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Zusammenfassung

Optimale Steuerung von nichtlinear elastischen Kontaktproblemen führt zu einem nicht-
konvexen, beschränkten Bilevel-Optimierungsproblem. Die Lösungen des untergeordne-
ten Problems müssen nicht eindeutig sein und die Bedingungen erster Ordnung gelten
nur für sehr eingeschränkte Settings. Zudem implizieren die Kontaktbeschränkungen ei-
ne Nicht-Glattheit, was zu einem höchst anspruchsvollen Problem mit wenig Struktur
führt. Ziel dieser Arbeit ist es, die vorhandenen Ergebnisse zur Optimalsteuerung für
nichtlineare Elastizität auf den Fall mit Kontaktbeschränkungen zu erweitern und spe-
zialisierte und effiziente Lösungsalgorithmen zu entwickeln.

Zunächst werden die Kontaktbeschränkungen mithilfe einer normal compliance-Regula-
risierung relaxiert. Für das regularisierte elastische Kontaktproblem wird die Konver-
genz der Lösungen gezeigt und es werden entsprechende Konvergenzraten ermittelt, die
auch in der Optimalsteuerung Anwendung finden. Zusätzlich ergibt sich daraus auch ein
regularisiertes Optimalsteuerungsproblem. Die Existenz von Lösungen wird sowohl für
das regularisierte als auch für das ursprüngliche Problem nachgewiesen. Im Gegensatz
zu der vorherigen Analyse ist der Nachweis der Konvergenz der Lösungen hier weitaus
schwieriger und zwei mögliche Ansätze werden vorgestellt, um diesen zu erbringen. Un-
ter strikten Annahmen können die strukturellen Probleme überwunden werden und die
Konvergenz von Lösungen kann gezeigt werden. Diese Annahmen sind jedoch bei Anwen-
dungen schwer zu verifizieren. Daher wird eine modifizierte Regularisierung eingeführt,
um ähnliche Ergebnisse ohne derartige Einschränkungen zu erreichen.

Das numerische Lösen von Optimalsteuerungsproblemen mit nichtlinearer Elastizität
erfordert robuste nichtlineare Löser. Daher ist es erforderlich die Energieminimierung
im untergeordneten Problem durch die formale Bedingung erster Ordnung zu ersetzen,
um ein bewährtes affin-kovariantes composite step-Verfahren anzuwenden. Des Weiteren
wird zum Lösen der resultierenden linearen Systeme ein neuer iterativer Löser vorgestellt,
der auf einem projizierten CG-Verfahren basiert. Dieser Algorithmus berücksichtigt
mögliche Ungenauigkeiten und Nicht-Konvexitäten und hat die gleichen Konvergenz-
eigenschaften wie ein allgemeines Gradientenverfahren. Die Kombination mit einem
Pfad-Verfolgungs-Verfahren ermöglicht es, Lösungen des ursprünglichen Optimalsteue-
rungsproblems mit Kontaktbeschränkungen zu approximieren. Außerdem wird eine neue
nichtlineare Update-Strategie für nichtlinear-elastische Probleme vorgestellt.
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Abstract

Optimal control of nonlinear elasticity with contact constraints yields a non-convex con-
strained bilevel optimization problem. For the lower level problem, solutions do not
have to be unique, and corresponding first order conditions only hold for very restric-
tive settings. Further, the contact constraints add non-smoothness, resulting in a highly
challenging problem with a severe lack of structure. The main goal of this thesis is to ex-
tend existing results in optimal control of nonlinear elasticity to the contact constrained
case and to develop specialized and efficient solution algorithms.

First, the contact constraints are relaxed by deploying a variant of the normal compli-
ance method. For the regularized elastic contact problem, the convergence of solutions
is shown, and corresponding rates are established, which also contribute to the analysis
of optimal control. Additionally, this also yields a regularized optimal control problem.
The existence of solutions is proven for the original optimal control problem and the
regularized one. In contrast to before, verifying convergence of solutions is a delicate
matter, and two approaches are presented to achieve this. Under strong assumptions,
the lack of structure can be overcome, and convergence is shown. However, these as-
sumptions are difficult to verify in applications. Therefore, a modified regularization is
introduced to establish similar results without these restrictions.

Solving optimal control problems of nonlinear elasticity requires robust nonlinear solvers.
Here, the energy minimizing property in the lower level problem is replaced by its formal
first order condition to apply a proven affine covariant composite step method. Further,
to solve the arising linear systems, a new iterative solver based on a projected CG
method is introduced. This algorithm takes into account the possible inexactness and
non-convexity and has the same convergence properties as a general gradient method.
Inserting these approaches into a path-following algorithm facilitates the approximation
of solutions to the original contact constrained optimal control problem. Also, a new
nonlinear update strategy for nonlinear elastic problems is presented and tested.
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Chapter 1

Introduction

A common problem setting in mechanics is considering a body under load and computing
the resulting deformation. However, sometimes the inverse direction is of interest. For
a given desired deformation yd, an external force is required that causes a deformation
approximating yd w.r.t. a suitable objective functional. Those kinds of problems have
received increased attention recently. Possible applications include implant design [64],
deriving biological models [39, 40], and shape optimization [80, 87]. In those settings,
we obtain a bilevel problem of the form

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

I(v, u),

where

Y × U := W 1,p(Ω)× L2(ΓN )

and A is a suitable admissible set for deformations. The lower level problem ensures
that each optimal state has to be a minimizer of a hyperelastic energy functional I. This
minimizing property describes the deformation of a body subject to an external applied
force, denoted by u. Here, we choose a tracking-type functional for J , measuring the
distance to a desired deformation. Such optimal control problems pose an interesting
and challenging problem since hyperelasticity by itself is already rich in complexity. In
particular, solutions do not have to be unique since the corresponding energy functional
is usually non-convex. Additionally, any deformation y has to satisfy the orientation-
preserving condition

det y > 0

at each point in the domain to guarantee at least local invertibility. As a result, this
requirement rules out the derivation of first order conditions of I, except for very restric-
tive settings. Alternative conditions were derived in [7]. Unfortunately, their application
in numerical simulations seems to be out of reach so far. Still, the techniques elaborated
there can be utilized to study regularization approaches for contact problems.

1



2 CHAPTER 1. INTRODUCTION

A thorough theoretical analysis of optimal control of hyperelasticity was first conducted
in [64, 66]. Notably, the existence of optimal solutions was shown. The aim of this work
is to extend those results to optimal control of contact problems. Contact problems in
nonlinear elasticity are already highly challenging and the reader is referred to [18, 56] for
an extensive overview of this topic. In order to embed contact problems into an optimal
control setting and conduct meaningful numerical experiments, a suitable regularization
method is required. A proven approach is the normal compliance method [69, 76], which
is applied in this work. This results in a regularized optimal control problem:

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u),
(1.1)

where γ > 0 denotes the normal compliance parameter and Iγ the regularized total
energy functional. The goal is to verify that solutions of this problem approach solutions
of the original one as γ →∞. Common regularization methods in optimal control are the
Lavrentiev regularization, cf. [48, 49, 70, 71, 86], and the Moreau-Yosida regularization,
cf. [45, 46, 47, 52, 72]. However, due to the bilevel structure and the non-uniqueness
of solutions for the lower level problem, established techniques to show convergence do
not apply here, forcing us to seek alternative paths. Two approaches are presented here.
The first one relies on strong structural assumptions while the second one modifies the
normal compliance method to ensure convergence.

To solve (1.1) numerically for large parameters γ, we deploy basic path-following scheme.
Path-following methods are widely applied to solve parameter-dependent problems, see,
e.g., [23, 45, 46, 47, 93]. As inner solver, the affine covariant composite step method that
was developed in [64, 67] is chosen. After applying a suitable discretization, the linear
systems in the composite step method are represented by saddle point matrices of the
form:

H :=

(
M CT

C 0

)
.

Projected preconditioned conjugate gradient (PPCG) algorithms provide a proven ap-
proach to solve these systems, cf. [33, 64]. For the setting chosen here, these methods
require solving certain subsystems exactly, limiting the size of the problems that can be
considered. Thus, we construct a specially tailored iterative solver, based on a PPCG
method, to overcome the limitations. This algorithm was originally developed by Anton
Schiela and Alexander Siegl in cooperation with the author, cf. [96]. As a further re-
quirement, the newly developed method also needs to work for subsystems that are not
positive definite, which is the case for nonlinear elastic problems.

Outline

The goal of this thesis is to elaborate a mathematical theory for optimal control of non-
linear elastic contact problems. Further, solution algorithms are developed, based on a
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suitable regularization scheme. The validity of these approaches is shown in theory as
well as in numerical simulations. The remainder of this chapter presents an outline of
this thesis.

Chapter 2 - Contact Problems in Nonlinear Elasticity. This chapter introduces
the general setting and the most important theoretical results regarding nonlinear elastic
contact problems. Moreover, we conduct a thorough analysis of nonlinear elasticity to
obtain a detailed understanding of the problem structure. Many results derived here
will be required when considering optimal control problems in Chapter 4.

Chapter 3 - Regularization of the Contact Constraints. To overcome the non-
smoothness due to the contact conditions, we will apply the normal compliance method,
yielding a regularized contact problem. Additionally, corresponding convergence results
and rates are derived. First order conditions in elasticity are briefly addressed as well.
The regularization approach presented here is necessary to make the optimal control
problems, which are discussed in the next chapter, numerically treatable.

Chapter 4 - Optimal Control of Nonlinear Elastic Contact Problems. Based
on the previous results, we conduct a detailed theoretical analysis of optimal control of
nonlinear elastic contact problems. Analogously to Chapter 3, the contact conditions are
relaxed, yielding a regularized optimal control problem. For this regularization approach,
corresponding convergence results are established. At this, we consider two strategies.
First, under strong structural assumptions, a convergence result can be shown. Alterna-
tively, we introduce a modified regularization, which yields similar results without too
restrictive requirements. This chapter concludes with a brief study of KKT conditions.

Chapter 5 - Numerical Algorithms. This chapter is dedicated to an algorithmic
examination. First, a cubic regularization approach is presented to solve regularized
contact problems. Also, a new nonlinear update strategy is worked out, aiming to in-
crease performance. This strategy was developed by Julián Ortiz. For optimal control
of nonlinear elastic problems, we present an affine covariant composite step method.
To address the regularized optimal control problem, a simple path-following method is
introduced.

Chapter 6 - A Corrected Inexact Projected Preconditioned Conjugate Gra-
dient Method. To solve the large scale linear systems in the composite step method,
we introduce a corrected inexact projected preconditioned conjugate gradient (CIPPCG)
algorithm. This algorithm describes an iterative solver that has the same convergence
properties as a standard gradient method. Further, it also applies to non-convex prob-
lems such as optimal control of nonlinear elasticity.

Chapter 7 - Numerical Examples. For the numerical tests, all problems are dis-
cretized via a finite element method. In the first part, we deploy the cubic regularization
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approach from Chapter 5 to verify the convergence rates derived in Chapter 3. Addi-
tionally, the newly developed nonlinear update strategy is tested.
Thereafter, we couple the composite step algorithm with the CIPPCG method and test
the performance of the combined approach for optimal control in nonlinear elasticity.
Also, we discuss the limits of this method and possible extensions for future research.
To conclude this chapter, path-following is applied to solve regularized optimal control
problems and to approximate solutions to the original problem. At this, the composite
step method functions as the inner solver, where the CIPPCG method is utilized to solve
the arising linear systems.

Chapter 8 - Conclusion and Outlook. This chapter contains a summary of the
presented work and an outlook for future research.



Chapter 2

Contact Problems in Nonlinear
Elasticity

Models derived from linear elasticity offer an accessible approach to describe the defor-
mations of materials. Therefore, they apply to a wide range of real-world applications.
However, those models are restricted to problems with small deformations. For problems
involving large deformations, linear elasticity no longer reflects the physical reality and
has to be replaced by more sophisticated approaches. In those cases, nonlinear elasticity
can be applied to obtain an accurate representation of real-world problems, see, e.g.,
[24, 104]. Incorporating nonlinear elasticity yields another layer of complexity in form
of nonlinear and non-convex energy functions. Additionally, in the setting of contact
problems, the required constraints add non-smoothness to an already challenging prob-
lem. The aim of this chapter is to derive a complete mathematical description of contact
problems in nonlinear elasticity. The established results serve as the starting point for
the analysis of optimal control problems in Chapter 4.

This chapter is structured as follows. In Section 2.1, we introduce the settings and nota-
tion that are necessary to analyze general problems in nonlinear elasticity. In Section 2.2,
we discuss the equilibrium equations of a deformed body which lay the theoretical foun-
dation to describe material behavior in continuum mechanics.

Section 2.3 addresses different properties of materials which are essential to model real-
world materials accurately. At this, we restrict our analysis to hyperelastic materials. In
the context of hyperelasticity, the respective equilibrium equations can be transformed
into an energy minimization problem. The explicit formulation of the corresponding
energy functionals is also discussed in detail. Deriving such formulations is necessary to
conduct numerical simulations. Further, the required material properties have consider-
able consequences for the theoretical analysis. First and foremost, the loss of convexity
significantly impedes the theoretical examination of hyperelastic problems. Particularly,
the uniqueness of solutions can no longer be expected. As a result, the mathematical
implications and the relation to real-world problems have to be addressed.

Section 2.4 extends the setting to incorporate contact constraints. Finally, in Section
2.5, we examine the existence of solutions to hyperelastic contact problems by utilizing

5



6 CHAPTER 2. CONTACT PROBLEMS IN NONLINEAR ELASTICITY

the concept of polyconvex functions, which was established in [6].

In our analysis, we mainly rely on the results from [15, 18]. Additional overviews and
introductions to nonlinear elasticity can be found in, e.g., [24, 68, 77, 100]. An examina-
tion that is more focused on numerics was conducted in [17]. For the analysis of contact
problems particularly, see, e.g., [54, 56, 61, 81, 110, 110, 111].

Parts of this chapter have been published in [95].

2.1 Deformations of three-dimensional bodies

First, we introduce the theoretical setting and notation for general nonlinear elastic
problems. Throughout this work, Ω ⊂ R3 denotes a bounded Lipschitz domain in the
sense of [74, pp. 4-6]. The closure Ω represents a three-dimensional undeformed body
in an equilibrium state and is usually referred to as the reference configuration. The
corresponding boundary Γ consists of two disjoint relatively open subsets ΓD and ΓN
with

Γ = ΓD ∪ ΓN

such that each segment has a non-zero boundary measure. The first set ΓD denotes the
part of the boundary where Dirichlet boundary conditions are enforced while external
pressure loads, modeled as Neumann boundary conditions, are applied on the segment
ΓN . Further, the function

y : Ω→ R3

denotes the deformation of a body to its new deformed configuration Ωd. Accordingly,
we define the deformed boundary

Γd = Γd,D ∪ Γd,N

as the image of Γ under y. The setting is illustrated in Figure 2.1. In order to be
physically meaningful, a deformation y is required to be sufficiently smooth, orientation-
preserving, and injective on Ω. We only require injectivity in the interior since self-
contact on the boundary must be allowed.

Γd,N
Γd,D

Ωd

y

ΓN
ΓD

Ω

Figure 2.1: Deformation of a body.
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At each point x ∈ Ω, we define the deformation gradient:

∇y(x) :=


∂y1

∂x1
(x) ∂y1

∂x2
(x) ∂y1

∂x3
(x)

∂y2

∂x1
(x) ∂y2

∂x2
(x) ∂y2

∂x3
(x)

∂y3

∂x1
(x) ∂y3

∂x2
(x) ∂y3

∂x3
(x)

 .

As a result, the orientation-preserving condition

det∇y(x) > 0 for all x ∈ Ω

ensures at least local injectivity. For incompressible materials, the stronger condition

det∇y(x) = 1 for all x ∈ Ω

is necessary to accurately model their behavior. Materials that are not required to
satisfy this condition are called compressible materials. Over the course of the following
analysis, we will study only compressible materials. In the theory of elasticity, it is often
convenient to use the displacement notation. The displacement function

φ : Ω→ R3 (2.1)

is defined by

φ(x) := y(x)− id(x) for all x ∈ Ω,

where id : Ω→ Ω denotes the identity mapping. Again, we define the respective gradient
by

∇φ(x) :=


∂φ1

∂x1
(x) ∂φ1

∂x2
(x) ∂φ1

∂x3
(x)

∂φ2

∂x1
(x) ∂φ2

∂x2
(x) ∂φ2

∂x3
(x)

∂φ3

∂x1
(x) ∂φ3

∂x2
(x) ∂φ3

∂x3
(x)

 ,

which satisfies the relation

∇y(x) = Id +∇φ(x).

Here, Id denotes the identity matrix in R3×3. To denote the partial derivative of a
function f w.r.t. a direction v, we use the notation ∂v. If there is no risk of ambiguity,
we just write fv. In the case that f only depends on one argument, the derivative is
denoted by f ′. The space of all m × n matrices is denoted by Mm×n. If not stated
otherwise, the Frobenius norm

‖M‖ :=
√

tr(MTM) for M ∈Mm×n

is chosen as the matrix norm. For the space of quadratic matrices Mn×n, we use the
abbreviation Mn. The subspace of matrices with positive determinant is denoted by

Mn
+ := {M ∈Mn | detM > 0}.
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Additionally, Sn denotes the space of symmetric matrices with the corresponding sub-
space of positive definite matrices Sn>. Further, the space of orthogonal matrices is
denoted by On and the subspace of all rotations by

On
+ := {M ∈ On | detM = 1}.

For the set of normed vectors, we write

S1 := {v ∈ R3 | ‖v‖ = 1}.

The standard matrix scalar product between two matrices A and B is defined via

〈A,B〉 := tr(ATB).

For this, we use the short notation A ·B. As usual, the standard matrix multiplication
is written as AB. Next, we introduce the cofactor matrix.

Definition 2.1 (Cofactor matrix). Let M ∈ Mn. For each pair of indices (i, j), we
denote by M ′ij ∈ Mn−1 the matrix that results from deleting the ith row and the jth
column of M . Then, the cofactor matrix is defined via

(Cof M)ij := (−1)i+j detM ′ij .

In the case of M being invertible, the cofactor matrix satisfies

Cof M = (detM)M−T .

Under certain assumptions, the stored energy function of a hyperelastic material depends
on the cofactor matrix of the deformation gradient. This issue is discussed in detail in
Section 2.3. Next, we define the principal invariants of a matrix.

Definition 2.2 (Principal invariants). Consider a matrix M ∈M3. Further, let λ1, λ2,
and λ3 be the corresponding eigenvalues. Then, the three principal invariants I1(M),
I2(M), and I3(M) of the matrix M are defined as follows:

I1(M) := trM = λ1 + λ2 + λ3,

I2(M) := tr Cof M = λ1λ2 + λ2λ3 + λ3λ1,

I3(M) := detM = λ1λ2λ3.

If the relation is clear from the context, we use the short notation I1, I2, and I3. The
triple of the principal invariants is denoted by I(M), or just I, respectively.

Further, we introduce the right Cauchy-Green tensor

C(y) := ∇yT∇y,

which can be interpreted as a measure of strain. This interpretation is reflected in the
fact that for translations and rotations of the reference configuration around the origin,
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the right Cauchy-Green strain tensor simplifies to the identity matrix Id. Deformations
satisfying these conditions are referred to as rigid deformations. If it is clear from the
context, we use the short notation C. Related to that, we define the Green-St Venant
strain tensor

E(φ) :=
1

2
(∇φT +∇φ+∇φT∇φ).

The Green-St Venant strain tensor measures the deviation between a given deformation
and a rigid motion. This becomes apparent through the equivalent definition

E(φ) :=
1

2
(C(id +φ)− Id).

Note that the tensor E is invariant under rotations and translations. When considering
only small deformations, it can be sufficient to reduce the Green-St Venant strain tensor
E to its linearization

ε(φ) :=
1

2
(∇φT +∇φ).

Besides being restricted to problems exhibiting small deformations, this linearized tensor
is also no longer invariant under rotations. Nevertheless, there exists a wide field of
applications utilizing the linearized strain tensor, see, e.g., [34, 41, 89, 90].
Next, we consider how to describe deformations of bodies as solutions to mathematical
problems. At this, deriving equilibrium equations serves as the starting point.

2.2 Equilibrium equations

The static equilibrium of a body, subjected to external forces, is described by the stress
principle of Euler and Cauchy, which forms the foundation of continuum mechanics, cf.
[15, Axiom 2.2-1].

Axiom 2.3. Let Ωd denote the deformed configuration of a body, where the respective
applied forces are represented by densities fd : Ωd → R3 and ud : Γd,N → R3. Then,
there exists a vector field

td : Ωd × S1 → R3

such that:

1. For any subdomain Ad ⊆ Ωd, and at any point xd ∈ Γd,N ∩ ∂Ad where the unit
outer normal vector nd to Γd,N ∩ ∂Ad exists, the equation

td(xd, nd) = ud(xd)

holds.

2. Axiom of force balance: For any subdomain Ad ⊆ Ωd,∫
Ad

fd(xd) dxd = −
∫
∂Ad

td(xd, nd) dsd.
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3. Axiom of moment balance: For any subdomain Ad ⊆ Ωd,∫
Ad

xd × fd(xd) dxd = −
∫
∂Ad

xd × td(xd, nd) dsd.

Here, × denotes the cross product.

From here, we obtain one of the most significant results in continuum mechanics.

Theorem 2.4 (Cauchy’s theorem). Let fd : Ωd → R3 and ud : Γd,N → R3 be force
densities, where fd is continuous. Further, the Cauchy stress vector field

td : Ωd × S1 → R3

is assumed to be continuously differentiable w.r.t. the variable xd ∈ Ωd for each n ∈ S1.
Additionally, it is assumed to be continuous w.r.t. the variable n ∈ S1 for each xd ∈ Ωd.
Then, the axioms of force and moment balance imply the existence of a continuously
differentiable tensor field

Td : Ωd →M3

such that the Cauchy stress vector satisfies

td(xd, n) = Td(xd)n for all xd ∈ Ωd and all n ∈ S1.

In addition, the following equations hold:

−divd Td(xd) = fd(xd) for all xd ∈ Ωd, (2.2)

Td(xd) = Td(xd)T for all xd ∈ Ωd, (2.3)

Td(xd)nd = ud(xd) for all xd ∈ Γd,N . (2.4)

Here, nd denotes the unit outer normal vector along the deformed boundary segment
Γd,N . The tensor Td(xd) is called the Cauchy stress tensor at the point xd ∈ Ωd.

Proof. See [15, Proof of Theorem 2.3-1].

The main consequence of this theorem is the coupling of the external applied forces fd

and ud with the tensor Td by partial differential equations and boundary conditions.
Additionally, we obtain the divergence structure of the resulting equations which allows
variational formulations. However, these equations are formulated in dependence of
the unknown deformed configuration Ωd. In order to transfer these equations into the
reference configuration Ω, the Piola transform is applied.

2.2.1 Piola transform

Definition 2.5 (Piola transform). Consider a mapping T̃d : Ωd →M3. Then, the Piola
transform T : Ω→M3 of T̃d at a point x ∈ Ω is defined by

T (x) := (det∇y(x))T̃d(xd)∇y(x)−T , xd = y(x).
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In the case that T̃d is the Cauchy stress tensor, its Piola transform is called the first Piola-
Kirchhoff stress tensor. Note that this tensor is not symmetric in general. However, it
can sometimes be convenient to work with symmetric tensors in order to simplify the
constitutive equations. This can be achieved by utilizing the second Piola-Kirchoff stress
tensor

Σ(x) := ∇y(x)−1T (x) = (det∇y(x))∇y(x)−1Td(xd)∇y(x)−T , xd = y(x).

Nevertheless, we restrict our examination mostly to the first Piola-Kirchhoff stress tensor
due to its relevance in hyperelasticity. Before we can apply the Piola transform to the
equilibrium equations (2.2)-(2.4), we have to consider the retraction of the applied forces.

2.2.2 Applied forces

Our goal is to associate the applied forces fd and ud with forces, denoted by f and u,
that act on the reference configuration. Moreover, this association has to be consistent
with the Piola transform applied to Equations (2.2)-(2.4). With that in mind, we define
f : Ω→ R3 and u : ΓN → R3 as follows:

f(x) := (det∇y(x))fd(xd), x ∈ Ω, xd = y(x)

and
u(x) := det∇y(x)|∇y(x)−Tn(x)|ud(xd), x ∈ ΓN , xd = y(x),

where n denotes the unit outer normal vector field of Ω. This definition yields the
equalities

f(x) dx = fd(xd) dxd and u(x) ds = ud(xd) dsd.

Here, we use the notation from [15, Chapter 2] and the formulas for the deformed volume
elements

dxd = det∇y(x) dx and dsd = det∇y(x)|∇y(x)−Tn(x)| ds.
With these definitions at hand, we can transfer the equilibrium equations back to the
reference configuration Ω.

Theorem 2.6. Consider the setting of the boundary value problem (2.2)-(2.4), whereby
y denotes the respective deformation of the body. Further, assume that the applied body
forces f : Ω→ R3 and u : ΓN → R3 satisfy f dx = fd dxd and u ds = ud dsd. Then, the
first Piola-Kirchoff stress tensor, defined by

T (x) := (det∇y(x))Td(xd)∇y(x)−T ,

satisfies the following equations:

−div T (x) = f(x) for all x ∈ Ω, (2.5)

∇y(x)T (x)T = T (x)∇y(x)T for all x ∈ Ω, (2.6)

T (x)n(x) = u(x) for all x ∈ ΓN . (2.7)

Here, n denotes the unit outer normal vector field of ΓN .
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Proof. For the proof, see [15, Proof of Theorem 2.6-1].

For the analysis of hyperelastic problems in Section 2.3, we have to analyze the structure
of applied forces in detail.

Definition 2.7 (Dead load). An applied body force fd : Ωd → R3 is called a dead load if
the associated function f : Ω→ R3, acting on the reference configuration, is independent
of the corresponding deformation y.

This definition applies to boundary forces analogously.

Remark 2.8. Note here that modeling applied forces as dead loads is a mathematical
simplification which only holds for a limited number of practical problems. Considering
volume forces, the most common example is the gravity field. An example for boundary
forces is the simple choice

ud(xd) = 0 for all xd ∈ Γd,N .

Consequently, the associated boundary force on the reference configuration has the trivial
form

u(x) = 0 for all x ∈ ΓN .

However, besides this simple setting, the problem structure usually does not allow to
model boundary forces as dead loads.

Another important class are conservative forces.

Definition 2.9 (Conservative forces). Let fd : Ωd → R3 and ud : Γd,N → R3 be
applied body forces acting in the deformed configuration. Assume there exist mappings
f̂ : Ω×R3 → R3 and ĝ : ΓN ×M3

+ → R3 such that the associated forces in the reference
configuration are of the form

f(x) = f̂(x, y(x)) for all x ∈ Ω

and
u(x) = û(x,∇y(x)) for all x ∈ ΓN .

Additionally, define the set of sufficiently smooth test functions by

V := {v : Ω→ R3 | v(x) = 0 for all x ∈ ΓD}.

Then, fd and ud are called conservative if there exist functions F̂ : Ω × R3 → R and
Û : ΓN × R3 ×M3

+ → R with corresponding integrals

EF̂ (y) :=

∫
Ω
F̂ (x, y(x)) dx

and

EÛ (y) :=

∫
ΓN

Û(x, y(x),∇y(x)) ds
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such that the Gâteaux derivatives of EF̂ and EÛ satisfy

E′
F̂

(y)v =

∫
Ω
f̂(x, y(x))v(x) dx

and

E′
Û

(y)v =

∫
ΓN

û(x,∇y(x))v(x) ds

for all v ∈ V .

Obviously, dead loads are conservative forces while conservative forces provide a more
general class of functions. The question of the required structure of applied forces
reemerges when we study hyperelastic problems in Section 2.3.

So far, we have succeeded in retracting the problem back to the reference configuration Ω.
Still, the system (2.5)-(2.7) describes three equations with nine variables. These are the
three components of the deformation and the six components of the first Piola-Kirchhoff
stress tensor, considering the symmetry of the Cauchy stress tensor. Consequently, the
corresponding system is underdetermined. This discrepancy corresponds to the physical
interpretation that Equations (2.5)-(2.7) are entirely independent of the material. In
order to close this gap, we introduce additional assumptions on the class of admissible
materials in order to obtain a well-posed problem.

2.3 Material properties

In this section, we study the necessary physical and mathematical requirements to derive
realistic models that describe materials and the corresponding deformations. Thereby,
we focus on elastic materials and, in particular, hyperelastic ones. For hyperelastic mate-
rials, the system of equilibrium equations can be transformed into an energy minimiza-
tion problem. From there, we discuss the non-convexity of the corresponding energy
functional, and, consequently, the non-uniqueness of solutions, both in theory and in
real-world applications.

To overcome the lack of convexity, polyconvex functions are introduced, which provide
the theoretical foundation for proving the existence of solutions to hyperelastic problems
in Section 2.5. Finally, an explicit model for the elastic energy is elaborated. This model
is applied in the numerical tests conducted in Chapter 7.

2.3.1 Elastic materials

Elasticity can be used to model a wide range of materials such as steel, rubber, aluminum,
and biological soft tissue. Therefore, it is frequently applied to describe problems related
to real-world applications, cf. [24, 34, 41, 89, 90, 104].

First, we introduce the mathematical definition of elasticity and discuss how it affects
the results established so far. We call a material elastic if at each point xd = y(x) in
the deformed domain Ωd, the Cauchy stress tensor Td(xd) is entirely determined by the
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deformation gradient ∇y(x) at the respective point x ∈ Ω. This yields the following
definition.

Definition 2.10 (Elastic material). A material is called elastic if there exists a mapping

T̂ : Ω×M3
+ → S3

such that for each point xd := y(x) in the deformed domain Ωd, the equation

Td(xd) = T̂ (x,∇y(x))

is satisfied.

The mapping T̂ is called the response function for the Cauchy stress. As mentioned
above, at a fixed point xd ∈ Ωd, the Cauchy stress tensor Td does not depend on
the function values of the deformation y(x) but only on its gradient. This condition
is consistent with our prior analysis since such a dependency would imply that rigid
translations can affect the Cauchy stress tensor.
One possible extension to this definition is the inclusion of the dependency on the de-
formation gradient evaluated at all other points x in Ω. This approach gives rise to the
theory of nonlocal elasticity, see [28] or [15, Chapter 3]. Nevertheless, classic elasticity
has proved to be a suitable tool in describing real-world problems, and thus, it will be
the only definition considered in this work. For a detailed discussion of elastic materials,
the reader is referred to [15, 77, 100] and the references therein.
Sometimes, only materials are considered whose response is the same at each point.
Such materials are called homogeneous. Mathematically, this property can be defined
as follows.

Definition 2.11 (Homogeneous material). A material in a reference configuration Ω is
called homogeneous if its response function is independent of the particular point x ∈ Ω.
Thus, for each xd := y(x) ∈ Ωd, the response function for the Cauchy stress satisfies

Td(xd) = T̂ (∇y(x)).

Note that this definition only applies for the reference configuration. If the deformed
state is chosen as the reference configuration, this property is not necessarily satisfied
anymore.
Again, we want to study elastic problems defined on the reference configuration Ω.
Thus, we have to examine how the elasticity property affects the first and second Piola-
Kirchhoff stress tensor. The respective implications are addressed in the following the-
orem.

Theorem 2.12. The elasticity property stated in Definition 2.10 implies the existence
of two mappings

T̃ : Ω×M3
+ →M3 and Σ̃ : Ω×M3

+ → S3

such that
T̃ (x,M) = (detM)T̂ (x,M)M−T
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and

Σ̃(x,M) = (detM)M−1T̂ (x,M)M−T

for all x ∈ Ω and M ∈ M3
+. Additionally, the first and second Piola-Kirchhoff stress

tensor satisfy the equations

T (x) = T̃ (x,∇y(x))

and

Σ(x) = Σ̃(x,∇y(x))

for all x ∈ Ω.

Proof. See [15, Chapter 3].

