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Abstract 

Disruption of the normal patterns of expression, localisation and function of 

potassium channels in brain neurons has emerged as a likely 

pathophysiological basis for stress-induced mental illnesses, Parkinson’s and 

Alzheimer’s disease, with the striatum as a particular brain region of interest. 

Among the major classes of potassium channels, voltage-gated potassium 

channels are known to play a major role in regulating neuronal excitability. 

However, expression of voltage-gated potassium channel subtypes in the 

striatum have not been well established. In this research, a mouse model of 

early life stress was used for chronic stress while SNCH-OVX and APP-

PSEN1 transgenic mouse models were used to model Parkinson’s and 

Alzheimer’s disease respectively and compared to their wild type littermates 

as controls to investigate how the native expression patterns of different 

voltage-gated potassium channel sub-families within the mouse striatum 

changes in response to stress and pathology associated with Parkinson’s and 

Alzheimer’s disease. This led to the characterisation of the expression 

patterns of different voltage-gated potassium channel subtypes and the 

neurochemical inputs they integrate in the striatum. Furthermore, the data 

indicated voltage-gated potassium channels to be highly plastic in response to 

life experience, provided insights into the earliest functional changes in 

Parkinson’s disease, and showed the resilience of striatal neurochemicals to 

Alzheimer’s disease pathology. Therefore, psychosocial stress and 

neurodegenerative disease pathology alters the expression of specific 

voltage-gated potassium channels in distinct cell types of the striatum. The 
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expected changes in neuronal excitability arising from such changes could 

contribute to pathology of such conditions.  
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Summary of Findings 

The broad aims of my PhD project were to determine the native expression 

patterns of different voltage-gated potassium channels (Kv) sub-families, their 

cellular and subcellular localisation within the mouse striatum, the 

neurochemical inputs they integrate and how these changes in response to 

stress or pathology associated with Parkinson’s disease (PD) and Alzheimer’s 

disease (AD). The importance of this work is founded on the central role that 

Kv play in contributing to the diversity of neuronal activity patterns across 

different populations of neurons and the need for neurons to express 

chemicals to integrate inputs from different brain regions. Whilst Kv subfamilies 

have been extensively characterised in many regions of the brain such as the 

hippocampus and cortex, relatively less is known about Kv expression in the 

striatum. This represents an important gap in the scientific literature since a 

range of debilitating brain disorders are associated with altered neuronal 

activity of striatal neurons. Given the major roles that Kv serve in regulating 

neuronal activity, identifying the native expression in this brain region will 

provide a platform for understanding their potential roles, and thus suitability 

as therapeutic targets, in such medical conditions. In my PhD research, I 

therefore have firstly provided the first high resolution immunolocalisation of 

the native expression patterns for different Kv subtypes. I then investigated 

whether such expression patterns are susceptible to life experience, or 

pathology relating to specific neurodegenerative diseases, namely 

Alzheimer’s and Parkinson’s.  
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My main findings were: 

1. RT-PCR revealed that the mouse striatum expresses mRNA for Kv1.1, 

Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv2.2, Kv3.1, Kv3.3, Kv3.4, 

Kv4.2, Kv5.1, Kv7.1, Kv7.2, Kv7.3 and Kv7.4 (Chapter three). 

 

2. Immunohistochemistry and confocal microscopy revealed that different 

sub-families of Kv are targeted to different striatal cell types. For 

example, Kv2.1 and 4.2 were exclusively expressed on the principal 

cells of the striatum, called medium spiny neurons (MSNs), whereas 

Kv3.1 and 4.3 were only expressed on inhibitory interneurons (Chapter 

three). 

 

3. Immunohistochemistry and confocal microscopy revealed that different 

sub-families of Kv are targeted to different sub-cellular compartments. 

For example, members of the Kv1 family were exclusively expressed on 

neurochemically diverse axons, originating from other brain region, and 

innervate MSNs. Furthermore, Kv2.1 signal was restricted to the cell 

body and proximal dendritic regions of MSNs whilst the Kv4.2 was 

targeting to their distal dendrites. (Chapter three). 

 

4. Immunohistochemistry and confocal microscopy revealed that different 

sub-families of Kv are targeted to non-neuronal cells within the striatum. 

For example, Kv1.6 was exclusively expressed on immune modulating 
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microglia, whereas Kv1.5 was expressed on oligodendrocyte precursor 

cells (Chapter three). 

 

5. Quantitative immunohistochemistry revealed that in response to early 

life stress, there was significant decrease in the expression of Kv2.1 in 

the ventral striatum but not the dorsal striatum, Kv4.2 both in the ventral 

and dorsal striatum, and IBA1, a marker of inflammation, both in the 

ventral and dorsal striatum (Chapter three). 

 

6. Immunohistochemistry with confocal microscopy revealed that in a 

mouse model of PD (OVX), alpha-synuclein, a key molecule in PD 

pathology, was associated with glutamatergic axons originating from 

the cortex as well as axon terminals from local GABAergic interneurons, 

together with dopaminergic and noradrenergic axons (Chapter four). 

 

7. Quantitative reverse transcription polymerase chain reaction (qRT-

PCR) of WT and OVX mice revealed changes in the expression of 

genes encoding for diverse axonal inputs, namely tyrosine hydroxylase 

(TH), tryptophan hydroxylase 1 (TPH1) and Kv4.3 at the mRNA level, 

with TH and Kv4.3 being increased significantly while TPH1 was 

decreased significantly in the striatum of OVX mice (Chapter four). 

 

8. Quantitative immunohistochemistry with confocal microscopy revealed 

that in OVX mice, there were significant decrease in the expression of 
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dopamine- and cyclic-AMP-regulated phosphoprotein of molecular 

weight 32 kDa (DARPP-32), a protein responsible for regulating the 

phosphorylation of dopamine receptors, the inflammation marker IBA1,  

and Kv2.1, 4.2 and 4.3. (Chapter four). 

 

9. Using immunohistochemistry with confocal microscopy, I demonstrated 

that amyloid beta, a pathological feature of AD is expressed in sub-

populations of MSNs, cholinergic interneurons and parvalbumin 

containing GABAergic interneurons (Chapter five). 

 

10. qRT-PCR and quantitative immunoreactivity revealed that 

neurochemicals within the striatum are resilient to AD pathology with 

only a decrease in Kv4.3 expression being observed (Chapter five). 
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Chapter One 

General introduction 

 

Ion channels 

Ion channels are macromolecules, embedded within biological lipid bi-layer 

membranes, for the primary purposes of allowing the flow of ions across 

cellular compartments, with high degree of specificity (Viviani, Gardoni and 

Marinovich, 2007). As such, they are integral to various intracellular and 

extracellular processes, from single cell to multicellular organisms, and organs 

system. In the organ that forms the focus of my PhD research, the mammalian 

brain, various ion channels classes regulate various aspects of development 

via cell adhesion and cell migration as well as cellular (neurons and glia) 

communication, (Kumar, Kumar, Jha, Jha and Rashmi K Ambasta, 2016). The 

cardinal properties of ion channels are ion selectivity and gating. Selectivity 

refers to the ability of some channels to discriminate between ion species. This 

is achieved through a physical–chemical interaction between the ion and 

various amino acid residues lining the channel. Gating is the process of 

transition between the open and closed states (Viviani, Gardoni and 

Marinovich, 2007).  

Ion channels allow the flow of ions down their electrochemical gradient from 

one side of a membrane to the other and form a very diverse group of proteins 

found in the cell membrane as well as in the membrane of intracellular 

compartments (Vizcaya-ruiz and Camacho, 2010). They also activate 

enzymes linked to cellular signalling pathways, serve as cell adhesion 
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molecules or components of the cytoskeleton, and their activity can alter the 

expression of specific genes (Kaczmarek, 2006).  

Ion channels can be classified based on the main ion to which they are 

selective under physiological conditions. These include sodium, chloride, 

calcium and potassium. 

Potassium channels are the focus of my PhD research and will therefore 

restrict my assessment to this class.   

 

Overview of potassium channels and their contribution to neuronal 

activity 

Potassium (K+) channels are multipass transmembrane polypeptides that 

contain the K+ selective pore that selectively conduct K+ across cell membrane 

as well as the domains that allow them to respond to diverse stimuli (Trimmer 

and Rhodes, 2004). They are found in both excitable and non-excitable cells 

that are involved in diverse cellular processes including cell proliferation, 

apoptosis, hormone secretion, K+ homeostasis, neurotransmitter release and 

modulation of the action potential (Bauer and Schwarz, 2001) (Burg, Remillard 

and Yuan, 2006). For the purposes of this chapter, I will focus on K+ channels 

(KCh) and their roles in neuronal function.  

KCh are synthesized in the endoplasmic reticulum and specifically transported 

to their functional site of action, which in neurons, is predominantly the plasma 

membrane. Once KCh reach their final place, the ion channel complex is 

retained either by interaction with other signalling proteins or by scaffolding 

mechanisms. The selective localisation of KCh into different cell types and 

subcellular compartments is crucial for their primary role in brain function, 
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which is the maintenance and physiological regulation of normal neuronal 

activity through contributing to the membrane potential of individual neurons 

(Andrea Lorincz and Nusser, 2008) (Trimmer, 2015). 

At rest, neuronal membranes are polarised, due to the unequal distribution of 

charge, in the form of ions, across their surfaces (Fig 1.1).  

 
Figure 1.1. Schematic depiction of the polarised neuronal membrane (Tigner and Cornell, 
2014). 
 
Sodium (Na) and K ions make the major contribution to this charge differential, 

with the extracellular compartments concentrated with Na, and intracellular 

compartments enriched with K, via the sodium-potassium adenosine 

triphosphatase (ATPase) exchange pump (Fig 1.2). 

 
Figure 1.2. Schematic depiction of the unequal distribution of Na and K ions across neuronal 
membranes via the Na-K ATPase pump (Tigner and Cornell, 2014). 
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The primary purpose of KCh in neurons is to dampen their excitability by 

facilitating hyperpolarisation. Therefore, they are principally involved in 

counteracting phases of excitability, or depolarisation, especially following an 

action potential (Fig 1.3). 

 

 
Figure 1.3. Schematic depiction of the role of KCh in counteracting neuronal activity by 
facilitating the hyperpolarising phase of the action potential (Tigner and Cornell, 2014). 
 

KCh are made up of α subunits and are classified based on the number of 

transmembrane domains in the α subunit and the mode of activation. KCh 

have been grouped into the following classes: six transmembrane domains, 

formed by the voltage-activated and Ca2+ activated KCh; four transmembrane 

domains, formed by the two-pore KCh; and two transmembrane domains, 

formed by the inward-rectifying KCh (Gutman et al., 2005). Thus, the four 

major classes of KCh are: Ca2+-activated KCh (KCa), Inwardly-rectifying KCh 
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(Kir), Two-pore KCh (K2P) and Voltage-gated KCh (Kv) (Vizcaya-ruiz and 

Camacho, 2010) (Fig 1.4). 

 
Figure 1.4. Schematic representation of the four classes of potassium channels: (A) Kv, (B) 
BKCa, (C) IK/SKCa, (D) KIR/KATP, (E) K2P channels. Pore-forming α subunits are highlighted 
in the grey boxes. Pores are identified as “P” and voltage sensor as “V”. C-terminal Ca2+ 
binding domains are depicted for BKCa and IK/SKCa channels (Burg, Remillard and Yuan, 
2006). 
 

Ca2+-activated KCh (KCa) 

Molecular structure 

Each α subunit of KCa consists of six transmembrane-spanning domains with 

both amino and carboxyl termini on the intracellular side of the membrane and 

a pore domain formed by the last two transmembrane domains (Wei et al., 

2005). KCa are subcategorized into large conductance (>200 pS) KCa (BKCa), 

intermediate conductance (50-200 pS) KCa (IKCa) and small conductance (2-

15 pS) KCa (SKCa) based on single channel conductance. BKCa channel α 

subunits have an additional N-terminus segment, which allows for interaction 
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with membrane-spanning regulatory β subunits. SKCa and IKCa have fewer 

positive residues in the voltage sensor (S4 transmembrane domain) than 

BKCa. BKCa and IK/SKCa channel subunits assemble as tetramers, with β 

subunits in the case of BKCa (Burg, Remillard and Yuan, 2006). Each α subunit 

of KCa consists of six transmembrane-spanning domains with both amino and 

carboxyl termini on the intracellular side of the membrane and a pore domain 

formed by the last two transmembrane domains (Wei et al., 2005). 

 
Biophysical properties and expression patterns 

α subunits of KCa channels assemble in the plasma membrane forming homo- 

or heterotetrameric structures. Auxiliary β subunits can also co-assemble, 

thereby influencing channel expression and modulating the biophysical 

properties of the channels. Functionally, KCa are involved in the regulation of 

neuronal firing properties, blood flow and cell proliferation. 

KCa are present in excitable and non-excitable cells and open on activation by 

low concentrations of Ca2+, resulting in hyperpolarization of the membrane 

potential and changes in cellular excitability. (Luján, 2010). KCa have also been 

found in secretory cells in which their activation results in the closing of 

voltage-dependent Ca channels thus providing a negative feedback to 

regulate Ca entry (Rudy, 1988). 
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Figure 1.5. Subunit composition of KCa principal subunits in mammalian central neurons. (A) 
Schematic representation of a single KCa α subunit. The KCa are composed of four α subunits 
each containing six transmembrane segments (M1–M6) and a conducting pore (P) between 
M5 and M6, and a voltage sensor (positive charge of amino acid residues) located at M4. (B) 
Classification, genetic nomenclature, and well-characterized subcellular localization of KCa α 
subunits (Luján, 2010). 
 
Inwardly-rectifying KCh (Kir) 

Molecular structure 

Kir have two membrane-spanning domains and a conserved pore-forming loop 

domain or P region and also assemble as tetramers. An additional membrane-

bound cytoplasmic α helix, the slide helix, can move laterally to displace the 

inner helix and is involved in Kir channel gating. The large C-terminal domain 

is also believed to contribute to pore structure formation. In the closed state, 

the Kir C-terminus covers the cytoplasmic side of the pore and causes 
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conformational changes that preclude K+ permeation (Burg, Remillard and 

Yuan, 2006). 

 

Biophysical properties and expression patterns 

Kir are characterized by their inward-rectifying current–voltage relationship. 

Inward rectification refers to an increased K+ conductance upon 

hyperpolarization and a decreased conductance upon depolarization. Under 

physiological conditions, Kir allow the outward flow of K+ only when cells are 

near their resting potential, but these channels are blocked when the cells are 

depolarized. Thus, Kir modulate cell excitability and are involved in the 

repolarization of action potentials, setting the resting potential of the neuron, 

and contributing to K+ homeostasis. Kir are widely expressed in excitable and 

non-excitable cells, generated by the homo- or heterotetrameric arrangement 

of α subunits, and are often associated with additional β subunits. Each α 

subunit consists of two transmembrane-spanning domains with both amino 

and carboxyl termini on the intracellular side of the membrane, a re-entrant P 

loop, and a pore domain located between the two transmembrane domains. 

Kir are formed by at least sixteen subunits subdivided into seven subfamilies 

(Kir1–Kir7) with different functional properties. Among the seven Kir channel 

subfamilies, the Kir3 subfamily, also known as G protein-gated Kir (GIRK) are 

widely expressed in the CNS and are a key determinant of membrane 

excitability because they mediate the postsynaptic inhibitory effect of many 

neurotransmitters (Luján, 2010). Kir have also been found in skeletal muscle, 

cardiac muscle, eggs of many animals and several vertebrate and invertebrate 

neurons (Rudy, 1988). 
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Figure 1.6. Subunit composition of Kir principal subunits in mammalian central neurons. (A) 
Schematic representation of a single Kir α subunit. The Kir are composed of four subunits each 
containing two transmembrane segments (M1 and M2) and a P loop (P) located in between 
these two segments. (B) Schematic representation of the Kir3 α subunit, showing the 
association of the G protein subunits (α, β and γ) with the N- and C termini of the channel. (C) 
Classification, genetic nomenclature, and well-characterized subcellular localization of Kir α 
subunits (Luján, 2010). 
 

Two-pore KCh (K2P) 

Molecular structure 

K2P have four transmembrane domains and two ion-conducting pores. 

Functional K2P exist as homo- or hetero-dimers. There are six structural and 

functional groups of K2P which include: tandem pore, weak inwardly rectifying 

K2P (TWIK), TWIK-related acid-sensitive K2P (TASK), TWIK-related and 

arachidonic acid stimulated K2P (TRAAK), TWIK-related alkaline pH-activated 
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K2P (TALK), tandem pore halothane-inhibited K2P (THIK), and TWIK-related 

spinal cord K2P (TRESK) (Burg, Remillard and Yuan, 2006).  

 

Biophysical properties and expression patterns 

Activation of K2P is associated with a strong membrane hyperpolarization 

(Burg, Remillard and Yuan, 2006). The activity of K2P contributes significantly 

to the background leak K+ currents that form and maintain the resting 

membrane potential of living cells (Goldstein et al., 2005) (Luján, 2010).  

 
Figure 1.7. Subunit composition of K2P principal subunits in mammalian central neurons. (A) 
Schematic representation of a single K2P α subunit. The K2P are composed of four subunits 
each containing four transmembrane segments (M1, M2, M3 and M4) and two P loops (P1 
and P2). (B) Classification and genetic nomenclature of K2P α subunits (Luján, 2010). 
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Voltage-gated KCh (Kv) 

Molecular structure 

Kv exist as homo- or hetero-tetramers of pore-forming α subunits associated 

with regulatory β subunits. This association of regulatory Kv β subunits with 

functional Kv α subunits contributes to the diversity of Kv. Kv α subunits have 

six transmembrane domains (M1–M6) and cytoplasmic N- and C- termini. The 

M5–M6 region constitutes the channel’s conduction pore (P-region) and K+ 

selectivity filter while the M4 domain contains a positively charged voltage 

sensor (Burg, Remillard and Yuan, 2006). The first four transmembrane 

domains form the voltage-sensing domain, whereas the last two 

transmembrane domains, in conjunction with a re-entrant P loop, form the pore 

region of the channel. cDNAs encoding multiple members of each of the 

corresponding mammalian gene families have now been isolated and 

expressed. This include: Shaker/Kv1/KCNA; Shab/Kv2/KCNB; 

Shaw/Kv3/KCNC; Shal/Kv4/KCND; Kv5/KCNF; Kv6/KCNG; Kv7/KCNQ; 

Kv8/KCNV; Kv9/KCNS; Kv10/KCNH; Kv11/KCNH; andKv12/ KCNH). The most 

widely expressed families in the CNS are the Kv1–Kv4 (Gutman et al., 

2005)(Luján, 2010) 

 

Biophysical properties and expression patterns 

Kv determines a neuron’s intrinsic electrical excitability. Following 

depolarization of the plasma membrane, Kv open rapidly (<1 ms) allowing K+ 

to flow passively down their electrochemical gradients. Kv remain closed when 

the intracellular compartment of a neuron is at a negative voltage relative to 

the extracellular site (Luján, 2010). 
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Kv have been found in nerve and muscle cells, neuronal cells as well as in 

many non-excitable cells (Rudy, 1988). 

 
Figure 1.8. Subunit composition of Kv principal subunits in mammalian central neurons. (A) 
Schematic representation of a single Kv α subunit. The Kv are composed of four α subunits 
each containing six transmembrane segments (M1–M6) a conducting pore (P) between M5 
and M6 and a voltage sensor (positive charge of amino acid residues) located at M4. (B) 
Classification and genetic nomenclature of Kv α subunits (Luján, 2010). 
 

Kvs are the focus of this work and will therefore restrict the remainder of my 

chapter to this KCh subtype, and their roles in the brain, in health and disease. 
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Kv in the brain 

Neurons express a wide variety of Kv that can contribute to diverse aspects of 

neuronal signalling, depending on the functional characteristics, abundance, 

subunit composition, distribution, cellular and subcellular localisation of the 

channel subtypes (Trimmer and Rhodes, 2004).  

 

Figure 1.9. Drawing illustrating the sliding helix model of voltage- dependent gating of Kv 
channels. Upon depolarization, the electrostatic force keeping the voltage sensor, the sliding 
helix, fully inward (left sketch) is relieved, letting it slide outward along a helicoidal path (right 
sketch) such that positive charges (green) on the sliding helix establish in succession ion pairs 
with negative charges (red) present in the neighbouring segments of the voltage sensor 
domain. Only one of the four sliding helices/voltage sensors of Kv channels is shown in the 
figure (Catacuzzeno, Sforna and Franciolini, 2020).  

A parallel nomenclature for Kv subunit genes was established by the HUGO 

Gene Nomenclature Committee. Genes encoding the four original Kv1–Kv4 

subfamilies of α subunits were named KCN, and assigned the letters A–D (i.e., 

Kv1–Kv4 is KCNA–KCND) and the specific gene numbers following the Kv 

nomenclature (e.g., Kv1.1 is KCNA1, Kv1.4 is KCNA4, Kv2.1 is KCNB1, etc.). 

Kv5–Kv12 subfamilies were assigned KCNF (Kv5), KCNG (Kv6), KCNQ (Kv7), 

KCNV (Kv8), KCNS (Kv9), and KCNH (Kv10-12) (Vacher, Mohapatra and 

Trimmer, 2008). 
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Cellular distribution of kv 

Many studies have reported the regional and cellular localisation of the 

members of the Kv1–Kv4 and Kv7 subfamily (Trimmer and Rhodes, 2004) 

(Vacher, Mohapatra and Trimmer, 2008), However, members of the Kv 

subfamilies Kv5, Kv6, and Kv8–Kv12 have been far less characterized.  

 

Kv1 family 

The Kv1 channels are mostly expressed in the brain, especially in axons, 

soma, synaptic terminals and proximal dendrites, but they can also be found 

in non-excitable cells such as lymphocytes (Foust et al., 2011). The three most 

abundant Kv1 subunits expressed in the brain, Kv1.1, Kv1.2, and Kv1.4, are 

members of the heteromeric channel complexes. However, the subunit 

composition of channels containing the three subunits depends upon the brain 

region. Kv1.1 and Kv1.4 are found in the globus pallidus and substantia nigra 

pars reticulata (SNr). Kv1.1 and Kv1.2 are also found in cerebellar basket cell 

terminals. In the hippocampus, Kv1.4 are found in the mossy fiber terminals 

and axon terminals associated with the perforant pathway, and in the 

cerebellum are found in the pinceau structures associated with Purkinje cells 

(Rhodes et al., 1997) (Luján, 2010). 

The Kv1 subfamily regulates different neuronal electrical properties, including 

action potential amplitude and duration, the cell resting membrane potential, 

the frequency of cell firing and the kinetics and amount of neurotransmitter 

release (Villa et al., 2020). Kv1 channels at the distal axon initial segment (AIS) 

play prominent roles in determining the properties of action potentials, and in 

repolarizing the distal AIS, the site of spike initiation, after an action potential 
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has been fired (Trimmer, 2015). Kv1.1, Kv1.2 and Kv1.3 interferes with the 

demyelinating process of axons. Kv1.1 is involved in repolarisation of axons 

(Kumar, Kumar, Jha, Jha and Rashmi K. Ambasta, 2016).  

