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REVIEW ARTICLE

Mitochondrial Function and Diabetes:
Consequences for Skeletal and Cardiac
Muscle Metabolism

Vera B. Schrauwen-Hinderling,1–3 Marianne Eline Kooi,1,3,4 and Patrick Schrauwen2,3

Abstract

Significance: An early hallmark in the development of type 2 diabetes is the resistance to the effect of insulin
in skeletal muscle and in the heart. Since mitochondrial function was found to be diminished in patients with
type 2 diabetes, it was suggested that this defect might be involved in the etiology of insulin resistance.
Although several hypotheses were suggested, yet unclear is the mechanistic link between these two pheno-
mena. Recent Advances: Herein, we review the evidence for disturbances in mitochondrial function in skeletal
muscle and the heart in the diabetic state. Also the mechanisms involved in improving mitochondrial function
are considered and, whenever possible, human data is cited. Critical Issues: Reported evidence shows that
interventions that improve skeletal muscle mitochondrial function also improve insulin sensitivity in humans.
In the heart, available data from animal studies suggests that enhancement of mitochondrial function can
reverse aging-induced changes in heart function, and can be protective against cardiomyopathy and heart
failure. Future Directions: Mitochondria and their functions can be targeted with the aim of improving skeletal
muscle insulin sensitivity and cardiac function. However, human clinical intervention studies are needed to
fully substantiate the potential of mitochondria as a target to prevent cardiometabolic disease. Antioxid. Redox
Signal. 24, 39–51.

Mitochondria: Their Role in the Prevention
and Treatment of Type 2 Diabetes Mellitus

Type 2 diabetes mellitus is a chronic disease that is
characterized by insulin resistance and elevated plasma

glucose concentrations. During the postprandial phase,
skeletal muscle is the major site of glucose uptake and a
reduced insulin-stimulated glucose uptake into the muscle is
suggested to play an important role in the development of
whole body insulin resistance and type 2 diabetes. At a mo-
lecular level, skeletal muscle insulin resistance has been
shown to be initiated by interference of fatty acid interme-
diates with insulin signaling (17, 38, 68), resulting in a re-
duced translocation of glucose transporter 4 (GLUT4) to the
muscle cell membrane. In this respect, a reduced fat oxidative
capacity and, more recently, a reduced overall mitochondrial
metabolism have been postulated to underlie the develop-

ment of lipid-induced insulin resistance. In fact, mitochon-
drial dysfunction was suggested to be involved in the etiology
of insulin resistance and type 2 diabetes (58). A decline in
mitochondrial function has also been suggested to occur in
the heart of type 2 diabetic patients, underlying certain forms
of cardiomyopathy and heart failure (12, 65). Indeed, type 2
diabetic patients have a two-fold increased risk of developing
heart failure, irrespective of hypertension and cardiovascular
disease (21).

Most human data on the role of mitochondrial function in
type 2 diabetes are available from the skeletal muscle. This
organ can be easily accessible for obtaining biopsies, enabling
ex vivo tissue analysis of mitochondrial metabolism. For car-
diac muscle, this is more difficult and advances in this field
strongly depend on noninvasive methodology. As an excep-
tion, recent clinical studies examined cardiac tissue that was
sampled during heart surgery and examined ex vivo for
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mitochondrial respiration (3, 67, 73). Currently, our knowledge
about human cardiac mitochondrial metabolism is expanding
rapidly. Here, we will review the role of mitochondrial func-
tion in the muscle and heart, with an emphasis on human data.

Mitochondrial dysfunction in skeletal muscle

In the past decade of the previous century, it became rec-
ognized that type 2 diabetic patients are characterized by a
reduced fat oxidative capacity. Early on in the present cen-
tury, interest turned toward skeletal muscle mitochondria
when a coordinated reduction of a large cluster of oxidative
genes (OXPHOS) was reported in the skeletal muscle of
patients with type 2 diabetes; a diminished expression of the
coordinating transcription factor peroxisome proliferator
coactivator 1-a (PGC-1a) was also reported (64, 69, 78).
Interestingly, these changes in mitochondrial markers were
already visible in healthy subjects who were at an increased
risk of developing diabetes, pointing out mitochondrial dys-
function as an early event in the development of diabetes.

In subsequent years, mitochondrial function in type 2 di-
abetic patients and healthy subjects was investigated with a
wide range of methodologies, identifying aberrations in
various aspects of appearance and performance of mito-
chondria in diabetes, which will be described next. Some (87,
92, 101), but not all studies (20) that used in vivo phosphorus
magnetic resonance spectroscopy (31P-MRS) identified
phosphocreatine (PCr) recovery after exercise to be delayed,
suggesting a decreased in vivo mitochondrial capacity in type
2 diabetic patients. In these experiments, the time course of
PCr is monitored by 31P-MRS in vivo, while subjects perform
an exercise protocol inside the MR scanner. During exercise,
PCr is consumed in skeletal muscle to form the adenosine
triphosphate (ATP) needed for contraction. After cessation of
exercise, PCr concentrations are quickly restored to resting
values.

