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Cognitive impairment and dementia have an enormous im-
pact on patients and society, and their prevalence is rising. 

The mechanisms underlying cognitive impairment and de-
mentia remain, however, incompletely understood, but may in-
clude arterial stiffness and microvascular dysfunction (MVD).1

Greater arterial stiffness leads to excessive arterial pressure 
and flow pulsatility, which may transmit distally and damage 
the cerebral microcirculation.1 The cerebral microvasculature 
regulates many processes potentially affecting cognition, that 
is, cerebral perfusion, neurogenesis, neurovascular coupling, 

blood-brain barrier permeability, and cerebral autoregulation.2 
Impairment of these processes may lead to neuronal dysfunc-
tion and ischemia, which may ultimately lead to lower cog-
nitive performance.3 In accordance, previous studies4–21 have 
shown an association between greater arterial stiffness and 
worse cognitive performance and incident dementia. Most 
of these studies4–11,14–18,21 focused on carotid-femoral pulse 
wave velocity (cfPWV), a measure of aortic stiffness, but only 
some12–17,19,20 on carotid stiffness. In addition, MVD has been 
associated with cognitive decline and dementia.22 However, 
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Abstract —The mechanisms underlying cognitive impairment are incompletely understood but may include arterial 
stiffness and microvascular dysfunction. In the population-based Maastricht Study, we investigated the association 
between arterial stiffness and cognitive performance, and whether any such association was mediated by microvascular 
dysfunction. We included cross-sectional data of 2544 participants (age, 59.7 years; 51.0% men; 26.0% type 2 diabetes 
mellitus). We used carotid-femoral pulse wave velocity and carotid distensibility coefficient as measures of aortic 
and carotid stiffness, respectively. We calculated a composite score of microvascular dysfunction based on magnetic 
resonance imaging features of cerebral small vessel disease, flicker light-induced retinal arteriolar and venular 
dilation response, albuminuria, and plasma biomarkers of microvascular dysfunction (sICAM-1 [soluble intercellular 
adhesion molecule-1], sVCAM-1 [soluble vascular adhesion molecule-1], sE-selectin [soluble E-selectin], and vWF 
[von Willebrand factor]). Cognitive domains assessed were memory, processing speed, and executive function. A 
cognitive function score was calculated as the average of these domains. Higher aortic stiffness (per m/s) was associated 
with lower cognitive function (β, −0.018 SD [95% CI, −0.036 to −0.000]) independent of age, sex, education, and 
cardiovascular risk factors, but higher carotid stiffness was not. Higher aortic stiffness (per m/s) was associated with a 
higher microvascular dysfunction score (β, 0.034 SD [95% CI, 0.014 to 0.053]), and a higher microvascular dysfunction 
score (per SD) was associated with lower cognitive function (β, −0.089 SD [95% CI, −0.124 to −0.053]). Microvascular 
dysfunction significantly explained 16.2% of the total effect of aortic stiffness on cognitive function. The present study 
showed that aortic stiffness, but not carotid stiffness, is independently associated with worse cognitive performance, 
and that this association is in part explained by microvascular dysfunction.  (Hypertension. 2020;75:1607-1614. DOI: 
10.1161/HYPERTENSIONAHA.119.14307.) • Data Supplement

Key Words: albuminuria ◼ biomarkers ◼ magnetic resonance imaging ◼ microcirculation ◼ risk factors

Associations of Arterial Stiffness With Cognitive 
Performance, and the Role of Microvascular Dysfunction

The Maastricht Study

Sytze P. Rensma, Coen D.A. Stehouwer, Martin P.J. Van Boxtel, Alfons J.H.M. Houben,  
Tos T.J.M. Berendschot, Jaap F.A. Jansen, Casper G. Schalkwijk, Frans R.J. Verhey,  

Abraham A. Kroon, Ronald M.A. Henry, Walter H. Backes, Pieter C. Dagnelie,  
Martin C.J.M. van Dongen, Simone J.P.M. Eussen, Hans Bosma, Sebastian Köhler,  

Koen D. Reesink, Miranda T. Schram, Thomas T. van Sloten

© 2020 American Heart Association, Inc.

Hypertension is available at https://www.ahajournals.org/journal/hyp DOI: 10.1161/HYPERTENSIONAHA.119.14307

Cognitive Impairment

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 3, 2020

mailto:t.vansloten@maastrichtuniversity.nl


1608  Hypertension  June 2020

whether any association between aortic or carotid stiffness 
and worse cognitive performance is explained, or mediated, 
by MVD remains largely unknown.

