, w2) ∈ Q. Without loss of

generality, suppose (f, w1) ∈ Q. Then (f, w1) /∈ R by Condition 3 of Definition 2.6, so

worker w1 will demand the contract (f, w1), a contradiction since A′ does not contain a

contract involving worker w1. 4
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The core is defined as follows.

Definition 4.7: An outcome A ∈ A of the economy E = (Y , (ui)i∈I) belongs to the

core if, for every coalition S ⊂ I, there is no outcome B ∈ A such that I(B) = S and for

every i ∈ S, ui(Bi) > ui(Ai).

An outcome belongs to the core if there is no blocking coalition S that can sign contracts

among its members S only and strictly improve the utility of every coalition member. The

next example shows that a core outcome does not need to be stable.

Example 4.8: We consider the primitives of Example 4.6, so the only stable outcome

is A = {(f, w1), (f, w2)}. The outcome A belongs to the core. The outcomes A′ = {(f, w1)}
and A′′ = {(f, w2)} are both core elements as well. Indeed, the only way to improve the

utility of the firm is by A = {(f, w1), (f, w2)}, but that leaves w1 indifferent compared to

A′ and w2 indifferent compared to A′′. 4

We next turn to the concept of the strong core.

Definition 4.9: An outcome A ∈ A of the economy E = (Y , (ui)i∈I) belongs to the

strong core if, for every coalition S ⊂ I, there is no outcome B ∈ A such that I(B) = S,

for every i ∈ S, ui(Bi) ≥ ui(Ai), and, for some i ∈ S, ui(Bi) > ui(Ai).

An outcome belongs to the strong core if there is no coalition S that can sign contracts

as to make all its members weakly better off and at least one member strictly better off.

The next example shows that a stable outcome may not belong to the strong core.

Example 4.10: We consider the primitives of Example 4.6, but make the firm indif-

ferent between hiring one or two workers by setting

uf ({(f, w1), (f, w2)}) = 0.

The outcomes A = {(f, w1), (f, w2)}, A′ = {(f, w1)}, A′′ = {(f, w2)}, and A′′′ = ∅ are all

stable, since it is impossible to make the firm strictly better off. The outcomes A′, A′′, and

A′′′ do not belong to the strong core. Coalition {f, w1, w2} can block these outcomes by

outcome A, since this leaves the firm indifferent and makes at least one of the workers w1

and w2 strictly better off. 4
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5 Existence of Expectational Equilibria

In this section, we give conditions such that an expectational equilibrium exists. The main

condition is that the preferences of firms need to satisfy substitutability. In the model of

Example 2.4, substitutable preferences were introduced by Kelso and Crawford (1982) in

terms of changes in an agent’s demand as prices change. Roth (1984) introduced a related

choice-theoretic definition under which substitutability is expressed in terms of changes in

an agent’s choice as the set of available options changes. We follow the latter approach

here. For the relationships between the various notions of substitutes that have been in-

troduced in the literature, we refer the reader to Hatfield, Kominers, Nichifor, Ostrovsky,

and Westkamp (2019).

Definition 5.1: The preferences of firm f ∈ F in the economy E = (Y , (ui)i∈I) are

substitutable if, for every finite Y, Y ′ ⊂ Y such that Y ⊂ Y ′, for every Af ∈ Cf (Y ), there

is some A′f ∈ Cf (Y ′) such that (A′f ∩ Y ) ⊂ Af .

If Af is an optimal choice for firm f within the set of contracts Y, and the set of

contracts out of which the firm can choose expands to Y ′, then the firm has an optimal

choice A′f which does not involve contracts in Y that are outside Af .

In a set-up without contracts, Sotomayor (1999) extends the definition of Roth (1984)

to the case where indifferences are allowed and requires an analogue of Definition 5.1 as

well as a related condition in case the set of available choices is reduced. For existence, it

suffices to require only one out of the two conditions.

Although our set Y is allowed to be uncountable, Definition 5.1 only involves compar-

isons between the choice behavior out of finite sets Y and Y ′. Aziz, Brill, and Harrenstein

(2013) show for the case where Y is finite that testing substitutability of weak preferences

can be performed in polynomial time.

We now define an adjustment process to find a stable outcome in case the set Y is

finite. We then use a limit argument to show the existence of a stable outcome, and by

Corollary 4.4 the existence of an expectional equilibrium, in the general case.

Definition 5.2: (Adjustment process for a finite set Y )

Step 1. Let k = 0. The set of permitted contracts Yk is equal to Y and the set of

tentatively accepted contracts Ak is equal to ∅.
Step 2. Every worker w ∈ W \w(Ak) proposes an arbitrarily chosen element of Cw(Yk).

Let Zk+1 be the union of the set of contracts as proposed by w ∈ W \ w(Ak) and the set

Ak.

Step 3. Every firm f ∈ f(Zk+1) tentatively accepts one arbitrarily chosen element
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of Cf (Zk+1). Let Ak+1 be the union of the tentatively accepted elements by the firms in

f(Zk+1).

Step 4. The process stops if Ak+1 = Zk+1. In that case the contracts in Ak+1 are

permanently accepted. Otherwise, we define Yk+1 = Yk \ (Zk+1 \Ak+1). Increase the value

of k by 1 and return to Step 2.

The adjustment process is initiated in Step 1 by setting k equal to 0, considering all

contracts in Yk as permitted, and having no tentatively accepted contracts. In Step 2 every

worker without a contract proposes one of his best contracts within the set of permitted

contracts Yk. Together with the tentatively accepted contracts Ak these contracts are col-

lected in the set Zk+1 out of which the firms tentatively choose an optimal set of contracts

in Step 3. The sets of tentatively accepted contracts are collected in the set Ak+1. If all

contracts in Zk+1 were accepted, then the process stops in Step 4 with set of permanently

accepted contracts Ak+1. Otherwise, the set Zk+1 \Ak+1 is non-empty and these contracts

are removed from Yk, resulting in the set Yk+1. The value of k is increased by 1 and the

process returns to Step 2.

Firms choose from the set of contracts Zk+1 in Step 3 of the adjustment process. The

next lemma implies that when a firm has substitutable preferences, then it cannot improve

its utility by making a choice out of the set of contracts ∪k+1
j=1Zj.

Lemma 5.3: Consider an economy E = (Y , (ui)i∈I) where Y is finite and let (Zj, Aj)

for j = 1, . . . , k, be the sets generated in the first k iterations of the adjustment process in

Definition 5.2. Let f be a firm with substitutable preferences. Then Afk ∈ Cf (∪kj=1Zj).

Proof: Assume k = 1. If f /∈ f(Z1), then it holds that Af1 = ∅ and Cf (Z1) = {∅}. If

f ∈ f(Z1), then we have Af1 ∈ Cf (Z1).

Assume the lemma has been shown for some k ∈ N. We show it to hold for k + 1.

If f /∈ f(Zk+1), then we have Afk+1 = ∅. Since Ak ⊂ Zk+1, it holds that f /∈ f(Ak), so it

follows from the induction hypothesis that Afk = ∅ ∈ Cf (∪kj=1Zj). Since f /∈ f(Zk+1),

we have Cf (∪k+1
j=1Zj) = Cf (∪kj=1Zj), so Afk+1 = ∅ ∈ Cf (∪k+1

j=1Zj). Next consider the

case where f ∈ f(Zk+1). It holds by the induction hypothesis that Afk ∈ Cf (∪kj=1Zj).

By the definition of substitutable preferences, there is A′f ∈ Cf (∪k+1
j=1Zk+1) such that

(A′f ∩ ∪kj=1Zj) ⊂ Afk . Since Afk ⊂ Zk+1, it follows that A′f ⊂ Zk+1, so A′f ∈ Cf (Zk+1). It

follows that Afk+1 ∈ Cf (∪k+1
j=1Zj). 2

Theorem 5.4: Consider an economy E = (Y , (ui)i∈I) where Y is finite and all firms

have substitutable preferences. The adjustment process of Definition 5.2 terminates in a

finite number of steps with a set A of permanently accepted contracts. The set A is a stable
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outcome.