Using 31P-MRS methodology, the recovery of PCr can be
examined in detail (Fig. 1). It was shown earlier that the
resynthesis of PCr is almost exclusively fueled by aero-
bic metabolism (83) and therefore, the rate constant (or
half-time) of PCr recovery can be used as an index of mito-
chondrial capacity (46). Indeed, parameters of PCr kinetics
correlate with ex vivo markers of mitochondrial function and
whole body oxygen uptake (VO2max) (52, 97).

Alternative 31P-MRS methods using saturation transfer
methods examined ATP synthesis rates in muscle at rest and
found decreased ATP synthesis rates in diabetic and prediabetic
subjects, which was interpreted as hampered mitochondrial
function (80). However, one should be aware that in this ex-
perimental setting, resting ATP synthesis is assessed, which is
different from the investigation of maximal capacity of mito-
chondria (usually referred to as mitochondrial ‘‘function’’).
Saturation transfer data are even more difficult to interpret as not
only oxidative but also especially glycolytic (nonmitochondrial)
metabolism is examined by this method. As a result, the satu-
ration transfer method overestimates the ATP synthesis rate
many fold (45). Notwithstanding the limitations of saturation
transfer methods, PCr recovery data correlated with ATP satu-
ration transfer data, indicating that differences in unidirectional
ATP synthesis rate as determined by saturation transfer may still
give some indication of mitochondrial impairment (88).

Apart from noninvasive in vivo methodologies, an ex vivo
analysis of mitochondrial respiration in muscle biopsies has
been performed. In fresh muscle biopsies, oxygen con-
sumption can be monitored in permeabilized muscle fibers or
isolated mitochondria by high-resolution respirometry, via
measurement of oxygen consumption on adenosine diphos-
phate (ADP) addition and substrates for oxidation. Using this
methodology, basal as well as maximal ADP-stimulated
respiration was reported to be decreased in type 2 diabetic
patients (66, 82), and it persisted even after correction for
mitochondrial density.

FIG. 1. Determination of PCr
kinetics by 31P-MRS. (A) A pa-
tient is monitored with an MRI
scanner and 31P-MRS while per-
forming exercise; PCr kinetics is
recorded in the active muscle. (B)
A 31P spectrum of the vastus la-
teralis muscle. The resonance of
inorganic phosphate (pi), PCr, and
ATP is depicted. (C) Time course
of PCr during exercise and recov-
ery of a patient with type 2 diabetes
(male, age = 67 years, BMI = 31 kg/
m2). Spectra were measured every
4 s. A mono-exponential curve can
be fitted to the curve of recovery of
PCr after exercise to determine the
half-time or rate constant. ATP,
adenosine triphosphate; BMI, body
mass index; MRS, magnetic reso-
nance spectroscopy; PCr, phos-
phocreatine.

40 SCHRAUWEN-HINDERLING ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
A

A
ST

R
IC

H
T

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

28
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2015.6291&iName=master.img-001.jpg&w=336&h=253


In addition to functional measurements, small mitochon-
dria with altered morphology were reported in skeletal
muscle of type 2 diabetic patients (27, 44) when investigated
by electron microscopy, suggesting increased mitochondrial
damage in diabetes. In search for explanatory mechanisms,
increased levels of reactive oxygen species (ROS) were re-
ported in skeletal muscle from type 2 diabetic subjects (4,
35). ROS may damage various organelles, including mito-
chondria. Hyperglycemia is known to increase ROS pro-
duction (for review, see Ref. 28); therefore, hyperglycemia,
inherent to diabetes, may also play a role in increasing mi-
tochondrial ROS concentrations in vivo. Furthermore, dam-
aged mitochondria, in turn, are known to produce higher
levels of ROS (70), leading to a vicious cycle of mitochon-
drial damage (Fig. 2). In addition, the smaller and damaged
mitochondria may also be a reflection of the impaired
mechanisms of mitochondrial quality control (6).

Our knowledge about mitochondrial dynamics is currently
rapidly increasing and processes involving mitochondrial fu-
sion, fission, and mitophagy are investigated in detail (26a,
50a, 72, 86). It is suggested that along with age and metabolic
disease, the cycle of mitochondrial fusion and fission is dis-
turbed, resulting in a less stringent quality control, which de-
creases the ATP-generating capacity of mitochondria
(reviewed in Ref. 60). Hallmark conditions of obesity and type
2 diabetes such as hyperglycemia and hyperlipidemia stimu-
late processes of mitochondrial fission in cell culture (103),
resulting in fragmentation of the mitochondrial network,
thereby hampering fusion–fission dynamics. In line with this,
Mitofusin2 (Mfn2) was found to be reduced in skeletal muscle
of type 2 diabetic patients (7) and a polymorphism in Mfn2

was reported to be associated with type 2 diabetes. These
findings point out a possible role of disturbed mitochondrial
dynamics in metabolic disease in the presence of substrate
excess.