Microvascular function and structure can be measured 
noninvasively in various organs. These measures include 
magnetic resonance imaging (MRI) features of cerebral small 
vessel disease (CSVD), for example, lower total brain paren-
chyma volume, higher white matter hyperintensity volume, 
and presence of lacunar infarcts and cerebral microbleeds.23 
Previous studies have found an association between lower 
total brain parenchyma volume and presence and severity 
of cerebral small vessel disease,24,25 and lower total brain 
parenchyma volume is, therefore, considered as an impor-
tant measure of cerebral small vessel disease.23 White matter 
hyperintensities and presence of lacunes and cerebral micro-
bleeds are also thought to be closely related to cerebral micro-
vascular dysfunction and damage.23 Other measures are flicker 
light-induced retinal arteriolar and venular dilation response, 
which are also closely linked to the cerebral microvasculature, 
and, thus, may reflect its function26; albuminuria (urinary al-
bumin excretion [UAE])27; and plasma biomarkers of MVD 
(eg, sICAM-1 [soluble intercellular adhesion molecule-1], 
sVCAM-1 [soluble vascular adhesion molecule-1], sE-selec-
tin [soluble E-selectin], and vWF [von Willebrand factor]).28 
To the extent that MVD is a generalized phenomenon, UAE 
and plasma biomarkers of MVD may also reflect cerebral 
MVD.28 Higher concentrations of these plasma biomarkers 
are thought to be derived mainly from the microcirculatory 
endothelium29 and are associated with incident cardiovascular 
disease,30 which makes it plausible that higher concentrations 
of these markers reflect greater microvascular endothelial 
dysfunction. These various measures of MVD (ie, CSVD fea-
tures, retinal arteriolar and venular dilation response, UAE, 
and plasma biomarkers of MVD) can, therefore, be summa-
rized into a MVD composite score. We previously showed that 
such a MVD composite score is associated with worse cogni-
tive performance.2

In view of the above, the aims of the present study were 
to investigate the associations between aortic and carotid stiff-
ness and cognitive performance, and to test whether any such 
associations are statistically mediated by a score of various 
MVD measures, including CSVD features, retinal arteriolar 
and venular dilation response, UAE, and plasma biomarkers 
of MVD.

Materials and Methods
Data are available from The Maastricht Study for any researcher 
who meets the criteria for access to confidential data, and the corre-
sponding author may be contacted to request data.

We used data from The Maastricht Study, an observational pop-
ulation-based cohort study. The rationale and methodology have 
been described previously.31 In brief, the study focuses on the etiol-
ogy, pathophysiology, complications, and comorbidities of diabetes 
mellitus type 2 and is characterized by an extensive phenotyping ap-
proach. Eligible for participation were all individuals aged between 
40 and 75 years and living in the southern part of the Netherlands. 
Participants were recruited through mass media campaigns, the mu-
nicipal registries, and the regional Diabetes Patient Registry via mail-
ings. Recruitment was stratified according to known diabetes mellitus 
type 2 status, with an oversampling of individuals with diabetes 
mellitus type 2 for reasons of efficiency. The present report includes 

cross-sectional data from 3451 participants who completed the base-
line survey between November 2010 and September 2013. The ex-
aminations of each participant were performed within a time window 
of 3 months. The study has been approved by the institutional medi-
cal ethical committee (NL31329.068.10) and the Ministry of Health, 
Welfare, and Sports of the Netherlands (Permit 131088-105234-PG). 
All participants gave written informed consent.

For all measures, participants were asked to refrain from smok-
ing and drinking caffeine-containing beverages 3 hours before the 
measurement. A light meal was allowed until ≥90 minutes before the 
examination.

Arterial Stiffness
A more detailed description of the arterial stiffness measures is pro-
vided in Item S1 in the Data Supplement and has been described previ-
ously.17 We determined cfPWV with the use of applanation tonometry 
(SphygmoCor, Atcor Medical, Sydney, Australia). We assessed local 
carotid arterial properties using an ultrasound scanner with a 7.5-
MHz linear probe (MyLab 70, Esaote Europe B.V., Maastricht, the 
Netherlands). We quantified carotid stiffness by calculating the ca-
rotid distensibility coefficient (carDC). Carotid compliance coeffi-
cient and Young’s elastic modulus were also determined.