Kv2 family 

The Kv2 family members are widely distributed in the CNS. Kv2.1 is highly 

expressed and has an extensive distribution throughout the brain. In spite of 

its widespread expression, Kv2.1 is especially prominent in the cortical 

pyramidal cells in layers II/III and V, as well as in the principal cells and 

interneurons of the hippocampus. Kv2.2 is highly expressed in neurons of the 

olfactory bulb and pyramidal cells of the cortex, and in general it is expressed 

in many of the same cells that express Kv2.1. In general, Kv2 channels are 

found predominantly at postsynaptic sites on somata and dendrites and are 

not detected in axons and axon terminals (Du et al., 1998)(Luján, 2010). 

Kv2 channels are the major constituents of the somatic delayed rectifier K+ 

current (Villa et al., 2020), and are also found at/near sites of intracellular Ca2+ 

release, which may influence their modulation by Ca2+-regulated protein 

kinases and phosphatases (Trimmer, 2015).  

Kv3 family 

The Kv3 family is composed of four subunits, with some of them composed of 

several isoforms. Three of the subunits (Kv3.1, Kv3.2, and Kv3.3) are 

expressed mainly in the CNS, whereas Kv3.4, although also present in the 

CNS, is more abundant in skeletal muscle. In situ hybridisation studies have 

shown that Kv3.1, Kv3.2, Kv3.3 and Kv3.4 are expressed in distinct 
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subpopulations of projecting neurons and interneurons in the cerebral cortex, 

hippocampus, caudate-putamen and midbrain auditory. In general, each of the 

four subunits have a unique expression pattern in the CNS, although Kv3.1, 

Kv3.3, and Kv3.4 do exhibit expression patterns similar to each other, but 

completely distinct from Kv3.2 channels. For example, regions that express 

high levels of Kv3.1, Kv3.3 and Kv3.4 mRNAs such as the cerebellar cortex, 

the spinal cord, the reticular thalamic nucleus, the inferior colliculus, and many 

nuclei in the brainstem, express little or no Kv3.2 (Weiser et al., 1994)(Luján, 

2010).  

The Kv3 channels are among the most brain specific of all known K channels 

being involved in the rapid repolarization of the action potential in neurons with 

a key role in the fast-spiking neuronal phenotype (Yanagi et al., 2014). High-

threshold Kv3 channels play a critical role in repolarization of mossy fibres 

axons and terminals (Trimmer, 2015). Kv3 family members have unique 

functional characteristics, including fast activation at voltages positive to -10 

mV and very fast deactivation rates. These properties are thought to facilitate 

sustained high-frequency firing, and Kv3 subunits are highly expressed in fast-

spiking neurons, such as neocortical and hippocampal interneurons as well as 

midbrain auditory neurons (Vacher, Mohapatra and Trimmer, 2008). Kv3.3 

mediates the voltage-dependent K+ permeability of excitable membranes 

(Kumar, Kumar, Jha, Jha and Rashmi K. Ambasta, 2016). 
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 Kv4 family 

The Kv4 channels are expressed in a wide range of tissues, with high levels in 

the brain and in the heart. This channel is abundant in the dendrites of CA1 

pyramidal neurons of the hippocampus and expressed in membranes of soma, 

dendrites, and spines of pyramidal cells and GABAergic neurons (Villa et al., 

2020). The three subunits of the Kv4 family are differentially distributed in the 

CNS. While Kv4.1 is expressed at very low levels, Kv4.2 and Kv4.3 are widely 

expressed throughout the brain. Although the regional and cellular expression 

of Kv4.2 and Kv4.3 is complementary, they can also co-express in some 

neuronal populations. In the hippocampus, Kv4.2 is highly expressed in 

principal cells, whereas Kv4.3 is primarily found in a subset of principal cells 

and in many interneurons (Trimmer and Rhodes, 2004)(Luján, 2010). 

Kv4.2 represents the key component of the A-type K+ current (IA) in the CNS 

which is involved in several physiological processes, including the regulation 

of membrane excitability, the control of the firing pattern and action potential 

propagation (Kerti, Lorincz and Nusser, 2012). 
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Figure 1.10. Cellular distribution of Kv channels (Vacher, Mohapatra and Trimmer, 2008). 
 

Kv7 family 

The Kv7 family, which is chiefly responsible for the slowly activating and non-

inactivating M current, is composed of five subunits referred to as Kv7.1– 

Kv7.5. Kv7.1 is expressed mainly in the heart, whereas Kv7.2–Kv7.5 are 

distributed throughout both the central and peripheral nervous systems 

(Gutman et al., 2005). Immunohistochemical studies have shown that 

immunoreactivity for Kv7.5 is especially strong in the auditory brainstem nuclei, 

including the cochlear nucleus, superior olivary complex, nuclei of the lateral 

lemniscus, and inferior colliculus (Luján, 2010). 

Kv7 are low-threshold activated voltage-gated K+ channel which determine the 

neuron resting membrane potential and regulate their excitability (Brown and 

Passmore, 2009). Neuronal Kv7 suppresses neuronal firing in many types of 

brain neurons and suppression of M current by muscarinic modulation 
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enhances neuronal excitability (Vacher, Mohapatra and Trimmer, 2008). Kv7.2 

and Kv7.3 are involved in repolarization activity of axons while Kv7.4 plays a 

crucial role in the regulation of neuronal excitability in association with Kv7.3 

(Kumar, Kumar, Jha, Jha and Rashmi K. Ambasta, 2016). Kv7.5 expressed in 

calyx of Held nerve terminals is an important determinant of the resting 

membrane potential, and as such plays a key role in determining glutamate 

release probability (Trimmer, 2015). 

Immunohistochemical analyses of the precise subcellular localisation of Kv5, 

Kv6, Kv8, Kv9, Kv10, Kv11 and Kv12 subunit have not been fully established 

(Luján, 2010). 

Kv subfamilies have been well characterized in many regions of the brain. 

However, its expression in the striatum have not been well established. 

Therefore, I will focus further on Kv expressed in the striatum. 

 

The striatum and its contribution to brain function 

The striatum is part of the basal ganglia which comprise the striatum, the 

globus pallidus (internal-GPi and external-GPe segments), the subthalamic 

nucleus and the substantia nigra (pars reticulata-SNr and pars compacta-

SNc). Together, these subcortical areas process sensorimotor information to 

allow proper movement generation, including action selection, planning, 

execution and orientation of locomotion (Albin et al., 1989). The basal ganglia 

are a group of interconnected subcortical nuclei spanning the telencephalon, 

diencephalon, and midbrain. The primary afferent structure of the basal 

ganglia is the striatum which consists of the medial caudate and lateral 
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putamen (Albin et al., 1989). The striatum receives afferents from all of the 

isocortex (Kemp and Powell, 1970)  and projects upon the SNc, which in turn, 

receives a substantial projection from the SNc putamen. The primary 

neurotransmitter of the striatal, pallidal, and SNr projection neurons is γ-

aminobutyric acid (GABA) while the neurotransmitter of SNc neurons is 

dopamine (Albin et al., 1989). 

 
Figure 1.11. Basic neural connections among the cerebral cortex, basal ganglia and thalamus 
(Kawaguchi et al., 1995). 
 
The striatum is divided into: ventral striatum which consists of the nucleus 

accumbens and olfactory tubercule important for reward system; and 

the dorsal striatum which consists of the caudate nucleus and the putamen. 

These compartments have distinct chemical compositions and connections 

(Holt, Graybiel and Saper, 1997). Studies of the ventral striatum suggests the 

accumbens are associated with locomotor and incentive– reward effects 

(Zahm, 2000) while the dorsal striatum coordinates neuronal signals from 

multiple cortical and subcortical regions and plays a critical role in voluntary 

movements, motor learning, cognition, and emotion (Guo et al., 2015).  
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Cell types of the striatum 

The mammalian striatum contains two different types of cells: 1) medium spiny 

neurons (MSNs) also called projection neurons because their axons generally 

exit the striatum and project to the target regions of the striatum. They 

represent about 74% of the total striatal neuronal population; 2) interneurons, 

whose axons target only MSNs, and account for the remaining 26% of striatal 

neurons. MSNs, morphologically, are distinguished by the presence of spines 

on their dendrites. These small protuberances significantly increase the 

surface area of neurons and are the sites of excitatory synapses. MSNs send 

their axons to the internal and external segments of the globus pallidum and 

to the SNr. In contrast, interneurons do not contain dendritic spines and exert 

a powerful control over MSNs (Gime and Berna, 2012).  

 

The principal neurons: MSN 

The MSN are medium sized neurons and are the major cell type of the 

neostriatum (Ell, 1971), MSN utilize GABA as their major neurotransmitter 

(Albin et al., 1989)., and have somatic diameters of about 20 µm (Wilson and 

Groves, 1980). MSN are subdivided into two major populations based on their 

projection region, pattern of axonal collateralisation and their neurochemical 

content - dopamine D1 and D2 receptors (Wilson and Groves, 1980). D1 

receptor cells projects to the output nuclei of the basal ganglia and expresses 

GABA, substance P, dynorphin and dopamine D1 receptors while D2 receptor 

cells projects almost exclusively to the globus pallidus and expresses 

enkephalin and dopamine D2 receptors (Graybiel, 1990). 
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Interneurons 

Four major classes of interneurons have been identified using cytochemical, 

physiological and morphological methods. They are: the large cholinergic 

neurones, which are identifiable by the presence of choline acetyltransferase 

(ChAt); GABAergic interneurons that contain parvalbumin; GABAergic 

interneurons that contain calretinin; and a class of interneurons that contain 

somatostatin, NADPH-diaphorase, and nitric oxide synthase (NOS) 

(Kawaguchi, 1997). 

 

i. Cholinergic interneurons 

Early biochemical studies showed that the biosynthetic enzyme ChAt was 

present in large amounts in the striatum along with the degradative enzyme 

acetylcholinesterase (AChE) (McGeer et al., 1971). These was confirmed by 

immunohistochemistry when large aspiny ChAt immunoreactive cells were 

shown to comprise 2-3% of striatal cells with widespread processes distributed 

throughout the striatum (Wainer et al., 1984). Cholinergic interneurons have 

large somata, widespread dendritic trees, subtending a region much larger 

than that of the projection neurons. Thus, these cells are capable of integrating 

synaptic inputs over relatively large regions. Similarly, their axonal fields are 

very extensive compared with those of most of the other striatal neurons 

(Wilson, Chang and Kitai, 1990).  

 

ii. Parvalbumin-containing GABAergic interneurons 

This group of interneurons in the striatum stain positively for parvalbumin, a 

calcium binding protein (Kawaguchi et al., 1995). Parvalbumin-containing cells 
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constitute between 3-5% of striatal cells and are slightly larger than the MSN. 

They have varicose dendrites that arborize within 200-300µm of the cell body, 

and a dense arborization of local axonal collaterals. Parvalbumin-positive 

GABAergic interneurons receive powerful excitation from the cerebral cortex. 

Because of the potentials seen in projection neurons after afferent stimulation, 

it has been proposed that the parvalbumin-positive neurons are responsible 

for most of the inhibition seen in experimental studies of striatal projection cells 

(Kawaguchi, 1997). They provide a feed forward inhibitory circuit in which they 

receive excitatory inputs (mostly from cortex) and inhibit both spiny output cells 

and interneurons including those containing somatostatin (Emson et al., 1993) 

(Cowan et al., 1990) 

 

iii. Calretinin-containing GABAergic interneurons  

Calretinin, is a calcium-binding protein containing four calcium binding 

domains and believed to bind calcium over the physiological range of 

concentration of intracellular calcium. Calretinin may function as calcium 

buffers, but the precise physiological roles have not been established 

(Baimbridge, Celio and Rogers, 1992). Electron microscopic studies shows 

calretinin to be aspiny neurons with indented nuclei (Bennett and Bolam, 

1993). 

 

iv. Somatostatin (neuropeptide Y, nitric oxide synthase)-containing 

interneurons  

These are medium-sized aspiny interneurons that contains the neuropeptide 

Y, somatostatin and nitric oxide synthase (Emson et al., 1993). Somatostatin-
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containing interneurons are aspiny cells 12-25 µm in diameter, which 

represent 1-2% of striatal neurons. In comparison with cholinergic and 

parvalbumin-positive cells, Somatostatin-containing interneurons have fewer 

dendritic branches (Kawaguchi et al., 1995). 

 

Main inputs and projection patterns of the striatum  

The striatum is the main recipient of inputs to the basal ganglia and major 

excitatory inputs from cortex and cortical-like structures such as the 

amygdala and subiculum of the hippocampus. Information entering the 

striatum from other parts of the brain can either stimulate activity in the 

striatum (known as an “excitatory input”) or alter existing excitatory inputs 

(Hunnicutt et al., 2016). Striatal neurons receive convergent excitatory inputs 

from the cerebral cortex, the intralaminar thalamus, the SNc and the dorsal 

raphe nucleus (Zahm, 2000). 

 
Figure 1.12. Inputs to the dorsal striatum cholinergic interneurons and D1/D2 projection 
neurons. Blue, green, and red lines indicate monosynaptic inputs to striatal ChAt, D1, and D2 
neurons, respectively. Thickness of the lines represents proportional input strength (cell 
numbers) from given brain areas. Abbreviations: CPu, caudate putamen; GPe, external globus 
pallidus; GPi/EP, internal globus pallidus/entopeduncular nucleus; SNc, substantia nigra, 
compact part; SNr, substantia nigra, reticular part; STN, subthalamic nucleus (Guo et al., 
2015). 
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Inputs are neurochemically diverse, all releasing different messengers that 

synapse on different types of neurons in the striatum and as such have an 

impact on the excitability of striatal neurons. Therefore, the striatal neurons 

themselves need to express chemicals to integrate such inputs, in order to 

ensure coordinated activity. Kvs will be central to integrating such inputs in a 

coordinated way because they regulate the neurons. Whilst neurotransmitter 

receptors have been widely explored, we currently know very little about which 

particular Kv is expressed on specific cells in proximity to specific inputs. 

Therefore, it is important to characterise the native expression patterns of Kv 

within the striatum and determine whether such expression patterns evolve 

with different life experiences or diseases. For my thesis, I focussed on 

psychosocial stress as a life experience that impacts on the striatum, and 

Parkinson’s and Alzheimer’s as diseases that impact on this brain region.  

 

The striatum and psychosocial stress 

Exposure to stressors results in the initiation of a host of central and peripheral 

physiological processes.  These physiological responses to stressors are 

essential survival mechanisms which allow the individual to contend with such 

challenges throughout one’s lifetime. However, exposure to stressors can also 

manifest in maladaptive physiological responses which predispose individual 

to developing a host of diseases either of the CNS or peripheral systems. 

When the brain detect a stressful experience (stressor), corticotrophin-

releasing hormone (CRH) is activated resulting in the activation of 

hypothalamic-pituitary-adrenocortical (HPA) axis (De Kloet, Joëls and 
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Holsboer, 2005). The activation of the HPA axis results in widespread 

hormonal, neurochemical, and physiological alterations  (Mcrae, 2003).  

Within the CNS, there is a complex CRH circuitry that serves to coordinate the 

stress response between different brain regions (De Kloet, Joëls and 

Holsboer, 2005). A CRH pathway within striatum has been demonstrated to 

have a profound role in altering neuronal activity within this brain region, and 

associated behaviours which may be deleterious for health (Lemos et al., 

2012). However, the effect of stress on Kv expression in the striatum, or 

anywhere in the brain for that matter, is poorly explored. Such changes could 

represent novel therapeutic targets for such conditions. Therefore, for the first 

results chapter, the first high resolution native expression pattern of Kv would 

be characterised within the striatum and investigated for changes following 

exposure to stress.  

An animal model of early life stress (ELS) in mice would be used because ELS 

has been shown to impart the most severe negative consequences in 

individuals due to the underdevelopment of the body’s stress system at this 

time (Rice et al., 2008)(Gunn et al., 2013). Experimental studies have shown 

that ELS have an effect on animals later in life resulting in elevated level of 

inflammation (Danese and J Lewis, 2017) and decreased indices of approach 

motivation and responsiveness to reward. Since the striatum is important for 

the reward system, I believe it would be instructive to characterise the changes 

in brain neurochemistry in the striatum following exposure to ELS. 
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Parkinson’s disease (PD) 

Clinical presentations of PD 

PD is a progressive, neurodegenerative disorder characterized by severe 

motor symptoms, including static tremor, postural imbalance, bradykinesia 

and muscle rigidity. It is a disease classified as protein-misfolding disorder 

(Zeng et al., 2018). The onset of PD is considered to commence at least 20 

years prior to detectable motor abnormalities, when a variety of non-motor 

symptoms can be observed. This period is referred to as the prodromal phase 

where patients experience a range of non-motor symptoms including 

constipation, olfactory dysfunction (hyposmia), sleep disturbance, obesity and 

depression (Hawkes, Del Tredici and Braak, 2010). This phase of PD is 

followed by degenerative cell loss, alteration of the expression levels of a 

range of proteins involved in synaptic transmission in the prefrontal and 

cingulate cortex, and substantia nigra (Dijkstra et al., 2015).  

 

Mechanisms of neuronal cell death in PD 

The deaths of dopaminergic neurons mainly occur in the SNc, in which the 

neurotransmitter dopamine is normally synthesized and pumped into 

movement-regulating brain regions. Though up to 70% of dopaminergic 

neurons in SNc die during the development of PD, symptoms are not noticed 

immediately because the striatum downstream can compensate. However, the 

continuous death of neurons in the striatum continues resulting in 

development of PD symptoms. Dopamine metabolism, oxidative stress and 

mitochondrial dysfunction, endoplasmic reticulum stress, impairment of 

protein degradation systems, neuroinflammation and mutations of the genes 
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α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1 have been 

shown to be involved in the loss of dopaminergic neurons in SNc (Zeng et al., 

2018). 

 
Figure 1.13. Midbrain dopaminergic neurons are specifically vulnerable in Parkinson’s 
disease. (A) The predominant symptoms of Parkinson’s disease (PD) are caused by loss of 
dopaminergic neurons in the substantia nigra. According to the dying-back hypothesis, the 
degeneration of dopaminergic neurons is preceded by dysfunction and in turn degeneration 
of the nigrostriatal pathway, which innervates the caudate nucleus and the putamen that 
together form the striatum. (B) Compared to healthy controls (left), nigrostriatal degeneration 
results in the depletion and ultimate loss of the neurotransmitter dopamine on synaptic 
terminals of striatal neurons (right). (C) The resulting motor symptoms, among others, are 
usually diagnosed when approximately 30–60% of striatal dopaminergic neurons are already 
lost. However, PD patients can experience non-motors symptoms 20 years before the onset 
of motor abnormalities in the so-called prodromal phase; these include olfactory dysfunction, 
sleep disturbances and depression (Jessika C Bridi and Hirth, 2018). 
 
Pathology 
 
In 1817, an English physician, Dr. James Parkinson, firstly described shaking 

palsy. The pattern was eventually called “PD” by Charcot and Vulpian in 1862. 

Intraneuronal proteinaceous inclusions called Lewy bodies (LBs) and Lewy 

neurites (LNs) plays a main role in PD and are predominantly formed of 

misfolded and aggregated forms of the presynaptic protein, alpha-synuclein 

(α-syn), which can result to loss of dopaminergic neurons in the substantia 

nigra (Osterhaus et al., 1997). The reduction of striatal dopamine triggers a 

range of motor symptoms including bradykinesia, uncontrollable tremor at rest, 

postural impairment, and rigidity which together characterise PD as a 
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movement disorder. Recent studies have shown the correlation of genetic 

mutation of PD in genes such as Parkin, DJ-1, UCHL-1, LRRK2, PINK1 

(PTEN-induced kinase1), NURR1, VPS35 (vacuolar protein sorting 35), and 

HtrA2 (Truban et al., 2017). However, among the identified PD-related genes, 

SNCA encoding the presynaptic protein α-syn remains the most underlying 

factor of PD (Huang, Chan and Halliday, 2007). α-syn is the main component 

of LB which has been shown to have a central pathogenic role in both familial 

and sporadic PD (Satake et al., 2009). 

 
Figure 1.14. Main molecular pathways related to PD pathogenesis. Abbreviations: UPS, 
ubiquitin-proteasome system; LB, Lewy body; TGN, trans-Golgi network; SV, synaptic vesicle; 
ER, endoplasmic reticulum; UPSCHRNA7, neuronal nicotinic acetylcholine receptor subunit 
α-7 (Jamebozorgi et al., 2018). 
 
Alpha-synuclein  

α-syn is a small soluble cytoplasmic protein of 140 amino acid that comprises 

an amphipathic region, non-amyloid- β component (NAC) domain and an 

acidic tail (Jessika C Bridi and Hirth, 2018). α-synuclein together with β-

synuclein and ɣ-synuclein belong to the synuclein protein family (Maroteaux, 
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Campanelli and Scheller, 1988) (Fig 1.15). All three are highly expressed in 

the human brain. However, α-syn is the only protein of the synuclein family to 

be found in LB and to be implicated in PD pathogenesis (Goedert, Jakes and 

Spillantini, 2017). The biological role of α-syn is not fully understood. However, 

there is strong evidence that α-syn is involved in regulating and maintaining 

dopamine homeostasis within the cytoplasm (Perez et al., 2002). Also, α-syn 

has been shown to function primarily as a protein within axon terminals to 

regulate the release of neurotransmitters (Jessika C. Bridi and Hirth, 2018). 

 
Figure 1.15. The human synuclein family. The different synucleins are represented as a bar. 
Amino acid positions are indicated at the bottom. The N-terminal amphipathic region, the 
hydrophobic NAC region, and the acidic tail are separated by vertical dashed lines and are 
differently hatched. The α-112 splice variant of α-synuclein (lacking 28 amino acids within the 
acidic tail) as well as β- and ɣ-synuclein are shown. The NAC region of β-synuclein lacks 11 
central amino acids (residues 73–83). The degree of amino acid identity compared to α-
synuclein, according to cross-species consensus sequences, is given as a percentage below 
each domain (Brice, 2000). 
 
α-syn aggregation 

The aggregation of α-syn into small oligomers and protofibrils that elongate 

into mature fibrils is believed to occur via a nucleation dependent pathway 

(Wood et al., 1999). This involves an initial conformational change of α-syn 

monomers into a partially folded conformation that undergoes a series of 

unfavourable self-associations to form a highly unstable nucleus during a lag 
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phase. The formation of the nucleus is followed by a more favourable growth 

phase (elongation) where the nucleus rapidly grows into fibrils by the addition 

of monomers (Harper and Lansbury, 1997). 

 
Figure 1.16. α-synuclein aggregation and neurodegeneration (Kaur, Mehan and Singh, 2018). 
 

Changes in brain chemistry 

PD affects brain chemistry causing changes in ion channels and 

neurotransmitters. Tyrosine hydroxylase (TH), responsible for producing 

dopamine through conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine 

(L-DOPA), activity was found to be reduced in mouse models overexpressing 

α-syn (Jessika C Bridi and Hirth, 2018). Thus α-syn is a negative modulator of 

dopamine synthesis by interplay with the rate-limiting enzyme TH. Studies also 

show α-syn to impair transport and uptake of dopamine by altering the activity 

of the vesicular monoamine transporter 2 (VMAT2) and the dopamine 

transporter (DAT), respectively (Lotharius and Brundin, 2002). This is thought 

to be vital for dopaminergic neuron susceptibility observed in PD. Also, α-syn 

disruption of VMAT2 and DAT activity and their function in regulating 

dopamine levels in the synaptic terminal have been shown to fuel the formation 
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of soluble α-syn oligomers that are considered to be toxic species (Jessika C 

Bridi and Hirth, 2018).  