In summary, it is evident that the occurrence of type 2 dia-
betes is associated with a low mitochondrial capacity in the
skeletal muscle. Mitochondrial dysfunction in skeletal muscle
occurs at several levels, ranging from morphological pertur-
bations to changes in gene- and protein expression, to impaired
function according to in vivo and ex vivo data. However, as
most data have been obtained from cross-sectional studies, and
subject groups are not always carefully matched for age, body
mass index, and physical activity, it is not completely clear as
to what extent obesity, age, and physical inactivity contribute to
the differences reported. Some studies indicate that even when
controlling for these factors, a small but significant difference
in mitochondrial function persists (92). Underlying mecha-
nisms, such as ROS levels and increased fission, are currently
under investigation (26a).

Mitochondrial dysfunction in cardiac muscle

It is well known that type 2 diabetic patients have an
increased risk of developing heart failure (21). In overt
heart failure, ATP production becomes insufficient to sus-
tain normal contraction (37); thus, mitochondrial involve-
ment is evident. However, early mitochondrial changes
due to diabetes are less well established in humans (87a).
The first evidence of disturbances in energy metabolism
in cardiac muscle of diabetic patients stems from 31P-
MRS studies investigating cardiac PCr/ATP ratio in vivo

FIG. 2. Schematic repre-
sentation of the complex
relationship between high
lipid availability and mito-
chondrial dysfunction. High
lipid availability can cause
diminished mitochondrial func-
tion via increased ROS levels
and lipid peroxidation (89).
Impaired mitochondrial func-
tion, in turn, can limit fat oxi-
dative capacity, disturbing the
balance between lipid avail-
ability and lipid use, further
increasing lipid surplus in a
vicious cycle. Alternatively,
high lipid availability can
directly affect electron trans-
port in the respiratory chain
(1). Combined with high lev-
els of glucose, lipid surplus
can hamper mitochondrial dy-
namics (103), interfering with
normal mitochondrial quality
control, thereby contributing
to the deterioration of mito-
chondrial function. ROS, re-
active oxygen species.

MITOCHONDRIAL FUNCTION AND DIABETES 41

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
A

A
ST

R
IC

H
T

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
9/

28
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2015.6291&iName=master.img-002.jpg&w=360&h=306


in ‘‘asymptomatic’’ patients (23, 87). The PCr/ATP ratio is
considered an indicator of cardiac energy status, as PCr hy-
drolysis is the first rescue to maintain ATP concentration in
the face of insufficient ATP synthesis (see phosphorus
spectrum in Fig. 3). Therefore, mitochondrial dysfunction is
expected to result in a decreased PCr/ATP ratio. Remarkably,
mild diminishment of PCr/ATP ratio already occurs at a very
early stage, when patients are asymptomatic with respect to
cardiac disease (23, 87). This hints at a possible causal role of
mitochondrial aberrations increasing the heart susceptibility
to failure. Two independent studies reported decreased car-
diac PCr/ATP ratio by 20%–35% in patients suffering from
type 2 diabetes (23, 87).

A recent study showed increasing deterioration of mito-
chondrial metabolism in pigs during development of pace-
induced heart failure, according to lessened conversion of
hyperpolarized pyruvate to glutamate and CO2 (94). ‘‘Hy-
perpolarization’’ of pyruvate enhances manifold the nuclear
magnetic resonance sensitivity of this metabolite, making it
possible to observe its processing further into downstream
metabolites (e.g., glutamate and CO2), even if concentrations
are low. Interestingly, the steady decrease in oxidative py-
ruvate metabolism that precedes the manifestation of heart
failure was paralleled by a similar decrease in PCr/ATP
levels, both of which were measured noninvasively by MRS.
These data suggest that the PCr/ATP ratio may indeed be a
valuable marker of cardiac mitochondrial function at the
onset of heart failure.