Measures of Microvascular Dysfunction
A detailed description all MVD measures is provided in Item S2, and 
has been described previously.2 Brain MRI measurements were imple-
mented from December 2013 onward and were available in 2313 of 
3451 participants (67%). Brain MRI was performed on a 3T MRI 
scanner (Siemens Magnetom Prisma-fit Syngo MR D13D, Erlangen, 
Germany). We evaluated 4 CSVD features, that is, lower total brain 
parenchyma volume, higher white matter hyperintensity volume, and 
presence of lacunar infarcts and cerebral microbleeds. We measured 
retinal arteriolar and venular dilation response to flicker light expo-
sure by the Dynamic Vessel Analyzer (Imedos, Jena, Germany). In 
addition, we assessed UAE in 24-hour urine samples and evaluated 4 
plasma biomarkers of MVD, that is, sICAM-1, sVCAM-1, sE-selec-
tin, and vWF.

Cognitive Performance
We assessed cognitive performance using a concise neuropsycholog-
ical test battery. A detailed description of the domain-specific cog-
nitive function scores is provided in Item S4 and has been described 
previously.17 For statistical efficiency, we constructed a cognitive 
function composite score as follows: we first standardized the test 
scores in the 3 cognitive domains memory, processing speed, and ex-
ecutive function, then averaged these standardized scores, and finally 
standardized this average. We evaluated memory with the Verbal 
Learning Test; processing speed with the Stroop Color-Word Test 
Part I and II, Concept Shifting Test Part A and B, and Letter-Digit 
Substitution Test; and executive function with the Stroop Color-Word 
Test Part III and Concept Shifting Test Part C.

Statistical Analysis
We inversed (multiplying by −1) total brain parenchyma volume, 
and the flicker light-induced retinal arteriolar and venular dilation 
responses so that higher values indicated worse microvascular func-
tion. White matter hyperintensity volume and UAE were log-trans-
formed (base 2) to normalize their skewed distribution.

We summarized the 11 MVD measures (ie, 4 CSVD features, ret-
inal arteriolar and venular dilation responses, UAE, and 4 plasma bio-
markers of MVD) into a MVD score, as done previously.2 The same 
weight was given to each individual MVD measure. We hypothesized 
that each MVD measure is associated with arterial stiffness and cog-
nitive performance according to similar underlying mechanisms. The 
use of a composite score reduces the influence of the biological var-
iability of its components and it reduces the chance of a type 1 error. 
The MVD score was calculated when at least data on one of the 11 
MVD measures were available. The score was calculated as the stan-
dardized average of the individual standardized MVD measures. On 
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average, individuals included in the analysis had data available on 9 
of the 11 measures, and 1178 individuals (46.3%) had data available 
on all 11 measures (Figure S1).

The statistical analysis proceeded in 2 stages. First, we used lin-
ear regression analysis to evaluate associations between cfPWV and 
carDC and the cognitive function composite score. We adjusted for 
the following potential confounders: age, sex, and education (model 
1), additionally for glucose metabolism status, body mass index, 
smoking, alcohol use, total/high-density lipoprotein cholesterol ratio, 
and triglycerides (model 2) and then additionally for mean arterial 
pressure, heart rate, and use of antihypertensive and/or lipid-modify-
ing medication (model 3). We additionally adjusted for prior cardio-
vascular disease, plasma biomarkers of low-grade inflammation, and 
current depression in a separate model (model 4). These factors were 
added in a separate model, because of the risk of overadjustment bias: 
these factors may be confounders but may also mediate the associa-
tions between arterial stiffness, microvascular dysfunction, and cog-
nitive performance. A detailed description of the other covariates and 
the rationale for their inclusion in the models is provided in the Item 
S4. Second, we performed a formal mediation analysis to test the 
hypothesis that MVD explains the association between greater arte-
rial stiffness and worse cognitive performance. The mediation model 
quantifies the degree to which a variable statistically explains the as-
sociation between a determinant and an outcome variable. We used 
bootstrapping (10 000 samples) to calculate bias-corrected 95% CIs 
of the explained associations using the PROCESS statistical pack-
age for PASW statistics.32 The magnitude of the explained association 
was calculated as a percentage of the total association.

We tested interaction terms with age (continuous scale), sex, ed-
ucation, and glucose metabolism status to evaluate whether the asso-
ciation between arterial stiffness and cognitive performance differed 
according to these factors.