 

Alzheimer’s disease (AD) 

Clinical presentations of AD 

AD is a form of dementia mainly characterized by cognitive dysfunction, 

memory loss, and neuronal death (Castellani, Rolston and Smith, 2011). The 

focal hallmark of AD includes amyloid beta (Aβ) accumulation, tau hyper 

phosphorylation and mutations in the catalytic domain of γ secretase (Zhao 

and Zhao, 2013). Studies in transgenic mice have shown that Aβ produced at 

the onset of AD disrupts synaptic function and contributes to cognitive 

impairment early in the disease process (Hsiao et al., 1996). Clinical 

symptoms of AD include mild to severe memory loss, problems with cognition 

and behaviour, and gradual losses in the activities of daily living (Castellani, 

Rolston and Smith, 2011). 

 

Pathology 

The main pathological features in the Alzheimer's brain are progressive 

depositions of amyloid protein plaques between nerve cells and neurofibrillary 

tangles within the nerve cells (Mattson, 1997). Aβ plaques are generated by 

sequential proteolytic cleavage of Aβ precursor protein (APP) by β-site APP-

cleaving enzyme 1 (BACE1) and the γ-secretase complex (Villa et al., 2020). 

Amyloid plaques are made up of small, aggregated peptides called beta 

amyloid (Aβ). They are extracellular accumulations principally composed of 

abnormally folded Aβ with 40 or 42 amino acids (Aβ40 and Aβ42), two by-
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products of APP metabolism. Aβ42 is more abundant than Aβ40 within 

plaques due to its higher rate of fibrillization and insolubility (Lane, Hardy and 

Schott, 2018). The extracellular deposition of Aβ in the brain could trigger a 

cascade of pathological events, including microglia-mediated inflammation, 

mitochondrial dysfunctions, excess in mitochondrial reactive oxygen species 

generation, increased oxidative stress, dysfunction of neurotransmission and 

brain networks, and loss of synapses (Villa et al., 2020). 

 
Figure 1.17. Schematic of major steps in the life of the enzymatically liberated Aβ peptide and 
its action on cells. (1) Physiologically, the Aβ peptide is released from the precursor protein, 
APP, into the medium. (2) Some of the extracellular Aβ could be taken up into the cell. (3) 
Most Aβ remains in the medium in the non-toxic non-aggregated state. (4) However, in 
Alzheimer's disease brain the Aβ released into the extracellular fluid aggregates to form 
neuritic plaques, soluble oligomers and structures that can form ion channels in cells. (5) In 
vitro, when Aβ is added to cell culture media or ionic solutions, the basically random coil and 
helices structures, characteristic of the non-aggregated state of Aβ, are converted into small 
and large aggregates, protofibrils and fibrils enriched of β sheet structures (Arispe, Diaz and 
Simakova, 2007). 

Whilst fibrillar amyloid within dense core plaques was originally thought to be 

critical to the development of AD, it is now thought that soluble Aβ oligomers 

(AβO) may be the most pathological forms. Studies showed that oligomers 

purified from AD brains and applied to neurons in vitro inhibit long-term 
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potentiation, cause synaptic dysfunction, damage dendritic spines and cause 

neuronal death (Forloni et al., 2016). Human oligomers also induce 

hyperphosphorylation of tau at AD-relevant epitopes and cause neuritic 

dystrophy in cultured neurons. Plaques may therefore act as a reservoir from 

which amyloid oligomers diffuse or may even act as a protective mechanism 

sequestering toxic Ab  series until they reach a physiological saturation point 

(Hardy and Selkoe, 2002). Neurofibrillary tangles (NFTs) are primarily 

composed of paired helical filaments consisting of hyperphosphorylated Tau. 

Tau pathology typically begins in the allocortex of the medial temporal lobe 

(entorhinal cortex and hippocampus) before spreading to the associative 

isocortex (Serrano-Pozo et al., 2011).  

In addition to the cardinal features of Alzheimer’s pathology (amyloid plaques 

and NFTs), neuropil threads, dystrophic neurites, associated astrogliosis and 

microglial activation are also seen, and cerebral amyloid angiopathy frequently 

coexists (Serrano-Pozo et al., 2011). The consequences of these pathological 

processes include neurodegeneration with synaptic and neuronal loss (John 

R.Giudicessi, BA.Michael J.Ackerman., 2008). 

Several mechanisms proposed to explain the underlying pathology of AD 

include: 

The cholinergic hypothesis  

The development of the cholinergic hypothesis was due to a significant and 

selective loss of ChAt activity in different parts of AD brain samples (cortex, 

hippocampus and amygdala) complemented with the finding that neurons in 
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the basal part of the brain were selectively degenerated in AD (Whitehouse et 

al., 1981). 

 

Amyloid cascade hypothesis  

The amyloid hypothesis of AD is based on abnormal processing of the APP, 

leading to production of Ab. Secretase enzymes cleave APP and aberrancy of 

this process, specifically mutations in gamma and beta- secretases, can lead 

to the abnormal production of Ab which can then trigger a cascade leading to 

synaptic damage and neuron loss, and ultimately to the pathological hallmarks 

of AD with resulting neurodegeneration (Murphy and Levine, 2010). 

 
Figure 1.18. An overview of the major pathogenic events leading to Alzheimer’s disease as 
proposed by the amyloid hypothesis. The curved blue arrow indicates that Ab oligomers may 
directly cause synaptic and neuritic damage and induce tau hyperphosphorylation, in addition 
to activating damaging inflammatory cascades (Lane, Hardy and Schott, 2018).  
 



 36 

Tau hypothesis  

Tau is a protein expressed in neurons that normally functions in the 

stabilisation of microtubules in the cell cytoskeleton. Hyperphosphorylation 

causes it to accumulate into NFT masses inside nerve cell bodies. These 

tangles then aberrantly interact with cellular proteins, preventing them from 

executing their normal functions (Bloom, 2014). 

 

Changes in brain chemistry 

AD affects brain chemistry causing changes in ion channels. Increased Kv1.4 

and Kv2.1 expression has been observed in the hippocampus of Aβ-injected 

animals (Shah and Aizenman, 2014). Kv1.4 was then reported to play a role in 

AD in which increased Kv1.4 levels was observed in the hippocampus of Aβ-

treated rats (Villa et al., 2020). Kv1.3 and Kv1.5 have also been found to be 

associated with toxic Aβ and have been implicated in AD (Kumar, Kumar, Jha, 

Jha and Rashmi K. Ambasta, 2016).  Some evidences reported that oxidative 

stress occurring during early stages of AD acts as negative modulator of Kv2.1-

dependent K+ currents (Cotella et al., 2012). A dysregulation of the Kv3.1 and 

Kv3.4 channels has been found to be associated with glial and neuronal 

alterations occurring during AD pathogenesis. Increased levels of Kv4.2 

transcript and protein were found in the cerebral cortex after Aβ-injection in 

rats, suggesting that an upregulation of this channel in Aβ-induced cognitive 

impairment may be involved in AD pathogenesis (Villa et al., 2020). A link 

between Aβ deposition and Kv7 channels has also been demonstrated by 

some studies in which a reduced Kv7.2 expression was found in different brain 

areas in response to an impaired neuron activity after the exposure of Aβ 
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peptide injected into the hippocampus of live rats (Durán-González et al., 

2013). Some research has been carried out to link Kv changes to AD 

pathology. However, AD-associated changes in Kv expression are yet to be 

demonstrated in the striatum. 

 

Whilst the attention of many studies has been focussed on neurotransmitter 

changes, less is known about ion channels. More importantly, when ion 

channels have been looked at, it has mainly been in the cortex or 

hippocampus, with very little known about the striatum and definitely not about 

Kv in the striatum. 
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Aims 

The overall aims of my PhD research were to characterise the native 

expression patterns of different Kv sub-families within the mouse striatum and 

how these changes in response to stress or pathology associated with PD and 

AD. 

 

Objectives 

1. Characterise the native expression of Kv within the striatum, at the gene 

and protein levels, and determine the plasticity of such expression 

profiles following exposure to stress, using reverse transcription 

polymerase chain reaction (RT-PCR), immunohistochemistry, 

microscopy and animal models of stress.  (Chapter three). 

2. Determine how PD-associated pathology alters striatal neurochemistry 

and Kv expression, using quantitative reverse transcription polymerase 

chain reaction (qRT-PCR), immunohistochemistry, microscopy and an 

animal model of PD. (Chapter four). 

3. Determine how AD-associated pathology alters striatal neurochemistry 

and Kv expression, using qRT-PCR, immunohistochemistry, 

microscopy and an animal model of AD.  (Chapter five). 
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Chapter Two 

Materials and methods 

 

Animals and animal procedures 

Ethics 

All procedures involving experimental animals were approved by the Animal 

Welfare and Ethical Review Board of the University of Portsmouth. I performed 

this work under the auspices of my supervisor Dr Jerome Swinny's Project 

Licence (PPL 70/8459), and in accordance with the Animals (Scientific 

Procedures) Act 1986 and the European Directive 2010/63/EU on the 

protection of animals used for scientific purposes. 

 

Animal husbandry 

Adult male mice (Mus musculus) were used throughout this project. Animals 

were bred in-house by University of Portsmouth Bioresources Centre, and 

housed in a temperature and humidity-controlled environment under 12-hour 

light-dark cycle, with free access to standard food and water. 

The background wild-type (WT) strain used throughout was C57/BL6J. 

 

Mouse model of Alzheimer’s disease (AD) 

To model AD, a mouse model expressing a chimeric mouse/human amyloid 

precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-

dE9) was exploited. This will be referred to throughout as transgenic (TG). 

These mutations result in the increased expression of amyloid precursor 
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protein and accelerated deposition of Aβ plaques (Borchelt et al., 1997), which 

is a key pathological feature of AD. The development of Aβ plaques is age and 

brain region dependent, with most presenting from 5-7 months of age, mainly 

in the cortex. The characterisation of striatal neurochemistry has not been 

examined, especially at young ages. I therefore used mice aged ~ 5 months 

in order to capture the earliest changes that might occur in this brain region. 

Breeding pairs were obtained from The Jackson Laboratory (strain 

number34829-JAX) and bred on a C57/BL6 background. WT littermates were 

used as controls.  

 

Mouse model of Parkinson’s disease (PD) 

A pathological hallmark of PD is the increased expression of the synaptic 

protein α-syn (Maroteaux, Campanelli and Scheller, 1988) and its aggregation 

into Lewy bodies (Osterhaus et al., 1997). To model such pathology, a 

transgenic mouse line that over-expresses α-syn at disease relevant levels, 

termed OVX was used (Janezic et al., 2013). Studies have shown that the 

phenotype and age-related profile of PD-related motor deficits are closely 

replicated in this model with age-dependent loss of dopamine neurons and 

motor impairments characteristic of PD presenting at ~14 months of age. 

However, changes in striatal neurochemistry have yet to be explored in young 

adulthood. OVX breeding pairs were obtained from collaborators at the Oxford 

Parkinson’s Disease Centre and bred on a C57/Bl6 background with WT used 

as control. 
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Mouse model of chronic psychosocial stress 

Stress can either be acute or chronic. In order to assess the impact of stress 

on striatal Kv, chronic stress would be more ideal since it is persistent and will 

allow for the detection of any changes, at any time point. An animal model of 

early life stress (ELS) was employed because it has been shown to robustly 

and reliably result in a hyper-stress phenotype throughout adulthood. The ELS 

paradigm is based on a model of fragmented maternal care within the first 

week of life (Rice et al., 2008)(Gunn et al., 2013). Briefly, the dam and pups 

are provided with limited nesting and bedding between postnatal days 2-9. 

This results in the dam frequently leaving the nest in search of additional 

nesting material. Whilst this does not alter the amount of time she spends with 

the pups, it does manifest in a fragmented dam-pup relationship which 

impoverishes the quality of maternal care. Controls were raised as normal. 

Such impaired maternal care has been shown to impact a stress hyper-

responsive phenotype in adulthood evidenced by elevated levels of circulating 

cortisone (Rice et al., 2008). All ELS and control animals were used at 5 

months of age. 

 

Experimental procedures 

Immunohistochemistry 

Tissue preparation 

The tissue was perfusion-fixed as follows: anaesthesia was induced with 

isoflurane and maintained with pentobarbitone (1.25 mg/kg of bodyweight, IP). 

The animals were perfused transcardially with 0.9% saline solution for 2 min, 

followed by 10 min fixation with a fixative consisting of 1% paraformaldehyde 
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(PFA) and 15% v/v saturated 1% picric acid in 0.1 M phosphate buffer (PB), 

pH 7.4. The picric acid was included in the fixative to neutralise the pH so as 

to facilitate PFA bond formation with proteins. 1% PFA was used because the 

majority of the targeted epitopes were integral membrane proteins; relevant 

epitopes of such proteins may be masked by formaldehyde cross-linking, 

which is minimised by a less concentrated fixative solution compared to the 

standard 4% paraformaldehyde protocol (Eyre et al., 2012) (Lorincz and 

Nusser, 2013). After the perfusion, the brains were carefully dissected from 

the skull and placed over night at room temperature in the fixative. The 

following day, the brains were rinsed in 0.1M PB, after which 60 µm sections, 

either in the sagittal or coronal planes, depending on the brain region, were 

prepared using a vibrating microtome (VT 1000, Leica, Wetzlar, Germany). 

The sections were thoroughly washed in 0.1M PB to remove any residual 

fixative and then stored in a solution containing 0.1 M PB and 0.05% w/v 

sodium azide until further processing. 

 

Antigen retrieval 

Proteolytic antigen retrieval method originally described by Watanabe et al 

(Watanabe et al., 1998) was used due to experience in the lab. The method is 

as follows: Tissue sections were incubated for 10 minutes at 37°C in 0.1M PB 

in a shaking incubator. The PB was removed and replaced with a solution 

containing 1mg/ml pepsin (Sigma Aldrich, St Louis, MI, USA) dissolved in 0.2M 

HCL for 10 minutes. After which, sections were washed three times for 10 

minutes in 50mM TRIS-buffered saline solution containing 0.3 % w / v Triton-

X-100 (TBS-Tx).  
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Blocking of non-specific secondary antibody binding  

Secondary antibodies may bind non-specifically to native immunoglobulin 

within the specimen, resulting in poor signal-to-noise, and labelling that does 

not represent target antigen binding. To mitigate this, tissue sections were 

preincubated in a solution containing 20% normal horse serum (Vector 

Laboratories, Burlingame, CA, USA) in TBS-Tx for two hours at room 

temperature on a horizontal shaker. 

 

Incubation of primary and secondary antibodies 

After incubation in the blocking solution, tissue sections were incubated with a 

cocktail of primary antibodies diluted in TBS-Tx for 4°C overnight on a 

horizontal shaker. Details of the primary antibodies used are given in Table 

2.1. The following day, tissue sections were washed in TBS-Tx three times for 

10 minutes to remove unbound antibodies. Tissue sections were then 

incubated in a cocktail containing appropriate secondary antibodies, targeted 

at the fragment crystallizable (Fc) region of the primary antibodies used, for 2 

hours at room temperature on a horizontal shaker. Secondary antibodies were 

all raised in donkey, and conjugated to either Alexa Fluor™488, 

indocarbocyanine (Cy3) or DyLight549™, or DyLight649™ (Jackson 

Immunoresearch, West Grove, PA, USA), for 2 hours. Sections were then 

washed three times for 10 minutes in TBS-Tx to remove unbound antibodies, 

and mounted on glass microscope slides, air dried, and sealed with glass 

coverslips using VectashieldTM antifade mounting medium (Vector 

Laboratories). 
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Antibody specificity 

All antibodies used in this thesis have had their specificity fully characterised 

prior to the collection of data. This was achieved through confirmation of 

specific labelling cross-referenced with reports in the literature, or, in the case 

of certain antibodies, the lack of specific signal appropriate for gene-deleted 

mice. Details for specificity testing are referenced in Table 2.1. Method 

specificity was tested for as follows: The same immunohistochemistry protocol 

was run under identical conditions, but primary antibodies were omitted in the 

reaction sequence; this was used to confirm the specificity of secondary 

antibodies. In the case of double and triple immunolabelling experiments, 

confirmation of the lack of cross-reactivity by secondary antibodies was tested 

by reacting a single primary antibody with the full complement of secondary 

antibodies. 

 

Table 2.1. Details of the primary antibodies used in this study. Rb: Rabbit; Rt: 

Rat; Ch: Chicken; Go: Goat; GP; Guinea Pig; Ms: Mouse; Sh: Sheep. 

Primary 

Antibody 

Species Dilution 

Factor 

Supplier 

(Product code) 

Specificity/Reference 

Alpha-

synuclein 

Ms 1:1000 BIOLEGEND 

(SIG-39720-20) 

(Larson et al., 2012) 

 

Amyloid beta Ms 1:2000 The GENETICS 

company 

(02-250204) 

Labelling identical to 

previously published 

reports 

Amyloid beta 

oligomer- NU1 

Ms 1:10000 A generous donation 

from our collaborator 

William Klein, 

(Lambert et al., 2007) 
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Northwestern 

University, USA 

Amyloid beta 

oligomer- NU2 

Ms 1:10000 A generous donation 

from our collaborator 

William Klein, 

Northwestern 

University, USA 

(Lambert et al., 2007) 

 

AnkyrinG Go 1:250 Santa Cruz 

Biotechnology 

Sc-31778 (10806) 

Labelling identical to 

previously published 

reports 

Calretinin Ch 1:1000 Synaptic systems 

(214106) 

Labelling identical to 

previously published 

reports 

ChAt Go 1:250 MILLIPORE 

AB1441 (2010060) 

(Härtig et al., 2007) 

 

DARPP-32 Rb 1:4000 Frontier Institute 

(DARPP-Rb-Af400) 

(Yang, You and Levison, 

2008) 

 

DARPP-32 Go 1:250 Santa Cruz 

Biotechnology 

Sc-8483 (H2409) 

(Yang, You and Levison, 

2008) 

 

IBA1 Rb 1:4000 Wako 

PTP5154 (019-

19741) 

(Yang, You and Levison, 

2008) 

 

Kv1.1 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K36/15 75-105 (440- 

5HK- 57c) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 
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Kv1.2 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K14/16 75-008 (443- 

1KS- 37) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv1.3 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

L23/27 75-009 (413- 

5RR- 07) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv1.4 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K13/31 75-010 (440- 

5HK- 05) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv1.5 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K7/45 75-011 (413- 

7RR- 33) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv1.6 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K19/36 75-012 (413- 

9RR- 31) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 
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Kv2.1 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K89/34 75-014 (449- 

3AK- 78E) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv2.2 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K37/89 75-015 (443- 

1KS- 100) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv3.1 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

N16b/8 75-041 (443. 

2KS. 14) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv3.4 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

N72/16 75-112 (440- 

5HK- 77) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Kv4.2 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K57/1 75-016 (428- 

9JH- 88) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 
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Kv4.3 Ms 1:500 UC DAVIS/NIH 

NeuroMab Facility 

Antibodies 

Incorporated 

K75/41 75-017 (444- 

1LC- 26) 

Specificity tested using 

knockout mice, UC 

DAVIS/NIH NeuroMab 

Facility 

Map-2 Ch 1:500 Aves labs, Inc. 

(MAP7777983) 

Labelling identical to 

previously published 

reports 

NG2 Rb 1:500 MILLIPORE 

AB1529 (2290214) 

(Jiang et al., 2013) 

 

NOS Sh 1:1000 MILLIPORE 

AB1529 (2290214) 

(Cauli et al., 2004) 

 

Parvalbumin Go 1:500 Swant 

(PVG 214) 

(Vereczki et al., 2016) 

 

Parvalbumin Rb 1:500 Swant 

 

(Härtig et al., 2007) 

 

Parvalbumin Ch 1:500 Synaptic systems 

(195006) 

Labelling identical to 

previously published 

reports 

Picolo Rb 1:500 Abcam 

Ab20664-100 

(352575) 

Labelling identical to 

previously published 

reports 

Somatostatin Rt 1:1000 MILLIPORE 

(NMM1638322) 

(Dimitrov and Usdin, 

2010) 

 

Spinophyllin Rb 1:10000 MILLIPORE 

AB5669 (2061438) 

(Aigelsreiter et al., 2013) 

 

Substance P Gp 1:500 Abcam (Myöhänen et al., 2008) 
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Ab10353 

(GR3195542-9) 

TH Ch 1:1000 Aves labs, Inc. 

(TYH1205) 

(Muzerelle et al., 2016) 

 

VAChT Go 1:500 Abcam 

Ab43875-50 

(634637) 

Labelling identical to 

previously published 

reports 

VGAT Go 1:3000 Frontier Institute 

(VGAT-Go-Af620) 

(Miura et al., 2006) 

 

VGAT GP 1:2000 Synaptic systems 

(131004) 

(Schock et al., 2012) 

 

VGluT1 Go 1:4000 Frontier Institute 

(VgluT1-Gt-Af310) 

(Miyazaki et al., 2003) 

VGluT1 GP 1:3000 Frontier Institute 

(VgluT1-GP-Af570) 

(Miyazaki et al., 2003) 

VGluT2 GP 1:3000 Frontier Institute 

(VgluT2-GP-Af810) 

(Miyazaki et al., 2003) 

 

Microscopy 

Tissue samples were examined with a confocal laser-scanning microscope 

(LSM 880 with AiryScan or LSM 710; Zeiss, Oberkochen, Germany) using 

either a Plan Apochromat 20x (NA 0.8) (pixel size 0.42 um) objective, Plan 

Apochromat 40x DIC oil objective (NA 1.3) (pixel size 0.29 um), Plan 

Apochromat 63x DIC oil objective (NA 1.4) (pixel size 0.13 um) objective or a 

Plan Apochromat 100x DIC oil objective (NA 1.46) (pixel size 0.08 um). 

Detection was with either PMT or AiryScan detectors. All images presented 

represent a single optical section. Images were acquired using sequential 

acquisition of the different channels to avoid crosstalk between fluorophores. 



 50 

Pinholes were adjusted to 1.0 Airy unit for PMT scans, or optimal settings in 

the case of AiryScan capture. In all cases where multiple images were 

captured from the same immunohistochemical reaction, laser power, pinhole, 

and exposure settings were captured once on tissue from a representative 

control section and maintained throughout imaging. Images were processed 

with the software Zen (Zeiss) and exported into bitmap images for processing 

in Adobe Photoshop (Adobe Systems, San Jose, Ca, USA). Only brightness 

and contrast were adjusted for the whole frame, and no part of any frame was 

enhanced or modified in any way. 

 

Quantification analysis of fluorescence intensity 

To quantify the fluorescence intensity, ImageJ Particle Analysis tool (Open 

source, https://fiji.sc/) was employed. The choice to use this method was 

based on previous experience within the lab. The procedure is as follows: A 

representative micrograph acquired from confocal microscope was selected 

and analysed. Fluorescence intensity from ten images representing ten 

separate fields of view ranging from the ventral to dorsal striatum were 

measured and averaged to create a fluorescence intensity value for one 

animal. 