Proof: Suppose the adjustment process does not terminate in a finite number of steps

with a set A of permanently accepted contracts. Then, for every k ∈ N, the set Zk+1 \Ak+1

is non-empty in Step 4 and the cardinality of the set Yk+1 is at least one less than the

cardinality of the set Yk. Since the set Y0 is equal to Y , so has finitely many elements,

this leads to a contradiction. Consequently, the process terminates after a finite number

of iterations k ∈ N with a set A = Ak of permanently accepted contracts.

Since by Step 2 every worker is involved in at most one contract in A and by Step 3,

for every firm f ∈ f(A), Af ∈ Xf , it follows that A is an outcome.

Every element of A has been proposed by a worker in Step 2. It follows that, for every

w ∈ w(A), uw(A) ≥ uw(∅). For every w ∈ W \ w(A), it holds that Aw = ∅. In both cases

it holds that Aw ∈ Cw(A).

For every f ∈ f(A), it holds by Step 3 that Af ∈ Cf (A). For every f ∈ F \ f(A), it

holds that Af = ∅, so trivially Af ∈ Cf (A).

Condition 1 of Definition 4.1 is therefore satisfied by the outcome A.

Suppose there is a non-empty B ⊂ Y \ A such that for every i ∈ I(B), for every

Y i ∈ Ci(A∪B), it holds that Bi ⊂ Y i. We have that f(B) 6= ∅. Let f ∈ f(B). Then Bf is

a blocking set of contracts as well. For every w ∈ w(Bf ) it holds that uw(Bw) > uw(Aw).

For every w ∈ w(Bf ), at some iteration of the adjustment process, Bw has been re-

jected in Step 3 by firm f, so B ⊂ ∪kj=1Zj. Since by Lemma 5.3 Af ∈ Cf (∪kj=1Zj) and

A ∪ B ⊂ ∪kj=1Zj, we have Af ∈ Cf (A ∪ B). Since B ⊂ Y \ A, Af does not contain Bf ,

contradicting our supposition. Consequently, there is no blocking set B and Condition 2

of Definition 4.1 is satisfied by the set A. 2

To show existence of an expectational equilibrium in the general case, we assume that

Y is a metric space with metric d : Y ×Y → R. For every y ∈ Y , for every ε > 0, we define

the open ε ball around y by Bε(y) = {y′ ∈ Y | d(y′, y) < ε}.
The set of contracts that are acceptable for a worker w ∈ W is given by

Y
w

+ = {y ∈ Y w | uw({y}) ≥ uw(∅)}.

The collection of sets of contracts that are acceptable for a firm f ∈ F and that consist

entirely of contracts that are acceptable for the workers is given by

Xf
+ = {Y f ∈ Xf | Y f ⊂ ∪w∈WY

w

+ and uf (Y f ) ≥ uf (∅)}.

For every f ∈ F, for every w ∈ W, the set of contracts that could be signed between f and

w as part of a set of contracts in Xf
+ is given by

Y
fw

+ = {y ∈ Y w

+ | ∃Y f ∈ Xf
+ such that y ∈ Y f}.
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For our existence result, we will assume the sets Y
fw

+ to be compact and utility functions

of firms and workers to be continuous.

Theorem 5.5: Consider an economy E = (Y , (ui)i∈I) where Y is a metric space, for

every f ∈ F, for every w ∈ W, Y fw

+ is compact, uf and uw are continuous, and all firms

have substitutable preferences. Then the economy E has an expectational equilibrium.

Proof: As a consequence of Corollary 4.4, it is sufficient to show that E has a stable

outcome. To do so, for every f ∈ F, for every w ∈ W, we approximate the set Y
fw

+ by

a finite set of contracts. Let some f ∈ F, w ∈ W, and ε > 0 be given. Consider the

open cover {Bε(y) | y ∈ Y
fw

+ } of Y
fw

+ . Since every set Y
fw

+ is compact, the open cover

{Bε(y) | y ∈ Y fw

+ } has a finite subcover {Bε(y) | y ∈ Ỹ fw}, where Ỹ fw is a finite set of

contracts in Y
fw

+ . We apply the adjustment process of Definition 5.2 to the finite set of

contracts Ỹ = ∪f∈F ∪w∈W Ỹ fw. By Theorem 5.4, the adjustment process terminates with

a stable outcome A of the economy E = (Ỹ , (ui)i∈I).

Consider a sequence (εn)n∈N of positive real numbers that converges to 0. For every

n ∈ N, let Ỹn be a finite set of contracts as defined in the previous paragraph, and let An

be the resulting stable outcome of the economy En = (Ỹn, (u
i)i∈I). By listing the, potentially

empty, contracts of the workers, we can represent every An as an element of the set∏
w∈W

(∪f∈FY
fw

+ ∪ {∅}).

Since the set F is finite, we can assume without loss of generality that, for every w ∈ W,
there exists f ∈ F such that either, for every n ∈ N, ∅ 6= Awn ⊂ Y

f
or, for every n ∈ N,

Awn = ∅. Since the set
∏

w∈W (∪f∈FY
fw

+ ∪ {∅}) is compact, the sequence (An)n∈N has a

convergent subsequence, with limit, say A. The remainder of the proof verifies that A is a

stable outcome of the economy E = (Y , (ui)i∈I).

It clearly holds that A is an outcome. For every worker w ∈ W, it holds by continuity

that uw(A) ≥ uw(∅). For every n ∈ N, An is a stable outcome of the economy En =

(Ỹn, (u
i)i∈I), so by Condition 1 of Definition 4.1, for every f ∈ F, Afn ∈ Cf (An), and we

have by continuity of uf that Af ∈ Cf (A). We have shown that A satisfies Condition 1 of

Definition 4.1.

Suppose there is a non-empty B ⊂ Y \ A such that for every i ∈ I(B), for every

Y i ∈ Ci(A ∪ B), it holds that Bi ⊂ Y i. We have that f(B) 6= ∅. Let f ∈ f(B) and let

Y f ∈ Cf (A ∪ B). Then Bf is a blocking set of contracts as well. For every w ∈ w(Bf ) it

holds that uw(Bw) > uw(Aw). Moreover, it holds that uf (Y f ) > uf (Af ). By continuity of

uf , every y ∈ Y f belongs to Y
fw(y)

+ .

For every n ∈ N, for every y ∈ Bf , let ãn(y) ∈ Ỹ
fw(y)
n be such that d(ãn(y), y) < εn

and define Ãn = {ãn(y) | y ∈ Bf} ∪ ∪w∈w(Y f\Bf )A
w
n . It holds that limn→∞ Ã

f
n = Y f . By
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continuity of the utility functions, we have that

limn→∞ u
f (Ãfn) = uf (Y f ) > uf (Af ),

limn→∞ u
w(Ãwn ) = uw(Bw) > uw(Aw), w ∈ w(Bf ).

By continuity of the utility functions, there is n′ ∈ N such that, for every n ≥ n′,

uf (Ãfn) > uf (Afn),

uw(Ãwn ) > uw(Awn ), w ∈ w(Bf ).

We find that, for every n ≥ n′, the non-empty set {ãn(y) | y ∈ Bf} ⊂ Ỹn \An is a blocking

set for An, a contradiction to An being a stable outcome of the economy En = (Ỹn, (u
i)i∈I).

Consequently, A satisfies Condition 2 of Definition 4.1. 2

All the examples presented in Section 2 satisfy the conditions of Theorem 5.5, so an

expectational equilibrium exists in all these examples by virtue of Theorem 5.5.

Any set of sufficient conditions such that the set of stable outcomes is non-empty is a set

of sufficient conditions for the existence of an expectational equilibrium by Corollary 4.4.

For example, in a setting with strict preferences and a finite set of contracts, substitutability

has been weakened to “bilateral substitutes” in Hatfield and Kojima (2010), a condition

that reduces to standard substitutability in matching models with no terms of contract.

Another example is the “gross substitutes and complements” condition in Sun and Yang

(2006), which generalizes substitutability as defined in Kelso and Crawford (1982).3

6 Monetary Economies

We argue in this section that in economies where arbitrary transfers of money are feasible,

as is the case in the assignment model of Shapley and Shubik (1971) presented in Exam-

ple 2.2 and in the job matching with salaries model of Kelso and Crawford (1982) described

in Example 2.4, an expectational equilibrium is equivalent to a standard competitive equi-

librium.

