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Abstract 
Two-component regulatory systems allow bacteria to respond to and survive the environments 

in which they are situated. Specifically focusing on the sensor kinase element of these systems, 

much is left unknown regarding the overall functions of many of these protein types. This work 

centres on the EnvZ/OmpR system within Escherichia coli and more specifically how the 

osmosensing kinase EnvZ transduces signal across the membrane. Many studies have 

detailed the mechanisms of cytoplasmic and periplasmic sections of these proteins, yet the 

transmembrane helices have remained relatively untouched due to difficulties in probing within 

the membrane in vivo. Transmembrane helix movements have been detailed within similar 

kinase proteins, which are described for comparison. 

 The experimental approach centred around three mutant libraries of EnvZ – two single-

cysteine libraries (transmembrane helix 1 or 2) and one double-cysteine library (both 

transmembrane domains). The cysteines replaced residues within the transmembrane helices 

of EnvZ and were predicted to form a sulphydryl crosslink between two dimerising proteins 

under oxidising conditions. This was proposed to occur only if the positions were within an 

appropriate proximity meaning that some area of the helix would crosslink and others would 

not, revealing an interaction profile. The signal output of the system was also  tested for 

tolerance to each mutation. These experiments were performed in the presence and absence 

of a hyperosmotic stimulus in order to suggest differences in the interaction and signal output 

profiles of the active versus inactive forms of EnvZ. 

 The single-cysteine libraries revealed no differences in the interaction profile of the first 

transmembrane helix and a non-piston type movement within the second transmembrane 

helix. The double-cysteine library generally corroborated these results, adding a TM1/2 

interaction profile. This profile included residues within the periplasmic and cytoplasmic ends 

of the helices but not within the membrane core. The dynamic range of the system was also 

calculated for the double-cysteine library and compared to “absence of stimulus” signal output 
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results. This revealed an exponential decay relationship across the 89-member library, with 

only five outliers to this trend.  

 While the overall movement of the EnvZ transmembrane helices cannot be 

conclusively stated from this work, several interesting features of this mechanism have been 

described. In particular, the lack of interaction between TM1 and TM2’ helices may suggest 

an inner membrane space is created that contributes to the sensing mechanism of the system. 

Ultimately, the results collected do not support the piston-type displacements seen in similar 

kinases, leading to the proposal of a new model. Further work is required to test the proposed 

model as well as understanding the role of EnvZ within a wider context.  

 

Keywords: Two-component systems, EnvZ/OmpR, Transmembrane signaling, 

Transmembrane four-helix bundle. 
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Chapter 1: Introduction: An overview of the Two Component 
System 
 

1.1: Two-Component System Structure 

The most crucial goal for any bacterium is to survive and propagate its existence to the furthest 

degree possible within the environment it is situated. Therefore, the environment will inevitably 

present the primary barrier to this goal and so the bacterium must be appropriately equipped 

to deal with its vast array of environmental changes. The two-component regulatory system 

(TCS) is specifically engineered to allow bacteria to react to their environments (7–12) or 

pathogenically (12–14) and symbiotically (15,16) interact with eukaryotic hosts and partake in 

essential cellular pathways (7,17). Some TCSs are essential to bacterial viability such as 

WalK/WalR that regulates cell wall metabolism and virulence yet most of its physiological role 

remains uncharacterised. Others regulate homeostatic processes important for virulence such 

as the KdpD/KdpE system which regulates potassium ion levels, a critical factor in bacterial 

virulence (18–21). EnvZ/OmpR is a TCS that regulates outer membrane porin expression and 

while it is not essential to cell viability, it has control over the permeability of the outer 

membrane to small hydrophilic molecules (22). 

A TCS is formed of sensor and effector components known more specifically as the 

sensor histidine kinase (SHK) and the response regulator (RR) respectively. This basic 

structural architecture can become more complex, with additional elements added but the 

SHK and RR are consistent throughout (Figure 1-1 A-D)(23). Depending on the specific 

nature of the stimulus it is designed to detect, the SHK will often be bound within the inner 

membrane. The RR is found in the cytoplasm and will often be exclusively linked to its SHK, 

receiving input only via this interaction (24,25). These features describe the TCS somewhat 

two-dimensionally, however the reality of their function is far more complex as they form a 
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sophisticated network. These networks function via the crosstalking of TCSs and these 

processes must be tightly regulated to ensure signals are properly transduced. 
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Figure 1-1: Classifications of two-component systems by their architecture. The classical structure (A) consists of a sensor including an input domain and a 
histidine kinase (HK) domain. The HK domain becomes phosphorylated following input detection, which allows for phosphorylation of the RR. Once the RR is 
phosphorylated, the attached output domain produces an output. The hybrid system (B) is similar to the classical system, yet it is formed as one continuous 
protein, rather than two separate polypeptides. The phosphorelay system (C) requires four separate phosphotransfer events, as the membrane-bound component 
is more complex than the classical system. The two additional phosphotransfers occur within the kinase protein as the phosphate group is passed to a receiver 
domain then a histidine phosphotransferase domain before it is moved to a conserved aspartate within the response regulator. Upon completion of these transfer 
events, an output is generated. The convergent (D) and divergent (E) systems are the opposite of one another. The former perceives stimuli via multiple sensor 
HKs that communicate and activate a shared response regulator. The latter perceives stimulus via a single sensor HK which communicates with multiple response 
regulators, subsequently producing multiple outputs. (23)  
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1.2: Crosstalk Versus Specificity 

As previously mentioned, an SHK is almost certain to be specifically linked to its 

cognate RR – without such a system there would be an overabundance of crosstalk leading 

to a fatal breakdown in communication from external signals to internal processes. Therefore, 

SHKs utilise a set of phosphotransfer-related mechanisms to maintain specificity to their 

cognate RR including molecular recognition, phosphatase activity and competition for 

substrates. The foremost of these mechanism is the SHKs ability to recognise specific 

residues within the RR, thereby allowing it to discriminate cognate from non-cognate (26,27). 

Phosphatase activity, found in most SHKs, allows the TCS to regulate the signal output 

generated by its RR through means of phosphate removal. This also aids specificity and 

reduces unwanted crosstalk as phosphorylated non-cognate RRs will be acted upon by the 

phosphatase activity of the SHK before they have chance to generate an inappropriate output 

(28–31). Some response regulators are activated by the acetyl-phosphate available within the 

cytoplasm (Figure 2-1D) via its own phosphatase activity. Similar to the activation of non-

cognate RRs previously discussed, SHKs will detect and correct these erroneous 

phosphorylation events (2,32–34). Finally, the RRs compete for phosphorylated kinases and 

therefore cellular concentrations of both will contribute to regular function in response to signal. 

It is exceedingly common for [RR] to exceed its cognate [SHK]; for example EnvZ (SHK) and 

OmpR (RR) are maintained at a ratio of around 1:35, which is similar to most other pathways 

(35,36). This relationship of concentrations allows the cognate RR to easily outcompete any 

non-cognate RRs, thus maintaining regular signal function. These mechanisms contribute to 

reduction of unwanted crosstalking, therefore most TCS communication is one-to-one (Figure 

1-2A). However, some TCS must engage in crosstalk, either multiple SHKs to a single RR or 

the converse, to allow specific physiological events to occur (24,37,38). In terms of targeting 

a TCS, the balance of specificity with crosstalk and the impact on cell survival could be of 

great importance. Causing an overabundance of unregulated crosstalk will most likely cause 
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detrimental effects to the overall cell function, resulting in either bacteriostatic or bactericidal 

effects. Consequently, investigation into defining TCSs as therapeutic targets has taken place 

 

1.3: Domain structure and related functions within the SHK 

The fundamental purpose of a TCS system is to allow a bacterium to respond to specific 

environmental cues such as changes in pH, osmotic pressure, nutrient levels and antibiotic 

presence (39). These systems are also able to crosstalk at the level of transcription, thereby 

creating a complex signal transduction network capable of facilitating survival across a wide 

range of environments (40,41). The process of signal transduction is largely conserved 

between different systems (Figure 1-2) and while the ability of the dimerisation and histidyl 

phosphotransfer (DHp) domain  and catalytic ATPase (CA) domain to form a dimer and 

facilitate trans-autophosphorylation (Figure 1-3) is well understood (42), the role of the 

transmembrane helices transferring signal to this cytoplasmic four-helix bundle is much less 

well understood in SHK proteins generally. Unsurprisingly, mutation and allosteric modulation 

of TCSs has been shown to result in various mechanisms of resistance across a range of 

different bacteria (39,43–47). Thus, modulation of signal output from these systems appears 

to be viable target for chemotherapeutic treatment. 
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Figure 1-2: A TCS from sensory input to gene transcription output with EnvZ crystal 
structures for comparison. The SHK is the larger protein within this figure, formed of 
various domains that each contribute a specific function. A sensor domain (purple) 
detects stimuli that will effect conformational change. The transmembrane domains 
(grey) will contribute to the passage of signal across the membrane. The HAMP 
(present in Histidine kinases, Adenylate cyclases, Methyl-accepting proteins and 
Phosphatases) domain (orange) will contribute to this transduction downstream, 
ensuring the signal is not passed on inappropriately. The DHp domain (green) 
contains a conserved histidyl residue (H) that will be autophosphorylated by the CA 
domain (red) from the other protein in the dimer formation with an (adenosine 
diphosphate and phosphate) ADP-P (grey) providing the phosphoryl group (P). Once 
the histidyl residue is phosphorylated, it will be available for transfer to an aspartate 
residue (D) in the receiver domain (light blue) of the RR, a separate cytoplasm 
soluble protein. This allows the effector domain (dark blue) of the RR to effect gene 
transcription. As well as providing a phosphoryl group to the RR (grey arrows), the 
SHK can also remove this phosphoryl group via its phosphatase activity (black 
arrows), which serves as a regulatory function. Crystal structures for the EnvZ SHK 
have been discovered for both the periplasmic (PDB ID: 5XGA) and cytoplasmic 
regions (48) of this protein. The cytoplasmic regions are depicted in a dimeric form, 
hence the presence of two DHp domains and two CA domains These can be seen 
left of this figure, yet there it not yet a crystal structure of the transmembrane domains 
of EnvZ, therefore they are depicted as grey cylinders. 
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Figure 1-3: Process of autophosphorylation within an SHK homodimer. The kinase core 
conserved across HKs consists of the DHp and catalytic domain, in which ATP can bind. The 
dimeric core of the HK853 kinase is shown (left, protein database (PDB) ID: 3DGE) and a 
simplified version of this relationship is also shown (right). The HK853 kinase is chosen for is high 
resolution crystal structure and comparability to EnvZ (27).  
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1.4: EnvZ/OmpR – A structural and functional overview 

The EnvZ/OmpR TCS is present within many Gram-negative bacteria and was initially shown 

to respond to changes in external osmolarity by modulation of porin expression within the 

outer membrane (Figure 1-4) (22,49) . EnvZ, an osmosensing SHK found within the inner 

membrane of Escherichia coli (E. coli), is among the most well-known of the E. coli SHKs. It 

is structurally complex and therefore studies that attempt to elucidate its function and structure 

remain ultimately inconclusive (50). Comprising of 450 amino acids, the EnvZ monomer 

consists of a 115-residue periplasmic domain (51,52), two transmembrane domains (TM1 and 

TM2) (53), a HAMP (linker) domain and a kinase domain within the cytoplasm. Biochemical 

studies have shown that EnvZ can autophosphorylate a conserved His-243 residue using an 

adenosine triphosphate (ATP) molecule (54). This phosphate is then used to phosphorylate 

the conserved Asp-55 residue (55) located within OmpR, the cognate RR linked with EnvZ. 

Through phosphatase capabilities, EnvZ may dephosphorylate OmpR-P to return it to its 

original state (30,56). More specifically, the process is a trans-autophosphorylation as the 

ATP-binding domain of one EnvZ subunit will phosphorylate the conserved His-243 residue 

located on the other EnvZ subunit of the dimer (42,57,58). In addition, EnvZ/OmpR has been 

shown to control virulence within E. coli making it a potential target for virulence-attenuation 

(59). Two of the major porins expressed within the outer membrane and governed by EnvZ of 

E. coli are outer membrane protein F (OmpF), a large-diameter porin, and outer membrane 

protein C (OmpC), a small-diameter porin. When the EnvZ/OmpR TCS causes more OmpC 

(low permeability) than OmpF (high permeability) to be present in the outer membrane, the 

permeability of the cell membrane to antibiotics and other small molecules (<650 Da) is 

significantly reduced (22). 
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Figure 1-4 The EnvZ/OmpR TCS found within E. coli. EnvZ is an SHK that becomes activated by the following stimuli: Osmolarity increase, Modulator of 
EnvZ/OmpR A (MzrA) interaction. The EnvZ homodimer autophosphorylates, allowing for phosphorylation of its RR named OmpR. Phosphorylated OmpR (OmpR-
P) will then bind to the DNA within E. coli at sites promoting transcription of outer membrane porins OmpF or OmpC. If the concentration of OmpR-P is high due 
to increased EnvZ activation, then multiple OmpR-P units will bind to the ompF sites as the affinity is greater. However, the units will create a multimer that bends 
the DNA around itself and ultimately blocks off the ompF site from being activated any further. This causes OmpR-P units to bind at the lower affinity ompC sites, 
therefore when [OmpR-P] levels are increased, ompC transcription will also be increased and ompF transcription will be decreased. The key difference between 
OmpF and OmpC is their effect on permeability, with the former promoting increased permeability across the outer membrane.  
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The molecular mechanisms of perception and response to environmental stimuli by 

EnvZ have long been studied but remain somewhat unclear and occasionally contradictory. 

However, over the last few years, three stimuli have been studied in greater molecular and 

biophysical detail than previously possible: changes in extracellular osmolarity, periplasmic 

interactions with MzrA and changes in intracellular pH. 

The cytoplasmic domain of EnvZ (EnvZc) contains the HAMP domain and the kinase 

domain, the latter of which consists of several regions that are highly conserved among other 

histidine kinases (60,61). The EnvZc domain has consequently been used as a model 

example for kinase domains within all HKs and retains all the enzymatic activities of a 

complete EnvZ protein when expressed in an EnvZc only form (62,63). EnvZc contains two 

functional domains – the DHp domain contains the His residue 243 (64). This domain is not 

only responsible for the phosphorylation of OmpR but also dephosphorylation – the conserved 

His-243 is vital in these processes (65). The CA domain contains the ATP binding site as a 

phosphate group is transferred over. These domains have been studied structurally via NMR, 

revealing more specific features within both the DHp and CA domains as well as detailing their 

relationship to function (66,67). Two helices were revealed within domain A that form a 4-helix 

bundle as a dimer (66). The CA domain  displays a similar folding pattern seen within other 

ATPase proteins. The conserved regions previously mentioned have involvement in the 

structural formation of the binding pocket within this domain.  

The HAMP linker domain, found between the DHp domain of the kinase region and 

TM2, plays an essential role in signal transduction between the receptor and kinase domains. 

Its structure consists of two ⍺-helices of identical length yet offset by a single helical turn. 

These helices form a 4-helix bundle within an EnvZ dimer yet the core residues of this bundle 

are packed unusually. It is expected that a knob to hole packing would be observed within a 

4 coiled coil structure, yet the HAMP domain arranges in a knob to knob packing mode 
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(complementary x-da packing), which consequently would require a rotational shift of 26° to 

organise into the more usual packing format. This would cause downstream elements to rotate 

to the same degree, thereby revealing the signal transduction functionality of the HAMP 

domain (68,69) (Figure 1.2). 

The periplasmic domain (PD) has been determined as a crystal structure in the 

presence of the CHAPS detergent but attempts to crystallise the PD without a detergent have 

not been successful. Multiple features within the PD have been identified from these studies, 

such as two helices and β-sheets and their interfaces within a dimer formation have been 

suggested based on similar proteins such as NarQ/X and PhoQ (Figure 1.2). However, unlike 

domains of EnvZ within the cytoplasm such as the HAMP domain and the kinase domain, the 

PD does not intrinsically form a homodimer structure and such interactions are shown to be 

relatively weak in solution (70–77). It is therefore proposed that this weakness is intentional to 

allow the sensing functionality within the periplasmic domain. As the affinity of the PD dimeric 

interface is modulated, downstream structural effects within the cytoplasmic domains will allow 

for or prevent its kinase functionality (78). Regarding the transmembrane domains of EnvZ, 

little has been discovered regarding their structure and specific role within the signal 

transduction process of this HK. Some mutants affecting the transmembrane domains (TMDs) 

have shown to supress EnvZ kinase and/or phosphatase functionality suggesting they have 

an important role in the overall process. However, as structural studies are much more difficult 

within transmembrane regions of proteins, alternative methods to those previously discussed 

with the periplasmic and cytoplasmic domains of EnvZ are required.  

Additional studies have identified MzrA, a small inner membrane protein that interacts 

with the periplasmic domain of EnvZ in vivo. These MzrA-EnvZ interactions have been shown 

to result in increased EnvZ signal output (79,80). MzrA and osmosensing act independently 

to modulate EnvZ signal output because modulation of porin expression due to changes 

in extracellular osmolarity still occurred in the absence or during  overexpression of MzrA 
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(79,80). Finally, building on the aforementioned studies, intracellular pH was shown to have a 

dramatic effect on the activities of EnvZ. The phosphatase activity of EnvZ has been shown 

to be regulated by intracellular pH, with a shift towards acidic conditions decreasing 

phosphatase activity (81). Furthermore, given the broad conservation of the residues involved 

in this phosphatase activity switch, such a regulatory mechanism likely reflects a general pH-

response mechanism for the vast majority of bacterial TCSs (81). In addition, OmpR has been 

shown to respond in a phosphorylation-independent manner to changes in intracellular pH 

(82). 

Based on these various classes of effectors, it appears that the both periplasmic and 

cytoplasmic domains are important for allosteric interaction that modulate EnvZ signal output 

as measured by changes in the intracellular level of phospho-OmpR. Thus, it remains 

important to better understand the role of the (TMD) and its transmembrane (TM) helices 

during stimulus processing by EnvZ in order to predict how porin balance can be targeted. In 

addition, recent evidence has also shown that lipid-mediated allostery is important for overall 

EnvZ activity. Models of transmembrane helix movement during signal transduction are of 

particular importance when considering the physical shifting the protein undertakes in order 

to achieve trans-autophosphorylation (83). There have been several contradictory claims to 

the model of movement exhibited by the transmembrane domains of EnvZ. These claims are 

often based upon the models of similar histidine kinases rather than direct evidence obtained 

from experiments involving the EnvZ/OmpR system. Firstly, several models of movement for 

transmembrane helices as well as models that involve the HAMP domain will be discussed 

then this information will be summarised to suggest how it may inform the discovery of a model 

of movement for EnvZ. 
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1.5: Transmembrane Communication within SHKs by the TM-cable-HAMP 

Module 

Multiple SHKs and receptors contain a transmembrane communication module that consists 

of four transmembrane helices embedded in the membrane, a control cable and a HAMP 

domain functioning as a single unit. Each of these is discussed below. When joined together 

these function as an integrated signal processing unit. Other proteins exist that share 

similarities in their structural and functional characteristics when compared to the SHK and 

more specifically, EnvZ (Figure 1.5). It is important to understand how the various functional 

units of these proteins work, especially as certain domains such as the HAMP domain, are 

highly conserved amongst these protein types. The proteins exampled in Figure 1.5 each 

have two transmembrane domains, akin to EnvZ (far left of Figure 1.5). Understanding the 

role of transmembrane helices in similar proteins may be useful to put EnvZ transmembrane 

communication into context. 

If a sensor histidine kinase includes a periplasmic domain that perceives stimulus, 

such as EnvZ, it must transduce the presence of stimulus across the cytoplasmic membrane. 

Initial models for transmembrane communication that have been proposed for related 

receptors include piston-type displacements and scissor-type motions. Over the last few 

decades, various in vivo, in vitro and in silico methodologies have been employed in an 

attempt to elucidate specific mechanisms of signal transduction within SHKs and other related 

receptors via both ligand-based and environmental stimuli for example, NarQ (nitrate levels) 

and EnvZ (osmolarity changes) respectively. 

In addition to the transmembrane domain, significant analysis has also been 

undertaken on the HAMP domain, which is often found adjacent to the inner leaflet of the 

cytoplasmic membrane (84–86). The HAMP domains form a discrete parallel four-helix-bundle 

that configures alternately between the on- and off kinase states. Initially, a rotational or 

gearbox model for HAMP signaling was proposed based upon the solution structure of an 
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isolated domain and subsequently these studies began to involve chimeric SHKs which 

supported the initial studies (84). In parallel, mutagenic studies have led to a dynamic bundle 

model for HAMP signaling (87). These two models have been compared and contrasted many 

times. Very recently, the apo and ligand-bound form of an X-ray structure of a four-helix-bundle, 

TMD and HAMP domain has been solved (88). Connecting these domains is the so-called 

control cable, a somewhat flexible short residue stretch between the end of transmembrane 

helix 2 (TM2) and the beginning of the HAMP domain (89,90). The Tsr chemoreceptor protein 

is found within E. coli and contains a similar TM/HAMP region to an SHK and therefore useful 

comparisons may be drawn in its signal transduction mechanisms. The Tsr control cable has 

been shown to mediate structural interactions between misaligned registers of TM2 and the 

first HAMP domain helix, known as AS1 (91,92). It is suggested that the inward displacement 

of TM2 causes the side-chain environment within the control cable to alter and subsequently 

the control cable helix breaks allowing the HAMP helices to pack more stably thus promoting 

a kinase-off output. This helix-clutch model supports piston type movements within 

transmembrane domains yet does not suggest a specific HAMP domain model of movement. 

Evidence for these differing models have been found across several different types of proteins, 

including SHKs. This information will be useful to understand how a piston type movement 

may display and also considers the connection the HAMP domain may have with TM 

movements. 
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Figure 1-5: Examples of bacterial proteins with structural similarities to EnvZ. Four examples of proteins that contain structural domains similar to EnvZ plus EnvZ 
structure for comparison. These examples are all membrane bound sensor kinases who share the function of transmitting transmembrane signal to an interior 
kinase domain. Each protein contains two transmembrane domains followed by a HAMP domain then a kinase domain. Each system contains a different 
arrangement of domains downstream of the HAMP domain and this may explain difference in transmembrane and HAMP domain conformational changes between 
different sensor kinase systems. This figure has been adapted from Gushchin and Gordeliy, 2018 (167). 
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1.5.1: Piston-type Models of Transmembrane Communication 

The piston model suggests a slight displacement of TM2 towards the cytoplasm upon 

activation of the SHK (Figure 1-6) (93), evidenced using analogous substitutions in the 

transmembrane region (94). This piston-like motion is induced by stimulus at the periplasmic 

side and is transformed into a combination of longitudinal and transversal movements of the 

helix resulting in the modification of the HAMP domain (95). The movement seen in the piston 

model is thought to primarily involve the β-helices, as α-helices are generally more resistant 

to compression and extension (96). Experiments in E. coli were carried out at the Tsr protein 

to specifically analyse TM2 movement in this model. This showed the input and output 

domains to communicate through three main areas, the TM2, HAMP, and cable control helix 

showing changes in serine occupancy to promote a piston-like displacement of TM2 normal 

to the plane of the membrane initiating a signal transmission. The signal may then be 

transmitted to the first helical region of the HAMP domain (AS1) allowing activity predicted by 

the gearbox and scissor models (89).  