The mapping T̃ is called the response function for the first Piola-Kirchoff stress. Accord-
ingly, Σ̃ is referred to as the response function for the second Piola-Kirchhoff stress . Due
to its relevance in hyperelasticity, we mainly focus on the first one. The response function
T̃ can be incorporated into equilibrium equations defined on the reference configuration
Ω.

Lemma 2.13. Consider the setting of Theorem 2.6 where y denotes the deformation
of the body. In addition, Dirichlet boundary conditions on ΓD with the corresponding
function yD : ΓD → R3 are required. Then, there exist functions f̃ : Ω × R3 → R3 and
ũ : ΓN ×M3

+ → R3 such that

−div T̃ (x,∇y(x)) = f̃(x, y(x)) for all x ∈ Ω, (2.8)

T̃ (x,∇y(x))n(x) = ũ(x,∇y(x)) for all x ∈ ΓN , (2.9)

y(x) = yD(x) for all x ∈ ΓD. (2.10)

Proof. See [15, Chapter 4].

Analogously, we can derive equilibrium equations for the response function Σ̃ for the
second Piola-Kirchoff stress.

Lemma 2.14. Consider the setting of Lemma 2.13. Then, there exist functions
f̃ : Ω× R3 → R3 and ũ : ΓN ×M3

+ → R3 such that

−div∇y(x)Σ̃(x,∇y(x)) = f̃(x, y(x)) for all x ∈ Ω, (2.11)

∇y(x)Σ̃(x,∇y(x))n(x) = ũ(x,∇y(x)) for all x ∈ ΓN , (2.12)

y(x) = yD(x) for all x ∈ ΓD. (2.13)

Proof. See [15, Chapter 4].

Equations (2.11)-(2.13) are of particular interest since they can be utilized to show the
existence of solutions, at least under strong structural assumptions. An analysis of this
issue is considered in Section 2.5.
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2.3.2 Hyperelastic materials

An intuitive interpretation of hyperelasticity is assuming the existence of an inner energy
of the body. At this, deformations are the natural consequences of minimizing such an
energy when the body is under stress. Consequently, the question arises whether the
equilibrium equations can be transformed into a minimization problem.
As the subsequent analysis will show, such a transformation is possible if the response
function T̃ can be written as the derivative of an energy function. This motivates the
following definition.

Definition 2.15 (Hyperelastic material). An elastic material is called hyperelastic if
there exists a function

Ŵ : Ω×M3
+ → R

that is differentiable w.r.t. the variable M ∈M3
+ for each x ∈ Ω. Further, it satisfies

T̃ (x,M) =
∂Ŵ

∂M
(x,M) for all x ∈ Ω and M ∈M3

+.

The function Ŵ is commonly referred to as the stored energy function.

Although this definition of hyperelastic materials seems to be motivated purely by math-
ematical arguments, it is equivalent to the more physical interpretation that the work
in closed processes should be positive. This is a widely accepted property of real-world
materials. For a more detailed discussion of this issue, the reader is referred to [100] and
the references therein.
Given a hyperelastic material and the corresponding conservative applied forces fd and
ud, then the respective energy functional I reads as follows

I(y) :=

∫
Ω
Ŵ (x,∇y(x)) dx−

∫
Ω
F̂ (x, y(x)) dx−

∫
ΓN

Û(x, y(x),∇y(x)) ds,

where F̂ and Û are defined as in Definition 2.9. In literature, I is usually called the total
energy functional. The first term of I is called the strain energy of the material, and we
write

Istrain(y) :=

∫
Ω
Ŵ (x,∇y(x)) dx.

It can be shown that minimizers of the energy I also satisfy the equilibrium equations
(2.8)-(2.10).

Theorem 2.16. Consider the setting of Theorem 2.6 for a hyperelastic material sub-
jected to applied conservative forces fd : Ω × R3 → R3 and ud : ΓN ×M3

+ → R3. The

associated forces are denoted by f̂ : Ω × R3 → R3 and ĝ : ΓN ×M3
+ → R3. Further, let

yD : ΓD → R3 denote the function corresponding to the Dirichlet boundary conditions
and let I denote the total energy functional. Then, each sufficiently smooth mapping ψ
from the set

Ψ := {v : Ω→ R3 | v(x) = yD(x) for all x ∈ ΓD}
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that satisfies

I(ψ) = inf
v∈Ψ

I(v)

solves the following system:

−div
∂Ŵ

∂M
(x,∇ψ(x)) = f̂(x, ψ(x)) for all x ∈ Ω,

∂Ŵ

∂M
(x,∇ψ(x))n = û(x,∇ψ(x)) for all x ∈ ΓN ,

ψ(x) = yD(x) for all x ∈ ΓD.

Proof. See [15, Proof of Theorem 4.1-2].

Describing deformations as energy minimizers allows the derivation of existence results
while not relying on too regular settings. This topic is discussed thoroughly in Sec-
tion 2.5. Although hyperelasticity corresponds to the nature of real-world materials, it
is not sufficient to derive an explicit formulation of the respective energy functions. In
order to achieve this, further material properties have to be taken into consideration.

2.3.3 Material frame-indifference

In contrast to the assumptions made so far, material frame-indifference is an axiomatic
property. It states that the Cauchy stress tensor is independent of the particular orthog-
onal basis in which it is computed. This axiom also has a more general counterpart in
physics where this property is assumed to hold for any observable quantity.

In the case of elasticity, only rotations of the chosen and fixed basis have to be considered.
Translations of the origin can be ignored since they do not affect the deformation gra-
dient. Describing frame-indifference in purely mathematical terms yields the following
formulation.

Axiom 2.17 (Axiom of material frame-indifference). Let y be a deformation with its
corresponding deformed domain Ωd. Further, consider a rotation R ∈ O3

+ and the cor-
responding new deformation yr : Ω→ R3, defined by yr := Ry. The rotated domain is
denoted by Ωr and the respective points by xr := yr(x). Then, the respective Cauchy
stress vector fields td : Ωd × S1 → R3 and tr : Ωr × S1 → R3 satisfy

tr(xr, Rn) = Rtd(xd, n) for all x ∈ Ω and n ∈ S1.

Frame-indifference naturally adds further requirements for the stored energy function
Ŵ , which are discussed in the next theorem.

Theorem 2.18. The stored energy function Ŵ of a hyperelastic material satisfies the
axiom of frame-indifference if and only if for each point x ∈ Ω,

Ŵ (x,RM) = Ŵ (x,M) for all M ∈M3
+ and R ∈ O3

+,
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or equivalently, there exists a function

W : Ω× S3
> → R

such that
Ŵ (x,M) = W (x,MTM) for all M ∈M3

+.

Proof. See [15, Proof of Theorem 4.2-1].

The second condition is of particular interest since it states that the stored energy
function can be expressed as a function of the right Cauchy-Green strain tensor C. As
the analysis in Subsection 2.3.6 will show, frame-indifference already excludes convex
functions as candidates for the stored energy function Ŵ , see also [15, Theorem 4.8-1].

2.3.4 Isotropic materials

In physical terms, isotropy means that at each point, the response of a given material
does not depend on the direction. In mathematical terms, this property can be described
as follows.

Definition 2.19 (Isotropic material). Let T̂ be the response function for the Cauchy
stress. An elastic material is isotropic at a point x in Ω if

T̂ (x,MR) = T̂ (x,M) for all M ∈M3
+ and R ∈ O3

+.

An elastic material occupying a reference configuration Ω is isotropic if it is isotropic at
each point x in Ω.

This definition implies that the Cauchy stress tensor remains unchanged when the refer-
ence configuration Ω is rotated around the point x. Note that isotropy in the reference
configuration is not necessarily carried over to the deformed configuration. Isotropy also
yields a more specific characterization of the response function for the Cauchy stress.

Theorem 2.20. The response function T̂ for the Cauchy stress tensor is isotropic at a
point x ∈ Ω if and only if there exists a mapping T (x, ·) : S3

> → S3 such that

T̂ (x,M) = T (x,MMT ) for all M ∈M3
+.

Proof. See [15, Proof of Theorem 3.4-1].

Analogously to the axiom of frame-indifference, isotropy leads to additional conditions
for the stored energy function Ŵ . In the context of hyperelasticity, we obtain the
following characterization.

Theorem 2.21. The stored energy function Ŵ of a hyperelastic material is called
isotropic at x ∈ Ω if and only if

Ŵ (x,M) = Ŵ (x,MR) for all M ∈M3
+ and R ∈ O3

+.
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Proof. The proof can be found in [15, Proof of Theorem 4.3-1].

Although isotropy is not necessary to show the existence of solutions to hyperelastic
problems, it is a key property to derive an explicit model for stored energy function Ŵ .
The first step to go from purely theoretical properties to an explicit representation of
the corresponding tensors is achieved in the Rivlin-Ericksen representation theorem.

Theorem 2.22 (Rivlin-Ericksen representation theorem). Consider a mapping
Ť : M3

+ → S3. Then, the conditions

Ť (RM) = RŤ (M)RT and Ť (MR) = Ť (M) for all M ∈M3
+ and R ∈ O3

+

are equivalent to
Ť (M) = T̆ (MMT ) for all M ∈M3

+,

where the mapping T̆ : S3
> → S3 is of the form

T̆ (A) = α0(I(A)) Id +α1(I(A))A+ α2(I(A))A2 for all A ∈ S3
>.

Here, α0, α1, and α2 are real-valued functions of the three principal invariants of the
matrix A as defined in Definition 2.2.

Proof. See [15, Proof of Theorem 3.6-1].

The incorporation of the Rivlin-Ericksen representation theorem into our setting allows
a first explicit description of the response function Σ̃.

Theorem 2.23. Consider an elastic, isotropic, and frame-indifferent material. Then,

Td(xd) = T̂ (x,∇y(x)) = T̆ (x,∇y(x)∇y(x)T )

with T̆ (x, ·) : S3
> → S3 defined by

T̆ (x,A) := α0(x, I(A)) Id +α1(x, I(A))A+ α2(x, I(A))A2 for all A ∈ S3
>,

where α0(x, ·), α1(x, ·), and α2(x, ·) are real-valued functions of the three principal in-
variants of the matrix A. Further, the second Piola-Kirchhoff stress tensor is of the
form

Σ(x) = Σ̃(x,∇y(x)) = Σ̆(x,∇y(x)T∇y(x))

such that the response function Σ̆(x, ·) : S3
> → S3 is of the form

Σ̆(x,B) = β0(x, I(B)) Id +β1(x, I(B))B + β2(x, I(B))B2 for all B ∈ S3
>.

The corresponding functions β0(x, ·), β1(x, ·), and β2(x, ·) are real-valued, whereby their
arguments are the three principal invariants of the matrix B. In reverse, if at least
one of the response functions T̆ or Σ̆ is of the stated form, then the axiom of material
frame-indifference holds and the material is isotropic at the point x.

Proof. For the proof, see [15, Proof of Theorem 3.6-2].

Theorem 2.23 already provides a rough structure of the explicit representation of the
response functions.



20 CHAPTER 2. CONTACT PROBLEMS IN NONLINEAR ELASTICITY

2.3.5 Material behavior for large strains

A physically intuitive condition is to require that extreme strains correspond to large
stresses. For hyperelastic materials, this condition translates to the stored energy func-
tion Ŵ approaching infinity if one of the eigenvalues of the matrix C = MTM approaches
zero or infinity. Denoting the respective eigenvalues by λ1, λ2, and λ3, we can restrict
the analysis to keeping λ2 and λ3 in a compact interval in ]0,∞[. Then, we obtain:

λ1 → 0+ ⇔ detM → 0+,

λ1 →∞⇔ ‖M‖ → ∞,
λ1 →∞⇔ ‖Cof M‖ → ∞,
λ1 →∞⇔ detM →∞.

The first condition yields the following implication for the stored energy function Ŵ :

detM → 0+ ⇒ Ŵ (x,M)→∞, M ∈M3
+. (2.14)

This condition reflects the idea that for realistic materials, compressing a given volume
to zero requires an infinite amount of energy. Additionally, the last three conditions
describe the implication

(‖M‖+ ‖Cof M‖+ detM)→∞⇒ Ŵ (x,M)→∞, M ∈M3
+.

A sharper version of this assumption, which is required for the existence theorem in
Section 2.5, leads to the following coerciveness condition.

Assumption 2.24. There exist constants a, p, s, r > 0, and b ∈ R such that at each
point x ∈ Ω, the coerciveness inequality

Ŵ (x,M) ≥ a(‖M‖p + ‖Cof M‖s + (detM)r) + b for all M ∈M3
+

holds.

The coerciveness inequality represents a measure of the material’s strength and a nec-
essary growth condition required for the stored energy function. For a detailed analysis
of this topic, see [15, Chapter 4].
Assumption 2.24 is naturally embedded into the setting to show existence of solutions to
hyperelastic problems since coerciveness is often a necessary requirement when studying
minimization problems. On the contrary, Condition (2.14) adds significant restrictions
on possible candidates for the stored energy function such as the exclusion of convex
functions.

2.3.6 Non-convexity of the stored energy function

We recall that Theorem 2.16 yields an energy minimizing approach for hyperelastic prob-
lems. Techniques to show the existence of solutions to minimization problems usually
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require the convexity of the considered objective function. In that context, the ques-
tion arises whether the stored energy Ŵ can be chosen as a convex function. However,
as mentioned above, the priorly introduced physical restrictions already rule out this
possibility.

Theorem 2.25. Consider x ∈ Ω such that the function

Ŵ (x, ·) : M3
+ → R

is convex. Then:

1. The convexity of Ŵ (x, ·) implies that Condition (2.14) cannot hold.

2. The convexity of Ŵ (x, ·) contradicts the axiom of frame-indifference.

The proof of this theorem is rather technical and does not yield further insight into the
problem structure. Therefore, the reader is referred to [15, Proof of Theorem 4.8-1]. The
lack of convexity poses significant difficulties in the theoretical analysis of hyperelastic
problems. However, with the application of polyconvex functions in [6], this issue was
resolved and a rigorous existence theory has been established. Still, we cannot expect
the uniqueness of solutions.

Non-uniqueness of solutions

The possible non-uniqueness of solutions is not just a mathematical artifact due to an
unsuitable or incomplete problem description. In fact, it has a real-world interpretation.
For this reason, we want to study an intuitive example. Consider a horizontal cantilever
fixed at a wall, as depicted in Figure 2.2. On the frontal face, a constant boundary
force is applied, which is represented by red arrows. In addition, this boundary force
acts orthogonally to the surface, and the weight of the cantilever is neglected. For
sufficiently large forces, the following behavior can be expected. First, we obtain an
unstable solution with very small displacements as illustrated in Figure 2.3. In numerical
simulations, the instability is reflected in a non-positive definite Hessian matrix of the
total energy function at the current iterate. Also, the slightest perturbation of the
boundary force can lead to significant changes of the solution.
In addition to the unstable solution, we also obtain two stable solutions which are shown
in Figure 2.4. There, the boundary forces make the body snap upwards or downwards,
respectively. Due to symmetry, the two solutions cannot be distinguished w.r.t. the
elastic energy. In literature, this effect is usually referred to as buckling and is observed
for a wide range of problems. Buckling and other effects that yield non-uniqueness
of solutions of real-world problems were discussed in, e.g., [15, 24]. Regarding non-
uniqueness in elasticity in general, there exists a large amount of literature. For a
deeper analysis of this issue, the reader is referred to [27, 83, 98, 99, 103]. This example
already shows that even in a very simple setting, the uniqueness of solutions is ruled out.
Consequently, the possible non-uniqueness has to be taken into account in the theoretical
analysis and the numerical simulations.
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Figure 2.2: Undeformed cantilever.

Figure 2.3: Unstable deformation.
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Figure 2.4: Stable deformations.

Computing multiple non-unique solutions analytically seems to be out of reach in the
general setting of three-dimensional hyperelasticity so far. Nevertheless, there exist
several methods to compute multiple solutions numerically. One approach that seems
promising is the deflation technique developed in [29] to find distinct solutions of non-
linear partial differential equations. However, applying this approach to optimal control
problems combined with elasticity is beyond the scope of this work and remains a subject
of future research.
In summary, we have shown that the convexity of the stored energy function is incom-
patible with the physical restrictions required to model real materials. Additionally, the
uniqueness of energy minimizers has been ruled out for general settings in theory as well
as in real-world applications. The lack of uniqueness becomes a major issue for optimal
control of hyperelastic problems in Chapter 4. To show at least the existence of solutions
to hyperelastic problems, we continue by studying an approach that does not rely on
convex energy functions.

2.3.7 Polyconvex functions

The concept of polyconvex functions is one possible way to compensate for the lack of
convexity and show the existence of solutions, though not uniqueness. This approach
was elaborated in [6]. First, we define polyconvex functions.

Definition 2.26 (Polyconvex function). Consider sets Z ⊂M3 and

Z := {(M,Cof M,detM) ∈M3 ×M3 × R |M ∈ Z}.

Then, a function W : Z → R is called polyconvex if there exists a convex function
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W : Z → R such that

W (M) = W(M,Cof M,detM) for all M ∈ Z.

In contrast to convexity, polyconvexity is consistent with the physical assumptions made
so far, see Subsection 2.3.8. In [6], techniques to show the existence of solutions to hy-
perelastic problems were introduced. Unlike other approaches, the choice of polyconvex
functions allows to prove existence of solutions without relying on strong structural re-
quirements that rule out many problem classes. As a result, choosing polyconvex stored
energy functions is the common approach to prove the existence of solutions to hypere-
lastic problems, and we restrict ourselves here to this technique. The analysis conducted
in [6] and an alternative technique are studied in Section 2.5.

2.3.8 Models for the stored energy function

In the previous analysis, we introduced physical assumptions to narrow the choice of
the stored energy function Ŵ . Although the previous results are sufficient to show the
existence of solutions, we still lack an explicit model of Ŵ .
So far, we have restricted our analysis only to a certain class of materials, i.e., hyperelastic
and isotropic ones. Thus, there is still some freedom of choice when it comes to the
specific materials used. This additional information is sufficient to derive an explicit
model of the stored energy function Ŵ .
In the subsequent examination, we discuss how such a model can be constructed. Thereby,
only homogeneous materials are considered. First, we introduce the following definition,
cf. [15, Chapter 3].

Definition 2.27 (Natural state). A reference configuration Ω is called a natural state
if the response function T̂ of the Cauchy stress tensor satisfies

T̂ (x, Id) = 0 for all x ∈ Ω.

This definition corresponds to the physical interpretation that the reference configuration
is a stress-free state. The existence of such stress-free states is a physically reasonable
assumption for solid materials.
For a given material, and under suitable smoothness assumptions, it is possible to derive
an explicit description of the material behavior near a natural state. The material
dependency enters this description via two positive constants λ and µ.

Theorem 2.28. Consider an elastic, isotropic, and homogeneous material whose ref-
erence configuration is a natural state. Further, assume that for each x ∈ Ω, the func-
tions β0(x, ·), β1(x, ·), and β2(x, ·) defined in Theorem 2.23 are differentiable at the point
(3, 3, 1), which corresponds to the three principal invariants of the identity matrix. Then,
there exist constants λ and µ such that the response function Σ̃ of the second Piola stress
tensor can be expressed as a function of the Green-St Venant strain tensor E and satisfies

Σ̃(M) = Σ(E) := λ(trE) Id +2µE + o(E), M ∈M3
+ (2.15)
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with

E :=
1

2
(MT +M +MTM).

Proof. See, [15, Proof of Theorem 3.8-1].

In our setting, the constants λ and µ coincide with the Lamé constants of the respective
material. Thus, we do not distinguish between them and the material parameters λ
and µ. These parameters are related to the well-known Poisson ratio ν and the Young
modulus Ey via the relations

λ =
Eyν

(1 + ν)(1− 2ν)
and µ =

Ey
2(1 + ν)

.

For the inverse relation, we obtain

ν =
λ

2(λ+ µ)
and Ey =

µ(3λ+ 2µ)

λ+ µ
.

These parameters have a direct physical interpretation. In linear elasticity, and for a
given material, the respective Poisson ratio is a measure of lateral contraction while the
Young modulus is a measure of stiffness. In practice, all these constants can be deter-
mined experimentally. For a detailed discussion, the reader is referred to [15, Chapter
3].
Recall Equation (2.15). The simplest choice that satisfies this equation and is consistent
with the assumptions made in Theorem 2.28 is

Σ(E) := λ(trE) Id +2µE, Id +2E ∈ S3
>. (2.16)

An elastic material whose response function is of the stated form is called a St Venant-
Kirchhoff material. One major drawback of these models is that in the case of hyperelas-
tic materials, the corresponding stored energy function is not polyconvex [15, Theorem
4.10-1]. Consequently, the existence of solutions has not been proven yet in a general
setting. In addition, the term det∇y is not a part of the model. Thus, Condition (2.14)
cannot be enforced. This lack of structure restricts the usefulness of these models to
problems with small strains. Still, St Venant-Kirchhoff materials contain more informa-
tion than models that arise from linearized elasticity. For this reason, and due to their
simplicity, they are applied in a wide range of applications, cf. [75].
Going back to Theorem 2.28, the elaborated results yield a similar characterization of
the stored energy function Ŵ .

Theorem 2.29. Consider an elastic, isotropic, and homogeneous material whose refer-
ence configuration is a natural state. In addition, let the regularity assumptions defined
in [15, Theorem 4.5-1] be satisfied. Then, the stored energy function Ŵ can be written
as a function of the Green-St Venant strain tensor E, satisfying

Ŵ (M) = W̃ (E) :=
λ

2
(trE)2 + µ trE2 + o(‖E‖2), M ∈M3

+,
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with

E :=
1

2
(MT +M +MTM).

Proof. The proof can be found in [15, Proof of Theorem 4.5-1].

With these requirements on Ŵ at hand, we can finally derive an explicit model that is
consistent with all the previous assumptions made.

Theorem 2.30. Consider two given Lamé constants λ > 0 and µ > 0. Then, there
exist constants a, b, c, d, α > 0, β ∈ R, and e ∈ R such that the polyconvex stored energy
function Ŵ defined by

Ŵ (M) := a‖M‖2 + b‖Cof M‖2 + c(detM)2 − d ln(detM) + e (2.17)

satisfies the equation

Ŵ (M) = W̃ (E) =
λ

2
(trE)2 + µ trE2 +O(‖E‖3)

and the coerciveness inequality

Ŵ (M) ≥ α(‖M‖2 + ‖Cof M‖2 + (detM)2) + β,

for all M ∈M3
+ and

E :=
1

2
(MT +M +MTM).

Proof. For the proof, see [15, Proof of Theorem 4.10-2].

The model defined in Equation (2.17) explicitly depends on the term detM . This
property is essential in order to incorporate the compression condition stated in (2.14).
Last, we have to address how to compute the parameters a, b, c, and d from given Lamé
constants λ and µ. One possible approach to do this has been analyzed in [15, Proof
of Theorem 4.10-2]. However, the proof is rather technical and does not yield further
insight into the problem. Therefore, we only consider models with given parameters,
whereby we skip the explicit derivation. The type of model introduced in Theorem 2.30
describes compressible Mooney-Rivlin materials, cf. [16]. Similarly, compressible neo-
Hookean materials are described by the model

Ŵ (M) = a‖M‖2 + b(detM)2 − c log(detM),

with positive constants a, b, and c. For St Venant-Kirchhoff materials, we obtain

Ŵ (M) = W (E) :=
λ

2
(trE)2 + µ trE2.

A more detailed analysis on different types of models can be found in, e.g., [21, 77].
In this thesis, the numerical simulations are restricted to compressible Mooney-Rivlin
materials.
In summary, all necessary physical and mathematical properties have been established
to sufficiently describe the real-world behavior of isotropic and hyperelastic materials.
Further, we have derived an explicit representation of the respective energy functionals.
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2.4 Contact problems

First, let us introduce the setting. Analogously to before, Ω ⊂ R3 denotes a bounded
Lipschitz domain (in the sense of [74, pp. 4-6]) representing the three-dimensional body.
Additionally, the respective material is assumed to be isotropic and hyperelastic. The
boundary Γ consists of three disjoint and relatively open subsets such that

Γ = ΓD ∪ ΓN ∪ ΓC ,

whereby each segment has a non-zero boundary measure. Here, ΓD denotes the segment
where Dirichlet boundary conditions are enforced and ΓN denotes the Neumann bound-
ary where the external pressure load acts. For the remainder of this work, we make the
simplifying assumption that all applied forces are dead loads.

Further, we extend this framework to contact problems where deformations of the body
are restricted by an obstacle. The corresponding non-penetration conditions are imposed
on the contact boundary ΓC . The deformation function

y : Ω→ R3

is an element of the vector valued Sobolev space W 1,p(Ω,R3) with p ∈ [2,∞). For the
sake of brevity, we just write W 1,p(Ω) and omit the image space for all vector valued
spaces. Also, we will suppress the explicit notation of trace operators if it is not required
for the analysis. Further, we do not distinguish between sequences and their elements
when it is clear from the context. In Sobolev spaces, the orientation-preserving condition
can only be satisfied in the weaker form

det∇y(x) > 0 for a.e. x ∈ Ω. (2.18)

If y is not continuously differentiable, this condition does not even guarantee local invert-
ibility. In [19], the authors studied deformations that are almost everywhere injective.
This result was achieved by introducing the additional requirement∫

Ω
det∇y(x) dx ≤ vol y(Ω).

However, it is unclear how to transfer this condition to a numerical approach and, thus,
we do not consider it here. For further studies on local and global invertibility, the reader
is referred to [8, 30, 31, 106].

Regarding boundary conditions, the deformation y is required to be the identity map-
ping on ΓD. On the segment ΓN , we consider an applied force u ∈ Lq(ΓN ,R3) with
q ∈ (1,∞). The boundary force also acts as control in the optimization setting dis-
cussed in Chapter 4. With that in mind, we introduce the notation Y := W 1,p(Ω) and
U := Lq(ΓN ) to denote the state space and the control space, respectively. Although
volume forces are not considered here, they could be included in our framework.
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2.4.1 Contact constraints

Physically speaking, we want to add an obstacle, denoted by Ψ, which the body can-
not penetrate. Therefore, non-penetration constraints on the contact boundary ΓC are
introduced. For simplicity, only constraints of the form

y3 ≥ 0 a.e. on ΓC (2.19)

are considered, meaning that the third component y3 of y should be non-negative. This
restriction describes the plane spanned by the first two canonical basis vectors acting as
an obstacle. By incorporating these constraints, we can model static contact problems
without friction. Note that the set

C = {v ∈ Y | v3 ≥ 0 a.e. on ΓC}

is weakly closed in Y. Our setting is illustrated in Figure 2.5.

Ψ

Γd,C

Γd,N
Γd,D

Ωd

y

ΓC

ΓN
ΓD

Ω

Figure 2.5: Contact problem.

Contact constraints add significant difficulties to an already highly nonlinear and non-
convex problem. Among those is the non-smoothness due to the sudden change of
behavior in the contact region. Additionally, the area of contact is unknown before
the computation, which impedes enforcing contact constraints for more complicated
geometries. The type of constraints studied here significantly simplifies the theoretical
and numerical examinations. Therefore, a brief survey of alternative contact conditions
is given.

Bilateral contact

Let n denote the outer normal vector field of the boundary segment ΓC . One way to
define contact constraints is to require that the normal displacements vanish:

φn = φ · n = 0 a.e. on ΓC .

This description corresponds to a setting where the body is glued to the obstacle, see
[43, Chapter 5]. Bilateral contact conditions were studied in [63, 79]. For general cases,
this kind of constraint is far too restrictive. By contrast, the Signorini contact condition
allows for modeling a wider range of problems.
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Signorini contact condition

In this setting, deformations are restricted a priori according to the distance between the
obstacle Ψ and the body Ω. Let g : ΓC → R denote the corresponding function which
measures the distance at each point x ∈ ΓC along the unit outer normal vector n. Then,
enforcing a non-penetration condition along the normal n corresponds to requiring that

φn ≤ g a.e. on ΓC . (2.20)

The Signorini contact condition was first analyzed in [97] and has been extensively
studied ever since, see, e.g., [20, 53, 56]. Apparently, Condition (2.20) is a strong sim-
plification since it is far from obvious that contact will always occur along the outer
normal n. The validity of such conditions depends on the geometry and the initial set-
ting. Thus, the question arises whether the Signorini condition sufficiently describes
the underlying contact problem. At least for small displacements, and if the boundary
segment ΓC and the obstacle Ψ are very close and essentially parallel, cf. [56, Chapter
2], Condition (2.20) is a suitable approximation. A more detailed discussion of this topic
can be found in [25, 73]. For settings involving large deformations, and in particular
for multi-body problems, closest point projections are widely applied to model contact
conditions, see, e.g., [59, 60, 109, 110].

Additional complications arise in the case of multi-body contact problems. These prob-
lems require specialized discretization schemes that apply to non-matching grids such as
the mortar method, see, e.g., [12, 50, 81, 91, 108, 110, 111]. A further option to model
contact conditions is the normal compliance method, which is studied in Chapter 3.

In summary, the study of more sophisticated contact constraints and geometries is still
the subject of current research and remains beyond the scope of this work. A more de-
tailed discussion about modeling contact constraints, though not for nonlinear elasticity,
can be found in [73, 91]. Applying contact constraints in nonlinear elasticity has been
discussed in [81, 110, 111]. For an overview of contact problems in general, the reader
is referred to [43, 56].

2.4.2 Contact problems in hyperelasticity

Recalling Theorem 2.16, we know that under certain smoothness assumptions minimizers
of the total energy functional I describe deformations of a body. In contrast to before,
the total energy functional

I : Y × U → R ∪ {∞}

is a function of the deformation y and of the applied force u. The corresponding boundary
force ud acting on the deformed segment Γd,N is a dead load by assumption. As a result,
u does not depend on the deformation y. Consequently, we write

I(y, u) :=

∫
Ω
Ŵ (x,∇y(x)) dx−

∫
ΓN

y(x)u(x) ds. (2.21)
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This notation is later required to analyze optimal control problems combined with elas-
ticity. We also define the splitting

I(y, u) = Istrain(y)− Iout(y, u)

with

Istrain(y) :=

∫
Ω
Ŵ (x,∇y(x)) dx and Iout(y, u) :=

∫
ΓN

y(x)u(x) ds. (2.22)

Further restrictions on the function spaces and the stored energy function Ŵ are required
since we have to ensure that the resulting energy minimization problem is well-posed and
that our setting corresponds to the physical model elaborated in the previous sections.
The necessary properties are summarized in the following assumption.

Assumption 2.31. Let Ŵ : Ω×M3
+ → R be the stored energy function of a hyperelastic

material and let (p, r, s, q, q′) ∈ ]1,∞[5 be fixed with p ≥ 2, s ≥ p
p−1 , and r > 1. Assume

that the following properties hold.

1. Polyconvexity: For almost all x ∈ Ω, there exists a convex function

W(x, ·, ·, ·) : M3 ×M3×]0,∞[→ R such that

Ŵ (x,M) = W(x,M,Cof M,detM) for all M ∈M3
+.

Further, the function

W(·,M,Cof M,detM) : Ω→ R

is measurable for all (M,Cof M, detM) ∈M3 ×M3×]0,∞[.

2. For almost all x ∈ Ω, the implication

detM → 0+ ⇒ Ŵ (x,M)→∞

holds.

3. The sets of admissible deformations are defined by

Ac := {y ∈W 1,p(Ω), Cof∇y ∈ Ls(Ω), det∇y ∈ Lr(Ω),

y = id a.e. on ΓD, det∇y > 0 a.e. in Ω, y3 ≥ 0 a.e. on ΓC}

and
A := {y ∈W 1,p(Ω), Cof∇y ∈ Ls(Ω), det∇y ∈ Lr(Ω),

y = id a.e. on ΓD, det∇y > 0 a.e. in Ω}.

4. Coerciveness: There exist constants a ∈ R and b > 0 such that

Ŵ (x,M) ≥ a+ b(‖M‖p + ‖Cof M‖s + |detM |r) for all M ∈M3
+.
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5. The exponents q, q′ ∈ ]1,∞[ satisfy q−1 + q′−1 = 1,

q′ <
2p

3− p for p < 3, and q′ <∞ for p ≥ 3.

6. For the zero boundary force uz ∈ U , the identity mapping id : Ω → Ω satisfies
id ∈ argminv∈Ac I(v, uz) with I(id, uz) <∞.