We call an economy E = (Y , (ui)i∈I) a monetary economy if each contract y ∈ Y can

be written as y = (t,m), where m ∈ R is an amount of money that is transferred from the

firm to the worker and t belongs to some finite set of trades T. We have that Y ⊂ T ×R. A

trade t ∈ T covers all non-monetary aspects of the contract, so in particular the identities

of the firm and worker involved in the contract, denoted by f(t) and w(t), respectively. We

use t(y) to denote the trade involved in contract y ∈ Y and m(y) to denote the amount

3In the set-up of Kelso and Crawford (1982), it has been shown by Gul and Stacchetti (1999) that

substitutability is a necessary condition if the class of preferences includes unit demand preferences.
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of money. Given a set of contracts Y ⊂ Y , t(Y ) = {t ∈ T | ∃y ∈ Y such that t(y) = t}
denotes the set of trades related to the set of contracts Y. Without loss of generality, it is

assumed that t(Y ) = T. For t ∈ T, Yt = {m ∈ R | (t,m) ∈ Y } are the possible monetary

amounts associated to contracts in Y with trade t. Given a finite set of contracts Y ⊂ Y ,

M(Y ) =
∑

y∈Y m(y) denotes the total amount of money involved in the set of contracts Y.

Let some monetary economy E = (Y , (ui)i∈I) be given. The utility function of a firm

f ∈ F is strictly monotonic in money if for every Af , A′f ∈ Xf such that t(Af ) = t(A′f )

it holds that uf (Af ) < uf (A′f ) if and only if M(Af ) > M(A′f ). The utility function of a

worker w ∈ W is strictly monotonic in money if for every Aw, A′w ∈ Xw such that t(Aw) =

t(A′w) it holds that uw(Aw) < uw(A′w) if and only if M(Aw) < M(A′w). Reservation values

are said to be bounded if for every f ∈ F there is mf ∈ R such that, for every Af ∈ Xf

with M(Af ) ≥ mf , it holds that uf (Af ) ≤ uf (∅) and for every w ∈ W there is mw ∈ R
such that, for every Aw ∈ Xw with M(Aw) ≤ mw, it holds that uw(Aw) ≤ uw(∅).

The economy E = (Y , (ui)i∈I) is said to be a free-contracting monetary economy if there

is a finite set of trades T such that Y = T × R.

Example 6.1: Let there be a single firm f and a single worker w1. There is a labor

contract t1 under which the firm employs the worker. This contract is completely stan-

dardized as far as the non-monetary aspects are concerned. Utility functions are quasi-

linear in money, with uf ({(t1, 0)}) = 1.1 and uw1({(t1, 0)}) = −0.1. In accordance with

the assumptions made in Section 2, the utility of not signing a contract is equal to 0, so

uf (∅) = uw1(∅) = 0. In the free-contracting monetary economy it holds that

Xf = {{(t1,m)} | m ∈ R} ∪ {∅},
Xw1 = {{(t1,m)} | m ∈ R} ∪ {∅}.

Let (A∗, Q∗, R∗) be an expectational equilibrium.

Suppose A∗ = ∅. It follows that ∅ ∈ δf (Q∗f ), so (−∞, 1.1) ⊂ Q∗t1 as otherwise the

firm would demand a contract with the worker for a wage less than 1.1. It also holds that

∅ ∈ δw1(R∗w1), so (0.1,+∞) ⊂ R∗t1 as otherwise the worker would demand a contract with

the firm at a wage above 0.1. We find that (0.1, 1.1) ⊂ Q∗t1 ∩ R
∗
t1
, a contradiction to the

market transparency required in Condition 3 of Definition 2.6. Consequently, it holds that

A∗ 6= ∅.
We have that for some m∗ ∈ R, A∗ = {(t1,m∗)}. From the requirements that A∗f ∈

δf (Q∗f ) and A∗w1 ∈ δw1(R∗w1), it follows that m∗ ∈ [0.1, 1.1]. It also follows that m∗ /∈ Q∗ft1 ,
m∗ /∈ R∗w1

t1 , (−∞,m∗) ⊂ Q∗ft1 , and (m∗,+∞) ⊂ R∗w1
t1 . By employing Condition 3 of Defini-

tion 2.6, market transparency, we find that for everym∗ ∈ [0.1, 1.1] there is an expectational

equilibrium given by A∗ = {(t1,m∗)}, Q∗ = {t1}×(−∞,m∗), and R∗ = {t1}×(m∗,+∞). 4
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In the expectational equilibrium of Example 6.1, the traded contract involves a wage

equal to m∗ ∈ [0.1, 1.1]. The worker expects that the firm is not willing to trade a contact

with a wage above m∗ and the firm expects that the worker is not willing to trade a contract

with a wage below m∗. This is exactly in accordance with the usual notion of competitive

equilibrium, where buyers expect no supply below the equilibrium price and sellers expect

no demand above the equilibrium price.

In reality, money is not perfectly divisible, but there is a denomination µ > 0 such that

all monetary amounts in contracts are integer multiples of µ, so belong to the set

M(µ) = {m ∈ R | ∃k ∈ Z such that m = kµ}.

The economy E is a discrete free-contracting monetary economy if there is a finite set T

and µ > 0 such that Y = T ×M(µ).

Example 6.2: Consider the discrete free-contracting economy resulting from µ = 1

that corresponds to Example 6.1. It follows that there is a single firm f, a single worker w1,

and a single labor contract t1, standardized as far as non-monetary aspects are concerned.

Utility functions are quasi-linear in money with uf ({(0, t1)}) = 1.1 and uw1({(0, t1)}) =

−0.1. The utility of not signing a contract is equal to 0, so uf (∅) = uw1(∅) = 0. We have

that

Xf = {{(t1,m)} | m ∈ Z} ∪ {∅},
Xw1 = {{(t1,m)} | m ∈ Z} ∪ {∅}.

Consider a set of rationing constraints Q ∈ 2Y . Let p
t1

(Q) be the infimum of the set

M(µ) \ Qt1 , the lowest wage against which firm f expects to be able to hire worker w1.

It holds that p
t1

(Q) = −∞ if M(µ) \ Qt1 6= ∅ and has no minimum, p
t1

(Q) ∈ Z if

M(µ) \Qt1 6= ∅ and the minimum of this set exists, and p
t1

(Q) = +∞ if M(µ) \Qt1 = ∅.
It holds that δf (Qf ) = ∅ if p

t1
(Q) = −∞, δf (Qf ) = {{(t1, pt1(Q))}} if p

t1
(Q) ∈ Z and

p
t1

(Q) ≤ 1, and δf (Qf ) = {∅} if p
t1

(Q) ≥ 2.

Similarly, consider a set of rationing constraints R ∈ 2Y . Let pt1(R) be the supremum of

the set M(µ) \ Rt1 , the highest wage worker w1 expects to receive. It holds that pt1(R) =

+∞ if M(µ) \ Rt1 6= ∅ and has no maximum, pt1(R) ∈ Z if M(µ) \ Rt1 6= ∅ and the

maximum of this set exists, and pt1(R) = −∞ if M(µ)\Rt1 = ∅. It holds that δw1(Rw1) = ∅
if pt1(R) = +∞, δw1(Rw1) = {{(t1, pt1(R))}} if pt1(R) ∈ Z and pt1(R) ≥ 1, and δw1(Rw1) =

{∅} if pt1(R) ≤ 0.

Let (A∗, Q∗, R∗) be an expectational equilibrium.

Suppose A∗ = ∅. It follows that ∅ ∈ δf (Q∗f ), so p
t1

(Q∗) ≥ 2, and therefore

2 ≤ inf M(µ) \Q∗t1 ≤ inf R∗t1 ≤ 1 + supM(µ) \R∗t1 = 1 + pt1(R
∗),
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where the first inequality uses that R∗t1 ⊂ M(µ) \ Q∗t1 . We have derived that pt1(R
∗) ≥ 1.