Tar, Tsr, Trg, TorS and NarX have all been reported to display a piston-like sliding 

motion during signal transduction (97–101).The Tar chemoreceptor has been shown to display 

piston type movement in the alpha-4 periplasmic helix within its homodimer form. As it binds 

aspartate to activate, the apo and holo forms of the protein were compared using cysteine 

cross-linked dimers in order to show the piston movement (102). Further experiments that 

substitute alaninyl residues within TM2 of Tar for the aromatic amino acid tryptophan (Trp) 

altered wild-type (WT) signaling patterns. Additionally, six positions around the mutant W209A 

were individually substituted for Trp, which abolished signal output for 5 of these positions. 

These results were found to support a piston model of movement as they are generally 

consistent with previous predictions (99). Despite these findings, a study concerning the 

HAMP domain suggests helical rotations of TM2 are responsible for signal transduction, 

refuting a piston-type movement (69,98). Sulphydryl reactivity has been used in similar 
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experiments to show piston-like displacements in the transmembrane helices of other 

chemoreceptors such as Trg furthering the usefulness of this technique as it allows usage of 

whole, intact cells within their native environment (88). SHKs such as NarX and TorS have 

also exhibited piston type movement, proven via analyses of their apo versus holo three-

dimensional structures (97,100).  

The piston model is able to combine with other models to explain the conformational 

changes in the transmembrane domain. Examples include the “swinging-piston” as explained 

by Hall et al and a “clutch” proposed by Ames et al (89,93). In the swinging-piston model, the 

signals are transferred by both a change in tilt and position of the helix, the scissor model may, 

therefore, be indicated in this. The “clutch” mechanism involves the rotation of two subunits 

relative to each other to displace TM2. The displacement here is due to a disengagement of 

a structural clutch at the TM2 aromatic belt to promote a kink in the helix. This results in a 

swivel motion to enhance HAMP domain packaging and shifting the protein to the off state. 

When this clutch is re-engaged, TM2 joins cable helices resulting in the destabilisation of the 

HAMP domain and therefore the activation of the protein thus incorporating the piston and 

gearbox models (89). The idea of combining models in a protein to show conformational 

change is supported by the idea that the piston model is evidenced at a periplasmic level, 

however, little evidence is provided for transmembrane movement (95). Tar transmembrane 

movement has been investigated via in silico simulations, revealing further evidence towards 

a piston-like model of movement. It shows how this movement can alter the conformation and 

dynamics of the HAMP domain, which is consistent with the dynamic bundle model of 

movement suggested within the HAMP domain itself. As such, the data collected provides 

further insight into the minutia of HAMP domain function at the atomic level (95). A recent 

study has added detail to the specific motion of TM2 during the proposed piston-like shift within 

Tar, as the helix is thought to bend during the piston motion (103). This slight bending is 
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thought to add to the rigidity and helicity of the control cable, located between TM2 and the 

HAMP domain, subsequently displacing this region also. 
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Figure 1-6: A piston model of transmembrane helix signaling. TM2 of an SHK or chemoreceptor will be vertically displaced causing initiation of signal 
transduction. Right is a figure taken from Hazelbaur and Lai, 2010 demonstrating how the piston movement affects the stability of domain structures 
downstream of the transmembrane domains within a chemoreceptor (225).  
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1.5.2: Scissor-type Models of Transmembrane Communication 

The scissor model of transmembrane helix movement is a more recent suggestion based on 

the movement of TM1 in a scissor-like motion (Figure 1-7) (104). This model has been 

described in the hybrid TCS (HTCS), BT4663, which contains all the domains of a regular 

TCS but in a single polypeptide (105–107). Following detection of stimulus, molecular 

rearrangement results in the subdomains moving closer together in a scissor motion to allow 

trans-autophosphorylation. This scissor-like motion is seen as an increase in the tilt angle of 

β-TMD relative to the bilayer normal to destabilise interactions between transmembrane 

domains. Experiments conducted into the Bacillus subtilus chemoreceptor McpB concluded 

from crosslinking studies, with both single- and double-cysteine mutants, that piston-like 

motions of the transmembrane domains were unlikely. Instead, they report a rotational type 

movement between the on and off states between transmembrane helix 1 (TM1) and TM1’ 

and no conformational changes across the TM2/TM2’ or TM1/TM2’ interfaces. Additionally, 

crosslinking patterns seen via double-cysteine mutants have suggested higher order signaling 

complexes form, such as trimers of dimers (108). A scissor model should not be absolutely 

ruled out as rotational movement may accompany it, therefore an expansion to their mutant 

library used could reveal further detail to the specific movements seen, especially if 

movements are more subtle than previously expected. The Bacillus subtilis HK DesK has 

shown rotational motions coupled with scissoring and tilting movements within its 

transmembrane helices via computational modelling simulations and X-ray structures 

(109,110). These motions are more complex than other HKs as DesK has 10 TMs, and the 

scissoring motions occur within TM1 and transmembrane helix 5 (TM5). This could suggest a 

scissoring motion may be more favourable in HKs with more complex TMDs. 

Studies on the scissor model have also been carried out on PhoQ, a histidine kinase 

similar to EnvZ, which has been shown to alter structural states via diagonal scissoring of the 

four-helix bundle. This model was constructed based on disulphide crosslinking data using 
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Bayesian inference, a method of statistical inference in which Bayes’ theorem is used to 

update the probability of a hypothesis as more evidence becomes available (111). This 

considers a larger range of motion including intrahelical torqueing, helix bending, or DHp 

domain cracking. In state 1, the periplasmic helices are in parallel configuration while in state 

2, a crossing configuration is seen, consistent with scissoring. This suggests that during state 

1, TM1 helices are positioned more closely displacing TM2 helices, while in state 2, the 

opposite is seen, allowing one pair to move toward the bundle centre accompanying the 

outward displacement of the other (111). 
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Figure 1-7: A scissor model of transmembrane helix signaling. Right is a proposed model of transmembrane movement in the hybrid two component 
system BT4663 following ligand binding. The C-domain termini are brought closer together by ~15Å with a movement similar to that of scissor blades. 
This figure has been adapted from Lowe et al, 2012 (226). 
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1.5.3: Gearbox Models of SHK Communication 

Gearbox models in HKs (Figure 1-8) are seen in combination with other models, namely 

scissor models as previously discussed, or as an independent model of transmembrane 

domain signal transduction. Rotational movement of the helices upon stimulus detection can 

allow specific side chains to either move closer together in the central core of the TM helix 

bundle or move them apart. Depending on the chemical properties of these shifting side chains, 

the overall stability or flexibility of the helical bundle may be adapted to either promote or 

reduce signal transduction to cytoplasmic domains of the SHK. Crosslinking experiments have 

shown the TM helices of S. aureus HK, AgrC, to rotate anticlockwise approximately 80° 

following an activating stimulus and following an inhibitory stimulus, the helices rotate 

approximately 30° in the opposite direction (112).  

 

1.5.4: Models of Transmembrane Communication involving the HAMP Domain 

There are models of movements that concern the mechanisms of the HAMP domain alone, 

known as the gearbox model (Figure 1-8) and the dynamic bundle model (Figure 1-9). These 

models specifically describe the movements of the four-helix bundle formed by two opposite 

HAMP domains during dimerisation. The gearbox model also shows additional mechanisms 

known as knob packing in which residues slot into spaces within other residues on the 

interacting helix (69,87). The dynamic bundle model is more difficult to specifically define, and 

it is suggested as an alternative to the gearbox model.  
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Figure 1-8: A gearbox model of HAMP domain helix signaling. Helices, depicted overhead, rotate allowing residues to align into a space (knob to hole 
packing) thus allowing signal transduction. Residues will also align against another residue (knob to knob packing), a conformation that will not allow 
signal transduction. The left side depicts the layer by layer transitions within the helices as the gear is shifted and residues move to their new positions 
following stimulus. This figure has been adapted from Hulko et al, 2006 (69). 
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1.5.4.1: The gearbox model of HAMP domain function 

Generally speaking, the HAMP domain is thought to confer signals downstream based on 

changes in the helix rotation and bundle radius (113). The HAMP domain of EnvZ forms a 

parallel dimeric four-helix coiled-coil, this allows conformational changes to be seen by fusing 

Af1503 HAMP to the dimerization/histidine phosphorylation domain. This model then suggests 

that the HAMP domains reverse the direction of input helices to rotate layers in opposite 

directions resulting in either activation or inactivation (114). It is proposed that the incoming 

signal initiates a helical rotation around an axis perpendicular to the membrane (113). 

However, this rotation causes no change in the location of His243 suggesting this does not 

determine activation state. Instead activation is suggested to be via a catalytic domain HAMP 

recognition at the proximal end of the DHp. This is supported by the fact that when no stimulus 

is present, EnvZ remains in the phosphatase state with a phenylalanine bound at the cleft. 

Following conformational changes including axial helical rotation producing a binary switch in 

helical core layer and therefore a change in DHp, this cleft is then closed releasing the catalytic 

domain and allowing kinase activity (114). 

Initially a knob-to-hole theory was put forward as the packing mechanism for the 

gearbox model suggesting a protruding residue on one helix would fall into a space on the 

neighbouring helix surrounded by side chains. In the HAMP domain experimentation however 

a knob-to-knob packing system is seen (69). The use of the knob-to-knob packing suggests 

that a more conventional packing system such as knob-to-hole may be the main HAMP 

signaling conformation requiring a 26˚ counter rotation (87). Further experiments found seryl 

and isoleucyl residues to rotate out of the core during the transition from knob-to-knob packing 

to knob-to-hole packing (115).
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1.5.4.2: The Dynamic Bundle Model of HAMP domain function 

It is increasingly recognised that signaling proteins may be dynamic in their mechanisms 

rather than set to a few, strict conformations (116) (Figure 1-9). Thus, there exists a range of 

HAMP domain formations based on stability; the most stable of these is the four-helix x-da 

bundle and the least stable formation would be an entirely denatured bundle (87). It is 

presumed that the HAMP domain has evolved to oscillate through this range of dynamic states 

dependent on circumstance. Both stimulus inputs and methylation of lower domains within the 

protein will modulate HAMP stability to either begin or end a signal response. As such, the 

methylation state of lower domains will directly impact on the kinase activity via effects on the 

dynamic state of the HAMP domain. A lower methylation state will lead to less kinase activity, 

perhaps due to increased HAMP dynamism compared to a higher methylation state (117–

121). Mutational analyses regarding E. coli chemoreceptor Tsr show that the dynamic bundle 

agrees with conformational suppression effects more comfortably than a conventional two-

state model. These movements will work in conjunction with TM2 piston type movements and 

the consequent adjustments to control cable dynamics, which would alter HAMP conformation 

and therefore stability. The x-da bundle and ways in which the HAMP domain changes the 

stability of this form is integral to the dynamic bundle model. This bundle is the most stable as 

it is formed of layers in which complementary side chains, within a four-helix coiled coil unit, 

may interact stabilising the bundle. Further work has described a biphasic dynamic bundle in 

Tsr, suggesting that intermediate packing of both the HAMP domains and the methylation 

bundle will lead to increased kinase activity. If the HAMP domain packing loosens, the 

methylation bundle packing will tighten followed by reduced kinase activity. If the HAMP 

domain packing tightens and the methylation bundle loosens then the kinase activity will also 

reduce. This model allows for the previously described dynamic range of packing stabilities. 

The two reduced kinase states each represent a different scenario; the former occurs in 

presence of an attractant and the latter results from severe HAMP destabilisation (122).   
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Figure 1-9: A dynamic bundle model of HAMP domain helix signaling. A model without a 
conventional 2-state design, the dynamic bundle is capable of moving into multiple states of 
HAMP domain helix orientation. A specific diagram is difficult to create due to the dynamic 
nature of this model, therefore it can be represented as an overall destabilisation. This figure 
has been adapted from Gushchin and Gordeliy, 2018 (167). 
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1.6: Model combinations 

As mentioned previously, these models can combine in order to achieve successful signal 

transduction. For example, the piston model may use a combination of elements from other 

models to transmit signal across the membrane (111). Different combinations could therefore 

be used in different classes of receptor depending on the structure and function of the protein 

involved, this has been seen previously in the swinging piston model (96,111,123). The PhoQ 

study previously mentioned indicates that the conformational changes seen between state 1 

and state 2 are too complex to be explained by the piston or gearbox model alone, as well as 

showing large radial displacement or toward tilt to displace the helices indicating the scissor 

model to have a predominant role over either of these models (87). 

 The HAMP region is seen to convert the known piston like movements into a 

conformational change, which can be seen in the kinase control region. Research carried out 

on chemokine receptors showed no support of the alternate bundle structure required for the 

gearbox model instead suggesting it functions based on the stability of the HAMP bundle (87). 

This is supported by the clutch model as the helical rotations seen in TM2 were not seen to 

elicit the signaling shifts predicted by the gearbox model suggesting the piston displacements 

are converted to another signaling conformation at the membrane rather than being 

transmitted through the HAMP domain. The rigid structure of the TM2-AS1 interaction also 

contradicts the scissor model as this structure would be unable to produce a signal reversal 

at the cytoplasmic domain of TM2 (89). The HAMP rotation in the gearbox model may coexist 

with the piston model in a variety of proteins by the piston-like displacement triggering the 

HAMP rotation to generate transmission (115). Alternatively, due to the piston-like motion of 

TM2 following stimulation a change in tension may be seen between AS1 and TM2 functioning 

as a control cable to alter the tension in HAMP without helical rotations (87,89). The piston 

model also allows the coexistence of the scissor model, a study involving CheA kinase utilising 

disulphide scanning and X-ray crystallography showed the piston displacement in TM2 while 
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providing evidence that the subunit interface remains static suggesting the scissor model 

involvement (111). This is further supported by the separation of neighbouring residues in the 

α1 and α2 helices, although this could also be seen in the gearbox model (124). 

 

1.7: Models of EnvZ Transmembrane Signaling 

Although these models have been investigated in an assortment of proteins, few experiments 

have been carried out to determine EnvZ transmembrane signaling mechanisms. However 

research has been undertaken in other histidine kinases such as PhoQ which is suggested to 

undergo activation via the scissor model with dynamic movement of both TM1 and TM2 (111). 

Other research into histidine kinases suggest the presence of a HAMP rotation as seen in the 

gearbox model controlling activation by the accessibility of the catalytic domain and the 

HAMP/DHp proximal end (114). Alternatively, it is suggested that the transmission at EnvZ 

may be due to the increased helical stabilisation upon increased osmolarity near the 

conserved histidyl residue (83) which is supported by the evidence that intrahelical binding 

follows an increase in intracellular osmolarity (68,69). This is also evidenced as the helix 

displays unfolding in a stretched state and increased folding in a relaxed state which then 

increases autophosphorylation (125).  

 Further research has been undertaken to map the EnvZ TM1 dimerisation surface 

used in dimerization and signal output, this showed the main TM1-TM1’ interface to consist of 

residues 19, 23, 26, 30, and 34 (104). Cystyl residues were substituted into each position 

within TM1 resulting in altered function suggesting that the TM1 interface remains unchanged 

during signaling. This utilised a single cysteine (1X-Cys) mutant library with mutations in 

positions 11-41, this showed an increase in signaling but no change in the TM1-TM1’ interface. 

The data suggested that the TM1 domains crossed at an angle which resulted in the TM 

helices becoming more distal from the membrane core suggesting a scissor-like conformation 



 
 

30 

(104). A follow up study was then completed, this is as yet unpublished, to investigate the 

conformational changes elicited at the TM2-TM2’ interface using the same methods. 

 

1.8: A closer look at disulphide crosslinking studies 

Disulphide crosslinking has been utilised for many years to map relative distances between 

residues within dimers. Its key advantage over methods with similar ends but different means, 

is the ability to perform it in vivo thereby providing us with more convincing snapshots of true 

biochemical and biophysical processes within a cell. For the disulphide crosslink to form, they 

must fall within a certain distance and this will only occur under oxidising conditions. Therefore, 

these adducts will not occur naturally as the cytosol and nuclear environments are reducing 

allowing event to be controlled by adding an oxidising agent (126,127).  

A cysteine replaces strategically chosen residues throughout TM1 and TM2 within 

EnvZ and any pre-existing cysteines are removed. Provided WT function of the protein is 

retained with its WT cysteine substituted, experiments involving the substitution of other 

residues within EnvZ for a cysteine may proceed as any alteration in signal output can then 

be attributed to this further mutation not the loss of the sole pre-existing cystyl residue at 

position 277. This residue is removed for cysteine mutants to remove any opportunity of a 

dimer forming via this position. The aim of a cysteine substitution is to identify parts of the 

protein that come into close proximity, parts that are far apart and anything in between. This 

is because the degree to which the mutant crosslinks will indicate an approximate distance 

between the mutated residues (128). For example, if two mutant cystyl residues, each from a 

separate monomer in the dimer structure, come as close together as possible, within a few 

angstroms, they will almost certainly form a disulphide crosslink within an oxidative 

environment (Figure 1-10). The cells containing crosslinked proteins will then be prepared for 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

blotting, as described in Section 2.5. The closer the residue, the more likely a crosslinking will 
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occur and therefore a larger percentage of the cell population will contain crosslinked dimers. 

These dimers will migrate through a polyacrylamide gel more slowly than a non-crosslinked 

monomer and the intensity of both bands (monomer and dimer) observed after Western 

blotting will indicate the degree to which the protein was able to crosslink. Therefore, a 

dimer/monomer (D/M) ratio is calculated to represent the proportion of dimer formation with a 

disulphide linkage to monomers that have not achieved that linkage. If a higher number of 

proteins form a dimer, the upper band will appear darker than the lower band and the ratio will 

be greater than 1. If the bands are of a similar intensity, the ratio will be close to 1 and if the 

lower band is more intense than the upper band, the ratio will be less than 1. If an upper band 

is not detectable but a lower band is present, the ratio is recorded as monomer only and 

quantified as 0. This quantification is useful across different samples of the same mutation as 

the data effectively normalises itself because it is a ratio. As the protein expression can only 

be controlled to a certain degree, cases may occur in which two different cell samples of the 

same mutation may have a ten-fold difference in protein expression. The two separate 

samples of the same mutant strain may have a significant difference in overall intensity but as 

long as the ratio is the same for each, for example if two equally intense bands were produced 

as well as two equally weak bands, then the ratio would be roughly 1 for both. (Figure 1-11). 

Crosslinking  efficiency is dependent on a number of biophysical factors including the relative 

orientations of the cystyl residue side chains, their availability to oxidants, and the dynamics 

of the actual sulphydryl group that will be involved in the disulphide crosslink (111,129–131).  

The next step to gaining insight into specific protein movements is to analyse the 

differing D/M ratio outcomes under varying conditions. In the case of the following experiments 

involving the EnvZ/OmpR TCS, the cells are grown under two different osmolarity conditions 

termed low osmolarity (0% sucrose in minimal media A (MMA) – EnvZ signal off) and high 

osmolarity (15% sucrose in MMA – EnvZ signal on). The MMA itself contains no sucrose 

therefore the osmolarity of the media may be stated as low if no sucrose is added. It is 
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hypothesised that the transmembrane domains (TM1 and TM2) shift positions from the off 

state to the on state. Any changes in disulphide crosslinking results between these two growth 

conditions will indicate that these shifts have occurred. The patterns created by these changes 

can be used to map the protein interface in the dimeric structure. 

 

  

Cys Cys

Cys Cys

A B

S S

SHSH

Figure 1-10: Cysteine residues form disulphide linkages based on proximity. (A) Cysteine 
residues substituted into positions within the TM helices that are close during the dimer formation 
will form a disulphide linkage. (B) Cysteine residues substituted into positions within the TM 
helices that are not close during the dimer formation will not form a disulphide linkage. Cylinders 
represent a TM helix each from a separate EnvZ protein within a homodimer. 
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Figure 1-11: A demonstration of different band intensities for immunoblotting with cysteine 
mutants. Five different double-cysteine-containing mutants are shown to demonstrate the 
potential outcomes. The 30-162 mutant in the far-left lane displays dimer (upper) and monomer 
(lower) bands of similarly weak intensity. As the intensities are similar, the dimer/monomer (D/M) 
ratio will be close to one following quantification. The 30-165 mutant in the far-right lane displays 
dimer and monomer bands of increased overall intensity. However, the dimer band is slightly less 
intense than the monomer band and the D/M ratio will therefore be below one following 
quantification. The three mutants (29-167, 29-165 and 30-63) in the middle lanes display intense 
monomer bands only. This is a clear indication that the mutated positions do not come into close 
proximity with each other during dimer formation under these conditions. 
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1.9: Signal output measurements via fluorescence 

Through gene fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 

to the protein outputs of EnvZ function, OmpC and OmpF, signal output can be quantified as 

described in Section 2.4. These gene fusions were included within the strains used as 

described in Section 2.1.  As EnvZ is activated by various stimuli (Figure 1-12A), the balance 

of ompC to ompF expression shifts and the quantified CFP and YFP values that are recorded 

will demonstrate these shifts (Figure 1-12B). A CFP/YFP (C/Y) ratio may be calculated from 

these values, which assists the comparison of repeats within mutant groups. For example, 

one repeat of mutant 15-177 may produce a CFP value of 500 and a YFP value of 100 giving 

a ratio of 5. A second repeat of the same mutant may produce a CFP value of 1000 and a 

YFP value of 200, which would give the same ratio of 5 and therefore the same relationship 

may be inferred despite the significant increase in signal output overall for the second repeat. 