We did several additional predefined and post hoc analyses as de-
tailed in the Item S5 in the Data Supplement.

All analyses were performed with PASW software (version 22.0). 
A P value of <0.05 was considered statistically significant.

Results
Figure 1 shows the derivation of the study population. In total, 
2544 participants had data available on arterial stiffness, at least 
one MVD measure, the cognitive function score, and all potential 
confounders. Table 1 shows the characteristics of the study pop-
ulation and according to tertiles of the cognitive function score. 
Characteristics of the individuals excluded from the analyses due 
to missing values are provided in Table S1. On average, excluded 
individuals were older, more often male, had received lower ed-
ucation and had a worse cardiovascular risk profile. The study 
population for the present analyses had a mean age of 59.7 years, 
51.0% were men, 26.0% had diabetes mellitus type 2 (oversam-
pled by design) and 41.5% had received a high education.

Higher cfPWV (per m/s) was associated with a lower cog-
nitive function score (per SD; β, −0.018 [95% CI, −0.036 to 
−0.000]) after adjustment for confounders but without adjust-
ment for the MVD score (Table 2; Model 3). This effect of 
cfPWV on cognitive performance was equivalent to 0.35 years 
of aging for each m/s higher cfPWV. Results were similar 
after additional adjustments for prior cardiovascular disease, 
low-grade inflammation, and current depression (Table 2, 
Model 4). CarDC was not associated with the cognitive func-
tion score after full adjustment for confounders (Table 2).

Mediation analysis showed that higher cfPWV (per m/s) 
was associated with a higher MVD score (per SD; β, 0.034 

Figure 1. Derivation of the study population. 
*Missings not mutually exclusive.
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[95% CI, 0.014 to 0.053]), and that a higher MVD score (per 
SD) was associated with a lower cognitive function score (per 
SD; β, −0.089 [95% CI, −0.124 to −0.053]; Figure 2). When 

we additionally adjusted the association between cfPWV and 
the cognitive function score for the MVD score, the direct as-
sociation was attenuated and no longer statistically significant. 

Table 1. Study Characteristics

Study Characteristics
Total Population 

(n=2544) 

Tertiles of Cognitive Function Score

Lowest (n=848) Middle (n=848) Highest (n=848)

Age, y 59.7±8.1 64.1±6.7 60.2±7.1 54.9±7.7

Men 51.0 (1297) 63.7 (540) 53.2 (451) 36.1 (306)

Education     

    Low 15.4 (393) 29.7 (252) 12.4 (105) 4.2 (36)

    Intermediate 43.1 (1096) 45.3 (384) 45.5 (386) 38.4 (326)

    High 41.5 (1055) 25.0 (212) 42.1 (357) 57.3 (486)

Glucose metabolism status     

    Normal glucose metabolism 58.8 (1496) 42.6 (361) 59.9 (508) 73.9 (627)

    Prediabetes 15.2 (387) 16.7 (142) 15.7 (133) 13.2 (112)

    Type 2 diabetes mellitus 26.0 (661) 40.7 (345) 24.4 (207) 12.9 (109)

Body mass index, kg/m2 26.9±4.4 27.8±4.3 26.9±4.5 26.1±4.1

Current smokers 13.4 (342) 15.9 (135) 12.5 (106) 11.9 (101)

High alcohol consumption (women >7; men >14 U/wk) 26.9 (684) 23.6 (200) 27.0 (229) 30.1 (255)

Total cholesterol/high-density lipoprotein ratio 3.7±1.2 3.8±1.2 3.8±1.2 3.6±1.2

Office mean arterial pressure, mm Hg 96.6±10.2 98.2±10.6 97.1±9.7 94.7±10.1

Heart rate, bpm 62.5±9.3 63.0±9.8 62.0±9.0 62.6±9.0

Antihypertensive medication use 37.7 (959) 53.7 (455) 35.7 (303) 23.7 (201)

Lipid-modifying medication use 35.1 (893) 49.5 (420) 35.1 (298) 20.6 (175)

Prior cardiovascular disease 16.2 (405) 24.5 (204) 14.7 (123) 9.3 (78)

Current depression 3.5 (88) 4.8 (40) 3.6 (30) 2.1 (18)

Plasma biomarkers of low-grade inflammation composite score, SD 0.0±1.0 0.2±0.7 0.0±0.6 −0.2±0.6