 

Statistical analysis of immunohistochemical quantification 

Statistical analysis was performed using GraphPad Prism (Graphpad 

Software, La Jolla, CA, USA). Unpaired Student's t-test was performed, and a 

P value of < 0.05 was considered statistically significant. N values represent 
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the number of animals used. A representative graph was acquired to illustrate 

the mean intensity. 

 

Gene expression analyses 

Sample preparation for gene expression analyses 

Animals were killed by cervical dislocation and tissue homogenates prepared. 

In order to prevent degradation of nucleic acid in samples, fresh tissue was 

dissected and immediately submerged in liquid nitrogen. Total RNA was 

isolated from the samples using a RNeasy Mini kit (Qiagen, Venlo, 

Netherlands) according to the manufacturer's protocol. Briefly, tissue samples 

were submerged in a lysis buffer and homogenised. Samples were then 

centrifuged, and supernatants extracted. The supernatants were then mixed 

with equal volumes of 70% ethanol to prepare ribonucleic acid (RNA) binding 

to centrifugation columns. Samples were then added to centrifugation columns 

and washed by centrifugation with two wash buffers. Finally, RNA was eluted 

by addition of nuclease-free water and centrifuged. Samples were stored at -

80°C. The quality and quantity of the extracted RNA in each tissue was 

examined with spectrophotometry (Thermo Scientific™ NanoDrop™) (figure 

2.1), and reverse-transcribed to provide cDNA templates for polymerase chain 

reaction (PCR) and quantitative PCR (qPCR) reactions.  
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Figure 2.1. Example of absorbance spectrum for RNA samples. 
 

Polymerase chain reaction 

Reverse-transcription was achieved by incubating RNA isolates for 2 hours at 

37°C in a cocktail containing: 200ng RNA 10% reverse transcription buffer 

(Biolabs), 5% of Oligo (dT) primers (ThermoFisher Scientific), 5% dNTPS 

(ThermoFisher Scientific), 2.5% M -MulV reverse transcriptase (Applied 

Biosystems), and 2.5% Ribolock RNase inhibitor (ThermoFisher Scientific) 

made up to 20µl with nuclease-free water. 

PCR was performed in a cocktail containing: Taqman-specific master mix 

(Roche, Burgess Hill, UK); forward and reverse primers (Table 2.2) and 

performed using a LightCycler® 96 system (Roche). The cycling conditions 

were: 95°C for 300s, followed by 40 Cycles of 95°C for 15s, 60°C for 30s, 72°C 

for 30s and 60°C for 600s. 

Gel electrophoresis was carried out as follows. A gel cast was set comprising 

of 4g agarose in 200mL of 0.02% TAE buffer and 4µl of SYBr safe DNA gel 
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stain. 20 tooth combs were inserted to define loading wells. The gel and 

apparatus were then submerged in TAE buffer. Sample cocktails and a protein 

ladder of known molecular weights (PageRulerTM prestained protein ladder, 

Thermo Fisher) were transferred to wells and the gel was electrophoresed at 

120V until the loading dye reached the end of the gel. The electrophoresed 

gel was then analysed on a gel documentation system. 

 

Table 2.2. primer sequences used for PCR in this study (Li et al., 2015). 

Gene Accession 

numbers 

Forward Primer 

Sequence 

Reverse Primer 

Sequence 

Kv1.1 NM_010595.3 AGGGCTCCCGTA

GTGTTC 

TTTGCTGCTCCTTG

GCTC 

Kv1.2 NM_008417.5 CTCCTCAAGTCGT

GGTGC 

GGTCTGCCTCTGG

GTCAT 

Kv1.3 NM_008418.2 GTGTCAGTGCTG

GTCATTCTC 

CTGCCCATTACCTT

GTCGT 

Kv1.4 NM_021275.4 TTCGGAGAACCTT

GACTT 

GACGCAGTTCCAG

CAGAG 

Kv1.5 NM_145983.2 GTCACCCATCAAA

GTCCG 

CACTCGTCAGCCA

TAAGAATA 

Kv1.6 NM_013568.6 GTGGATGATGTAA

CCGTGTC 

CTCCTTCTCCTCCT

CTGG 

Kv2.1 NM_008420.4 AGGAGCAGATGA

ACGAGG 

AGTGACAGGGCAA

TGGTG 
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Kv2.2 NM_001098568.2 GCGACTGTAACAC

TCACG 

AGCAATGGTGGAA

AGAAC 

Kv3.1 NM_001112739.2 TCGCTCACATCCT

GAACTAT 

CGTTCTCGATTTCG

GTCT 

Kv3.2 NM_001025581.1 TTGATATTCGCTA

CGATG 

TTCTGGAGGTGAT

AATGG 

Kv3.3 NM_001290682.1 GAGGCACTGGAC

TCTTTCG 

CACCGTCTTGTTG

CTGATGT 

Kv3.4 NM_145922.2 GAATCGCCCATTT

ACTGC 

GCCTTCTTGTTTCT

GTCCC 

Kv4.2 NM_019697.3 TCTCAAGGGCTG

CGTATA 

TTCGTTTGTCTGCT

CGTT 

Kv4.3 NM_021275.4 CAGGAAACGGTA

GGAATC 

GGAGTTCAGGGAT

GAT 

Kv5.1 NM_201531.3 TGCCTCCTCTTCA

CATTTC 

CTGGGCTTGGTCT

TCTATT 

Kv6.2 NM_001190373 TGGAAACAGCCG

AGAACAA 

GCTGCGGTCGAAG

AAGAA 

Kv7.1  NM_008434.2 ACTTCACCGTCTT

CCTCATT 

TGGCGAACACTTG

TCCTT 

Kv7.2  NM_010611.2 CTCAAGGTGGGC

TTCGTG 

GCAATGGAGGCAA

TCAGC 

Kv7.3  NM_152923.2 CTGGGCTCGGCT

ATCTGT 

GTGCTTCTGACGG

TGCTG 
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Kv7.4 NM_001081142.1 TTGTCGCTACAGA

GGATGGC 

CAGGAAAGAGGCA

AAGATGAG 

 

Quantitative polymerase chain reaction 

Reverse-transcription was achieved by incubating RNA isolates for 2 hours at 

37°C in a cocktail containing: 200ng RNA 10% reverse transcription buffer 

(Biolabs), 5% of Oligo (dT) primers (ThermoFisher Scientific), 5% dNTPS 

(ThermoFisher Scientific), 2.5% M -MulV reverse transcriptase (Applied 

Biosystems), 2.5% Ribolock RNase inhibitor (ThermoFisher Scientific) made 

up to 20µl with nuclease-free water, and standard curve containing serial 

dilutions of RNA concentration. 

qRT-PCR amplification was performed in 96-well plates in a cocktail containing 

a Taqman-specific master mix (Roche, Burgess Hill, UK), and Taqman probes 

(Table 2.3) and performed using a LightCycler® 96 system (Roche). The 

cycling conditions were: 95°C for 600s, followed by 40 Cycles of 95°C for 15s 

and 60°C for 60s. Samples were loaded containing probes for the gene of 

interest and Gapdh, which was used as a reference gene for relative mRNA 

quantification calculations. A standard curve of serial dilutions of known 

concentration were prepared alongside every sample set and loaded onto the 

96-well microplate. All samples were loaded in 10μL duplicates to reduce 

technical variability. Standard curves were graphically analysed for reaction 

efficiency of each primer as well as between gene of interest (GOI) and 

reference gene, and for pipetting consistency. Assays in which the reaction 

efficiency was within 90-120%, and similar between GOI and reference genes 

were analysed. Linear regression of the line produced by a graph of Ct against 
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RNA concentration was performed and the relative concentration calculated 

using the following formulae:  

α = e^((Ct-m)/c) 

α(GOI)/α(Gapdh) = X 

Where α is the product of the linear regression, e is Euler's constant 

(2.718281828), (Ct) is the cycle number at which the qRT-PCR machine 

detects fluorescence over a pre-defined threshold, m is the gradient of the 

standard curve line, c is the intercept, and x is the level of mRNA relative to 

Gapdh levels in the sample. This technique was chosen as it allowed extra 

quality control steps to be performed and reduce any inter- experiment 

variability. qRT-PCR assays were duplicated using samples from separate 

cohorts of animals and numerical data pooled for statistical analyses. 

 

Table 2.3. TaqMan probes used for qRT-PCR gene expression assays in this 

study 

Mouse Gene Encoding protein Reference (Life 

Technologies) 

ChAt ChAt Mm01221882-m1 

DBH DBH Mm00460472-m1 

Gapdh GAPDH Mm99999915_g1 

Kcna2 Kv1.2 Mm00434584-s1 

Kcnb1 Kv2.1 Mm00492791-m1 

Kcnd2 Kv4.2 Mm01161732-m1 

Kcnd3 Kv4.3 Mm01302126-m1 

PV PV Mm00443100-m1 
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Slc6a4 SERT Mm00447557-m1 

TH TH Mm00447557-m1 

TPH1 TPH1 Mm01202614-m1 

TPH2 TPH2 Mm00557715-m1 
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Chapter Three 

Characterisation of the native expression of Kv in the 

striatum and their plasticity in response to stress 

 

Summary and importance 

Background 

Functionally and molecularly diverse classes of Kv provide unique 

contributions to the regulation of neuronal excitability, and therefore overall 

brain function. A considerable body of evidence indicates that the expression 

of different Kv within the brain varies according to different sub-cellular 

domains such as cell bodies, axons dendrites, cell types such as excitatory 

principal and inhibitory neurons, and brain regions such as the hippocampus 

and cerebellum. This contributes to the diversity of neuronal activity patterns 

across different populations of neurons, different brain regions, and the 

resultant behaviours that arise from such complex activity. Characterising 

such native expression and functional patterns for different classes of Kv has 

been instrumental in understanding diseases associated with such areas. 

However, almost all focus on Kv brain expression and function has been 

restricted to cortical regions. As a result, we currently know significantly less 

about classes of Kv expressed in sub-cortical brain regions such as the 

striatum. This is a serious impediment to identifying their potential contribution 

to the myriad of brain disorders associated with the striatum. Important 

amongst these are stress-induced psychiatric disorders such as addiction and 

apathy, and motor deficits related to neurodegenerative diseases. Therefore, 
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the aim of this chapter is to provide the first comprehensive characterisation 

of the cell type and domain specific expression patterns of individual Kv 

subtypes within the mouse striatum and determine whether a form of stress, 

that has been shown to alter striatum neuronal excitability, alters such 

expression patterns.  

 

Methods 

WT mice aged 8-10 weeks were used to investigate the native expression of 

Kv within the striatum. RT-PCR was used to determine the expression of Kv 

subtypes at the mRNA level. Immunohistochemistry with confocal microscopy 

was used to provide a high-resolution localisation of the protein expression 

patterns of Kv within the different classes of cells in the striatum, alongside 

their inputs from different brain regions. A model of early life stress (ELS), 

which has been shown to induce striatal neuronal activity, was used to assess 

stress-induced plasticity of Kv expression.   

 

Results 

RT-PCR revealed mRNA expression for 1, 2, 3, 4, 5, 6 and 7 families of Kv 

families within the striatum, which closely correlated with expression patterns 

in the brain region used as a positive control, namely the hippocampus. 

Immunohistochemistry revealed that the protein expression of specific Kv sub-

classes was distinct to other brain regions. Indeed, whilst Kv1.2 has been 

shown to be enriched in the axon initial segment of hippocampal neurons, it 

was located in axonal terminals in the striatum. Furthermore, whilst Kv1.6 has 

been shown to be located in the axon initial segment of hippocampal neurons, 
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it was located in microglia of the striatum, which are the brain’s resident 

immune cells. Different classes of Kv were selectively expressed by specific 

striatal cell types. Indeed, while Kv2.1 and 4.2 were exclusively expressed by 

principal projection cells, or medium spiny neurons (MSNs), Kv3.1 and 4.3 

were exclusively expressed by parvalbumin-expressing local inhibitory 

interneurons. An added level of complexity was that individual cell types 

targeted different Kv to different sub-cellular domains. For example, MSNs 

expressed Kv2.1 exclusively on their proximal dendrites, and Kv4.2 on their 

distal dendrites. Finally, stress in early life resulted in significant decrease in 

the expression levels of Kv2.1, Kv4.2 as well as immune cells.  

 

Importance 

The data demonstrate that striatal neurons exhibit Kv expression patterns that 

are distinct from other brain regions. This might contribute to the patterns of 

neuronal activity that distinguish striatal-related brain functions and 

behaviours. The implication is that potential therapeutics for striatal-related 

disorders, that target various Kv, are likely to have contrasting functional roles, 

across different brain regions. Furthermore, life experience, in the form of ELS, 

had a significant effect on the expression levels of specific Kv. Since Kv 

expression directly determine neuronal activity, these data reveal a potentially 

novel mechanism, and therapeutic strategy, for stress-related disorders 

associated with the striatum.  
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Results 

3.1. Characterisation of cell types, sub-cellular compartments and 

neurochemically diverse input to the mouse striatum 

In other brain regions, different Kv have been shown to be expressed 

divergently across different types of cells and sub-cellular compartments. In 

order to interpret the immunoreactivity patterns for individual Kv within the 

striatum and assess whether they mirror those in other regions or are unique 

to the striatum, it was essential to first fully immunohistochemically 

characterise the different cell types and axonal input to the striatum.  

The principal cells within the striatum are known as medium spiny neurons 

(MSN) and provide GABAergic projections to a range of other brain regions 

(Kemp, J.M., and Powell, 1971). They are distinctive within the striatum by 

their expression of Dopamine- and cyclic-AMP-regulated phosphoprotein of 

molecular weight 32 kDa (DARPP-32). Throughout this chapter, DARPP-32 

immunoreactivity was therefore used to identify MSNs and the striatum overall 

(Fig 3.1 A). There are also 2 classes of MSNs, distinguished by their 

expression of either dopamine 1 receptor (Fig 3.1 B1) or dopamine 2 receptor 

(Fig 3.1 B2). 
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Figure 3.1. Demonstration of principal cells in the striatum. 
(A) is a low power overview of the mouse brain showing the location of the striatum, identified 
with immunoreactivity for DARPP-32, a protein expressed exclusively in cells that express 
dopamine receptors. All principal cells in the striatum express DARPP-32, thereby 
demonstrating the distribution of the main cells within this brain region. 
(B1) shows immunoreactivity for the dopamine 1 receptor (D1R) and how it is expressed by a 
select population of DARPP-32 immunopositive (+) whilst others are immunonegative (-). (B2) 
shows immunoreactivity for the dopamine 2 receptor (D2R) and how it is expressed by a select 
population of DARPP-32 immunopositive (+) whilst others are immunonegative (-). (B3) is an 
overlay of both (B1 and B2) demonstrating that all DARPP-32 cells express either D1R or 
D2R. Note that some cells are immunonegative for DARPP-32 (arrows) and most likely 
represent interneurons. 
Scale bars: (A) 2 mm; (B1-3) 20 µm. 
 
A range of marker proteins were used to identify the sub-cellular 

compartments of MSNs. Microtubule associated protein (MAP-2) is a 

cytoskeletal protein enriched in dendrites (Dehmelt and Halpain, 2005) and 
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was used to delineate MSNs dendritic branches (Fig 3.2 A). Spinophilin is an 

actin binding protein enriched in dendritic spines (Feng et al., 2000). It was 

used to identify the sub-compartment of dendrites that are postsynaptic 

compartments of glutamatergic synaptic axons (Fig 3.2 B). AnkyrinG is a 

protein that links integral membrane proteins, such as ion channels, to the 

actin cytoskeleton (Michaely et al., 2002). In neurons, it is enriched in the axon 

initial segment (Yang et al., 2019), which is the first segment of the axon and 

the site of action potential generation (Fig 3.2 C). Piccolo is a protein that is 

part of the presynaptic cytoskeletal matrix (Fenster et al., 2000) and is thus a 

marker of all presynaptic axon terminals (Fig 3.2 D). 
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Fig 3.2. Immunohistochemical demonstration of the sub-cellular compartment of MSN in the 
striatum. 
(A1) shows the principal cell in the striatum, MSN, identified with immunoreactivity for DARPP-
32. (A2) shows, in the same field of view, immunoreactivity for dendrites, identified by Map-2, 
a protein enriched in dendrites. (A3) is an enlarged overlay of both (A1 and A2) demonstrating 
the dendrites of MSNs. As with (A1), (B1) shows the MSN. (B2) shows, in the same field of 
view, immunoreactivity for dendritic spines, identified by spinophilin, a protein enriched in 
dendritic spines. (B3) is an enlarged overlay of both (B1 and B2) demonstrating the dendritic 
spines of MSNs. As with (A1), (C1) shows the MSN. (C2) shows, in the same field of view, 
immunoreactivity for axon initial segment, identified by ankyrinG, a protein enriched in the 
axon initial segment. (C3) is an enlarged overlay of both (C1 and C2) demonstrating the axon 
initial segment of MSNs. As with (A1), (D1) shows the MSN. (D2) shows, in the same field of 
view, immunoreactivity for presynaptic axon terminals, identified by picolo, a protein that is 
part of the presynaptic cytoskeletal matrix. (D3) is an enlarged overlay of both (D1 and D2) 
demonstrating the presence of presynaptic axon terminals on MSNs. 
Scale bars: (A1-2, B1-2; D1-2) 10 µm; (A3, B3, D3) 5 µm; (C1-2) 30 µm; (C3) 5 µm. 
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In other brain regions, some classes of Kv have been shown to be expressed 

in inhibitory interneurons. In order to interpret any such potential labelling 

patterns in the striatum, experimental techniques were optimised in order to 

confirm that the expression of various classes of interneurons known to be 

located in the striatum can be replicated. Under the experimental conditions, 

It was possible to localise all major classes of striatal interneurons (Muñoz-

Manchado et al., 2018) including cholinergic neurons, using immunoreactivity 

for the acetylcholine synthesising enzyme choline acetyl transferase (Fig 3.3 

A), GABAergic interneurons distinguished by their expression of the calcium 

binding proteins calretinin (Fig 3.3 B) and parvalbumin (Fig 3.3 C), the 

neuropeptide somatostatin (Fig 3.3 D) and interneurons utilising neuronal nitric 

oxide as a messenger, identified by the NO synthesising enzyme nitric oxide 

synthase (NOS) (Fig 3.3 E). 
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Figure 3.3. Immunohistochemical demonstration of interneurons in the striatum.  
(A1-2) shows immunoreactivity for DARPP-32 (A1) and cholinergic interneurons (A2) in the 
same field of view. (A3) is an enlarged overlay of both (A1 and A2) demonstrating specific 
labelling of the cholinergic interneuron, identified with choline acetyl transferase (ChAt), an 
enzyme that synthesise acetylcholine which is exclusively expressed on cholinergic 
interneurons. (B1-2) shows immunoreactivity for DARPP-32 (B1) and GABAergic interneurons 
that expresses calretinin (B2) in the same field of view. (B3) is an enlarged overlay of both (B1 
and B2) demonstrating specific labelling of the GABAergic interneuron expressing calretinin. 
As with (B1-3), (C1-3) also demonstrates specific labelling of GABAergic interneuron, 
however, expressing parvalbumin. (D1-2) shows immunoreactivity for DARPP-32 (D1) and 
interneurons expressing the neuropeptide, somatostatin in the same field of view. (D3) is an 
enlarged overlay of both (D1 and D2) demonstrating specific labelling of the interneuron 
expressing somatostatin. (E1-2) shows immunoreactivity for DARPP-32 (E1) and interneurons 
utilising nitric oxide (E2) identified by nitric oxide synthase (NOS) in the same field of view. 
(E3) is an enlarged overlay of both (E1 and E2) demonstrating specific labelling of the 
interneurons utilising nitric oxide (NO). 
Scale bars: (A-E 1-2) 30 µm; (A-E 3) 10 µm. 
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Since Kv regulate neuronal activity, and MSN activity is influenced by synaptic 

transmission from a variety of axonal inputs, the location of neurochemically 

diverse inputs was next characterised in order to interpret the potential 

relevance of the prospective Kv immunoreactivity patterns. Excitatory 

neurotransmission via glutamate-containing axons provides one of the major 

drives of MSN activity, and thus striatal function. Glutamatergic axons that 

synapse on MSNs originate from a variety of other brain regions (Britt et al., 

2012). The sources of such inputs can be distinguished by the expression of 

the vesicular glutamate transporters 1 and 2 (VGLUT 1-2). The majority of the 

VGLUT1-containing axons originate from the cortex, hippocampus and 

amygdala, carry information related to emotion and cognition and synapse on 

MSN dendritic spines (Fig 3.4 A1, 3). While VGLUT2-containing axons also 

synapse on MSN dendritic spines (Fig 3.4 A2, 3), they originate primarily from 

the thalamus and relay sensory related information to the striatum. While 

excitatory synapses target dendritic spines, inhibitory synapses, containing 

GABA released by local interneurons and identified by immunoreactivity for 

the vesicular γ-aminobutyric acid transporter (VGAT), contact MSN cell bodies 

as well as dendritic shafts (Fig 3.4 B). Monoaminergic inputs, such as 

noradrenaline and dopamine, identified by immunoreactivity for the 

synthesising enzyme tyrosine hydroxylase (TH), contact both the dendrites 

and cell bodies of MSNs (Fig 3.4 C). Finally, axon terminals from local 

cholinergic interneurons, identified by immunoreactivity for the vesicular 

acetylcholine transporter (VAchT), also contact MSN somata and dendrites 

(Fig 3.4 D). 
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Thus, having replicated the core cell biology and neurochemistry of the 

striatum under my experimental conditions, I was in place to critically analyse 

the immunoreactivity patterns of Kv within such neural circuitry.  

 
Figure 3.4. Immunohistochemical demonstration of neurochemical inputs in the striatum. 
(A1-2) shows the association between MSN identified by immunoreactivity with DARPP-32 
and excitatory synapses identified by immunoreactivity with vesicular glutamate transporter 1 
(VGLUT1) and vesicular glutamate transporter 2 (VGLUT2) in the same field of view. (A3) is 
an enlarged overlay of both (A1 and A2) showing that both VGLUT1 and 2 synapses on MSN 
dendritic spines. Note that VGLUT1-containing axons originate from the cortex, hippocampus 
and amygdala, while VGLUT2-containing axons originate primarily from the thalamus. (B1-2) 
shows immunoreactivity for MSN (B1) and inhibitory synapses, containing GABA (B2) 
identified by vesicular γ-aminobutyric acid transporter (VGAT) in the same field of view. (B3) 
is an enlarged overlay of both (B1 and B2) demonstrating that local interneurons release 
inhibitory synapse that contact MSN cell bodies as well as dendritic shafts. (C1-2) shows 
immunoreactivity for MSN (C1) and monoaminergic inputs (C2) identified by tyrosine 
hydroxylase (TH) in the same field of view. Immunoreactivity for TH is used to identify 
monoaminergic inputs, such as noradrenaline and dopamine. (C3) is an enlarged overlay of 
both (C1 and C2) demonstrating that monoaminergic inputs contact MSN cell bodies and 
dendrites. Monoaminergic inputs, such as noradrenaline originates from the locus coeruleus; 
while dopamine originates from the ventral tegmental area, substantia nigra and 
hypothalamus. (D1-2) shows immunoreactivity for MSN (D1) and axon terminals from 
cholinergic interneurons (D2), identified by vesicular acetylcholine transporter (VAChT). (D3) 
is an enlarged overlay of both (D1 and D2) demonstrating that local cholinergic interneurons 
axon terminals contact MSN somata and dendrites. 
Scale bars: (A-D 1-2) 20 µm; (A-D 3) 10 µm. 
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3.2. Expression of Kv subtypes at the mRNA level in the striatum 

and hippocampus 

Since the overall aims of my PhD research was to characterise the native 

expression patterns of different Kv sub-families within the mouse striatum, I 

characterised all the Kv sub families in the striatum at the mRNA level to 

identify which of them is expressed in the striatum. Studies have shown the 

regional and cellular localisation of the members of the Kv1–Kv7 subfamily 

(Trimmer and Rhodes, 2004) and primer sequences have been developed to 

investigate them at the mRNA level (Li et al., 2015). To this end, I performed 

RT-PCR using homogenates from the striatum and hippocampus of WT mice. 