This is important as while the expression of the EnvZ protein can be controlled to some extent 

via the concentration of the transcription triggering element, certain mutants will ultimately 

prove to be idiosyncratic in their expression magnitude. However, as long as the CFP/YFP 

ratio and by extension their OmpC to OmpF relationship remains the same, the repeats can 

be trusted.  
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Figure 1-12: The EnvZ/OmpR signal output relationship. (A) EnvZ is bifunctional and possesses both 
kinase and phosphatase activity. The ratio of these activities is modulated by presence of extracellular 
osmolarity (51,227), procaine (228) or MzrA(79)(80). OmpR serves as the cognate response regulator 
(RR) of EnvZ and thus the intracellular level of phosphorylated OmpR (OmpR-P) is governed by EnvZ 
activity. (B) OmpR-P levels control transcription of ompF and ompC, which can be monitored by 
employing MDG147 (4) or EPB30 (2) cells that contain a transcriptional fusion of yfp to ompF (yellow) 
and of cfp to ompC Figure (blue). This allows the intracellular levels of OmpR-P (red) to be estimated 
by monitoring the CFP/YFP ratio. The dashed line represents the baseline level of OmpR-P from 
EPB30/pRD400 cells expressing WT EnvZ grown under the low-osmolarity regime (0% sucrose). 
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1.10: Double cysteine capabilities 

By creating a mutant library of EnvZ in which two positions in both TM1 and TM2 are 

substituted for cysteines, the depth of results collected from both crosslinking and signal 

output experiments can be significantly increased. The methods, described in Chapter 3, will 

be optimised and modified to accommodate for slight changes in properties and desired 

outcomes of a double cysteine mutant crosslinking study. The cystyl (Cys) residues are 

carefully paired so that each mutant contains a Cys-substitution within each transmembrane 

domain, and these substitutions will be approximately aligned to each other (Figure 1-13). 

Two cysteines in a single monomer (one in each TM helix) will provide opportunity for three 

different crosslinking events to occur during dimerisation, as opposed to the one crosslinking 

event that may occur with a single cysteine mutant. These crosslinking events may connect 

TM1-TM1’ (green), TM2-TM2’ (blue) or TM1-TM2’ (red) (Figure 1-14). A 2X-Cys mutant is not 

only capable of each of these crosslinks, it is also capable of crosslinking at more than one of 

these positions at once. The previously described SDS-PAGE and Western blotting 

experiment, described in Section 2.5, has been adapted for this library and its results remain 

central to the project. Each crosslinked dimer of a different formation will migrate through the 

acrylamide gel to a distinctly different distance. Therefore, we can identify the band by this 

distance especially in comparison to other known bands that are run directly adjacent to it. 

The bands will be quantified, and a ratio will be calculated but, with a multiple band sample 

several ratios will need to be calculated to identify specific dimer band quantities. As multiple 

interactions can occur for a single mutant, ways in which residues position themselves in a 

three-dimensional space can be deduced. This is a significant advantage over a 1X-Cys 

mutant, which is only capable of a more two-dimensional look at the dimer interface.  
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Figure 1-13: Demonstration of 2X-Cys mutant pairing logic. Pairing was designated based on 
the proximity of the TM1 (left) position to its TM2 (right) pairings. A TM1 residue position 
located in the periplasmic extremity of the TM1 helix (35) will be paired with the five residues 
located in the periplasmic extremity of the TM2 helix (158-162). The bracket of five TM2 
residues will be shifted up one place as the TM1 residue shifts down one place, for example 
34 is paired with 159-163. 
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TM1

TM2 TM1’

TM2’

Figure 1-14: Head-on view of potential TM interactions. The TM four-helix bundle can interact 
in three distinct ways including TM1-TM1’ (green arrow), TM2-TM2’ (blue arrow) and TM1-
TM2’ (red arrows) interactions.  
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1.11: Summary 

Despite the multiple models of transmembrane signaling it is still unclear how the signal is 

transmitted across the membrane via EnvZ, yet the evidence provided suggests a combination 

of models that could be involved. Future work must identify the key interactions of the 

transmembrane domains during activation of EnvZ and identify structural differences between 

the active and inactive structure. If this mechanism was known, artificial activation of the 

protein may be possible to modulate porin expression and by extension permeability in 

antibiotic resistant bacteria. Although research has been undertaken to understand both the 

TM1 and TM2 interfaces individually it is important to achieve complete understanding of the 

transmembrane interactions including the conformational changes seen between TM1-TM2’ 

interfaces during  as this may be critical in understanding the full mechanism of transduction 

during trans-autophosphorylation (42). Further to this, the knowledge surrounding the 

transmembrane helices of EnvZ is generally lacking an up-to-date definition regarding not only 

its function but also its structure (131). Difficulties in elucidating the latter of these properties 

are apparent – NMR and in silico studies are notoriously difficult to complete with protein 

domains contained within the membrane. However, the nature of the proposed experiments 

should, in theory, reveal both structural and functional information on these helices.  This 

research could be completed in a similar way to that carried out to investigate TM1-TM1’ 

interactions by using a double cysteine mutant which instead contains one mutation in each 

transmembrane domain (104). Models attached to similar protein systems, such as the 

previously described piston and scissor models, should display clear patterns within a 

disulphide mapping study. These predicted patterns and whether they are seen or not will 

form the basis of the overall hypothesis presented within this thesis.  
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1.12: Hypotheses  

The transmembrane helices within EnvZ do not exhibit a piston-type movement during signal 

transduction as described in Figure 1-6. Specifically, the presence and intensity of dimer 

bands would be different between the two signaling states (Figure 1-15). If a simple piston 

was observed, this should occur along the entire interacting surface within the TM domain. If 

there are some areas that alter dimer band intensity, either increasing or decreasing the 

dimer:monomer ratio, alternate possibilities should be suggested. 

 

Formation of TM dimers would be lesser or non-existent in one state when compared to the 

other. This should occur throughout the entire interaction surface if one of the helices is 

suggested to partially move out of the membrane in a piston type motion. If there are some 

areas that alter the relative preponderance between substituted Cys residues between states 

and some that do not, an alternate model should be suggested. 
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Figure 1-15: Demonstration of a hypothetical piston shift effect on crosslinking. The hypothetical piston shift shown here shows four TM2-TM2’ 
interactions between positions 163, 167, 171 and 175 in TM2 of EnvZ. If a piston shift was present, shown left, the interactions between these residues 
would become weaker, depicted as a bold uninterrupted line (strong interaction) versus a thin, dashed line (weak interaction). These changes would 
be shown via a reduction or absence of TM2-TM2’ dimer formation.  
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1.13: Aims 

1. To identify areas within the transmembrane helices of EnvZ that have increased, 

decreased or unchanged signal output depending on the positioning of cysteine 

substitutions based on their OmpC/OmpF signal output profile via a dual-colour 

fluorescence assay. 

2. To propose a model of movement for the transmembrane helices within an EnvZ-EnvZ’ 

homodimer during stimulus-perception based on a disulphide-mapping study.  

 

1.14: Objectives 

Single-cysteine Analyses of the EnvZ Transmembrane Helices 

1. Construct a functional library of single-cysteine-containing EnvZ receptors through 

TM1 and TM2 via site-directed mutagenesis 

2. Map TM1-TM1’ and TM2-TM2’ interaction surfaces with and without the presence of 

stimulus to identify a pattern of movement. 

3. Identify positions within TM1 and TM2 that differ to WT EnvZ signal output, dependent 

on their Cys substitutions. 

Double-cysteine Analyses of the EnvZ Transmembrane Helices 

1. Construct a functional library of double-cysteine-containing EnvZ receptors (one Cys 

in TM2 and one Cys in TM2) via site-directed mutagenesis 

2. Map TM1-TM2’ interaction surfaces with and without the presence of stimulus to 

identify a pattern of movement. 

3. Identify positions within TM1 and TM2 that are not tolerant of Cys substitutions when 

compared to WT EnvZ signal output. 
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Chapter 2: Materials and Methods 
 
2.1 Bacterial strains 

E. coli strains DH10B (New England Biolabs) or MC1061 (gifted) (3) were used for DNA 

manipulations, while strain K-12 MG1655 (publicly accessible) (133) served as a non-

fluorescent strain that was used to control for light scattering and cellular autofluorescence. 

Both YFP and CFP values were calculated for this non-fluorescent strain under both low 

osmolarity (MMA + 0% Sucrose) and high osmolarity (MMA + 15% Sucrose) media. These 

values represented fluorescence that could be attributed to sources that were not 

representative of the production of CFP or YFP. Therefore, these values were subtracted from 

the true CFP and YFP values collected for each mutant. E. coli strains MDG147 [MG1655 

F(ompF+-yfp+) F(ompC+-cfp+)] (1) and EPB30 (MDG147 envZ::kan) (2) were employed for 

analysis of EnvZ signal output. The MDG147 strain is fluorescent but also retains envZ within 

its chromosomal DNA. EPB30 is a fluorescent strain without envZ within its chromosome thus 

the EnvZ coded within its plasmid is the sole version of this protein that will be expressed. As 

the C-terminus of bacterial receptors can be sensitive to the presence of an epitope tag, it was 

previously ensured that the addition of a V5-epitope tag did not alter the signaling properties 

of EnvZ (6,134). Plasmid pEB5 was employed as an empty control vector (4). Plasmid pRD400 

(6) retains the isopropyl b-D-thiogalactopyranoside (IPTG)-based induction of EnvZ from 

plasmid pEnvZ (5) while adding a seven-residue linker (GGSSAAG) (135) and a C-terminal 

V5 epitope tag (GKPIPNPLLGLDST) (136). IPTG is a molecular mimic of allolactose that 

triggers transcription of the lac operon, subsequently allowing transcription of the plasmid 

envZ gene which is under control of a lac operator. A library of 1X-Cys containing mutants 

was previously created by Anika Heininger (104,137) – these mutants were created via site 

directed mutagenesis and used for all 1X-Cys experiments as well as the creation of the 2X-

Cys-containing EnvZ library. A library of 2X-Cys-containing EnvZ receptors were created by 

standard molecular cloning methodologies from the individual 1X-Cys containing TM1 (104) 
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and TM2 (137) libraries. Mutant strains were grown overnight in 5mL Lysogeny broth (LB) 

media with Ampicillin (Amp) (10g Sodium Chloride, 10g Tryptone, 5g Yeast extract, dH2O to 

1L, 100µL Amp100) at 37°C and 200rpm. Plasmid DNA was extracted using a Qiagen miniprep 

kit. A double restriction enzyme (Sal-I and Bgl-II) cut of two plasmids at 37°C was performed, 

one containing a TM1 mutation and the other containing a TM2 mutation. The cut DNA 

fragments were separated via agarose gel electrophoresis using a 0.8% agarose gel for 45 

minutes (70V for first 15 minutes, 120V for remaining 30 minutes). The appropriate sections 

of DNA, 3µl TM1 band and 9µl TM2 band, were ligated with T4 DNA ligase and its appropriate 

buffer to form a novel plasmid with an assumed double-cysteine mutation of EnvZ. This 

plasmid is transformed into a DH10B strain, grown on LB Amp agar plates (15g agar, 10g 

Sodium Chloride, 10g Tryptone, 5g Yeast extract, dH2O to 1L, 100µL Amp100)overnight at 

37°C then a single colony was transferred into LB Amp media and grown overnight at 37°C, 

200rpm. The plasmid DNA was extracted using the Qiagen miniprep kit and sent to Eurofins 

for sequencing. The sequence data received is checked against WT EnvZ sequence using 

the Serial Cloner software. If a correct sequence is detected, plasmid DNA taken from the 

same source of that which was sequenced is transformed into the EPB30 strain for 

experimental use. Plasmid DNA was mixed with competent EPB30 cells on ice for one hour 

followed by a 45 second heat shock (42°C) and then 2 minutes on ice. The cells are then 

transferred to 500µL LB Amp media and incubated for 1 hour at 37°C, 200rpm. The cells are 

centrifuged for 5 minutes at 3000rpm and approximately 90% of the supernatant is removed. 

The remaining 10% of supernatant was used to resuspend the pellet and transferred to an LB 

Agar plate upon which they were spread using a sterile spreader. Plates were incubated 

overnight at 37°C then a single colony was transferred to 500µL LB Amp media and stored in 

a cryovial at -80°C. In order to maximise potential TM1-TM2’ crosslinking, Cys residue pairs 

were selected by identifying TM1 residues participating in helix formation (15 through 35) and 
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pairing each with five potential TM2 partners ranging from 158 through 181, based on putative 

proximity position within the membrane (Figure 1-13). 

 

2.2. Creation of a cysteine-less EnvZ 

WT EnvZ from E. coli contains a single Cys residue at position 277 (Figure 2-1). Pre-

existing Cys residues would make it significantly more difficult to interpret the results of in vivo 

disulphide-mapping experimentation, therefore, a cysteine-less (Cys-less) version of EnvZ 

was created. The native Cys-277 codon was converted to a methionine (Met) (C277M) 

because a previous sequence analysis determined that a Met residue was the second most 

common, after Cys, at position 277 within EnvZ proteins from other organisms (138). A serine 

(Ser) residue was also chosen (C277S) because it was shown to not affect the biochemical 

activities of the purified cytoplasmic domain from E. coli (EnvZc) (139). Finally, as a small non-

polar residue, an Alanyl (Ala) residue (C277A) was also selected for analysis. All substitutions 

were made using standard site-directed mutagenesis techniques (Stratagene protocol). The 

PCR mixture (Template DNA 1µL, 10X Buffer 5µL, Forward primer(0.1 µg/µL) 1µL, Reverse 

primer(0.1 µg/µL) 1µL, dNTPs (10mM) 1µL, Pfu turbo 1µL, dH20 40µL) was run through the 

following programme 1)95°C for 1 minute, 2) 95°C for 50 seconds, 60°C for 50 seconds, 68°C 

for 1 minute/kb of plasmid length (step is repeated 17 times or a total of 18 cycles, 3) 68°C for 

7 minutes, 4) 4°C hold. Following the PCR protocol, 1µL DpnI is added to the reaction mixture 

and incubated at 37°C for 1-2 hours to digest parental DNA. 5µL of the reaction mixture was 

run adjacent to undigested parental DNA to ensure a difference in band pattern.They were 

expressed from pRD400 (6), which results in the addition of a seven-residue linker 

(GGSSAAG) and a C-terminal V5 epitope (GKPIPNPLLGLDST) that have previously been 

used within bacterial receptors, including Tar and EnvZ, resulting in minimal effect to steady-

state signal output (6,90,98,99,134,135,140,141).  
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Figure 2-1: EnvZ structure highlighting TM1. EnvZ functions as a homodimer with a cytoplasmic N-terminus, the TM1(grey, proximal to the N-
terminus), a large PD (brown), TM2 (grey, proximal to the C-terminus), a membrane-adjacent HAMP domain (blue) and the DHp, (red) and CA 
activity (orange). The residues subjected to Cys substitution are highlighted. Leu-32, indicated in red, could not be substituted for a Cys residue. In 
addition, the location of the original Cys residue at position 277 is provided. 
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2.3: Selection of residues comprising TM1 and TM2 in EnvZ 

The primary sequence of EnvZ (NP_417863.1) from Escherichia coli K-12 MG1655 was 

subjected to a full protein scan with DGpred using a minimal window of nine residues and a 

maximal window of 40 residues (142). This software searched for putative TM helices by 

employing a sliding window of variable lengths and calculating the ΔGapp for transmembrane 

insertion throughout the length of the sequence and suggested that residues between Phe-12 

and Val-34 comprise TM1. Alternatively, a software package that identifies TM helices with a 

Markov model (TMHMM v2.0) (143) was employed and suggested that the residues between 

Thr-15 and Phe-37 compose TM1. In both cases, a motif commonly found within TM helices 

that consisted of positively charged residues and adjacent aromatic resides bracketing a core 

of aliphatic residues was found within the putative TM segments (144). It was also established 

that there are no WT Cys residues within or close to the TM regions. The sole WT Cys residue 

within EnvZ is found at position 277 and removed for cysteine mutants as previously described. 

The same software packages also suggested that Leu-160 to Ile-181 and Leu-160 to Ile-179 

comprise TM2 respectively. Based on these observations, and to maximise the probability of 

including all residues within either TM1 or TM2, all residues between positions 11 to 41 and 

156 to 184 respectively were targeted for the creation of a library of single-Cys-containing 

EnvZ receptors.  

 

2.4: Analysis of EnvZ/OmpR signal output in vivo 

Bacterial cultures were grown as described previously (6) with minor modification. MDG147 

or EPB30 cells were transformed with pRD400 expressing one of the single-Cys-containing 

EnvZ receptors or pEB5 (empty). Fresh colonies were used to inoculate 2-ml overnight 

cultures of Minimal Media A (MMA) (145) supplemented with 0.2% glucose. 5X MMA was first 

made (5g Ammonium sulphate, 22.5g Potassium phosphate monobasic, 52.5g Potassium 

phosphate dibasic, 2.5g Sodium citrate tribasic, dH2O to 1L) which was then used to make 1X 
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MMA (200mL 5X MMA, 1mL 1M Magnesium sulphate, 10mL 20% glucose, 0.5mL Amp100, 

50µL IPTG, 500mL 30% Sucrose (if high osmolarity media is required, replace with dH2O if 

low osmolarity media is required), dH2O to 1L, vacuum filtered). Cells were grown overnight 

at 37°C and diluted at least 1:1000 into 7 ml of fresh medium. Upon reaching an OD600nm ≈ 0.3, 

chloramphenicol was added to a final concentration of 170 μg/ml to stop cell growth and 

protein production. Fluorescent analysis was immediately conducted with 2 ml of culture and 

a Varian Cary Eclipse (Palo Alto, CA). CFP fluorescence, indicating ompC transcription, was 

measured using an excitation wavelength of 434 nm and an emission wavelength of 477 nm, 

while YFP fluorescence, indicating ompF transcription, was measured using an excitation 

wavelength of 505 nm and an emission wavelength of 527 nm. These values were corrected 

for cell density and for light scattering/cellular autofluorescence by subtracting the CFP and 

YFP fluorescence intensities determined for MG1655/pEB5 cells. 

 

2.5: Analysis of EnvZ sulphydryl reactivity in vivo 

Cells were grown as described above with minor changes. Upon reaching an optical density 

(OD)600nm ~ 0.3, cells were subjected to 250 µM molecular iodine in ethanol for 10 min while 

incubating at 37 °C in order to create an oxidising environment needed for the crosslinking 

event to occur between Cys residues. The parameters for iodine concentration and exposure 

time were determined via a series of experiments changing these variables in order to produce 

the most reliable bands for Western blotting. The reaction was terminated with 8 mM N-

ethylmaleimide (NEM) and 10 mM ethylenediaminetetraacetic acid (EDTA). Cells were 

harvested by centrifugation and resuspended in standard 6X non-reducing SDS-PAGE buffer 

(0.4mL 0.5M Tris HCl, 1.25mL 10% SDS, 10mL Sodium phosphate buffer, 250µL 0.5M EDTA, 

1.25g sucrose, 2.5µg bromophenol blue, 0.25mL 0.5M NEM, water to 10mL). Cell pellets were 

analysed on 10% (1X-Cys mutants) and 7% (2X-Cys mutants) SDS/acrylamide gels 

(Separating gel (makes 2 gels): 6mL (10%)/7.5mL (7%) dH2O, 5mL (10%)/3.5mL (7%) 30% 
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acrylamide, 3.75mL 1.5M Tris HCl, 150µL 10% SDS, 25µL TEMED, 37.5µL 20% Ammonium 

persulphate. Stacking gel (makes 4 gels): 3.05mL dH2O, 0.65mL 30% acrylamide, 1.25mL 

0.5M Tris HCl, 50µL 20% SDS, 25µL TEMED, 12.5µL 20% APS). Gels were run in 1X SDS 

PAGE running buffer (10X SDS PAGE running buffer: 30.3g Tris base, 144g glycine, 10g SDS. 

1X SDS PAGE running buffer: 100mL 10X SDS PAGE running buffer, dH2O to 1L) for 15 

minutes at 70V and 60 minutes at 120V. Filter paper and nitrocellulose membranes were 

soaked in 1X SDS PAGE semidry transfer buffer (10X SDS PAGE semidry transfer buffer: 

58.2g Tris base, 29.3 glycine, 3.75g SDS, dH2O to 1L. 1X SDS PAGE semidry transfer buffer: 

100mL 10X SDS PAGE semidry transfer buffer, 200mL Methanol, dH2O to 1L). The gel was 

removed from the SDS PAGE tank and soaked in 1X SDS PAGE semidry transfer buffer on 

a shaking platform at 30rpm for 30 minutes. A sandwich consisting of two filters, one 

nitrocellulose membrane, one gel (with stacking gel removed) and two filters (in this order 

bottom to top) was placed in a semidry transfer chamber and run for 30 minutes at 15V. The 

filters and gel were discarded and the membrane is inserted into a 50mL falcon tube containing 

10mL blocking solution (10X Tris Buffered Saline (TBS): 12.1g Tris base, 87.6g Sodium 

chloride, dH2O to 1L. 1X TBS: 100mL 10X TBS, dH2O to 1L. Blocking solution (for 4 

membranes): 40mL 1X TBS, 0.8g milk powder) and rolled for 1 hour at 4°C. The blocking 

solution was removed, and the membrane was washed with 10mL 1X TBS-tween 20 (TBS-T) 

(100mL 10X TBS, 500µL tween 20, dH2O to 1L) for 5 minutes, rolling at 4°C. This step was 

repeated. The TBS-T was removed and replaced with 10mL of primary antibody solution 

(40mL TBS-T, 0.8g milk powder, 4µL Anti-V5 primary antibody (1 in 10,000 dilution, Invitrogen)) 

and incubated overnight, rolling at 4°C. The membrane was then washed twice for 5 minutes 

in TBST and 10mL of secondary antibody solution (40mL TBS-T, 0.8g milk powder, 0.5µL 

peroxidase-conjugated anti-mouse IgG (1 in 80,000 dilution, Sigma) was added to the 

membrane and incubated for 5 hours, rolling at 4°C. The membrane was washed twice in 

TBS-T (5 minutes each, rolling at 4°C) and once in TBS (5 minutes, rolling at 4°C). The 
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membrane was dried and an enhanced chemiluminescence (ECL) solution (ECL1: 2.5mL 

250mM Luminol (in DMSO), 1.1mL 90mM p-coumaric acid (in DMSO), 221.4mL Tris HCl, pH, 

dH2O to 250mL. ECL2: 160µL 30% H2O2, 25mL 1M Tris HCl, pH 8.5, 224.8mL dH2O. ECL 

solution for imaging: 1mL ECL 1, 1mL ECL 2.) was added and then incubated for 3 minutes 

at room temperature in darkness. The excess ECL is removed and the mebrane is placed in 

the imaging dock and 100 images are taken over an exposure time of 10 minutes (146). 

Digitised images were acquired with a ChemiDoc MP workstation (Bio-RAD), analysed with 

ImageJ v1.49 (147) and quantified with QtiPlot v0.9.8.10. 
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Chapter 3: TM1 results 
 

3.1: Overview of sulphydryl-reactivity analysis 

A primary interest is to determine how the TMD of EnvZ allosterically processes and 

couples different sensory inputs into a single unified output. To determine which residues of 

EnvZ compose TM1, the primary sequence was subjected to a full protein scan with DGpred 

(143), which suggested that residues Phe-12 to Val-34 comprise TM1. TMHMM v2.0 (144) 

was also employed, which suggested that the residues between Thr-15 and Phe-37 compose 

TM1. These results are similar to previously proposed TM1 composition (55, 56), therefore, 

sulphydryl-reactivity experimentation was employed between residue positions 11 and 41 in 

order to ensure that the entirety of TM1 was encompassed.  