Since ∅ ∈ δw1(R∗w1), it holds that pt1(R
∗) ≤ 0 and we have obtained a contradiction.

Consequently, it holds that A∗ 6= ∅ and therefore t(A∗) = {t1}.
From t(A∗) = {t1}, we derive that p

t1
(Q∗) ≤ 1, so from A∗f ∈ δf (Q∗f ), we have that

M(A∗) ≤ 1. At the same time, it holds that pt1(R
∗) ≥ 1, so from A∗w1 ∈ δw1(R∗w1), we have

that M(A∗) ≥ 1. We conclude that M(A∗) = p
t1

(Q∗) = pt1(R
∗) = 1, so A∗ = {(t1, 1)}. We

show next that Q∗ and R∗ are uniquely determined as well.

Suppose there is m ∈ Q∗t1 such that m > 1. Since Q∗ ∩ R∗ = ∅, we have that m ∈
M(µ) \ R∗t1 , so pt1(R

∗) ≥ 2, leading to a contradiction with pt1(R
∗) = 1. Consequently,

since A∗ ∩ Q∗ = ∅ and M(A∗) = 1, we have that Q∗t1 ⊂ (−∞, 0] ∩ Z. Now it follows that

Q∗t1 = (−∞, 0] ∩ Z, since otherwise the firm would demand a contract with a wage below

1.

Suppose there is m ∈ R∗t1 such that m < 1. Since Q∗∩R∗ = ∅, we have that m ∈M(µ)\
Q∗t1 , so p

t1
(Q∗) ≤ 0, a contradiction with p

t1
(Q∗) = 1. Consequently, since A∗∩R∗ = ∅ and

M(A∗) = 1, we have that R∗t1 ⊂ [2,+∞)∩Z. Now it follows that R∗t1 = [2,+∞)∩Z, since

otherwise the worker would demand a contract with a wage above 1.

It is easy to check that (A∗, Q∗, R∗) indeed satisfies the conditions of Definition 2.6, so

is an expectational equilibrium. 4

Example 6.2 considers a discrete free-contracting monetary economy. The primitives

are the same as in Example 6.1, except that there is a smallest unit of account equal to 1.

There is now a unique expectational equilibrium where the labor of the worker is traded

against a price of 1. The firm expects that it is not possible to hire the worker against a

lower wage and the worker expects that the firm is not willing to offer a better wage.

For a monetary economy E , we can also define the notion of a Walrasian equilibrium.

Firms and workers optimize utility while taking prices for trades p ∈
∏

t∈T Y t as given.

The budget set of a firm f ∈ F is given by

Bf (p) = {Af ∈ Xf | ∀y ∈ Af , m(y) = pt(y)}, p ∈
∏
t∈T

Y t.

The demand correspondence Df of firm f is defined by

Df (p) = arg max
Af∈Bf (p)

uf (Af ), p ∈
∏
t∈T

Y t.

Similarly, the budget set of a worker w ∈ W is given by

Bw(p) = {Aw ∈ Xw | ∀y ∈ Aw, m(y) = pt(y)}, p ∈
∏
t∈T

Y t,
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and the demand correspondence Dw of worker w by

Dw(p) = arg max
Aw∈Bw(p)

uw(Aw), p ∈
∏
t∈T

Y t.

We have followed the usual convention and write Bf , Bw, Df , and Dw as a function of the

entire price vector p. It is clearly sufficient to restrict attention to those prices that belong

to trades that the agent is part of.

Definition 6.3: A Walrasian equilibrium of the monetary economy E = (Y , (ui)i∈I)

is an element (A∗, p∗) ∈ A×
∏

t∈T Y t such that, for every i ∈ I, A∗i ∈ Di(p∗).

Definition 6.3 requires optimization by firms and workers that take prices p∗ ∈
∏

t∈T Y t

as given. The usual market clearing condition in a Walrasian equilibrium is not needed,

since for every contract in A∗ it holds that both the firm and the worker are demanding it.

Example 6.4: Consider the primitives of Example 6.2. It holds that Df (p) =

{{(t1, p)}} if p ≤ 1 and Df (p) = {∅} if p ≥ 2. Also, we have that Dw(p) = {{(t1, p)}}
if p ≥ 1 and Dw(p) = {∅} if p ≤ 0. It is now immediate that (A∗, p∗) ∈ A ×M(µ) is a

Walrasian equilibrium if and only if A∗ = {(t1, 1)} and p∗ = 1. 4

For a given price vector p ∈
∏

t∈T Y t, firms implicitly expect that there is no possibility

to carry out a trade t ∈ T against a price below pt. It therefore makes sense to define the

set of rationing constraints Q(p) by

Q(p) = {y ∈ Y | m(y) < pt(y)}.

Similarly, for a given price vector p ∈
∏

t∈T Y t, workers implicitly expect that it is not

feasible to receive a wage above pt for trade t. We define the set of demand rationing

constraints R(p) by

R(p) = {y ∈ Y | m(y) > pt(y)}.

Theorem 6.5: Let (A∗, p∗) be a Walrasian equilibrium of the monetary economy E =

(Y , (ui)i∈I). Then (A∗, Q(p∗), R(p∗)) is an expectational equilibrium of E .
Proof: We define Q∗ = Q(p∗) and R∗ = R(p∗) and show that (A∗, Q∗, R∗) satisfies

the three conditions of Definition 2.6.

Suppose there is f ∈ F such that A∗f /∈ δf (Q∗f ). Then there is Af ∈ βf (Q∗f ) such

that uf (Af ) > uf (A∗f ). Since ∅ ∈ βf (Q∗f ), it holds that uf (A∗f ) ≥ 0, so uf (Af ) > 0 and
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Af 6= ∅. Let

Ãf = {(t,m) ∈ t(Af )× R | m = p∗t}

be the contracts in Af where the monetary part of the contract has been replaced by the

Walrasian equilibrium price. Since, for every t ∈ T, p∗t ∈ Y t, it holds that Ãf ∈ Xf . It

is then immediate that Ãf ∈ Bf (p∗). Using the definition of Q∗, we have that M(Ãf ) ≤
M(Af ), so uf (Ãf ) ≥ uf (Af ) > uf (A∗f ), leading to a contradiction with A∗f ∈ Df (p∗).

Consequently, it holds that, for every f ∈ F, A∗f ∈ δf (Q∗f ).
An analogous argument can be used to show that, for every w ∈ W, A∗w ∈ δw(R∗w).

It follows immediately from the definition of Q∗ and R∗ that Q∗ ∩R∗ = ∅.
We have shown that (A∗, Q∗, R∗) is an expectational equilibrium of E . 2

The result of Theorem 6.5 applies to any monetary economy, so is not restricted to the

free-contracting monetary economy or the discrete free-contracting monetary economy.

When is an expectational equilibrium (A∗, Q∗, R∗) a Walrasian equilibrium? Then there

should be a price system such that all markets clear. For every contract y that belongs

to A∗, the natural candidate for the price is m(y). The firm is willing to demand and the

worker is willing to supply at that price. The next result shows that market clearing prices

can always be found in a free-contracting monetary economy.

Theorem 6.6: Let E = (Y , (ui)i∈I) be a free-contracting monetary economy with con-

tinuous utility functions and let (A∗, Q∗, R∗) be an expectational equilibrium of E . Then

there is p∗ ∈ RT such that (A∗, p∗) is a Walrasian equilibrium of E .
Proof: We first define prices p∗ ∈ RT . To do so, we divide T in five mutually exclusive

subsets T1, . . . , T5. The set of trades that are part of the expectational equilibrium outcome

are denoted by T1. The set of trades that are not part of an expectational equilibrium

outcome, but for which there is an amount of money for which neither the firm nor the

worker involved expects rationing is given by T2. The trades in T3, T4, and T5 are such that

for every amount of money either the firm or the worker expects rationing. Trades in T3

are such that both the worker and the firm expect rationing for some amounts of money,

for trades in T4 the firm never expects rationing, and for trades in T5 the worker never

expects rationing. More formally, we have

T1 = t(A∗),

T2 = {t ∈ T \ t(A∗) | Q∗t ∪R∗t 6= R},
T3 = {t ∈ T | Q∗t 6= ∅, R∗t 6= ∅, and Q∗t ∪R∗t = R},
T4 = {t ∈ T | R∗t = R},
T5 = {t ∈ T | Q∗t = R}.
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For every t ∈ T1, let p∗t = m, where m is such that (t,m) ∈ A∗. For every t ∈ T2, choose an

element p∗t in R\(Q∗t ∪R∗t ). For every t ∈ T3, choose an element p∗t in cl(Q∗t )∩cl(R∗t ), where

cl denotes the closure of a set. Since R is connected, it follows that cl(Q∗t ) ∩ cl(R∗t ) 6= ∅.
For every t ∈ T4, define p∗t = mw(t).