Gel electrophoresis images of cDNA amplicons showed that Kv1.1, Kv1.2, 

Kv1.3, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv2.2, Kv3.1, Kv3.3, Kv3.4, Kv4.2, Kv5.1, 

Kv7.1, Kv7.2, Kv7.3 and Kv7.4 were expressed in the striatum (Fig 3.5). The 

expression pattern was similar when compared with the Kv subtypes 

expressed in the hippocampus. The gel electrophoresis images from the RT-

PCR didn’t  show the expression of Kv4.3 both in the striatum and 

hippocampus even though studies have shown Kv4.3 to be expressed 

throughout the brain (Trimmer and Rhodes, 2004). Thus, further investigation 

was carried out using immunohistochemical reactions to ascertain the 

expression of Kv4.3. 
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Figure 3.5. Demonstration of the native expression of Kv sub-family at the mRNA level in the 
striatum.  
Tissue homogenates of mouse striatum were extracted for RNA and reverse-transcribed to 
provide cDNA templates for polymerase chain reaction (PCR) of Kv1- Kv7 subfamily. Gel 
electrophoresis images shows that Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv2.2, Kv3.1, 
Kv3.3, Kv3.4, Kv4.2, Kv5.1, Kv7.1, Kv7.2, Kv7.3 and Kv7.4 are expressed in the striatum (S). The 
RT-PCR of hippocampus (H) homogenates were used as a positive control. 
 
3.3. Immunochemical characterisation of the location of Kv 

subtypes in the striatum 

Guided by the mRNA expression, the cellular and sub-cellular expression 

patterns of the various sub-classes of Kv was systemically mapped as follows: 

Immunolocalisation of the Kv1 family 

Immunoreactivity for Kv1.1 presented as individual clusters that encircled but 

did not overlap with DARPP-32 immunopositive cell bodies (Fig 3.6 A). This 

indicates that Kv1.1 is not expressed by MSNs themselves and as such 

immunoreactivity most likely represents signal in axon terminals. This is in 

agreement with previously published reports of its expression profile (Trimmer, 
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2015). As shown earlier, since GABAergic axons preferentially innervate this 

sub-cellular region of MSNs, I compared the Kv1.1 immunoreactivity to that of 

VGAT (Fig 3.6 B) and confirmed a close association between these signals 

(Fig 3.6 C). I did not detect any association between Kv1.1 and glutamatergic 

markers or markers of any other inputs. This suggests that in the striatum, 

Kv1.1 regulate the activity of inhibitory inputs onto MSNs and therefore the 

mechanism that will influence the degree to which these projection cells can 

influence their targets in other brain regions. 

 
Figure 3.6. Immunohistochemical localisation of Kv1.1 in the striatum. 
(A) shows immunoreactivity for Kv1.1 and how individual clusters of Kv1.1 encircled but did not 
overlap with MSN. (B) shows immunoreactivity for GABAergic axons, identified by VGAT 
expressed on MSN. (C) is an overlay of both (A and B) demonstrating a close association 
between GABAergic axons and Kv1.1 signal. 
Scale bar: 5 µm. 
 
In cortical brain regions, the predominant location for Kv1.2 expression is the 

axon initial segment (AIS). I therefore began by assessing whether this was 

also the case in the striatum. Kv1.2 immunoreactivity presented as individual 

clusters that were distributed throughout the DARPP-32 immunopositive cells, 

predominantly with dendrites, and to a lesser extent with cell bodies (Fig 3.7 

A1). Again, there was no overlap between Kv1.2 and DARPP-32 indicating that 

within the striatum, MSNs did not express this ion channel. Using 

immunoreactivity for ankyrinG (Fig 3.7 A2), I detected only minimal association 

of Kv1.2 signal with that of ankyrinG (Fig 3.7 A3). This absence of Kv1.2 in 

MSNs AISs is a striking difference to cortical neurons, which have this sub-
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domain enriched with this ion channel (A. Lorincz and Nusser, 2008). This 

suggest that this ion channel has a limited contribution to regulating the 

membrane potential of MSNs within this region of their axons. Since a large 

proportion of Kv1.2 clusters were associated with DARPP-32 immunopositive 

dendrites (Fig 3.7 B1), I next examined their association with the dendritic 

spine marker spinophilin (Fig 3.7 B2). The majority of Kv1.2 immunopositive 

clusters were located directly adjacent to clusters immunoreactive for 

spinophilin (Fig 3.7 B3). Since spinophilin is located in dendritic spines, which 

themselves are the postsynaptic domains of excitatory synapses, this 

suggests that Kv1.2 is associated with excitatory synapses. To confirm the 

association of Kv1.2 with synapses, I examined its expression alongside that 

of the generic presynaptic protein piccolo and confirmed that the majority of 

Kv1.2 clusters overlapped with those immunopositive for piccolo (Fig 3.7 C). 

To confirm that Kv1.2 was indeed expressed with glutamatergic axons, I 

verified the immunoreactivity for this on channel overlapped with signal for 

VGLUT1 (Fig 3.7 D) and VGLUT2 (Fig 3.7 E). This indicates that Kv1.2 

contributes to the activity of axons that primarily determine the excitation of 

MSNs. 
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Figure 3.7. Immunohistochemical localisation of Kv1.2 in the striatum. 
(A1) shows immunoreactivity for Kv1.2 and how it is expressed on DARPP-32 immunopositive 
cells (MSN). Individual clusters of Kv1.2 are distributed predominantly with dendrites, and to a 
lesser extent with cell bodies. (A2) shows immunoreactivity for ankyrinG used to identify the 
axon initial segment (AIS) of DARPP-32 cells. (A3) is an overlay of both (A1 and A2) in the 
same field of view demonstrating minimal association between ankyrinG and Kv1.2 signal.  As 
with (A1), (B1) shows immunoreactivity for Kv1.2 expressed predominantly with dendrites. (B2) 
shows immunoreactivity for spinophilin used to identify dendritic spines of MSN. Dendritic 
spines are the postsynaptic domains of excitatory synapses (B3) is an overlay of both (B1 and 
B2) in the same field of view demonstrating association between spinophilin and Kv1.2 signal. 
This suggests that Kv1.2 is associated with excitatory synapses. As with (B1-3), (C1, D1 and 
E1) shows the association of Kv1.2 with MSN to compare association with synapses in the 
same field of view. Generic presynaptic protein identified by picolo (C2) was used as well as 
glutamatergic axons identified by VGLUT1 (D2) and VGLUT2 (E2). (C3) is an overlay of both 
(C1 and C2) in the same field of view demonstrating association between picolo and Kv1.2 
signal. (D3) is an overlay of both (D1 and D2) in the same field of view demonstrating 
association between VGLUT1 and Kv1.2 signal.  (E3) is an overlay of both (E1 and E2) in the 
same field of view demonstrating association between VGLUT2 and Kv1.2 signal.  (C-E) 
demonstrates that Kv1.2 contributes to the activity of axons that primarily determine the 
excitation of MSNs. 
Scale bars: (A) 20 µm; (B) 10 µm; (C-E) 5 µm.  
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Immunoreactivity for Kv1.3 was wholly restricted to DARPP-32 immunopositive 

cell bodies, located within the cytoplasm and most likely associated with 

specific cell organelles (Fig 3.8). In light of its lack of association with the 

plasma membrane, it is reasonable to conclude that this ion channel does not 

contribute to the regulating of the passage of K ions between intra and 

extracellular compartments and thus will have a minimal contribution to the 

membrane potential. It could, however, regulate K ions across the membranes 

of organelles.  

 
Figure 3.8. Immunohistochemical localisation of Kv1.3 in the striatum. 
(A) shows immunoreactivity for DARPP-32. (B) shows immunoreactivity for Kv1.3 in the same 
field of view. (C) is an enlarged overlay of both (A and B) showing Kv1.3 expression restricted 
to DARPP-32 immunopositive cell bodies, located within the cytoplasm. 
Scale bars: (A-B) 50 µm; (C) 5 µm. 

Immunoreactivity for Kv1.4 also presented as individual clusters, 

representative of axon terminals, and were enriched in the regions 

surrounding DARPP-32 immunopositive cell bodies and proximal dendrites 

(Fig 3.9 A). The majority of these clusters were closely associated with clusters 

immunopositive for VGLUT2 (Fig 3.9 B, C). This suggest that in the striatum, 

Kv1.4 regulates the membrane potential of glutamatergic axons originating 

from the thalamus and thus impacts on how this brain region modulates the 

excitability of MSNs. 
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Figure 3.9. Immunohistochemical localisation of Kv1.4 in the striatum. 
(A) shows immunoreactivity for Kv1.4 and how it is richly clustered in regions surrounding 
DARPP-32 immunopositive cell bodies and proximal dendrites. (B) shows immunoreactivity 
for glutamatergic axons, identified by VGLUT2. Glutamatergic axons originate from the 
thalamus. (C) is an overlay of both (A and B) in the same field of view demonstrating a close 
association between glutamatergic axons and Kv1.4 signal. 
Scale bar: 5 µm. 
 
Kv1.5 was distinctive in that it was associated with both DARPP-32 

immunopositive and immunonegative cells (Fig 3.10 A). In terms of expression 

on MSNs, Kv1.5 signal was located on the plasma membrane of cell bodies as 

well as dendrites, suggesting a postsynaptic localisation. Thus, this is the only 

Kv1 subtype that is actually expressed on plasma membranes of MSNs, and 

therefore the only channel from this family to contribute to the regulation of 

MSN membrane potential. Kv1.5 clusters were located in close proximity to 

synapses, as demonstrated by their proximity to the synaptic protein piccolo 

(Fig 3.10 B). Apart from expression in MSNs, the strongest Kv1.5 signal was 

located with GABAergic interneurons that I confirmed with immunopositivity 

for the calcium binding protein parvalbumin (Fig 3.10 C). Thus, Kv1.5 also 

regulate the activity of cells that in turn control the activity of MSNs. Finally, 

Kv1.5 immunopositive clusters were also associated with cells that were 

immunoreactive for the protein neuron-glial antigen 2 (NG2), a chondroitin 

sulfate proteoglycan that is expressed in oligodendrocyte precursor cells 

(OPC). OPCs serve as a reservoir for the generation of new oligodendrocytes, 

the glial that produce myelin within the central nervous system. OPCs are 

highly dynamic and changes in response to brain activity and are also 



 76 

associated with a range of disorders. I believe this to be the first demonstration 

of the expression of a Kv in NG2 cells and opens the possibility of a unique 

target for disorders associated with OPCs or myelin production.  

 
Figure 3.10. Immunohistochemical localisation of Kv1.5 in the striatum. 
(A1) shows immunoreactivity for DARPP-32. (A2) shows immunoreactivity for Kv1.5 in the 
same field of view. (A3) is an enlarged overlay of both (A1 and A2) showing Kv1.5 to be 
associated with both DARPP-32 immunopositive and immunonegative cells. Kv1.5 signal was 
located on the plasma membrane of MSN cell bodies as well as dendrites suggesting a post 
synaptic localisation of Kv1.5. (B1) shows the association between clusters immunoreactive 
for Kv1.5 with DARPP-32 cell bodies and dendrites. (B2) shows immunoreactivity for 
presynaptic protein identified by picolo with DARPP-32 cell bodies. (B3) is an overlay of both 
(B1 and B2) in the same field of view demonstrating a close proximity between Kv1.5 and 
picolo. This suggest a presynaptic localisation of Kv1.5. (C1) shows immunoreactivity for 
GABAergic interneurons identified by immunoreactivity for parvalbumin. (C2) shows 
immunoreactivity for Kv1.5 in the same field of view. (C3) is an overlay of (C1 and C2) in the 
same field of view showing the strongest signal of Kv1.5 to be around GABAergic interneurons 
immunopositive for parvalbumin. (D1) shows immunoreactivity for neuron-glial antigen 2 
(NG2), a protein used to identify oligodendrocyte precursor cells (OPC). (D2) shows 
immunoreactivity for Kv1.5 in the same field of view. (A3) is an overlay of both (D1 and D2) in 
the same field of view showing Kv1.5 clusters to be associated with OPC cells.  
Scale bars: (A1-2) 30 µm; (A3) 5 µm; (B) 5 µm; (C-D) 10 µm. 
 
In cortical brain regions, Kv1.6 is almost exclusively expressed in the AIS of 

neurons (A. Lorincz and Nusser, 2008). However, in the striatum, Kv1.6 
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immunoreactivity was expressed in cells that did not resemble neurons (Fig 

3.11 A), and were confirmed to be microglia, identified by immunoreactivity for 

IBA1 (3.11 B). Microglia are the resident immune cells of the brain and are 

activated during neuroinflammation, a process associated with a range of 

brain disorders. While Kv1.3 (Nguyen et al., 2017) and Kv1.5 (Kotecha and 

Schlichter, 1999) have been shown to be expressed in cortical microglia, this 

is the first demonstration that microglia expresses Kv1.6. This could represent 

a unique profile of these immune modulatory cells within the striatum and thus 

novel avenue for addressing neuroinflammation within this brain region. 

Figure 3.11. Immunohistochemical localisation of Kv1.6 in the striatum. 
(A1) shows immunoreactivity for DARPP-32. (A2) shows immunoreactivity for Kv1.6 in the 
same field of view. (A3) is an enlarged overlay of both (A1 and A2) showing Kv1.6 to be 
expressed on DARPP-32 immunonegative cells. (B1) shows immunoreactivity for IBA1 used 
to identify microglia cells. (B2) shows immunoreactivity for Kv1.6 in the same field of view. (B3) 
is an overlay of both (A and B) in the same field of view confirming the DARPP-32 
immunonegative cell which Kv1.6 is expressed on to be microglia cells. 
Scale bars: (A1-2) 30 µm; (A3) 5 µm; (B) 10 µm. 
 
Immunolocalisation of Kv2 family 

Immunoreactivity for Kv2.1 was striking in that signal was enriched on the 

plasma membranes of cell bodies and proximal dendrites of MSNs (Fig 3.12 

A). It was noticeable that distal dendrites were devoid of signal (Fig 3.12 B), in 
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a similar manner to cortical neurons (Trimmer, 2015). This indicates that an 

individual MSN will produce Kv2.1 but target its membrane insertion selectively 

to specific sub-cellular compartments. This suggests that different 

mechanisms control the membrane potential of different compartments of an 

individual cell. Kv2.1 signal was closely associated with GABAergic axon 

terminals, identified by immunoreactivity for VGAT (Fig 3.12 C). Thus, Kv2.1 

could regulate the changes in membrane potential arising from inhibitory 

synaptic transmission.   

 
Figure 3.12. Immunohistochemical localisation of Kv2.1 in the striatum. 
(A1) shows immunoreactivity for DARPP-32 immunopositive cells (MSN). (A2) shows 
immunoreactivity for Kv2.1 in the same field of view. (A3) is an enlarged overlay of both (A1 
and A2) showing Kv2.1 to be expressed on the plasma membranes of MSN cell bodies and 
proximal dendrites. As in (A3), (B1) shows the association between Kv2.1 with MSN cell 
bodies. (B2) shows immunoreactivity for dendrites, identified by Map-2, to compare 
association of Kv2.1 to distal dendrites. (B3) is an enlarged overlay of both (B1 and B2) 
showing that there is no association between Kv2.1 and MAP-2 signals. As in (A3), (C1) shows 
the association between Kv2.1 with MSN cell bodies. (C2) shows immunoreactivity for 
GABAergic axon terminals, identified by immunoreactivity for VGAT in the same field of view 
to compare association of Kv2.1. (C3) is an overlay of both (B1 and B2) in the same field of 
view showing a strong association between GABAergic axon terminals and Kv2.1 signal. Thus, 
Kv2.1 could regulate the changes in membrane potential arising from inhibitory synaptic 
transmission.   
Scale bars: (A-B1-2) 30 µm; (A3) 5 µm; (B3) 10 µm; (C) 5 µm.
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Immunolocalisation of Kv3 family 

Kv3.1 was not associated with MSNs and entirely expressed in parvalbumin 

immunopositive inhibitory interneurons (Fig 3.13 A), in agreement with other 

brain regions (Trimmer, 2015). In stark contrast, clusters immunoreactive for 

Kv3.4 richly decorated DARPP-32 immunopositive cell bodies and dendrites, 

in close association with the synaptic protein picolo (Fig 3.13 B). This indicates 

that different members of the Kv3 family regulate pre and postsynaptic 

signalling in the striatum. 

 
Figure 3.13. Immunohistochemical localisation of Kv3 family in the striatum. 
(A1) shows immunoreactivity for Kv3.1. (A2) shows immunoreactivity for GABAergic 
interneurons containing parvalbumin in the same field of view. (A3) is an enlarged overlay of 
both (A1 and A2) showing the expression of Kv3.1 in parvalbumin immunopositive GABAergic 
interneuron. (B1) shows the association between clusters immunoreactive for Kv3.4 with 
DARPP-32 cell bodies and dendrites. (B2) shows immunoreactivity for presynaptic protein 
identified by picolo with DARPP-32 cell bodies. (B3) is an overlay of both (B1 and B2) in the 
same field of view demonstrating a close proximity between Kv3.4 and piccolo. 
Scale bars: (A1-2) 30 µm; (A3) 5 µm; (B) 10 µm.  
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Immunolocalisation of Kv4 family 

Kv4.2 immunoreactivity was almost the mirror image of signal for Kv2.1, in that 

it was restricted entirely to the distal dendritic compartments, with limited signal 

on MSN cell bodies and proximal dendrites (Fig 3.14 A). Collectively, this 

suggest that for an individual MSN, Kv2.1 regulates the membrane potential 

on the cell body and proximal dendrites, while Kv4.2 regulates it on the distal 

dendrites. 

Kv4.3 was wholly enriched in parvalbumin expressing inhibitory interneurons 

(Fig 3.14 B). Again, this demonstrates that different members of the same 

family of Kv regulate the pre and postsynaptic elements within striatal neuronal 

circuitry. 

 
Figure 3.14. Immunohistochemical localisation of Kv4 family in the striatum. 
(A1) shows immunoreactivity for MSN identified by DARPP-32 immunopositivity. (A2) shows 
immunoreactivity for Kv4.2 in the same field of view. (A3) is an overlay of both (A1 and A2) in 
the same field of view showing Kv4.2 to be expressed on distal dendritic compartments. (B1) 
shows expression of clusters immunoreactive for Kv4.3 on DARPP-32 immunonegative cells. 
(B2) shows immunoreactivity for GABAergic interneuron expressing parvalbumin. (B3) is an 
enlarged overlay of (B1 and B2) confirming the DARPP-32 immunonegative cell which Kv4.3 
is expressed on to be parvalbumin containing GABAergic interneuron. 
Scale bars: (A) 10 µm; (B1-2) 20 µm; (B3) 10 µm
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3.4. Effect of early life stress on the native expression of Kv in the 

striatum  

We live complex lives, enduring many experiences. In order to assess how 

stable the above Kv expression profiles are across a lifetime, I assessed the 

potential changes in Kv expression in response to something we all experience 

in our lifetime, namely stress. I opted for a model of chronic, rather than acute 

stress. This is because the more severe forms are associated with 

maladaptive responses and various diseases. Importantly, a novel stress 

pathway has recently been discovered in the striatum (Lemos et al., 2012). To 

induce a chronic stress phenotype, I employed an animal model of early life 

stress (ELS) that our lab has shown to induce an enduring hyper-stress 

phenotype throughout adulthood as well as depressive like behaviour in mice 

(Gunn et al., 2013). Our lab has furthermore shown that animals exposed to 

this form of ELS have profound changes in the activity of striatal neurons 

(Mitchell et al., 2018), suggesting changes in the expression of protein that 

regulate such activity. The central role that Kv play is regulating neuronal 

activity. I next explored whether ELS impacts on Kv expression levels, using 

semi-quantitative immunohistochemistry and confocal microscopy. I restricted 

this analysis to the Kv2.1 and 4.2 subtypes since they were the only ones that 

were exclusively located on MSNs. 

I detected a significant decrease in the mean fluorescence intensity of Kv2.1 

in the ventral striatum (P = 0.0489, unpaired Student’s t test, N = 5 mice for 

control and ELS), but not in the dorsal striatum (P = 0.4656, unpaired Student’s 

t test, N = 5 mice for control and ELS) (Fig 3.15). There was also a significant 

decrease in the mean fluorescence intensity of Kv4.2 in both ventral (P = 
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0.0036, unpaired Student’s t test, N = 5 mice for control and ELS) and dorsal 

striatum (P = 0.0098, unpaired Student’s t test, N = 5 mice for control and ELS) 

of ELS mice (Fig 3.16).  

 
Figure 3.15. Quantification of Kv2.1 immunoreactivity in the striatum. 
(A) shows representative image of Kv2.1 immunoreactivity in the striatum of CTRL and ELS 
mouse. (B) shows the fluorescence intensity of Kv2.1 in the ventral and dorsal striatum of 
CTRL and ELS mice. Bars represent the mean and error bars the SEM; * P < 0.05, Unpaired 
student’s t-test N = Kv2.1 ventral striatum: Ctrl: 5, ELS: 5; Kv2.1 dorsal striatum: Ctrl: 5, ELS: 
5 animals. 
Scale bar: 20µm. 
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Figure 3.16. Quantification of Kv4.2 immunoreactivity in the striatum.  
(A) shows representative image of Kv4.2 immunoreactivity in the striatum of CTRL and ELS 
mouse. (B) shows the fluorescence intensity of Kv4.2 in the ventral and dorsal striatum of 
CTRL and ELS mice. Bars represent the mean and error bars the SEM; ** P < 0.01,  Unpaired 
student’s t-test N = Kv4.2 ventral striatum: Ctrl: 5, ELS: 5; Kv4.2 dorsal striatum: Ctrl: 5, ELS: 
5 animals. 
Scale bar: 20µm. 
 
Given the expression of Kv1.6 on microglia, which are the immune cells of the 

brain, and the strong association between stress and neuroinflammation 

(Wood et al., 2015), I next investigated whether ELS altered the local immune 

system in the striatum, using immunoreactivity for Ionized calcium binding 

adaptor molecule 1 (IBA1), a marker of activated microglia. Intriguingly, I 

detected a significant decrease in the fluorescence intensity of IBA1 in both 
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the dorsal (P = 0.0033, unpaired Student’s t test, N = 5 mice for control and 

ELS) and ventral (P = 0.0036, unpaired Student’s t test, N = 5 mice for control 

and ELS) striatum.  