Measures of arterial stiffness     

    Carotid-femoral pulse wave velocity, m/s 9.0±2.1 9.7±2.4 8.9±2.0 8.3±1.7

    Carotid distensibility coefficient, 10−3/kPa 14.3±5.1 12.9±4.7 14.2±4.8 15.9±5.3

   Measures of microvascular dysfunction*     

    Microvascular dysfunction score, SD 0.0±1.0 0.4±1.2 −0.1±0.8 −0.3±0.7

    Total brain parenchyma volume, mL 1136±111 1123±113 1146±117 1137±103

    White matter hyperintensity volume, mL 0.2 (0.1–0.8) 0.4 (0.2–1.4) 0.3 (0.1–0.9) 0.1 (0.0–0.4)

    Cerebral microbleeds 12.0 (203) 15.8 (79) 10.9 (64) 9.8 (60)

    Lacunar infarcts 5.3 (91) 6.3 (32) 6.6 (39) 3.2 (20)

    Flicker light-induced arteriolar dilation, % 3.1±2.8 2.7±2.9 3.1±2.8 3.3±2.8

    Flicker light-induced venular dilation, % 3.9±2.2 3.7±2.1 3.9±2.2 4.0±2.3

    Urinary albumin excretion ≥30 mg/24 h 7.5 (190) 12.4 (104) 6.1 (51) 4.1 (35)

    Soluble intracellular adhesion molecule-1, ng/mL 352.6±96.8 372.4±116.3 349.2±85.9 336.4±81.1

    Soluble vascular adhesion molecule-1, ng/mL 425.4±98.1 447.1±111.3 423.1±94.4 406.2±82.1

    Soluble E-selectin, ng/mL 117.1±64.8 130.2±79.1 116.9±55.2 104.1±54.4

    Von Willebrand Factor, % 131.8±47.2 141.4±50.1 131.0±45.7 123.2±43.9

Data presented as mean±SD, median (interquartile range), or n (%).
*The microvascular dysfunction score was calculated when data were available on at least one individual microvascular dysfunction measure. For an explanation of 

the calculation of this score, see text. Data available for total brain parenchyma volume, n=1726; white matter hyperintensity volume, n=1726; cerebral microbleeds, 
n=1697; lacunar infarcts, n=1724; flicker light-induced arteriolar dilation, n=1649; flicker light-induced venular dilation, n=1679; urinary albumin excretion, n=2522; 
soluble intercellular adhesion molecule-1, n=2520; soluble vascular adhesion molecule-1, n=2520; soluble E-selectin, n=2520; von Willebrand factor, n=2517.
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The indirect effect explained by the MVD score was statisti-
cally significant (β, −0.0030 [95% CI, −0.0057 to −0.009]) 
and was 16.2% of the total effect of cfPWV on the cognitive 
function score (Figure 2). CarDC was not associated with a 
higher MVD score, and the MVD score did not statistically 
significantly mediate the association between CarDC and the 
cognitive function score (Figure S2).

We found no interactions with age, sex, education, and 
glucose metabolism status (P values for interaction >0.05).

The results of the additional analyses are given in the Item 
S5 and Tables S2 to S8.

Discussion
In this cross-sectional study, higher aortic stiffness, but not 
carotid stiffness, was associated with worse cognitive perfor-
mance. In addition, the association between aortic stiffness 
and cognitive performance was in part (16.2%) explained or 
mediated by a composite score of various MVD measures, in-
cluding CSVD features, flicker light-induced retinal arteriolar 
and venular dilation response, UAE, and plasma biomarkers 
of MVD.

The study findings are in accordance with the hypothesis 
that higher aortic stiffness increases the risk of worse cogni-
tive performance in part via MVD.3 Higher aortic stiffness 
may lead to cerebral MVD via an increased pulsatile load 
on the microcirculation. This increased load may cause di-
rect microvascular damage and may induce a microvascular 

remodeling response. This response initially serves to limit 
the penetration of the pulsatile load into the microvasculature 
by raising vascular resistance.3 However, this protective re-
sponse may ultimately become unfavorable, leading to cere-
bral hypoperfusion, impaired neurogenesis and vasoreactivity, 
and blood-brain barrier hyperpermeability.