For trades in T5 we choose the price to be sufficiently high such that a contract for that

price is never chosen by the firm involved. More precisely, for every f ∈ F, recall that T f

are the trades in T involving firm f and define

m̃f =
∑

t∈(T1∪T2∪T3∪T4)∩T f

max{0,−p∗t},

where we use the convention that the sum over the empty set is zero. For every t ∈ T5, we

define p∗t = m̃f + max{0,mf}.
We now verify that (A∗, p∗) satisfies the three conditions of Definition 6.3.

Let some f ∈ F be given. By the definition of p∗t for t ∈ T1, it follows immediately that

A∗f ∈ Bf (p∗).

Suppose A∗f /∈ Df (p∗), so there is Af ∈ Bf (p∗) such that uf (Af ) > uf (A∗f ). If there is

t ∈ T5 such that t ∈ t(Af ), then

M(Af ) =
∑

t∈t(Af ) p
∗
t

=
∑

t∈(T1∪T2∪T3∪T4∪T5)∩t(Af ) p
∗
t

≥ −m̃f +
∑

t∈T5∩t(Af ) p
∗
t

≥ −m̃f + m̃f + max{0,mf}
≥ mf ,

so uf (Af ) ≤ uf (∅) ≤ uf (A∗f ). It follows that t(Af ) ∩ T5 = ∅. For every ε > 0, for every

t ∈ t(A∗f )∩ T3, from the fact that p∗t ∈ cl(R∗t ), there exists p̃t ∈ R∗t such that |p̃t− p∗t | ≤ ε.

From Condition 3 in Definition 2.6 of an expectational equilibrium, we have that p̃t /∈ Q∗t .
We define

Ãf = {y ∈ Af | t(y) /∈ T3} ∪ {y ∈ Af | t(y) ∈ T3 and m(y) = p̃t(y)},

so Ãf results from Af by changing the price of trades t in t(Af ) ∩ T3 from p∗t to p̃t. Since

Ãf ∩ Q∗f = ∅, it holds that Ãf ∈ βf (Q∗f ). By continuity of uf it holds that for ε > 0

sufficiently small, uf (Ãf ) > uf (A∗f ), contradicting that A∗f ∈ δf (Q∗f ). Consequently, it

holds that A∗f ∈ Df (p∗).

Let some w ∈ W be given. By the definition of p∗t for t ∈ T1, it follows immediately

that A∗w ∈ Bw(p∗).

Suppose A∗w /∈ Dw(p∗), so there is Aw = {(t, p∗t )} ∈ Bw(p∗) such that uw({(t, p∗t )}) >
uw(A∗w). Since Aw 6= A∗w, it holds that t /∈ T1. From Aw /∈ βw(R∗w), it follows that p∗t ∈ R∗t ,
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so t /∈ T2 ∪T5. If t ∈ T4, then p∗t = mw, so it holds that uw(Aw) ≤ uw(∅) ≤ uw(A∗w), so the

only possibility is that t ∈ T3.
Suppose t ∈ T3. From Aw /∈ βw(R∗w), it follows that p∗t ∈ R∗t . Since p∗t ∈ cl(Q∗t ), for

every ε > 0, there exists p̃t ∈ Q∗t such that |p̃t−p∗t | ≤ ε. From Condition 3 in the definition

of an expectational equilibrium, we have that p̃t /∈ R∗t . It follows that {(t, p̃t)} ∈ βw(R∗w)

and, by continuity of uw, for ε > 0 sufficiently small, uw({(t, p̃t)}) > uw(A∗w), leading to a

contradiction. Consequently, it holds that t /∈ T3.
We conclude that A∗w ∈ Dw(p∗).

The final condition of a Walrasian equilibrium, for every t ∈ T, p∗t ∈ Y t, follows imme-

diately from the fact that E is a free-contracting monetary economy, which implies that

Y t = R. 2

Under the conditions in Theorem 6.6, we obtain an equivalence between expectational

equilibria and Walrasian equilibria. These conditions do not require substitutability, but

only continuity of utility functions and the absence of restrictions on monetary transfers

that are allowed. These conditions are for instance satisfied in the set-up of Sun and Yang

(2004), where utility functions are quasi-linear and satisfy the gross substitutes and comple-

ments condition. Sun and Yang (2004) demonstrate the existence of Walrasian equilibria,

which are equivalent to expectational equilibria by Theorems 6.5 and 6.6.

Example 6.7: We take the primitives of Example 6.2, but now introduce a second

worker, w2. The labor contract under which firm f employs worker w2 is denoted by

t2. The firm slightly prefers w2 over w1, u
f (t2, 0) = 1.2, whereas uw2(t2, 0) = −0.2. The

utility of w2 when not signing a contract is uw2(∅) = 0. The firm needs only one worker,

uf ({(t1, 0), (t2, 0)}) = uf ({(t2, 0)}) = 1.2. As in Example 6.2, we study the discrete free-

contracting economy. We argue next that this economy has no Walrasian equilibrium.

Suppose (A∗, p∗) ∈ A×
∏

t∈T Y t is a Walrasian equilibrium of the economy. There are

four possibilities: Case 1. t(A∗) = ∅, Case 2. t(A∗) = {t1}, Case 3. t(A∗) = {t2}, and

Case 4. t(A∗) = {t1, t2}. We show that each of these cases leads to a contradiction.

Case 1. t(A∗) = ∅.
Optimization by workers implies that p∗t1 ≤ 0 and p∗t2 ≤ 0. Signing a contract with

worker w1 against a wage p∗t1 is now preferred by the firm to not signing a contract, a

contradiction with ∅ ∈ Df (p∗).

Case 2. t(A∗) = {t1}.
Optimization by workers implies that p∗t1 ≥ 1 and p∗t2 ≤ 0. Since

uf (A∗f ) ≤ 1.1− 1 < 1.2 ≤ uf ({(t2, p∗t2)}),

it follows that {(t1, p∗t1)} /∈ D
f (p∗), a contradiction to (A∗, p∗) being a Walrasian equilib-
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rium.

Case 3. t(A∗) = {t2}.
Optimization by workers implies that p∗t1 ≤ 0 and p∗t2 ≥ 1. Since

uf (A∗f ) ≤ 1.2− 1 < 1.1 ≤ uf ({(t1, p∗t1)}),

it follows that {(t2, p∗t2)} /∈ D
f (p∗), a contradiction to (A∗, p∗) being a Walrasian equilib-

rium.

Case 4. t(A∗) = {t1, t2}.
Optimization by workers implies that p∗t1 ≥ 1 and p∗t2 ≥ 1. Since

uf (A∗f ) ≤ 1.2− 2 < 0 = uf (∅),

the firm is better off by not signing any contract, leading to a contradiction.

We conclude that the economy does not have a Walrasian equilibrium. 4

The reason that the economy of Example 6.7 does not have a Walrasian equilibrium

is the existence of a smallest unit of account, µ. If prices could be any real number, then

there is a Walrasian equilibrium with prices p∗ ∈ RT where firm f signs a contract with

worker w2. In order to weakly improve upon not signing a contract, it should hold that

p∗t2 ∈ [0.2, 1.2]. To ensure the firm doesn’t hire worker w1 instead of w2, it should hold that

p∗t1 ≥ p∗t2−0.1. To make it rational for worker w1 not to demand a labor contract, it should

hold that p∗t1 ≤ 0.1. Without a smallest unit of account, Walrasian equilibrium prices are

unique and equal to (p∗t1 , p
∗
t2

) = (0.1, 0.2). These prices also admit a Walrasian equilibrium

where the firm f contracts with worker w1. Walrasian equilibrium prices are unique, but

the allocation is not in this particular case.