Sulphydryl-reactivity possesses several distinct advantages. Firstly, it is well-

characterised and has been employed on many soluble and membrane-spanning proteins 

and higher-order complexes (149). Based on these previous results, it has been possible to 

compare our results with those from other membrane-spanning receptors. Secondly, these 

reactions can be performed in vivo, which allows EnvZ to remain within its native environment 

while retaining the ability to adjust extracellular osmolarity. In addition, this leaves all 

accessory proteins, such as MzrA, present and modulatable within the host cell membrane. 

Finally, the use of an in vivo methodology allowed us to monitor signal output with a dual-

colour fluorescence-based system (Figure 2-2B) have previously been employed to 

determine which surfaces of TM1 are intolerant of Cys substitutions (1,4,6). In summary, the 

in vivo nature of this assay facilitated mapping of the TM1-TM1’ interface under different 

osmotic conditions, which is an important first step toward understanding how EnvZ processes 

different allosteric signal inputs into a single uniform modulation of bacterial porin balance.



 
 

52 

3.2: Optimising a cysteine-less EnvZ 

To measure steady-state signal output from EnvZ/OmpR osmosensing circuits 

possessing the Cys-less variants, two-colour fluorescent reporter strains were used. MDG147 

is a derivative of E. coli strain K-12 MG1655 that possesses transcriptional fusions of cfp to 

ompC and of yfp to ompF within its chromosome. This allows the ratio of CFP to YFP 

fluorescence (CFP/YFP) to provide a rapid and sensitive measure of the ratio of ompC to 

ompF transcription, which estimates the intracellular level of phosphorylated OmpR (Figure 

2-2B) (1,4,6). MDG147 cells harbouring the empty vector pEB5 (1) were grown in glucose 

MMA under either the low- (0% sucrose) or high- (15% sucrose) osmolarity regime and both 

CFP and YFP fluorescence were measured. As previously observed, an increase in CFP 

fluorescence (291 to 922 fluorescence values, low to high osmolarity) along with a 

concomitant decrease in YFP fluorescence (780 to 318 fluorescence values, low to high 

osmolarity, resulting in an increased CFP/YFP ratio (0.38 to 3.20, low to high osmolarity, ~8.5 

fold increase), was observed when MDG147/pEB5 cells were grown under the high-osmolarity 

regime (Figures 3-1A and 3-1B) (4,6). 

To assess whether plasmid-based complementation could produce similar steady-

state signal output, EPB30 (MDG147 envZ::kan) cells (2) were complemented with the Cys-

less EnvZ variants expressed from plasmid pRD400 (6). EPB30/pRD400 cells expressing the 

C277M variant resulted in CFP and YFP fluorescence similar to those harbouring the control 

vector (EPB30/pEB5) under both osmotic regimes, therefore, it was not considered for further 

analysis (Figure 3-2). The C277A variant facilitated steady-state output similar to plasmid-

based WT EnvZ under both regimes, while C277S resulted in slightly lower steady-state signal 

output (Figure 3-3). Based on these results, it was elected to continue with the C277A under 

conditions that produced results similar to MDG147/pEB5 cells (Figures 3-1A, 3-2B and 3-3). 
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Figure 3-1: Signal output of the Cys-less variant of EnvZ. (A) CFP and YFP fluorescence from MDG147/pEB5 (filled) and EPB30/pRD400 C277A (Cys-less; 
empty) cells grown under the low- (0% sucrose) and high-osmolarity (15% sucrose) regimes. (B) The CFP/YFP ratio from MDG147/pEB5 (filled) and 
EPB30/pRD400 C277A (Cys-less; empty) cells grown under the low- and high-osmolarity regimes estimates EnvZ signal output. Error bars represent standard 
deviation of the mean with a sample size of n ≥ 3. 
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Figure 3-2: Comparison of signal output from EPB30/pEB5 (DenvZ) cells and those expressing 
the C277M variant of EnvZ. CFP fluorescence (A), YFP fluorescence (B) and CFP/YFP ratio 
(C) from EPB30/pRD400 cells grown under the low-osmolarity regime (0% sucrose) 
expressing the C277M variant of EnvZ at different concentrations of IPTG. CFP fluorescence 
(D), YFP fluorescence (E) and CFP/YFP ratio (F) from EPB30/pRD400 cells grown under the 
high-osmolarity regime (15% sucrose) expressing the C277M variant of EnvZ at different 
concentrations of IPTG. In all panels, the shaded area represents the mean with a range of 
one standard deviation of the mean from EPB30/pEB5 (50µM iodine). Values represented by 
the shaded area are also provided to aid in comparison. Error bars represent standard 
deviation of the mean with a sample size of n ≥ 3. 
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Figure 3-3: Comparison of signal output from the WT (filled circles), the C277A (empty circles) 
and the C277S variants (empty squares) of EnvZ. CFP fluorescence (A), YFP fluorescence 
(B) and CFP/YFP ratio (C) from EPB30/pRD400 cells grown under the low-osmolarity regime 
(0% sucrose) expressing the WT, C277A or C277S variant of EnvZ at different concentrations 
of IPTG. CFP fluorescence (D), YFP fluorescence (E) and CFP/YFP ratio (F) from 
EPB30/pRD400 cells grown under the high-osmolarity regime (15% sucrose) expressing the 
WT, C277A or C277S variant of EnvZ at different concentrations of IPTG. In all panels, the 
shaded area represents the mean with a range of one standard deviation of the mean from 
MDG147/pEB5 cells (50µM iodine). The values represented by the shaded area are also 
provided to aid in comparison. Error bars represent standard deviation of the mean with a 
sample size of n ≥ 3. 
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3.3: Mapping TM1 surfaces responsible for maintenance of EnvZ signal 

output 

As described above, positions 11 through 41 were selected to ensure that all residues 

potentially comprising TM1 were converted to a Cys residue. A library of single-Cys-containing 

EnvZ proteins was created by employing standard site-directed mutagenesis (see Section 

2.2) using pRD400 containing the C277A variant as a template (Figure 3-1). Although several 

attempts were made, a Cys residue could not be placed at position 32. It was observed that 

the entire library, with a few exceptions, was expressed within EPB30/pRD400 cells grown 

under the low- or high-osmolarity regime (Figure 3-4C). Under both the low and high 

osmolarity regimes the L23C variant was found at significantly lower steady-state levels. In 

addition, the monomeric form of the P41C variant was only quantifiable when EPB30/pRD400 

cells were grown under the high-osmolarity regime (Figure 3-4C).  

For EPB30/pRD400 cells each expressing a single-Cys-containing TM1, CFP 

fluorescence and YFP fluorescence were measured to calculate the CFP/YFP ratio, which 

serves as an estimate of steady-state EnvZ signal output. EPB30/pRD400 cells expressing 

the C277A variant were used as the baseline for comparison (Figures 3-1A, 3-1B and 3-3). 

Under the low-osmolarity regime, a shift in signaling output toward the “on” state results in 

increased CFP fluorescence (Figure 3-5A), decreased YFP fluorescence (Figure 3-5B) and 

an overall increase in the CFP/YFP ratio (Figures 3-6A and 3-6B), while a shift toward the 

“off” state appears as decreased CFP (Figure 3-5A), increased YFP (Figure 3-5B) and a 

decrease in CFP/YFP ratio (Figures 3-6A and 3-6B).  

Several trends were observed during analysis of the entire single-Cys-containing 

library. When EPB30/pRD400 cells were grown under the low-osmolarity regime, EnvZ was 

less tolerant of Cys substitutions at the N- and C-terminal regions of the library. In most cases, 

this results in a shift toward the “on” state of EnvZ, demonstrated by an increase in CFP 

fluorescence and a decrease in YFP fluorescence. These boundary regions appear to flank a 
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core of alternating increases and decreases in EnvZ signal output, suggesting that multiple 

tightly packed EnvZ helices exist within the hydrophobic core of the inner membrane. It should 

also be noted that when EPB30/pRD400 cells where grown under the low-osmolarity regime, 

a Cys at residue position 22 prevented cellular growth, however, this was not observed when 

cells were grown under the high- osmolarity regime (Figures 3-4C, 3-5 and 3-6). Interestingly, 

these results occurred adjacent to the position that possessed the most-biased steady-state 

signal output (Cys-23). When EPB30/pRD400 cells were grown under the high-osmolarity 

regime, a similar pattern of changes was observed in the CFP fluorescence (Figure 3-5C), 

YFP fluorescence (Figure 3-5D) and in CFP/YFP ratio (Figure 3-6C), however, these 

changes were smaller in magnitude, perhaps due to the fact that the EnvZ/OmpR circuit was 

already activated and thus disturbances due to altered surface interactions would be of a 

smaller magnitude. 
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Figure 3-4 Immunoblotting analysis of the sulfhydryl-reactivity experimentation. (A) EPB30/pRD400 cells grown under the low-osmolarity (A) or high-osmolarity 
(B) regimes were subjected to conditions described in Figure 7-8. It was observed that particular single-Cys- containing variants resulted in the presence of 
dimeric EnvZ moieties. A minimum of four immunoblots were used to determine the data points presented in Figure 9-1. (C) Steady-state expression of the 
single-Cys-containing variants of EnvZ. EPB30/pRD400 cells grown under the low- (0% sucrose) or high-osmolarity (15% sucrose) regime expressing one of 
the single-Cys-containing EnvZ variants. Cells expressing the L22C variant did not grow under the low-osmolarity regime. Lower steady-state levels of the 
L23C variant were also observed. In addition, the P41C variant was nearly absent when expressed in cells grown under the low-osmolarity regime. When 
EPB30/pRD400 cells were grown under the high-osmolarity regime, lower than normal steady-state levels of L23C were observed. 
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Figure 3-5: Signal output from the library of single-Cys-containing EnvZ variants represented as individual CFP and YFP values. CFP fluorescence (A) and 
YFP fluorescence (B) from EPB30/pRD400 cells expressing one of the single-Cys- containing EnvZ variants grown under the low-osmolarity (0% sucrose) 
regime. These ratios are also compared to EPB30/pRD400 cells expressing the C277A variant (Cys-less) with induction at 250 μM IPTG. CFP fluorescence 
(C) and YFP fluorescence (D) from EPB30/pRD400 cells expressing one of the single-Cys-containing EnvZ variants grown under the high-osmolarity (15% 
sucrose) regime. These ratios are also compared to EPB30/pRD400 cells expressing the C277A variant (Cys-less) with induction at 50 μM IPTG. It is important 
to note that the P41C variant could only be expressed within cells grown under the high-osmolarity regime. In all panels, the shaded area represents the mean 
with a range of one standard deviation of the mean from EPB30/pRD400 cells expressing the C277A variant (Cys-less) with induction at 50 μM IPTG. The 
values represented by the shaded area are also provided to aid in comparison. Error bars represent standard deviation of the mean with a sample size of n ≥ 
3.  
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Figure 3-6: Signal output from the library of single-Cys-containing EnvZ variants represented 
as CFP/YFP ratios. (A) CFP/YFP ratios from EPB30/pRD400 cells expressing one of the 
single-Cys-containing EnvZ variants grown under the low-osmolarity (0% sucrose) regime. 
These ratios are also compared to EPB30/pRD400 cells expressing the Cys-less (C277A) 
variant and are used to demarcate the Cys-containing variants in Figure 3-10. (B) Magnified 
version of panel A in order to emphasise the region up to a 2-fold increase in CFP/YFP over 
cells expressing the Cys-less variant. (C) CFP/YFP ratios from EPB30/pRD400 cells 
expressing one of the single-Cys-containing EnvZ variants grown under the high-osmolarity 
(15% sucrose) regime. These ratios are also compared to EPB30/pRD400 cells expressing 
the Cys-less (C277A) variant and are used to demarcate the Cys-containing variants in Figure 
3-10. It is important to note that cells expressing the P41C variant were analysed only when 
grown under the high-osmolarity regime. The shaded areas represent the mean and a range 
of one standard deviation of mean. These values are provided to aid in comparison. Error bars 
represent standard deviation of the mean with a sample size of n ≥ 3. 
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3.4: Identifying surfaces involved in TM1-TM1’ dimerisation 

Based on the effect of the individual Cys substitutions on EnvZ signal output, it appears that 

a potential helix is present within the hydrophobic core of the membrane. Therefore, it was of 

interest to determine whether the helical surface participating in TM1-TM1’ interaction surface 

could be identified. To accomplish this, the library of single-Cys-containing variants was 

expressed in EPB30/pRD400 cells and upon reaching an OD600nm of approximately 0.3, cells 

were subjected to 250 µM molecular iodine for 10 minutes and subsequently analysed by non-

reducing SDS-PAGE. These conditions have been previously shown to promote disulphide 

formation in various membrane-spanning receptors in vivo by creating an oxidising 

environment (149). As this environment is not experience by E. coli under normal conditions, 

a spontaneous crosslinking event would be unlikely to occur during dimerisation. Upon 

comparison of the WT and the C277A variant, under either osmotic regime, the presence of a 

higher molecular weight band confirmed the necessity of Cys-277 removal (Figure 3-7).  

Based on these results, EPB30/pRD400 cells expressing the single-Cys-containing 

EnvZ variants were grown under the low- (0% sucrose) and high-osmolarity (15% sucrose) 

regimes and subjected to molecular iodine, non-reducing SDS-PAGE and immunoblotting 

against the C-terminal V5 epitope (Figure 3-4). Data were tabulated for every position with 

the exception of residue position 32, which could not be made as described above. Three 

regions were observed, each with a different extent of disulphide bond formation. The N-

terminal region (region I in Figure 3-8), comprising residues 11 to 18, exhibited almost no 

cross-linking, except for a minimal amount at positions 11 and 15. The second region (II), 

consisting of positions 19 to 37, demonstrated alternating low and high levels of disulphide 

formation consistent with the hydrophobic core of TM1. The final region (III) consists of the C-

terminal periplasmic positions in our library, residues 38 through 41, where the apparent 

helical pattern is interrupted and an overall greater extent of sulphydryl-reactivity is observed. 
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Altering the reaction conditions as shown in Figures 3-9 and 3-10 further supported the 

differentiation of the TM1 into Regions I through III. 

 

Figure 3-7 Sulphydryl-reactivity of the WT and Cys-less (C227A) variants of EnvZ. Comparison of 
EPB30/pRD400 cells expressing the WT and C277A variants of EnvZ upon subjecting them to 
molecular iodine. Cells were grown under the low- (without sucrose) or high- osmolarity (with 15% 
sucrose) regimes until an OD600nm of approximately 0.2-0.3. Cultures were then subjected to 250µM 
molecular iodine. When EPB30/pRD400 cells were expressing the wild- type version of EnvZ, both 
under the low- and high-osmolarity regimes, a dimeric species was observed. Conversely, when 
the C277A variant was expressed, no dimeric species were observed. These results confirm the 
necessity of removing the native Cys residue at position 277.  
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Figure 3-8: Extent of sulphydryl-reactivity for each single-Cys-containing variant. 
EPB30/pRD400 cells growing under the low- (empty circles, 0% sucrose) or high-osmolarity 
(filled circles, 15% sucrose) regimes were analysed to determine the ratio of 
dimeric:monomeric EnvZ at each position as shown in Figure 3-4. As described within the 
text, three distinct regions (I, II and III) were observed. Error bars represent standard deviation 
of the mean with a sample size of n ≥ 3. 
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  2 

Figure 3-9: Concentration-dependent sulphydryl-reactivity analysis of the single-Cys-
containing EnvZ variants. EPB30/pRD400 cells expressing one of the single-Cys-containing 
variants that were shown to form a disulphide under the low-osmolarity growth regime (0% 
sucrose) in Figure 9-1 were assessed in a modified sulphydryl-reactivity protocol. Under these 
conditions, the total reaction time was held constant at 10 minutes and the concentration of 
iodine was altered over a 25-fold range (10 µM, 25 µM, 50 µM and 250 µM final). As described 
in the text, these results reinforce our delineation of TM1 into Regions I-III.  
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Figure 3-10: Time-dependent sulphydryl-reactivity analysis of the single-Cys-containing EnvZ 
variants. EPB30/pRD400 cells expressing one of the single-Cys-containing variants that were 
shown to form a disulphide under the low-osmolarity growth regime (0% sucrose) in Figure 3-
4 were assessed in a modified sulphydryl-reactivity protocol. Under these conditions, the 
concentration of iodine was held constant at 250 μM final and the reaction time was altered 
over a 10-fold range (1, 2, 5 and 10 minutes). As described in the text, these results reinforce 
our delineation of TM1 into Regions I-III. 
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 4 

Chapter 4: TM2 results 5 

4.1: Creating a single-cysteine containing library within TM2 of EnvZ 6 

The cys-less EnvZ (C277A) was used for the TM2 library as described in Section 2.6. 7 

Residues which comprise TM2 were determined by subjecting the full EnvZ sequence to 8 

DGpred (142) and TMHMM v2.0 (143), which suggested that Leu-160 to Ile-181 and Leu- 9 

160 to Ile-179 comprise TM2 respectively. Based on these analyses, site-directed 10 

mutagenesis was employed using the Cys-less variant as a template to create a library of 11 

single-Cys-containing EnvZ proteins that spanned from positions 156 to 184 (Figure 4-1). 12 

It was observed that nearly the entire library was expressed within EPB30/pRD400 cells 13 

grown under the low- or high-osmolarity regime. Variants possessing a Cys at position 156 14 

showed low levels of expression when grown under the low-osmolarity (0% sucrose) regime. 15 

However, when grown under the high-osmolarity regime, no variants showed reduced 16 

expression level (Figure 4-4C). These results indicate that the library was suitable for 17 

further in vivo experimentation. 18 
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Figure 4-1: EnvZ functions as a homodimer with a cytoplasmic N-terminus, the first transmembrane helix (TM1, white), a large periplasmic domain (sensor, 
white), the second transmembrane helix (TM2, red), a membrane-adjacent HAMP domain (grey) and the DHp (black) and CA (black). The position of the 
original Cys-277 residue that was mutated to Ala to produce the Cys-less EnvZ is provided. The residues subjected to Cys substitution and their position in the 
primary sequence is provided. Signal output from each single-Cys-containing variant is compared to the Cys-less (C277A) variant: less than 50% of Cys-less 
(light blue), between 50% and 75% of Cys-less (dark blue), between 75% and 125% of Cys-less (grey), between 125% and 200% (dark red) and greater than 
200% (light red). Residue positions exhibited flipped signal output are indicated with a plus. The extent of sulphydryl-reactivity is also presented in five 
categories based on dimer-to-monomer ratio: no dimer present (white), less than 0.05 (light grey), between 0.05 and 0.2 (medium grey), between 0.2 and 0.5 
(dark grey) and greater than 0.5 (red). Positions that exhibit a significant change in cross-linking between the low- and high-osmolarity regimes are indicated 
with a plus. 
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4.2: Mapping TM2 surfaces important for maintenance of EnvZ signal 

output 

Each of the single-Cys-containing variants in EPB30/pRD400 cells was expressed, which 

allowed measurements of CFP fluorescence, YFP fluorescence, and to calculate the 

CFP/YFP ratio that estimates steady-state EnvZ signal output (Figure 3-1B). Cells expressing 

the Cys-less C277A variant were used as a baseline comparison (Figure 3-2). When 

EPB30/pRD400 cells are grown under the low-osmolarity regime, a shift in signaling output 

toward the “on” or kinase-dominant state results in increased CFP fluorescence, reduced YFP 

fluorescence and an increase in the overall CFP/YFP ratio, while a shift toward the “off” or 

phosphatase-dominant state appears as decreased CFP, increased YFP and a decrease in 

CFP/YFP ratio (Figures 4-2). These changes in CFP/YFP are as described in Section 3.2 

While the CFP/YFP ratio values are focussed upon for analysis and discussion, the CFP and 

YFP values have also been displayed to demonstrate the make-up of the discussed ratios 

(Figure 4.3). This is important to note as a ratio may be misleading or hide very low/high 

results. For example, the CFP and YFP values could be extremely low for a mutant, but also 

very similar leading to a ratio of approximately one. As they are particularly low, this would 

indicate that signal output has been virtually abolished, but the ratio would not reveal this 

information.   

Several trends were observed during analysis of the library of Cys-containing EnvZ 

receptors. When EPB30/pRD400 cells were grown under the low-osmolarity regime, EnvZ 

was less tolerant of Cys substitutions at the N- and C-terminal regions of the library. At the N-

terminus, signal output from receptors containing a Cys at positions 156, 162 and 163 were 

elevated, exhibiting greater than a 5-fold increase in CFP/YFP, while receptors possessing a 

Cys in the C-terminus at positions 179, 181, 182 and 184 were elevated, possessing over a 

2-fold increase in CFP/YFP. These boundary regions flank a core of alternating increases and 

decreases in EnvZ signal output, as observed between residue positions 165 and 180, 
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suggesting that multiple tightly packed EnvZ helices exist within the hydrophobic core of the 

inner membrane (Figure 4-4A and 4-4B). When grown under the high-osmolarity regime, a 

pattern appeared where Cys substitutions resulted in significant decreases in signal output 

(Figure 4-5C). Of the 29 mutants analysed, 13 supported less than 75% of the normal WT 

signal output.  

Most striking is the inverse effect on EnvZ signal output of the Cys substitutions that 

flank the hydrophobic core of TM2. For these residues, when grown under the low-osmolarity 

regime, the presence of a Cys resulted in an increase in signal output of more than 25%, i.e. 

shifted toward the on or kinase-dominant state (red dots in Figure 4-2A) and a reduction in 

signal output of more than 25%, i.e. shifted toward the off or phosphate-dominant state, when 

grown under the high-osmolarity regime (blue dots in Figure 4-2C). A “flipped mutant” is 

described as having opposite results as expected in both osmolarity regimes. These flipped 

positions reside at the N- and C-terminal ends of the examined region and outside of the 

proposed hydrophobic TMD core (Figure 4-2). Within the hydrophobic core, Cys substitutions 

show similar changes when cells are grown under the low- and high-osmolality regimes. 