Previous studies have shown associations between higher 
cfPWV with various MVD measures, including MRI features 
of CSVD18 and albuminuria.33,34 In addition, previous stud-
ies have shown an association between various MVD meas-
ures (ie, CSVD features, albuminuria, and plasma biomarkers 
of MVD) and worse cognitive performance,22,35–39 and be-
tween higher cfPWV and worse cognitive performance.4–18,21 
However, only one previous study21 evaluated arterial stiff-
ness, cognitive performance, and MVD at the same time. This 
study found an association between higher cfPWV and worse 
memory and showed that this association was attenuated after 
adjustments for higher white matter hyperintensity volume.21 
The present study extends previous research by showing, with 
use of a formal mediation analysis, that the association be-
tween higher cfPWV and worse cognitive performance is in 
part mediated, or explained, by a composite score of various 
direct and indirect measures of MVD. It thereby provides ad-
ditional evidence consistent with the role of arterial stiffness 
as a contributor to MVD and cognitive decline.

Surprisingly, carotid stiffness was not associated with 
worse cognitive performance in our study, although the 95% 

Table 2. Associations Between Arterial Stiffness and Cognitive Function

Arterial Stiffness Measure 

 Cognitive Function Score, Per SD

Model β (95% CI) P Value

Carotid-femoral pulse wave velocity, m/s 1 −0.032 (−0.048 to −0.016) <0.001

 2 −0.019 (−0.035 to −0.003) 0.02

 3 −0.018 (−0.036 to −0.000) 0.04

 4* −0.019 (−0.037 to −0.001) 0.04

Carotid distensibility coefficient, 10−3/kPa 1 −0.007 (−0.014 to −0.000) 0.04

 2 −0.005 (−0.012 to 0.002) 0.15

 3 −0.004 (−0.012 to 0.003) 0.28

 4* −0.004 (−0.012 to 0.003) 0.32

Model 1: adjusted for age, sex, education, Model 2: Model 1+ glucose metabolism status, body mass index, smoking, alcohol use, total/high-density 
lipoprotein cholesterol ratio and triglycerides, and Model 3: Model 2+ mean arterial pressure, heart rate and use of anti-hypertensive and/or lipid-
modifying medication. Model 4: Model 3+ prior cardiovascular disease, low-grade inflammation, and current depression. *Data on prior cardiovascular 
disease, low-grade inflammation, and current depression available in n=2482. The standardized regression coefficients in model 3 were for carotid-
femoral pulse wave velocity −0.039 (95% CI, −0.078 to −0.001) and for carotid distensibility coefficient −0.021 (95% CI, −0.060 to 0.017).

Figure 2. Association between carotid-femoral 
pulse wave velocity (per m/s) and cognitive 
function (per SD), and the mediating effect 
by microvascular dysfunction. The mediating 
effect by the microvascular dysfunction score 
(per SD) was −0.0030 (95% CI, −0.0057 to 
−0.009), corresponding to 16.2% of the total 
effect of carotid-femoral pulse wave velocity 
on cognitive performance. Solid lines indicate 
statistically significant associations; dashed 
lines nonstatistically significant associations. 
Adjustments as in Table 2, model 3.
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CIs of the effect estimates do not exclude the possibility of 
such an association. In contrast, we previously found, in a 
smaller dataset of The Maastricht Study of the first 866 indi-
viduals included in the study, that is, from November 2010 
to March 2012, that greater carotid stiffness was weakly as-
sociated with worse cognitive performance.17 We cannot 
fully explain this difference, although it may be related to 
the slightly different characteristics of the 2 data samples. 
Although individuals included in the first study period were 
of the same age (60 years), they were more often men (54.6% 
versus 51.0%) and had a slightly worse cardiovascular risk 
profile, that is, had more often type 2 diabetes mellitus (27.2% 
versus 26.0%), were more often current smokers (15.9% 
versus 13.4%), and more often had high alcohol consump-
tion (30.9% versus 26.9%) and prior cardiovascular disease 
(17.2% versus 16.2%). Although both analyses adjusted for 
these potential confounders, we cannot exclude the possibility 
of residual confounding. In addition, we cannot exclude that 
the difference in results are due to the play of chance. Seven 
other studies12–16,19,20 evaluated the association between carotid 
stiffness and cognitive performance or dementia and also had 
inconsistent results. Some,12–14,16 but not all,15,19,20 found an as-
sociation between higher carotid stiffness and worse cogni-
tive performance or dementia. These conflicting results may 
be due to the differences in cognitive tests used and incon-
sistent adjustments for potential confounders (eg, only one 
study15 adjusted for heart rate and 2 studies15,19 for [mean] ar-
terial blood pressure, whereas other studies12–14,16,19,20 did not). 
The association between carotid stiffness and cognitive per-
formance, therefore, remains unclear. It is possible that only 
disproportionate stiffening of the (proximal) aorta contributes 
to subsequent transmission of increased pulsatile energy to the 
brain but not stiffening of the carotid arteries,20 and this issue 
requires further study.