As in skeletal muscle, mitochondrial function of the heart
can be affected by perturbations in many processes such as
biogenesis, increased damage via ROS, and decreased quality
control. A few recent studies (3, 67, 73) sampled atrial tissue
in diabetic and control subjects during coronary artery bypass
graft surgery. During such a surgery, a small atrial sample
could be taken to investigate this in greater detail in humans
(3, 67, 73). Two studies investigated ex vivo mitochondrial
function in atrial tissue by high-resolution respirometry in
diabetic patients and control subjects, and both found defects

in atrial myofibers from diabetic patients. While Anderson
et al. (3) found no difference in state 3 respiration on pyruvate
or succinate in diabetic patients, state 3 respiration was lower
in permeabilized heart muscle fibers from diabetic subjects
when supported by glutamate/malate. Since the latter sub-
strate combination feeds complex I of the respiratory chain,
these findings suggest a complex I abnormality in cardiac
mitochondria from diabetic patients. The emission of H2O2

was also higher in diabetic atrial tissue, either in the presence
of increasing concentrations of succinate while inhibiting
ATPase with oligomycin or during submaximal state 3 res-
piration. Furthermore, a more oxidative milieu was found in
diabetic patients, as can be judged by a higher concentration
of oxidized glutathione (GSSG) with respect to total gluta-
thione (GSHt). Oxidative stress was further demonstrated by
higher steady-state lipid peroxidation and nitrosation as as-
sessed by immunoblot of proteins from atrial homogena-
tes (hydroxynonenal [HNE] and 3-nitrotyrosine modified
proteins).

While these results indicate impaired mitochondrial func-
tion, no evidence for decreased mitochondrial biogenesis was
found, as PGC-1a expression and peroxisome proliferator-
activated receptor a (PPARa) protein levels were unchanged
(3). In the second, more recent study, Montaigne et al. (67)
showed that several respiratory chain complex activities,
namely from complex II and III, were lowered in atrial tissue
from diabetic patients compared with nondiabetic patients.
Furthermore, state 3 respiration supported by fatty acid-like,
pyruvate, or succinate substrates was reduced in permeabi-
lized fibers in cardiac tissue from diabetic patients. These data
also point out an inefficient generation of ATP, as indicated by
a poor coupling of oxidative phosphorylation (i.e., low re-
spiratory control ratio [RCR] on palmitate and pyruvate-
supported respiration in diabetic tissue).

Furthermore, an increased atrial ROS production (as
measured by electron paramagnetic resonance spectroscopy)
and elevated activity of anti-oxidant enzymes (mitochondrial
MnSOD and cytosolic catalase) were found (67). Again, also
in this study, no defect in PGC-1a expression was detected.
Together with the finding that citrate synthase activity and
mitochondrial density (as determined by electron microsco-
py) were similar in the cardiac tissue of diabetic patients and
the control subjects, these data indicate normal mitochondrial
biogenesis in the human diabetic heart (67). The disturbance
in mitochondrial function might be relevant for contractile
function, since diabetes was also associated with pronounced
contractile dysfunction in these patients. The twitch force that
developed ex vivo by atrial trabeculae from diabetic patients
was significantly lower than in nondiabetic subjects. Al-
though Ca2 + handling was also affected in the hearts from
diabetic patients and the Ca2 + retention correlated with ex
vivo twitch force, the latter was also correlating with pa-
rameters of mitochondrial function, suggesting a possible
link between these two functional variables. It was proposed
that hyperglycemia may be at the basis of the mitochondrial
impairments, as parameters of mitochondrial function cor-
related negatively with HbA1C plasma concentrations (67).

Furthermore, mitochondria were smaller in atrial tissue from
diabetic patients and the expression of fusion-related MFN1
protein was lower in tissue from diabetic patients and corre-
lated negatively with HbA1C plasma concentrations. How-
ever, other dynamic-related proteins were unchanged (67).

FIG. 3. 31P spectrum of the myocardium of a young
healthy volunteer, acquired with one-dimensional MR
spectroscopic imaging. The resonances of 2,3-DPG, PDE,
PCr, and ATP are depicted. The PCr/ATP ratio can be cal-
culated as a parameter of energy status. PDE, phosphodiesters.
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In summary, there is convincing evidence from in vivo
and ex vivo studies that cardiac mitochondrial function is
disturbed in the diabetic state. The underlying mechanism
seems not to be related to altered PGC-1a or PPAR ex-
pression and mitochondrial biogenesis, while mitochondria
of diabetic patients show more uncoupling, higher ROS
production, and changes in their fusion–fission dynamics. In
this setting, the increased uncoupling may be at least par-
tially due to the activation of uncoupling proteins (UCP2,3),
which are known to be regulated by oxidative stress (14).
This may be a protective mechanism, reducing oxidative
stress at the cost of efficiency. In that respect, it has been
shown that db/db mice are characterized by increased ROS
and enhanced mitochondrial uncoupling (13). This notion is
further supported by the finding that a polymorphism that
results in lower transcription of UCP2 was associated with
oxidative stress in humans (85).