These results suggest that the flanking regions are not simply rigid structural conduits for 

signal transduction but may have higher-order roles in signal transduction, such as MzrA 

interaction or functioning as a control cable at the N- and C-terminal regions respectively 

(79,80,87,90,140,141). 
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Figure 4-2: Signal output from the library of single-Cys EnvZ variants. (A) CFP/YFP from 
EPB30/pRD400 cells expressing one of single-Cys variants grown under the low-osmolarity 
(0% sucrose) regime. On the right axis, these CFP/YFP ratios are compared to the Cys-less 
(C277A) variant. (B) Magnified version of panel A in order to emphasise the region up to a 2-
fold increase in CFP/YFP. (C) CFP/YFP from EPB30/pRD400 cells expressing one of the 
single-Cys variants grown under the high-osmolarity (15% sucrose) regime. On the right axis, 
these CFP/YFP ratios are compared to the Cys-less (C277A) variant. The flipped mutants are 
highlighted with a red dot in panel A (increased signal output) and a blue dot in panel C 
(decreased signal output). The shaded areas represent the mean signal output from the Cys-
less variant of EnvZ with a range of one standard error of mean. These values are provided 
to aid in comparison. Error bars represent standard deviation of the mean with a sample size 
of n ≥ 3. 
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Figure 4-3: Signal output from the single-Cys-containing EnvZ variants. CFP (A) and YFP (B) fluorescence from EPB30/pRD400 cells expressing one of the 
receptors from the library grown under the low-osmolarity (0% sucrose) regime. CFP (C) and YFP (D) fluorescence from EPB30/pRD400 cells expressing one 
of the single-Cys-mutants from the library grown under the high-osmolarity (15% sucrose) regime. On the right axes, the ratio of signal output compared to 
EPB30/pRD400 cells expressing the Cys-less mutant is also presented to aid in comparison. In all panels, the shaded area represents the mean with a range 
of one standard deviation of the mean from EPB30/pRD400 cells expressing the Cys-less variant of EnvZ (Figure S3). Error bars represent standard error of 
the mean with an n ≥ 3.  
 



 
 

72 

4.3: Identifying surfaces involved in TM2-TM2’ interactions 

Sulphydryl-reactivity experimentation is well-characterised and has been employed on many 

soluble and membrane-spanning proteins and higher-order complexes (149). The in vivo 

nature of this assay facilitated mapping of the TM2-TM2’ interface under different osmotic 

conditions, which is an important first step toward understanding how EnvZ processes 

allosteric inputs from periplasmic MzrA binding and cytoplasmic osmosensing into a single 

uniform modulation of bacterial porin balance (Figure 3-1). In a similar manner to mapping 

TM1-TM1’ interactions (104), Cys-containing EnvZ variants were expressed in 

EPB30/pRD400 cells and upon entering the early exponential phase (OD600nm ≈ 0.25) they 

were subjected to 250 µM molecular iodine for 10 minutes analysed by non-reducing SDS-

PAGE and immunoblotting (Figure 4-4A&B). 

Three distinct regions within TM2 were observed. The N-terminal region (region I in 

Figure 4-2), comprised of residues 156 to 163, exhibited significant cross-linking under the 

low-osmolarity regime (0% sucrose) and almost no crosslinking under the high-osmolarity (15% 

sucrose) regime. The second region (II) consisting of positions 164 to 179, demonstrated 

altering low and high levels of disulphide-formation consistent with the crosslinking of TM2 

and TM2’ within the hydrophobic core of the TMD. The final region (III), from residues 180 to 

184, shows no crosslinking (Figure 4-5). It should be noted that this significant difference at 

the periplasmic end of the TMD between cells grown under the low- and high-osmolarity 

regime was not observed during similar analyses of TM1 (104).
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Figure 4-4: Immunoblotting analysis of the sulphydryl-reactivity experimentation. EPB30/pRD400 cells expressing one of the single-Cys-containing EnvZ 
receptors were grown under (A) the low- (0%) or (B) the high- (15%) regimes until an OD600nm of approximately 0.25 was reached. Cultures were then subjected 
to 250 μM molecular iodine for 10 minutes, which resulted in the presence of dimeric EnvZ moieties that migrated at a slower rate than the monomeric species 
with certain Cys- containing EnvZ receptors. A minimum of three immunoblots were used for each of the data points present in Figure 8-8. (C) Steady-state 
expression of EnvZ variants containing a single Cys residue within TM2. EPB30/pRD400 cells expressing one of the single-Cys-containing variants were grown 
under the low- (0% sucrose) or high-osmolarity (15% sucrose) regimes. Under the low-osmolarity regime, reduced steady-state levels of the D156C variant 
were observed. In addition, disulphide formation was observed for the F157C and L160C variants in the absence of any additional oxidising agent. When 
EPB30/pRD400 cells were grown under the high-osmolarity regime, the F157C, L160C and F161C variants exhibited disulphide formation in the absence of 
any oxidising agent.  
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Figure 4-5: Extent of sulphydryl-reactivity for each single-Cys-containing EnvZ variant. EPB30/pRD400 cells were grown under the low- (empty circles, 0% 
sucrose) or high-osmolarity (filled circles, 15% sucrose) regimes and subjected to 250 μM molecular iodine for 10 minutes when their OD600nm reached 
approximately 0.25. As shown in Figure S5, this allowed us to determine the dimer/monomer ratio represented on the Y-axis. Three distinct regions, denoted 
I, II and III were observed and are described in the text. Error bars represent the standard error of the mean with a sample size of n ≥ 3. 
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Chapter 5: 2X Cys results 
5.1: Creation of a double-cysteine EnvZ library 

 To create a library of EPB30/pRD400 cells containing 2X-Cys EnvZ mutations, the 

previous library of EnvZ proteins that contained a Cys residue in either TM1 (104) or TM2 

(137) was used as a starting point. For the TM1 library, residue positions 15 to 35 were 

selected for analysis. These residues were selected because they were proposed to form the 

core of the TM1 helix. Using data from previous TM mapping experiments with the serine 

chemoreceptor (Tsr) (91), a range of five consecutive residues in TM2 that would likely interact 

with the Cys residue in TM1 were assigned. The molecular cloning was completed on 100 2X-

Cys pairings and 11/100 specific Cys pairs prevented cell growth when expressed via IPTG 

(Figure 5-1 and 5-2). Cys-22, located in the membrane core region of the TM helices, had 

previously prevented cell growth when expressed via IPTG as a 1X-Cys mutation yet neither 

Cys-16, located in the cytoplasmic end of the TM helices, or Cys-21, also located in the 

membrane core of the TM helices, prevented cell growth when expressed via IPTG as a 1X-

Cys mutant. Additionally, both Cys-16 and Cys-22 prevented cell growth across all five 

proposed pairings yet Cys-21 was successfully paired with and grown in four of its five pairings. 

The location of these unsuccessful mutations will be critical to their growth prevention as the 

mutation may affect the overall structure of the protein with fatal consequences. This could 

prove useful in locating sensitive and potentially fragile sections of the protein to interfere with 

and potentially elicit an antibiotic effect. All other pairs were expressed and detectable via 

immunoblotting. 

 

  



 
 

76 

 

T 
L 

L 
L 

I V
 T

 L
 L

 F
 A

 S
 L

 V
 T

 T
 Y

 L
 V

 V
 L

 

15 

20 

25 

30 

35 

S
 P L F R

 Y T L A I M
 L L A I G

 G
 A W

 L F I R
 I 

158 

160 

165 

170 

175 

180 
181 

TM2’TM1’ TM2 TM1 

cytoplasmic domains 

periplasmic domain	

EnvZ EnvZ-P 

OmpR OmpR-P 

Osmolarity 
MzrA 

[OmpR-P] 

Tr
an

sc
rip

tio
n 

ompF (YFP) 
ompC (CFP) 

A B 

C 

Figure 5-1: Visual depiction of TM regions targeted by cysteine mutation. A homodimer 
representation of EnvZ showing the transmembrane helices involved (TM1, TM2, TM1’, TM2’). 
The residues from which the library pairings were selected from are detailed. Residues L16 
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attempted for 2X-Cys mutations. The range of residues was selected on the basis of their 
inclusion within the helix structure that is located within the membrane. 
 



 
 

77 

 
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

Mutant (Single Code 
version)

Mutant (number 
version)

Mutant (Single Code 
version)

Mutant (number 
version)

T15C / L177C 15-177 A25C / I167C 25-167
T15C / F178C 15-178 A25C / M168C 25-168
T15C / I179C 15-179 A25C / L169C 25-169
T15C / R180C 15-180 A25C / L170C 25-170
T15C / I181C 15-181 A25C / A171C 25-171

L16C / W176C* 16-176* S26C / A166C 26-166
L16C / L177C* 16-177* S26C / I167C 26-167
L16C / F178C* 16-178* S26C / M168C 26-168
L16C / I179C* 16-179* S26C / L169C 26-169
L16C / R180C* 16-180* S26C / L170C 26-170
L17C / A175C 17-175 L27C / L165C 27-165
L17C / W176C 17-176 L27C / A166C 27-166
L17C / L177C 17-177 L27C / I167C 27-167
L17C / F178C 17-178 L27C / M168C 27-168
L17C / I179C 17-179 L27C / L169C 27-169
L18C / G174C 18-174 V28C / T164C 28-164
L18C / A175C 18-175 V28C / L165C 28-165
L18C / W176C 18-176 V28C / A166C 28-166
L18C / L177C 18-177 V28C / I167C 28-167
L18C / F178C 18-178 V28C / M168C 28-168
I19C / G173C 19-173 T29C / Y163C 29-163
I19C / G174C 19-174 T29C / T164C 29-164
I19C / A175C 19-175 T29C / L165C 29-165
I19C / W176C 19-176 T29C / A166C 29-166
I19C / L177C 19-177 T29C / I167C 29-167
V20C / I172C 20-172 T30C / R162C 30-162
V20C / G173C 20-173 T30C / Y163C 30-163
V20C / G174C 20-174 T30C / T164C 30-164
V20C / A175C 20-175 T30C / L165C 30-165
V20C / W176C 20-176 T30C / A166C 30-166
T21C / A171C 21-171 Y31C / F161C 31-161
T21C / I172C 21-172 Y31C / R162C 31-162
T21C / G173C 21-173 Y31C / Y163C 31-163

T21C / G174C* 21-174* Y31C / T164C 31-164
T21C / A175C 21-175 Y31C / L165C 31-165
L22C / L170C* 22-170* V33C / L160C 33-160
L22C / A171C* 22-171* V33C / F161C 33-161
L22C / I172C* 22-172* V33C / R162C 33-162
L22C / G173C* 22-173* V33C / Y163C 33-163
L22C / G174C* 22-174* V33C / T164C 33-164
L23C / L169C 23-169 V34C / P159C 34-159
L23C / L170C 23-170 V34C / L160C 34-160
L23C / A171C 23-171 V34C / F161C 34-161
L23C / I172C 23-172 V34C / R162C 34-162
L23C / G173C 23-173 V34C / Y163C 34-163
F24C / M168C 24-168 L35C / S158C 35-158
F24C / L169C 24-169 L35C / P159C 35-159
F24C / L170C 24-170 L35C / L160C 35-160
F24C / A171C 24-171 L35C / F161C 35-161
F24C / I172C 24-172 L35C / R162C 35-162

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

Figure 5-2: Mutant pairings accompanied by helical net depictions. Double-cysteine mutant pairings are displayed with a TM1 (15-35) and TM2 (158-181) 
helical net diagram to visually demonstrate the relative locations of pairing groups. Green circles indicate mutant pairings that successfully grew within an 
experimental strain of E. coli (EPB30) and red circles indicate mutant pairings that did not successfully grow within EPB30. 
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5.2: Sulphydryl-reactivity analysis in vivo 

Sulphydryl-reactivity analysis has been previously employed on a wide range of membrane-

spanning and soluble protein as well as higher order systems (150–152). The methodology 

also allows in vivo analysis of protein function, thus allowing EnvZ to retain its natural 

environment in the presence of all accessory proteins that may have modulatory functions 

upon EnvZ activity. An additional benefit to in vivo experimentation is that it allows us to record 

changes in signal output via a dual-colour fluorescence reporter system that have been 

simultaneously employed to identify position-pairings that are not tolerant to their mutations. 

Overall, using this in vivo assay we were able to map interactions within the transmembrane 

helix bundle under distinct osmotic conditions. This allows us to create a more complex picture 

of the mechanisms within the transmembrane sections of EnvZ during signal transduction.  

The results from these experiments have revealed a distinct difference to reactivity 

experimentation involving a 1X-Cys residue (Figure 5-3). Several 2X-Cys mutants exhibited 

more than one dimer band and multiple separate interactions were possible. As each of the 

three possible interactions would be connected via a significantly different point along the 

protein structure, it is proposed that this affects their dynamics through polyacrylamide gel. 

Mutants displaying TM1-TM1’ interactions migrated furthest, mutants displaying TM2-TM2’ 

interactions migrated least far and mutants displaying TM1-TM2’ interactions migrated a 

distance between the other two. Further to this, it was necessary to identify dimer bands and 

attribute them to one of the aforementioned interactions. This was achieved by running 2X-

Cys mutants adjacent to their 1X-Cys constituents and lining up matching bands (Figure 5-4). 

The band identities are summarised in Table 5-5. With the above method of band identification, 

multiple 2X-Cys mutants were identified that did not produce bands as they may have been 

predicted. As an example of this, mutant both 19 and 175 showed strong dimer bands from 

1X-Cys data yet the 2X-Cys combination of these mutants (19-175) produced only one band 

which aligned to the TM1-TM1’ band. This shows that the 175 interaction has been lost, 



 
 

79 

suggesting the 19-19’ interaction is stronger and perhaps more important to EnvZ 

transmembrane function. 

Quantified bands were used to calculate a D/M ratio, which indicates the propensity 

for the crosslinking interaction (Figure 5-6). Where no dimer was detectable, it was deemed  

that there was to be no interaction and the D/M ratio has been reported as zero. In cases of 2 

or more detectable bands, an overall dimer versus monomer ratio was calculated as well as 

individual dimers versus the sum of remaining bands, including other dimers. The latter 

calculation allowed measurement of specific interaction strengths where multiple bands were 

present. These calculations have been used to grade the interaction intensities across all 

helical wheel and net diagrams (Figures 5-7, 5-8 and 5-9). With signal, the 1-2’ interactions 

become weaker at the periplasm proximal third of the helices as well as the area of interaction 

shifting towards the periplasmic space. This may suggest the helices are opening to allow 

access to a space between the helices. Of the 24 2X-Cys mutants that showed altered bands 

upon stimulus, 12 showed an addition of a band or bands and 12 showed a loss of a band or 

bands (Table 5-5). Within the cytoplasmic end, three mutants showed addition and two 

mutants showed loss. Within the membrane core, four mutants showed addition and four 

showed loss. Within the periplasmic end, five showed addition and six showed loss. The 

changes are seen mostly within the periplasmic end, suggesting stimulus has a significant 

effect upon the conformation of this area. The changes seen within the membrane core do not 

involve 1-2’ interactions as they are not present throughout the entirety of this helix section. 

There is some change seen in the cytoplasmic end of the helices, but it shows the least 

movement of the three sections. 
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Figure 5-3: Immunoblotting analysis of the sulphydryl-reactivity experiments. EPB30/pRD400 cells expressing a 2X-Cys EnvZ mutation were grown in low osmolarity media (0% sucrose) and high osmolarity media 
(15%) until an OD600nm of 0.3 ± 0.1 was reached. 250µM of Iodine was added to the culture for 10 minutes which resulted in the presence of dimeric EnvZ formations double the molecular weight of a monomeric 
EnvZ formation. Therefore, the dimeric formations migrated through the gel more slowly than the monomeric formations. Separate dimer formations were possible, which each migrated a distinctly different distance 
– the slowest of these interactions was the 2-2’ interaction and the fastest dimer formation was the 1-1’ interaction. The 1-2’ interaction migrated between these two distances. Beside each set of five mutants (e.g. 
15-177 to 15-181) is a pair of helical nets for both TM1 and TM2. The circles (blue = 0% sucrose, red = 15% sucrose) represent either TM1-TM1’ or TM2-TM2’ interactions. Dashed lines represent TM1-TM2’ 
interactions between the connected residues. These interactions have been combined and into helical wheel and helical net figures (Figure 5-7, 5-8 and 5-9). The mutant library has been divided into three 
sections based on the 1-2’ interactions observed and their position relative to protein orientation within the membrane: Cytoplasmic end (15-177 to 19-177), Membrane core (20-172 to 28-168) and Periplasmic 
end (29-163 to 35-162). (n=2, monomer only. n=3-8, dimer present) 
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19 175 19- 
175 

TM1-TM1’ 

TM2-TM2’ 

Cys  
position 

TM1-TM2’ 

34- 
160 

Figure 5-4: 2X-Cys mutants produce multiple dimeric formations. (Left) The 19-175 mutant 
was run adjacent to its 1X-Cys mutation constituents to ascertain band identity. In this 
instance, the band formed is shown to be a 1-1’ interaction and the 2-2’ interaction has been 
lost. (Right) The 34-160 mutant is the only example within the library in which all three dimer 
formations have occurred, thus proving three distinct interactions can occur. 
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 1X-CYS 0% SUCROSE 
2X-CYS 

15% SUCROSE  
2X-CYS D 

Mutant 

1-1’ 2-2’ 

# 1-1’ 1-2’ 2-2’ # 1-1’ 1-2’ 2-2’ 

1-1’ 2-2’ 
0% 
® 

15% 0% 15% 0% 15% 0% 15% 0% 15% 

15-177 L L - - 1 ü û û 1 ü û û      

15-178 L L - - 1 ü û û 1 ü û û      

15-179 L L L L 0 û û û 0 û û û (-) (-) (-) (-)  

15-180 L L - - 0 û û û 0 û û û (-) (-)    

15-181 L L - - 0 û û û 1 ü û û (-)     

17-175 - - H H 1 û û ü 1 û û ü      

17-176 - - - - 0 û û û 0 û û û      

17-177 - - - - 1 û ü û 0 û û û      

17-178 - - - - 1 û ü û 1 û ü û      

17-179 - - L L 1 û û ü 1 û û ü      

18-174 - - - - 2 û ü ü 2 û ü ü   (+) (+)  

18-175 - - H H 0 û û û 0 û û û   (-) (-)  

18-176 - - - - 0 û û û 1 û ü û      

18-177 - - - - 0 û û û 0 û û û      

18-178 - - - - 0 û û û 1 û ü û      

19-173 M M - - 1 ü û û 1 ü û û      

19-174 M M - - 1 ü û û 1 ü û û      

19-175 M M H H 1 ü û û 1 ü û û   (-) (-)  

19-176 M M - - 2 ü ü û 0 û û û  (-)    

19-177 M M - - 1 ü û û 1 ü û û      

20-172 - - H H 0 û û û 0 û û û   (-) (-)  
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20-173 - - - - 0 û û û 0 û û û      

20-174 - - - - 0 û û û 0 û û û      

20-175 - - H H 1 û û ü 1 û û ü      

20-176 - - - - 0 û û û 0 û û û      

21-171 - - - - 0 û û û 0 û û û      

21-172 - - H H 0 û û û 0 û û û   (-) (-)  

21-173 - - - - 0 û û û 0 û û û      

21-175 - - H H 1 û û ü 1 û û ü      

23-169 H H - - 0 û û û 1 ü û û (-)     

23-170 H H - - 1 ü û û 0 û û û  (-)    

23-171 H H H H 2 ü û ü 1 û û ü  (-)    

23-172 H H - - 0 û û û 0 û û û (-) (-)    

23-173 H H - - 0 û û û 0 û û û (-) (-)    

24-168 - - L L 0 û û û 0 û û û   (-) (-)  

24-169 - - - - 0 û û û 0 û û û      

24-170 - - - - 0 û û û 0 û û û      

24-171 - - H H 1 û û ü 1 û û ü      

24-172 - - - - 0 û û û 0 û û û      

25-167 L L M M 0 û û û 0 û û û (-) (-) (-) (-)  

25-168 L L L L 0 û û û 0 û û û (-) (-) (-) (-)  

25-169 L L - - 1 ü û û 0 û û û  (-)    

25-170 L L - - 0 û û û 0 û û û (-) (-)    

25-171 L L H H 2 ü û ü 2 ü û ü      

26-166 H H - - 1 ü û û 1 ü û û      
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26-167 H H M M 2 ü û ü 2 ü û ü      

26-168 H H L L 2 ü û ü 1 ü û û    (-)  

26-169 H H - - 1 ü û û 1 ü û û      

26-170 H H - - 1 ü û û 1 ü û û      

27-165 - - - - 0 û û û 0 û û û      

27-166 - - - - 0 û û û 0 û û û      

27-167 - - M M 1 û û ü 1 û û ü      

27-168 - - L L 0 û û û 1 û û ü   (-)   

27-169 - - - - 0 û û û 0 û û û      

28-164 - - L L 0 û û û 0 û û û   (-) (-)  

28-165 - - - - 0 û û û 0 û û û      

28-166 - - - - 0 û û û 0 û û û      

28-167 - - M M 0 û û û 1 û û ü   (-)   

28-168 - - L L 0 û û û 1 û û ü   (-)   

29-163 - - - - 1 û ü û 1 û ü û      

29-164 - - L L 1 û û ü 1 û û ü      

29-165 - - - - 0 û û û 0 û û û      

29-166 - - - - 1 û ü û 1 û ü û      

29-167 - - M M 0 û û û 0 û û û   (-) (-)  

30-162 M H - - 1 ü û û 1 ü û û      

30-163 M H - - 0 û û û 1 ü û û (-)     

30-164 M H L L 1 û û ü 1 û û ü (-) (-)    

30-165 M H - - 1 ü û û 1 ü û û      

30-166 M H - - 0 û û û 0 û û û (-) (-)    
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31-161 - - L - 0 û û û 0 û û û   (-)   

31-162 - - - - 1 û ü û 1 û ü û      

31-163 - - - - 0 û û û 1 û ü û      

31-164 - - L L 1 û û ü 1 û û ü      

31-165 - - - - 0 û û û 0 û û û      

33-160 - - M L 2 û ü ü 1 û ü û    (-)  

33-161 - - L - 1 û û ü 2 û ü ü    (+)  

33-162 - - - - 1 û ü û 1 û ü û      

33-163 - - - - 2 û ü ü 2 û ü ü    (+)  

33-164 - - L L 2 û ü ü 0 û û û    (-)  

34-159 L L - - 1 ü û û 2 û ü ü (-)     

34-160 L L M L 3 ü ü ü 2 ü ü û    (-)  

34-161 L L L - 1 ü û û 2 ü ü û   (-)   

34-162 L L - - 2 ü ü ü 0 û û û (-)     

34-163 L L - - 1 ü û û 0 û û û (-)     

35-158 - - L - 0 û û û 0 û û û   (-)   

35-159 - - - - 2 û ü ü 0 û û û      

35-160 - - M L 2 û ü ü 2 û ü ü      

35-161 - - L - 1 û ü ü 0 û û û      

35-162 - - - - 0 û û û 0 û û û      

 
 
 
  