The first assumption states the polyconvexity of the stored energy function Ŵ . This
property is necessary to compensate for the non-convexity of Ŵ and show the existence
of solutions to hyperelastic problems.

Assumptions 2.31(2) and 2.31(4) describe the physical behavior of the material for large
strains. In this context, Assumption 2.31(2) corresponds to the condition that com-
pressing a given volume to zero requires an infinite amount of work. Assumption 2.31(4)
is a sharper version of the coerciveness property stated in Assumption 2.24 since the
exponents p, s, and r satisfy stronger restrictions here.

Further, from Assumption 2.31(3), we obtain the admissible set of deformations Ac for
the obstacle constrained case. Later, we introduce a regularization approach for the
contact constraints which allows us to operate on the relaxed admissible set A.

The definition of the admissible set A and the first assumption ensure that the integral
Istrain(y) is well-defined for all y ∈ A, cf. [15, Proof of Theorem 7.7-1].

The coerciveness of the strain energy Istrain is implied by Assumption 2.31(4), see, e.g.,
[15, Proof of Theorem 7.3-2].

Assumption 2.31(5) is a technical requirement to apply the Hölder inequality and ensure
the existence of compact trace operators.

Finally, Assumption 2.31(6) guarantees that A and Ac are not empty. Also, for some
fixed boundary force u ∈ U , we obtain infv∈Ac I(v, u) <∞ and infv∈A I(v, u) <∞. Note
here that the non-emptiness of the admissible sets essentially depends on the boundary
conditions imposed on ΓD. Since admissible deformations coincide with the identity
mapping on ΓD, the non-emptiness of the admissible sets A and Ac follows directly.
However, this implication no longer holds for general boundary conditions imposed on
ΓD. In those cases, the non-emptiness of the admissible sets is assumed a priori. This
is basically an assumption on the function yD, which describes the boundary conditions
on ΓD.

For a detailed discussion of these requirements, the reader is referred to [15, Chapter
7] and [18]. We assume that these assumptions are satisfied throughout this work.
With Assumption 2.31 at hand, modeling contact problems corresponds to a well-posed
minimization problem.

Definition 2.32 (Contact problem). Let u ∈ U be a fixed boundary force applied to a
hyperelastic body. Further, the deformation of the body is restricted by Condition (2.19).
Then, the resulting deformation y satisfies

y ∈ argmin
v∈Ac

I(v, u). (2.23)
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With Theorem 2.16 in mind, the question arises whether the minimization problem
(2.23) also corresponds to solving some kind of equilibrium equations. However, in the
case of contact problems, the relation can only be derived formally.

Theorem 2.33. Let y be a sufficiently smooth solution to the energy minimization
problem

y ∈ argmin
v∈Ac

I(v, u).

Then, y formally solves the following boundary value problem:

−div T̃ (∇y(x)) = 0 for all x ∈ Ω,

T̃ (∇y(x))n(x) = u(x) for all x ∈ ΓN ,

y(x) = id(x) for all x ∈ ΓD,

y3(x) ≥ 0 for all x ∈ ΓC ,

T̃ (∇y(x))n(x) = 0 if x ∈ ΓC and y3(x) > 0,

T̃ (∇y(x))n(x) = λ(x)nd(y(x)) with λ(x) ≤ 0 if x ∈ ΓC and y3(x) = 0.

Proof. For the proof, see [15, Proof of Theorem 5.3-1].

2.5 Existence theory for nonlinear elastic problems

So far, we have established that deformations of a body can be modeled as energy
minimizers of the total energy function

I(y) =

∫
Ω
Ŵ (x,∇y(x)) dx−

∫
ΓN

y(x)u(x) ds

over a suitable admissible set. Proving the existence of minimizers is a delicate matter.
As previously mentioned, the restrictions imposed on the stored energy function Ŵ
rule out convexity. Thus, techniques that require the weak lower semi-continuity of the
functional no longer apply. As a further consequence, uniqueness of minimizers cannot
be expected.
In this section, we derive an existence result for hyperelastic contact problems in the
setting of polyconvexity based on the results in [6, 15, 18]. Over the course of this
examination, we aim for slightly more general results which are required in the optimal
control framework. In view of the optimal control problem studied in Chapter 4, the
setting is restricted to obstacle problems where applied forces only act on the boundary.
Besides polyconvexity, there exists another approach to show existence of solutions by
examining the equilibrium equations directly.

2.5.1 Existence results by differential calculus

Under strong structural requirements, the implicit function theorem can be applied in
order to derive the existence of solutions to the equilibrium equations. This idea was first
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considered in [101, 102]. However, this approach only applies in very restricted settings.
For example, the analysis conducted in [15, Section 6] is restricted to pure displacement
problems of the form

−div(Id +∇φ)Σ̃(E(φ)) = f in Ω,

φ = 0 on Γ.

This system describes the equilibrium equation derived in Lemma 2.14 for the displace-
ment function φ. Then, the existence of solutions can be shown for elastic, isotropic,
and homogeneous materials whose reference configuration is a natural state.

Theorem 2.34. Consider a domain Ω with C2-boundary and the spaces

E :=
{

1
2(C − Id) ∈ S3 | C ∈ S3

>

}
and

V p :=
{
v ∈W 2,p(Ω,R3) | v = 0 on Γ

}
.

Further, let Σ̃ ∈ C2(E, S3) be a mapping satisfying

Σ̃(E) = λ(trE) Id +2µE +O(‖E‖2) with λ > 0 and µ > 0.

Then, for p > 3, there exists a neighborhood F of the origin in Lp(Ω,R3) and a neigh-
borhood V of the origin in V p such that for each f ∈ F , the equation

−div((Id +∇v)Σ̃(E(v))) = f in Ω

has exactly one solution in V .

Proof. The proof can found in [15, Proof of Theorem 6.7-1].

Although this approach yields smooth solutions, it only holds for small deformations
and does not apply in the case of mixed boundary conditions. This rules out a wide
range of problems, including contact problems. Therefore, choosing a hyperelastic and
polyconvex setting is our method of choice. For a detailed discussion of the alternative
approach presented above, the reader is referred to [15, Chapter 6].

2.5.2 Existence theory for polyconvex functions

Here, we only give a brief summary of the proof conducted in [15, 18]. At this, we focus on
results that are also necessary for the analysis of optimal control problems. Techniques
for showing existence of solutions to hyperelastic problems in the setting of polyconvexity
were introduced in [6]. The extension to contact problems was first considered in [18].
There, the authors studied a more general setting compared to the one considered in
this work. As discussed in Section 2.3, we cannot expect uniqueness of solutions due
to the non-convexity of the stored energy function Ŵ both in the mathematical setting
and in real-world applications. Before we show the existence of solutions to hyperelastic
problems, a rough sketch of the proof is presented:
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Consider an infimizing sequence yn ⊂ Ac of the total energy function I. From there, the
first critical point is proving the existence of a weakly converging subsequence yk with
its weak limit y being an element of Ac again. Further, we have to verify the weak lower
semi-continuity of I w.r.t. the sequence yk. Then, combining these two results yields the
estimate

I(y) ≤ lim inf
k→∞

I(yk)

and the existence of at least one global minimizer y ∈ Ac. Since the set Ac is non-convex,
we cannot deduce its weak closedness. Analogously, due to the non-convexity of I, we
cannot expect weak lower semi-continuity of I. Nevertheless, it can be shown that both
properties hold for infimizing sequences. First, the following result is required.

Theorem 2.35. Let yn be a sequence in Y . Then, the following implication holds:

yn ⇀ ŷ in Y,

Cof ∇yn ⇀ N in Ls(Ω),

det∇yn ⇀ d in Lr(Ω).

⇒
{
N = Cof∇ŷ,
d = det∇ŷ.

Proof. For the proof, see [6, Lemma 6.1 and Theorem 6.2].

From there, we can derive the weak lower semi-continuity of I for particular sequences.
Additionally, the outer energy Iout(y, u) is even weakly continuous.

Lemma 2.36. The outer energy Iout is weakly continuous. Further, the total energy
functional I is weakly lower semi-continuous w.r.t. sequences that leave the strain energy
Istrain bounded.

Proof. We start by showing the weak continuity of the outer energy function Iout(y, u).
At this, we extend the analysis of [15, Proof of Theorem 7.1-5] to the case where the
boundary force is no longer fixed. Consider a weakly converging sequence (yn, un) in
Y × U whose limit (y, u) is again an element of Y × U . Assumption 2.31(5) and [74,
Theorem 6.2] imply the existence of a continuous and compact trace operator

τ : Y → Lq
′
(Γ).

Thus, τ(yn) → τ(y). Additionally, Hölder’s inequality and the continuity of the trace
operator yield the estimate

|Iout(y, u)| ≤
∫

ΓN

|τ(y)u| ds ≤ ‖τ(y)‖Lq′ (ΓN )‖u‖U ≤ C‖y‖Y ‖u‖U ,

for some constant C > 0. Since the outer energy Iout is bilinear, the derived boundedness
implies that Iout(y, u) is continuous. We rewrite

Iout(yn, un)− Iout(y, u) = Iout(yn − y, un) + Iout(y, un)− Iout(y, u).

Combining the boundedness of un, the continuity of Iout and the existence of a compact
trace operator τ yields that the term Iout(yn − y, un) converges to zero as n approaches
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infinity. Due to the definition of weak convergence, the second term Iout(y, un)−Iout(y, u)
converges to zero as well. This concludes the first part of the proof. For the sake of
brevity, the reader is referred to [15, Proof of Theorem 7.7-1] for the proof of the second
statement.

The next lemma is a slightly modified version of the results in [15, Proof of Theorem
7.3-2]. Here, we obtain a lower bound and a modified coerciveness property for the total
energy functional I.

Lemma 2.37. Let un ⊂ U be a bounded sequence. Then, there exist uniform constants
a > 0 and b ∈ R such that the total energy functional satisfies the estimate

I(v, un) ≥ a‖v‖pY + b for all v ∈ A and all n ∈ N.

Proof. Assumption 2.31(4) implies that there exist constants c > 0 and d ∈ R such that
the strain energy satisfies

Istrain(v) ≥ c‖v‖pY + d for all v ∈ A,

see also [15, Proof of Theorem 7.3-2]. Following the argumentation in the proof of
Lemma 2.36, the existence of a trace operator τ : Y → Lq

′
(Γ) and Hölder’s inequality

yield the estimate

|Iout(v, un)| ≤
∫

ΓN

|τ(v)un| ds ≤ ‖τ(v)‖Lq′ (ΓN )‖un‖U ≤ C‖v‖Y ,

for some C > 0. Since p > 1,

I(v, un) ≥ Istrain(v, un)− |Iout(v, un)| ≥ a‖v‖pY + b

holds for suitable a > 0 and b ∈ R. This concludes the proof.

Apparently, this result implies the coerciveness of the total energy functional I w.r.t.
to the first argument if the sequence un is bounded. In order to show the existence of
solutions in hyperelasticity, the previous lemma only needs to hold for fixed boundary
forces u ∈ U . Nevertheless, considering this more general result for bounded sequences
is required in Chapter 4 for studying optimal control problems.
We continue by proving that the weak limit of sequences in Ac is again contained in
the admissible set Ac if the corresponding strain energy values are bounded. This is far
from obvious since the set Ac is not weakly closed in the space W 1,p(Ω).

Lemma 2.38. Let yn ⇀ y be a weakly converging sequence in Ac that leaves the strain
energy Istrain(yn) bounded. Then, y ∈ Ac.

Proof. The techniques used here follow along the lines of [15, Proof of Theorem 7.7-1].
First, we know from Assumption 2.31(4) that the stored energy function Ŵ is coercive
w.r.t. the sequence (yn,Cof∇yn,det∇yn). Consequently, the sequence
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(yn,Cof∇yn,det∇yn) is bounded due to the boundedness of the strain energy Istrain(yn).
By reflexivity, we obtain a weakly converging subsequence

(ynk ,Cof∇ynk ,det∇ynk) ⇀ (y, c, d) .

Thus, Theorem 2.35 applies and

(c, d) = (Cof y,det∇y)

holds. Next, we have to verify that y satisfies the Dirichlet boundary conditions. Due
to the compactness of the trace operator

τ : W 1,p(Ω)→ Lp (Γ) ,

cf. [15, Theorem 6.1-7], we can extract a pointwise converging subsequence of ynk such
that its trace converges ds-almost everywhere on Γ. Consequently, y satisfies the Dirich-
let boundary conditions on ΓD. The orientation-preserving condition

det y > 0 a.e. in Ω

results from the boundedness of Istrain (ynk). This can be shown via proof by contradic-
tion. Following the argumentation in [15, Proof of Theorem 7.7-1], it suffices to restrict
the analysis to the case det y ≥ 0 a.e. in Ω. However, if this is assumed, we can find a
subsequence, denoted again by ynk , such that

Istrain (ynk)→∞,
which contradicts the boundedness assumption of Istrain (ynk). Finally, it has to be shown
that

y3 ≥ 0 a.e. on ΓC .

This simply results from the weak closedness of the set C. From there, we conclude
y ∈ Ac.

The same argumentation applies for A. With Lemma 2.38 at hand, we can derive the
subsequent existence result, which was first established in [18, Theorem 4.2] for a more
general setting.

Theorem 2.39. Let u ∈ U be some fixed boundary force. Then, the total energy func-
tional I( · , u) has at least one minimizer in Ac.
Proof. Let yn ⊂ Ac be an infimizing sequence. Assumption 2.31(6) and Lemma 2.37
yield the boundedness of I(yn, u) and yn. Due to reflexivity of Y , there exists a weakly
converging subsequence, also denoted by yn. The weak limit is denoted by y. Since
I(yn, u) and yn are bounded, we obtain the boundedness of the strain energy Istrain(yn)
as well. As previously established, Lemma 2.38 and the weak closedness of the set C yield
y ∈ Ac. Accordingly, Lemma 2.36 yields that the total energy functional I is weakly
lower semi-continuous w.r.t. the sequence yn. Then, the fact that y is a minimizer results
from

inf
y∈Ac

I(y, u) ≤ I(y, u) ≤ lim inf
n→∞

I(yn, u) = inf
y∈Ac

I(y, u).

This concludes the proof.
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2.6 Summary

In summary, we studied how to describe deformations of nonlinear elastic bodies with
obstacle constraints mathematically. In our analysis, we started from Cauchy’s theorem
and incorporated various material properties such as hyperelasticity to obtain a well-
posed but non-convex energy minimization problem of the form

y ∈ argmin
v∈Ac

I(v, u).

Also, under some restrictions, an explicit formulation of the corresponding energy func-
tions has been established. By considering polyconvex stored energy functions, it is
possible to prove the existence of energy minimizers within a reasonable framework.
However, these minimizers are not necessarily unique. This non-uniqueness corresponds
to the physical behavior of real-world hyperelastic materials, as discussed in Section 2.3.
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Chapter 3

Regularization of the Contact
Constraints

Describing a nonlinear elastic body in contact corresponds to a non-convex constrained
minimization problem. For those kinds of problems, primal–dual active set strategies
are quite popular, as discussed in, e.g., [51]. Recently, truncated non-smooth Newton
multigrid (TNNMG) methods, cf. [35, 36], and filter-trust-region methods, cf. [110], are
applied more and more frequently. A further approach was pursued in [64]. There,
the obstacle condition was replaced by a pressure-type boundary condition on the de-
formed domain. However, this approach is only valid formally and has further analytical
drawbacks. For a detailed analysis, the reader is referred to [15, Chapter 5] and [64].
The analytical difficulties due to non-smoothness are increased even further when we
embed nonlinear elastic contact problems into an optimal control setting. For those rea-
sons, we opt for a regularization approach, in particular, the normal compliance method,
cf. [69, 76]. Thereby, we remove the non-smoothness and facilitate the application of
efficient solution algorithms in the optimal control setting.

This chapter is structured as follows. The normal compliance method is introduced in
Section 3.1. Additionally, we show that this approach is consistent w.r.t. the original
contact problem (2.23). Section 3.2 addresses equilibrium conditions for regularized
contact problems. Finally, Section 3.3 is dedicated to derive asymptotic convergence
rates for the normal compliance method applied to contact problems.

Parts of this chapter have been published in [95].

3.1 Normal compliance method

The basic idea of the normal compliance method is to allow violations of the constraints
and penalize these violations according to their extent. In this context, we introduce a
penalty functional P : Y → R+

0 of the form

P (v) :=
1

k

∫
ΓC

[v]k+ ds, k ∈ N, k > 1, v ∈ Y, (3.1)

39
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where
[v]+ := max(−v3( · ), 0) on ΓC .

Additionally, we multiply the penalty functional with a positive parameter γ and add it
to the total energy functional I. The resulting penalized total energy functional reads
as follows:

Iγ(y, u) := I(y, u) + γP (y).

Further, assume that for p < 3, the inequality k ≤ 2p
3−p holds throughout the subsequent

analysis. Under this assumption, there exists a trace operator τ : Y → Lk(Γ), see [15,
Theorem 6.1-7]. Consequently, the penalty function is well-defined, convex, and weakly
lower semi-continuous. The normal compliance approach was studied in [69, 76]. Since
then, different variants have been applied in, e.g., [4, 5, 26, 43, 56, 57, 58, 85]. For an
overview of penalty methods in general, see [56, 109].
With the regularized total energy functional at hand, we can drop the contact constraint
and obtain the relaxed admissible set A as defined in Assumption 2.31(3). For a fixed
penalty parameter γ > 0, this leads to a relaxed minimization problem.

Definition 3.1 (Regularized contact problem). Consider a fixed boundary force u ∈ U
and a positive penalty parameter γ. Then, a deformation y is called a solution to the
regularized contact problem w.r.t. γ if y solves the minimization problem

y ∈ argmin
v∈A

Iγ(v, u). (3.2)

The motivation behind this approach is that for increasing parameter γ, the resulting
solutions yield increasingly better approximations of solutions of the original contact
problem (2.23). Before we can prove this statement, we have to examine whether the
regularized problem (3.2) admits at least one optimal solution.

Theorem 3.2. Let γ > 0 be a fixed penalty parameter and u ∈ U be some fixed boundary
force. Then, the regularized total energy functional Iγ( · , u) has at least one minimizer
in A.

Proof. Since the penalty function P is weakly lower semi-continuous, the argumentation
from the proof of Theorem 2.39 applies here as well.

In order to conclude that the normal compliance method can be applied to nonlinear
elastic contact problems, it has to be verified that solutions of the regularized problem
(3.2) approach solutions of the original one (2.23) as γ → ∞. At this, we use well-
established techniques to analyze regularization approaches which can be found in, e.g.,
[56]. Before that, we need to establish that in hyperelasticity, bounded boundary forces
leave the resulting regularized total energy bounded.

Lemma 3.3. Let γn → ∞ be a positive sequence of penalty parameters and let un be
a bounded sequence in U . Additionally, let yn be a sequence of corresponding energy
minimizers satisfying

yn ∈ argmin
v∈A

Iγn(v, un).
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Then, Iγn(yn, un), Istrain(yn), and I(yn, un) are bounded. Further, yn is bounded in Y.

Proof. The boundedness from below results from Lemma 2.37. For the boundedness
from above, Theorem 2.39 implies the existence of a state ỹ ∈ Ac with Istrain(ỹ) < ∞.
Consequently, there exists a constant C > 0 such that

Iγn(yn, un) ≤ Iγn(ỹ, un) = I(ỹ, un) ≤ Istrain(ỹ) + |Iout(ỹ, un)| < C.

The last estimate follows from Hölder’s inequality as applied in the proof of Lemma 2.37.
The boundedness from above of I(yn, un) simply follows from the previous estimate and
the property γnP (yn) > 0. Again, Lemma 2.37, which also holds for

Iγn(yn, un) ≥ I(yn, un),

implies the boundedness of yn. From there, we can derive that Iout(yn, un) is bounded
due to Hölder’s inequality. Finally, this yields the boundedness of Istrain(yn), which
concludes the proof.

A similar result was shown in [66]. With this at hand, we can derive a continuity result
for our regularization approach.

Lemma 3.4. Let γn →∞ be a monotonically increasing sequence of penalty parameters.
Further, consider a weakly converging sequence (yn, un) ⇀ (y, u) such that

yn ∈ argmin
v∈A

Iγn(v, un).

Then, (y, u) ∈ Ac × U and

y ∈ argmin
v∈Ac

I(v, u).

Additionally,

lim
n→∞

Iγn(yn, un) = I(y, u).

Proof. The weak convergence of (yn, un) implies its boundedness in Y × U . Thus, we
also obtain the boundedness of the outer energy Iout(yn, un) analogously to the proof of
Lemma 2.37. Consequently, Istrain(yn) is bounded as well. Hence, Lemma 2.38 applies
and y ∈ A. Next, the relation

P (yn) =
Iγn(yn, un)− I(yn, un)

γn

yields limn→∞ P (yn) = 0 since the numerator is bounded as previously established. By
combining this result with the weak lower semi-continuity of P , we obtain

0 ≤ P (y) ≤ lim inf
n→∞

P (yn) = 0.
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This yields y ∈ Ac. Finally, we show that y is again a solution to the original contact
problem (2.23). From Theorem 2.39, we derive the existence of a state ỹ ∈ Ac with

ỹ ∈ argmin
v∈Ac

I(v, u).

Furthermore, the weak lower semi-continuity of the total energy I w.r.t. (yn, un) follows
from the boundedness of Istrain(yn) and Lemma 2.36. Consequently, we obtain

lim sup
n→∞

Iγn(yn, un) ≤ lim sup
n→∞

Iγn(y, un) = lim sup
n→∞

I(y, un) = lim
n→∞

I(y, un)

= I(y, u) ≤ lim inf
n→∞

I(yn, un) ≤ lim inf
n→∞

Iγn(yn, un).

Hence,

lim
n→∞

Iγn(yn, un) = I(y, u).

A similar argumentation was applied in [66, Proof of Lemma 3.3]. From the above
results, we derive

I(ỹ, u) ≤ I(y, u) = lim
n→∞

Iγn(yn, un) ≤ lim
n→∞

Iγn(ỹ, un) = I(ỹ, u),

which shows that y is a minimizer of the total energy functional I( · , u) in Ac.

Finally, we prove that limit points of regularized solutions exist and satisfy the original
contact problem.

Proposition 3.5. Let u ∈ U and γn → ∞ be a monotonically increasing sequence of
penalty parameters. Further, yn denotes a corresponding sequence of minimizers satis-
fying

yn ∈ argmin
v∈A

Iγn(v, u).

Then, yn has a weakly converging subsequence. The limit point y of any such sequence
satisfies

y ∈ argmin
v∈Ac

I(v, u).

In particular, the energy values also converge: Iγn(yn, u)→ I(y, u).

Proof. The boundedness of yn follows from Lemma 3.3, enabling us to extract a weakly
converging subsequence. Application of Lemma 3.4 to each of these subsequences yields
the desired result. The convergence of the energy values results from Iγn(yn, u) being a
monotonically increasing and bounded sequence.

We conclude that the normal compliance method describes a suitable approach to ap-
proximate contact problems in hyperelasticity. Sometimes, it is of interest whether an
inverse result of Proposition 3.5 holds.
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Remark 3.6. Let u ∈ U be a fixed boundary force and y a corresponding energy mini-
mizer which satisfies

y ∈ argmin
v∈Ac

I(v, u).

Further, let γn → ∞ be a monotonically increasing sequence of penalty parameters.
Then, it remains unclear whether there exists a sequence yn with

yn ∈ argmin
v∈A

Iγn(v, u)

and yn ⇀ y.

The main obstacle here is the non-uniqueness of energy minimizers. However, in cases
where the uniqueness of solutions can be verified, we obtain an inverse version of Propo-
sition 3.5.

Corollary 3.7. Let γn → ∞ be a monotonically increasing sequence of penalty pa-
rameters. Assume that for a fixed boundary force u, the contact problem (2.23) admits
a unique solution, denoted by y. Then, there exists a subsequence ynk of regularized
solutions corresponding to γnk such that ynk ⇀ y and Iγnk (ynk , u)→ I(y, u).

Proof. The existence of a sequence yn of solutions to (2.23) follows from Theorem 3.2.
Proposition 3.5 yields a subsequence ynk that converges weakly to a solution y∗ of the
contact problem (2.23). Since the solution of (2.23) is unique, we obtain y∗ = y. The
convergence Iγnk (ynk , u)→ I(y, u) also follows from Proposition 3.5.

This result only applies to a limited range of problems since the uniqueness of solutions
cannot be expected, not even in very simple settings. The question of whether approx-
imating sequences exist reemerges in Chapter 4. There, we will analyze regularization
approaches for optimal control problems.

3.2 Equilibrium conditions of local energy minimizers

In view of numerical algorithms to solve general hyperelastic problems, the character-
ization of minimizers is a central topic. In particular, it is of interest whether a local
minimizer y∗ ∈ A of the regularized total energy functional Iγ satisfies some kind of
first order optimality condition. Note that our regularization term P does not alter the
properties of the total energy function I. Since the critical term is the strain energy
Istrain, and since we want to stay in line with already existing literature on this topic,
we restrict our analysis to I. Still, the elaborated results apply to the regularized stored
energy function Iγ as well. First, we define local minimizers in the following way.

Definition 3.8 (Local minimizer). A deformation y ∈ A is a W 1,p(Ω) local minimizer
of I( · , u) if there exists an ε > 0 such that for all v ∈ A with

‖v − y‖W 1,p(Ω) ≤ ε,

the relation I(v, u) > I(y, u) holds.
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Given a local minimizer y∗ ∈ A, the aim is to verify first order optimality conditions of
the following form:

∂yI(y∗, u)v = 0 for all v ∈ Y.
However, this condition does not hold for general problems in hyperelasticity, cf. [7,
Problem 5]. The central problem is the compression condition of the stored energy
function which states that

det∇y → 0+ ⇒ Ŵ (x,∇y(x))→∞.

This condition is necessary to avoid local self-penetration of the body. As a result, the
set

Y∞ :=

{
v ∈ Y

∣∣∣ ∫
Ω
Ŵ (x,∇v(x)) dx =∞

}
is a dense subset of W 1,p(Ω) for p <∞. Consequently, proving Gâteaux differentiability
seems to be out of reach, at least for spaces weaker than W 1,∞(Ω). So far, there exist two
main approaches to overcome this problem and derive first order optimality conditions.
In the first approach, only energy minimizers in the space W 1,∞(Ω) are considered.

3.2.1 First order conditions for non-degenerate minimizers

Here, minimizers are assumed to satisfy the following non-degeneracy property.

Definition 3.9 (Non-degenerate deformation). Let y ∈ A be a deformation. Then, y is
called non-degenerate if there exists an ε > 0 such that

det∇y(x) ≥ ε for a.e. x ∈ Ω

is satisfied.

For compressible Mooney-Rivlin models, an analysis of first order optimality conditions
based on a non-degeneracy property has been conducted in [66, Theorem 4.6]. There, the
authors proved that a non-degenerated energy minimizer y∗ ∈W 1,∞(Ω) indeed satisfies
the optimality condition

∂yI(y∗, u)v = 0 for all v ∈W 1,∞(Ω).

A major drawback of this approach is that the regularity and non-degeneracy assump-
tions cannot be proven a priori. In contrast, sometimes it can be shown that minimizers
are not in W 1,∞(Ω), see, e.g., [9]. Although this seems counter-intuitive, in the case of
cavitation, the unboundedness of the stored energy function Ŵ at some point can be
more than compensated by smaller values elsewhere. For a detailed discussion of this
topic, the reader is referred to [7, Problem 6].
Additionally, operating in the space W 1,∞(Ω) has consequences in the optimal control
setting. There, the requirement that a minimizer y∗ is an element of W 1,∞(Ω) prevents
the derivation of KKT conditions. A thorough analysis of this issue is conducted in
Chapter 4. The presented lack of structure renders this approach unsuitable for theo-
retical discussions of energy minimizers and optimal control problems.
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3.2.2 Alternative first order conditions

An alternative method has been discussed in [7]. Imposing a suitable growth condition
on the stored energy function Ŵ yields alternative first order optimality conditions.
However, it is not clear how to transfer these results to a numerical implementation. Still,
the techniques studied there contribute to the analysis of regularization approaches for
elastic contact problems. Therefore, we recapitulate the most important results. In the
following analysis, we use the short notation Ŵ ′ to denote the matrix-valued derivative of
Ŵ . First, we introduce the required growth condition on Ŵ as defined in [7, Assumption
C1].

Assumption 3.10. Let Ŵ : M3
+ → R be the stored energy function of a homogeneous,

isotropic, and hyperelastic material. Then, assume that Ŵ satisfies the following growth
condition:

‖Ŵ ′(M)MT ‖ ≤ K(Ŵ (M) + 1) for all M ∈M3
+, (3.3)

where K is a positive constant.

This assumption implies that the stored energy function Ŵ has polynomial growth, cf.
[7, Proposition 2.7]. From there, we derive the following result elaborated in [7, Lemma
2.5].

Lemma 3.11. Assume the stored energy function Ŵ satisfies Assumption 3.10 with the
corresponding constant K > 0. Then, there exists an ε > 0 such that for each C ∈ M3

+

with

‖C − Id ‖ < ε,

the inequality

‖Ŵ ′(CM)MT ‖ ≤ 3K(Ŵ (M) + 1) for all M ∈M3
+

holds.

Proof. The proof follows along the lines of [7, Proof of Lemma 2.5]. First, we show that
there exists an ε > 0 such that for each matrix C ∈M3

+ with

‖C − Id ‖ < ε

and for all M ∈M3
+, the estimate

Ŵ (CM) + 1 ≤ 3

2
(Ŵ (M) + 1) (3.4)

holds. We define

C(t) := tC + (1− t) Id for t ∈ [0, 1].
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For sufficiently small ε ∈ (0, 1
6K ) with ‖C − Id ‖ < ε, we obtain ‖C(t)−1‖ ≤ 2 for all

t ∈ [0, 1] due to ‖ Id ‖ =
√

3 < 2. From there, we derive

Ŵ (CM)− Ŵ (M) =

∫ 1

0

d

dt
Ŵ (C(t)M) dt =

∫ 1

0
Ŵ ′(C(t)M) · ((C − Id)M) dt

=

∫ 1

0
Ŵ ′(C(t)M)(C(t)M)T · ((C − Id)C(t)−1) dt

(3.3)

≤ K

∫ 1

0
(Ŵ (C(t)M) + 1) · ‖C − Id ‖ · ‖C(t)−1‖ dt

≤ 2Kε

∫ 1

0
(Ŵ (C(t)M) + 1) dt.

Defining
ζ(M) := sup

C:‖C−Id ‖<ε
Ŵ (CM)

yields

Ŵ (CM)− Ŵ (M) ≤ ζ(M)− Ŵ (M) ≤ 2Kε(ζ(M) + 1) ≤ 1

3
(ζ(M) + 1),

and consequently,

ζ(M) ≤ 1

3
(ζ(M) + 1) + Ŵ (M).

Solving for ζ(M) leads to

Ŵ (CM) ≤ ζ(M) ≤ 3

2
Ŵ (M) +

1

2
,

which shows (3.4). Finally, for ‖C − Id ‖ < ε, we obtain

‖W ′(CM)MT ‖ = ‖W ′(CM)(CM)TC−T ‖
(3.3)

≤ K(W (CM) + 1)‖C−T ‖
(3.4)

≤ 3
2K(W (M) + 1)‖C−T ‖ ≤ 3K(W (M) + 1).

This concludes the proof.

Lemma 3.11 essentially describes a sensitivity result for the stored energy function Ŵ
for small perturbations induced by a matrix multiplication in its argument. With the
necessary estimates at hand, we can derive alternative first order optimality conditions.
The following result was elaborated in [7, Theorem 2.4].

Theorem 3.12. Let u be a fixed boundary force and let the stored energy function Ŵ
satisfy Assumption 3.10. Further, define the admissible set of deformations by

Ad := {y ∈W 1,p(Ω) | y = id a.e. on ΓD, det∇y > 0 a.e. in Ω}
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and the set of test functions by

Φ := {ϕ ∈ C1(R3,R3) | ϕ = 0 on ΓD, ϕ and ∇ϕ are uniformly bounded }.