Functional Consequences of Mitochondrial
Dysfunction for Insulin Resistance in Humans

Insulin sensitivity in skeletal muscle is an important de-
terminant of whole body insulin action, as skeletal muscle is
the major site of insulin-stimulated glucose uptake (22). In-
creased skeletal muscle lipid content (intramyocellular lipid
[IMCL]) has been repeatedly found to be strongly related to
insulin resistance (39, 50, 77) and elevated in type 2 diabetic
patients as well as in subjects with an increased risk of de-
veloping diabetes later in life (39).

In endurance trained athletes, who are also characterized
by high IMCL levels, this correlation between IMCL and
insulin resistance is, however, absent. In that context, it was
emphasized by us and others that the combination of high
lipid availability and low oxidative capacity may be at the
basis of insulin resistance. Seemingly, lipid infusion has a
less pronounced effect in hampering insulin sensitivity in
subjects with a high mitochondrial capacity. During lipid
infusion, insulin sensitivity decreased by only 29% in en-
durance trained subjects as compared with 63% in untrained
subjects (81), suggesting that a high mitochondrial function
could protect from diabetes.

Currently, there are different hypotheses on how mito-
chondrial dysfunction, in concert with a high lipid bio-
availability (high IMCL), could hamper insulin sensitivity
in the skeletal muscle. On the one hand, a predisposition for
low mitochondrial function and therefore low fat oxidative
capacity was suggested to be causing IMCL accumulation in
sedentary subjects in the first place (80). In turn, intracel-
lular lipid excess with respect to demand might be ham-
pering insulin signaling via cytosolic accumulation of lipid
intermediates such as diacylglycerol (DAG), ceramides of
long-chain acyl-CoA or long-chain acyl-carnitine species
(58). The consequences of high lipid bioavailability may be
aggravated by suboptimal ‘‘packaging’’ of lipid droplets
(IMCL) by lipid coating proteins (as recently reviewed in
Ref. 11).

Alternatively to the suggestion of an initial defect in mi-
tochondria, their reduced function may also be a consequence
of high fatty acid abundance, causing mitochondrial damage
via increased ROS levels and lipid peroxidation (89). Simi-
larly, an imbalance between mitochondrial tricarboxylic acid
(TCA) cycle activity and lipid availability was suggested to

lead to fatty acids being trapped in the form of long-chain
acyl-carnitine hampering insulin sensitivity directly (2) or
diminishing the availability of free carnitine, which was also
associated with insulin resistance (55, 75).

Finally, a vicious cycle of weakened mitochondrial capacity
and quality on the one hand, and excessive lipid substrate on the
other hand, may be at the basis of cellular changes, leading to
the development of insulin resistance (Fig. 2). Interestingly,
diminished mitochondrial function was also shown to be as-
sociated with a loss of muscle mass (sarcopenia) (43). As
skeletal muscle is responsible for the main part of insulin-
induced glucose uptake, the loss of muscle mass, for example,
during aging, further aggravates whole-body insulin resistance.

Although several mechanisms have been proposed to
mediate insulin resistance during metabolic challenge, the
exact mechanisms of how insulin sensitivity is diminished are
yet unknown.

The debate on how mitochondrial fatty acid load and oxi-
dative capacity are related to insulin resistance is also highly
relevant for cardiac muscle. Insulin resistance in the heart is less
crucial for whole-body glucose uptake, but it makes the heart
inflexible with respect to substrate selection. Ultimately, this
may increase the susceptibility to cardiac injury and apoptosis.

In the heart, an oversupply of lipids seems to be central in the
initiation of unfavorable metabolic remodeling and insulin re-
sistance as seen in diabetic cardiomyopathy. In overweight and
diabetic humans, elevated cardiac fat content in the heart is
observed (61), investigated with MRS (see lipid spectrum in Fig.
4). It has been proposed that elevated PPARa activation, due to
increased fatty acid availability, is involved (25). PPAR acti-
vation stimulates mitochondrial biogenesis and increases fatty
acid uptake, leading to lipid accumulation in the heart of
overweight and diabetic patients. Furthermore, fatty acid-
induced PPARa stimulation also augments the expression of
pyruvate dehydrogenase kinase 4 (PDK4) that reduces carbo-
hydrate metabolism by inhibiting the conversion of pyruvate to
acetyl-CoA, thereby hampering the entry of the end product of
glycolysis to the TCA cycle.