Table 5-5: Comparison of immunoblotting results collected for 1X-Cys mutants to results 
collected for 2X-Cys mutants resulting in band identification. Results collected for 1X-Cys 
mutants (118, 147) are compared and contrasted to results collected for 2X-Cys mutants in 
order to identify the bands that are created. The delta column describes where bands appear 
(+) or are lost (-) as well as the final column (0% to 15%) which indicated if a band is gained 
upon stimulus perception (green) or lost upon stimulus perception (red). The table is divided 
into the sections detailed in Figure 5-3, Cytoplasmic end (Purple, 12’ interactions present), 
Membrane Core (Orange, 12’ interactions not present) and Periplasmic end (Turquoise, 12’ 
interactions present).  
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Figure 5-6: Extent of sulphydryl-reactivity for each 2X-Cys containing EnvZ mutant. EPB30/pRD400 cells were grown in low osmolarity media (0% sucrose, 
empty circles) or high osmolarity media (15% sucrose, filled circles) and subjected to 250 μM molecular iodine for 10 minutes until their OD600nm reached 
0.3±0.1. The quantified band intensities for both monomer and dimer(s) are used to calculate a dimer/monomer ratio, the mean values of which are represented 
in this figure. Error bars represent the standard error of the mean dimer/monomer ratio with a sample size of n=2 for monomer only mutants (ratio recorded as 
zero) and n³3 if a dimer or dimers were present. 
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TM1

TM2

0% Sucrose

15% Sucrose

A B

C D

Figure 5-7: Helical wheel diagrams depicting TM1-TM1’ and TM2-TM2’ interactions within 2X-
Cys containing EnvZ mutants. (A) TM1 in a coiled-coil helical formation showing the intensity 
of D/M ratios calculated for each residue interaction under low osmolarity conditions. (B) TM1 
in a coiled-coil helical formation showing the intensity of D/M ratios calculated for each residue 
interaction under high osmolarity conditions. (C) TM2 in an alpha helical formation showing 
the intensity of D/M ratios calculated for each residue interaction under low osmolarity 
conditions. (D) TM2 in an alpha helical formation showing the intensity of D/M ratios calculated 
for each residue interaction under high osmolarity conditions. Interaction intensities are 
classified by shade, the classes are detailed in the key to the right of the figure. 
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Figure 5-8: Helical net diagrams depicting 1-1’ and 2-2’ interactions within 2X-Cys containing EnvZ mutants. TM1 (left) and TM2 (right) interactions under 
low osmolarity (graded blue circles) and high osmolarity (graded red circles). The TM1 helical net is arranged in a coiled coil format and the TM2 helical 
net is arranged in an alpha helical format. The colour intensities indicate the dimer/monomer ratio for the interactions that are observed. These values are 
described in the key central to the figure. The central residue within the TM helices is shown via a red circle – TM1=residue 25, TM2= residues 169 & 170). 
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Figure 5-9: Helical net diagrams depicting 1-2’ interactions within 2X-Cys containing EnvZ mutants. (Blue area) 1-2’ interactions, their intensities and the 
interaction surfaces, shaded in blue, assumed by these interactions. These samples were grown under low osmolarity conditions. (Red area) 1-2’ interactions, 
their intensities and the interaction surfaces, shaded in red, assumed by these interactions. These samples were grown under high osmolarity conditions. 
(Interaction intensities are classified by shade; the classes are detailed in the key to the right of the figure. The central residue within the TM helices is shown 
via a red circle – TM1=residue 25, TM2= residues 169 & 170). 
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5.2: Baseline helix orientation 

Firstly, it has been necessary to ascertain the specific helical formation for both TM1 and TM2 

to ensure that the data can be interpreted correctly. Deepcoil (153) showed significant 

probability of a coiled-coil (CC) formation across 68% of TM1 residues but no significant CC 

formation was detected within TM2 (Figure 5-10). As 5 residues within the periplasmic end of 

TM1 are not likely to form a CC helix, this section of the protein could be more dynamic during 

dimer interaction. This supports the suggestion of movement within the periplasmic end of the 

four-transmembrane helix bundle as this region displays the most movement via 

immunoblotting data also. Based on this, both helical wheel and helical net diagrams were 

utilised to judge areas of interaction that have been evidenced from our data.
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Figure 5-10: Identification of helix formation for TM1 and TM2 using Deepcoil. Residues within the TM1 helix overcome the threshold for coiled coil probability 
indicating a coiled coil (CC) helical structure is adopted within the majority of TM1 (highlighted in grey). 6 TM1 residues (15, 31-35) lie underneath the threshold 
for CC formation. No residues within the TM2 helix overcome the CC formation threshold, thus it can be concluded that TM2 does not adopt a CC formation. 
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5.3: Changes upon stimulus perception 

 Several notable differences between results attained with and without stimulus have 

been detected. For TM1-TM1’ and TM2-TM2’ interactions there appears to be a consistent 

region of interaction that carries through the entire length of the helix, which alters slightly by 

strength of interaction in the case of the TM2-TM2’ interface (Figures 5-7 and 5-8). However, 

the interactions observed for TM1-TM2’ have shown to occur at the lower and upper quarters 

only, with no TM1-TM2’ interactions detectable between mutants 19-177 through 28-168 (40 

mutants) both with and without stimulus (Figure 5-9). This suggests a space is created within 

that area during the dimer formation, which could have a functional role in the signal perception 

process. Additionally, there were detected changes in the interactions observed at the 

periplasmic region during signal perception, specifically the interactions become weaker in the 

presence of stimulus. This suggests the positions move apart, potentially allowing access to 

the aforementioned space created between the two transmembrane helices. This theory 

aligns to data previously collected within a TM2-based 1X-Cys library (137) as differences in 

immunoblotting data were observed in the periplasmic and cytoplasmic sections of TM2 with 

and without stimulus. Also, a tilting motion was observed via in silico molecular dynamics 

screening which indicates TM2 and TM2’ shift position relative to one another in the presence 

of stimulus. This movement may also account for changes observed within the 12’ interactions 

recorded within the 2X-Cys data set. As no changes are observed within the interaction 

surfaces of TM1 and TM1’ (104), it can be concluded that these helices are stable in their 

position throughout signal transduction and could therefore anchor the protein thus allowing 

the TM2 helices to shift conformation more steadily. At this point, it can only be theorised how 

these interactions combine into an overall model and further analyses will be required to 

confirm the theoretical model displayed here (Figure 5-11).  
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Figure 5-11: Proposal of a non-piston model for EnvZ transmembrane helix movement. This 
model combines the outcomes of the three cysteine studies detailed within this work and 
depicts the transmembrane four helix bundle. The dark grey helices represent one EnvZ 
monomer (TM1 and TM2) and the light grey helices represent the EnvZ monomer that 
dimerises onto the first (TM1’ and TM2’). The larger images show the four-helix bundle in the 
absence (0% sucrose, left) and presence (15% sucrose, right) of stimulus. The dotted area 
shows an absence of interaction between TM1 and TM2’ (and vice versa) which is also 
demonstrated with two helices below. Notably, interactions are present within the periplasmic 
and cytoplasmic regions of the TM1-TM2’ interface. At the periplasmic end, evidence of 
changes in crosslinking was detected upon presence of stimulus. The TM2 helices are shown 
as moving apart, towards their own TM partner hence the change in TM1-TM2’ interactions in 
this region. Also the TM1 helices remain stationary as no changes were seen in their 
interaction profile. These changes are detailed two-dimensionally in Figure 5-8 and 5-9. 
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5.4: Signal output of the double cysteine library 

 Throughout the entire working 2X-Cys library, CFP and YFP levels were recorded 

under both low (Figure 5-12A) and high (Figure 5-12B) osmolarity growth. After correction 

via both optical density of the cells grown and subtraction of MG1655 baseline values, a 

CFP/YFP ratio was calculated (Figure 5-13). The corrected CFP and YFP (cCFP and cYFP) 

values were averaged for each mutant then compared to control data collected from a Cys-

less mutant, C277A. This mutant represents a WT (WT) response without any cysteine 

involvement, including the naturally occurring Cys residue at position 277. The data collected 

from C277A was confirmed as normally distributed via the Shapiro-Wilk test across all four 

populations (p-value > 0.05, n=23). A z-score was calculated for mean cCFP and cYFP value 

in each mutant under both low and high osmolarity using the corresponding C277A data as 

the normalised population to test within. These comparisons were arranged into 5 categories: 

shifted on, shifted off, low overall signal, high overall signal and no marked differences (Table 

5-13).  

Under low osmolarity conditions, z-scores of <-2 were reported for both cCFP and 

cYFP in three mutants (17-176, 20-176, 33-164) which represents significant reduction of 

signal. Six mutants reported z-scores >+2 for both CFP and YFP, signifying a marked signal 

output increase overall compared to WT response. Twenty-six mutants reported z-scores that 

suggest a shifting on compared to WT response (cCFP >+2, cYFP <-2). The remaining fifty-

four mutants did not show outlier z-scores (+2<z-score>-2) for both CFP and YFP. Under high 

osmolarity signal output of a single mutant (17-176) shifted off (cCFP z-score <-2, cYFP z-

score >+2). The remaining eighty-eight mutants did not show outlier z-scores (+2<z-score>-

2) for both cCFP and cYFP. 

The signal output data was juxtaposed to the crosslinking data to identify any patterns 

(Table 5-14). Of the 3 mutants that showed a significant overall reduction in signal output 

under low osmolarity conditions, only one showed crosslinking interactions (33-164, 1-2’ and 
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2-2’). Although lower than WT average, the signal output under high osmolarity conditions for 

33-164 were not significantly reduced, suggesting it may have retained some functionality. Of 

the 25 mutants that shifted on under low osmolarity conditions, over half (15, 60%) were 

located in the periplasm proximal third of the transmembrane helix. This area has been 

previously shown via the crosslinking experiments to be particularly important for TM1-TM2’ 

interactions. Further to this, 7 of these 15 mutants display 12’ interactions at low osmolarity 

and 13 of 15 show interactions of any kind (1-1’, 2-2’, 1-2’). A mutant of particular interest, 34-

160, shows all 3 types of interaction and shifts on under low osmolarity conditions. It is 

suggested that by mutating these interaction locations, the propensity of a protein to shift into 

an ‘on’ state increases. 

The substituted amino acids were listed alongside both crosslinking and signal output 

data in order to identify any patterns. Proline (found at position 159) and glycine (found at 

positions 173 and 174) have the lowest propensities of all the amino acids to allow helices to 

form. It would be expected that the helical formation of any mutants with these amino acids 

removed would become tighter or more stable as the overall helical propensity (HP) would be 

increased. Similarly, by replacing high helical propensity amino acids (Arginine, Leucine, 

Alanine) with a cysteine that has a moderate helical propensity, the helical formation could be 

weakened. This is of particular interest when considering TM1 as a coiled coil format as the 

heightened stability may be important to the regulation of signal output, thus replacing high 

HP amino acids with a moderate HP amino acid could have a disruptive effect on this 

regulation.
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Figure 5-12: Signal output from the 2X-Cys containing EnvZ mutants. (A) CFP (empty bars) and YFP (filled bars) mean fluorescence values collected from 
EPB30/pRD400 cells expressing a 2X-Cys mutation grown under low osmolarity conditions to an OD 600nm of 0.3±0.1, corrected for OD and the estimated 
background signal (MG1655 CFP and YFP fluorescence output) is subtracted. (B) CFP (empty bars) and YFP (filled bars) mean fluorescence values collected 
from EPB30/pRD400 cells expressing a 2X-Cys mutation grown under high osmolarity conditions to an OD 600nm of 0.3±0.1, corrected for OD and the estimated 
background signal (MG1655 CFP and YFP fluorescence output) is subtracted. Error bars represent the standard error of the mean in a sample with an n ≥ 3.  
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Figure 5-13: Signal output ratio from 2X-Cys containing mutants. EPB30/pRD400 cells expressing 2X-Cys containing EnvZ mutations are grown in low 
osmolarity (empty bars) and high osmolarity (filled bars) media to an OD600nm of 0.3±0.1. CFP and YFP values are recorded, corrected for OD and the estimated 
background signal (MG1655 CFP and YFP fluorescence output) is subtracted. A CFP/YFP ratio is calculated indicating the effect of mutation upon signal 
output with and without stimulus. 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted 
on  

(C+, Y-) 

Shifted 
off  

(C-, Y+) 

Low 
signal  
(C-, Y-) 

High 
signal  

(C+, Y+) 
No marked 
changes 

15-177 9.03 2.26    ü  

15-178 6.38 2.00    ü  

15-179 15.09 -2.28 ü     

15-180 2.79 -0.46     ü 

15-181 8.43 -3.51 ü     

17-175 6.17 -3.36 ü     

17-176 -2.05 -4.09   ü   

17-177 -0.97 4.16     ü 

17-178 -1.37 2.61     ü 

17-179 4.63 4.26    ü  

18-174 -0.73 3.45     ü 

18-175 -1.49 -3.55     ü 

18-176 2.64 0.80     ü 

18-177 -2.33 -0.60     ü 

18-178 -1.49 -1.02     ü 

19-173 1.37 2.28     ü 

19-174 -2.31 -0.54     ü 

19-175 -0.06 6.58     ü 

19-176 1.82 2.39     ü 

19-177 -1.27 -0.38     ü 

20-172 -0.82 2.53     ü 

20-173 -1.20 -0.18     ü 

20-174 -2.19 -1.62     ü 

20-175 6.19 4.22    ü  

20-176 -2.27 -4.30   ü   

21-171 0.98 3.25     ü 

21-172 3.25 2.94    ü  

21-173 0.14 7.30     ü 

21-175 9.20 -0.34     ü 

23-169 5.82 -4.40 ü     

23-170 5.84 -4.47 ü     

23-171 1.44 -4.94     ü 

A 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted 
on  

(C+, Y-) 

Shifted 
off  

(C-, Y+) 

Low 
signal  
(C-, Y-) 

High 
signal  

(C+, Y+) 
No marked 
changes 

23-172 -0.37 3.89     ü 

23-173 -0.09 5.98     ü 

24-168 1.95 -4.29     ü 

24-169 -0.36 7.29     ü 

24-170 -1.19 1.29     ü 

24-171 -1.38 3.07     ü 

24-172 1.61 2.32     ü 

25-167 -1.28 4.66     ü 

25-168 -0.58 1.79     ü 

25-169 -0.09 4.99     ü 

25-170 -0.45 -4.04     ü 

25-171 -1.19 2.19     ü 

26-166 0.79 2.24     ü 

26-167 3.88 -3.04 ü     

26-168 1.63 -3.24     ü 

26-169 -1.29 -1.02     ü 

26-170 1.04 -1.45     ü 

27-165 2.52 -4.39 ü     

27-166 3.91 -3.80 ü     

27-167 5.08 -3.14 ü     

27-168 7.02 -4.58 ü     

27-169 3.62 -1.14     ü 

28-164 1.09 -2.67     ü 

28-165 -1.26 -1.65     ü 

28-166 1.93 -3.41     ü 

28-167 0.58 -4.37     ü 

28-168 2.45 -3.12 ü     

29-163 7.54 -2.95 ü     

29-164 0.24 -2.51     ü 

29-165 -1.35 0.31     ü 

29-166 -0.45 -0.10     ü 

29-167 -0.29 -1.17     ü 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted 
on  

(C+, Y-) 

Shifted 
off  

(C-, Y+) 

Low 
signal  
(C-, Y-) 

High 
signal  

(C+, Y+) 
No marked 
changes 

30-162 3.95 -5.46 ü     

30-163 8.16 -3.98 ü     

30-164 6.69 -5.44 ü     

30-165 5.01 -0.27     ü 

30-166 0.34 0.53     ü 

31-161 3.22 -1.01     ü 

31-162 18.38 -4.20 ü     

31-163 4.68 -4.45 ü     

31-164 -0.77 0.62     ü 

31-165 3.83 2.66    ü  

33-160 7.21 -4.59 ü     

33-161 4.60 -2.37 ü     

33-162 2.71 -1.94     ü 

33-163 3.21 -3.61 ü     

33-164 -2.59 -4.70   ü   

34-159 -1.45 -3.24     ü 

34-160 3.41 -4.71 ü     

34-161 6.59 -2.37 ü     

34-162 6.27 -4.61 ü     

34-163 4.39 -4.63 ü     

35-158 1.88 -3.79     ü 

35-159 -1.65 -3.95     ü 

35-160 7.90 -4.98 ü     

35-161 5.35 -1.39     ü 

35-162 11.47 -1.82     ü 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted on 
(C+, Y-) 

Shifted off 
(C-, Y+) 

Low signal 
(C-, Y-) 

High signal 
(C+, Y+) 

No marked 
changes 

15-177 1.78 0.26     ü 

15-178 2.06 0.44     ü 

15-179 2.95 1.18     ü 

15-180 0.15 -0.11     ü 

15-181 -0.52 0.01     ü 

17-175 0.34 0.06     ü 

17-176 -4.59 2.80  ü    

17-177 0.12 0.56     ü 

17-178 -2.00 1.23     ü 

17-179 0.68 0.15     ü 

18-174 1.46 0.54     ü 

18-175 -2.24 -0.33     ü 

18-176 -1.26 -0.68     ü 

18-177 -4.11 -0.33     ü 

18-178 -0.96 -0.53     ü 

19-173 -2.23 -1.07     ü 

19-174 -2.26 -0.02     ü 

19-175 -1.79 -1.03     ü 

19-176 -1.12 -1.26     ü 

19-177 -1.64 -0.86     ü 

20-172 -2.84 -0.88     ü 

20-173 -2.31 0.21     ü 

20-174 -3.03 0.98     ü 

20-175 -2.10 -1.49     ü 

20-176 -4.96 1.48     ü 

21-171 -1.89 0.60     ü 

21-172 -0.33 -0.62     ü 

21-173 -3.11 0.47     ü 

21-175 0.14 -0.35     ü 

23-169 -1.06 -0.76     ü 

23-170 0.63 0.78     ü 

A 

B 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted on  
(C+, Y-) 

Shifted off  
(C-, Y+) 

Low signal  
(C-, Y-) 

High signal  
(C+, Y+) 

No marked 
changes 

23-171 -0.66 1.08     ü 

23-172 -1.17 -0.19     ü 

23-173 -1.35 0.11     ü 

24-168 -0.30 0.74     ü 

24-169 -2.01 1.40     ü 

24-170 -0.08 2.53     ü 

24-171 0.50 3.01     ü 

24-172 2.05 1.85     ü 

25-167 0.77 1.17     ü 

25-168 0.24 1.20     ü 

25-169 1.24 1.56     ü 

25-170 0.42 0.25     ü 

25-171 -1.02 0.09     ü 

26-166 0.72 1.14     ü 

26-167 -0.50 -0.41     ü 

26-168 -1.37 0.15     ü 

26-169 0.65 1.08     ü 

26-170 0.68 -0.10     ü 

27-165 -1.26 -0.40     ü 

27-166 1.74 -0.12     ü 

27-167 1.78 -0.03     ü 

27-168 -0.81 0.74     ü 

27-169 1.21 -0.08     ü 

28-164 0.32 -0.23     ü 

28-165 -1.21 -0.12     ü 

28-166 -0.39 -0.50     ü 

28-167 1.47 -0.18     ü 

28-168 1.37 -0.15     ü 

29-163 1.37 0.56     ü 

29-164 0.82 0.02     ü 

29-165 -1.89 0.26     ü 

29-166 0.36 0.86     ü 

29-167 -2.04 0.42     ü 
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Cysteine 
Position 

cCFP z-
score 

cYFP z-
score 

Shifted on  
(C+, Y-) 

Shifted off  
(C-, Y+) 

Low signal  
(C-, Y-) 

High signal  
(C+, Y+) 

No marked 
changes 

30-162 -0.31 -0.72     ü 

30-163 0.48 -0.44     ü 

30-164 2.07 0.05     ü 

30-165 1.67 -0.39     ü 

30-166 -2.29 1.72     ü 

31-161 -0.81 0.27     ü 

31-162 -1.00 0.13     ü 

31-163 -0.86 -0.55     ü 

31-164 -0.69 0.30     ü 

31-165 -0.37 -0.30     ü 

33-160 0.14 -0.73     ü 

33-161 -1.62 -0.34     ü 

33-162 -0.48 -0.39     ü 

33-163 0.88 -0.72     ü 

33-164 -1.72 -0.68     ü 

34-159 -4.12 0.16     ü 

34-160 -0.65 -0.77     ü 

34-161 -0.16 -0.48     ü 

34-162 -2.28 -1.25     ü 

34-163 0.36 -0.70     ü 

35-158 -2.15 -1.20     ü 

35-159 -5.47 -0.54     ü 

35-160 0.70 -0.47     ü 

35-161 -0.47 -0.38     ü 

35-162 0.11 -0.90     ü 

  
Table 5-14: Analysis of 2X-Cys mutant CFP/YFP ratio compared to a Cys-less mutant. 
Fluorescence output (CFP and YFP) was measured for a C277A EnvZ mutant in 
EPB30/pRD400 cells, representing a WT signal output. These values were used as the mid-
point of a z-score scale in order to determine the differences caused by the 2X-Cys mutations 
that have been employed. (A) Comparison of C277A to 2X-Cys mutants grown in low 
osmolarity (0%) media. (B) Comparison of C277A to 2X-Cys mutants grown in high osmolarity 
(15%) media. The colour scale indicates the degree of difference to C277A signal output, 
ranging from red (lower than WT signal output) to green (higher than WT signal output). 
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 LOW (0% SUCROSE) HIGH (15% SUCROSE 
Cysteine 
position 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

15-177   11 T L   11 T L 

15-178   11 T F   11 T F 

15-179 ON  N/A T I   N/A T I 

15-180   N/A T R   N/A T R 

15-181 ON  N/A T I   11 T I 

17-175 ON  22 L A   22 L A 

17-176 *  LOW N/A L W OFF  N/A L W 

17-177   12 L L   N/A L L 

17-178   12 L F   12 L F 

17-179   22 L I   22 L I 

18-174   12|22 L G   12|22 L G 

18-175   22 L A   22 L A 

18-176   N/A L W   12 L W 

18-177   N/A L L   N/A L L 

18-178   N/A L F   12 L F 

19-173   11 I G   11 I G 

19-174   11 I G   11 I G 

19-175   11 I A   11 I A 

19-176   11|12 I W   N/A I W 

19-177   11 I L   11 I L 

20-172   N/A V I   N/A V I 

20-173   N/A V G   N/A V G 

20-174   N/A V G   N/A V G 

20-175   22 V A   22 V A 
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Cysteine 
position 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