 
Figure 3.17. Quantification of IBA1 immunoreactivity in the striatum. 
(A) shows representative image of IBA1 immunoreactivity in the striatum of CTRL and ELS 
mouse. (B) shows the fluorescence intensity of IBA1 in the ventral and dorsal striatum of CTRL 
and ELS mice. Bars represent the mean and error bars the SEM; ** P < 0.01, Unpaired 
student’s t-test N = IBA1 ventral striatum: Ctrl: 5, ELS: 5; IBA1 dorsal striatum: Ctrl: 5, ELS: 5 
animals. 
Scale bar: 20µm. 
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The results of this chapter have been summarised in Table 3.1. 

Table 3.1. Summary table of native Kv expression and plasticity following ELS. 

ND, not detected. NA, not assessed. 

Kv 
subtype 

Specific 
signal 

detected in 
the striatum 

Cellular 
localisation 

Sub-cellular localisation Changes 
with ELS 

Kv1.1 Yes no Axon terminals NA 

Kv1.2 Yes no Axon terminals NA 

Kv1.3 Yes yes MSN cytoplasm NA 

Kv1.4 Yes no Axon terminals NA 

Kv1.5 Yes Parvalbumin 

cells and NG2 

cells 

PV cell body and axons 

NG2 cell processes 

NA 

Kv1.6 Yes IBA1 microglia Cell body and processes NA 

Kv2.1 Yes MSN Cell body and proximal 

dendrites 

↓ in ventral 

but not 

dorsal 

striatum. 

Kv2.2 ND   NA 

Kv3.1 Yes Parvalbumin 
cells 

 NA 

Kv3.4 Yes no Axon terminals NA 

Kv4.2 Yes MSN distal dendrites ↓ in both 

the ventral 

and dorsal 

striatum. 

Kv4.3 Yes Parvalbumin 

cells 

Cell body and dendrites NA 
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Discussion 

Data in this chapter reveal the rich diversity of Kv subtypes expressed in the 

striatum and also the manner in which they are expressed. The principal cells 

appear to predominantly rely on Kv2.1 and 4.2. However, MSNs target these 

different Kv to distinct compartments with Kv2.1 expression restricted to 

somatic and proximal dendritic compartments, whilst Kv4.2 is exclusively 

expressed in distal dendrites; all of these regions are postsynaptic domains 

suggesting a role for these Kv in regulating MSN membrane potential in 

response to synaptic activity. In contrast to this expression in the principal 

cells, Kv1.5, 3.1 and 4.3 were exclusively expressed in interneurons, 

suggesting role for these Kvs in the activity of cells that govern local neuronal 

control of MSN activity. Furthermore, a range of Kv (1.1, 1.2, 1.4, 3.4) were 

restricted to axon terminals that most likely originated from other brain regions, 

thereby suggesting a role for these Kv in regulating compartments associated 

with neurotransmitter release from distant brain regions. Intriguingly, some Kv 

were expressed on non-neuronal cells, namely microglia (Kv1.6) and OPCs 

(Kv1.5), suggesting that some Kv contribute to the regulation of the local 

immune system as well as ongoing myelination of striatal neurons. Finally, my 

data show for the first time that the expression of the Kv are highly plastic in 

response to life experience, with significant changes occurring as a result of 

life experience stress. Collectively, these data provide novel insights into the 

native Kv system within the striatum. 
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Segregation of Kv2.1 and 4.2 to distinct sub-cellular compartments 

It is intriguing why a neuron would synthesise two different protein responsible 

essentially for the same function, namely passing K ions from the cytoplasm 

to the extracellular fluid and target these different proteins to different 

compartments of the same cell. This highly orchestrated trafficking of different 

Kv are most likely due to two inextricably linked phenomena: 1) the unique 

functional properties of the two classes of Kv and 2) the synaptic inputs that 

target these different compartments of the MSN. The primary role of Kv, in 

neurons, is to repolarise the plasma membrane following the depolarisation 

that results from an action potential. Different classes of Kv contribute 

differently to the process due to their biophysical properties. Kv4 as a class, 

are known as transient currents because they activate at subthreshold 

membrane potentials, inactivate rapidly, and recover from inactivation quickly 

compared with other Kv channels (Birnbaum et al., 2004). As such, during 

action potential generation, they have the ability to react early, and repeatedly, 

during the depolarising phase. They are thus ideally suited to regions of the 

cell that likely to be exposed to significant membrane potential depolarisations 

due to significant excitatory synaptic transmission. In contrast, Kv2 are known 

as the delayed rectifiers (Misonou, Mohapatra and Trimmer, 2005). Their 

biophysical properties result in them being activated much later in the phase 

of the action potential. They are therefore not suited for regions of the cell in 

which rapid fluctuations in membrane potential occur as a result of significant 

excitatory input. As demonstrated with my immunohistochemistry, the distal 

dendrites that selectively express Kv4.2, also selectively receive all the 

glutamatergic axons that innervate MSNs. Such inputs have an immense 
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potential to depolarise the MSNs because they are extremely numerous, from 

a vast array of different brain regions, and glutamate as a neurotransmitter 

elicits an extremely powerful excitatory drive. Thus, in order to ensure that 

such inputs do not result in over activity of MSNs, it is essential that effective 

counter measures are in place to repolarise the postsynaptic membranes in a 

timely manner. Thus, the rapidly acting Kv4.2 channels are ideally located to 

integrate such rapidly changing membrane potentials. In contrast, the slower 

acting Kv2.1 is located in regions that receive limited glutamate input. Instead, 

these somatic and proximal dendritic regions are generally innervated by 

monoaminergic inputs such as noradrenaline or dopamine. The nature of such 

diffuse modulatory neurotransmission is significantly slower, compared to 

glutamatergic transmission. Thus, the slower acting Kv2.1 are ideally placed 

to respond to these slower changes in membrane potential. Thus, striatal 

principal cells exploit different Kv to integrate the complex network of 

functionally diverse synaptic inputs they receive, thereby ensuring coordinated 

neuronal excitability. 

 

Kv expression in non-neuronal cells 

An intriguing finding from my data was expression of specific Kv in non-

neuronal cells within the brain. I found the expression of the Kv1.6 in microglia 

particularly interesting. The brain has its own unique immune system in order 

to protect it from the immensity of the rest of the body’s immune system. 

Microglia are the principal immune cells utilised by the brain. They are highly 

motile and are capable of rapid proliferation as part of the neuroinflammatory 

processes (Cianciulli et al., 2020), that we are now beginning to understand 
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are part of a host of brain disorders  (de Araújo Boleti et al., 2020). As such, 

identifying the molecules expressed by such important neuromodulators, will 

be instrumental in developing effective therapies for associated disorders.  

Targeting ion channels in microglia, with a view to developing therapies for 

various brain disorders is gaining rapid traction, with both voltage gated 

calcium (Hopp, 2020) and sodium (Hossain et al., 2018) ion channels being 

considered. To date, only the Kv7 family has been associated with 

neuroinflammation, which was due to neuronal hyperexcitability, rather than 

an intrinsic Kv-mediated microglia pathway (Tzour et al., 2017). Thus, future 

studies in which Kv1.6 could be selectively deleted from microglia, and 

changes in brain immune status assessed, will be instrumental taking this work 

forward. 

 

Stress and Kv expression 

A striking discovery was that ELS resulted in decreased expression of both 

Kv2.1 and 4.2. As mentioned above, both channels are likely to be instrumental 

in dampening MSN activity. Therefore, the stress-induced decrease in their 

expression is likely to result in enhanced activity of MSNs. Altered activity of 

striatal MSNs are associated with a range of diseases that affect this region. 

Motor deficits associated with Parkinson’s arise from the altered activity of 

dorsal striatal MSNs due to the absence of dopamine input to this sub-region. 

Various psychiatric disorders related to the brain’s reward system, such as 

drug addiction or apathy are also related to altered excitability of MSNs in the 

ventral striatum. Importantly, such changes in the reward pathways are also a 

component of certain neurodegenerative diseases such as Alzheimer’s and 
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Parkinson’s, resulting in apathy in such patients. This symptom significantly 

magnifies the disease burden for both Alzheimer’s and Parkinson’s patients, 

and is currently poorly treated. As such, identifying the underlying mechanisms 

for such symptoms could be instrumental in developing targeted therapies. It 

should be noted that there are intricate links between these stress data and 

the native expression data. Stress is known to have a profound effect on the 

brain’s immune system, resulting in neuroinflammation. Furthermore, 

neuroinflammation is a central component of these neurodegenerative 

diseases. Since stress altered both striatal Kv and immune status, I therefore 

speculate whether the pathology associated with Alzheimer’s and Parkinson’s 

alters native Kv expression in this brain region. I explore this hypothesis in the 

following chapters.  
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Chapter Four  

Effect of Parkinson’s disease pathology on the 

expression of Kv in the striatum 

 

Summary and importance 

Background 

In the previous chapter, the first high resolution demonstration of the native 

expression of various Kv subtypes throughout the cellular networks of the 

striatum was provided. such expression profile was also shown to be plastic 

and influenced by life experience, such as psychosocial stress. This suggests 

that their expression, and by extension their function, could be altered in 

various brain disorders and therefore represent potential therapeutic targets. 

One category of brain disorders in which Kv function is poorly explored is 

neurodegenerative diseases, in particular Parkinson’s and Alzheimer’s 

diseases (PD, AD). This could represent a missed opportunity to directly target 

associated changes in neuronal activity in such disorders. Therefore, in the 

following chapters, I will explore whether core pathology associated with these 

diseases impacts on Kv expression in the striatum, beginning with Parkinson’s 

in this chapter. 

 

Methods 

To model PD, a transgenic mouse line that over-expresses the key protein 

associated with PD, namely α-synuclein (α-syn) was used and is termed the 

OVX mouse. Wildtype (WT) littermates were used as controls. Young mice, 
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aged 3 months were deliberately used, thus prior to the onset of PD motor 

pathology which occurs at 14 months, because I was interested in assessing 

the early, prodromal changes that occur. Immunohistochemistry with confocal 

microscopy was used to determine the expression of α-syn and to determine 

the changes in expression levels of various neurochemicals in the striatum of 

OVX mice. I used qRT-PCR to quantify relative levels of the mRNA of various 

neurochemicals in the striatum of the WT and OVX mice.  

 

Results 

In OVX mice, immunohistochemistry revealed a more intense expression of α-

syn in the striatum when compared to the expression observed in WT mice. 

This indicates that that PD pathology affects the native α-syn in the mice 

striatum by increasing the expression level. Immunoreactivity for α-syn was 

enriched in axon terminals immunoreactive for VGLUT1, but not VGLUT2, 

indicating that glutamatergic axon terminals from the cortex are likely impacted 

by such pathology. Increased α-syn signal in OVX samples was also contained 

in axon terminals immunopositive for VGAT and TH, suggesting an association 

with GABAergic and monoaminergic inputs respectively.  Intriguingly, IBA1, a 

marker of neuroinflammation, was significantly decreased in OVX samples, 

suggesting an altered immune state.  Finally, protein expression levels for 

Kv2.1, 4.2 and 4.3 was significantly decreased, while Kv4.3 mRNA levels were 

increased in OVX samples. 

 

 

 



 93 

Importance 

The data reveal novel changes in a host of neurochemical pathways within the 

striatum, during the earliest stages of the condition, significantly prior to the 

onset of the cardinal motor features of the condition. The changes in Kv most 

likely point to compensatory changes as a result of altered levels of activity of 

striatal neurons. If so, this suggests profound changes in striatal function, 

which could help us to understand some of the prodromal changes in emotion 

that precede the onset of motor symptoms, including apathy, agitation and 

anxiety. 
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Results 

4.1. Characterisation of PD-like pathology in the striatum of OVX 

mouse 

Increased expression of α-syn is a pathological hallmark of PD 

(Polymeropoulos et al., 1997).  Thus, a mouse model that overexpresses α-

syn (OVX) at disease relevant levels was used. This mouse model results in 

the core features of PD, namely degeneration of dopaminergic neurons and 

decreased striatal dopamine input, in old age (Janezic et al., 2013). However, 

neurochemical changes in the striatum, prior to the onset of such 

dopaminergic degeneration have not been investigated. Therefore, PD-

associated pathology, and associated changes in striatal neurochemistry in 

OVX mice and WT littermates aged 3 months were first characterised. In the 

striatum, α-syn presented as individual clusters that did not overlap with 

DARPP-32 immunoreactivity. This indicates that α-syn was not expressed by 

MSNs within the striatum. However, MSN could express α-syn in their axons 

that innervate other brain regions. Furthermore, the level of expression of α-

syn was confirmed to be significantly increased in OVX, compared to WT, 

thereby confirming the model used (Fig 4.1). 
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Figure 4.1. Immunoreactivity for α-syn in the striatum of WT and OVX mice. 
(A1) shows immunoreactivity for DARPP-32 immunopositive cells (MSN) in the striatum of WT 
mice. (A2) shows immunoreactivity for α-syn in the same field of view. As with (A1-A2), (B1-
B2) shows immunoreactivity for MSN and α-syn in the striatum of OVX mice. (A2) shows less 
intensity of α-syn expression while (B2) shows a more intense expression of α-syn. This 
indicates that PD pathology affects native α-syn in the mice striatum by increasing the 
expression level. (A3, B3) is an overlay of (A1-2, B1-2) in the same field of view demonstrating 
that α-syn is presented as individual clusters that did not overlap with MSN. This suggests that 
MSN expresses α-syn in their axons.  
Scale bars: 10 µm. 
 
The presentation of the α-syn immunoreactivity pattern, as individual clusters, 

rather than cell bodies, is representative of axon terminal profiles. I therefore 

assessed which striatal axonal inputs contained α-syn in OVX mice.  

Immunoreactivity for α-syn showed significant co-localisation with signal for 

VGLUT1 (Fig 4.2 A). This indicated that such PD-related pathology is enriched 

in glutamatergic axons originating from the cortex. In contrast, there was 

limited association between immunoreactivity for α-syn and VGLUT2 (Fig 4.2 

B). This suggest that PD-related pathology is not contained in glutamatergic 

inputs from the thalamus.  
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Figure 4.2. Immunohistochemical localisation of α-syn with glutamatergic axons in the striatum 
of OVX mouse. 
(A1) shows the immunoreactivity for α-syn and how it is expressed on DARPP-32 
immunopositive cells (MSN). (A2) shows the immunoreactivity for VGLUT1 and how it is 
expressed on MSN. VGLUT1 is expressed as individual clusters representative of axon 
terminal profiles originating from the cortex. (A3-4) is an overlay of both (A1 and A2) in the 
same field of view demonstrating α-syn co-localisation with VGLUT1 signal. This suggests 
that α-syn is enriched in glutamatergic axons originating from the cortex. As with (A1-4), (B1-
4) demonstrates the association between α-syn and VGLUT2 signal. There was limited 
association between immunoreactivity for α-syn and VGLUT2. This suggest that PD-related 
pathology is not contained in glutamatergic inputs originating from the thalamus. 
Scale bars: 5 µm. 
 
Immunoreactivity for VGAT, and thus axon terminals from local GABAergic 

interneurons were also strongly associated with α-syn immunoreactive 

clusters (Fig 4.3 A). This suggests that PD-associated pathology could impact 

on synaptic transmission between GABAergic neurons and MSNs. Finally, α-

syn immunoreactive clusters also overlapped with varicosities immunopositive 

for TH, the enzyme responsible for synthesising noradrenaline and dopamine 

(Fig 4.3 B). This confirms that such PD pathology is likely to impact on mono-

aminergic modulation of striatal function. 
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Figure 4.3. Immunohistochemical localisation of α-syn with GABAergic and mono-aminergic 
axon terminals in the striatum of OVX mouse. 
(A1) shows the immunoreactivity for α-syn and how it is expressed on DARPP-32 
immunopositive cells (MSN). (A2) shows the immunoreactivity for VGAT and how it is 
expressed on MSN. (A3-4) is an overlay of both (A1 and A2) in the same field of view 
demonstrating α-syn association with VGAT signal. This suggests that PD-associated 
pathology could impact on synaptic transmission between GABAergic neurons and MSNs. As 
with (A1-4), (B1-4) demonstrates the association between α-syn and TH signal. α-syn 
immunoreactive clusters overlapped with varicosities immunopositive for TH, an enzyme 
responsible for synthesising noradrenaline and dopamine. This suggests that PD pathology is 
likely to impact on mono-aminergic modulation of striatal function. 
Scale bars: 5 µm. 
 
 
4.2. Effect of PD pathology on striatal neurochemical expression 

As mentioned above, while changes in dopamine brain centres of OVX have 

been investigated in aged OVX, changes in native striatal neurochemistry in 

young mice have not. I therefore used a combination of qPCR and quantitative 

immunohistochemistry to probe for such changes. A pivotal finding revealed 

that mRNA levels of tyrosine hydroxylase gene (TH) was statistically 

significantly increased in OVX mice (P < 0.0257, unpaired Student’s t test, N 

= 5 animals). In contrast, I found a statistically significant decrease in the 

mRNA levels for tryptophan hydroxylase 1 gene (TPH1) in OVX mice (P < 

0.0452, unpaired Student’s t test, N = 4 animals). However, there were no 

statistically significant differences in the expression levels for serotonin 

transporter gene (slc6a4) (Fig 4.4). 
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Figure 4.4. Quantification of neurochemical-encoding mRNAs in the striatum shows the levels 
of TH, TPH1, and SERT encoding mRNAs in isolated samples from WT and OVX mice. Bars 
represent the mean and error bars the SEM; * P < 0.05, Unpaired student’s t-test N = TH: WT: 
5, OVX: 5; TPH1: WT: 4, OVX: 4; Slc6a4: WT: 6, OVX: 6 animals. 
 
Since PD pathology have an effect on TH in which the mRNA level of TH was 

significantly increased in OVX mice, I then assess any changes in TH 

immunoreactivity at the protein level. To this end, immunohistochemistry with 

confocal microscopy was performed to assess the effect of PD pathology on 

the fluorescence intensity of TH in the ventral and dorsal striatum of OVX mice 
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in comparison to WT littermates as control. While there was a trend towards 

lower levels of TH immunoreactivity in the dorsal striatum, these changes were 

not statistically significant (Fig 4.5 B). 

 
Figure 4.5. Quantification of TH immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of TH immunoreactivity in the striatum of WT and OVX mouse. 
(B) shows the fluorescence intensity of TH in the ventral and dorsal striatum of WT and OVX 
mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = TH 
ventral striatum: WT: 4, OVX: 4; TH dorsal striatum: WT: 4, OVX: 4 animals. 
Scale bars: 10µm. 
 
Since a key aspect of PD is the impairment of dopaminergic neurons which 

innervate the striatum and release dopamine to activate dopamine receptors 

on MSNs, I next explored whether the expression of the protein responsible 

for regulating dopamine receptors, namely DARPP-32 is altered in OVX. I 
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detected a significant decrease in DARPP-32 fluorescence intensity in the 

ventral striatum (P = 0.0429, unpaired Student’s t test, N = 4 animals), but not 

in the dorsal region (Fig 4.6 B).  

 
Figure 4.6. Quantification of DARPP-32 immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of DARPP-32 immunoreactivity in the striatum of WT and 
OVX mouse. (B) shows the fluorescence intensity of DARPP-32 in the ventral and dorsal 
striatum of WT and OVX mice. Bars represent the mean and error bars the SEM; * P < 0.05, 
Unpaired student’s t-test N = DARPP-32 ventral striatum: WT: 4, OVX: 4; DARPP-32 dorsal 
striatum: WT: 4, OVX: 4 animals. 
Scale bars: 10µm. 
 
Since in the OVX, α-syn colocalised with clusters immunoreactive for VGAT, I 

next assessed whether there were any changes in the expression of markers 

associated with local interneurons.  While there was a trend for mRNA levels 
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for ChAT to increase, and for PV to decrease, in OVX samples, these changes 

were not statistically significant (Fig 4.7). 

 
Figure 4.7 Quantification of interneuron-encoding mRNAs in the striatum shows the levels of 
ChAT and PV-encoding mRNAs in isolated samples from WT and OVX mice. Bars represent 
the mean and error bars the SEM; Unpaired student’s t-test N = ChAT: WT: 6, OVX: 6; PV: 
WT: 6, OVX: 6 animals. 
 

There were also no significant changes in the fluorescence intensity for 

parvalbumin in OVX samples although there was a trend for the intensity 

level to reduce in the ventral and dorsal striatum of OVX samples (Fig 4.8 B).  
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Figure 4.8. Quantification of parvalbumin immunoreactivity in the striatum of WT and OVX 
mice. 
(A) shows representative image of Parvalbumin (PV) immunoreactivity in the striatum of WT 
and OVX mouse. (B) shows the fluorescence intensity of PV cells in the ventral and dorsal 
striatum of WT and OVX mice. Bars represent the mean and error bars the SEM; Unpaired 
student’s t-test N = PV ventral striatum: WT: 4, OVX: 4; PV dorsal striatum: WT: 4, OVX: 4 
animals. 
Scale bars: 2µm. 
 

Finally, neuroinflammation is a key component of PD pathology (Joers et al., 

2017)(de Araújo Boleti et al., 2020). I investigated whether there were signs of 

inflammation in the striatum as a result of PD using IBA1, the standard cellular 

marker of neuroinflammation. However, surprisingly I detected a significant 

decrease in the fluorescence intensity of IBA1 in the ventral (P = 0.0009, 
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unpaired Student’s t test, N = 4 animals) and dorsal striatum of OVX mice (P 

= 0.0162, unpaired Student’s t test, N = 4 animals) (Fig 4.9 B).  

 
Figure 4.9. Quantification of IBA1 immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of IBA1 immunoreactivity in the striatum of WT and OVX 
mouse. (B) shows the fluorescence intensity of IBA1 in the ventral and dorsal striatum of WT 
and OVX mice. Bars represent the mean and error bars the SEM; * P < 0.05, *** P < 0.001, 
Unpaired student’s t-test N = IBA1 ventral striatum: WT: 4, OVX: 4; IBA1 dorsal striatum: WT: 
4, OVX: 4 animals. 
Scale bars: 20µm. 
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4.3. Quantification of Kv-encoding mRNAs in the striatum of PD 

mice 

I next assessed whether PD pathology affects the expression of Kv in the 

striatum, beginning at the mRNA level. I focussed only on Kv that I have shown 

from my previous immunohistochemistry to be expressed in striatal neurons. 

To this end, I performed qPCR on Kv1.2, Kv2.1, Kv4.2 and Kv4.3 to assess Kv 

changes at the mRNA level of OVX mice in comparison to WT littermates as 

control. A pivotal finding revealed that Kv4.3 mRNA levels was significantly 

increased in OVX mice (P = 0.0037, unpaired Student’s t test, N = 6 animals). 