Although PDK4 activation would favor the oxidation of
fatty acids, it also diminishes an insulin-stimulated switch to
glucose oxidation, making the heart less metabolically flexi-
ble and insulin resistant. Furthermore, the accumulation of
cardiac lipids is associated with the formation of lipid me-
tabolites that were shown to interfere with insulin signaling
in vitro, such as DAG and ceramides (17, 42). This would
decrease metabolic flexibility in the heart and increase its
dependence on fatty acids. Importantly, the high rates of fatty
acid oxidation in the heart are associated with elevated oxygen
consumption and high ROS production (57). In turn, ROS are
believed to be able to damage mitochondria, lowering their
function in diabetes (10, 99). In particular, cardiolipin, a
phospholipid that stabilizes the inner mitochondrial mem-
brane, was shown to be prone to oxidative damage (53).
Therefore, mitochondrial quality and optimal functioning of
the mitochondrial network seems to be challenged in the
presence of high lipid availability and insulin resistance.

Mitochondrial Function as a Target to Improve
Insulin Sensitivity?

Although the mechanisms underlying the link between
mitochondrial function, ectopic lipid storage, and insulin
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resistance are still not completely unraveled, accumulating
evidence shows that improvement in mitochondrial func-
tion and quality in skeletal muscle have a positive effect
on insulin sensitivity, while less is known about the human
heart.

Physical activity and exercise training to improve
mitochondrial capacity

A robust way to improve the ATP-generating capacity of
the mitochondrial system is by physical activity training. It
is well known that contraction in the skeletal muscle acti-
vates AMP-activated protein kinase (AMPK) and induces
expression of PGC-1a, nuclear respiratory factor 1 (NRF-1),
and NRF-2, resulting in increased transcription of mito-
chondrial proteins and stimulation of mitochondrial bio-
genesis (9, 59). Therefore, regular exercise consistently
activates these pathways, which in the long term lead to a
higher mitochondrial capacity, at least partly due to an in-
creased mitochondrial density. Studies from our group and

others reported enhanced mitochondrial function in vivo in
response to physical activity programs consisting of endur-
ance and strength training ranging from 2 weeks to 1 year (26,
62, 63, 101). Exercise training also leads to an elevated con-
tent in cardiolipin, known to be necessary for the assembly of
respiratory chain complexes in the inner mitochondrial
membrane (100). Importantly, type 2 diabetic patients were
just as responsive as healthy subjects to exercise-induced
improvements in mitochondrial function (63).

Training-induced improvements in in vivo mitochondrial
function (as determined by 31P-MRS) were accompanied by
increased mitochondrial oxidative capacity determined ex
vivo using high-resolution respirometry (63). In fact, the re-
duced mitochondrial function observed in type 2 diabetic
patients could be completely restored to control values in
endurance training programs as short as 3 months. Enhanced
mitochondrial function is also paralleled by decreased insulin
resistance and augmented IMCL content.

These data show at least an association between improved
mitochondrial function and insulin sensitivity in humans. It
should be noted that the insulin-sensitizing effect of exercise
training has long been recognized (34, 49), although the exact
underlying mechanism leading to a more prominent insulin-
induced translocation of GLUT4 in the trained state is still
unclear. While it is remarkable that exercise-elicited en-
hancement of mitochondrial function is accompanied by
improved insulin sensitivity, it should be acknowledged that
exercise training causes various adaptations and it is un-
known as to what extent the resulting improvement in mi-
tochondrial function is responsible for the increased insulin
sensitivity.

These adaptations are more difficult to investigate in the
human heart, since cardiac tissue is not readily available;
thus, for now, we have to rely on animal data or human 31P-
MRS studies. In mice, daily swimming increased cardiac
expression of transcription factors that orchestrate transla-
tion of mitochondrial proteins, such as PGC-1a, NRF-1, and
mitochondrial transcription factor A (Tfam) (102). As in
skeletal muscle, mitochondrial biogenesis in the heart is
also stimulated by regular exercise, as reported in rodent
models. In mice, exercise training increases mitochondrial
volume and number (102). All these adaptations were endo-
thelial nitric oxide synthase (eNOS) dependent, underscoring
the relevant role of nitric oxide (NO) as a signaling molecule
for training-induced cellular remodeling in the heart. In car-
diomyocytes, eNOS becomes more active when phosphory-
lated by AMPK (18) and in the presence of high cellular
calcium concentrations. Both cardiac AMPK activity and
calcium concentrations are known to be enhanced by exercise
(76), probably constituting important signaling routes lead-
ing to the improvement of mitochondrial function in the heart
(Fig. 5).

Very little data are available in the human heart; however,
there are some indications that mitochondrial function is also
improved by exercise training. Left ventricular PCr/ATP
ratio was found to be elevated in life-long physically active
men when compared with sedentary individuals (79), and a
correlation between cardiac PCr/ATP and physical fitness
was reported in healthy young men (48). However, effects on
cardiac energy metabolism were less clear in patients with
heart failure who were subjected to an 8-week mild training
protocol. The training intervention improved functional

FIG. 4. 1H spectrum of the interventricular septum of the
heart of a healthy volunteer with elevated BMI (BMI530),
acquired with MR spectroscopy. The lipid resonances of the
CH2 and CH3 group of fatty acids are depicted. Using the
unsuppressed water resonance (not shown), a fat/water ratio
can be calculated to quantify the cardiac fat fraction.
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parameters such as left ventricular ejection fraction, but it did
not affect the PCr/ATP ratio (33).