Then, a local minimizer y∗ of the total energy function I( · , u) in the set Ad satisfies∫
Ω
(Ŵ ′(∇y∗(x))∇y∗(x)T ) · ∇ϕ(y∗(x)) dx−

∫
ΓN

u(x)ϕ(y∗(x)) dx = 0 (3.5)

for all ϕ ∈ Φ .

Proof. For t ∈ R, consider the disturbed deformation

yt(x) := y∗(x) + tϕ(y∗(x)).

The goal is to compute the limit

lim
t→0

1

t
(I(yt)− I(y∗)).

What sets this approach apart from other methods is the utilization of small perturba-
tions of the deformed domain. Usually, only perturbations of the undeformed domain are
studied. The technique considered here allows us to rely solely on the growth condition
defined in Assumption 3.10 to derive optimality conditions. Computing the respective
deformation gradient yields

∇yt(x) = (Id +t∇ϕ(y∗(x)))∇y∗(x) for a.e. x ∈ Ω.

First, note that for sufficiently small |t|, the disturbed gradient satisfies

det∇yt(x) > 0 for a.e. x ∈ Ω.

Consequently, for suitable t ∈ R, the disturbed deformation yt is again an element of the
admissible set Ad. Additionally,

lim
t→0
‖yt − y∗‖Y = 0.

Since y∗ is a local minimizer by definition, I(yt) > I(y∗) holds for sufficiently small |t|.
For the outer energy Iout, we directly obtain

lim
t→0

1

t
(−Iout(yt) + Iout(y∗)) = −

∫
ΓN

u(x)ϕ(y∗(x)) dx.

Next, we compute

1

t
(Istrain(yt)− Istrain(y∗)) =

1

t

∫
Ω

∫ 1

0

d

ds
Ŵ ((Id +st∇ϕ(y∗(x)))∇y∗(x)) ds dx

=

∫
Ω

∫ 1

0
Ŵ ′((Id +st∇ϕ(y∗(x)))∇y∗(x)) · (∇ϕ(y∗(x))∇y∗(x)) ds dx.
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Lemma 3.11 and the uniform boundedness of ∇ϕ yield the following estimate for the
integrand:

‖Ŵ ′((Id +st∇ϕ(y∗(x)))∇y∗(x)) · (∇ϕ(y∗(x))∇y∗(x))‖
≤ 3K(Ŵ (∇y∗(x)) + 1) sup

v∈R3

‖∇ϕ(v)‖,

where K is a positive constant. Thus, the theorem of dominated convergence applies,
cf. [62, Theorem 1.8], and passing to the limit t→ 0 leads to the desired result.

Although we have been able to derive optimality conditions in a reasonable setting,
it remains unclear how to transfer these results to a numerical approach. The main
obstacle is that the test functions in (3.5) are defined on the entire space R3. Therefore,
it is not obvious how this optimality condition translates to an approximation in a finite
dimensional setting, e.g., finite elements. Nevertheless, the elaborated techniques offer
valuable insight into the problem structure, and they will prove essential for further
analyzing our regularization approach in the following section.

3.3 Asymptotic rates of the normal compliance method

Summarizing the previous results, we have introduced a suitable regularization approach
(3.2) to approximate the original contact problem (2.23). Correspondingly, a convergence
result for sequences of regularized solutions has been established in Proposition 3.5, at
least in the sense of subsequences. In addition to the previous results, we would like to
derive convergence rates for both the regularized energy values and the corresponding
minimizers. For sequences γn →∞, we are thus interested in estimates of the form:

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ c1γ
−ρ1
n , (3.6)

and

‖yn − y‖Lp(Ω) ≤ c2γ
−ρ2
n , (3.7)

with positive constants c1, c2, ρ1, and ρ2. Here, yn and y are solutions of the correspond-
ing regularized contact problem (3.2) and the original one (2.23), respectively. Since
Proposition 3.5 only yields the weak convergence yn ⇀ y in W 1,p(Ω), strong convergence
can only be expected in Lp(Ω), assuming the compact embedding W 1,p(Ω) ↪→ Lp(Ω)
holds. Still, deriving a convergence result as defined in (3.7) seems to be out of reach
with the current tools and techniques at hand. The total energy functional I does not
explicitly depend on ‖y‖Lp(Ω), but on the deformation gradient ∇y. Additionally, the
non-uniqueness of energy minimizers further impedes a thorough convergence analysis.
However, by using refined arguments and an assumption on the geometric setting, we can
derive a priori estimates on the rate of convergence, at least for the energy values. Such
an estimate is possible due to the uniqueness of the optimal energy values Iγn(yn, u),
in contrast to the corresponding minimizers yn, which are not unique. Besides this, an
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estimate for the maximum constraint violation of the regularized solutions yn can be
derived.
The elaborated convergence rates not only yield an estimate for the quality of our regu-
larization approach, but they also contribute to the analysis of optimal control problems
in Chapter 4. To this end, we will use ideas from [7, 47].

3.3.1 Asymptotic rates of the energy

Consider the case p > 3. Then W 1,p(Ω) is continuously embedded into the space Cβ(Ω)
of Hölder continuous functions for some suitable β ∈]0, 1[. Further, the following as-
sumption on the geometry of the boundary conditions is made.

Assumption 3.13. Assume that there is a constant K > 0 such that for each ε > 0,
there exists an invertible mapping ψε ∈W 1,∞(R3,R3) ∩ C1(R3,R3) satisfying

‖ψε − id ‖W 1,∞(R3,R3) ≤ Kε, (3.8)

ψε = id on ΓD, and

ψε(x)3 ≥ 0 for all x ∈ ΓC with x3 ≥ −ε.

Denoting
Aε := {y ∈ A | y3 ≥ −ε on ΓC},

the inclusion y ∈ Aε implies ψε ◦ y ∈ C. Next, Assumption 3.10 is incorporated. From
there, it is possible to derive an upper bound for the change in energy if we perturb the
current deformation by applying the transformation ψε from Assumption 3.13.

Lemma 3.14. Let u ∈ U be a fixed boundary force and let Assumptions 3.10 and 3.13
hold. If ε > 0 is sufficiently small, then there exist positive constants c0 and c1 such that

I(ψε ◦ y, u)− I(y, u) ≤ c0(Istrain(y) + c1)ε,

for all y ∈ Aε.

Proof. Consider the following splitting

I(ψε ◦ y, u)− I(y, u) = Istrain(ψε ◦ y)− Istrain(y)− Iout(ψε ◦ y, u) + Iout(y, u).

First, we derive an estimate for the term Istrain(ψε ◦ y, u) − Istrain(y, u). Let ε > 0 be
sufficiently small and let C,M ∈M3

+ such that ‖C − Id ‖ < ε. Further, we define

ζ(M) := sup
C:‖C−Id ‖<ε

Ŵ (CM).

Following the techniques in the proof of Lemma 3.11, we obtain

Ŵ (CM)− Ŵ (M) ≤ 2Kε(ζ(M) + 1) ≤ 3Kε(Ŵ (M) + 1). (3.9)
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We will utilize these results to derive a similar estimate for the total energy functional
I. By definition, ψε is continuously differentiable and y ∈W 1,p(Ω). Thus, the chain rule
applies to ψε ◦ y, and the respective derivative is well-defined in Lp(Ω), see, e.g., [62,
Theorem 6.16]. With the notation for the deformation gradient in mind, we denote the
derivative of ψε ◦ y by ∇ψε(y)∇y. Further, due to Condition (3.8) combined with the
embedding W 1,p(Ω) ↪→ Cβ(Ω), there exists a constant K1 > 0 such that

‖∇ψε(y(x))− Id ‖ < K1ε for all x ∈ Ω.

The same reasoning yields

det∇ψε(y(x)) > 0 for all x ∈ Ω.

For sufficiently small ε, Estimate (3.9) transfers to the strain energy as follows:

Istrain(ψε ◦ y)− Istrain(y) =

∫
Ω
Ŵ (∇ψε(y(x))∇y(x))− Ŵ (∇y(x)) dx

≤ Cε
∫

Ω
Ŵ (∇y(x)) + 1 dx,

for suitable C > 0. Similarly, for the difference of the outer energies, we obtain

−Iout(ψε(y), u) + Iout(y, u) =

∫
ΓN

(−ψε(y(x)) + y(x))u(x) ds
(3.8)

≤ c ε,

for suitable c > 0. Finally, combining the two estimates yields

I(ψε ◦ y, u)− I(y, u) ≤ Cε(Istrain(y) + vol(Ω)) + c ε,

which concludes the proof.

This lemma implies the following result.

Corollary 3.15. Let u ∈ U be a fixed boundary force and let Assumptions 3.10 and
3.13 hold. Then, there exists a constant C > 0 such that for sufficiently small ε > 0, the
estimate

0 ≤ min
v∈Ac

I(v, u)− min
v∈Aε

I(v, u) ≤ Cε

holds.

Proof. First, we choose ε as defined in Lemma 3.14. Further, let y∗ and yε be mini-
mizers of I(·, u) in Ac and Aε, respectively. Note that minv∈Aε I(v, u) is bounded as ε
approaches zero. Consequently, this holds for Istrain(yε) as well. Then, by Lemma 3.14,
there exist positive constants c0, c1, and c2 such that

0 ≤ I(y∗, u)− I(yε, u) ≤ I(ψε(yε), u)− I(yε, u) ≤ c0(Istrain(yε) + c1)ε ≤ c2ε.
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The minimization problem minv∈Aε I(v, u) can be interpreted as a relaxed contact prob-
lem where some violation of the constraints is allowed. In Corollary 3.15, we have proven
that the difference between the minimal energy values for the relaxed problem and the
original contact problem approaches zero at least linearly with the maximum violation
ε of the contact constraints. Thus, by examining the relation between the penalty pa-
rameter γ and the maximum violation ε, we can derive a convergence rate w.r.t. γ.

3.3.2 An estimate for the constraint violation

It remains to show that for sufficiently large γ, energy minimizers of Iγ are contained
in Aε, where ε = O(γ−ρ) for a certain rate ρ. For this, we use that the corresponding
sequence of minimizers yγ is bounded in Cβ(Ω) for p > 3.
Our analysis here is based on the techniques applied in [47, Proposition 2.4]. Consid-
ering the maximum constraint violation function [y]+ on ΓC , it follows that [y]+ enters
the regularized contact problem (3.2) via the penalty function P . Given the definition
P (y) := 1

k‖[y]+‖kLk(ΓC)
, the question arises whether under suitable regularity assump-

tions, we can estimate the maximum constraint violation ‖[y]+‖L∞(ΓC) against the norm
‖[y]+‖Lk(ΓC). To do so, we first derive an upper bound for the supremum norm in a
general setting.
At this point, we require additional assumptions on the boundary segment ΓC in order to
simplify the computations. Thus, the segment ΓC is assumed to be a flat two-dimensional
sub-manifold of R3. Nonetheless, under suitable assumptions, the following results still
hold if ΓC is curved. However, this is fairly technical and does not yield further insight.
Consequently, only the simple case is considered here. Further, the following requirement
on the boundary segment ΓC is added.

Assumption 3.16. Let ΓC satisfy a uniform interior cone condition in the following
sense: for each point x ∈ ΓC , it is possible to construct a two-dimensional circular sector

SR′,θ(x) ⊂ ΓC (3.10)

with center at x, radius R′ > 0, and center angle θ > 0. Then, assume that R′ and θ
can be chosen independently of x.

Here, each circular sector SR′,θ(x) ⊂ ΓC is interpreted as a two-dimensional sub-manifold
in R3. Due to the flatness assumption on ΓC , this is a meaningful definition. We assume
that Assumption 3.16 holds throughout the subsequent examination. Next, we can derive
the following estimate.

Proposition 3.17. Let β ∈]0, 1[ and s ≥ 1. Further, let f ∈ Cβ(ΓC) ∩ Ls(ΓC) be a
positive function. Additionally, let ‖f‖Cβ(ΓC) ≤ M and ‖f‖Ls(ΓC) ≤ 1. Without loss of
generality, assume that 0 ∈ ΓC and f(0) = ‖f‖L∞(ΓC). Due to Assumption 3.16, there
exists a circular sector SR′,θ(0) ⊂ ΓC with R′ ≤ 1. Then, the following estimate holds:

‖f‖L∞(ΓC) ≤ c(s, β,R′, θ,M)‖f‖
βs
βs+2

Ls(ΓC),



52 CHAPTER 3. REGULARIZATION OF THE CONTACT CONSTRAINTS

where the positive constant c(s, β,R′, θ,M) only depends on the exponents β and s, the
angle θ, the radius R′, and the upper bound M .

Proof. First, we define

R =

(
f(0)

‖f‖Cβ(ΓC)

) 1
β

=

(
‖f‖L∞(ΓC)

‖f‖Cβ(ΓC)

) 1
β

. (3.11)

We choose the maximum positive α ≤ 1 such that for R̃ := αR, the inequalities(
R̃
R

)β
s ≤ 1⇔ αβs ≤ 1 (3.12)

and R̃ ≤ R′ hold. As a result,

SR̃,θ(0) ⊂ SR′,θ(0). (3.13)

In addition, recall Bernoulli’s inequality [14]:

(1 + x)n ≥ 1 + nx, (3.14)

for real numbers x ≥ −1 and n ≥ 1. The Hölder continuity of f yields the estimate

f(x) ≥ f(0)− ‖f‖Cβ(Γc)‖x− 0‖β for all x ∈ SR′,θ(0). (3.15)

Combining the previous results leads to the following estimate:

‖f‖sLs(ΓC) =

∫
ΓC

|f(x)|s dx ≥
∫
SR′,θ(0)

|f(x)|s dx

(3.13)(3.15)

≥
∫
SR̃,θ(0)

|f(0)− ‖f‖Cβ(ΓC)‖x− 0‖β|s dx

(3.11)
= ‖f‖sCβ(ΓC)

∫
SR̃,θ(0)

|Rβ − ‖x− 0‖β|s dx

= 2|S1,θ(0)|‖f‖sCβ(ΓC)

∫ R̃

0
|Rβ − rβ|sr dr

(3.12)(3.14)

≥ 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s rβ

Rβ

)
r dr.

At this point, we have to distinguish between two cases. The first case is αβs = 1, which
implies R̃ ≤ R′. In this case, we obtain

2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s rβ

Rβ

)
r dr

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
[

1
2r

2 − srβ+2

(β+2)Rβ

]αR
0

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs+2 α2

β+2

(
1
2(β + 2)− sαβ

)
.
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Due to the condition αβs = 1, we know that the constant

c0(s, β,R′, θ) := 2|S1,θ(0)| α2

β+2

(
1
2(β + 2)− sαβ

) (3.12)
> 0

does not approach zero even if R → 0. Thus, we can insert the definition of R and
obtain the estimate

‖f‖sLs(ΓC) ≥ c0(s, β,R′, θ)‖f‖sCβ(ΓC)

(
‖f‖L∞(ΓC )

‖f‖
Cβ(ΓC )

)βs+2
β

.

Now, solving for ‖f‖L∞(ΓC) yields

‖f‖L∞(ΓC) ≤ c0(s, β,R′, θ)
− β
βs+2 ‖f‖

2
βs+2

Cβ(ΓC)
‖f‖

βs
βs+2

Ls(ΓC)

≤ c(s, β,R′, θ,M)‖f‖
βs
βs+2

Ls(ΓC),

which shows the desired result. For the second case, we have αβs < 1, which implies
R̃ = R′. This leads to the estimate

2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s rβ

Rβ

)
r dr

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
[

1
2r

2 − srβ+2

(β+2)Rβ

]R̃
0

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
(

1
2R̃

2 − sR̃β+2

(β+2)Rβ

)
(3.12)

≥ 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βsR̃2

(
1
2 − 1

(β+2)

)
.

By applying R̃ = R′, we can define the constant

c0(s, β,R′, θ) := 2|S1,θ(0)|(R′)2
(

1
2 − 1

(β+2)

)
> 0,

which does not depend on R. Analogously to the computations above, we insert the
definition of R and obtain

‖f‖sLs(ΓC) ≥ c0(s, β,R′, θ)‖f‖sCβ(ΓC)

(
‖f‖L∞(ΓC )

‖f‖
Cβ(ΓC )

)βs
β
.

Solving for ‖f‖L∞(ΓC) and using ‖f‖Ls(ΓC) ≤ 1 yields

‖f‖L∞(ΓC) ≤ c0(s, β,R′, θ)−
1
s ‖f‖Ls(ΓC) ≤ c(s, β,R′, θ)‖f‖

βs
βs+2

Ls(ΓC).

Taking both estimates together concludes the proof.
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Inserting [y]+ into Proposition 3.17, we see that the maximum constraint violation can
be estimated by the penalty function since P (y) := 1

k‖[y]+‖kLk(ΓC)
. Thus, we successfully

shifted the problem of deriving a convergence rate of ‖[y]+‖L∞(ΓC) to the penalty function
P . Intuitively, it is clear how to proceed. For each sequence γn →∞, the corresponding
minimal energies Iγn(yn, u) are bounded due to Lemma 3.3. Consequently, P (yn) has
to approach zero at least at the same rate as γn. Proposition 3.17 provides us with the
tools to derive an explicit convergence rate.

Corollary 3.18. Let γn →∞ be monotonically increasing and let yn ⊂ Y be a bounded
sequence. Then, there exists a constant c > 0 such that

‖[yn]+‖L∞(ΓC) ≤ cP (yn)
β

kβ+2 .

Proof. The continuous embedding of W 1,p(Ω) into the space Cβ(Ω) yields the bound-
edness of [yn]+ in the space Cβ(ΓC). By definition, P (yn) := 1

k‖[yn]+‖kLk(ΓC)
. Thus,

Proposition 3.17 applies, and we obtain the stated estimate.

From this result, we can directly deduce a convergence rate for the regularized total
energy.

Theorem 3.19. Let u ∈ U be some fixed boundary force. Additionally, let γn →∞ be a
monotonically increasing sequence of penalty parameters and yn a sequence of minimizers
to the corresponding regularized contact problems (3.2). Further, assume that W 1,p(Ω)
is continuously embedded into the space Cβ(Ω) and that Assumptions 3.10, 3.13, and
3.16 hold. Then, there exists a constant c > 0 such that

‖[yn]+‖L∞(ΓC) ≤ cγ
− β

(k−1)β+2
n ,

min
v∈Ac

I(v, u)− I(yn, u) ≤ cγ−
β

(k−1)β+2
n ,

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ cγ−
β

(k−1)β+2
n .

Proof. In the proof, we use the generic positive constants c and d which change through-
out the estimates. Lemma 3.14 yields the transformation functions ψεn with

εn = ‖[yn]+‖L∞(ΓC).

By optimality of yn and Lemma 3.14, we obtain the estimate

γnP (yn) = Iγn(yn, u)− I(yn, u) ≤ min
v∈Ac

Iγn(v, u)− I(yn, u) = min
v∈Ac

I(v, u)− I(yn, u)

≤ I(ψεn ◦ yn, u)− I(yn, u) ≤ c(Istrain(yn) + d)‖[yn]+‖L∞(ΓC),

(3.16)

for sufficiently large γn. Taking into account the boundedness of Istrain(yn) due to
Lemma 3.3, we can derive

P (yn) ≤ cγ−1
n ‖[yn]+‖L∞(ΓC).
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Further, due to Corollary 3.18, the estimates

‖[yn]+‖L∞(ΓC) ≤ cP (yn)
β

kβ+2 ≤ c
(
γ−1
n ‖[yn]+‖L∞(ΓC)

) β
kβ+2

hold. Finally, solving for ‖[yn]+‖L∞(ΓC) yields

‖[yn]+‖L∞(ΓC) ≤ cγ
− β

(k−1)β+2
n ,

and combined with (3.16), the desired result.

For this proof, an anonymous referee contributed valuable remarks that helped to sim-
plify some argumentations. From a theoretical point of view, the convergence of the
energy hinges on an a priori bound on the Hölder continuity of the solutions for some
β > 0. In practical computations, β can be quite large, e.g., β → 1. A thorough nu-
merical study of this issue will be conducted in Chapter 7. As we will see, the results
derived there indicate a faster convergence rate than predicted by the theoretical results
established in this chapter.

3.4 Summary

In summary, we have successfully applied the normal compliance approach to nonlinear
elastic contact problems to obtain a regularized problem of the form:

y ∈ argmin
v∈A

Iγ(v, u).

Relaxing the contact constraints simplifies the numerical treatment significantly. Ad-
ditionally, we verified that this regularized problem is well-posed and can be utilized
to approximate solutions to the original contact problem (2.23). Moreover, under suit-
able structural assumptions, corresponding convergence rates have been established. For
sequences γn →∞, we elaborated estimates of the form

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ c1γ
−ρ
n ,

and
‖[yn]+‖L∞(ΓC) ≤ c2γ

−ρ
n ,

where yn denotes the sequence of regularized solutions corresponding to Problem (3.2).
However, similar estimates for the norms ‖yn‖W 1,p(Ω) and ‖yn‖Lp(Ω) seem to be out of
reach in the current setting. Further, it is not possible to derive first order optimality
conditions in a general setting due to the fact that

Y∞ :=

{
v ∈ Y

∣∣∣ ∫
Ω
Ŵ (x,∇v(x)) dx =∞

}
is a dense subset in the space W 1,p(Ω). Under suitable assumptions, this issue can be
overcome by choosing the space W 1,∞(Ω). Still, results that apply to general cases have
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not been derived yet. Also, the alternative first order optimality condition (3.5) turned
out to be unsuited for the application in numerics so far. Thus, first order optimality
conditions can only be derived formally, and a thorough analysis of this issue remains a
subject of future research.



Chapter 4

Optimal Control of Nonlinear
Elastic Contact Problems

Optimal control problems in nonlinear elasticity have recently received increased atten-
tion. Most notably, in [64, 66], an optimal control problem in hyperelasticity was used
to compute designs of implants. In that context, an existence result was established, and
the elaborated techniques serve as the starting point for our analysis. Further examina-
tions were conducted in [39, 40]. There, the authors studied biological models, including
the movement of heliotropic flowers. In addition, nonlinear elasticity is increasingly con-
sidered for shape optimization problems, see, e.g., [80, 87]. One application of this is the
optimal design of structures.

The aim of this chapter is to extend existing results to optimal control of contact prob-
lems. In addition, suitable regularizations of the contact constraints are introduced to
apply robust solution algorithms as developed in [67]. Correspondingly, convergence
results are established for these new approaches.

This chapter is structured as follows. In Section 4.1, we derive an optimal control problem
where a nonlinear elastic contact problem acts as the constraint. This yields a bilevel
optimization problem that inherits all the theoretical difficulties from nonlinear elasticity.
First and foremost, the bilevel structure does not admit a unique solution due to the lack
of convexity. Thereafter, we apply the normal compliance method to remove the non-
smoothness resulting from the contact constraints. This leads to a regularized optimal
control problem. The existence of solutions to both problems is discussed in detail.
Section 4.2 addresses the convergence of the regularization approaches introduced in the
prior section. At this, we modify the normal compliance method to derive convergence
results. This new approach better reflects the structure of the entire optimal control
problem, and as a result, strong structural assumptions are not required. Finally, Section
4.3 briefly discusses the derivation of KKT conditions.

Parts of this chapter have been published in [95].

57
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4.1 Optimal control of contact problems

In the optimal control setting, we want to minimize an objective functional

J : Y × U → R

of the form

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2U , (4.1)

where yd ∈ L2(Ω) represents the desired state and α > 0 denotes the regularization
parameter. This standard tracking type functional is obviously weakly lower semi-
continuous and coercive w.r.t. its second argument. Here, we require p ≥ 2 and q = 2
for the spaces Y = W 1,p(Ω) and U = Lq(ΓN ). An alternative to choosing a tracking
type functional was discussed in [39, 40]. There, the objective was shifted to approxi-
mate a desired direction instead of a desired deformation. This approach leads to more
complicated objective functionals and requires a thorough examination. Such a study
would be beyond the scope of this work, and therefore, we restrict the analysis here to
tracking type functionals instead.
As the constraint, each optimal state y∗ also needs to be a minimizer of the total energy
functional:

y∗ ∈ argmin
v∈Ac

I(v, u∗),

where u∗ is the corresponding optimal control. With the objective functional at hand,
the optimal control problem reads as follows:

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).
(4.2)

4.1.1 Existence of optimal solutions

When proving the existence of optimal solutions to Problem (4.2), we encounter several
difficulties. As already mentioned in Chapter 3, it is not possible to derive first order
optimality conditions for the lower level problem without strong additional assumptions.
Further, the total energy functional I is non-convex, and therefore, its minimizers do not
have to be unique. In [64, 66], the existence of solutions to an optimal control problem
in hyperelasticity without contact constraints has been proven. We can directly transfer
the results from [64, 66] to our analysis. Before the existence of solutions is addressed,
we introduce the following definition.

Definition 4.1 (Solution set). The solution set S is defined as

S :=

{
(y, u) ∈ Y × U

∣∣∣ y ∈ argmin
v∈Ac

I(v, u)

}
.

The next theorem establishes the existence of optimal solutions to Problem (4.2).
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Theorem 4.2. The optimal control problem (4.2) has at least one optimal solution in
S.

Proof. The proof follows the lines of [66, Proof of Theorem 3.1]. Let (yn, un) ⊂ S be
an infimizing sequence, whereby J(yn, un) is bounded. We know that such a sequence
exists due to Assumption 2.31 and due to the definition of the tracking functional J .
The coerciveness of J w.r.t. the second variable yields the boundedness of un. The
boundedness of I(yn, un) follows from the same arguments as applied in the proof of
Lemma 3.3. Accordingly, Lemma 2.37 implies the boundedness of yn. From there, we
can deduce the boundedness of the strain energy Istrain(yn).

Now, the reflexivity of Y × U yields the existence of a weakly converging subsequence,
which we also denote by (yn, un). Its weak limit is denoted by (y, u) ∈ Y × U . Here,
Lemma 2.38 and the weak closedness of C ensure that y ∈ Ac. Next, we have to verify
that (y, u) satisfies again the constraint:

y ∈ argmin
v∈Ac

I(v, u).

Theorem 2.39 guarantees the existence of a state ỹ ∈ Ac satisfying

ỹ ∈ argmin
v∈Ac

I(v, u).

Also, Lemma 2.36 yields the weak lower semi-continuity of I w.r.t. the sequence (yn, un)
and the weak continuity of the outer energy Iout. Then,

lim sup
n→∞

I(yn, un) ≤ lim sup
n→∞

I(y, un) = I(y, u) ≤ lim inf
n→∞

I(yn, un),

and consequently,

lim
n→∞

I(yn, un) = I(y, u).

From there, we obtain

I(ỹ, u) ≤ I(y, u) = lim
n→∞

I(yn, un) ≤ lim
n→∞

I(ỹ, un) = I(ỹ, u).

Thus, (y, u) satisfies the constraints of the optimal control problem (4.2). Finally, the
estimate

inf
(y,u)∈S

J(y, u) ≤ J(y, u) ≤ lim inf
n→∞

J(yn, un) = inf
(y,u)∈S

J(y, u)

concludes the proof.

4.1.2 Regularized optimal control problem

Although the existence of optimal solutions has been established, the numerical compu-
tation of such solutions poses significant challenges due to the contact constraints and
the resulting non-smoothness. In order to apply the specialized algorithm developed in
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[67], we deploy the normal compliance method to relax the constraints. This leads to
the following regularized problem:

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u),
(4.3)

for some fixed parameter γ > 0. Two popular approaches for regularizing optimal con-
trol problems are the Lavrentiev regularization, cf. [48, 49, 70, 71, 86], and the Moreau-
Yosida regularization, cf. [45, 46, 47, 52, 72]. Both approaches are designed to relax
state constraints. The Moreau-Yosida method deploys a regularization for the charac-
teristic function of the respective state constraints while the Lavrentiev approach aims
at regularizing the state constraints directly. A comprehensive overview of regularization
methods for optimal control problems can be found in [11].
The main reason why these established methods do not apply in our setting is the
bilevel structure of the optimal control problem with no solution operator or first order
optimality conditions for the lower level problem. As a result, the usual techniques
to analyze regularized optimal control problems cannot be utilized in our case. Still,
it is possible to prove that the regularized optimal control problem (4.3) is a suitable
approximation of the original one (4.2), at least under sufficient assumptions. First, the
existence of optimal solutions is shown.

Theorem 4.3. Let γ > 0 be some fixed penalty parameter. Then, the optimal control
problem (4.3) has at least one optimal solution.

Proof. The regularization does not alter the two crucial properties of the total energy
functional I which are coerciveness and weak lower semi-continuity w.r.t. infimizing
sequences. Thus, the existence of optimal solutions can be proven analogously to the
proof of Theorem 4.2.

4.2 Convergence analysis for the regularized optimal con-
trol problem

The crucial part of every regularization scheme is to verify that solutions of the regu-
larized problem approach solutions of the original one as the regularization parameter
approaches its limit. However, the bilevel structure, the lack of first order optimality
conditions, and the non-uniqueness of energy minimizers in hyperelasticity impede a
convergence analysis along traditional lines. Thus, in order to obtain a satisfactory con-
vergence result, we will need some additional structure or information on the problem.
In this section, we discuss two alternative methods to show the desired convergence
result. In the first approach, we utilize a structural assumption, namely that optimal
solutions can be approximated by regularized solutions. In the second one, we modify
the regularized energy functional by adding a small fraction of the objective functional
to better couple optimality with the constraints. This allows us to obtain convergence
of solutions without strong assumptions.
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4.2.1 Convergence under a reachability assumption

In our setting so far, one critical case cannot be excluded. If no optimal solution pair
of the original problem (4.2) can be approximated by a sequence of solutions of the
regularized contact problem (3.2), we have no chance of proving any convergence result
at all. In the general setting of hyperelastic contact problems, this case cannot be ruled
out. Therefore, we have to require additional structure.

In this context, the following property ensures that solutions of the original contact prob-
lem (2.23) can be approximated by solutions of the regularized contact problem (3.2).

Definition 4.4 (Reachability). A feasible solution (y, u) ∈ S is called reachable if for
each sequence γn → ∞, there exists a subsequence γnk and a corresponding sequence
(ỹnk , ũnk) ⊂ A× U satisfying ỹnk ⇀ y, ũnk → u, and

ỹnk ∈ argmin
v∈A

Iγnk (v, ũnk).

The set of all reachable pairs is denoted by R ⊂ S.

Note that this definition is a slightly more general version of Remark 3.6. Although it
admits more flexibility since the boundary force u is not fixed, verifying this property
seems to be out of reach for general settings. At least in cases where the lower level
problem admits a unique solution, Corollary 3.7 implies reachability. Since R ⊂ S, we
obtain the estimate

min
(y,u)∈S

J(y, u) ≤ inf
(y,u)∈R

J(y, u).

However, it is not clear whether both values coincide. In order to obtain a complete
convergence result, the following assumption is necessary.

Assumption 4.5. Assume that

min
(y,u)∈S

J(y, u) = inf
(y,u)∈R

J(y, u).

This assumption is satisfied if at least one optimal solution of Problem (4.2) is also
reachable. So far, there does not exist an approach to verify the reachability property for
general problems. Such a verification is only possible in settings where the hyperelastic
lower level problem admits a unique solution. This leaves us with a theoretical gap,
and in the current setting, it remains unclear whether this gap can be closed. Next, we
derive our first convergence result.

Theorem 4.6. Let Assumption 4.5 hold. Further, let γn →∞ be a positive and mono-
tonically increasing sequence of penalty parameters. In addition, let (yn, un) ⊂ A×U be
a sequence of optimal solutions to the corresponding regularized optimal control problems
(4.3). Then,

lim
n→∞

J(yn, un) = min
(y,u)∈S

J(y, u).
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Furthermore, there exists a subsequence (ynk , unk) and a pair (y, u) ∈ Ac × U such that
ynk ⇀ y in Y and unk → u in U . Additionally, (y, u) solves the original optimal control
problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

Proof. We start by proving the boundedness of J(yn, un). Recalling the identity map-
ping id, it follows that J(id, uz) < ∞. Here, uz denotes the zero boundary force on
ΓN . Due to Assumption 2.31(6), the pair (id, uz) ∈ Y × U satisfies the regularized con-
straint (3.2) for every parameter γn. This holds since the identity mapping is a natural
state and id ∈ C. Therefore, the boundedness of J(yn, un) can be concluded so that
lim supn→∞ J(yn, un) <∞.
Let (y, u) be any reachable pair. Then, we can choose a subsequence (ynk , unk) such that

lim sup
n→∞

J(yn, un) = lim
k→∞

J(ynk , unk).