We show that for the primitives of Example 6.7, expectational equilibrium does not

suffer from existence issues.

Example 6.8: We consider the primitives of Example 6.7 and analyze the concept of

expectational equilibrium. We argue that there is a unique expectational equilibrium,

where firm f hires worker w2 and both sign the contract (t2, 1). To be more precise, this

expectational equilibrium is obtained by setting

A∗ = {(t2, 1)},
Q∗ = ({t1} × ((−∞, 0] ∩ Z)) ∪ ({t2} × ((−∞, 0] ∩ Z)),

R∗ = ({t1} × ([1,+∞) ∩ Z)) ∪ ({t2} × ([2,+∞) ∩ Z)).

The firm has the choice between not signing a contract, hiring w1 against a wage at least

equal to 1, or hiring w2 against a wage at least equal to 1. Hiring w2 against a wage equal
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to 1 is optimal for firm f. Worker w1 has the choice between not signing a contract or

working for firm f against a wage less than or equal to 0. The optimal choice of w1 is not

to sign a contract. Worker w2 has the choice between not signing a contract or working

for firm f against a wage less than or equal to 1. Signing a contract with firm f against

a wage equal to 1 is clearly optimal for w2. It is immediately verified that Q∗ ∩ R∗ = ∅.
All conditions of Definition 2.6 are met, so (A∗, Q∗, R∗) is an expectational equilibrium. 4

For any denomination µ, it holds that the discrete free-contracting monetary economies

corresponding to the assignment model of Shapley and Shubik (1971) in Example 2.2 and

the job matching with salaries model of Kelso and Crawford (1982) satisfy substitutability.

Since also the other conditions in Theorem 6.5 are met, we conclude that expectational

equilibria exist in such economies, whereas Walrasian equilibria clearly may not.

7 Economies with Price Controls

For economies in which all commodities are perfectly divisible, there is an extensive lit-

erature on competitive equilibrium under price controls, starting with the contributions

by Bénassy (1975), Drèze (1975), and Younès (1975). In the presence of price controls,

Walrasian equilibria often fail to exist as it can easily be the case that every Walrasian

equilibrium violates the restrictions as imposed by the price controls. Hatfield, Plott, and

Tanaka (2012, 2016) therefore advocate to use the matching approach in the analysis.

Herings (2018) studies the model of Example 2.3 and adapts the concept by Drèze (1975)

to one-to-one matching models subject to price controls. We now extend this concept to

monetary economies as defined in Section 6.

The economy E = (Y , (ui)i∈I) is said to be a monetary economy subject to price controls

if there is a finite set of trades T, a vector of price floors p ∈ ({−∞} ∪ R)T , and a vector

of price ceilings p ∈ (R ∪ {+∞})T such that p ≤ p and

Y = {(t,m) ∈ T × R | p
t
≤ m ≤ pt}.

The free-contracting monetary economy in Section 6 results as the special case where, for

every t ∈ T, p
t

= −∞ and pt = +∞. All the examples in Section 2 are special cases as

well. As an illustration, one obtains the marriage problem of Gale and Shapley (1962)

in Example 2.1 by taking T = F ×W, for every t ∈ T, p
t

= pt = 0, and defines utility

functions such that firms never want to hire more than one worker.

We define the notion of a Drèze equilibrium for a monetary economy subject to price

controls. Firms and workers optimize utility while taking prices and rationing constraints

(p, q, r) ∈ RT × {0, 1}T × {0, 1}T as given. Consider some t ∈ T. The interpretation of
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qt = 0 is that firm f(t) experiences no rationing in trade t, whereas qt = 1 means that firm

f(t) is rationed on trade t. Similarly, rt = 0 means that worker w(t) expects no rationing

for trade t, whereas in case rt = 1 worker w(t) is rationed on trade t. The budget set of a

firm f ∈ F is given by

Bf (p, q) = {Af ∈ Xf | ∀y ∈ Af , m(y) = pt(y) and qt(y) = 0}, p ∈ RT , q ∈ {0, 1}T .

The demand correspondence Df of firm f is defined by

Df (p, q) = arg max
Af∈Bf (p,q)

uf (Af ), p ∈ RT , q ∈ {0, 1}T

Similarly, the budget set of a worker w ∈ W is given by

Bw(p, r) = {Aw ∈ Xw | ∀y ∈ Aw, m(y) = pt(y) and rt(y) = 0}, p ∈ RT , r ∈ {0, 1}T ,

and the demand correspondence Dw of worker w by

Dw(p, r) = arg max
Aw∈Bw(p,r)

uw(Aw), p ∈ RT , r ∈ {0, 1}T .

To simplify notation, we have written Bf , Bw, Df , and Dw as functions of the entire

vectors p, q, and r. It suffices to restrict attention to those components of these vectors

that correspond to the trades the agent is involved in.

The definition of Drèze equilibrium is now as follows, where the set [p, p] denotes the

set of price vectors in between the price floors p and the price ceilings p.

Definition 7.1: A Drèze equilibrium of the monetary economy subject to price con-

trols E = (Y , (ui)i∈I) is an element (A∗, p∗, q∗, r∗) ∈ A × [p, p] × {0, 1}T × {0, 1}T such

that:

1. For every f ∈ F, A∗f ∈ Df (p∗, q∗).

2. For every w ∈ W, A∗w ∈ Dw(p∗, r∗).

3. For every t ∈ T, if p∗t < pt, then q∗t = 0.

4. For every t ∈ T, if p∗t > p
t
, then r∗t = 0.

5. For every t ∈ T, q∗t = 0 or r∗t = 0.

The first two conditions in Definition 7.1 reflect standard optimization by the firms and

the workers. Firms and workers only need to know the given prices and their individual

rationing scheme and need not consider the other individuals in making their decisions.
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Condition 3 states that whenever the price of a trade t is upwards flexible, i.e., strictly

below the price ceiling pt, then there is no rationing of firm f(t). Similarly, Condition 4

states that whenever the price of a trade t is downwards flexible, i.e., strictly above the

price floor p
t
, then there is no rationing of worker w(t). Condition 5 expresses that markets

are transparent. There is no simultaneous rationing of workers and firms for a given trade

t.

In the special case where all price floors are equal to −∞ and all price ceilings are

equal to +∞, Definition 7.1 of a Drèze equilibrium reduces to Definition 6.3 of a Walrasian

equilibrium. The concept of an expectational equilibrium is richer, since it expresses expec-

tations for every possible contract, whereas a Drèze equilibrium only involves expectations

for the contract where the price of the trade is equal to the equilibrium price.

Example 7.2: Consider the primitives of Example 6.1, but assume that there is a

legal minimum wage equal to 1, which has to be respected by any contract the firm and

the worker sign. In the resulting monetary economy subject to price controls it holds that

Xf = {{(t1,m)} | m ∈ [1,+∞)} ∪ {∅},
Xw1 = {{(t1,m)} | m ∈ [1,+∞)} ∪ {∅}.

Since there is no price ceiling on the wage of the worker, by Condition 3 of Definition 7.1

it holds that q∗t1 = 0, so the firm expects no rationing. Potentially, there are two types of

Drèze equilibria. One where the worker is not rationed and one where the worker is.

Consider Drèze equilibria of the first type, so without any rationing. These are simply

the Walrasian equilibria of the economy with the worker’s wage greater than or equal

to the minimum wage, and therefore given by (A∗, p∗, q∗, r∗) such that A∗ = {(t1, p∗)},
p∗ ∈ [1, 1.1], q∗ = 0, and r∗ = 0. At a wage of 1.1 the firm is indifferent between hiring and

not hiring the worker. However, the worker takes the wage 1.1 as given and is supplying the

contract (t1, 1.1). Therefore, there is no Drèze equilibrium without rationing and without

trade.