It is worth noting that cardiac lipid content, as determined
by noninvasive 1H-MRS, was decreased after training in
overweight/obese subjects. This would be in line with im-
proved mitochondrial function, leading to normalization of
cardiac lipid content (91). However, quite strikingly, a re-
duction in cardiac lipid content with training could only be
detected in healthy subjects and did not occur in patients with
type 2 diabetes (93). However, the explanation of this dif-
ferential response to exercise is unclear.

Likewise, mitochondrial quality control in the heart
may be beneficially influenced by physical activity, im-
proving mitochondrial respiratory capacity. Induction of
autophagy has been reported after endurance training in
mice (32). Mfn2, an indicator of mitochondrial fusion ac-
tivity, was increased in the cardiac muscle of mice after
daily swimming (102). Diminished cardiac mitochondrial
function in post-infarction rats, characterized by adverse
mitochondrial network dynamics (reduced fusion and in-
creased fission), was normalized after aerobic interval
training. RCR and P/O were elevated after training and
complex I, III, and IV activities were enhanced concomi-
tantly with normalization of markers of mitochondrial fu-
sion (mfn2 and OPA1) and fission (dynamin-related
protein 1, DRP1) (41).

In summary, together with higher mitochondrial density,
optimization of mitochondrial dynamics may also underlie
the training-induced improvement in mitochondrial func-
tion, although more data are needed to understand how
physical activity affects these processes (26a). Furthermore,
more human studies will be necessary to investigate how
exercise training may impact cardiac energy metabolism
and whether exercise-induced improvement of cardiac
function depends on enhanced cardiac mitochondrial func-
tion (31a).

Calorie Restriction and Calorie Restriction Mimetics
to Improve Mitochondrial Function

The generally accepted health benefits of physical activity
have urged researchers to find alternatives to exercise with the
aim of modulating, and potentially improving, mitochondrial
function. From cellular studies, it is well known that energy
scarcity (fasting, calorie restriction [CR]) leads to PGC-1a and
forkhead box O protein (FOXO) activation, increasing the
transcription of mitochondrial genes in various cell types (5,
71). PGC-1a and FOXO need to be phosphorylated by AMPK
(30, 40) and acetylated by sirtuin1 (SIRT1) (15, 84) to become
active (Fig. 5). Furthermore, there are indications that CR in-
creases autophagy (8) (by deacetylation of autophagy protein 5
(Atg5) and Atg7, via SIRT activation) (104), which may reflect
a more stringent control of mitochondrial quality. Mitochon-
drial efficiency is increased with CR, preserving ATP gener-
ation at a lower oxygen cost while producing less ROS (56).
Indeed, in vitro results show that the number of low-potential
mitochondria is increased on CR (56).

These findings were mostly confirmed in both skeletal
muscle and the heart in rodents ex vivo, with very pronounced
reductions in ROS generation. Still, there is some discussion
about the postulated stimulation of mitochondrial biogenesis
by CR according to recent studies showing contradictory re-
sults (reviewed in Ref. 29). Nevertheless, human data are still
very limited, even for skeletal muscle. One study showed that
CR can indeed improve mitochondrial function also in hu-
mans. Six months of 25% CR in young overweight subjects
improved oxidative capacity and increased the expression of
PGC-1a, TFAM, and SIRT1, as well as of mtDNA content in
skeletal muscle tissue (19). On the other hand, weight reduc-
tion studies have not been consistent in reporting improved
mitochondrial function (24).

In a very small study with overweight male subjects,
VO2max increased after 25% CR for 7 weeks together with

FIG. 5. Scheme of molecu-
lar mechanisms that mediate
the beneficial effects of CR
and exercise on mitochon-
drial function. CR and exer-
cise activate AMPK and SIRT
that result in phosphorylation
(30, 40) and deacetylation (15,
84) of FOXO and PGC-1a.
PGC-1a and FOXO activation
stimulate the transcription of
nuclear genes related to mito-
chondrial function. AMPK,
AMP-activated protein kinase;
CR, calorie restriction; PGC-
1a, peroxisome proliferator
coactivator 1-a.
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AMPK and SIRT activation in peripheral blood mononuclear
cells. Interestingly, muscle cells that were cultured in serum
from these calorie-restricted subjects showed an increase in
both AMPK and SIRT activities and mitochondrial bio-
genesis (47). In another human study, long-term CR influ-
enced transcriptional activity of the insulin-like growth
factor/insulin signaling, mitochondrial biogenesis, and in-
flammation pathways, as evaluated by gene expression
profiling (51).