There also exists a sequence (ỹnk , ũnk) ⊂ A × U corresponding to γnk with ỹnk ⇀ y in
Y and ũnk → u in U satisfying

ỹnk ∈ argmin
v∈A

Iγnk (v, ũnk).

The compact embedding Y ↪→ L2(Ω), cf. [2], implies ỹnk → y in L2(Ω). Consequently,
we conclude by optimality of (ynk , unk) and strong continuity of J :

lim sup
n→∞

J(yn, un) = lim
k→∞

J(ynk , unk) ≤ lim
k→∞

J(ỹnk , ũnk) = J(y, u) for all (y, u) ∈ R.

Therefore,
lim sup
n→∞

J(yn, un) ≤ inf
(y,u)∈R

J(y, u).

The coerciveness of the objective functional J w.r.t. the second variable yields the bound-
edness of un. Thus, Lemma 3.3 implies the boundedness of yn. Hence, by reflexivity,
there exists a subsequence of (ynk , unk) such that simultaneously

lim
k→∞

J(ynk , unk) = lim inf
n→∞

J(yn, un) and (ynk , unk) ⇀ (y, u).

Due to Lemma 3.4, we conclude that (y, u) satisfies the original constraint

y ∈ argmin
v∈Ac

I(v, u).

Further, by weak lower semi-continuity of J , we obtain

min
(y,u)∈S

J(y, u) ≤ J(y, u) ≤ lim
k→∞

J(ynk , unk) = lim inf
n→∞

J(yn, un)

≤ lim sup
n→∞

J(yn, un) ≤ inf
(y,u)∈R

J(y, u).
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Invoking Assumption 4.5 leads to

min
(y,u)∈S

J(y, u) = J(y, u) = lim
n→∞

J(yn, un).

Thus, (y, u) is an optimal solution. Finally, we show strong convergence of the sequence
unk . The Sobolev embedding theorem yields the strong convergence of ynk in L2(Ω).
Therefore,

1

2
‖ynk − yd‖2L2(Ω) →

1

2
‖y − yd‖2L2(Ω).

By incorporating the convergence J(ynk , unk)→ J(y, u), we can deduce that

α

2
‖unk‖2L2(ΓN ) →

α

2
‖u‖2L2(ΓN ).

Since unk is weakly converging in U , this implies the strong convergence in L2(ΓN ).

In summary, we have been able to show a convergence result for the regularized optimal
control problem (4.3). This has been possible only under the assumption of reachability.
However, in applications, it is usually not possible to verify whether this assumption
holds. The following critical case is conceivable: the original contact problem may have
several solutions, some of which are in contact and some of which are not. In this
case, our regularization scheme is biased towards those solutions that are in contact
because violating the constraints allows reducing the energy. Consequently, we cannot
show convergence along the lines of Theorem 4.6. The overarching problem seems to
be that the pure normal compliance regularization is unsuited since it does not capture
the entire structure of the optimal control problem. To compensate for this, we extend
the normal compliance regularization to an approach more compatible with the optimal
control problem (4.2).

4.2.2 A modified regularization

In order to improve the coupling of optimization and feasibility, we introduce an al-
ternative regularized total energy function Eγ , which contains an additional term from
the objective functional. Roughly speaking, this introduces a bias of energy-minimizers
towards optimality of the objective functional J . The modified regularized energy func-
tional has the form

Eγ(y, u) := Iγ(y, u) + ϕ(γ)
1

2
‖y − yd‖2L2(Ω), (4.4)

where ϕ : [0,∞[ → ]0,∞[ is monotonically decreasing such that

lim
γ→∞

ϕ(γ) = 0.

As the following analysis will show, the latter property ensures that solutions of this
new regularized problem can approach solutions of the original contact problem (2.23).
First, we prove that the new regularized problem is well-posed.
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Theorem 4.7. Let u ∈ U be a fixed boundary force and let γ > 0 be a fixed penalty
parameter. Then, the minimization problem

y ∈ argmin
v∈A

Eγ(v, u) (4.5)

has at least one solution.

Proof. We note that the functional Eγ is weakly continuous w.r.t. the second variable
and weakly lower semi-continuous w.r.t. sequences that leave the strain energy Istrain

bounded. Thus, the proof is completely analogous to the one of Theorem 2.39.

Similarly, without giving the details of the proofs, we remark that the results of Lem-
ma 2.37 and Lemma 3.3 also hold for Eγ . Next, we establish that limits of the new
regularized problem solve the original contact problem.

Lemma 4.8. Let γn →∞ be a monotonically increasing sequence of penalty parameters.
Furthermore, consider a weakly convergent sequence (yn, un) ⇀ (y, u) such that

yn ∈ argmin
v∈A

Eγn(v, un).

Then, (y, u) ∈ Ac × U with
y ∈ argmin

v∈Ac
I(v, u)

and
lim
n→∞

Eγn(yn, un) = I(y, u).

Proof. Theorem 2.39 guarantees the existence of a state ŷ ∈ Ac with Istrain(ŷ) < ∞.
From there, it follows that the sequence Eγn(ŷ, un) is bounded since un is bounded and

γnP (ŷ) = 0 for all n ∈ N.

Therefore, we deduce the boundedness of Eγn(yn, un) due to

Eγn(yn, un) ≤ Eγn(ŷ, un).

We have to show that the pair (y, u) solves the contact problem (2.23). First, the
boundedness of (yn, un) and Eγn(yn, un) implies the boundedness of Istrain(yn). Thus,
Lemma 2.38 implies y ∈ A. By the same arguments as in the proof of Theorem 3.4, we
obtain y ∈ Ac. Again, by using the techniques applied in the proof of Theorem 3.4 and
by ϕ(γn)→ 0, we derive the estimates

lim sup
n→∞

Eγn(yn, un) ≤ lim sup
n→∞

Eγn(y, un) = lim sup
n→∞

(
I(y, un) + ϕ(γn)

1

2
‖y − yd‖2L2(Ω)

)
= I(y, u) ≤ lim inf

n→∞
I(yn, un) ≤ lim inf

n→∞
Eγn(yn, un).

Accordingly,
lim
n→∞

Eγn(yn, un) = I(y, u).
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Theorem 2.39 yields the existence of a state y̌ with

y̌ ∈ argmin
v∈Ac

I(v, u).

Therefore, it follows that

I(y̌, u) ≤ I(y, u) = lim
n→∞

Eγn(yn, un) ≤ lim
n→∞

Eγn(y̌, un) = I(y̌, u).

Similarly to Theorem 3.19, we can derive a convergence rate for the new regularization.

Theorem 4.9. Let u ∈ U be a fixed boundary force, and let γn → ∞ be a monoton-
ically increasing sequence of penalty parameters. In addition, consider the setting of
Theorem 3.19 with the derived convergence rate ρ > 0 such that

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ cγ−
1
ρ

n

for a suitable constant c > 0 and

lim
γ→∞

γ
− 1
ρ

ϕ(γ)
= 0. (4.6)

Further, yn denotes a sequence of corresponding minimizers satisfying

yn ∈ argmin
v∈A

Eγn(v, u).

Then, there exists a constant C > 0 such that

| min
v∈Ac

I(v, u)− Eγn(yn, u)| ≤ Cϕ(γn). (4.7)

Proof. Let the sequence ỹn satisfy

ỹn ∈ argmin
v∈A

Iγn(v, u).

Then, we obtain the estimate

Iγn(ỹn, u) ≤ Iγn(yn, u) ≤ Iγn(yn, u) + ϕ(γn)
1

2
‖yn − yd‖2L2(Ω) = Eγn(yn, u). (4.8)

Additionally, Theorem 3.19 yields the following convergence rate

0 ≤ min
v∈Ac

I(v, u)− Iγn(ỹn, u) ≤ cγ−
1
ρ

n .

Next, w.l.o.g., it suffices to study the two cases

Eγn(yn, u) < min
v∈Ac

I(v, u)
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and
Eγn(yn, u) ≥ min

v∈Ac
I(v, u).

In the first case, we obtain

0 < min
v∈Ac

I(v, u)− Eγn(yn, u)
(4.8)

≤ min
v∈Ac

I(v, u)− Iγn(ỹn, u) ≤ cγ−
1
ρ

n .

By definition, ϕ(γn) approaches zero at a slower rate than γ
− 1
ρ

n . This shows the first
case. In second case, the same reasoning yields

min
v∈Ac

I(v, u) ≤ Eγn(yn, u) ≤ Eγn(ỹn, u) ≤ min
v∈Ac

I(v, u) + ϕ(γn)
1

2
‖ỹn − yd‖L2(Ω).

The boundedness of ‖ỹn − yd‖L2(Ω) follows from the boundedness of ‖ỹn‖Y due to
Lemma 3.3, which concludes the proof.

Summarizing this theorem, we have proven that the optimal regularized energy values of
(4.5) approach the optimal energy value of the original contact problem (2.23) at least
at the same rate as the regularization function ϕ approaches zero. The restriction to
regularization functions satisfying (4.6) will be essential in the optimal control setting.
Applying this new approach to the optimal control problem yields:

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Eγ(v, u).
(4.9)

Next, we verify the existence of solutions to this problem.

Theorem 4.10. Let γ > 0 be some fixed penalty parameter. Then, the optimal control
problem (4.9) has at least one solution.

Proof. The proof is analogous to the proof of Theorem 4.2.

So far, no further restrictions of the regularization function ϕ have been necessary.
However, in order derive a convergence result for the new regularized problem (4.9),
additional structure is required. At this, we have to ensure that minimizing a part of the
objective functional in the constraint is sufficiently weighted as the penalty parameter
approaches infinity. Therefore, we introduce an additional condition for the function ϕ.
Recall that for fixed u, the function γ → minv∈A Iγ(v, u) is monotonically increasing and
bounded. Moreover, by Proposition 3.5, we obtain

lim
γ→∞

min
v∈A

Iγ(v, u) = min
v∈Ac

I(v, u).

In the subsequent analysis, it is necessary that ϕ approaches zero at a sufficiently slow
rate w.r.t. the elastic energy values. This property is specified in the following assump-
tion.
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Assumption 4.11. Let u ∈ U be fixed. Assume that

lim
γ→∞

minv∈Ac I(v, u)−minv∈A Iγ(v, u)

ϕ(γ)
= 0.

With this at hand, we can state a convergence result without the assumption of reacha-
bility.

Theorem 4.12. Let γn → ∞ be a positive and monotonically increasing sequence of
penalty parameters. Furthermore, let (y∗, u∗) denote an optimal solution to Problem
(4.2). In addition, let (yn, un) ⊂ A × U be a sequence of optimal solutions to the
corresponding regularized problems (4.9), where the regularization function ϕ satisfies
Assumption 4.11 w.r.t. u∗. Then,

lim
n→∞

J(yn, un) = J(y∗, u∗).

Further, there exists a subsequence (ynk , unk) and a pair (y, u) ∈ Ac × U such that
ynk ⇀ y in Y and unk → u in L2(ΓN ). Additionally, the pair (y, u) solves the original
optimal control problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

Proof. Let us construct a sequence (ỹn, u∗) ⊂ A × U that satisfies the regularized con-
straint (4.5) for each element of γn. Further, it should fulfill the condition

lim sup
n→∞

J(ỹn, u∗) ≤ J(y∗, u∗).

To this end, let ỹn ⊂ A be a sequence satisfying

ỹn ∈ argmin
v∈A

Eγn(v, u∗).

We know from Theorem 4.7 that such sequences exist. The minimization property of ỹn
yields

Eγn(ỹn, u∗)− Eγn(y∗, u∗) ≤ 0 for all n ∈ N. (4.10)

Then, we can derive the estimate

Eγn(ỹn, u∗)− Eγn(y∗, u∗) = Iγn(ỹn, u∗)− I(y∗, u∗)

+ ϕ(γn)

(
1

2
‖ỹn − yd‖2L2(Ω) −

1

2
‖y∗ − yd‖2L2(Ω)

)
≥ min

v∈A
Iγn(v, u∗)− min

v∈Ac
I(v, u∗)

+ ϕ(γn)(J(ỹn, u∗)− J(y∗, u∗)).
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In combination with (4.10), this yields

J(ỹn, u∗) ≤ J(y∗, u∗) +
minv∈Ac I(v, u∗)−minv∈A Iγn(v, u∗)

ϕ(γn)
. (4.11)

Since (yn, un) is optimal and ϕ satisfies Assumption 4.11, we obtain

lim sup
n→∞

J(yn, un) ≤ lim sup
n→∞

J(ỹn, u∗) ≤ J(y∗, u∗).

By coerciveness of J in the second variable, un is bounded. Consequently, yn is also
bounded due to Lemma 3.3. Thus, we can choose a subsequence such that simultaneously

lim
k→∞

J(ynk , unk) = lim inf
n→∞

J(yn, un) and (ynk , unk) ⇀ (y, u).

By Lemma 4.8, the pair (y, u) satisfies

y ∈ argmin
v∈Ac

I(v, u).

Due to the weak lower semi-continuity of J , we conclude

J(y∗, u∗) ≤ J(y, u) ≤ lim
k→∞

J(ynk , unk)

= lim inf
n→∞

J(yn, un) ≤ lim sup
n→∞

J(yn, un) ≤ J(y∗, u∗).

This estimate yields

lim
n→∞

J(yn, un) = J(y∗, u∗) = J(y, u).

The strong convergence of un follows from the same arguments that have been applied
in the proof of Theorem 4.6.

In conclusion, if ϕ(γ) tends to zero sufficiently slowly, then we can recover solutions
of the original optimal control problem (4.2). To quantify a priori what sufficiently
slow means, we can profit from the results elaborated in Chapter 3. Depending on the
problem characteristics, Theorem 3.19 yields a convergence rate for the energy, and thus,
a theoretically backed choice of ϕ(γ).
Next, we derive qualitative estimates for the new regularized optimal control problem
(4.9). In particular, it is of interest whether proving a convergence rate analogously to
Theorem 3.19 is possible. However, this can only be achieved in special cases.

Proposition 4.13. Let (y∗, u∗) denote an optimal solution to Problem (4.2). Further-
more, let γn → ∞ be a monotonically increasing sequence of penalty parameters, where
(yn, un) ⊂ A × U is a corresponding sequence of optimal solutions to the regularized
optimal control problem (4.9). Denote by ρ > 0 the convergence rate derived in Theorem
3.19 such that

min
v∈Ac

I(v, u∗)−min
v∈A

Iγn(v, u∗) ≤ cγ
− 1
ρ

n
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for a suitable constant c > 0. In addition, the regularization function ϕ satisfies As-
sumption 4.11 w.r.t. u∗. If

J(y∗, u∗) ≤ J(yn, un)

holds for all n ∈ N, then the convergence rate

0 ≤ J(yn, un)− J(y∗, u∗) ≤ C
γ
− 1
ρ

n

ϕ(γn)

holds with C > 0.

Proof. Consider the sequence ỹn with

ỹn ∈ argmin
v∈A

Eγn(v, u∗).

Then, due to optimality of (yn, un) and the estimate in (4.11), we derive

J(y∗, u∗) ≤ J(yn, un) ≤ J(ỹn, u∗) ≤ J(y∗, u∗) +
minv∈Ac I(v, u∗)−minv∈A Iγn(v, u∗)

ϕ(γn)
.

Since

lim
n→∞

γ
− 1
ρ

n

ϕ(γn)
= 0

by definition, we obtain the desired convergence rate.

Interestingly, the convergence rate of the optimal objective functional values directly
depends on the convergence rate of the corresponding regularized energy values. In
addition, we can prove that the regularized optimal control problem (4.9) leads to smaller
values of the objective function.

Proposition 4.14. Let γn → ∞ be a monotonically increasing sequence of penalty
parameters. Further, we denote by (yn, un) ⊂ A× U and (ỹn, ũn) ⊂ A× U sequences of
optimal solutions to Problems (4.9) and (4.3), respectively. Then, the estimate

J(yn, un) ≤ J(ỹn, ũn)

holds.

Proof. We prove the statement by contradiction. Assume there exists an n0 ∈ N such
that

J(ỹn0 , ũn0) < J(yn0 , un0).

Let ŷn0 ∈ A satisfy
ŷn0 ∈ argmin

v∈A
Eγn0

(v, ũn0).

Then, due to optimality of (yn0 , un0), we obtain

J(ỹn0 , ũn0) < J(yn0 , un0) ≤ J(ŷn0 , ũn0),
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and consequently,
1

2
‖ỹn0 − yd‖2L2(Ω) <

1

2
‖ŷn0 − yd‖2L2(Ω).

However, this implies the estimate

Eγn(ŷn0 , ũn0) > Iγn(ŷn0 , ũn0) + ϕ(γn0)
1

2
‖ỹn0 − yd‖2L2(Ω)

≥ Iγn(ỹn0 , ũn0) + ϕ(γn0)
1

2
‖ỹn0 − yd‖2L2(Ω) = Eγn(ỹn0 , ũn0),

which contradicts the minimization property of ŷn0 .

So far, more general results seem to be out reach due to the inherent difficulty of the
bilevel problem structure.

4.3 Formal KKT conditions for the optimal control prob-
lem

The inherent difficulties of nonlinear elasticity motivate the application of sophisticated
algorithms as considered in [67]. However, to do so, the lower level energy minimizing
problem has to be replaced by its first order optimality condition. Recalling the analysis
from Section 3.2, it appears that so far, the only reasonable function space for differ-
entiability of Istrain is W 1,∞(Ω). To proceed towards KKT conditions in this setting, a
local sensitivity of energy minimizers with respect to perturbations in the control would
be necessary, e.g., by the application of an implicit function theorem.

A related result was briefly discussed in Theorem 2.34 and to a wider extent in [15,
Chapter 6]. There, the analysis was conducted within a W 2,p(Ω)-framework for p > 3.
Unfortunately, this theory also requires very strong regularity assumptions on the prob-
lem data. To apply the implicit function theorem, we have to show the W 2,p-regularity
of the solutions of the linearized elastic problems. Those assumptions are unlikely to be
satisfied for many problems of interest. Particularly, the crucial case of mixed boundary
conditions is generally ruled out.

Therefore, KKT conditions can only be derived in a formal way. Consider the common
notation for optimal control problems x := (y, u). In the context of formal first order
optimality conditions for Iγ , we define:

cγ(y, u)v = ∂yIγ(y, u)v − γ
∫

ΓC

[y]k−1
+ v3 ds, v ∈ Y.

Similarly, for the modified regularization (4.5), we obtain

cγ(y, u)v = ∂yEγ(y, u)v − γ
∫

ΓC

[y]k−1
+ v3 ds, v ∈ Y.
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Then, the new optimal control problem reads as follows:

min
(y,u)∈Y×U

J(y, u)

s.t. cγ(y, u) = 0.
(4.12)

Formally, the KKT conditions of (4.12) for given stationary point x∗ state the existence
of an adjoint state p such that:

J ′(x∗) + c′γ(x∗)
∗p = 0

cγ(x∗) = 0.
(4.13)

These equations serve as the starting point for the algorithmic analysis in Chapter 5.

Remark 4.15. Replacing Problems (3.2) and (4.5) with their formal first order op-
timality conditions changes the fundamental structure of the respective optimal control
problems (4.3) and (4.9). Replacing the minimization problems allows stationary solu-
tions that are no longer energy minimizers. This change has to be kept in mind when
numerical results are analyzed.

4.4 Summary

In summary, we have established a well-posed optimal control problem which incorpo-
rates the nonlinear elastic contact problem (2.23) as its constraint. This yields the bilevel
optimization problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

Despite the inherent difficulties due to nonlinear elasticity and contact constraints, the
existence result from [64, 66] has been successfully extended to our contact constrained
problem. Via the application of the normal compliance method, we have obtained a
numerically treatable problem:

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u).

This transformation allows the application of the specialized algorithm developed in
[64, 67]. However, for the pure normal compliance regularization, a corresponding con-
vergence result has been achieved only under strong structural assumptions, and it re-
mains unclear how to verify these assumptions for general settings. By considering a
modified regularized energy functional of the form

Eγ(y, u) := Iγ(y, u) + ϕ(γ)
1

2
‖y − yd‖2L2(Ω),

a convergence result was derived without relying on strong assumptions. Finally, we
discussed the derivation of corresponding KKT conditions, which remains an open prob-
lem.
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Chapter 5

Numerical Algorithms

This chapter is dedicated to an algorithmic discussion of problems involving nonlinear
elasticity with contact constraints. Here, we only consider contact problems that have
been relaxed by some regularization approach such as the normal compliance method
described in Chapter 3. This significantly simplifies the numerical treatment since non-
smoothness can be ruled out.

This chapter is structured as follows. In the first section, a cubic regularization method
in the spirit of [107] is introduced to solve unconstrained minimization problems, such
as (3.2). There, the non-convexity of the objective functional implies that the resulting
linear systems are not positive definite in general. Two common approaches to overcome
this are truncated and regularized CG methods. Truncated CG (TCG) methods usually
yield cheaper steps considering the computation time. However, the computed search
directions are often very irregular, leading to very small damping parameters and many
outer iterations. This results from the termination of the algorithm at a point where
things become particularly difficult, often resulting in irregular CG-iterates. For this
reason, we opt for a regularized CG (RCG) method, which yields more regular iter-
ates. The derived cubic regularization approach will be applied in Chapter 7 to test the
convergence rates elaborated in Chapter 3. Additionally, we present a modified update
strategy that incorporates the structural requirements of nonlinear elasticity.

Thereafter, Section 5.2 addresses the affine covariant composite step method introduced
in [64, 67]. To apply this method, we have to replace the energy minimization in (4.3)
and (4.9) with the respective formal first order conditions, leading to the optimal control
problem

min
(y,u)∈Y×U

J(y, u)

s.t. cγ(y, u) = 0.

The inherent difficulty of this problem, due to nonlinear elasticity, requires the applica-
tion of robust solvers. In that context, an affine covariant composite method has been
successfully applied in [64, 67] to solve optimal control problems of nonlinear elasticity.
Finally, we construct a simple path-following approach in Section 5.3. This allows us
to consider large normal compliance parameters γ to recover solutions of the original

73
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optimal control problem (4.2).
Parts of this chapter have been published in [94, 95].

5.1 Cubic regularization approach

In [107], the authors addressed non-convex optimization by combining affine covariant
techniques with a cubic regularization approach, based on the ideas of [37]. In particular,
the elaborated algorithms have been successfully applied to hyperelastic problems. Here,
we only introduce a simplified version of the algorithms developed in [107]. For an
overview of affine covariant techniques in general, the reader is referred to the monograph
[23].

5.1.1 A basic cubic regularization method

Let (X, 〈·, ·〉) be a Hilbert space and f : X → R a sufficiently smooth but not necessarily
convex function. We are interested in finding solutions to the optimization problem

x∗ ∈ argmin
x∈X

f(x).

To compute updates that improve optimality, we define a cubic model of f :

mx(δx) := f(x) + f ′(x)δx+ 〈δx, f ′′(x)δx〉+
ωCR

6
‖δx‖3E,

with the positive regularization parameter ωCR and a suitable norm ‖·‖E. Given a direc-
tion of descent δx of f , we compute a directional minimizer of mx along δx, parametrized
by the positive damping factor σ. We accept σ if the decrease predicted by the model
mx guarantees sufficient decrease of f . For a user-provided parameter ηCR

1 ∈ ]0, 1[, the
decrease is measured via the condition

υ :=
f(x+ σδx)− f(x)

mx(σδx)−mx(0)
≥ ηCR

1 . (5.1)

In the case that this condition is violated, ωCR is increased by the factor sCR
I > 1, and

σ is recomputed. We repeat this process until the step is accepted. To avoid too small
step sizes, we also allow a reduction of ωCR if the decrease predicted by the model mx

ensures a certain decrease of f . This is the case if

f(x+ σδx)− f(x)

mx(σδx)−mx(0)
> ηCR

2 ,

with ηCR
2 > ηCR

1 > 0. To apply the reduction, ωCR is multiplied with the factor sCR
D < 1.

For a suitable tolerance ΛCR > 0, the algorithm is considered converged if

‖δx‖E ≤ ΛCR (5.2)

and if f is convex at the current iterate. In this work, ‖ · ‖E is chosen as the norm
induced by linear elasticity. The resulting cubic regularization approach is summarized
in Algorithm 1.
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Algorithm 1 Cubic Regularization Method.

Solve:
x∗ ∈ argmin

x∈X
f(x).

Input: initial iterate x0, parameter ωCR
0 , ηCR

1 , ηCR
2 , sCR

I , sCR
D , and ΛCR.

Initialize: k = 0.
repeat

δxk ← computeDirectionOfDescent()
repeat

σk ← computeDirectionalMinimizer()

υk ← f(xk+σkδxk)−f(xk)
mxk (σkδxk)−mxk (0)

if υk < ηCR
1 then

ωCR
k ← ωCR

k sCR
I

else if υk > ηCR
2 then

ωCR
k ← ωCR

k sCR
D

end if
until step accepted (If Condition (5.1) is fulfilled.)
xk+1 ← xk + δxkσk
ωCR
k+1 ← ωCR

k

k ← k + 1
until convergent (If Condition (5.2) is fulfilled and if f ′′(xk) is positive definite.)

5.1.2 Computing a direction of descent

After applying a Galerkin-type discretization, the Newton equation

f ′′(x)δx = −f ′(x)

represents a finite-dimensional linear system with the matrix f ′′(x). As long as f ′′(x)
is positive definite, we can use a preconditioned conjugate gradient (PCG) method as
illustrated in Algorithm 2 to compute a direction of descent.

Here, we choose a BPX-type preconditioner, cf. [13], to solve nonlinear elastic problems.
However, if f is the total energy functional (2.21), positive definiteness is no longer
guaranteed. This is due to the lack of convexity of nonlinear elastic problems. To
overcome this, we add a positive definite matrix RE to f ′′(x):

f ′′(x) + λRE,

where λ > 0 is gradually increased until positive definiteness is reached. For the pur-
pose of reducing the number of regularization steps, we choose a multiplicative update
formula as described in Algorithm 3. One possible drawback of this approach is that
the regularization parameter is scaled up too much. Consequently, the updates steps are
unnecessarily damped, which can slow down the algorithm significantly.
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Algorithm 2 Preconditioned Conjugate Gradient Method.

Solve: Hx = b.
Input: initial iterate x0 and preconditioner Q.
Initialize: r0 = Hx0 − b, d0 = g0 = Q−1(−r0), and k = 0.
repeat

αk ← − rTk gk
dTkHdk

xk+1 ← xk + αkdk
rk+1 ← rk + αkHdk
gk+1 ← Q−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent

Algorithm 3 Update Formula for the Regularization Parameter.

Input: current regularization parameter λ, starting regularization parameter λAInit,
and update parameter sA.
if λ = 0 then

λ← λAInit

else
λ← λsA

end if

Remark 5.1. A more sophisticated approach was considered in [64, Section 4.3]. There,
an adaptive update formula for the regularization parameter was derived. Although adap-
tive methods are generally more technical to implement, the increased efficiency makes
their use advisable.

Combining the previous results yields a regularized preconditioned conjugate gradient
(RPCG) method summarized in Algorithm 4. By recovering positive definiteness, Algo-
rithm 4 can be applied in order to compute directions of descent of f .

For large values of λ, the Newton update δx approaches a gradient step w.r.t. the scalar
product induced by the regularized matrix

f ′′(x) + λRE.

In the case of nonlinear elasticity, the natural choice for the regularization RE is the
Hessian matrix of linear elasticity. Besides CG methods, one can use the Chebyshev
semi-iteration to solve linear systems.
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Algorithm 4 Regularized Preconditioned Conjugate Gradient Method.

Solve: Hx = b.
Input: initial iterate x0, preconditioner Q, regularization update parameter sA, and
starting regularization parameter λAInit.
Initialize: r0 = Hx0 − b, d0 = g0 = Q−1(−r0), λ = 0, and k = 0.
repeat

if dTkHdk < 0 then
λ← updateLambda(λ, λAInit, sA) (Algorithm 3)
H ← H + λRA

restart (Restart the entire CG algorithm.)
end if
αk ← − rTk gk

dTkAdk

xk+1 ← xk + αkdk
rk+1 ← rk + αkHdk
gk+1 ← Q−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent

Chebyshev semi-iteration

Here, only a short introduction of the Chebyshev semi-iteration is given. For a more
detailed analysis, see [42]. Consider the linear system

Hx = b (5.3)

and a suitable preconditioner Q. Moreover, let ςmin and ςmax denote the smallest and
the largest eigenvalue of Q−1H. Further, let ΛCheb denote the desired accuracy. Then,
we can apply the Chebyshev semi-iteration illustrated in Algorithm 5 to solve (5.3).
In contrast to CG methods, the Chebyshev semi-iteration is linear if the number of
iterations is fixed. For the application of this method in our setting, it remains to derive
estimates for ςmin and ςmax. To do so, assume Algorithm 2 has been applied to solve a
linear system with preconditioner Q and system matrix H. If the PCG method converges
in m steps, it yields the parameters αi, βj with i = 0,...,m−1 and j = 0,...,m−2. Then,
we can construct the tridiagonal matrix

Tm :=



1
α0

√
β0

α0√
β0

α0

1
α1

+ β0

α0

√
β1

α1

· · ·
· ·

√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2


.
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Algorithm 5 Chebyshev Semi-Iteration.

Solve: Hx = b.
Input: preconditioner Q, smallest eigenvalue ςmin and largest eigenvalue ςmax of
Q−1H, and accuracy ΛCheb.

Initialize: κ = ςmax
ςmin

, ϑ =
√
κ−1√
κ+1

, N = b ln(ΛCheb)
ln(ϑ) c + 1, c = ςmax−ςmin

2 , α = ςmax+ςmin
2 ,

µ0 = −α, δx0 = Q−1b, x0 = x−1 = 0, θ0 = 0.
for k = 0,..., N do

if k = 1 then
θk ← −c2

(2α)
else if k ≥ 2 then

θk ← c2

(4µk)
end if
if k ≥ 1 then

µk ← −(α+ θk)
end if
xk+1 ← − δxk+αxk+θkxk−1

µk

δxk+1 ← Q−1(b−Hxk+1)
end for

The eigenvalues of Tm yield adequate estimates for the eigenvalues of Q−1H, cf. [88,
Chapter 6]. Of course, such an approach is only reasonable if multiple systems involving
the matrix H have to be solved, which is the case for preconditioners applied in the
composite step method, see Section 6.3.

5.1.3 Nonlinear updates

At each iterate x, Algorithm 1 computes an update δx and adds it, with possible scaling
σ, to the current iterate:

x+ σδx.

Instead of directly adding δx in this way, we want to take into account the required
structural properties of the considered problem. For nonlinear elastic problems, x and
x + δx correspond to deformations of the domain Ω. Therefore, we are interested in
maintaining the orientation-preserving condition:

det(x+ δx) > 0

at each point in the domain Ω. To achieve this, the update δx is transformed to incorpo-
rate this condition. A generalized concept of this approach is optimization on manifolds.
Since a detailed analysis of this topic is beyond the scope of this work, the reader is
instead referred to [1]. The modified update presented in this work was developed by
Julián Ortiz in his PhD thesis which is in preparation.
Assume that the discretized domain ΩD consists of a set of tetrahedrons Tl such that
ΩD =

⋃
l Tl, and intersections of the tetrahedrons are only allowed on their boundaries.
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At a given deformation x, we obtain the corresponding set of deformed tetrahedrons
denoted by Txl . Moreover, consider an arbitrary but fixed tetrahedron Txk , which can
be represented by the points pi with i = 1,..., 4 and

pi :=

pixpiy
piz

 .

Note that each point pi corresponds to a displaced vertex of the undeformed tetrahe-
dron Tk. Further, i is the local index to identify the point pi within the tetrahedron.
Accordingly, there exists a global index, denoted by ig, to identify each vertex in ΩD.
For a given direction δx, we obtain the corresponding update:

δpi :=

δpixδpiy
δpiz

 .