Next we consider Drèze equilibria of the second type, so with rationing of the worker,

i.e. r∗ = r∗t1 = 1. Trivially, the optimal choice for the worker is now to stay inactive, i.e.

not sign any contract. It follows from Condition 4 of Definition 7.1 that the wage p∗ is

equal to the legal minimum wage p∗
t1

= 1. At this wage, the firm demands the contract

(t1, 1), so there is no such equilibrium.

Since all Drèze equilibria are Walrasian equilibria it holds by Theorem 6.5 that for

every Drèze equilibrium (A∗, p∗, q∗, r∗) there is an expectational equilibrium (A∗, Q∗, R∗)

with Q∗ = Q(p∗) = {y ∈ Y | m(y) < p∗t(y)} = {(t1,m) | m < p∗t1} and R∗ = R(p∗) =

{y ∈ Y | m(y) > p∗t(y)} = {(t1,m) | m > p∗t1}. It can be verified that there are no other

expectational equilibria.
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Assume now that the legal minimum wage is raised to 2. We have that

Xf = {{(t1,m)} | m ∈ [2,+∞)} ∪ {∅},
Xw1 = {{(t1,m)} | m ∈ [2,+∞)} ∪ {∅}.

As long as the wage is above 2, then rationing of the worker is not allowed by Condition 4 of

Definition 7.1. At such a wage, the worker will demand the contract, whereas the firm will

not, and there is no equilibrium. At a wage of 2, we obtain an equilibrium with rationing

of the worker, r∗t1 = 1, and both the worker and the firm not expressing demand for the

contract. The worker because of rationing and the firm because of the wage that is too

high. The worker is unemployed and rationally expects no employment at a wage of 2.

There cannot be an expectational equilibrium involving trade, since the firm is never

going to demand a contract with a wage greater than or equal to 2. All expectational

equilibria therefore have the outcome A∗ = ∅. To make it optimal for the worker not to

demand any contract, it should be that R∗ = Y . By Condition 3 of Definition 2.6, it follows

that the firm faces no restrictions, Q∗ = ∅. Since every contract in Y involves a wage above

the productivity of the worker, the firm optimally demands no contract. There is a unique

expectational equilibrium with the same outcome as the Drèze equilibrium. 4

For given prices p ∈ [p, p], firms implicitly expect that there is no possibility to carry

out a trade t ∈ T against a price below pt. If, moreover, qt = 1, then also trade at price

pt is expected to be impossible, and by Condition 3 of Definition 7.1, pt = pt. In order to

obtain an expectational equilibrium, it therefore makes sense to define the set of rationing

constraints Q(p, q) by

Q(p, q) = {y ∈ Y | m(y) < pt(y) if qt(y) = 0 and m(y) ≤ pt(y) if qt(y) = 1}.

Analogously, for given prices p ∈ [p, p], workers implicitly expect that it is not feasible to

receive a wage above pt for trade t. If, moreover, rt = 1, then also trade at price pt is

expected to be impossible, and by Condition 4 of Definition 7.1, pt = p
t
. We define the set

of demand rationing constraints R(p, r) by

R(p, r) = {y ∈ Y | m(y) > pt(y) if rt(y) = 0 and m(y) ≥ pt(y) if rt(y) = 1}.

Theorem 7.3: Let (A∗, p∗, q∗, r∗) be a Drèze equilibrium of the monetary economy

subject to price controls E = (Y , (ui)i∈I). Then (A∗, Q(p∗, q∗), R(p∗, r∗)) is an expectational

equilibrium of E .
Proof: We define Q∗ = Q(p∗, q∗) and R∗ = R(p∗, q∗) and show that (A∗, Q∗, R∗)

satisfies the three conditions of Definition 2.6.

Suppose there is f ∈ F such that A∗f /∈ δf (Q∗f ). Then there is Af ∈ βf (Q∗f ) such

that uf (Af ) > uf (A∗f ). Since ∅ ∈ βf (Q∗f ), it holds that uf (A∗f ) ≥ 0, so uf (Af ) > 0 and

34



Af 6= ∅. Let

Ãf = {(t,m) ∈ t(Af )× R | m = p∗t}

be the contracts in Af where the monetary part of the contract has been replaced by the

Drèze equilibrium price. For every t ∈ t(A∗), we have q∗t = 0, since q∗t = 1 implies that

Bf (p∗, q∗) does not contain a contract involving trade t. It now follows that Ãf ∈ Bf (p∗, q∗).

Using the definition of Q∗, we have that M(Ãf ) ≤M(Af ), so uf (Ãf ) ≥ uf (Af ) > uf (A∗f ),

leading to a contradiction with A∗f ∈ Df (p∗, q∗). Consequently, it holds that, for every

f ∈ F, A∗f ∈ δf (Q∗f ).
A symmetric argument can be used to show that, for every w ∈ W, A∗w ∈ δw(R∗w).

Suppose Q∗ ∩R∗ 6= ∅. Let (t,m) ∈ Q∗ ∩R∗. By definition of Q∗ and R∗, it follows that

m = p∗t , q
∗
t = 1, and r∗t = 1. This leads to a contradiction with Condition 5 of Definition 7.1.

Consequently, it follows that Q∗ ∩R∗ = ∅.
We have shown that (A∗, Q∗, R∗) is an expectational equilibrium of E . 2

We show next that the converse of Theorem 8.3 holds as well. For every expectational

equilibrium of a monetary economy subject to price controls, there is a Drèze equilibrium

with the same equilibrium outcome. For this direction, we need to assume that utility

functions are continuous.

Theorem 7.4: Let E = (Y , (ui)i∈I) be a monetary economy subject to price controls

with continuous utility functions and let (A∗, Q∗, R∗) be an expectational equilibrium of

E . Then there is (p∗, q∗, r∗) ∈ RT × {0, 1}T × {0, 1}T such that (A∗, p∗, q∗, r∗) is a Drèze

equilibrium of E .
Proof: We first define prices p∗ ∈ RT . To do so, we divide T in five mutually exclusive

subsets T1, . . . , T5. The set of trades that are part of the expectational equilibrium outcome

are denoted by T1. The set of trades that are not part of an expectational equilibrium

outcome, but for which there is an amount of money that respects the price controls and

for which neither the firm nor the worker involved expects rationing is given by T2. The

trades t in T3, T4, and T5 are such that for every amount of money m ∈ [p
t
, pt] either the

firm or the worker expects rationing. Trades in T3 are such that both the worker and the

firm expect rationing for some amounts of money, for trades in T4 the firm never expects
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rationing, and for trades in T5 the worker never expects rationing. More formally, we have

T1 = t(A∗),

T2 = {t ∈ T \ t(A∗) | Q∗t ∪R∗t 6= [p
t
, pt]},

T3 = {t ∈ T | Q∗t 6= ∅, R∗t 6= ∅, and Q∗t ∪R∗t = [p
t
, pt]},

T4 = {t ∈ T | R∗t = [p
t
, pt]},

T5 = {t ∈ T | Q∗t = [p
t
, pt]}.

For every t ∈ T1, let p∗t = m, where m is such that (t,m) ∈ A∗. Moreover, we define

q∗t = r∗t = 0. For every t ∈ T2, choose an element p∗t in [p
t
, pt] \ (Q∗t ∪R∗t ). Again, we define

q∗t = r∗t = 0. For every t ∈ T3, choose an element p∗t in cl(Q∗t ) ∩ cl(R∗t ). Since [p
t
, pt] is

connected, it follows that cl(Q∗t ) ∩ cl(R∗t ) 6= ∅. Again, we define q∗t = r∗t = 0.

For every t ∈ T4 such that p
t
> −∞, define p∗t = p

t
, q∗t = 0, and r∗t = 1. For every

t ∈ T4 such that p
t

= −∞, define p∗t = min{mw(t), pt} and q∗t = r∗t = 0.

For every t ∈ T5 such that pt < +∞, define p∗t = pt, q
∗
t = 1, and r∗t = 0. For trades

t ∈ T5 such that pt = +∞, we choose the price to be sufficiently high such that a contract

for that price is never chosen by the firm involved. More precisely, for every f ∈ F, we

define

m̃f =
∑

t∈(T1∪T2∪T3∪T4)∩T f

max{0,−p∗t}.