For the heart, we have to rely largely on rodent studies.
In mice, CR was shown to induce mitochondrial biogenesis
by upregulating PGC-1a, NRF-1, and TFAM (74). In ad-
dition, MFN1 and MFN2 were induced, indicating changes
in mitochondrial dynamics (74). In rats, CR decreased the
amount of acetylated mitochondrial proteins in the heart
and, although not different with respect to the basal state,
mitochondrial function was preserved on ischemia/reperfusion
in the restricted group only, and this was accompanied by
lower H2O2 emission (96). Interestingly, the CR-mediated
adaptation also produced functional consequences, since CR
ameliorates aging-related diastolic dysfunction in rats (95).

Research on the health benefits of CR has also stimulated
the search for compounds that could mimic its effects. In this
context, sirtuins activation is a desired effect. One of the
compounds that has received much attention lately is re-
sveratrol (90, 96a). Resveratrol (3, 5, 4¢ trihydroxystilbene) is
a polyphenol naturally present in several plants, and it is
identified as a small-molecule activator of sirtuin 1 (SIRT1)
(36). Resveratrol is believed to have CR-like effects, making
it a promising candidate for treatment and prevention of
metabolic diseases (16, 98, 105).

In humans, we showed that supplementing overweight
healthy men with resveratrol improved skeletal muscle mi-
tochondrial efficiency according to ex vivo high-resolution
respirometry and the maximal mitochondrial respiration at-
tained in the presence of complex I and complex II substrates.
Furthermore, gene enrichment analysis revealed that resver-

atrol activates mitochondrial pathways related to ATP syn-
thesis and oxidative phosphorylation. In accordance with
earlier rodent data, resveratrol supplementation increased
citrate synthase and AMPK activities while inducing in-
creased SIRT1 protein levels in the skeletal muscle (98).

Regarding cardiac function, many beneficial effects of
resveratrol on the rodent heart have been described; unfor-
tunately, very little is known about its effects on the human
myocardium. In aged rats, a comparatively similar increase in
fractional shortening was determined after resveratrol treat-
ment or endurance training. However, only resveratrol was
able to protect against apoptosis (54). Resveratrol prevented
adverse cardiac remodeling on pressure overload in mice.
Likewise, markers of oxidative stress, cardiac hypertrophy,
inflammation, fibrosis, hypoxia, and apoptosis, all of which
were increased in response to pressure overload, were sig-
nificantly reduced in the mice group treated with resveratrol
(31). However, the occurrence of these salutary effects re-
mains to be investigated in humans.

Clearly, more human data is needed on the impact of nu-
tritional and/or pharmacological activation of mitochondrial
metabolism on skeletal muscle insulin sensitivity and cardiac
function. Currently, some registered drugs are known to be
ligands of mitochondrial transcription factors and promote
mitochondrial biogenesis, such as, for example, fibrates or
glitazones that bind to PPARa or PPARc, respectively.
Currently, any of the currently used drugs are as efficient as a
healthy lifestyle, and more specific mitochondrial com-
pounds need to be tested. In spite of the progress achieved in
understanding mitochondrial function and how it can be
boosted, current knowledge indicates that the most effective
and safest way to stimulate mitochondrial function is via a
moderate caloric intake and physical activity.

In conclusion, improving mitochondrial function has
beneficial effects on insulin sensitivity, although the mech-
anisms are not yet fully elucidated. Since the skeletal muscle
is the main organ responsible for insulin-stimulated glucose

FIG. 6. High lipid avail-
ability, mitochondrial dys-
function, and insulin
resistance interrelationship,
and their consequences in
cardiac and skeletal muscle.
Mitochondrial dysfunction is
associated with tissue dys-
function in both organs, re-
sulting in insulin resistance,
exercise intolerance, and car-
diomyopathy. Insulin resis-
tance in the skeletal muscle is
an early hallmark of type 2 di-
abetes development. In the
heart, insulin resistance in-
creases the dependence on fat
oxidation. High lipid avail-
ability and accumulation of
intracellular fat are the most
likely involved in the develop-
ment of insulin resistance and
mitochondrial dysfunction.
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uptake, the improvement of mitochondrial function is a
promising target to improve whole body insulin sensitivity in
type 2 diabetic patients (Fig. 6). This is even more important,
as mitochondrial impairment has been shown to lead to
muscle mass reduction.

In the heart, the available data from animal studies suggest
that improvement of mitochondrial function can reverse ag-
ing-induced changes (Fig. 6). Interventions that improve
mitochondrial function are protective against cardiomyopa-
thy and ischemia/reperfusion damage. More studies are
needed to confirm these findings in humans.
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