Adding this update to Txk leads to the deformed tetrahedron T ′xk with the new coordi-
nates:

p′i :=

p′ixp′iy
p′iz

 =

pixpiy
piz

+

δpixδpiy
δpiz

 .

This setting is illustrated in Figure 5.1.

p1

p2

p3

p4

p′1

p′2

p′3

p′4

δp1 δp2

δp3

δp4

Figure 5.1: Deformation of a tetrahedron.

A heuristic way to ensure det(x+δx) > 0 in a discrete setting is preserving the orientation
of all tetrahedrons during the deformation. To achieve this, we define the matrices

Mx :=


p1x p2x p3x p4x

p1y p2y p3y p4y

p1z p2z p3z p4z

1 1 1 1

 and Mdx :=


δp1x δp2x δp3x δp4x

δp1y δp2y δp3y δp4y

δp1z δp2z δp3z δp4z

0 0 0 0

 .
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Writing Exp( · ) for the matrix exponential function, we compute

M̃x := Exp(MdxM
−1
x )Mx (5.4)

with the notation

M̃x :=


p̃1x p̃2x p̃3x p̃4x

p̃1y p̃2y p̃3y p̃4y

p̃1z p̃2z p̃3z p̃4z

p̃1w p̃2w p̃3w p̃4w

 .

Then,

p̃i :=

p̃ixp̃iy
p̃iz


corresponds to the vertex coordinates of the new deformed tetrahedron T̃xk according to
the nonlinear update formula described in (5.4). The new update is then defined by

δp̃i := p̃i − pi.

Repeating this process for all tetrahedrons yields a new deformation update δx̃ for the
entire domain. One drawback of this approach is that for each vertex pj in ΩD, we
compute multiple updates, one for each tetrahedron that contains the point pj . To
compensate for that, the respective displacement is averaged over the number of tetra-
hedrons containing pj . The resulting update formula is summarized in Algorithm 6. u
Since the updates for each tetrahedron are independent, the computation can be easily
parallelized. We incorporate this new approach into our cubic regularization method
and obtain Algorithm 7. There, this new nonlinear update is only applied if it yields
a larger decrease of the objective function value than the linear one. By taking into
account the underlying structure of nonlinear elastic problems, we expect to improve
the performance of our cubic regularization approach. Corresponding numerical tests
are conducted in Chapter 7.
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Algorithm 6 Nonlinear Update.

Input: current iterate x and update δx.
for all vertices pj do

δpj ←
(
0 0 0

)T
end for
for all tetrahedrons Tk do

(p1, p2, p3, p4)← computeCoordinates(x, Tk)
(δp1, δp2, δp3, δp4)← getLocalUpdate(dx, Tk)
(δp̃1, δp̃2, δp̃3, δp̃4) ← computeNonlinearUpdate(p1, p2, p3, p4, δp1, δp2, δp3, δp4)

(via (5.4))
δp1g ← δp1g + δp̃1

δp2g ← δp2g + δp̃2

δp3g ← δp3g + δp̃3

δp4g ← δp4g + δp̃4

end for
for all updates δpj do

δpj ← (δpj)/numberOfAdjacentTetrahedrons
δx̃← transferUpdate(δpj)

end for
return δx̃;
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Algorithm 7 Cubic Regularization Method with Nonlinear Update.

Solve:
x∗ ∈ argmin

x∈X
f(x).

Input: initial iterate x0, parameters ωCR
0 , ηCR

1 , ηCR
2 , sCR

I , sCR
D , and ΛCR.

Initialize: k = 0.
repeat

δxk ← computeDirectionOfDescent()
repeat

σk ← computeDirectionalMinimizer()
δx̃k ← computeNonlinearUpdate(xk, σkδxk) (Algorithm 6)
if f(xk + δx̃k) < f(xk + σkδxk) then

δxk ← δx̃k
else

δxk ← σkδxk
end if
υk ← f(xk+δxk)−f(xk)

mxk (δxk)−mxk (0)

if υk < ηCR
1 then

ωCR
k ← ωCR

k sCR
I

else if υk > ηCR
2 then

ωCR
k ← ωCR

k sCR
D

end if
until step accepted (If Condition (5.1) is fulfilled.)
xk+1 ← xk + δxkσk
ωCR
k+1 ← ωCR

k

k ← k + 1
until convergent (If Condition (5.2) is fulfilled and if f ′′(xk) is positive definite.)
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5.2 Affine Covariant Composite Step Method

For a fixed penalty parameter γ, the optimal control problem (4.12) describes an equality
constrained optimization problem of the form

min
x∈X

f(x)

s.t. c(x) = 0

that requires robust and efficient solution algorithms. Here, we choose the affine covari-
ant composite step method considered in [64, 67]. The central idea of composite step
methods is to split the Lagrange Newton step δx into a normal step δn ∈ (ker c′(x))⊥

and into a tangential step δt ∈ ker c′(x). The normal step approaches feasibility while
the tangential step approaches optimality. This class of methods is widely applied in
equality constrained optimization and optimal control, cf. [44, 78, 84, 105, 112].

Additionally, the algorithm proposed in [64, 67] applies a simplified normal step, denoted
by δs, at the end of each iteration. This yields two major advantages. First, an affine
covariant globalization scheme can be deployed. Second, the step δs also acts as a second
order correction to avoid the well-known Maratos effect. The described splitting of the
step δx is illustrated in Figure 5.2.

Finally, affine covariance ensures that norms are only evaluated in the domain space X
but not in the image space of c. In the case of PDE-constraints, the image space is
usually some dual space. Therefore, meaningful norms are hard to evaluate. In contrast,
norms suited to the problem in the domain space can be evaluated much more easily.

x̃+ ker c ′(x̃)

x̃

c(x) = 0

δ
n

δt

δ
s

δ
x̃

Figure 5.2: Splitting of the composite step.

This section gives a brief overview of the algorithm proposed in [64, 67].
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5.2.1 Setting

Let (X, 〈·, ·〉) denote a Hilbert space and P a reflexive Banach space. Then, we can
define the optimization problem

min
x∈X

f(x)

s.t. c(x) = 0,
(5.5)

where f : X → R and c : X → P ∗ are both twice continuously differentiable and
c′(x) is surjective. In optimal control settings, it is common to introduce the splitting
X = Y × U , x = (y, u), and

c(x) = Â(y)−Bu, (5.6)

where Â : Y → P ∗ is a nonlinear operator with continuous inverse and B : U →
P ∗ a linear and compact operator. The above regularity assumptions imply that each
stationary point x∗ satisfies the KKT conditions

f ′(x∗)v + pc′(x∗)v = 0 for all v ∈ X,
c(x∗) = 0

with the Lagrange multiplier p ∈ P ∗∗. The Hilbert space structure allows the splitting

X = ker c′(x∗)⊕ (ker c′(x∗))
⊥. (5.7)

Moreover, the equation

f ′(x∗)v + pc′(x∗)v = 0 for all v ∈ X

is equivalent to the system

f ′(x∗)v = 0 for all v ∈ ker c′(x∗),

(f ′(x∗) + pc′(x∗))w = 0 for all w ∈ (ker c′(x∗))
⊥.

From the second equation, we obtain a formula to compute the Lagrange multiplier p:(
M c′(x)∗

c′(x) 0

)(
v
p

)
=

(
−f ′(x)

0

)
, (5.8)

cf. [64, Theorem 3.1]. Here, M denotes the Riesz isomorphism satisfying

(Mv)(w) = 〈v, w〉.

At a point x ∈ X, we denote the Lagrange multiplier computed via (5.8) by px.
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5.2.2 Computation of the update steps

As stated in the introduction, the basic idea of the composite step method is to split
the Lagrange Newton update step into a normal step δn ∈ (ker c′(x))⊥ and a tangential
step δt ∈ ker c′(x). Additionally, we consider the positive damping factors ν and τ with
the corresponding undamped steps ∆n and ∆t such that

δn = ν∆n and δt = τ∆t.

The two steps are added up to

δx = δn+ δt.

Further, a second order correction δs ∈ (ker c′(x))⊥ is applied, yielding the final update

δx̃ = δx+ δs.

In the following, we discuss how to compute these updates and the corresponding La-
grange multiplier.

5.2.3 Computation of the Lagrange multiplier

Using the Lagrange formulation, we define

L(x, px) := f(x) + pxc(x).

Instead of computing px with (5.8) directly, a correction δpx is computed via the system(
M c′(x)∗

c′(x) 0

)(
v
δpx

)
=

(
−Lx(x, px−)

0

)
, (5.9)

where px− denotes the previous multiplier. Thereafter, the Lagrange multiplier px is
updated:

px ← px− + δpx. (5.10)

This update scheme is numerically more stable than the direct approach (5.8).

5.2.4 Computation of the normal step

To improve feasibility, the undamped normal step ∆n has to satisfy

c(x) + c′(x)∆n = 0. (5.11)

In general, ∆n is not fully determined by this system. Therefore, Equation (5.11) is
extended to a minimum norm correction problem:

min
v∈X

1

2
〈v, v〉

s.t. c′(x)v = −c(x).
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This leads to the system (
M c′(x)∗

c′(x) 0

)(
∆n
q

)
=

(
0

−c(x)

)
. (5.12)

For general right hand sides

r =

(
0
−g

)
,

we use the short notation c′(x)−(g) to denote the primal component of solutions to
(5.12).

5.2.5 Computation of the simplified normal step

The simplified normal step δs has to fulfill

c(x+ δx)− c(x)− c′(x)δx+ c′(x)δs = 0.

If ν = 1, δs corresponds to the second step of a simplified Newton method for the
equation c(x) = 0, where x serves as the starting point. Again, computing a minimum
norm correction yields the system(

M c′(x)∗

c′(x) 0

)(
δs
q

)
=

(
0

−c(x+ δx) + c(x) + c′(x)δx

)
(5.13)

from which the step δs can be determined.

5.2.6 Computation of the tangential step

Consider a given normal step δn and Lagrange multiplier px. Then, we compute the
tangential step δt such that δx := δn + δt approximates the minimizer of a quadratic
model q of the Lagrange function L on ker c′(x). Here, q is defined by

q(δx) := f(x) + f ′(x)δx+
1

2
Lxx(x, px)(δx)2, (5.14)

yielding the optimization problem

min
δt∈X

q(δn+ δt)

s.t. c′(x)δt = 0.

The condition
pxc
′(x)δt = 0

allows the equivalent reformulation to

min
δt∈X

(Lx(x, px) + Lxx(x, px)δn) δt+
1

2
Lxx(x, px)(δt)2

s.t. c′(x)δt = 0.

(5.15)
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This reformulation increases the numerical stability of our approach since Lx(x, px)→ 0
as (x, px) → (x∗, px∗). If we neglect the damping parameter τ for now, ∆t can be
computed by solving the system(

Lxx(x, px) c′(x)∗

c′(x) 0

)(
∆t
∆p

)
=

(
−Lx(x, px)− Lxx(x, px)δn

0

)
if Lxx(x, px) is positive definite. With all the update formulas at hand, it remains to
derive a suitable acceptance criterion for δx.

5.2.7 Acceptance criterion

When considering feasibility, it is reasonable to require that ‖δs‖ � ‖δx‖. Thus, we
choose the contraction condition

Θ(δx) :=
‖δs‖
‖δx‖ ≤ Θacc < 1 (5.16)

for a user-provided parameter Θacc. To ensure that this conditioned is fulfilled, we deploy
a simple predictor-corrector scheme. The basic idea is to construct a model Θ̃(δx) of
Θ(δx) and compute the correction δx such that

Θ̃(δx) ≤ Θd, (5.17)

for a desired contraction factor Θd < Θacc. To this end, assume that there exist positive
constants ωC, ωL, and ωf′ such that for all v, w ∈ X, the following inequalities hold:

‖c′(x)−(c′(x+ v)− c′(x))v‖ ≤ ωC‖v‖2, (5.18)

|(Lxx(x+ v, p)− Lxx(x, p))(v, v)| ≤ ωL‖v‖3, (5.19)

|(f ′(x+ v)− f ′(x))w| ≤ ωf′‖v‖‖w‖. (5.20)

Moreover, we define the parametrized model for the contraction rate by

Θ̃(ξ) :=
ω̃C

2
‖ξ‖,

where ω̃C is an estimate from below for ωC. Then, the interpolation condition

Θ̃(δx) = Θ(δx)

yields the formula:

ω̃C =
2Θ(δx)

‖δx‖ = 2
‖δs‖
‖δx‖2 .

Inserting this model into (5.17) leads to the trust region constraint

‖δx‖ ≤ 2Θd

ω̃C
. (5.21)

From there, the corrections δx and δs are computed. If (5.16) is not satisfied, ω̃C is
updated again with the newly computed corrections δx and δs. The updated estimate
ω̃C is then used to compute new corrections δx and δs. This process is repeated until
(5.16) is satisfied. In the following, we study how the trust region constraint (5.21)
affects the computation of the damping parameters ν and τ .
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Damping of the normal steps

Consider the direction ∆n determined by (5.12). Then, a suitable damping parameter
can be computed by

ν = min
{

1,
2Θn

‖∆n‖ω̃C

}
,

guaranteeing that δn does not violate (5.21). The contraction factor Θn ≤ Θd permits
some “elbow space” for the tangential step δt. Here, Θn = Θd would imply δt = 0.

Damping of the tangential step

By definition, the steps δn and δn are orthogonal. Thus, we obtain the splitting

‖δn+ δt‖2 = ‖δn‖2 + ‖δt‖2.

Inserting this property into (5.21) yields

‖δt‖ ≤
√(

2Θd

ω̃C

)2

− ‖δn‖2 ,

and accordingly, the upper bound τmax for the damping parameter τ :

τ ≤ τmax :=

√(
2Θd
ω̃C

)2
− ν2‖∆n‖2

‖∆t‖ .

An additional damping of ∆t is required to approach optimality w.r.t. the objective
functional f . Therefore, τ is chosen such that δt is a directional minimizer of the cubic
model

mω̃f
(δx) := q(δx) +

ω̃f

6
‖δx‖3.

The parameter ω̃f is updated in each step as follows:

ω̃f =
6

‖δx‖3 (f(x+ δx+ δs)− q(δx)). (5.22)

In summary, δt can be described as the solution to the following optimization problem:

min
δt∈X

mω̃f
(δn+ δt)

s.t.
ω̃C

2
‖δx‖ ≤ Θd,

c′(x)δt = 0.

To ensure that our algorithm also approaches optimality, we choose the natural accep-
tance criterion for the tangential step given by

η ≤ η :=
f(x+ δx+ δs)−mω̃f

(δn)

mω̃f
(δx)−mω̃f

(δn)
, (5.23)
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for η ∈]0, 1[. If a tangential step is rejected, ω̃f is updated via (5.22). As a result, τ
and δs are computed again. This approach is repeated until the tangential step δt is
accepted. In the case that iterates are very far away from the feasible set c(x) = 0, a
stagnation of the updates of ω̃f can occur. Then, the focus is set on feasibility first, and
the tangential step δt is discarded, yielding δx = δn. The stagnation is measured via
the condition

ω̃fnew <

(
1 + %

1− η
2

)
ω̃fold

for a user-provided parameter 0 < % < 1. For the sake of efficiency, we do not discard a
tangential step if ηmin < η for a suitable parameter ηmin > 0.
So far, we have only given a brief summary of the composite step method, and the reader
is referred to [64, 67] for a detailed discussion.

5.2.8 Convergence criterion

For given relative and absolute accuracies ΛCSAb > 0 and ΛCSRel > 0, we consider the
composite step method convergent if the relative criterion

‖δx‖ ≤ ΛCSRel‖x‖ (5.24)

or the absolute criterion

‖x‖ ≤ ΛCSAb and ‖δx‖ ≤ ΛCSAb (5.25)

is fulfilled. A sketch of our derived composite step method is shown in Algorithm 8.

Algorithm 8 Affine Covariant Composite Step Method.

Solve:
min
x∈X

f(x)

s.t. c(x) = 0.

Input: initial iterate (x0, p0), initial Lipschitz constants ω̃C0 , ω̃f0 , parameters ηmin, η,
%, accuracies ΛCSAb, ΛCSRel, and contraction factors Θacc, Θn, and Θd.
Initialize: k = 0.
repeat

pk+1 ← updateLagrangeMultiplier() (via (5.10))
(∆nk,∆tk)← computeSteps(pk+1, xk)
repeat

(νk, τk, δsk, ω̃Ck , ω̃fk)← computeUpdates()
until step accepted (If Conditions (5.16) and (5.23) are satisfied.)
xk+1 ← xk + δxk + δsk
k ← k + 1

until convergent (If Condition (5.24) or (5.25) is fulfilled.)

It remains to verify that the composite step method converges to a solution of (5.5).
Showing global convergence seems to be out of reach for the affine covariant approach
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studied here. Affine covariant methods avoid the evaluation of ‖c(x)‖ which is required
for the usual globalization mechanisms. However, under suitable assumptions, fast local
convergence can be shown. To do so, we assume sufficient smoothness and second order
sufficient optimality conditions at a local minimizer x∗, which we call an SSC point.

Theorem 5.2. Consider the optimization problem described in (5.5). Further, assume
that the iterates of Algorithm 8 converge to the SSC point x∗. If Conditions (5.18)-(5.20)
hold in a neighborhood of x∗, Algorithm 8 admits local quadratic convergence.

Proof. See [64, Proof of Theorem 3.17].

5.2.9 Adaption to inexactness and nonlinear elasticity

So far, it has been assumed that all arising systems are solved exactly. However, for large
scale problems, this becomes infeasible and iterative solvers have to be deployed. In our
case, we rely on PCG methods to solve large scale linear systems. The implications of
this inexactness for the composite step method have been analyzed in [92]. Additionally,
a strategy for accuracy matching has been proposed and tested. This is important since
very tight tolerances would render each step too expensive. Also, too loose tolerances
might lead to the loss of robustness and increase the number of outer iterations. The
results elaborated in [92] can be summarized as follows. First, the relative accuracy
ΛCSNorm to compute the (simplified) normal step and the Lagrange multiplier update
can be constant. Second, the relative accuracy of the tangential step ΛCSTang can be

set to the contraction factor ‖δs‖‖δx‖ of the previous step. These two conditions ensure
efficiency while maintaining at least local superlinear convergence of the composite step
method.

In the case of nonlinear elastic problems, the orientation-preserving condition det y > 0
has to be taken into account. If this condition is violated for a trial iterate x + δx, we
apply the damping

ν ← 1

2
ν and τ ← 1

2
τ

until x + δx is feasible w.r.t. the constraint det y > 0. Afterwards, additional damping
of δn and δt as described for Algorithm 8 is applied. This approach was also considered
in [64].

Going back to optimal control of nonlinear elastic contact problems, we can solve (4.12)
only for fixed γ > 0.

5.3 Path-Following

Since we want to approximate solutions of the original problem (4.2), we introduce a
path-following method. It is reasonable to assume that the difficulty of (4.12) depends
on the regularization parameter γ. Thus, we augment our optimization algorithm by a
path-following method, where the composite step methods acts as the inner solver. At
this, we apply a simple step-size strategy to gradually increase the parameter γ.
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Due to the inherent lack of structure of optimization problems involving nonlinear elas-
ticity, more sophisticated approaches seem to be out of reach in the current setting.
Heuristic schemes based on the convergence speed of the path-following algorithm could
be applied. However, this remains a subject of future research. There exists a large
body of literature analyzing path-following approaches, and the reader is referred to
[23, 45, 46, 47, 93] for a more in-depth discussion.
Recalling the notation Z := X × P and z := (x, p), the KKT system (4.13) can be
interpreted as a parameter-dependent nonlinear equation:

F (z, γ) = 0.

Path-following methods are widely applied to solve parameter-dependent problems. For
convex settings, it can often be shown that a homotopy-path γ → z(γ) of zeros of F (·, γ)
exists. Sometimes, even sensitivity and a priori length estimates can be derived, cf. [47].
In non-convex settings, such results can only be observed a posteriori by a numerical
algorithm. Additionally, we cannot rule out the existence of several paths which may
converge to local solutions or end prematurely. Therefore, it is essential to employ a
robust correction method.
Starting at a point (z0, γ0) close to homotopy-path, we want to successively compute
solutions on the path for a increasing sequence of parameters γk. Assume that (zk, γk)
is a solution close to the path. For the next iterate, γk is increased by some constant
factor sp > 1:

γk+1 = spγk.

With the composite step method functioning as a robust corrector, this simple approach
is sufficient. However, an adaptive choice of the update parameter is advisable in order
to reduce computational costs. Next, we utilize the composite step method to obtain a
corresponding solution pair (zk+1, γk+1) close to the path, where zk is used as starting
point. This approach can interpreted as a classical continuation method for parameter-
dependent systems. We repeat this process until a solution close to the path for the
desired parameter γmax is found. In our analysis, sp is chosen constant. This might
result in too rapid increases of γ. In those cases, we expect that the globalization
mechanism of the composite step method can steer the iterate back to the path. Our
basic path-following approach is illustrated in Algorithm 9.
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Algorithm 9 Basic Path-Following Method.

Solve: F (z, γmax) = 0.
Input: starting value (z0, γ0), maximum path-parameter γmax, and update factor sp.
(z0, converged)← compositeStepMethod(z0, γ0)
if not converged then

return; (No initial solution on the path found.)
end if
do

zk+1 ← zk
γk+1 ← spγk
γk+1 ← min(γk+1, γmax)
(zk+1, converged)← compositeStepMethod(zk+1, γk+1)
if not converged then

return; (Algorithm did not converge for (zk+1, γk+1).)
else

k ← k + 1
end if

while γk < γmax

return zk+1; (Algorithm converged.)



Chapter 6

A Corrected Inexact Projected
Preconditioned Conjugate
Gradient Method

In the previous chapter, we introduced the composite step method in a function space
setting to solve optimal control problems. Since computations in infinite-dimensional
spaces are infeasible, discretization schemes, e.g., finite elements, are applied to obtain
finite-dimensional problems. At this, solving the resulting systems numerically in an
efficient way becomes the main difficulty.
Assume that the infinite-dimensional optimal control problem (5.5) has been discretized
by some Galerkin-type method. The discretized space for the primal variables is again
denoted by X := Y × U . Accordingly, we obtain the discretized space P . Discrete
linear operators are represented by matrices and their adjoints by transposed matrices.
Further, we have the splitting x := (y, u) and

c(x) = Â(y)−Bu,
where c denotes the discretized version of (5.6) and B is linear. Consider a fixed iterate
(yk, uk, pk) of the composite step method with A := Â′(yk) and L := L(yk, uk, pk).
Further, we assume that both Â and Â′ are continuously invertible. Then, the formulas
for the (simplified) normal step, the Lagrange multiplier, and the tangential step yield
matrices of the form

Hn :=

My 0 AT

0 Mu −BT

A −B 0

 and Ht :=

Lyy Lyu AT

Luy Luu −BT

A −B 0

 .

Here,

M :=

(
My 0
0 Mu

)
corresponds to the Riesz isomorphism chosen for the composite step setting. In the
context of nonlinear elasticity, B denotes the discrete operator corresponding to the

93
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outer energy Iout, and A denotes the Hessian matrix of the regularized energy functional
Iγ or Eγ without Iout.

For large systems, applying direct methods becomes infeasible due to both memory
constraints and computation time. Proven methods to solve such systems are PCG
methods. However, in our case, the matrices Hn and Ht are generally not positive
definite. Since M is positive definite, this issue can be overcome by applying a projected
preconditioned conjugate gradient (PPCG) method, at least for systems involving the
matrix Hn. This approach restricts the space of iterates to a suitable subspace where
we have positive definiteness, see, e.g., [33]. In [64], PPCG methods were deployed in
the context of optimal control of nonlinear elasticity.

If a suitable regularization is applied to the tangential step matrix Ht, the PPCG method
can be utilized to compute the tangential step as well. Regularizations are necessary
since the block

Lxx =

(
Lyy Lyu
Luy Luu

)
is not positive definite in general. In view of the optimal control problem (4.3), we can
set Lyu = Lyu = 0. But the examination in this chapter also applies to more general
cases.

One drawback of PPCG methods is that they require exact solvers for the arising block
systems. Therefore, we will modify the PPCG method accordingly and derive a suitable
solution algorithm which utilizes the special structure of the matrices Hn and Ht.

This chapter is organized as follows. Section 6.1 introduces PPCG methods and ad-
dresses their application in a composite step setting. In Section 6.2, we examine how
to deal with the inexact solutions of subsystems and derive an inexact PPCG method.
However, this new algorithm does no longer correspond to the original problem. There-
fore, in Section 6.3, the inexact PPCG algorithm is extended by a correction mechanism
which compensates for the inexactness. The resulting approach has been developed by
Anton Schiela and Alexander Siegl in cooperation with the author, cf. [96]. Additionally,
we discuss the implementation of our scheme.

Parts of this chapter have been published in [94].

6.1 PPCG methods

We start by analyzing PPCG methods for general settings. Consider the following linear
system:

H

(
x
p

)
=

(
bx
0

)
with

H :=

(
M CT

C 0

)
,

where M is symmetric and positive definite. The matrix C is surjective and usually
describes equality constraints. As discussed above, the full system matrix H does not
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need to be positive definite. PPCG methods extend classical PCG methods in the
following way: to overcome non-convexity, they restrict the primal part x of each iterate
to a subspace where the respective matrix H is positive definite. This is achieved by
applying a suitable preconditioner. In our examination, we choose a preconditioner of
the form

Q =

(
M̃ CT

C 0

)
. (6.1)

Here, M̃ represents a preconditioner forM which is required to be symmetric and positive
definite on kerC. Recalling the PCG method defined in Algorithm 2, Q is applied to the
negative residuum, yielding the equation

gk+1 = Q−1(−rk+1). (6.2)

To increase readability, we omit the iteration index of the PCG method if it is clear from
the context. Applying the preconditioner here is equivalent to the following minimization
problem:

min
gx∈X

gTx rx +
1

2
〈gx, gx〉M̃

s.t. Cgx = 0,

(6.3)

with corresponding Lagrange multiplier gp. Here, the indices x and p denote the primal
and dual component, respectively. Writing

r =

(
rx
rp

)
,

Equation (6.2) decouples into the block system

M̃gx + CT gp = −rx, (6.4)

Cgx = −rp. (6.5)

Inserting this approach into Algorithm 2 yields a projected preconditioned conjugate
gradient method, see Algorithm 10. We verify that for proper right hand sides and
initial conditions, the PPCG method solely operates on kerC.

Proposition 6.1. Consider Algorithm 10. If Equations (6.4) and (6.5) are solved ex-
actly, the primal components xk, (dk)x, and (gk)x are again contained in the kernel of
C in each iterate.

Proof. Assume that in iteration k, xk satisfies Cxk = 0. Further, (dk)x ∈ kerC, (gk)x ∈
kerC, and (rk)p is zero. As a result, after updating the residuum via

rk+1 ← rk + αkHdk,

the dual component (rk+1)p remains zero. Thus, applying the preconditioner Q to the
negative residuum −rk+1 yields (gk+1)x ∈ kerC. The new direction dk+1 results from
simply adding gk+1 to the previous scaled direction βk+1dk. Accordingly, (dk+1)x ∈
kerC. Given the initial setting and formulas for x0, r0, d0, and g0, the statement follows
via an induction argument.
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Algorithm 10 Projected Preconditioned Conjugate Gradient Method.

Solve: H

(
x
p

)
=

(
bx
0

)
.

Input: initial iterate z0 =

(
x0

p0

)
satisfying Cx0 = 0.

Initialize: r0 = Hz0 − b, d0 = g0 = Q−1(−r0), and k = 0.
repeat

αk ← − rTk gk
dTkHdk

zk+1 ← zk + αkdk
rk+1 ← rk + αkHdk
gk+1 ← Q−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent

In addition to this, preconditioners should cluster the eigenvalues of the preconditioned
matrix Q−1H. Such a result was shown in [55, Theorem 2.1].

Theorem 6.2. Assume the constraint matrix C ∈ Rm×n has full rank and M̃ 6= M .
Furthermore, Z is an n× (n−m) basis for the nullspace of C. Then, the matrix Q−1H
has

1. an eigenvalue at 1 with multiplicity 2m, and

2. n−m eigenvalues which are defined by the generalized eigenvalue problem

ZTMZxλ = λZT M̃Zxλ.

Proof. See [55, Proof of Theorem 2.1].

Moreover, an upper bound on the dimension of the corresponding Krylov subspace can
be derived.

Theorem 6.3. Let the constraint matrix C ∈ Rm×n be of full rank with m < n. Fur-
thermore, H is nonsingular, M̃ 6= M , and b is an arbitrary right hand side. Next, let Z
be an n× (n−m) basis for the nullspace of C such that

(ZT M̃Z)−1(ZTMZ)

has k (1 ≤ k ≤ n − m) distinct eigenvalues λi with (1 ≤ i ≤ k). Additionally, these
eigenvalues have the multiplicity µi, where

∑k
i=1 µi = n −m. Then, the dimension of

the Krylov subspace K(Q−1H, b) is at most k + 2.

Proof. See [55, Proof of Theorem 3.7].

In summary, we can conclude that the PPCG algorithm corresponds to a standard PCG
method that operates on the linear subspace kerC.
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PPCG methods for optimal control problems

Throughout the subsequent analysis, we use the setting and the notation, as defined in
the introduction of this chapter. We start by studying the computation of the (simplified)
normal step and the Lagrange multiplier update.

Normal step system and Lagrange multiplier update

First, note that the right hand side for the (simplified) normal step (5.12) is of the form

b =

 0
0
bp

 .

Therefore, it has to be adjusted to fit into the setting of Algorithm 10. The respective
system reads as follows:

Hnz = b. (6.6)

Defining C := (A,−B), z := z0 + z with

z0 :=

A−1bp
0
0

 ,

and z ∈ C, Equation (6.6) can be reformulated to

Hnz = b−Hnz0 =

−MyA
−1bp

0
0

 .

Taking into account the system for the Lagrange multiplier update (5.9), it suffices to
study right hand sides of the form

b =

bybu
0

 .

Thus, we obtain systems of the formMy 0 AT

0 Mu −BT

A −B 0

yu
p

 =

bybu
0

 , (6.7)

with

M :=

(
My 0
0 Mu

)
.
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This system corresponds to solving the minimizing problem

min
(y,u)∈Y×U

1

2
yTMyy +

1

2
uTMuu− bTy y − bTuu

s.t. Ay −Bu = 0,

(6.8)

with Lagrange multiplier p.

Remark 6.4. For the remainder of this chapter, we will denote the Lagrange multiplier
of the composite method by pc and the dual component of solutions to linear systems by
p to avoid ambiguity.

A common choice for the constraint preconditioner is

Q =

0 0 AT

0 Mu −BT

A −B 0

 , (6.9)

see, e.g., [82, Chapter 5]. In the context of optimal control of nonlinear elasticity, this
kind of preconditioner has been studied in [64]. For the optimal control setting presented
above, we can derive the estimate

〈u, u〉U ≤ 〈y, y〉Y + 〈u, u〉U = 〈A−1Bu,A−1Bu〉Y + 〈u, u〉U
≤ (1 + ‖A−1B‖2U→Y )〈u, u〉U .

(6.10)

Thus, the matrix

M̃ :=

(
0 0
0 Mu

)
is spectrally equivalent to M on kerC. This result ensures that the condition number of
the preconditioned matrix Q−1Hn is independent of the discretization even if the block
My is omitted in M̃ . See also [64, Chapter 4]. When studying objective functionals of
the form (4.1), the following norm choice is very common:

‖u‖Ũ :=
√
α‖u‖U ,

where α > 0 denotes the Tikhonov regularization parameter. Then, we obtain the
estimate

〈u, u〉Ũ ≤ (1 +
1

α
‖A−1B‖2U→Y )〈u, u〉Ũ ,

which implies that the condition number of Q−1Hn can increase with 1
α .