20-176   LOW N/A V W   N/A V W 

21-171   N/A T A   N/A T A 

21-172   N/A T I   N/A T I 

21-173   N/A T G   N/A T G 

21-175   22 T A   22 T A 

23-169 ON  N/A L L   11 L L 

23-170 ON  11 L L   N/A L L 

23-171   11|22 L A   11 L A 

23-172   N/A L I   N/A L I 

23-173   N/A L G   N/A L G 

24-168   N/A F M   N/A F M 

24-169   N/A F L   N/A F L 

24-170   N/A F L   N/A F L 

24-171   22 F A   22 F A 

24-172   N/A F I   N/A F I 

25-167   N/A A I   N/A A I 

25-168   N/A A M   N/A A M 

25-169   11 A L   N/A A L 

25-170   N/A A L   11 A L 

25-171   11|22 A A   11|22 A A 

26-166   11 S A   11 S A 

26-167 ON  11|22 S I   11|22 S I 

26-168   11 S M   11 S M 

26-169   11 S L   11 S L 

26-170   11 S L   11 S L 
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Cysteine 
position 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

27-165 ON  N/A L L   N/A L L 

27-166 ON  N/A L A   N/A L A 

27-167 ON  22 L I   22 L I 

27-168 ON  N/A L M   22 L M 

27-169   N/A L L   N/A L L 

28-164   N/A V T   N/A V T 

28-165   N/A V L   N/A V L 

28-166   N/A V A   N/A V A 

28-167   N/A V I   22 V I 

28-168 ON  N/A V M   N/A V M 

29-163 ON  12 T Y   12 T Y 

29-164   22 T T   22 T T 

29-165   N/A T L   N/A T L 

29-166   12 T A   12 T A 

29-167   N/A T I   N/A T I 

30-162 ON  11 T R   11 T R 

30-163 ON  N/A T Y   11 T Y 

30-164 ON  22 T T   22 T T 

30-165   11 T L   11 T L 

30-166    N/A T A   N/A T A 

31-161   22 Y F   N/A Y F 

31-162 ON  12 Y R   12 Y R 

31-163 ON  N/A Y Y   12 Y Y 

31-164   22 Y T   22 Y T 

31-165   N/A Y L   N/A Y L 
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Cysteine 
position 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

SHIFT 
ON/OFF 

SIGNAL 
HIGH/LOW 

BAND 
IDENTITY 

AMINO 
ACIDS 

33-160 ON  12|22 V L   22 V L 

33-161 ON  22 V F   12|22 V F 

33-162   12 V R   12 V R 

33-163 ON  12|22 V Y   12|22 V Y 

33-164  LOW 12|22 V T   N/A V T 

34-159    11 V P   12|22 V P 

34-160 ON  11|12|22 V L   11|12|22 V L 

34-161 ON  11 V F   11|12 V F 

34-162 ON  11|12 V R   N/A V R 

34-163 ON  11 V Y   N/A V Y 

35-158   N/A L S   N/A L S 

35-159    12|22 L P   N/A L P 

35-160 ON  12|22 L L   12|22 L L 

35-161   12 L F   N/A L F 

35-162   N/A L R   N/A L R 

  

Table 5-15: Comparison of Immunoblotting data to Fluorescence data for 2X-Cys mutants. 
Results are divided into sections for EPB30/pRD400 cells containing 2XCys EnvZ mutations 
grown in low osmolarity (0% sucrose) and high osmolarity (15% sucrose) media. SHIFT 
indicates if the signal output is reversed. SIGNAL indicates the level of overall signal recorded 
in relation to a C277A variant. BAND IDENTITY summarises the outcomes of Table 5-5. 
AMINO ACIDS indicates the residues that have been replaced with cysteine in each mutation. 
The colour is either darkened (11’ or 22’ interaction) or a bolder border is drawn (12’) if 
respective interactions are observed via the position in which that residue has been 
substituted. 
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5.5: Correlation of signal output to dynamic range of the osmosensing 

circuit 

The dynamic range of each mutant was plotted against the signal output without stimulus (low 

osmolarity conditions). An exponential decay curve was formed from 84 of 89 mutants tested, 

with 5 mutants not following that trend (Figure 5-16). Of these 5 mutants, 2 (17-176, 20-176) 

showed significantly lowered signal output under low osmolarity conditions and 2 others (34-

159, 35-159) replaced a proline residue, potentially altering the helical stability of TM2. The 

remaining outlier mutant (30-166) showed no significant changes overall under low or high 

osmolarity conditions and of the 5 outliers it lies closest to the normal data trend. 

When ordered by decreasing dynamic range, including the values for C277A (WT), the 

majority of mutants (60 of 89) fell below the WT dynamic range value (Figure 5-17). A z-score 

was calculated for each mutant using the C277A mean and standard deviation. Of the 60 

mutants that fell below C277A dynamic range, 40 had a z-score of less than -2 showing that 

they were in the 2nd percentile or lower compared to the spread of data for C277A.  The mutant 

list was divided into thirds based on where they are positioned in the membrane (15-177 to 

21-173 = Cytoplasm, 21-174 to 28-165 = Membrane, 28-166 to 35-162 = Periplasm) and the 

graph was colour coded according to these groupings. This shows 88% of periplasm mutants 

to record a dynamic range less than WT and 70% showed a z-score of -2 or less. From this it 

can be concluded that the osmosensing circuit is less likely to be tolerant of periplasm proximal 

mutations compared to membrane and cytoplasm proximal mutations. 
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Figure 5-16: Observation of an exponential decay relationship between dynamic range and signal output without stimulus. The dynamic range is the ratio of 
signal output in the presence of stimulus (high osmolarity media, 15% sucrose) against the signal output in the absence of stimulus (low osmolarity media, 
0% sucrose). For EPB30/pRD400 cells containing 2X-Cys EnvZ mutants, the dynamic range is calculated via the fluorescence data recorded in Figure 5-
13 and compared to the low osmolarity calculated in the same figure. Error bars are transferred from Figure 5-13 for low osmolarity data (horizontal bars) 
and error forwarding has been employed for the dynamic range error bars (vertical) to combine the separate high and low osmolarity signal output ratios. 
The trendline (black) represents the exponential decay relationship displayed by the majority of the collected results (blue circles). C277A data represents 
the WT relationship of dynamic range against signal output in low osmolarity media (green circle). Five mutants did not conform to the exponential decay 
relationship (red circles). 
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Figure 5-17: 2X-Cys mutants ordered by descending dynamic range and categorised by position within the TM helices. Dynamic range (filled bars) and Low 
Osmolarity signal output (CFP/YFP ratio) are juxtaposed for each 2X-Cys mutant then ordered by descending dynamic range. Mutants are categorised by the 
helix sections described in Figure 5-3 – Cytoplasmic end (purple), Membrane core (orange) and Periplasmic end (turquoise). 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

19-175
19-174
17-177
25-167
19-177
18-174
33-164
18-177
25-171
19-176
23-173
18-178
31-164
24-171
20-172
23-172
25-169
29-165
26-169
17-178
21-173
28-165
24-170
24-169
20-174
19-173
29-166
20-175
25-168
W
T

20-173
21-172
18-176
21-171
31-165
26-166
18-175
26-170
29-164
17-179
24-172
30-165
29-167
15-180
28-164
27-169
15-178
25-170
33-162
30-166
15-177
33-163
28-168
34-159
28-166
28-167
31-161
35-158
35-161
21-175
26-168
27-167
35-162
33-161
34-161
26-167
27-166
29-163
20-176
27-165
24-168
34-163
17-176
17-175
30-163
31-163
33-160
34-160
35-159
15-179
34-162
23-169
15-181
23-171
30-162
23-170
27-168
35-160
30-164
31-162

DYNAMIC	RANGE LOW	C/Y	RATIO

MEMBRANE

CYTOPLASM

PERIPLASM



 
 

112 

Chapter 6: Discussion 
6.1: TM1 discussion 

6.1.1: Establishing the surface of TM1 that promotes dimerisation 

The results of sulphydryl-reactivity experiments were plotted on a helical net (154) to visualise 

the TM1-TM1’ interaction surface. Using the well-defined distance and angular constraints of 

a disulphide bond (155,156), the relative distance between Cys residues along the TM1-TM1’ 

interface were assessed. These constraints can be estimated from the distance between b-

carbons in disulphide bonds, which range from 3.4 to 4.6 Å in protein crystal structures (157). 

Therefore, when a fixed concentration of molecular iodine (250 µM) and reaction time (10 

minutes) is employed, the extent of crosslinking correlates with the distance between the Cys 

residues (Figure 3-5). Based on this correlation, residue positions 23/23’ and 26/26’ would be 

in closest proximity. By extension, the significant reduction in crosslinking as the Cys residues 

become more distal from these positions within the membrane core suggests that the TM1 

and TM1’ helices cross at an angle that results in increased distance between residues near 

the membrane boundaries. Therefore, it is proposed that the major TM1-TM1’ interaction 

surface consists of residues Ile-19, Leu-23, Ser-26, Thr-30 and Val-34 (Figure 6-1A). In 

addition, minor reactivity was observed with residues Ser-11 and Thr-15, suggesting that they 

are quite distant, but most likely reside on the same surface as the TM1-TM1’ interface. 

Adjacent residues at the periplasmic end of TM1, ranging from position 38 to 40 also exhibited 

extensive cross-linking, however the helical pattern was interrupted suggesting that a less 

uniform structure exists within these residues (Figures 3-9 and 6-1A). Also important to note 

is that no significant differences in the TM1-TM1’ interface were observed when cells were 

grown under the low- (0% sucrose) or high-osmolarity (15% sucrose) regime (Figure 3-9). 

 From this, it is believed that the residues examined can be formally divided into three 

distinct regions (Figure 6-1A) based on results obtained when changing the concentration of 
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iodine (Figure 3-10) or the reaction time (Figure 3-11). The EnvZ variants within Region I 

(S11C and T15C) follow a distinct pattern of forming disulphide bonds only in the presence of 

the highest concentration of iodine (250 µM) and the longest duration (10 minutes). These 

data suggest the Cys residues are either very distant, such that they irregularly form a 

disulphide bond, or are internal to the inner leaflet of the cytoplasmic membrane. The variants 

in Region II (I19C, L23C, S26C, T30C, V34C and A25C to a minor extent) all follow a similar 

pattern that is different than the variants in the first region. Here, a minor extent of crosslinking 

at the distal ends of the region, namely I19C and V34C, is observed, while a maximal amount 

is seen near the core that is comprised of L23C and S26C. This is further demonstrated by 

comparing the extent of crosslinking at the higher concentrations of iodine (100 µM and 250 

µM). In addition, unlike residues in Region I, the reaction is complete after 1 minute regardless 

of the overall extent of crosslinking (Figure 3-11). The variants found in Region III (A38C, 

I39C and L40C) follow a third distinct pattern. EnvZ A38C exhibited a much greater extent of 

crosslinking than V34C, and thus does not conform to the crossing helix pattern. In addition, 

EnvZ I39C and L40C show crosslinking at all concentrations of iodine (Figure 3-10) and thus 

suggest that either the helix becomes broken/unwound, or that these residues reside in the 

periplasm, or both. It is also worth noting that when cells were grown under the low osmolarity 

regime and in the absence of iodine (Figure 3-5), crosslinking occurred at positions 38 through 

40, suggesting that they may reside within the oxidising environment of the periplasm. 
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Figure 6-1: Helical net diagrams illustrating the TM1–TM1′ interface and surfaces important 
for maintenance of baseline EnvZ signal output. (A) The TM1–TM1′ interface remains similar 
when EPB30/pRD400 cells are grown under the low- (0% sucrose) or high-osmolarity (15% 
sucrose) regime. The extent of TM1-TM1’ crosslinking, measured as the ratio of 
dimeric:monomeric EnvZ moieties at each position is represented by the intensity of darkness. 
Residue positions 23 and 26, which reside in close proximity, result in the greatest extent of 
cross-linking. As the position of the Cys residue is moved toward the cytoplasmic end of the 
helix, a decrease in reactivity is observed. The divergence from a helical pattern at the 
periplasmic end of TM1 may indicate that the periplasmic boundary of the membrane has been 
breached and/or that the helicity is not observed within this region. It should be noted that the 
P41C, indicated with an asterisk, variant could only be analysed when grown under the high-
osmolarity regime. (B) Cys substitutions that result in decreased signal output compared to 
the cys-less variant are presented in blue colours, while those resulting in increased signal 
output are indicated in red. Regions responsible for maintenance of baseline signal output fall 
into three contiguous surfaces (red dots residing under a transparent grey area): one at the 
cytoplasmic end (surface I), a small one within the membrane core (surface II) and one at the 
periplasmic end of the helix (surface III). These surfaces are less pronounced when cells are 
grown under the high-osmolarity regime, possibly because the EnvZ/OmpR circuit is already 
stimulated by external osmolarity. The white circles represent the Cys-32 mutant that could 
not be created and the Cys-22 variant that failed to grow under the low-osmolarity regime. 
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6.1.2: Mapping surfaces of TM1 responsible for maintenance of baseline EnvZ signal 

output 

In order to visualise which surfaces of TM1 are responsible for maintenance of steady-state 

EnvZ signal output, the signal output of the family of single-Cys-containing receptors was 

mapped onto a helical net (Figure 6-1B). This analysis resulted in the identification of three 

subdomains intolerant of Cys substitutions (signal output greater than 150% of the cys-less 

variant): the cytoplasmic end of TM1 (Surface I), three residues in the core of the membrane 

(Surface II) and the periplasmic end of TM1 (Surface III). Surfaces II and III were not 

considered as contiguous because surface III may be due to breaching the periplasmic 

boundary, while surface II remained buried but truly intolerant of Cys substitution. This 

becomes clearer when cells are grown under the high-osmolarity (15% sucrose) regime 

(Figure 6-1B). It is also important to emphasise that the two residues in the membrane core 

(positions 17 and 24) are subject to both sulphydryl-reactivity and intolerance of Cys 

substitution with regard to steady-state signal output. Overall, similar patterns were observed 

when EPB30/pRD400 cells were grown under the high-osmolarity regime (15% sucrose), 

although the degree of increased signal output was smaller, perhaps because the EnvZ/OmpR 

circuit was already activated by osmolarity so the mutation could not increase the signal output 

further(Figure 6-1B). 

Two EnvZ mutants that reside within the analysed region (V33E and P41L) were 

previously shown to result in significantly greater increased steady-state signal output 

(158,159). Our data with EnvZ P41C is in agreement with the previously published results with 

P41L, which demonstrates that loss of the Pro residue results in greatly increased steady-

state EnvZ signal output. In fact, the P41C variant of EnvZ results in the greatest change in 

signal output when grown under the high-osmolarity regime (Figure 3-7). However, with EnvZ 

V33C, different results were observed than those previously published with the V33E variant. 

This difference suggests that the loss of Val-33 is not the major driving force for changing 
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steady-state signal output and that the increased activation is most likely due to the insertion 

of a Glu residue. This is not unexpected as it was previously demonstrated (160) that residues 

with longer side chains within their R-group possess the ability to snorkel and interact with, or 

be repulsed from in this case, the negatively charged phospholipid head groups in the 

cytoplasmic membrane. This may explain why our V33C variant did not exhibit similar 

properties to the previously published EnvZ V33E.  

 

6.1.3: Evaluation within the context of current models for transmembrane 

communication 

The crosslinking and signal output data presented here demonstrate that the TM1-

TM1’ interface does not significantly change when EPB30/pRD400 cells are grown under 

regimes possessing different osmolarities (Figure 3-9). This suggests that TM1-TM1’ might 

be relatively static in a manner consistent with results previously observed with the aspartate 

and ribose/galactose chemoreceptors (161) and also recently with DcuS, the C4-dicarboxylate 

sensor of E. coli (162). However, other types of signaling mechanisms that involve more 

dynamic roles for TM1 and/or TM1’ have been observed. For example, a rotation between 

TM1 and TM1’ within McpB of Bacillus subtilis was seen upon addition of arginine (108), its 

cognate stimulus, whereas our results suggest that no rotation occurs along the TM1-TM1’ 

interface in response to osmolarity. In addition, small piston-type displacements of TM1 have 

been observed in the periplasmic domain of NarX and the TorT-TorS complex (97,100) and 

these might not be detectable within the current iteration of the assay. 

 From another perspective, these results are in agreement with recent analyses 

involving PhoQ that proposed the existence of water-filled hemichannel spanning through the 

cytoplasmic end of the TM domain (163). This data suggesting that TM1 and TM1’ cross at an 

angle resulting in an increasing distance between the residues as they become further distal 

from the membrane core is consistent with the presence of water hemichannel possessing a 
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cytoplasmic-facing opening. The proposed necessity of a polar residue is also consistent with 

previous results involving “aromatic tuning” and the repositioning of non-polar hydrophobic 

residues around the cytoplasmic end of TM2 resulting in modified signal output (6,160,164). 

Recently, further experimentation proposed a scissor-type model, which would also be 

consistent with previous helical crossing angles. In light of the plethora of proposed signaling 

mechanisms, recent publications (165,166) suggest that different subclasses of bacterial 

receptors may employ alternate mechanisms of signal transmission and that every proposed 

mechanism should not be imposed upon all bacterial membrane-spanning receptors. 
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6.2: TM2 Discussion 

6.2.1: Non piston transmembrane communication by EnvZ 

EnvZ has been shown to allosterically process cytoplasmic changes in osmolarity and upon 

interaction with MzrA within the periplasmic space. Here, our in vivo analysis demonstrated 

that only the periplasmic end of EnvZ TM2 undergoes a conformational transition upon 

cytoplasmic stimulus perception and suggests that the asymmetric piston-type displacement 

employed by Tar is not used by EnvZ. To our knowledge, this is the first example of a 

periplasmic end of TM2 being affected by a cytoplasmic stimulus observed within EnvZ. 

Various experimentations have also been performed with the aromatically tuned variants of 

TM2 from both Tar and EnvZ. Previously, a linear correlation was observed between the 

position of the aromatic residue in Tar TM2, the position of the helices in vitro and in silico and 

the signal output from each Tar receptor (6,98,160,164). Here, in silico analysis of EnvZ TM2 

demonstrates that such a linear correlation is absent and that EnvZ functions by a non-piston 

mechanism in which both tilting and azimuthal rotation play a substantial role in modulation of 

signal output (Figure A-2).  

6.2.2: Correlation between membrane composition and mechanism of signal 

transduction 

Comparisons of recently published apo and holo high-resolution (~1.9 Å) crystal structures of 

the E. coli nitrate sensor NarQ that contain the periplasmic, TM and HAMP domains reveal 

extensive structural rearrangements involving a piston-like motion of TM1 relative to TM2 of 

approximately 2.5 Å. These displacements result in a lever-like rotation of individual HAMP 

domains upon binding of cognate ligand (88). Based on these results, the authors posit that 

receptors containing a membrane-adjacent HAMP domain function by a piston-type 

displacement of TM helices while those that lack such domains transduce signal by rotation 

of TM helices. It was previously postulated a related yet different categorization of signaling 

mechanisms also based on the domain structure of bacterial receptors (166). It is proposed 
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that receptors containing a periplasmic four-helix bundle transduce signal across the 

membrane by piston-type displacements and that the attached membrane-adjacent HAMP 

domains might possess one of a multitude of signaling mechanisms including a gearbox-type 

rotation (69), a dynamic bundle (87) or potentially other mechanisms (166). Differentiating 

between these classification systems will provide a theoretical framework for understanding 

domain-based intra-protein allosteric communication by bacterial receptors. A recent 

authoritative structural-based review of transmembrane communication by bacterial receptors 

addresses these different suggestions (167). 

The results presented here also examine whether SHKs that possess membrane-

adjacent HAMP domains function solely by piston-type displacements or whether other 

signaling mechanisms might be employed. The results here with EnvZ should be compared 

with previous findings from the aspartate chemoreceptor (Tar) and the recent NarQ structures 

(85,88,161,168) as these three are ideal candidates for comparison because they all possess 

a membrane-adjacent HAMP domain, however, while Tar and NarQ possess a periplasmic 

four-helix bundle, EnvZ possesses a periplasmic PDC/CACHE domain (169,170). The authors 

of the recent NarQ structures posit that the presence or absence of the membrane-adjacent 

HAMP domain may be the difference between receptors employing piston-type mechanisms 

of transmembrane communication as compared to other mechanisms (88). However, 

differences employed during transmembrane communication by the Tar and EnvZ TMDs 

observed here and previously strongly suggest that Tar and EnvZ possess different 

mechanism of TM communication even though both possess a membrane-adjacent HAMP 

domain. Our previous work analysed AS1 helices from E. coli NarX, E. coli Tar, E. coli EnvZ 

and Af1503, the HAMP domain resulting in the initial high-resolution structure (69), and found 

that the Tar and NarX AS1 helices possess similar properties, which the AS1 helices from 

both EnvZ and Af1503 fail to possess. Recent comparisons of the apo and ligand-bound 

structures of the combined periplasmic-TM-HAMP domain from E. coli NarQ demonstrate that 
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binding of ligand results in symmetrical displacements of TM1 relative to TM2 of approximately 

2.5 Å (88). These results are similar to Tar, which functions by asymmetrical TM2 

displacement also possesses a periplasmic four-helix-bundle (85,102,161,168).  

 

6.2.3: Conclusion 

Based on these results, it is concluded that E. coli EnvZ functions by a non-piston mechanism 

of transmembrane communication that is different than Tar, NarX and NarQ, which 

communicate across the membrane by piston-type displacements. Furthermore, it is proposed 

that TM signaling mechanisms can be predicted and assigned based upon the domain(s) 

present in the periplasmic region of a bacterial membrane-spanning receptor. 
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6.3: 2X-Cys Discussion 

6.3.1: Piston model comparisons 

The evidence presented supports the non-piston theory previously presented as part of the 

TM2 investigations (137). To demonstrate this support, the results must again be compared 

to the piston movements observed within the transmembrane helices of both the NarQ  and 

HtrII proteins in order to highlight the differences/similarities that are present.  

The dimeric TM domains of both NarQ and HtrII consist of 4 helices yet their structures 

are notably different (88) (Figure 6-2). The NarQ TM region conforms to a 4-helix coiled coil 

in its holo form and has a dimeric coiled-coil core made up of the TM1 from each subunit. HtrII 

has a coiled coil dimeric core consisting instead of the TM2 helices (171,172). Despite these 

differences, both display piston-type displacement following presence of signal. These 

systems both include well defined mechanisms of ligand/protein interaction which allows for a 

connection between this interaction and its conformation effects upon the protein to be more 

easily defined. While EnvZ has conclusively been shown to react to changes in osmolarity, 

the specific mechanisms have not been conclusively stated. Therefore, it is more difficult to 

connect the conformational adjustments that can be demonstrated within its various regions, 

including the transmembrane helices, to a ligand binding event or a protein interaction. 