However, there were no significant differences in the mRNA levels for Kv1.2, 

Kv2.1 and Kv4.2 in OVX mice (Fig 4.10). 
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Figure 4.10. Quantification of Kv-encoding mRNAs in the striatum shows the levels of Kv-
encoding mRNAs in isolated samples from WT and OVX mice. Bars represent the mean and 
error bars the SEM; ** P < 0.01, unpaired student’s t-test N = Kv1.2: WT: 6, OVX: 6; Kv2.1: 
WT: 6, OVX: 6; Kv4.2: WT: 6, OVX: 6; Kv4.3: WT: 6, OVX: 6 animals. 
 
 
4.4. Quantification of Kv protein in the striatum of PD mice 

I then assess whether these changes in mRNA were translated at the protein 

levels as well. I detected robust decreases in the fluorescence intensity for: 
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Kv2.1 in ventral striatum (P = 0.0105, unpaired Student’s t test, N = 8 animals) 

and dorsal striatum (P = 0.0279, unpaired Student’s t test, N = 8 animals) (Fig 

4.11 B); Kv4.2 in ventral striatum (P = 0.0067, unpaired Student’s t test, N = 8 

animals) and dorsal striatum (P = 0.0035, unpaired Student’s t test, N = 8 

animals) (Fig 4.12 B); and Kv4.3 in ventral striatum (P = 0.0025, unpaired 

Student’s t test, N = 4 animals) and dorsal striatum (P = 0.0058, unpaired 

Student’s t test, N = 8 animals) (Fig 4.13 B). 

 
Figure 4.11. Quantification of Kv2.1 immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of Kv2.1 immunoreactivity in the striatum of WT and OVX 
mouse. (B) shows the fluorescence intensity of Kv2.1 in the ventral and dorsal striatum of WT 
and OVX mice. Bars represent the mean and error bars the SEM; * P < 0.05, Unpaired 
student’s t-test N = Kv2.1 ventral striatum: WT: 8, OVX: 8; Kv2.1 dorsal striatum: WT: 8, OVX: 
8 animals. 
Scale bars: 10µm. 
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Figure 4.12. Quantification of Kv4.2 immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of Kv4.2 immunoreactivity in the striatum of WT and OVX 
mouse. (B) shows the fluorescence intensity of Kv4.2 in the ventral and dorsal striatum of WT 
and OVX mice. Bars represent the mean and error bars the SEM; ** P < 0.01, Unpaired 
student’s t-test N = Kv4.2 ventral striatum: WT: 8, OVX: 8; Kv4.2 dorsal striatum: WT: 8, OVX: 
8 animals. 
Scale bars: 10µm. 
 



 108 

 
Figure 4.13. Quantification of Kv4.3 immunoreactivity in the striatum of WT and OVX mice. 
(A) shows representative image of Kv4.3 immunoreactivity in the striatum of WT and OVX 
mouse. (B) shows the fluorescence intensity of Kv4.3 in the ventral and dorsal striatum of WT 
and OVX mice. Bars represent the mean and error bars the SEM; ** P < 0.01, Unpaired 
student’s t-test N = Kv4.3 ventral striatum: WT: 4, OVX: 4; Kv4.3 dorsal striatum: WT: 4, OVX: 
4 animals. 
Scale bars: 2µm. 
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Discussion 

In the current chapter, I demonstrate that in the prodromal phase of PD, there 

are significant changes in the expression of a range of key neurochemical 

pathways within the striatum. Key amongst these changes were the altered 

levels of expression for specific Kv subtypes. Such changes are likely to 

significantly impact on the activity of striatal neurons and thus the overall 

functioning of the striatum. Given the widespread connectivity of the striatum 

with the rest of the brain, such altered functioning of the striatum could add to 

the overall disease spectrum of PD and thus the myriad of symptoms 

associated with this condition which extend beyond the classical motor deficits, 

such as apathy, altered levels of stress and anxiety. 

 

PD-dependent neurochemical plasticity in early stages of the 

condition 

PD is a progressive condition with its pathology thought to initiate many 

decades before the onset of the cardinal motor deficits of bradykinesia, rigour, 

tremor (Williams and Litvan, 2013). When such symptoms present, irreversible 

neurodegeneration has already occurred. The result is a purely symptomatic 

approach to enhancing patient care. Therefore, a fervent area of research is 

the identification of early stage symptoms that may be predictive of the 

condition, thereby allowing for interventions at a time when the trajectory of 

the disease can still be modified. The data arising from this chapter are 

therefore important because they could be instrumental in providing a platform 

for the further understanding of some of the early stage changes that occur 
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throughout different brain regions, and thus the earliest symptoms to arise in 

such patients. 

It is unsurprising that some of the changes occurring in the OVX mice relate 

to neurotransmitter system. α-syn functions primarily as a protein within axon 

terminals to regulate the release of neurotransmitters (Jessika C. Bridi and 

Hirth, 2018). Although it is thought to be ubiquitously expressed in most axon 

terminals, its associated pathology appears to preferentially impact on only 

specific subset of neurotransmitter pathways. Indeed, in PD patients, the 

pathological form of α-syn, namely Lewy bodies, is concentrated in 

catecholamine centres, although these may spread to other regions with 

advancing age. Furthermore, in α-syn knockout mice, the synaptic release of 

dopamine is preferentially impaired (Lotharius and Brundin, 2002) (Nemani 

et al., 2010). Since the striatum is one of the brain regions to receive the 

highest levels of dopamine innervation, evidenced by the intense expression 

of DARPP-32 (see Figure 3.1), it is predictable that the increased expression 

of α-syn that occurs in OVX mice will impact on this brain region. What is 

unclear, and needs to be followed up in the future, is whether this increased 

α-syn expression results in the altered release of dopamine in the striatum, at 

this early age. In OVX mice, I detected a decreased expression of DARPP-

32. Since DARPP-32 is a substrate of cAMP-dependent protein kinase (PKA) 

and is also involved in the phosphorylation of dopamine receptors 

(Hemmings and Greengard, 1986), its altered expression could indicate 

changes in dopamine receptor activation, which most likely occurs from 

changes in dopamine synaptic release. Altered levels of dopamine release 

are closely related with psychiatric disorders of the striatum, such as 
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motivation, anxiety and aggression (Calabresi et al., 2000). Changes in 

emotion related to such disorders are known to be part of the early spectrum 

of symptoms prior to PD motor deficits. Therefore, future studies to fully 

characterise such changes in dopamine signalling during this early stage of 

the disease could be valuable in addressing this aspect of the condition. 

I found it intriguing that expression of the inflammatory marker, IBA1, was 

decreased in OVX mice. This is because neuroinflammation is known to be a 

key component of the PD pathology (de Araújo Boleti et al., 2020). Since 

increased expression of IBA1 is generally considered to be representative of 

neuroinflammation, this diminished expression, logically, would suggest a 

dampened immune response. If so, it is unclear whether this is representative 

of a persistent suppressed immune state, or merely a compensatory decrease, 

during these early stages, to counteract any ongoing pathology. I predict it 

could be latter because the age-related onset of PD pathology. Perhaps, 

ongoing PD pathology induces a range of compensatory changes in various 

brain pathways allowing patients in early to mid-life to contain the disease. 

However, such counteractive measures could be exhausted if one lives to old 

age, precipitating the onset of symptoms. It would therefore be useful in future 

studies to compare the levels of IBA1 expression in young and old animals to 

assess whether there is a temporal profile to the immune status in OVX mice. 

Such studies of IBA1 should also be accompanied by assessing other markers 

of neuroinflammation.  
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Changes in Kv expression in OVX mice 

My data show that the increased expression of α-syn has a profound effect on 

various Kv subtypes, at both the gene and protein levels. It is unclear whether 

such changes are due to a direct interaction between α-syn and Kv, or merely 

compensatory changes due to alterations in neuronal activity as a result of α-

syn dependent neurotransmitter release. Future studies focussed on protein-

protein interaction analyses for α-syn and various Kv will be instrumental in 

addressing this important question. However, since Kv functions to dampen 

action potential activity, their decreased expression at the protein levels could 

be indicative of underactivity of the neurons on which they are expressed, in 

order to maintain basal levels of activity. Given the changes in DARPP-32 

expression, another surrogate marker of dopamine receptor activation. 

Collectively, such changes in Kv expression could infer altered levels of activity 

for striatal neurons, and thus striatal function, at this early age. Therefore, 

future electrophysiological studies focussed on assessing changes in MSN 

excitability at various ages of OVX mice could provide unique insights into the 

earliest functional changes to occur in the striatum, during the PD process, 

and thus inform on the understanding and treatment of the earliest symptoms 

to emerge. 

 

In the next chapter, I investigate whether pathology related to Alzheimer’s, 

impacts on native Kv expression. 
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Chapter Five 

Effect of Alzheimer’s disease pathology on the 

expression of Kv in the striatum 

 

Summary and importance 

Background 

In chapter 4, I demonstrated that in an age-related neurodegenerative disease 

that primarily impacts on a very select groups of brain regions including the 

striatum, namely PD, such pathology has a significant impact on the native 

expression patterns of Kv within this brain region. This suggest that some of 

the changes in striatal neuronal activity, and therefore striatal-related brain 

functions, could be due to this altered level of Kv expression, therefore 

revealing potential therapeutic targets. The question therefore arises whether 

the pathology of other age-related neurodegenerative diseases that affect the 

brain more broadly, in particular dementias such as AD, also impact on striatal 

Kv, and therefore underlie some of the striatal-related symptoms of AD, such 

as apathy or emotional disturbances. Therefore, in this chapter, I aim to 

explore whether pathology associated with AD alters striatal Kv expression.  

 

Methods 

I used the APP-PS1 transgenic (TG) mouse model of AD which results in 

accelerated production of amyloid beta (Aβ), which is a pathological hallmark 

of AD. As controls, I used wild-type (WT) littermates.  All animals were males, 

aged 6 months. I used immunohistochemistry with confocal microscopy to 
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determine the expression of Aβ peptides as well as changes in the expression 

levels of various striatal neurochemicals in the TG mouse. Quantitative PCR 

(qPCR) and immunohistochemistry was used to assess changes in the 

expression of various Kv subtypes.   

 

Results 

A surprising discovery was that Aβ was expressed in only a subset of DARPP-

32 immunopositive cells. This indicates that only a subset of MSNs are 

impacted by AD pathology. Furthermore, Aβ was expressed in cholinergic and 

parvalbumin interneurons, indicating that AD pathology also affects local 

circuit interneurons. I did not detect any changes in the expression levels of 

other striatal neurochemicals, including markers of their inputs or 

inflammation. qPCR revealed that mRNA for the Kv4.3 was significantly 

decreased in TG mice compared to WT. There were no other differences in 

expression for other Kv examined. At the protein level, I did not detect any 

changes in the expression for various Kv.  

 

Importance 

The data revealed that classic AD pathology presents selectively in specific 

cell types of the striatum. Furthermore, the striatum overall is remarkably 

resilient to the presence of AD pathology, with minimal changes in expression 

for various neural markers detected. Finally, the decreased mRNA expression 

for Kv4.3, which is expressed on the GABAergic parvalbumin interneurons that 

provide key inhibitory modulation, could with age result in increased activity of 

such cells, resulting in changes in overall striatal activity.  



 115 

Results 

5.1. Characterisation of AD-like pathology in the striatum of TG 

mouse 

The TG AD mouse model I utilised has been widely used (Borchelt et al., 

1997). However, most investigators focus on cortical brain regions. As a result, 

the disease phenotype in the striatum has yet to be reported on. Therefore, as 

a start, I sought to characterise the type of AD-associated pathology that is 

expected in this model.  The TG model has two transgenes for human amyloid 

precursor protein and presenilin 1 that results in the over-expression of the 

amyloid beta 1-42 peptide, a key pathological hallmark of AD (Tanzi et al., 

1987). The production of Aβ increases with age, resulting in the development 

of Aβ plaques in cortical regions, in advanced age (Fig 5.1).  

 
Figure 5.1. Immunoreactivity for amyloid beta 1-42 (Aβ) in the hippocampus of WT and TG 
mice. 
(A1-2) shows immunoreactivity for Aβ in the hippocampus of 6 months old WT and TG mice 
in the same field of view. (A3-4) shows immunoreactivity for Aβ in the hippocampus of 24 
months old WT and TG mice in the same field of view. (A2) shows an intense expression of 
Aβ which is even more intense resulting in the expression of Aβ plaques in (A4). This indicates 
that AD pathology results in accelerated production of Aβ which increases with age. 
Scale bar 500 µm. 



 116 

However, in the striatum of TG mice, Aβ immunoreactivity was widespread 

throughout this brain region and presented as cytoplasmic signal in DARPP-

32 immunopositive neurons, indicating that the principal MSN neurons 

contained this AD-like pathology (Fig 5.2 B). It was noticeable that not all 

DARPP-32 were immunopositive for Aβ. (Fig 5.2 B3). No specific signal was 

detected in wildtype mice (Fig 5.2 A).  

 
Figure 5.2. Immunoreactivity for Aβ in the striatum of WT and TG mice. 
(A1) shows immunoreactivity for DARPP-32 immunopositive cells (MSN) in the striatum of WT 
mice. (A2) shows immunoreactivity for Aβ in the same field of view. (A3) is an overlay of (A1, 
A2) in the same field of view suggesting that no specific signal was detected in the striatum of 
WT mice. As with (A1-A2), (B1-B2) shows immunoreactivity for MSN and Aβ in the striatum 
of TG mice. (B3) is an enlarged overlay of (B1, B2) showing the expression of Aβ presented 
as cytoplasmic signal in DARPP-32 immunopositive neurons. Not all DARPP-32 were 
immunopositive for Aβ. 
Scale bar (A; B1-2) 50 µm; (B3) 10 µm. 
 
Intrigued by the presentation of Aβ signal in only I subpopulation of MSNs, I 

hypothesised that this could be based on their dopamine receptor (DR) profiles 

since some express D1R and other D2R, never both. I therefore evaluated Aβ 

immunoreactivity in conjunction with that for D1R. There was no clear 

correlation between DR and Aβ expression in DARPP-32 neurons, with some 

D1R-DARPP-32 positive neurons containing signal for Aβ, whilst others did 
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not (Fig 5.3). It is therefore unclear whether the expression of the transgenes, 

and thus the development of the pathology, is random in terms of MSNs, or 

related to a more refined, and yet to be discovered molecular profile. 

 
Figure 5.3. Immunohistochemical localisation of Aβ with dopamine 1 receptor (D1R) in the 
striatum of TG mice. 
(A) shows the immunoreactivity for Aβ and how it is expressed on DARPP-32 immunopositive 
cells (MSN). Aβ signal is expressed on subpopulation of MSNs (*) and DARPP-32 
immunonegative neurons (+). (B) shows the immunoreactivity for D1R and how it is expressed 
on MSN. (C, D) is an overlay of both (A and B) in the same field of view demonstrating the 
association between Aβ and D1R. There is no clear correlation between D1R and Aβ 
expression in DARPP-32 neurons, with some D1R-DARPP-32 positive neurons containing 
signal for Aβ, whilst others did not. 
Scale bars 10 µm. 
 
It was noticeable that some DARPP-32 immunonegative neurons also 

expressed Aβ signal, indicating that some interneurons contained this AD-like 

pathology. I therefore sought to determine the neurochemical identity of these 

Aβ immunopositive interneurons. A systematic analysis revealed that 

cholinergic (Fig 5.4 A) and parvalbumin (Fig 5.4 B) interneurons expressed 

Aβ. 
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Figure 5.4. Immunohistochemical localisation of Aβ with interneurons in the striatum of TG 
mice. 
(A1) shows the immunoreactivity for Aβ. (A2) shows the immunoreactivity for ChAt expressed 
on cholinergic interneurons. (A3) is an overlay of both (A1 and A2) showing the expression of 
Aβ in cholinergic interneurons. As with (A1-3), (B1-3) shows the expression of Aβ in 
parvalbumin containing GABAergic interneurons. 
Scale bars 10 µm. 
 
Apart from the Aβ 1-42 peptide that results in insoluble plaques, newly 

synthesised Aβ can also exist as soluble oligomers (AβO) which are 

purported to actually drive Aβ pathology in AD (Cline et al., 2018). I therefore 

used two different antibodies that recognises different sizes of AβO, termed 

NU1 and NU2, to assess whether AβO expression occurs in the striatum. 

Immunoreactivity for NU1 was found in both DARPP-32 immunopositive and 

immunonegative neurons (Fig 5.5 A). However, NU2 was exclusively 

expressed in DARPP-32 immunonegative neurons. Since NU1 and NU2 

recognise different sized AβO, the above suggests that different facets of 

AD-associated pathology target the different cell types of the striatum. 
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Figure 5.5. Immunoreactivity for amyloid beta oligomer (AβO) in the striatum of TG mice. 
(A1) shows immunoreactivity for DARPP-32 immunopositive cells (MSN). (A2) shows 
immunoreactivity for the AβO- NU1. (A3) is an overlay of both (A1 and A2) in the same field 
of view showing the expression of NU1 in DARPP-32 immunopositive and immunonegative 
cells. As with (A1-2), (B1-2) shows immunoreactivity for MSN and the AβO- NU2. (B3) is an 
overlay of both (B1 and B2) in the same field of view showing the expression of NU2 
exclusively in DARPP-32 immunonegative cells. This suggests that different facets of AD-
associated pathology target the different cell types of the striatum. 
Scale bar 20 µm. 
 

5.2. Impact of AD pathology on striatal neurochemical expression 

Any AD-related changes to striatal function could be due to consequences of 

such pathology on the native neurochemicals within this brain region. I 

therefore began by assessing whether there were any changes in the mRNA 

levels for afferent pathways that drive striatal function.  To this end, I performed 

qPCR to measure changes in the mRNA levels for the following genes: 

tyrosine hydroxylase gene (TH), serotonin transporter gene (Slc6a4), 

tryptophan hydroxylase 1 gene (TPH1), tryptophan hydroxylase 2 gene 

(TPH2) and dopamine β-hydroxylase gene (DBH).  mRNA levels of TH, 

Slc6a4, TPH2 and DBH were decreased in TG mice and levels of TPH1 was 
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increased in TG mice. However, these changes were not statistically 

significant (Fig 5.6). 

 
Figure 5.6. Quantification of neurochemical-encoding mRNAs in the striatum shows the levels 
of TH, slc6a4, TPH1, TPH2 and DBH-encoding mRNAs in isolated samples from WT and TG 
mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = TH: WT: 
15, TG: 15; Slc6a4: WT: 11, TG: 11; TPH1: WT: 15, TG: 15; TPH2: WT: 11, TG: 11; DBH : 
WT: 6, TG: 6 animals. 
 
Since a core feature of AD is neurodegeneration, I next assessed whether 

such AD-like pathology has an impact on the density of MSN neurons. I used 

the levels of DARPP-32 immunoreactivity as a surrogate marker of MSN 
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numbers. The mean intensity of DARPP-32 was lower in both the ventral 

striatum (P > 0.3252, unpaired Student’s t test, N = 5 animals), and dorsal 

striatum (P > 0.3408, unpaired Student’s t test, N = 5 animals) of TG mice. 

However, these changes were not statistically significant (Fig 5.7). 

 
Figure 5.7. Quantification of DARPP-32 immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of DARPP-32 immunoreactivity in the striatum of WT and TG 
mouse. (B) shows the fluorescence intensity of DARPP-32 in the ventral and dorsal striatum 
of WT and TG mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-
test N = DARPP-32 ventral striatum: WT: 5, TG: 5; DARPP-32 dorsal striatum: WT: 5, TG: 5 
animals. 
Scale bars: 10µm. 
 
Given the central roles that inhibitory interneurons play in regulating the activity 

of MSNs, I next explored whether AD-like pathology has any impact on such 
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cell types. To this end, I performed qRT-PCR to assess changes in the mRNA 

levels for ChAt and parvalbumin in the striatum of WT and TG mice. ChAt and 

PV mRNA levels were increased in TG mice. However, the changes were not 

statistically significant (Fig 5.8). 

 
Figure 5.8. Quantification of interneuron-encoding mRNAs in the striatum shows the levels of 
ChAt and PV-encoding mRNAs in isolated samples from WT and TG mice. Bars represent the 
mean and error bars the SEM; Unpaired student’s t-test N = ChAt: WT: 6, TG: 6; PV: WT: 18, 
TG: 18 animals. 
 
I then assessed whether there may be changes at the protein level, focussing 

on parvalbumin expressing interneurons since they are the most numerous 

and were also the only ones to express any Kv. To this end, I performed 

immunohistochemistry with confocal microscopy to assess the effect of AD 

pathology on the fluorescence intensity of PV cells in the ventral and dorsal 

striatum of TG mice in comparison to WT littermates as control. The mean 

intensity of PV cell was lower in the ventral striatum of TG mice (P > 0.3068, 

unpaired Student’s t test, N = 5 animals), but slightly higher in the dorsal 
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striatum (P > 0.9383, unpaired Student’s t test, N = 5 animals). However, the 

changes were not statistically significant (Fig 5.9). 

 
Figure 5.9. Quantification of parvalbumin immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of parvalbumin (PV) immunoreactivity in the striatum of WT 
and TG mouse. (B) shows the fluorescence intensity of PV cells in the ventral and dorsal 
striatum of WT and TG mice. Bars represent the mean and error bars the SEM; Unpaired 
student’s t-test N = PV ventral striatum: WT: 4, TG: 5; PV dorsal striatum: WT: 4, TG: 5 
animals. 
Scale bars: 2µm. 
 
Inflammation is a hallmark of AD pathology and has been documented in 

cortical brain regions in our AD mouse model. I investigated whether there 

were any signs of inflammation in the striatum, using the standard cellular 

marker of neuroinflammation, namely the microglia protein IBA1.  The mean 
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intensity of IBA1 was slightly higher in the ventral (P > 0.7053, unpaired 

Student’s t test, N = 5 animals), and dorsal striatum (P > 0.5021, unpaired 

Student’s t test, N = 5 animals) of TG mice. However, the changes were not 

statistically significant (Fig 5.10). 

 
Figure 5.10. Quantification of IBA1 immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of IBA1 immunoreactivity in the striatum of WT and TG 
mouse. (B) shows the fluorescence intensity of IBA1 in the ventral and dorsal striatum of WT 
and TG mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = 
ventral striatum: WT: 5, TG: 5; dorsal striatum: WT: 5, TG: 5 animals. 
Scale bars: 20µm. 
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5.3. Quantification of Kv-encoding mRNAs in the striatum of AD 

mice 

I next assessed whether such AD-associated pathology in striatal neurons has 

an impact on the expression of Kv in this brain region, beginning at the mRNA 

level, using qRT-PCR. Since mRNA is primarily located in cell bodies, I 

focussed only on those Kv which my previous immunohistochemistry revealed 

to be expressed in striatal neurons. These include the Kv1.2, 2.1, 4.2 and 4.3. 

I detected a significant decrease in the mRNA levels of the Kv4.3 in TG mice 

compared to WT littermates (P < 0.0066, unpaired Student’s t test, N = 11 WT 

and TG mice) (Fig 5.11).  Also, there was a trend towards a decrease in the 

mRNA levels for Kv1.2 and 2.1, and an increase for Kv4.2, but these did not 

reach statistical significance (Fig 5.11).  
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Figure 5.11. Quantification of Kv-encoding mRNAs in the striatum shows the levels of Kv-
encoding mRNAs in isolated samples from WT and TG mice. Bars represent the mean and 
error bars the SEM; ** P < 0.01, unpaired student’s t-test N = Kv1.2: WT: 15, TG: 15; Kv2.1: 
WT: 19, TG: 19; Kv4.2: WT: 6, TG: 6; Kv4.3: WT: 11, TG: 11 animals. 
 