Remark 6.5. Note that the estimate in (6.10) depends on the inverse of A. In the
case of nonlinear elasticity, this matrix, even if regularized, can be almost singular.
Consequently, the condition number of Q−1Hn might deteriorate. One possible way to
overcome this issue is to suitably regularize the matrix A.
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In the PCG method, the preconditioner is applied in the equation

Qgk+1 = −rk+1.

Inserting the definition of Q yields0 0 AT

0 Mu −BT

A −B 0

gygu
gp

 = −

ryru
rp

 . (6.11)

For initial iterates x0 satisfying Cx0 = 0, Algorithm 10 can be applied. Moreover,
Proposition 6.1 ensures that rp = 0 in each iterate. The application of the preconditioner
Q can be split up into the subsystems

AT gp = −ry, (6.12)

Mugu −BT gp = −ru, (6.13)

Agy −Bgu = 0. (6.14)

This decoupling ensures that the preconditioner can be applied efficiently, provided that
a factorization of A is at hand. However, for large scale systems, factorizing the matrix
A is no longer possible. Thus, the linear systems involving A have to be solved inexactly,
which is no longer consistent with the PPCG method. In Section 6.2, we will discuss
techniques and methods to overcome this problem.

Remark 6.6. In general settings, solving (6.13) can be challenging as well. In our
study, the block Mu corresponds to a scaled mass matrix of the boundary control. Thus,
it is very small compared to A and can be factorized at low computational cost. When
this is not the case, an efficient solver for Mu has to be deployed as well. In many cases,
Mu is a mass matrix, which can be replaced by its diagonal in the preconditioner Q.

Tangential step

Here, we also apply the block preconditioner Q as defined in (6.9). In the tangential step
matrix Ht, the block Lxx is not necessarily positive definite on kerC, and (5.15) no longer
corresponds to a quadratic minimization problem. Consequently, descent of tangential
steps is not guaranteed, unless appropriate adjustments are made. Therefore, we apply
a Hessian modification approach, where we add a positive definite regularization term
R in the following way:(

Lxx + λR CT

C 0

)(
δt
q

)
= −

(
Lx + Lxxδn

0

)
. (6.15)

We set R = M with the notation Ry := My and Ru := Mu. Further, λ ≥ 0 is an
algorithmic parameter which is chosen sufficiently large to ensure that Lxx + λR is
positive definite on kerC.
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In our setting, each step is started with λ = 0. If non-convexities are encountered in the
PPCG method, λ is updated according to Algorithm 3 with an initialization parameter
λtInit and update parameter st. Thereafter, a new attempt to compute the tangential
step is made. Subsequently, λ is increased until the PPCG method does not encounter
directions of negative curvature anymore. This approach is summarized in Algorithm 11.

Algorithm 11 Regularized Projected Preconditioned Conjugate Gradient Method for
the Tangential Step.

Solve: Ht

(
x
p

)
=

(
bx
0

)
.

Input: initial iterate z0 =

(
x0

p0

)
satisfying Cx0 = 0, regularization update parameter

st, and starting regularization parameter λtInit.
Initialize: r0 = Htz0 − b, d0 = g0 = Q−1(−r0), λ = 0, and k = 0.
repeat

if dTkHtdk < 0 then
λ← updateLambda(λ, λtInit, st) (Algorithm 3)

Ht ← Ht + λ

(
R 0
0 0

)
restart (Restart the entire PPCG algorithm.)

end if
αk ← − rTk gk

dTkHtdk

zk+1 ← zk + αkdk
rk+1 ← rk + αkHtdk
gk+1 ← Q−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent

The introduced PPCG method relies on the exact solutions of the systems involving the
matrices A and AT . However, for large linear systems, this becomes infeasible, and only
iterative solvers can be used.

6.2 Inexact PPCG method

If not stated otherwise, we assume that A is positive definite and symmetric. Consider-
ing Equations (6.12) and (6.14), the default approach would be to apply a PCG method
with high accuracy to ensure that iterates are again sufficiently close to the kernel of
C. However, PCG methods are not linear, which rules out their application in the pre-
conditioner Q. Also, solving systems with high accuracy is rather expensive. Therefore,
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we have to fall back to linear iterative solvers and take into account the possible inex-
actness. The choice for the iterative solver will be discussed in Subsection 6.3.4. The
corresponding inexact operators of A and A−1 are denoted by Ã and Ã−1, respectively.
Note that Ã cannot be evaluated explicitly since Ã−1 is only available via an iterative
method. Replacing A and A−1 with Ã and Ã−1 leads to the inexact preconditioner

Q̃ :=

0 0 ÃT

0 Mu −BT

Ã −B 0

 . (6.16)

Then, the equation

Q̃gk+1 = −rk+1

again splits into the systems

ÃT gp = −ry, (6.17)

Mugu −BT gp = −ru, (6.18)

Ãgy −Bgu = 0. (6.19)

By shifting the preconditioner to the inexact constraint C̃ := (Ã,−B), it is no longer
guaranteed that the algorithm operates on the kernel of C. To adjust for this, we have
to transfer the PPCG method to the kernel of C̃. This leads to the inexact normal step
matrix

H̃n :=

My 0 ÃT

0 Mu −BT

Ã −B 0

 , (6.20)

and consequently, to the new inexact system

H̃nz = b.

Although this approach ensures positive definiteness, the evaluation of the product H̃ndk
seems to be infeasible since Ã and ÃT cannot be directly applied. By a recursive com-
putation, the application of these inexact operators can be avoided. Consider

H̃ndk =

My 0 ÃT

0 Mu −BT

Ã −B 0

dydu
dp

 =

Mydy
Mudu

0

+

 ÃTdp
−BTdp

Ãdy −Bdu

 .

While the first summand can be evaluated directly, the second one includes the operators
Ã and ÃT . After defining

ξk :=

0 0 ÃT

0 0 −BT

Ã −B 0

 dk,
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we derive the recursive formula0 0 ÃT

0 0 −BT

Ã −B 0

 dk =

0 0 ÃT

0 0 −BT

Ã −B 0

 gk + βkξk−1,

for k ≥ 0. For the first summand, it holds that0 0 ÃT

0 0 −BT

Ã −B 0

 gk =

 −(rk)y
−BT (gk)p
−(rk)p

 .

By the same arguments as applied in the proof of Proposition 6.1, we conclude that
(rk)p = 0 and that each iterate is contained in ker C̃, for suitable starting values. Since
d0 is initialized with g0, choosing

ξ−1 =

0
0
0


and β0 = 0 allows the recursive computation of H̃ndk without having to evaluate Ã.
Still, for the initialization of the residuum, the product H̃nz0 is required. This can be
overcome by choosing the initial iterate

z0 =

y0

u0

p0

 =

0
0
0

 .

Also this choice ensures that Ãy0−Bu0 = 0. Consequently, we obtain a PPCG method
as defined in Algorithm 10. Further, it takes into account the application of inexact
solvers for the subsystems. The resulting scheme is summarized in Algorithm 12.
The analysis for the tangential step follows analogously, with an additional regularization
and

H̃t :=

Lyy 0 ÃT

0 Luu −BT

Ã −B 0

 .

For the details, see Algorithm 13. In summary, we have derived an inexact PPCG
method for the linear systems arising in the composite step method. At this, we applied
the block preconditioner Q̃ without relying on solving the resulting equations exactly.
However, in doing so, we shifted the problems to the kernel of the inexact constraints
C̃. Therefore, it remains to transfer these results back to kerC.
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Algorithm 12 Inexact Projected Preconditioned Conjugate Gradient (IPPCG) Method
for the (Simplified) Normal Step and the Lagrange Multiplier Update.

Solve: H̃n

yu
p

 =

bybu
0

.

Initialize: ξ−1 =

0
0
0

, β0 = 0, initial iterate z0 =

y0

u0

p0

 =

0
0
0

, r0 = H̃n

0
0
0

 −bybu
0

, d0 = g0 = Q̃−1(−r0), and k = 0.

repeat

ξk ← −

 (rk)y
BT (gk)p

0

+ βkξk−1

H̃ndk ←

My(dk)y
Mu(dk)u

0

+ ξk

αk ← − rTk gk

dTk H̃ndk

zk+1 ← zk + αkdk
rk+1 ← rk + αkH̃ndk
gk+1 ← Q̃−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent



104 CHAPTER 6. CIPPCG METHOD

Algorithm 13 Inexact Regularized Projected Preconditioned Conjugate Gradient
Method for the Tangential Step.

Solve: H̃t

yu
p

 =

bybu
0

.

Input: regularization update parameter stI, and starting regularization parameter
λtIInit.

Initialize: ξ−1 =

0
0
0

, β0 = 0, initial iterate z0 =

y0

u0

p0

 =

0
0
0

, r0 = H̃t

0
0
0

 −bybu
0

, d0 = g0 = Q̃−1(−r0), λ = 0, and k = 0.

repeat

ξk ← −

 (rk)y
BT (gk)p

0

+ βkξk−1

H̃tdk ←

(Lyy + λRy)(dk)y
(Luu + λRu)(dk)u

0

+ ξk

if dTk H̃tdk < 0 then
λ← updateLambda(λ, λtIInit, stI) (Algorithm 3)
restart (Restart the entire algorithm.)

end if
αk ← − rTk gk

dTk H̃tdk

zk+1 ← zk + αkdk
rk+1 ← rk + αkH̃tdk
gk+1 ← Q̃−1(−rk+1)

βk+1 ←
rTk+1gk+1

rTk gk

dk+1 ← gk+1 + βk+1dk
k ← k + 1

until convergent
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6.3 An outer correction loop

The restriction to ker C̃ allows the application of PPCG methods, as described in the
previous section. However, the resulting solutions need to be corrected to satisfy the
exact constraints Cx = 0. Thus, we add an outer correction loop to Algorithms 12
and 13 to recover solutions in kerC. Again, we start with the (simplified) normal step
system.

6.3.1 (Simplified) normal step system and Lagrange multiplier update

Roughly speaking, we construct an outer iterative method to solve the normal system

Hnz = b. (6.21)

Given an initial iterate z =

(
x
p

)
with Cx = 0, a simple update δz can be derived via

Hn(z + δz) = b⇔ Hnδz = b−Hnz. (6.22)

An inexact update δz̃ for (6.22) can be computed with Algorithm 12. Since (δz̃)x ∈ ker C̃,
a projection back the original constraint is required to obtain the final update δz which
is added to the initial iterate z. This process is repeated until we obtain a sufficiently
accurate solution of (6.21). In the subsequent analysis, we will discuss this new method
in detail.

Update of the dual component

Consider a given iterate z =

yu
p

 of our new outer iterative algorithm with

Ay −Bu = 0. (6.23)

Motivated by the first line of Equation (6.6), the dual component p can be updated by
solving

AT p = by −Myy.

A numerically more stable version is computing the update ∆p via

AT∆p = by −Myy −AT p (6.24)

and adding it to p:

p← p+ ∆p.

Remark 6.7. For the theoretical analysis now, we assume that Equation (6.24) is solved
exactly. In Subsection 6.3.4, we relax this condition and discuss the implications.
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Inexact update step

We recall the original problem

Hnδz = b−Hnz,

which corresponds to the systemMy 0 AT

0 Mu −BT

A −B 0

δyδu
δp

 =

by −Myy −AT p
bu −Muu+BT p
−Ay +Bu

 .

By inserting Conditions (6.23) and (6.24), the right hand side simplifies to

b̂ =

 0
bu −Muu+BT p

0

 ,

yielding the new system

Hnδz = b̂.

To solve this equation, we apply a PPCG method, which requires a suitable precondi-
tioner. As shown in the analysis of Section 6.1, a block preconditioner of the form (6.9)
is a viable option. However, for large systems, only the inexact version as defined in
(6.16) can be applied. Consequently, this choice implies that positive definiteness can
only be guaranteed on ker C̃. Thus, Hn has to be replaced by H̃n, leading to the inexact
system

H̃nδz̃ = b̂. (6.25)

This system can be solved with Algorithm 12 which yields the inexact update (δz̃)x ∈
ker C̃. Since the original problem requires solutions in kerC, the inexact update δz̃ has
to be projected back to kerC.

Projection

Writing δz̃ =

δỹδũ
δp̃

, we project the inexact update back to kerC by solving

Aδy = Bδũ (6.26)

for δy, yielding

(
δy
δũ

)
∈ kerC.

Remark 6.8. Again, we assume that Equation (6.26) is solved exactly, and we address
the relaxation of this condition in Subsection 6.3.4.

Before the primal variables y and u can be updated, a last modification is necessary.
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Damping

Equation (6.21) corresponds to the minimization problem

min
(y,u)∈Y×U

g(y, u) :=
1

2
yTMyy +

1

2
uTMuu− bTy y − bTuu

s.t. Ay −Bu = 0.

(6.27)

Therefore, we have to ensure that after the projection step, a descent of g is guaranteed.
This can be achieved by computing a directional minimizer of g w.r.t. the direction(
δy
δũ

)
. Consequently, we compute the optimal line search parameter

ω := −

((
My 0
0 Mu

)(
y
u

)
−
(
by
bu

))T (
δy
δũ

)
(
δyT δũT

)(My 0
0 Mu

)(
δy
δũ

) . (6.28)

Finally, the primal components are updated:

y ← y + ωδy

u← u+ ωδũ.

The entire method is described in Algorithm 14.

6.3.2 Tangential step

The analysis for the tangential step follows analogously. The only difference is the
possible negative definiteness of Lxx. Thus, a suitable regularization is incorporated
analogously to Algorithm 13. Additionally, if a non-convexity of Lxx is encountered, the
entire algorithm is restarted after the regularization. The resulting corrected inexact
projected preconditioned conjugate gradient (CIPPCG) method for the tangential step
is summarized in Algorithm 15. Next, it has to be verified that the derived CIPPCG
method converges. Therefore, we show that it is equivalent to a gradient method, and
as a result, inherits its convergence properties.
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Algorithm 14 Corrected Inexact Projected Preconditioned Conjugate Gradient Method
for the (Simplified) Normal Step and the Lagrange Multiplier Update.

Solve: Hn

yu
p

 =

bybu
0

.

Input: initial iterate z0 =

y0

u0

p0

 with Ay0 −Bu0 = 0.

Initialize: k = 0.
repeat

∆pk ← A−T (by −Myyk −AT pk)
pk+1 ← pk + ∆pk

Solve: H̃n

δỹkδũk
δp̃k

 =

 0
bu −Muuk +BT pk+1

0

 (Algorithm 12)

δyk ← A−1Bδũk

ωk ← −

My 0
0 Mu

yk
uk

−
by
bu

Tδyk
δũk


(
δyk

T δũk
T
)My 0

0 Mu

δyk
δũk


yk+1 ← yk + ωkδyk
uk+1 ← uk + ωkδũk
k ← k + 1

until convergent
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Algorithm 15 Corrected Inexact Projected Preconditioned Conjugate Gradient Method
for the Tangential Step.

Solve: Ht

yu
p

 =

bybu
0

.

Input: initial iterate z0 =
(
y0
T u0

T p0
T
)T

with Ay0 − Bu0 = 0, regularization
update parameter stIC, and starting regularization parameter λtICInit.
Initialize: k = 0 and λ = 0.
repeat

∆pk ← A−T (by − (Lyy + λRy)yk −AT pk)
pk+1 ← pk + ∆pk

Solve: H̃t

δỹkδũk
δp̃k

 =

 0
bu − (Mu + λRu)uk +BT pk+1

0




Algorithm 13 with
regularization
parameters

stIC and λtICInit


if H̃t was regularized during the computation of the previous step then

update λ accordingly.

Ht ← Ht + λ

(
R 0
0 0

)
H̃t ← H̃t + λ

(
R 0
0 0

)
restart (Restart the entire algorithm.)

end if
δyk ← A−1Bδũk

ωk ← −

Lyy + λRy 0
0 Luu + λRu

yk
uk

−
by
bu

Tδyk
δũk


(
δyk

T δũk
T
)Lyy + λRy 0

0 Luu + λRu

δyk
δũk


yk+1 ← yk + ωkδyk
uk+1 ← uk + ωkδũk

if
(
yk+1

T uk+1
T
)

(Lxx + λR)

(
yk+1

uk+1

)
< 0 then

λ← updateLambda(λ, λtICInit, stIC) (Algorithm 3)

Ht ← Ht + λ

(
R 0
0 0

)
H̃t ← H̃t + λ

(
R 0
0 0

)
restart (Restart the entire algorithm.)

end if
k ← k + 1

until convergent
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6.3.3 Equivalence to the gradient method

For the convergence analysis, we can w.l.o.g. combine the normal step and the tangential
step systems to equations of the formHy 0 AT

0 Hu −BT

A −B 0

yu
p

 =

bybu
0

 , (6.29)

where Hn and Hu are symmetric and positive definite. Accordingly, solving (6.29) is
equivalent to the following minimization problem

min
(y,u)∈Y×U

g(y, u) :=
1

2
yTHyy +

1

2
uTHuu− bTy y − bTuu

s.t. Ay −Bu = 0.

(6.30)

Assuming that A is positive definite, we define the solution operator

S := A−1B.

Consequently,
y = Su,

and inserting it into (6.30) yields the unconstrained problem

min
u∈U

g(u) :=
1

2
uTSTHySu+

1

2
uTHuu− bTy Su− bTuu.

A direction of descent of g can be computed via the minimization problem

min
δu∈U

1

2
δuTMaδu+ g′(u)δu,

for any positive definite preconditioner Ma. By inserting g′, we obtain

min
δu∈U

1

2
δuTMaδu+ (uTSTHyS + uTHu − bTy S − bTu )δu. (6.31)

Thus, the solution δu of this minimization problem corresponds to the update of a
gradient method with the preconditioner Ma. Analogously, we conduct this analysis for
the CIPPCG method. In this setting, the computation of the inexact step via (6.25) is
equivalent to Hy 0 ÃT

0 Hu −BT

Ã −B 0

δỹδũ
δp̃

 =

 0
bu −Huu+BT p

0

 (6.32)

and to the optimization problem

min
(δỹ,δũ)∈Y×U

g̃(δỹ, δũ) :=
1

2
δỹTHyδỹ +

1

2
δũTHuδũ− (bu

T − uTHu + pTB)δũ

s.t. Ãδỹ −Bδũ = 0.
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We define
S̃ := Ã−1B

and insert it into the above problem to obtain

min
δũ∈U

g̃(δũ) :=
1

2
δũT S̃

T
HyS̃δũ+

1

2
δũTHuδũ− (bu

T − uTHu + pTB)δũ.

Combining this result with (6.24) leads to

min
δũ∈U

g̃(δũ) :=
1

2
δũT (S̃

T
HyS̃ +Hu)δũ− (bu

T − uTHu + by
TS − uTSTHyS)δũ.

The comparison with (6.31) yields that δũ corresponds to a gradient step for the original

function g w.r.t. the preconditioner Ma := S̃
T
HyS̃ + Hu. Additionally, computing the

projected direction δy via
Aδy = Bδũ

corresponds to
δy = Sδũ.

As a result, computing a directional minimizer of g w.r.t. δũ via

ω = −
(uTSTHyS + uTHu − bTy S − bTu )δũ

δũT (STHyS +Hu)δũ

is equivalent to the formulas for the optimal line search parameters in Algorithms 14
and 15. In summary, this shows that the CIPPCG algorithm is equivalent to a gradient
method and has the same convergence properties.

6.3.4 Implementation and adjustments to nonlinear elasticity and in-
exactness

First, the implementation of the CIPPCG method is discussed.

Implementation

For the dual update (6.24) and the projection (6.26), we deploy a PCG method with
a multigrid preconditioner Qbpx of BPX-type. This preconditioner is combined with
a block Jacobi smoother which utilizes the diagonal of 3 × 3 blocks of A, respecting
the vector valued nature of the problem. This preconditioner Qbpx will also be applied
in the Chebyshev semi-iteration. Solving the dual update with a PCG method allows
us to obtain an estimate for the eigenvalues of the preconditioned matrix Q−1

bpxA as
discussed in Section 5.1. As a result, the linear Chebyshev semi-iteration, as defined in
Algorithm 5, can be utilized to solve systems involving Ã and ÃT in the application of
the inexact preconditioner Q̃. The analysis in Subsection 6.3.3 only holds for solving
(6.24) and (6.26) exactly. However, for the sake of efficiency, we do not impose high
accuracies on the PCG methods involved, relying on a simple heuristic approach. As a
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consequence, iterates are not guaranteed to be contained in kerC. The starting accuracy
for solving (6.24), (6.26), and (6.32) is chosen according to the required step accuracy
ΛCS in the composite step method as discussed in Subsection 5.2.9. For the Chebyshev
semi-iteration, we apply a fixed accuracy ΛCheb.
A step is considered sufficiently accurate if the damping factor ωk satisfies

0 < ωmin ≤ ωk ≤ ωmax

with user-provided parameters ωmin < 1 and ωmax > 1. This ensures that the final up-
dates steps are not too small and do not decrease the convergence speed of the CIPPCG
method too much. If this condition is not satisfied, we project the entire iterate back to
kerC by applying a PCG method with high accuracy ΛCGMax to solve

Aδyk = Buk −Ayk. (6.33)

Thereafter, only the state component is updated:

yk+1 ← yk + δyk.

During the computation of the subsequent iterates, the accuracies of (6.24), (6.26), and
(6.32) are increased by the factor µCG

I . Also, we increase the accuracy of the Chebyshev
solver by µCheb

I . For high accuracies, (6.24), (6.26), and (6.32) are solved almost exactly.
Accordingly, Q̃ ≈ Q. Therefore, ωk should be close to 1, and fast convergence of the
entire CIPPCG method can still be expected.

Remark 6.9. Deriving an adaptive and more efficient way to determine the required
accuracies and to show convergence for this inexact approach is beyond the scope of this
work. Thus, it remains a subject of future research.

Convergence criterion

The criterion derived here was proposed in [96]. At this, only the primal variable x =
(y, u) is taken into account. Let (x∗, p∗) denote the solution to (6.29) and (xk, pk) the
current iterate of the CIPPCG method. For a given relative accuracy ΛRelCIPPCG, a
desired convergence criterion would be

‖x∗ − xk‖M ≤ ΛRelCIPPCG‖x∗‖M . (6.34)

Recall that the matrix M corresponds to the Riesz isomorphism chosen for the composite
step setting. Since the solution x∗ is unknown, this condition cannot be evaluated
exactly. Therefore, the goal here is to derive estimates for ‖x∗‖M and ‖x∗ − xk‖M .
Assume the contraction condition

‖x∗ − xk‖M = Θk−m‖x∗ − xm‖M
holds for 0 < Θ < 1 and m < k. Then, we can derive the estimate

‖x∗ − xk‖M ≤ Θk−m (‖x∗ − xk‖M + ‖xk − xm‖M ) ,
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and thus,

‖x∗ − xk‖M ≤
Θk−m

1−Θk−m ‖xk − xm‖M .

Additionally, we obtain a lower bound of the norm of x∗:

‖x∗‖M ≥ ‖xk‖M −
Θk−m

1−Θk−m ‖xk − xm‖M .

For k > m > i > 0, a simple estimate for the contraction factor can be defined by

Θ̃ :=
‖xk − xm‖M
‖xm − xi‖M

.

This yields the estimates

‖x∗ − xk‖M ≈
Θ̃k−m

1− Θ̃k−m
‖xk − xm‖M

and

‖x∗‖M ≈ ‖xk‖M −
Θ̃k−m

1− Θ̃k−m
‖xk − xm‖M ,

which can be inserted into (6.34), leading to the approximated criterion

Θ̃k−m

1− Θ̃k−m
‖xk − xm‖M ≤ ΛRelCIPPCG

(
‖xk‖M −

Θ̃k−m

1− Θ̃k−m
‖xk − xm‖M

)
. (6.35)

For the implementation, m = k − 1 and i = k − 2 were chosen. Consequently, at least
two steps need to be computed in order to apply this convergence criterion. We also add
the absolute acceptance condition

‖xk − xk−1‖M ≤ ΛAbsCIPPCG, (6.36)

for suitable ΛAbsCIPPCG > 0. Moreover, ΛRelCIPPCG is set according to the step accuracy
ΛCS required by the composite step method as discussed in Subsection 5.2.9. The im-
plementation is summarized in Algorithm 16 for the general setting described by (6.29).
Note that applying this algorithm to compute the tangential step may require some
regularization as described in Algorithm 15 for the regularization parameters stIC and
λtICInit. For the sake of readability, we assume that the respective matrices are already
sufficiently regularized and positive definite.

Non-convexity of the total energy functional

For nonlinear elastic problems, we know that the total energy functional I can be non-
convex. Consequently, this also holds for Iγ and Eγ . Therefore, at a given composite step
iterate (yk, uk, pck), the operator A := Â′(yk) is not necessarily positive definite. During
the computation of the composite step update (δyk, δuk, δpck, δsk), the non-convexity
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Algorithm 16 Implementation of the Corrected Inexact Projected Preconditioned Con-
jugate Gradient Method.

Solve: H

yu
p

 =

bybu
0

.

Input: initial iterate z0 =

y0

u0

p0

 with Ay0 − Bu0 = 0, parameters: ΛCS (accuracy

required by the composite step method), ΛAbsCIPPCG, ΛRelCIPPCG = ΛCS, ΛCGMax,
ΛCheb, µCG

I , µCheb
I , ωmin, and ωmax.

Initialize: k = 0.
repeat

Solve: AT∆pk = by −Myyk −AT pk (Algorithm 2 with accuracy ΛCS)
pk+1 ← pk + ∆pk

Solve:

Hy 0 ÃT

0 Hu −BT

Ã −B 0

δỹkδũk
δp̃k

 =

 0
bu −Huuk +BT pk+1

0

( Algorithm 12
or 13 with ΛCS

)
Solve: Aδyk = Bδũk (Algorithm 2 with accuracy ΛCS)

ωk ← −

Hy 0
0 Hu

yk
uk

−
by
bu

Tδyk
δũk


(
δyk

T δũk
T
)Hy 0

0 Hu

δyk
δũk


if 0 < ωmin ≤ ωk ≤ ωmax then

yk+1 ← yk + ωkδyk
uk+1 ← uk + ωkδũk

else
Solve: Aδyk = Buk −Ayk (Algorithm 2 with accuracy ΛCGMax)
ΛCS ← ΛCSµ

CG
I

ΛCheb ← ΛChebµ
Cheb
I

yk+1 ← yk + δyk
uk+1 ← uk

end if
k ← k + 1

until convergent (If Condition (6.35) or (6.36) is satisfied.)
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can be detected by the CG methods applied to solve (6.24), (6.26), and (6.33). In that
case, we choose a regularization factor λ > 0 and replace Eγ in (4.12) with

Êγ(y, u) := Eγ(y, u) +
λ

2
q(y − yk),

where q is a quadratic and positive definite energy. Note that the analysis for Iγ follows
analogously. In this work, we choose

q(v) = 〈v, v〉∂yyIstrain(id),

which corresponds to the energy induced by linear elasticity. For this modification, we
obtain

∂yÊγ(y, u) = ∂yEγ(y, u) + λq′(y − yk)
such that

∂yÊγ(yk, uk) = ∂yEγ(yk, uk).

Further, A is replaced by the regularized operator:

Ar := ∂2
yyÊγ(yk, uk) = ∂2

yyEγ(yk, uk) + λq′′(0).

This regularization has three main effects. First of all, for sufficiently large λ, Ar is
positive definite. Thus, a PCG method can be applied. Due to the positive definiteness
of Ar, normal steps are shifted towards descent of Eγ(y, u) at (yk, uk). This can be shown
by considering the linearized constraint imposed on the normal step δn:

Arδny −Bδnu + ∂yÊγ(yk, uk) = 0.

In addition, Eγ(y, u) is linear in u, which yields

∂yEγ(yk, uk + δnu)δny = (∂yÊγ(yk, uk)−Bδnu)δny = −(Arδny)δny < 0.

Last, the regularization penalizes long steps, resulting in a more stable behavior of the
optimization algorithm. This corresponds to the physical interpretation that the linear
elastic regularization term adds an artificial stiffness to the material. To ensure the
positive definiteness of Ar, we us the update formula of Algorithm 3 with the parameters
λEInit and sE until no directions of negative curvature are encountered anymore. After
each regularization, all updates (δyk, δuk, δpck, δsk) of the composite step method is
recomputed with the new regularized energy functional Êγ . Moreover, when an update
has been successfully computed, λ is set to zero again. This approach is summarized in
Algorithm 17.

Remark 6.10. An alternative method to regularization was also considered. If non-
convexity of the energy was encountered at a composite step iterate (yk, uk), the control
uk was kept fixed, and Algorithm 1 was applied to compute a minimizer ỹk of Eγ( · , uk) or
Iγ( · , uk). Then, yk was replaced by ỹk to ensure convexity of the energy. This heuristic
scheme is no longer consistent with the composite step method elaborated in Section 5.2.
So far, a rather unstable and erratic behavior has been observed, ruling out the application
of this method. One possible explanation might be buckling which can occur during such
an algorithm.
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Algorithm 17 Composite Step Method with Energy Regularization

Input: initial iterate (y0, u0, pc0), regularization update parameter sE, starting regu-
larization parameter λEInit, initial Lipschitz constants ω̃C0 , ω̃f0 , parameters ηmin, η, %,
accuracies ΛCSAb, ΛCSNorm, and ΛCSRel, and contraction factors Θacc, Θn, and Θd.
Initialize: k = 0 and λ = 0.
repeat

repeat yk+1

uk+1

pck+1

← computeCompositeStep(yk, uk, pck, λ)

if A+ λq′′(0) is non-convex then
λ← updateLambda(λ, λEInit, sE) (Algorithm 3)

end if
until A+ λq′′(0) is convex
λ← 0
k ← k + 1

until convergent (If Condition (5.24) or (5.25) is fulfilled.)



Chapter 7

Numerical Examples

In the previous chapter, we have introduced three types of algorithms to solve problems
involving nonlinear elasticity. These are a cubic regularization approach, a composite
step method, and a path-following scheme. Here, we will test each algorithm by means
of numerical examples. Before doing so, the general setting is defined. First, regarding
nonlinear elasticity, a compressible Mooney-Rivlin model is chosen for the stored energy
function:

Ŵ (∇y) := a‖∇y‖2 + b‖Cof∇y‖2 + c(det∇y)2 − d ln det∇y,
with the parameters:

a = 0.08625, b = 0.08625, c = 0.68875, d = 1.895.

This choice describes a model for soft tissue, cf. [64, Chapter 6]. The derivation of these
parameters for general cases is discussed in [15, Chapter 3-4]. In the optimal control
setting, a tracking type functional defined by

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(ΓN )

serves as the objective functional. Hereby, we aim to approximate a reference deforma-
tion yd ∈ L2(Ω) for a positive regularization parameter α > 0. The function spaces are
defined by

Y × U := H1(Ω)× L2(ΓN ).

If not stated otherwise, the corresponding scalar product is set to

〈(y, u), (y, u)〉 :=
1

2
〈y, y〉H1(Ω) +

α

2
〈u, u〉L2(ΓN ).

Two geometries are considered here. The first one is described by a discretized plate
Ω1 = [0, 2] × [0, 2] × [0, 0.2]. The respective starting grid is illustrated in Figure 7.1.
On the side faces, homogeneous Dirichlet boundary conditions are enforced. Moreover,
we choose the bottom face to be the Neumann boundary ΓN , while the top face is the

117
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Figure 7.1: Initial grid for Problem 1.

Figure 7.2: Desired deformation for Problem 1 with obstacle (transparent).

contact boundary ΓC . Figure 7.2 shows the desired deformation yd with the obstacle for
three refinements. The desired deformations are precomputed for each refinement.
The second problem addresses a discretized cantilever Ω2 = [0, 1] × [0, 0.5] × [0, 0.2],
which is displayed in Figure 7.3. The back face is fixed at a wall, describing homoge-
neous Dirichlet boundary conditions. On the top face, the boundary force u is applied.
Thus, it acts as the Neumann boundary ΓN . The remaining faces function as the con-
tact boundary ΓC . Figure 7.4 illustrates the obstacle and the precomputed desired
deformation yd for three refinements. We expect the second problem to be much more
challenging since the boundary conditions of the cantilever are less restrictive, allowing
a wider range of deformations.
In both cases, we apply linear finite elements to obtain discretized variables. Here,
only uniform refinements are considered, and the corresponding degrees of freedoms are
displayed in Tables 7.1 and 7.2.