For every t ∈ T5 such that pt = +∞, we define p∗t = max{m̃f + max{0,mf}, p
t
} and

q∗t = r∗t = 0.

We now verify that (A∗, p∗, q∗, r∗) satisfies the five conditions of Definition 7.1.

Let some f ∈ F be given. By the definition of p∗t and q∗t for t ∈ T1, it follows immediately

that A∗f ∈ Bf (p∗, q∗).

Suppose A∗f /∈ Df (p∗, q∗), so there is Af ∈ Bf (p∗, q∗) such that uf (Af ) > uf (A∗f ). We

show first that t(Af )∩T5 = ∅. Consider some t ∈ T5. If pt < +∞, then q∗t = 1, so t /∈ t(Af ).
Consider the case where pt = +∞. If there is t ∈ T5 such that t ∈ t(Af ), then

M(Af ) =
∑

t∈t(Af ) p
∗
t

=
∑

t∈(T1∪T2∪T3∪T4∪T5)∩t(Af ) p
∗
t

≥ −m̃f +
∑

t∈T5∩t(Af ) p
∗
t

≥ −m̃f + m̃f + max{0,mf}
≥ mf ,

so uf (Af ) ≤ uf (∅) ≤ uf (A∗f ). It follows that t(Af ) ∩ T5 = ∅. For every ε > 0, for every

t ∈ t(A∗f )∩ T3, from the fact that p∗t ∈ cl(R∗t ), there exists p̃t ∈ R∗t such that |p̃t− p∗t | ≤ ε.

From Condition 3 in Definition 2.6 of an expectational equilibrium, we have that p̃t /∈ Q∗t .
We define

Ãf = {y ∈ Af | t(y) /∈ T3} ∪ {y ∈ Af | t(y) ∈ T3 and m(y) = p̃t(y)},
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so Ãf results from Af by changing the price of trades t in t(Af ) ∩ T3 from p∗t to p̃t. Since

Ãf ∩ Q∗f = ∅, it holds that Ãf ∈ βf (Q∗f ). By continuity of uf it holds that for ε > 0

sufficiently small, uf (Ãf ) > uf (A∗f ), contradicting that A∗f ∈ δf (Q∗f ). Consequently, it

holds that A∗f ∈ Df (p∗, q∗).

Let some w ∈ W be given. By the definition of p∗t and r∗t for t ∈ T1, it follows

immediately that A∗w ∈ Bw(p∗, r∗).

Suppose A∗w /∈ Dw(p∗, r∗). Then there is Aw = {(t, p∗t )} ∈ Bw(p∗, r∗) such that

uw({(t, p∗t )}) > uw(A∗w). Since Aw 6= A∗w, it holds that t /∈ T1. From Aw /∈ βw(R∗w),

it follows that p∗t ∈ R∗t , so t /∈ T2 ∪ T5. If t ∈ T4, then either p
t
> −∞ and r∗t = 1,

contradicting Aw ∈ Bw(p∗, r∗), or p
t

= −∞, so p∗t = min{mw, pt} and it holds that

uw(Aw) ≤ uw(∅) ≤ uw(A∗w), leading to a contradiction as well. The only possibility is that

t ∈ T3.
Suppose t ∈ T3. From Aw /∈ βw(R∗w), it follows that p∗t ∈ R∗t . Since p∗t ∈ cl(Q∗t ), for

every ε > 0, there exists p̃t ∈ Q∗t such that |p̃t−p∗t | ≤ ε. From Condition 3 in the definition

of an expectational equilibrium, we have that p̃t /∈ R∗t . It follows that {(t, p̃t)} ∈ βw(R∗w)

and, by continuity of uw, for ε > 0 sufficiently small, uw({(t, p̃t)}) > uw(A∗w), leading to a

contradiction. Consequently, it holds that t /∈ T3.
We conclude that A∗w ∈ Dw(p∗).

Conditions 3, 4, and 5 of Definition 7.1 follow immediately from our definition of p∗,

q∗, and r∗. 2

8 Conclusion

The connection between concepts like competitive equilibrium where agents optimize taking

the key parameters of the environment as given and concepts like stability where agents

form groups to reallocate their resources has a longstanding tradition in economics. In

matching models where agents can make monetary transfers, the equivalence of the two

approaches is well-known. In the stream of the matching literature where agents cannot

make monetary transfers or where monetary transfers are restricted like in the marriage

problem problem of Gale and Shapley (1962) or the model of matching with contracts

of Hatfield and Milgrom (2005), little was known about such a connection so far. When

discussing the connection between competitive markets and stability in the context of the

marriage model, Shapley and Scarf (1974), p. 35, remark that: “It does not appear to be

possible to set up a conventional market for this model, in such a way that a competitive

price equilibrium will exist and lead to an allocation in the core.”

This paper introduces a new notion of competitive equilibrium, called expectational

equilibrium, in a very general specification of the many-to-one matching with contracts
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model. An important feature of the specification is that the set of contracts is allowed to be

uncountable. At an expectational equilibrium agents have expectations about contracts for

which trade is possible and contracts for which such is not the case. In equilibrium, agents

optimize by signing those contracts that maximize their utility given their expectations

about trading opportunities. In equilibrium, expectations are required to be rational. If

an agent expects a trading constraint for a certain contract, then the agent on the other

side expects no such constraint and is indeed not choosing the contract.

For two special cases of the model without or with limited possibilities to make mon-

etary transfers, school choice as studied by Abdulkadiroğlu, Che, and Yasuda (2015) and

Azevedo and Leshno (2016) and matching under price controls as studied in Herings (2018),

expectational equilibrium leads to the same equilibrium outcomes as the concepts studied

in these two papers, market clearing cutoff and Drèze equilibrium, respectively. For mod-

els with unlimited monetary transfers, expectational equilibrium outcomes coincide with

standard competitive equilibrium outcomes. Expectational equilibrium thereby unifies all

the existing approaches in the literature.

There are several stability concepts in matching models. For the many-to-one model,

there is pairwise stability, stability, the core, and the strong core. Moreover, in general

these concepts make different predictions. Expectational equilibrium is shown to coincide

with stability. This holds under very general conditions. In fact, this equivalence holds for

the entire class of models studied in this paper and neither requires preferences to be strict

nor assumptions like substitutability or continuity.

Existence of expectational equilibrium holds under the same conditions as those for

which the set of stable outcomes is non-empty. A well-known sufficient condition is sub-

stitutability, which is stated in this paper for any two nested sets of contracts that have

finitely many elements. Together with continuity of the utility functions, this leads to an

existence result. Interestingly, we therefore obtain an equilibrium existence result for cases

where money is not required to be perfectly divisible. Already in models of partial equi-

librium with a smallest unit of account, market clearing prices obviously may not exist.

Expectational equilibria do exist in these cases and they make exactly the prediction one

would intuitively expect. More generally, expectational equilibria exist in the assignment

model of Shapley and Shubik (1971) when prices are denominated in a smallest unit of

account, even when valuations are not.

Other classes of models where it might prove fruitful to study expectational equilibria

are those where agents face hard financial constraints. In such models, competitive equi-

libria may not exist, even when preferences are quasi-linear in money and substitutable.

To address these existence issues, Gul, Pesendorfer, and Zhang (2018) introduce random-

ized competitive equilibria and Herings and Zhou (2019) introduce quantity-constrained
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competitive equilibria. It is also promising to study expectational equilibria in matching

models with distributional constraints, see Kamada and Kojima (2015), where existence

of stable outcomes cannot be guaranteed. Nöldeke and Samuelson (2018) show that many

results in matching models with a finite number of agents, carry over to the case with a

continuum of agents. Such issues can also be examined for expectational equilibria.

It is straightforward to formulate the notion of expectational equilibrium to extensions

of many-to-one matching models like many-to-many matching models or matching models

with networks of trading agents. The extension could also cover the case where agents could

choose from uncountable sets of contracts, thereby bringing the matching models close to

standard competitive equilibrium models. Already in the many-to-many case, there are

many cooperative solution concepts, see Echenique and Oviedo (2006), Konishi and Ünver

(2006), and Klaus and Walzl (2009). How expectational equilibria relate to such notions

is an interesting direction for future research.
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