Only a relatively small part of the association between 
cfPWV and cognitive performance was explained by MVD, 
and the clinical significance of this mediating effect is unclear. 
This relatively small effect may be explained by various rea-
sons. First, this remaining association may be due to MVD 
that is not directly captured in our MVD score (eg, blood-
brain barrier leakage and altered cerebrovascular reactivity). 
Second, it is possible that only part of cognitive impairment 
in aortic stiffness is due to MVD. Third, although we adjusted 
for a large set of potential confounders, we cannot exclude the 
possibility of residual confounding. Fourth, some individu-
als had missing data on individual components of the MVD 
score, which may have led to an underestimation of the medi-
ating effect by MVD.

The present study gives insight in the pathophysiological 
mechanisms between arterial stiffness, MVD, and cognitive 
performance, which might help to design prevention strategies 
of cognitive impairment. Evidence suggests that lifestyle mod-
ifications, such as weight loss and exercise, may favorably in-
fluence arterial stiffness and MVD.1,40 In addition, drugs, such 
as renin-angiotensin-aldosterone system inhibitors, antihyper-
glycemic agents (ie, metformin and glucagon-like peptide 1 
receptor agonists), and statins, may improve arterial elasticity 
and microvascular function, possibly beyond their blood pres-
sure-, glucose-, or lipid-lowering effects.1,40

Strengths of the present study are the large population-
based sample, the comprehensive assessment of various 
measures of MVD, and the extensive characterization of par-
ticipants, which enabled us to adjust for a series of potential 
confounders.

Our study has limitations. First, the cross-sectional ob-
servational design precludes reaching strong causal conclu-
sions about the study findings. For instance, it is also possible 
that MVD contributes to large artery stiffness, for example, 
via increasing peripheral resistance and mean blood pressure, 
and via damage to the microvasculature of large arteries (vasa 
vasorum) themselves.1 Second, the construction of the com-
posite scores assumes that all its components either directly 
or indirectly reflect cerebral MVD, which is not necessarily 
true. The mechanisms underlying some markers may be het-
erogeneous and not necessarily indicative of MVD. However, 
results did not materially change after exclusion of individual 
MVD measures from the MVD score. Third, a relatively large 
number of statistical tests were done. The aim of the present 
study was to investigate the pathways by which various factors 
(arterial stiffness and MVD) may contribute to worse cogni-
tive performance, which, as a consequence, involves carry-
ing out multiple tests. Fourth, the study population consisted 
mostly of middle-aged participants without dementia who 
were relatively well educated and whose cardiovascular risk 
factors were relatively well controlled. This may have led to 
an underestimation of the reported findings due to lower var-
iation in cognitive performance and relatively high cognitive 
reserve.

In conclusion, the present study found that aortic stiffness, 
but not carotid stiffness, is independently associated with 
worse cognitive performance, and that this association is in 
part explained by MVD.

Perspectives
This study supports the hypothesis that MVD explains, in part, 
the association between aortic stiffness and worse cognitive 
performance. Future longitudinal studies are needed to eval-
uate the association of arterial stiffness, MVD, and cognitive 
decline and dementia.
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What Is New?
•	We tested, with use of a formal mediation analysis, whether the associ-

ation between higher arterial stiffness and worse cognitive performance 
is mediated, or explained, by microvascular dysfunction, in a large pop-
ulation-based study.

•	Microvascular dysfunction was measured by MRI features of cerebral 
small vessel disease, flicker light-induced retinal arteriolar and venular 
dilation, albuminuria and plasma biomarkers of microvascular dysfunc-
tion.

What Is Relevant?
•	We found an association between higher aortic stiffness and worse cog-

nitive performance.

•	A composite score of microvascular dysfunction statistically significantly 
explained part of this association.

Summary
•	Our findings are consistent with the hypothesis that arterial stiffness is 

a contributor to microvascular dysfunction and worse cognitive perfor-
mance.

•	 Future longitudinal studies are needed to further evaluate the association 
of microvascular dysfunction and cognitive decline and dementia.

Novelty and Significance
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