 
5.4. Quantification of Kv protein in the striatum of AD mice 

The impact of AD pathology on KV expression could be either at the mRNA or 

protein levels, or both. I therefore assessed whether the minimal effect that 

AD pathology had on Kv mRNA expression, persisted at the protein level. To 
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this end, I performed immunohistochemistry with confocal microscopy to 

assess the effect of AD pathology on the fluorescence intensity of Kv2.1, Kv4.2 

and Kv4.3 in the ventral and dorsal striatum of TG mice in comparison to WT 

littermates as control. I detected a decrease in the mean intensity of Kv2.1 in 

ventral striatum (P = 0.5895, unpaired Student’s t test, N = 5 animals) and no 

change in the mean intensity in dorsal striatum (P = 0.9959, unpaired 

Student’s t test, N = 5 animals) of TG mice (Fig 5.12 B). The mean intensity of 

Kv4.2 in ventral striatum (P = 0.2128, unpaired Student’s t test, N = 5 animals) 

and dorsal striatum (P = 0.2884, unpaired Student’s t test, N = 5 animals) was 

decreased in TG mice (Fig 5.13 B). Also, the mean intensity of Kv4.3 in ventral 

striatum (P = 0.0738, unpaired Student’s t test, N = 5 animals) and dorsal 

striatum (P = 0.1871, unpaired Student’s t test, N = 5 animals) was decreased 

in TG mice (Fig 5.14 B). There was a trend towards a decrease in the protein 

levels of Kv2.1 (Fig 5.12 B), Kv4.2 (Fig 5.13 B) and Kv4.3 (Fig 5.14 B). 

However, these changes were not statistically significant. 
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Figure 5.12. Quantification of Kv2.1 immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of Kv2.1 immunoreactivity in the striatum of WT and TG 
mouse. (B) shows the fluorescence intensity of Kv2.1 in the ventral and dorsal striatum of WT 
and TG mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = 
Kv2.1 ventral striatum: WT: 5, TG: 5; Kv2.1 dorsal striatum: WT: 5, TG: 5 animals. 
Scale bars: 10µm. 
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Figure 5.13. Quantification of Kv4.2 immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of Kv4.2 immunoreactivity in the striatum of WT and TG 
mouse. (B)  shows the fluorescence intensity of Kv4.2 in the ventral and dorsal striatum of WT 
and TG mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = 
Kv4.2 ventral striatum: WT: 5, TG: 5; Kv4.2 dorsal striatum: WT: 5, TG: 5 animals. 
Scale bars: 10µm. 
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Figure 5.14. Quantification of Kv4.3 immunoreactivity in the striatum of WT and TG mice. 
(A) shows representative image of Kv4.3 immunoreactivity in the striatum of WT and TG 
mouse. (B)  shows the fluorescence intensity of Kv4.3 in the ventral and dorsal striatum of WT 
and TG mice. Bars represent the mean and error bars the SEM; Unpaired student’s t-test N = 
Kv4.3 ventral striatum: WT: 4, TG: 5; Kv4.3 dorsal striatum: WT: 4, TG: 5 animals. 
Scale bars: 2µm. 
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Discussion 

In this chapter, I provide the first demonstration of the expression of AD-

associated pathology in the striatum of a widely used AD mouse model. 

Different forms of Aβ were expressed within sub-populations of principal cells 

as well as interneurons. Despite the expression of what is supposedly a 

neurotoxic protein, I did not detect any changes in striatal neurochemistry, 

including Kv. This suggests that the striatum is remarkably resilient to core AD 

processes and possibly explains why there is limited impact on this brain 

region in terms of the core feature of AD, namely neurodegeneration.  

 

AD pathology in striatal neural circuits 

An interesting finding was that only a sub-population of MSNs express Aβ. 

This could be due to the age of the animals used (6 months), and it could be 

possible that with age, all MSNs express Aβ. Unfortunately, due to time 

constraints, I was unable to undertake and ageing component to this analysis. 

However, I would argue against the possibility of this age profile changing with 

age, because in other brain regions, it’s only the onset of Aβ insoluble plaques 

that emerge with ageing, not the number of cells that express Aβ (Borchelt et 

al., 1997). I therefore posit that this represents a constant pattern of expression 

of Aβ in this brain region. The question therefore arises as to why only some 

cells express Aβ. It could be a manifestation of the transgenic technology for 

this mouse model. The transgenes are expected to be constitutively expressed 

throughout the body. However, it could be possible that not all cells express 

the transgenes, although this is unlikely, based on the genotyping experiments 

we perform on all mice used. This divergent expression of Aβ could therefore 
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uncover an added layer of diversity to striatal cell categorisation. Historically, 

MSNs have been divided into two classes, based on their expression of either 

D1R or D2R, and their projection patterns to other brain regions, termed direct 

or indirect pathways respectively (Gerfen et al., 1990). Such nomenclature has 

remained in place with limited consideration of the possibility of more refined 

sub-classes of MSNs. With the advent of cutting-edge single cell 

transcriptomic and proteomics, it would be intriguing to assess whether the 

Aβ-expression MSNs are aligned with specific gene or protein profiles.  

 

Resilience of striatal neurochemistry to AD pathology 

I find it remarkable that the presence of a transgene, and the product of the 

transgene, had limited impact on the expression levels of various 

neurochemicals within the striatum, including Kv. This is at odds with brain 

regions in which various neurotransmitters systems have been altered (O’Neil 

et al., 2007). This therefore raises the question whether some brain regions 

may have a higher pathology burden in this mouse model, or the striatum 

somehow is able to better compensate for such pathology. Generally, in 

human AD, although the condition begins in sub-cortical brain regions, the 

most significant damage, in the form of neurodegeneration, occurs in cortical 

brain regions (Braak et al., 2011). I expect that the high level of glutamate-

containing neurons in cortical regions, and the known contribution of glutamate 

excitotoxicity in AD may be a factor, in contrast, the striatum is largely a 

GABAergic centre since MSNs utilise GABA as the primary neurotransmitter. 

Therefore, any dysregulation of the activity, is unlikely to lead to the massive 

glutamate release that occurs in the cortex and contributes to AD pathology. I 
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did not detect any striking changes in Kv expression in the stratum, as a result 

of the AD pathology. That is surprising since these ion channels have been 

implicated in AD-related pathology (Shah and Aizenman, 2014). I expect that 

this is related to the limited impact overall that Aβ expression had on striatal 

neurochemistry. 

 

In summary, Pathology associated with a major neurodegenerative disease, 

Alzheimer’s had limited impact on the native expression patterns of Kv in the 

striatum. 
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Chapter Six 

General discussion 

At the outset of my PhD research, my broad aims were to provide the first high 

resolution characterisation of the native Kv expression patterns within the 

striatum, and whether such expression profiles are subject to change as a 

result of different life experiences or diseases. The ensuing data provide 

unique insights into the cellular and subcellular localisation of Kv subtypes in 

the striatum and the extent to which they evolve in response to early life stress 

or pathology associated with PD and AD. Below, I provide a summary of the 

findings of my research and the implications they pose in the wider 

neuroscience research. 

 

Technical considerations 

All scientific experiments took place within the context of certain technical 

parameters which I address below. 

 

Early life stress (ELS) mouse model 

Animal model of ELS based on fragmented maternal care within the first week 

of life has been shown to reliably result in a hyper-stress phenotype throughout 

adulthood (Rice et al., 2008). This early-life experiences of abnormal maternal 

care program and abnormal stress response in the brain, also affects the 

expression and function of brain proteins, such as  neurotransmitter receptors 

(Gunn et al., 2013). As such, I am confident that the ELS paradigm was an 
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appropriate model for stress as I am working on a region of the brain that 

receive various neurochemical inputs from other brain regions.  

 

Alpha-synuclein (α-syn) mouse model of PD 

α-syn is the main component of Lewy bodies (LB) which has been shown to 

play a central role in PD (Osterhaus et al., 1997). A mutation in α-syn (A53T), 

encoded by the SNCA/PARK1 gene (Polymeropoulos et al., 1997) as well as 

missense point mutations in the N-terminal of α-syn (Osterhaus et al., 1997) 

has been shown to be the step for the formation of insoluble inclusions or LBs 

which plays a role in PD pathology (Miraglia et al., 1997). The pathological 

state of PD was replicated in mouse models by generating bacterial artificial 

chromosome transgenic mice (OVX) that display a transgene expression 

profile identical to endogenous α-syn and display age-dependent loss of 

nigrostriatal dopamine neurons and motor impairments (Janezic et al., 2013). 

Since the OVX mouse model closely mirrors the human pathological profile of 

PD in the striatum, it was therefore an appropriate model for my PhD. My 

findings in chapter four confirmed PD-associated pathology in the OVX models 

as the level of α-syn expression was significantly increased compared to WT 

mice. 

 

Mo/HuAPP695swe and PS1-dE9 mouse model of AD 

Over-expression of the amyloid beta 1-42 peptide (Aβ) displayed in 

Mo/HuAPP695swe transgenes for human amyloid precursor protein and 

presenilin 1 (TG) model (Tanzi et al., 1987) has been shown to result in 

accelerated deposition of Aβ plaques and used as a pathological feature of 
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AD (Borchelt et al., 1997). As such I made use of this model for my PhD but 

first of all characterise it for AD-associated pathology in the striatum as 

previous studies mostly focussed on cortical brain regions. My findings in 

chapter five confirmed AD-associated pathology in the TG models as Aβ was 

expressed in striatal principal neurons and interneurons. A major limitation of 

the data in chapter 5 is that the AD model used does not replicate the other 

pathological hallmark of AD, namely hyperphosphorylated Tau tangles 

(Mattson, 1997). This is important because Tau tangles are postulated to more 

closely correlate with AD pathology (Serrano-Pozo et al., 2011) (Lane, Hardy 

and Schott, 2018). Therefore, future studies using AD models based on Tau 

pathology could yet reveal significant changes in Kv expression. 

 

Immunohistochemistry and confocal microscopy 

Immunohistochemistry with confocal microscopy is useful for determining the 

localisation and quantification of specific protein in the brain thus it is 

dependent on antibody specificity. All antibodies used in this thesis have had 

their specificity fully characterised prior to the collection of data either by 

myself or colleagues in my laboratory, or the lack of specific signal appropriate 

for gene-deleted mice, or through published reports in the literature referenced 

in Table 2.1. Immunohistochemistry with confocal microscopy is also useful 

for double- and -triple immunolabelling in determining the distribution of 

proteins in the brain within cellular and subcellular compartments, and 

associations existing between multiple proteins by comparing 

immunoreactivity of a protein with that of characterised markers. The 

achievable resolution of the final image is based on the microscope used. I 
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made use of confocal microscope which enabled me to determine the precise 

localisation of synaptic proteins in certain experiments. However, the sub-

synaptic distribution of a protein cannot be defined. Determination of such 

requires the use of transmission electron microscopy in which samples are 

frozen at ultra-low temperature, coated with carbon and platinum, pressed 

between brass plates, and rapidly separated to provide an intact single 

representation of a single synapse which is then incubated with gold particle-

conjugated  antibodies and viewed under electron microscope. This technique 

would provide definitive localisation of proteins in sub-synaptic compartments 

useful in determining the exact location of neurochemical inputs. However, it 

is very expensive and rare. 

I used immunohistochemistry with confocal microscopy to reveal the different 

subfamilies of Kv targeted to different striatal cell types, subcellular 

compartments and non-neuronal cells within the striatum, and to quantify Kv 

changes in response to ELS or pathology associated with PD and AD. For the 

purpose of my research, I opted for immunohistochemistry rather than protein 

immunoblot (western blot), which is also widely used for quantifying protein 

levels, because western blot has limitations in determining the association 

between multiple proteins and the precise distribution of proteins. In the case 

of the native expression of Kv in the striatum which was the aim of my research, 

investigation of the precise cellular and subcellular localisation of Kvs and 

determination of neurochemical inputs integrated by striatal neurons was 

possible through the use of immunohistochemistry with confocal microscopy 

and wouldn’t have been achieved by western blot. However, difficulty in 

protein quantification which is a limitation in immunohistochemistry with 
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confocal microscopy was considered carefully and measures put in place to 

address the limitations. When comparing immunofluorescence intensity, exact 

processing of tissue samples was ensured at every stage. High-quality and 

consistent perfusion-fixation was ensured as variation in fixation can be 

caused by changes in chemical and molecular components of the fixative. 

Also, tissue samples in the same quantification study were processed with the 

same equipment, reagents and at the same time making sure there is 

consistency in the antibody incubation, washing and mounting of sections.  

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was 

useful throughout my study in quantifying the relative changes at the mRNA 

level. However, unlike in immunohistochemistry, I was limited in micro 

dissecting specific anatomical regions of interest within the striatum such as 

the ventral and dorsal striatum. As such, I used gross anatomical landmarks 

to dissect the striatal region of the brain. I made use of RT-PCR to enable me 

to have an overview of all the Kvs expressed in the striatum. Then I made use 

of qRT-PCR to reveal changes in native Kvs in the striatum in response to ELS, 

PD and AD pathology at the mRNA level. The RT-PCR and qRT-PCR data 

were supplemented by data from immunohistochemistry with confocal 

microscopy in determining the localisation of Kvs and quantifying changes in 

response to ELS, PD and AD pathology at the protein level. 

 

Collectively, I have addressed the major technical considerations in this study, 

and my choice and application of technique was within the confines of the 

available resources, equipment, and technical expertise to answer the 

scientific questions set during my PhD research. 
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Localisation of Kv subfamilies in the striatum 

The discovery of the rich diversity and manner of expression of native Kv 

subtypes in the striatum provided a bedrock for my PhD research and can be 

linked to an array of intra- and intercellular signalling events that underlie 

striatal function. Kv has been shown to sense and respond to local changes in 

levels of their activating stimuli (Trimmer, 2015), thus discovery of its rich 

diversity helps to further investigate changes that occur in response to stress 

and diseases. The overall picture from the localisation of Kv is that Individual 

Kv subtypes are present at precise locations with: Kv3.1 and 4.3 exclusively 

expressed in parvalbumin containing GABAergic interneurons; Kv1.1 

expressed in axon terminals originating from local GABAergic axons that 

innervate the subcellular region of MSNs; Kv1.2 expressed in glutamatergic 

axons (originating from the cortex, amygdala, hippocampus, and cortex), and 

post-synaptic domains of excitatory axon terminals; Kv1.3 expressed in 

glutamatergic axons originating from the thalamus; and Kv1.4 expressed in 

presynaptic terminals of axons. 

A very striking discovery is the expression of two different Kv subtypes 

exclusively located on MSNs with Kv2.1 expression restricted to somatic and 

proximal dendritic compartments of MSN, while Kv4.2 is exclusively expressed 

in distal dendrites. This localisation of Kv2.1 and Kv4.2 into distinct MSN 

subcellular compartments suggests the unique functional properties of the two 

Kv subtypes and uniqueness of the synaptic inputs that target these different 

compartments of the MSN.  Kv2 have been shown to be distinguished by their 

restricted high-level expression in proximal dendrites (Trimmer, 2015) which 

is consistent with my data. Kv2 are delayed rectifiers (Misonou, Mohapatra and 
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Trimmer, 2005) and my data showed Kv2.1 to be located on proximal dendrites 

that are generally innervated by monoaminergic inputs such as noradrenaline 

or dopamine and receive limited glutamate input indicating that they are ideally 

placed to respond to slower changes in membrane potential. On the other 

hand, Kv4 are transient currents because they activate at subthreshold 

membrane potentials, inactivate rapidly, and recover from inactivation quickly 

(Birnbaum et al., 2004) and my data showed Kv4.2 to be expressed on distal 

dendrites that selectively receive all the glutamatergic axons that innervate 

MSNs indicating that they are also ideally placed to integrate the rapidly 

changing membrane potentials from glutamate inputs. This is because 

glutamate as a neurotransmitter elicits an extremely powerful excitatory drive. 

Also, glutamatergic inputs are extremely numerous from a vast array of 

different brain regions. 

Kv1.5 is expressed on the plasma cell membrane and dendrites of MSN. 

However, its expression is not exclusive to MSNs as it is also expressed on 

parvalbumin containing GABAergic neurons and oligodendrocyte precursor 

cells (OPC). OPC is a non-neuronal cell that serve as a reservoir for the 

generation of new oligodendrocytes. The expression of Kv1.5 on OPC opens 

the possibility of a unique target for disorders associated with OPC production. 

Overall, identification of the rich diversity of Kv in the striatum is a valuable 

contribution to knowledge as this is the first high resolution characterisation of 

the diverse cellular and subcellular localisation of Kv subtypes in the striatum, 

thus, providing a novel insight into the native Kv system in the striatum. 
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Inflammation and neurochemical plasticity in the striatum 

An important discovery is the expression of Kv1.6 on microglia, a non-neuronal 

cell activated during neuroinflammation and regarded as the resident immune 

cells of the brain. Inflammatory process of the brain involved in triggering 

various neurological diseases such as AD and PD (de Araújo Boleti et al., 

2020) has been shown to be a major factor in susceptibility to stress-induced 

pathologies due to the several neurochemical adaptations associated with it 

(Wood et al., 2015). Such neurochemical adaptation is what bring about Kv 

changes as revealed in the ELS data in which the mean fluorescence intensity 

of Kv2.1 in ventral striatum and Kv4.2 in ventral and dorsal striatum were 

significantly decreased. Since studies have shown that inflammation triggers 

stress-induced pathologies as well as neurological diseases due to 

neurochemical adaptation, I investigated whether there were signs of 

inflammation in the striatum as a result of ELS and neurological diseases 

pathology. My data revealed IBA1 immunoreactivity, used as marker for 

microglia to be significantly decreased in the ventral and dorsal striatum of 

ELS mice when compared to WT littermates as control. IBA1 was also 

significantly decreased in PD-associated pathology both in the ventral and 

dorsal striatum. This is intriguing since increased expression of IBA1 is 

generally considered to be representative of neuroinflammation. Logically, the 

diminished expression of IBA1 observed in ELS and PD suggests a dampened 

immune response which may be representative of a compensatory decrease 

to counteract any ongoing pathology. Such counteractive measures could be 

exhausted if one lives to old age, precipitating the onset of symptoms.  
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Overall, Kvs expressed in the striatum are highly plastic in response to life 

experience with significant changes occurring as a result of ELS. Furthermore, 

future studies in which the expression levels of IBA1 and other markers of 

neuroinflammation is compared in young and old animal models of stress and 

neurological diseases pathology will be instrumental in assessing changes in 

the brain immune status. 

 

Neurotransmitter response to PD pathology 

PD pathology is thought to be initiated long before the onset of the cardinal 

motor deficits of bradykinesia, rigour, tremor (Williams and Litvan, 2013). α-

syn plays an important role in PD (Osterhaus et al., 1997) and its 

overexpression at disease relevant levels, as exhibited in OVX mice model, 

results in the core features of PD displayed in old age (Janezic et al., 2013). 

My data in chapter four revealed that α-syn is enriched in glutamatergic axon 

terminals originating from the cortex, axon terminals from local GABAergic 

interneurons, dopaminergic axons and noradrenergic axons. This is consistent 

with studies that shows that α-syn functions primarily as a protein within axon 

terminals to regulate the release of neurotransmitters (Jessika C. Bridi and 

Hirth, 2018). My data further revealed the changes in expression of 

neurotransmitters in which there was a significant increase in tyrosine 

hydroxylase (TH) while tryptophan hydroxylase 1 (TPH1) was decreased 

significantly in the striatum of OVX mice at the mRNA level. These changes in 

neurotransmitters which have been shown to be released at axon terminals 

associated with α-syn provide unique insights into the earliest functional 

changes in PD.  
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Kv response to PD pathology 

Studies have shown that the onset of PD is as a result of neuronal deaths 

mainly in the substantia nigra pars compacta (SNc) where dopamine is 

normally synthesised and pumped into movement-regulating brain regions 

and that symptoms are seldom noticed because the striatum, immediately 

downstream of the SNc, can compensate to some extent. However, massive 

neurons in the striatum also start to die eventually (Zeng et al., 2018). A good 

understanding of PD-associated changes in Kv in young mice is instrumental 

in understanding some of the early stage changes and thus the earliest 

symptoms to arise in PD patients before the onset of neuronal deaths. My data 

in chapter four revealed Kv2.1, 4.2 and 4.3 at the protein level to be decreased 

significantly in OVX mice. These significant decrease in protein levels can be 

due to a direct interaction between α-syn and Kvs, or compensatory changes 

due to alterations in neuronal activity as a result of α-syn dependent 

neurotransmitter release.  

The changes in Kvs revealed by my data provide unique insights into the 

earliest functional changes to occur in the striatum before the onset of cardinal 

motor deficits. Further studies focussed on protein-protein interaction analyses 

for α-syn and various Kvs can inform more on the understanding and treatment 

of the earliest symptoms to emerge. 

 

Resilience of the striatum to AD pathology 

AD have been shown to disrupt synaptic function and contribute to cognitive 

impairment (Hsiao et al., 1996) and central to this is the accelerated deposition 

of amyloid beta (Aβ) in the brain (Borchelt et al., 1997). To model AD 
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pathology, I made use of TG mice model with two transgenes for human 

amyloid precursor protein and presenilin 1 that results in the over-expression 

of Aβ and my data revealed the expression of Aβ in some MSNs as well as 

cholinergic and parvalbumin interneurons. This indicates that AD pathology 

affects the principal neurons and local circuit interneurons of the striatum. This 

is an important finding as it is the first demonstration of the expression of AD-

associated pathology in the striatum of a widely used AD mouse model. A 

comparison of the striatum of WT and TG mice did not show significant 

changes in the expression levels of striatal neurochemicals. There was no 

significant change in neurochemical markers such as ChAt and DARPP-32 

that are expressed on neurons which studies have shown to be affected by 

AD pathology in other parts of the brain. For the Kvs, there was no significant 

change at the protein level while at the mRNA level, Kv4.3 was significantly 

decreased in TG mice. Also, inflammatory process of the brain has been 

shown to trigger neurological diseases such as PD and AD (de Araújo Boleti 

et al., 2020). Whilst my data in chapter four showed that PD pathology results 

in reduced expression of inflammatory marker, IBA1, in the striatum, AD 

pathology did not result in significant change in IBA1 expression. 

Overall, my data reveals that the striatum is resilient to AD pathology which 

could mean that the striatum has a higher pathology burden in TG mouse 

model, or the striatum somehow is able to compensate for AD pathology. 

 

In summary, I have provided novel data to demonstrate high resolution 

characterisation of the expression patterns of different Kv subtypes and the 
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neurochemical inputs they integrate in the striatum. I have also shown Kv to 

be highly plastic in response to life experience, providing insights into the 

earliest functional changes in PD, and showing the resilience of striatal 

neurochemicals to AD pathology. I therefore believe that my research has 

provided valuable contributions to our understanding of Kv diversity in the 

striatum and the changes that occur in response to life experience, or 

pathology relating to specific neurodegenerative diseases, namely 

Parkinson’s and Alzheimer’s. 
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