1 Ref. 2 Ref. 3 Ref. 4 Ref.

Degrees of freedom y 6369 44415 330747 2550771
Degrees of freedom u 1323 5043 19683 77763
Degrees of freedom p 6369 44415 330747 2550771

Table 7.1: Degrees of freedom for Problem 1.
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Figure 7.3: Initial grid for Problem 2.

1 Ref. 2 Ref. 3 Ref. 4 Ref.

Degrees of freedom y 5865 42447 322971 2519859
Degrees of freedom u 693 2583 9963 39123
Degrees of freedom p 5865 42447 322971 2519859

Table 7.2: Degrees of freedom for Problem 2.

For the implementation, the finite element library KASKADE7 [32] was used. This
library is based on the DUNE library [10] and has been developed at the Zuse Insti-
tute Berlin. Sparse linear systems that require direct solvers were solved by utilizing
the software package UMFPACK [22]. Computing eigenvalues was conducted via the
dstevr function from the software package LAPACK [3]. The C++ library Eigen, cf.
[38], provided the matrix exponential function for the nonlinear update. Further, all op-
timization and path-following algorithms were implemented in the C++ library Spacy1,
which was developed for numerical optimization in a vector space setting. Regarding
nonlinear elasticity, the library FunG [65] was applied to compute the derivatives of the
stored energy function via automatic differentiation. All computation were carried out
on a compute server with an Intel Xeon E7-2830 2.13GHz processor and 1TB RAM.
This chapter is structured as follows. In the first section, the cubic regularization ap-
proach (Algorithm 1) is applied to test the convergence rates derived in Chapters 3
and 4. Also, the performance of the nonlinear update (Algorithm 6) is analyzed in
Section 7.2. Section 7.3 is dedicated to numerical examples for optimal control of non-
linear elasticity, testing the composite step method (Algorithm 17) combined with the
CIPPCG algorithm (Algorithm 16). Finally, this chapter is concluded with numerical
examples of path-following in Section 7.4. An analysis similar to the one presented in
Subsection 7.3.2 has already been published in [94].

1https://spacy-dev.github.io/Spacy/
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Figure 7.4: Desired deformation for Problem 2 with obstacle (transparent).

7.1 Numerical estimates for the convergence rates

Consider a monotonically increasing sequence of penalty parameters γn → ∞ and the
sequence of corresponding solutions yn satisfying

yn ∈ argmin
v∈A

Iγn(v, u). (7.1)

We define
∆I(yn+1, u) := I(yn+1, u)− I(yn, u)

and
∆Iγn+1(yn+1, u) := Iγn+1(yn+1, u)− Iγn(yn, u).

As γn approaches infinity, the terms ‖[yn]+‖L∞(ΓC), ∆I(yn, u), and ∆Iγn(yn, u) should
approach zero at a certain rate ρe as shown in Theorem 3.19. Analogously to the
examples in [47], we can compute an estimate for ρe by

ρ̃e
n :=

ln(‖[yn]+‖L∞(ΓC))− ln(‖[yn+1]+‖L∞(ΓC))

ln(γn+1)− ln(γn)
. (7.2)

The convergence rate estimates for the terms ∆I(yn, u) and ∆Iγn(yn, u) are defined
analogously. Let

G := {γ1,..., γl}
be a set of strictly increasing and sufficiently large penalty parameters. Then, Algo-
rithm 1 can be applied to obtain the corresponding solutions to Problem (7.1), yielding
the set

L := {y1,..., yl}.
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These solutions allow the computation of estimates for ρe via (7.2). In the same way,
we perform numerical experiments to test the results of Theorem 4.9. All computations
for Problems 1 and 2 are conducted with three uniform refinements. The required
parameters for Algorithm 1 and the applied boundary forces are summarized in Table 7.3.
The boundary forces are chosen to be constant functions on ΓN . As the initial iterate
for Algorithm 1, we choose the identity mapping id.

ωCR
0 ηCR

1 ηCR
2 sCR

I sCR
D u λAInit sA ΛCR

Problem 1 5 0.25 0.5 1.2 0.5 (0, 0, 0.1) 1e-8 5 1e-8
Problem 2 5 0.25 0.5 1.2 0.5 (0, 0,−0.022) 1e-8 5 1e-8

Table 7.3: Parameters for the cubic regularization approach (Algorithm 1).

7.1.1 Normal compliance method

Since the rates derived in Theorem 3.19 hinge on the exponent k in the penalty function

P (v) :=
1

k

∫
ΓC

[v]k+ ds, k ∈ N, k > 1, v ∈ Y,

any reasonable examination requires several tests for different exponents. Here, we
choose k = 2, 3, 4. Recalling the setting of Theorem 3.19, W 1,p(Ω) is embedded into the
space Cβ(Ω) for p > 3 and β ∈]0.1[. In the case γ →∞ and β → 1, the estimates for ρe

should approach the rate
1

(k − 1) + 2
.

The resulting estimates for the convergence rates are depicted in Figures 7.5 to 7.10. For
all results, we observe that the terms ‖[y]+‖L∞(ΓC), ∆I(y, u), and ∆Iγ(y, u) exhibit the
same asymptotic convergence rate, which is consistent with Theorem 3.19. Regarding
Problem 2 (Figures 7.8 to 7.10), it takes larger parameters γ for the estimates to converge.
This effect may be attributed to the increased difficulty of the problem. Additionally,
the results indicate a faster rate

ρe =
1

k − 1
,

which is significantly better than the rate predicted by Theorem 3.19. In summary,
we can deduce that the theoretical estimates are not necessarily sharp, and further
improvements may be possible.
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Figure 7.5: Estimated convergence rates for Problem 1 with k = 2.
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Figure 7.6: Estimated convergence rates for Problem 1 with k = 3.
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Figure 7.7: Estimated convergence rates for Problem 1 with k = 4.
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Figure 7.8: Estimated convergence rates for Problem 2 with k = 2.
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Figure 7.9: Estimated convergence rates for Problem 2 with k = 3.
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Figure 7.10: Estimated convergence rates for Problem 2 with k = 4.
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7.1.2 Modified normal compliance regularization

In contrast to before, Theorem 4.9 only guarantees a convergence rate ρE for the modified
functional

Eγ(y, u) := Iγ(y, u) + ϕ(γ)
1

2
‖y − yd‖2L2(Ω).

Again, we define

∆Eγn+1(yn+1, u) := Eγn+1(yn+1, u)− Eγn(yn, u).

Here, yn denotes the sequence of minimizers of Eγn( · , u) in A. In particular, the derived
rate in Theorem 4.9 only holds for the absolute value

|∆Eγn+1(yn+1, u)|.

As γ approaches infinity, the function ϕ approaches zero at a user-provided rate ρϕ, which
leaves us with two parameters to choose. The parameters tested here are summarized
in Table 7.4.

(k, ρϕ)1 (k, ρϕ)2 ϕ(γ)

Problem 1 (3, 1
4) (4, 1

5) γ−ρ
ϕ

Problem 2 (2, 1
3) (3, 1

5) γ−ρ
ϕ

Table 7.4: Parameters for the modified regularization.

Analogously to (7.2), we compute estimates for ρE . Theorem 4.9 states that ρE and ρϕ

coincide. Therefore, we expect the estimates for ρE to approach ρϕ for sufficiently large
γ. In the same way, convergence rates for

∆I(yn+1, u) := I(yn+1, u)− I(yn, u)

and the maximum constraint violation ‖[yn]+‖L∞(ΓC) are investigated. The results are
visualized in Figures 7.11 to 7.14.
The computed estimates support the rate derived in Theorem 4.9. They even indicate
convergence rates for the terms ‖[y]+‖L∞(ΓC) and |∆I(y, u)|, which are not backed up by
theoretical results so far, encouraging further examinations. For the maximum constraint
violation ‖[y]+‖L∞(ΓC), we observe the rate 1

k−1 , coinciding with the results from the
previous subsection.
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Figure 7.11: Estimated convergence rates for Problem 1 with k = 3 and ρϕ = 1
4 .
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Figure 7.12: Estimated convergence rates for Problem 1 with k = 4 and ρϕ = 1
5 .
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Figure 7.13: Estimated convergence rates for Problem 2 with k = 2 and ρϕ = 1
3 .
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Figure 7.14: Estimated convergence rates for Problem 2 with k = 3 and ρϕ = 1
5 .

7.2 Nonlinear updates

Here, Algorithms 1 and 7 are applied to the regularized problem

y ∈ argmin
v∈A

Iγ(v, u),

and their performances are compared. Related results are presented in the PhD thesis
of Julián Ortiz, which is in preparation. The applied boundary forces and algorithmic
parameters are shown in Tables 7.5 and 7.6. All computations are carried out for three
uniform refinements.

ωCR
0 ηCR

1 ηCR
2 sCR

I sCR
D u λAInit sA k ΛCR

Prob. 1 5 0.25 0.5 1.2 0.5 (0, 0, 0.1) 1e-8 5 3 1e-8
Prob. 2 5 0.25 0.5 1.2 0.5 (0, 0,−0.01) 1e-8 5 3 1e-8

Table 7.5: Parameters for Algorithms 1 and 7 with γ = 0.

ωCR
0 ηCR

1 ηCR
2 sCR

I sCR
D u λAInit sA k ΛCR

Prob. 1 5 0.25 0.5 1.2 0.5 (0, 0, 0.1) 1e-8 5 3 1e-8
Prob. 2 5 0.25 0.5 1.2 0.5 (0, 0,−0.015) 1e-8 5 3 1e-8

Table 7.6: Parameters for Algorithms 1 and 7 with γ = 100.

Further, at an iterate yk, we define the function value decrease

∆Iγ(yk, u) := Iγ(yk−1, u)− Iγ(yk, u).

The required iterations and the corresponding function value decreases of the two algo-
rithms are compared in Figures 7.15 to 7.18.



7.2. NONLINEAR UPDATES 127

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
-15

10
-10

10
-5

10
0

Figure 7.15: Function value decrease for Problem 1 with γ = 0.
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Figure 7.16: Function value decrease for Problem 1 with γ = 100.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

10
-15

10
-10

10
-5

10
0

Figure 7.17: Function value decrease for Problem 2 with γ = 0.
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Figure 7.18: Function value decrease for Problem 2 with γ = 100.

For Problem 2 (Figures 7.17 and 7.18), the nonlinear update strategy significantly out-
performs the standard approach. Although, this performance boost is smaller when γ
is not zero. Figure 7.19 visualizes the difference between the two methods for the case
γ = 0. There, we compare the deformation of the nonlinear update strategy and the lin-
ear one in the second iteration of Algorithms 1 and 7. We see that the nonlinear update
yields larger deformations, and thus, faster convergence. In particular, rotational defor-
mations are better approximated. Figure 7.20 illustrates the final deformation, which is
the same for both approaches.
The performance increase cannot be observed for the first problem setting (Figures 7.15
and 7.16), where the nonlinear update strategy is even slightly slower. Additionally,
the obstacle has barely an influence on the behavior of the algorithm. It seems that
the nonlinear strategy only pays off in challenging settings where complex deformations
such as rotations occur.
In summary, we conclude that taking into account the underlying structure of the prob-
lem can significantly improve the performance of the algorithm. The nonlinear updates,
as presented here, yield promising results in the field of nonlinear elasticity. However,
it remains the subject of future research to incorporate those updates into an optimal
control setting.
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Figure 7.19: Left: second iterate of the nonlinear update strategy. Right: second iterate
of the linear update strategy.

Figure 7.20: Final deformation for the linear and nonlinear update strategy.
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7.3 Optimal Control

In this section, we will test the composite step method (Algorithm 17), whereby the
arising linear systems are solved by Algorithm 16. As stated in the introduction of this
chapter, we only consider the modified regularized optimal control problem

min
(y,u)∈Y×U

J(y, u)

s.t. cγ(y, u) = 0,

where the energy minimization has been replaced by its formal first order optimality
condition in the lower level problem. This is necessary to apply the composite step
method. All algorithmic parameters are summarized in Tables 7.7 to 7.9.

ΛCGMax ΛCheb µCG
I µCheb

I ωmin ωmax stIC λtICInit ΛAbsCIPPCG

P. 1 1e-12 1e-2 0.1 0.25 0.1 10 100 1e-8 1e-12
P. 2 1e-12 1e-2 0.1 0.25 0.1 10 100 1e-8 1e-12

Table 7.7: Parameters for the CIPPCG method.

Θn Θd Θacc sE λEInit ΛCSAb ΛCSRel ΛCSNorm

Problem 1 0.5 0.6 0.75 5 1e-8 1e-12 1e-6 1e-1
Problem 2 0.5 0.6 0.75 5 1e-8 1e-12 1e-6 1e-1

Table 7.8: Parameters for the composite step method.

ω̃C0 ω̃f0 ηmin η %

Problem 1 1e-6 1e-6 1e-2 5e-2 0.25
Problem 2 1e-6 1e-6 1e-2 5e-2 0.25

Table 7.9: Parameters for the composite step method.

7.3.1 Performance of the CIPPCG method

First, we test the general performance of the composite step method combined with
the CIPPCG algorithm. Therefore, we solve both problems with increasing refinements
and compare the required computation time. Here, γ is set to zero. This simplifies the
problems and allows more mesh refinements. The case γ > 0 will be discussed later.
Further, we choose the regularization parameters α = 1e-1 for Problem 1 and α = 5 for
Problem 2. Table 7.10 shows the required computation time in hours, rounded to the
second decimal place. For Problem 1, each refinement yields an increase of the com-
putation time by about factor 10. The degrees of freedom are only increased by about
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1 Ref. 2 Ref. 3 Ref. 4 Ref.

Problem 1 0.11 1.00 9.95 97.39
Problem 2 0.24 2.92 62.56 204.57

Table 7.10: Computation time in hours.

factor 7.8. In absence of any grid-dependent behavior, the computation time would rise
linearly with the degrees of freedom. However, we deploy a direct solver in the precon-
ditioner, which does not yield linear scaling of the computation time w.r.t. the degrees
of freedom. Also, in the case of nonlinear elasticity, grid-independent behavior cannot
be guaranteed generally, as discussed in the following subsection. Still, the increase is
within reasonable bounds, allowing us to solve large scale problems.
The second problem exhibits a more grid-dependent behavior since the increase in com-
putation time cannot be described by a constant factor. In particular, the case of three
refinements yields the largest increase by about factor 20. This issue will be discussed
in detail when we study the two problems individually.
Next, the behavior of the composite step method is addressed. For the sake of brevity,
we only study the results for three and four refinements since the larger problems are
more relevant due to their increased accuracy.

Problem 1

The results for Problem 1 are depicted in Figures 7.21 to 7.32, where

∆J(xk) := J(xk)− J(xk−1).

First, we notice that convergence was achieved within nine iterations in both cases,
whereby no non-convexities are encountered. The damping factors ν and τ approach
the value one very quickly (Figures 7.21 and 7.22), which suggests that the problem is
not too difficult. Further, Figures 7.23 to 7.26 display that the norm of the updates and
|∆J(xk)| approach zero. However, it seems that the region of superlinear convergence
has not been reached yet. The number of required CIPPCG and IPPCG iterations
has the same order of magnitude in both problems (Figures 7.27 to 7.30), indicating a
grid-independent behavior of these two algorithms.
Finally, Figure 7.31 shows that the desired deformation is closely approximated. The
optimal control is visualized in Figure 7.32.
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Figure 7.21: Damping factors for Problem 1 with three refinements.
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Figure 7.22: Damping factors for Problem 1 with four refinements.
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Figure 7.23: Change of the objective functional values for Problem 1 with three refine-
ments.
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Figure 7.24: Change of the objective functional values for Problem 1 with four refine-
ments.
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Figure 7.25: Norm of the updates for Problem 1 with three refinements.
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Figure 7.26: Norm of the updates for Problem 1 with four refinements.
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Figure 7.27: CIPPCG iterations for Problem 1 with three refinements.
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Figure 7.28: CIPPCG iterations for Problem 1 with four refinements.
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Figure 7.29: IPPCG iterations for Problem 1 with three refinements.
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Figure 7.30: IPPCG iterations for Problem 1 with four refinements.

Figure 7.31: Optimal solution (left) and desired deformation (right) for Problem 1 with
four refinements.

Figure 7.32: Optimal control (bottom face) for Problem 1 with four refinements. Color
codes the intensity of the boundary forces.
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Problem 2

As can be observed in Figures 7.33 to 7.43, Problem 2 is more difficult than the first one,
which is reflected in the higher number of required composite step iterations. Here, the
composite step method is faster in the case of four refinements. In contrast to before, the
algorithm encounters non-convexities in the tangential step as well as in the total energy
I. The iterations where the non-convexities occur are not the same, causing different
behaviors for each refinement. Particularly, we observe more non-convex iterates in
the case of three refinements, which might explain the higher number of composite
step iterations. Nevertheless, the regularization mechanisms enable the composite step
method to return to convex iterates again, and the algorithm finally converges in both
cases. This is also reflected by the damping factors ν and τ , which are practically one
in the last iterations (Figures 7.33 and 7.34).
The change in the objective functional value |∆J(x)| and the update norm ‖δx‖ both
approach zero (Figures 7.35 to 7.38). Still, it seems that the algorithm has not entered
the region of fast convergence yet.
Next, we note that the number of CIPPCG iterations is significantly higher for three
refinements (Figures 7.39 and 7.40), in particular at iterates where the energy is non-
convex. However, this may be caused by insufficient regularization. Considering the
estimate in (6.10), we recall that the Hessian matrix of the elastic energy can still be
almost singular, causing this irregular behavior. The same analysis holds for the IPPCG
iterations (Figures 7.41 and 7.42).
Figure 7.43 depicts the resulting optimal solution compared to the desired deforma-
tion for four refinements. There, it can be seen that the desired deformation is closely
approximated.
Finally, we conclude that our composite step algorithm combined with the CIPPCG
method offers a robust approach to solve optimal control problems in nonlinear elasticity.
It enables us to solve large scale problems and to deal with possible non-convexities. Still,
the results suggest that a more sophisticated energy regularization could improve the
performance significantly.
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Figure 7.33: Damping factors for Problem 2 with three refinements.
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Figure 7.34: Damping factors for Problem 2 with four refinements.
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Figure 7.35: Change of the objective functional value for Problem 2 with three refine-
ments.
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Figure 7.36: Change of the objective functional value for Problem 2 with four refine-
ments.
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Figure 7.37: Norm of the updates for Problem 2 with three refinements.
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Figure 7.38: Norm of the updates for Problem 2 with four refinements.
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Figure 7.39: CIPPCG iterations for Problem 2 with three refinements.
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Figure 7.40: CIPPCG iterations for Problem 2 with four refinements.
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Figure 7.41: IPPCG iterations for Problem 2 with three refinements.
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Figure 7.42: IPPCG iterations for Problem 2 with four refinements.

Figure 7.43: Optimal solution (left) and desired deformation (right) for Problem 2 with
four refinements. Color codes the intensity of the boundary forces.
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7.3.2 Choice of the functional analytic framework

For our optimal control problem, it is crucial to choose a suitable scalar product on
X = Y × U since it induces orthogonality, the norm, and consequently, the measure
of the step-length. Finding a scalar product such that (local) convergence theory in
function space can be applied seems to be out of reach for nonlinear elasticity. The
nonlinear elastic problem (3.2) alone is prone to a two-norm discrepancy. As discussed in
Chapter 3, differentiability of the total energy functional I cannot be expected in spaces
less regular than W 1,∞(Ω). In contrast, the deformation space is only W 1,2(Ω), yielding
a norm gap that is hard to bridge. Consequently, we have to expect grid-dependent
behavior, at least for challenging problems where large strains occur. However, for
simple problems, additional regularity of the steps can usually be observed. Such effects
depend on the problem configuration and are difficult to verify a priori. In the following,
we consider two different scalar products:

〈(y, u), (y, u)〉1 :=
1

2
〈y, y〉H1(Ω) +

α

2
〈u, u〉L2(ΓN )

and

〈(y, u), (y, u)〉2 :=
1

2
〈y, y〉L2(Ω) +

α

2
〈u, u〉L2(ΓN ).

The second scalar product is closer to the objective function J , but it does not take
into account the regularity requirements of nonlinear elasticity. On the contrary, the
first scalar product promotes smoother states. Although W 1,∞(Ω)-regularity is not
guaranteed, it is significantly closer to the ideal situation.

We will test how the choice of the scalar product affects the performance for Problem 1
with three refinements and regularization parameter α = 5e-2. The results are analyzed
by means of the damping factors ν and τ , see Figures 7.44 and 7.45. The numerical
results confirm the prior considerations. While the first scalar product yields convergence
within nine steps, the second one requires three times the number of iterations. Also,
it exhibits very irregular behavior. Moreover, in the second case, non-convexities are
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Figure 7.44: Damping factors for the first scalar product.
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Figure 7.45: Damping factors for the second scalar product.

encountered four times compared to just one time when the first scalar product is chosen.
A similar result was observed in [94].
In summary, we conclude that the functional analytical framework can be crucial for
the performance of the applied algorithms. So far, utilizing an H1(Ω)-term in the scalar
product produces satisfactory results. Still, finding more suitable choices is worth further
investigations.

7.3.3 Optimal solutions that are not energy minimizers

Until now, we have not addressed how the underlying problem structure is changed if
the energy minimizing condition in

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u)

is replaced by its formal first order optimality condition, yielding

min
(y,u)∈Y×U

J(y, u)

s.t. cγ(y, u) = 0.
(7.3)

While the first problem requires optimal states to be global minimizers of the regularized
energy Iγ , the second problem admits solutions that are local minimizers or just arbi-
trary stationary points. Such solutions can be observed for special cases. An analogous
observation follows for (4.9). Here, we solve (7.3) for Problem 2 and the parameters
γ = 100000, k = 4, and α = 9.5 with two refinements. In the composite step method,
the linear systems are solved via a direct solver. Thus, the size of the problem is limited
to two refinements. After obtaining a solution (y∗, u∗) to the optimal control problem
(7.3), Algorithm 1 is applied to compute an energy minimizer of Iγ( · , u∗), denoted by
ye. At this, the identity mapping id is used as starting iterate. The resulting solutions
are depicted in Figure 7.46, clearly showing that y∗ and ye are completely different defor-
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Figure 7.46: Optimal solution (right) with obstacle (transparent) and corresponding
energy minimizer (gray and left) for Problem 2. Color codes the intensity of the boundary
forces.

mations. Also, the respective function value Iγ(ye, u∗) is about -0.00029248, compared
to 0.00426433 for Iγ(y∗, u∗). This verifies that y∗ cannot be a global energy minimizer,
and thus, it does not satisfy the original constraint.

An interesting result is observed when the CIPPCG algorithm is applied instead of
a direct solver. Then, the composite step method exhibits an oscillatory behavior, as
illustrated in Figure 7.47 for the update norms. The algorithm was manually terminated
after 64 iterations due to lack of progress. One explanation for this behavior might be
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Figure 7.47: Norm of the updates for Problem 2 with two refinements.

the energy regularization required by the reoccurring non-convexity. By regularizing
the elastic energy, as shown in Algorithm 17, the problem considered is fundamentally
changed. Setting the regularization again to zero in the next iteration leaves us with an
inconsistency between two successive steps, which could be responsible for the oscillation.

By applying direct solvers, non-convexities are not detected. Consequently, the algo-
rithm also accepts non-convex solutions, which cannot be energy minimizers. In general,
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we want to avoid these cases all together and instead obtain solutions of the original reg-
ularized optimal control problem (4.3). So far, the methods derived here do not address
this issue, leaving it as a subject for future research.

7.4 Path-Following

Here, we test Algorithm 9 for the original regularized optimal control problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u)

and the modified one
min

(y,u)∈Y×U
J(y, u)

s.t. y ∈ argmin
v∈A

Eγ(v, u),

where the energy minimizing conditions in the constraints are replaced by their formal
first order conditions. The terms corresponding to the modified problem are marked with
the subscript ϕ. Table 7.11 lists the chosen parameters. Additionally, the composite

sp γ0 γmax α k ρϕ ϕ(γ) Refinements

Problem 1 10 10 1e13 0.2 4 0.18 γ−ρ
ϕ

3
Problem 2 10 1000 1e12 15 4 0.18 γ−ρ

ϕ
3

Table 7.11: Parameters for optimal control and path-following.

step method (Algorithm 17) acts as inner solver, and all linear systems are solved with
the CIPPCG algorithm (Algorithm 16). The corresponding parameters are the same
as displayed in Tables 7.7 to 7.9. At each iterate zk := (xk, pk) of the path-following
approach with the respective parameter γk, the composite step method computes the
next iterate zk+1 on the path for γk+1. To measure convergence, we define the update
of the primal component

∆xk := xk − xk−1.

For the path-following scheme to converge, ‖∆x‖ has to approach zero. Analogously to
the formula described in (7.2), we compute estimates for the convergence rates of the
maximum constraint violation ‖[y]+‖L∞(ΓC) and the change in the objective functional
values

|∆J(xk)| := |J(xk)− J(xk−1)|.
The results are depicted in Figures 7.48 to 7.60. In Figures 7.48 and 7.49, we observe
that the number of required composite step iterations is very high in the first iteration.
After that, the path-following algorithm only requires few inner iterations. However,
the number raises again at the end. This observation indicates that the problem is still
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difficult or that the composite step method becomes instable for very large parameters
γ.
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Figure 7.48: Inner iterations for Problem 1.
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Figure 7.49: Inner iterations for Problem 2.

Figures 7.50 and 7.51 show that ‖∆x‖ and ‖∆xϕ‖ approach zero in both problem set-
tings, indicating convergence of the entire path-following scheme. Moreover, the conver-
gence speed only seems to be linear. However, due to the lack of theoretical results in
the path-following setting, it is not clear whether faster rates can be expected. Further,
the speed of convergence is slower for the modified regularization (4.9).
Next, Figures 7.52 and 7.53 illustrate that the objective functional values are monotoni-
cally increasing in all cases. This result is reasonable since relaxing the constraints allows
for a larger choice of possible deformations, and thus, better approximations of the de-
sired deformation yd. Additionally, the modified regularization yields smaller function
values, which is consistent with Proposition 4.14.
Regarding the term |∆J(x)|, Figures 7.54 and 7.55 show an estimated rate of about 1

k−1 .
It is also indicated that |∆J(xϕ)| approaches zero at the slower rate ρϕ. This has to be
expected since the regularization function ϕ, applied in (4.4), converges to zero at the
rate ρϕ, which is slower than the rate 1

k−1 by construction.
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Figure 7.50: Norm of the updates for Problem 1.
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Figure 7.51: Norm of the updates for Problem 2.

The rate estimates for the maximum constraint violation indicate the convergence rate
1

k−1 for the first problem (Figure 7.56). Here, the additional regularization does not
seem to interfere with the convergence speed. Interestingly, the results coincide with
those observed in Section 7.1. This raises the question whether the techniques from
Section 3.3 can be transferred to the optimal control setting. For the second problem
(Figure 7.57), the convergence rate of the maximum constraint violation appears to be
slower. However, the results do not indicate an alternative value for the convergence
rate, and further tests are required.

Figures 7.58 to 7.60 illustrate the optimal solutions for the largest parameter γ. Both
approaches seem to converge to the same solution for Problem 1 and 2.

In summary, both regularization schemes appear to converge. Here, the additional reg-
ularization defined in (4.5) is not necessary to guarantee convergence, which may be
caused by the simple problem setting. Also, the first approach exhibits faster conver-
gence. Further, we observe convergence rates for the objective functional values and
the maximum constraint violation. So far, neither the convergence of the entire path-
following approach nor the observed rates have been verified by mathematical theory,
motivating further examinations.
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Figure 7.52: Objective functional values for Problem 1.
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Figure 7.53: Objective functional values for Problem 2.

All in all, we have been able to solve optimal control problems with hyperelastic contact
problems as constraints by combining a path-following method with a robust inner solver.
So far a simple path-following scheme was sufficient. For the inner solver, an affine
covariant composite step method provided the required robustness to solve problems
involving nonlinear elasticity. The CIPPCG method was successfully deployed to solve
the arising linear systems, allowing us to examine large scale problems.
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Figure 7.54: Estimated convergence rates for the objective functional values for Prob-
lem 1.
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Figure 7.55: Estimated convergence rates for the objective functional values for Prob-
lem 2.
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Figure 7.56: Estimated convergence rates for the maximum constraint violation for
Problem 1.
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Figure 7.57: Estimated convergence rates for the maximum constraint violation for
Problem 2.

Figure 7.58: Optimal solutions for Problem 1 with γ = 1e13 and obstacle (transparent).
Normal compliance regularization (left), modified regularization (middle), and reference
deformation (right).

Figure 7.59: Optimal controls (bottom face) for Problem 1 with γ = 1e13. Normal
compliance regularization (left) and modified regularization (right). Color codes the
intensity of the boundary forces.
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Figure 7.60: Optimal solutions for Problem 2 with γ = 1e12 and obstacle (transparent).
Normal compliance regularization (left), modified regularization (middle), and reference
deformation (right). Color codes the intensity of the boundary forces.



Chapter 8

Conclusion and Outlook

In this thesis, we have conducted a detailed theoretical and numerical investigation of
optimal control of nonlinear elastic contact problems. Even without contact constraints,
such optimal control problems are challenging in themselves due to the bilevel structure
and the inherent difficulty of nonlinear elasticity. We extended the existing results,
elaborated in [64, 66], by also considering contact constraints. These constraints add
a non-smoothness to an already complex problem. A central part of the study was
the relaxation of the contact constraints via the normal compliance method. In that
context, convergence rates have been established. After applying the relaxation, we
obtained regularized optimal control problems. The focus of the theoretical examination
laid on deriving a corresponding convergence result. Showing such convergence has been
achieved in two ways. First, strong structural assumptions yield the desired result.
Second, we also obtained convergence by modifying the normal compliance regularization
to better reflect the entire optimal control problem, allowing more general settings.

For the numerical simulations, we replaced the energy minimization property of hyper-
elasticity by its formal first order conditions. So far, these conditions are only valid for
very restrictive settings. The replacement enabled us to apply the robust affine covari-
ant composite step method put forward in [64, 67], which can deal with highly nonlinear
problems. In addition, we introduced a specialized gradient-type method to solve the
arising linear systems. This introduction was necessary since exiting algorithms are no
longer suitable for large scale optimal control problems in nonlinear elasticity. Thorough
testing was conducted, where we successfully solved complex optimal control problems
in nonlinear elasticity.

At the end, these approaches were combined with path-following to solve regularized op-
timal control problems and approximate solutions to the original problem with contact
constraints. However, it remains an open problem to back up these last results with
mathematical theory. In summary, despite the challenging nature of optimal control
and nonlinear elastic contact problems, new theoretical and numerical results have been
established. Still, the examinations are by no means complete and leave us with a wide
range of possible directions for future research.
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The following extensions are conceivable. First, in the current implementation of the
optimal control problem, solutions that are not energy minimizers are admissible. Such
solutions have to be avoided since they are inconsistent with the original problem descrip-
tion of hyperelasticity. This is connected to the larger theoretical problem of deriving
first order conditions for minimizers in a general setting. Also, the corresponding KKT
conditions (4.13) only hold formally and require further investigations.
Second, since the long-term goal is to solve real-world applications, more complex ge-
ometries and contact constraints need to be considered. This also includes multi-body
problems. Further, adaptive accuracy matching and regularization approaches are nec-
essary to increase performance and solve more challenging problems. So far only simple
heuristic approaches are deployed to determine the required accuracies of the applied
algorithms. In that context, error estimates for adaptive mesh refinements are also
essential.
Last, the nonlinear update strategy (Algorithm 6) yielded promising results in the field
of nonlinear elasticity, encouraging further investigations. In particular, the embedding
of this strategy into the optimal control setting could lead to significant performance
gains.
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[70] C. Meyer, U. Prüfert, and F. Tröltzsch. On two numerical methods for
state-constrained elliptic control problems. Optimization Methods and Software,
22(6):871–899, 2007.
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Überprüfung unterzogen werden kann, sowie dass bei Verdacht wissenschaftlichen Fehl-
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