However, the discovery of these conformational changes may provide a route to the discovery 

of a sensing mechanism in retrospect. 
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Figure 6-2: NarQ and HtrII domain organisation and TM conformation. The apo and holo structures of NarQ show a displacement of the TM helices out of the 
membrane, suggesting piston type movement. Evidence demonstrating this motion would be required to suggest a piston type model in the TM helix of a 
similar protein. 
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 Regarding the comparison of data collected within this body of work with the work 

completed to conclude piston-type movements of NarQ and HtrII, some assumptions must be 

made as the methodologies do not match. However, it can be postulated from the data that 

has been collected for these proteins how a disulphide crosslinking map could look for a piston 

type displacement. If a helix has shifted out of the membrane an approximate distance (~2.5Å 

as concluded by Gushchin et al (88)) then the crosslinking profile would be expected to shift 

accordingly. This would result in aligned residues (off-state) crosslinking followed by either a 

reduction in or complete lack of crosslinking upon piston shift and subsequent unalignment of 

the residues. Along a helix interaction surface that is demonstrated to run the entire length of 

the helix, all crosslinking interactions would be expected to either reduce or disappear to 

demonstrate a piston type movement.  

Heininger et al demonstrated TM1 within EnvZ does not alter its crosslinking 

interaction profile to any significant degree between off (low osmolarity conditions) and on 

(high osmolarity conditions) states (104). While these helices do not move in relation to one 

another, this does not rule out the possibility of the dimerised TM1 helices moving as a whole 

without breaking their interaction profile with one another. A different approach would be 

required in order to determine whether they are entirely immobile throughout signal 

transduction or if they move in sync. Results collected from the 2XCys library could suggest 

movement of the TM1-TM1’ dimer structure, but it is currently impossible to draw any 

conclusions regarding this with the data currently collected.  

Additionally, Yusuf et al demonstrated TM2 within EnvZ displays changes in it 

crosslinking interaction profile that do not fit to the previously described expectation for a piston 

type movement to be postulated (137). Again, the data collected here does not indicate overall 

movement of the TM2-TM2’ dimer structure which could alter within the membrane. As piston-

type movement was not detected, it is assumed that movement remains within the membrane 

however further testing would be required in order to corroborate this assumption.  
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 Finally, the data generated from a 2X-Cys mutant library of EnvZ corroborates the 

evidence collected for TM1/TM1’ and TM2/TM2’ interactions. Additionally, it adds further 

dimension to these observations via a TM1/TM2’ interaction profile that also does not display 

interaction profiles that appear to change between “on” and “off” states in a way that would 

suggest piston-type displacement. Instead, an unexpected result is presented in which the 

TM1/TM2’ interaction profile appears to lack any crosslinking interaction within the membrane 

core of the TM helices (Figure 5-8). This is particularly interesting when compared to the 

interaction profiles demonstrated by both TM1/TM1’ and TM2/TM2’ as these interaction 

surfaces are uninterrupted along the entire length of the helices (Figure 5-7). Additionally, the 

areas of interaction are located at both ends of the helices and the periplasmic end in particular 

displays changes between on and off states.  

Within the 2X-Cys mutant library results, multiple mutants contained a residue that 

crosslinked as a 1X-Cys mutant but did not crosslink in the presence of its paired mutation. 

There are multiple examples of this occurrence, both within TM1-TM1’ and TM2-TM2’ 

interactions. A TM1 residue expected to crosslink from 1X-Cys data collected would not 

necessarily lose its crosslinking capability throughout its five TM2 pairings. This suggests that 

specific pairings would prevent the successful interactions of one, if not both residues with 

their identical dimer partner. Taking 19-175 as an example, from 1X-Cys data both 19-19’ and 

175-175’ crosslinking was expected to be strong yet only a 19-19’ band was recorded from 

the 19-175 mutant. Additionally, this band was far more intense than its 1X-Cys iteration 

suggesting that the addition of a 175 position cysteine increased the positional proximity of 

the 19-19’ interaction.  
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6.3.2: Limitations of the Methodology 

 6.3.2.1: Disulphide crosslinking 

The mutants created are sequenced to confirm the cysteines are substituted into the correct 

positions both when they are ligated and transformed into DH10B cells and when they are 

transformed into EPB30 cells. However, there remains a possibility that these sequences 

could be disrupted during the transcription/translation process. It is not currently possible to 

circumvent this eventuality; therefore, the results should be trusted if the sequenced plasmid 

transformed into EPB30 cells contains cysteine residues in the expected positions for each 

mutant.  

  When designing the 2X-Cys library, it was theorised that a monomer could crosslink 

with itself, leading to an alternate monomer band forming, indicating a TM1-TM2 interaction 

surface. In theory, a crosslinked monomer could form differently enough to the non-

crosslinked monomer and allow it to migrate a distinctly different distance through an SDS 

PAGE gel. However, no bands were observed leading to two separate suggestions. Firstly, 

the crosslinked monomer could have migrated the same distance as the non-crosslinked 

monomer, therefore the two bands would have been indistinguishable. Alternatively, the 

crosslinking event is not possible within a monomer, therefore no band would have been 

present. The former of these suggestions is more logical, as it would be expected that within 

a 4-helix bundle where all other combinations of interaction are evident, there should be a 

TM1-TM2 interaction also. A possible solution to distinguish whether any monomer band was 

disguising a crosslinked monomer band would be to compare mutant results with and without 

iodine making note of any differences in the monomer band intensity.  

 

6.3.2.1: Signal output measurements 

The signal output measurements throughout this work have been taken using a fluorescence 

photospectrometer, which detects the overall fluorescence of the sample input. However, 
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within a population of mutant cells there may exist subpopulations that behave differently to 

the representation of the overall fluorescence values produced. For example, a population of 

cells for one mutant may display normal fluorescent values comparable to WT of CFP/YFP<1 

without stimulus. If the overall CFP level is low without stimulus and the YFP level is high 

without stimulus, such a ratio would be expected. However, these values could hide opposing 

subpopulations within. If the overall value for CFP is 100, there may be an extremely low 

subpopulation of 10 and a much higher subpopulation of 300, neither of which would be 

represented by the overall recorded value of 100. In order to avoid this misclassification of a 

population, the cells must be individually measured for their fluorescence output via flow 

cytometry. This method, while costly, would reveal any subpopulation of fluorescence 

behaviour by any mutant, therefore eliminating the risk of misclassification via fluorescence 

photospectrometry.  

 

6.3.2.3: Deepcoil predictions 

The Deepcoil predictions completed to suggest the helical formations of TM1 and TM2 may 

not be entirely accurate. In particular, the suggested coiled coil formation of TM1 may not be 

correct as the helix could be too short for this formation. Further computational modelling 

involving energy minimisation will be required to specifically characterise the formation of this 

helix. 
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6.4: Conclusion 

While these data show promise in elucidating the mechanism of EnvZ/OmpR signal 

transduction, the transmembrane domain helices are merely one section of the overall function 

within EnvZ. For example, the cytoplasmic domains of EnvZ (EnvZc) have been shown to 

support transcription of ompC/ompF via OmpR, albeit without retaining the robustness of full 

EnvZ when EnvZc is overexpressed. This indicates there is a sensory function within the 

cytoplasmic domains, yet it could either be secondary to a sensory domain within the 

transmembrane/periplasmic domains or these domains are required for proper regulation of 

the cytoplasmic sensory functions. Further to this, the MzrA protein function must be taken 

into account as it could either directly or indirectly modulate transmembrane helix 

conformation regardless of media osmolarity. Further experimentation, using similar methods 

to those employed here, would be required to fully understand the physical interactions that 

occur between MzrA and EnvZ. As MzrA dimerises itself, with a single transmembrane 

crossing, it would also be useful to understand interactions that occur within its own dimeric 

conformation.  

 As the data shows evidence for an entirely new type of model within transmembrane 

helices of SHKs, the next stages directly related to this line of research will involve further 

proving that model. Firstly, the evidence must be corroborated by a different method, for 

example in silico modelling of the transmembrane four-helix bundle. If a pocket is shown to 

form, there will be specific residues that line this pocket and it is likely that one or more of 

those residues plays a significant role in sensing within the pocket. Exhaustive mutations of 

the pocket-lining residues (substituting each residue for every other amino acid) could help to 

isolate which of these positions is most critical to normal signal transduction via the dual 

fluorescence reporter system. Next, the identity of the molecule(s) entering the pocket would 

need to be ascertained. As EnvZ has osmosensory capability, it would be logical to predict 

that water may enter the pocket when the bundle formation allows, leading to a mechanistic 
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alteration in the overall dimeric formation which allows signal transduction. Both in vivo and in 

silico methods could be used to test this theory, the former providing the most conclusive 

evidence and the latter serving as a time/cost saving route to expedite decisions made for in 

vivo experimentation.  

 Overall, this data will inspire research in multiple directions that will hopefully lead to a 

fuller understanding of the mechanisms associated with EnvZ/OmpR signal transduction. With 

this knowledge, the role of this system within the overall TCS network can also be discovered 

leading to more effective research into disrupting that network for antibacterial purposes. 

  



 
 

129 

Chapter 7: Connections to Antibiotic Resistance 
7.1: Connecting the TCS to Antibiotic Resistance 

Research is only as good as its eventual application to a real-life issue. The TCS has been 

connected with antibiotic resistance mechanisms and this section first details the crisis 

including its effect upon the world and the antibiotic drug discovery conundrum. Further to this, 

the connections of the TCS family to antibiotic drug discovery are outlined. 

 

7.2: The Antibiotic Crisis 

Global misuse of antibiotics has brought about the era of resistance with respect to 

antibacterial drug discovery and development (173). Consequently, an increasing number of 

pharmaceutical companies have abandoned their endeavours into antibacterials (174). With 

the situation deteriorating, it has become an obligatory task to explore alternative potential 

mechanisms of antibacterial action. The mechanisms of antibacterial resistance are myriad 

and diverse but are usually categorised into three groups. Firstly, bacteria acquire resistance 

via the capture of resistance genes, generally through mobilisation and horizontal gene 

transfer from the environment. Secondly, the protection of polymorphisms in genes targeted 

by antibiotics via secondary mutations that neutralise fitness reductions caused by resistance 

mutations (175). Fitness reductions refers to the usual decrease in survival capability that is 

conferred by genetic mutations within bacteria. Thirdly, upregulation of intrinsic resistance 

mechanisms such as antibiotic efflux, bacterial impermeability to antibacterial agents or 

antibiotic inactivating enzymes (173,176,177). It has been suggested that targeting the 

intrinsic resistome offers potential for both novel therapeutic targets and employing 

combinatorial therapies with antibacterials that had been rendered ineffective as a direct result 

of the resistance mechanism targeted (176). For example, if changes in outer membrane 

permeability are rectified, the ability of an organism to limit antibiotic entry could be corrected 

and resistance could be overcome (178). In certain instances of antibacterial resistance, 
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membrane permeability has been shown to be reduced, which resulted in decreased 

antimicrobial uptake. This usually manifests as decreased expression of the outer membrane 

porin C (OmpC) and F (OmpF) following prolonged exposure to antibacterials (179). Based 

on this, specific protein systems, such as two-component regulatory systems (TCS), that 

contribute to the management of these resistance mechanisms could serve as novel 

antibacterial targets if their activity could be inhibited or modulated (180,181). Due to this 

possibility, EnvZ signal transduction and how signal transduction might be harnessed for 

signal output modulation and subsequent changes in porin balance within the outer membrane 

of Gram-negative organisms is reviewed. 

 

7.3: Statistically summarising a slippery slope 

There exists a multitude of research that conclusively describes our current situation of 

antibiotic resistance as a crisis (182–186). Seventeen million people die globally each year as 

a result of bacterial infections, making it the second most common cause of mortality after 

heart disease (187). In the United States of America, 2.8 million people are infected with 

antibiotic-resistant (ABR) strains of bacteria each year and 35,000 of those people will die as 

a result of these infections (187). These statistics have steadily risen across the globe and will 

continue to rise at an ever-increasing rate without prompt intervention. It is therefore possible 

to state that antibiotic resistance represents the single greatest threat to public health today 

(188). It also has severe economic consequences, as the O’Neill report estimated that ABR 

infections would cost the healthcare industry trillions of US dollars with annual deaths 

worldwide rising to 10 million by 2050 (189). The best example of the presence of resistant 

bacteria is the increasing difficulty with which gonorrhoea is treated, this disease is now 

resistant even to third-generation cephalosporins when it had originally been treated with 

penicillin during the 1970s (190). This dramatic reduction in treatment options will inevitably 

occur in many other infectious diseases without prompt intervention. Therefore, the 
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underpinning concepts of bacterial resistance mechanisms must be fully understood in order 

to overcome this downward trajectory of bacterial treatment options.  

7.4: Pushing past the futility 

Presently, the crucial issues impacting the endurance of antimicrobial efficacy are firstly any 

novel antibiotic that may be conceived will inevitably be resisted in some form by the bacteria 

it is designed to combat, secondly, the rate at which it is possible to design, create and approve 

novel antimicrobial agents is consistently slower than the rate of genetic diversification within 

bacteria. Thirdly, with concerted efforts from the scientific community to overcome these 

issues, economic barriers exist to further prevent the spread of ABR bacteria. Antibiotics are 

of diminishing financial value to the pharmaceutical industry, as they are often curative and 

used for short periods. Compared to medications designed for chronic illnesses, they are not 

economically wise investments which is supported by trends in the financial decisions made 

by pharmaceutical companies (184,191). This suggests research into new antibiotics and 

antibacterial resistance could ultimately be a Sisyphean endeavour. However, the human spirit 

for survival is nothing if not indomitable, therefore we shall continue to roll the boulder up the 

mountainside, figuratively speaking, and our search for new ways to control bacterial survival 

and, infection shall continue regardless. 

 

7.5: Drug Discovery to prevent a Post-Antibiotic Era 

During the golden and medicinal chemistry eras of antibiotic discovery, technologies were 

progressing rapidly allowing for the adaptation of existing antibiotic structures to improve their 

pharmacological profiles as well as identifying new targets via newly invented genetic 

techniques. As we progressed into the resistance era, discovery became target-based and 

the success rate diminished rapidly. If these trends continue as predicted, small injuries and 

minor infections will become increasingly serious if not fatal as they were before the discovery 

of antibiotics (192). Going forward, it is crucial that new and unconventional methods of drug 
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discovery be conceived and implemented, else the current period of drug discovery decline 

will persist and worsen (173). The first step in designing new models of discovery is to identify 

the key failures of the previous models. Firstly, conventional drug discovery methods such as 

target-based and phenotypic high throughput screening, have not worked for discovering 

novel antibacterial therapies. Also, the compound portfolios for clinical trials consist largely of 

derivatives of chemicals that have underlying resistance mechanisms against them Finally, 

the lack of knowledge concerning novel targets, in terms of their identity, function and 

integration with other bacterial processes poses a difficult starting point for discovery of novel 

antibacterials. (193–195). Combinatorial therapies have been proven to allow certain 

antibiotics to avoid the intrinsic resistance mechanisms imposed upon them by ABR bacteria. 

For example, beta lactam antibacterials, such as ampicillin, are prevented from working by 

beta-lactamases. Thus, beta-lactamase inhibitors, such as sulbactam (which can be combined 

with ampicillin due to similar half-lives) were developed to prevent the beta lactamase from 

inactivating the beta lactam drug. Further strategies may then be devised based on nullifying 

other resistance mechanisms that either directly or indirectly impact on the efficacy of current 

antimicrobial therapies. Identifying both essential and non-essential genes within the genomes 

of specific bacteria may lead to direct and specific targeting of these genes in order to 

attenuate virulence or decrease chance of survival. Finally, by assessing genetic networks 

within bacteria, genes reliant on one or more other genes to function effectively can be 

identified. This creates an opportunity to disrupt multiple genes and therefore multiple proteins 

by targeting a single gene, efficiently reducing bacterial survival or virulence. By focussing on 

these specific areas through which antibiotic resistance can be countered, discovery of novel 

antibiotics may be expedited.  
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7.5.1: Combinatorial therapies 

The lack of knowledge surrounding bacterial membrane permeation and efflux systems holds 

back the creation of efficacious compounds, especially in the case of Gram-negative bacteria 

(173). If these systems can be understood and subsequently targeted, they could be used in 

combination with older antibiotics otherwise rendered powerless due either to inability to enter 

the cell or inability to remain within the cell long enough to be efficacious. Such combinatorial 

therapies, such as a beta-lactam and a beta-lactamase inhibitor, have already proven 

synergistic effects and it is an increasingly favourable therapeutic strategy. This is an 

especially important example as the additional therapy (the inhibitor) tackles the resistance 

mechanism employed by the bacteria therefore allowing the original antibiotic to retain its 

efficacy. This method could be replicated for other therapies that are made ineffective by a 

specific resistance mechanism by targeting that mechanism in combination with the original 

therapy. In order to capitalise on this, further discoveries must be made into systems that may 

be targeted by an adjuvant, thereby reducing the minimum inhibitory concentration of the main 

bacteriostatic/cidal agent and minimise toxicity.   

 

7.5.2: Essential genes 

Further on the subject of understanding the inner workings of bacteria, it is important to identify 

the essential genes within the bacterial genome. If a gene encodes a protein that could be 

described as dispensable to the ongoing survival of that bacterium, then that protein may be 

considered to be of less worth as a potential antibiotic target. The E. coli  genome consists of 

4290 genes, seven percent of which are considered to be essential genes (EG) for growth in 

nutrient rich media and a further ten percent are considered conditionally essential genes 

(CEG)(23, 24).  Adding to this, a distinction between an EG and a CEG must be addressed, 

as several genes could be considered essential in one environmental context but not another. 

Because of this, CEGs have often been overlooked for drug discovery purposes despite 
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occupying large portions of bacterial genomes. As the conditions effect the essentiality of 

these genes, it is important to assess their importance within an in vivo model (e.g. mouse 

model) rather than performing in vitro experiments using model microorganisms. Therefore, 

the function of these genes within the context of infection is poorly understood and further in 

vivo experimentation will be required. It has also been shown that removal of a subset of non-

essential genes completely attenuated the virulence of a highly virulent mycoplasma 

bacterium (198). This suggests that while survival may not be directly affected, the 

pathogenicity of the bacteria could be altered via non-essential targets. If the conditions of 

indispensability for this wide array of genes could be understood, a multitude of target options 

would become available. Also, experiments into defining EGs have been dominated by in vitro 

experimentation and in model microorganisms, reducing opportunities to assess the effect of 

different environmental contexts. Therefore in vivo experimentation of EGs within a host (e.g. 

mouse model) could allow assessment of a group of potential EG targets within an appropriate 

environment therefore producing the in vivo phenotype. This phenotype represents the 

specific genetic outcome that would occur in vivo and therefore would be the most clinically 

relevant target. However, the pool of targets within this in vivo infection gene set is vast and 

the majority of genes identified through in vitro experimentation with both nutrient-rich and 

nutrient-limited media can be found within this set yet represent a smaller pool of targets 

(Figure 7-1). It is therefore a greater innovation risk to pharmaceutical companies to develop 

novel antibacterials based on these targets as the pool of potential targets is so large that it 

will significantly reduce the success rate of discovery. 
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Figure 7-1: A Venn diagram showing the relative pool of target genes within a hypothetical 
bacterial pathogen. Three pools are set with an assigned innovation risk (indicated by the bar 
chart) to modern drug discovery. The largest pool (red) contains genes required for infection within 
a relevant animal model. These genes require extensive validation thus the risk is greatest. The 
pool containing genes required for growth on nutrient-limited media (yellow) is well documented, 
yet a portion of these genes will not be required for in vivo infection. The risk for these genes is 
lowest as the pool is large and mainly consists of genes of potential clinical relevance. The pool 
containing genes required for growth on nutrient-rich media (green) have been the conventional 
targets for many years. This pool is the smallest yet many of these genes will have been checked 
for validation as a potential target previously (173). 
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7.5.3: Gene interaction networks 

The network of genetic interactions across a bacterial genome can be considered functional, 

complex and abundant (26, 27). As previously discussed, certain genes may be considered 

essential, yet this may be context-dependant. The context may include the availability of 

connected genes, for example, a gene may be essential if a connected gene is not present 

but dispensable when that gene is present. Experiments have been conducted in which both 

single and paired gene deletions are implemented within a bacterium, in which thousands of 

the latter were synthetically lethal (201). Further on from this, the double deletions showed 

significant fitness reduction compared to their corresponding single deletion mutants. 

Unsurprisingly, this contributes to the evidence base that supports combinatorial therapies as 

disruption of two linked targets has potential to increase bactericidal capabilities. However, as 

certain genes are deleted, other genes may become dispensable thereby reducing its viability 

as a drug target. Overall, as our understanding of genetic-interaction networks becomes 

deeper it will become easier to identify targets that will have the required effect within that 

network.  

 

7.6 Summary  

Understanding the mechanisms behind antimicrobial resistance (AMR) in a general sense 

must lead into more specific investigation into protein families that confer resistance to 

bacteria. The TCSs can be logically connected as they are found across almost all bacteria 

which sense changes in the bacterial environment and alter systems accordingly to promote 

cell survival. As antibiotic compounds are regularly present in the environment, and because 

several antibiotics are developed from compounds produced by bacteria, there will be TCSs 

that either directly or indirectly impede antibiotic mechanisms. 
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7.7: TCS and Drug Discovery 

The TCS holds a number of attributes that suggest that it would be a successful target for 

antimicrobial therapy (202). Perhaps the most attractive of these is its complete absence 

throughout mammalian eukaryotic cells and ubiquity within bacterial cells. When considering 

the intrinsic resistance mechanisms employed by bacteria, it is unsurprising that the TCS 

protein family, designed to protect a bacterium from its environment, is frequently involved. As 

previously discussed, combinatorial therapies are recommended to become employed and 

designed with increasing frequency. A TCS involved in an antibiotic prevention mechanism, 

such as the EnvZ/OmpR system that controls porin expression and therefore membrane 

permeability, could be targeted in order to allow the formerly resisted compound to regain 

efficacy. As these protein systems are not found in mammalian cells, the chance of side effects 

is significantly reduced, thereby eliminating the concern of increased side effects, which 

usually accompanies combinatorial therapies. TCSs also contribute to bacterial virulence, cell 

growth and biofilm formation (40,41,203,204), yet understanding behind their mechanisms of 

virulence is poor. However, the mechanisms have been proven to exist as TCS knockout 

strains have resulted in attenuation of virulence, suggesting that such a strain would serve as 

viable option for live vaccines against bacterial infections (202,205–208). For example, 

deletion of PhoP genes in Mycobacterium and Salmonella attenuates their virulence and 

remains immunogenic in animal models. Further to this, deletion of the phoP/phoQ TCS in 

Salmonella typhi provides a useful strain for a live vaccine against typhoid fever (208). 

 As most antibiotics derive from natural products, often from fungi, it would be wise to 

investigate natural TCS inhibitors and modulators. Further to this, there exist conserved 

homologies across multiple TCSs (209,210) and it is therefore suggested that a single drug 

could be capable of targeting a conserved domain then inhibiting several TCSs that share it. 

This approach should also protect against any molecular mutations that would usually affect 

ligand target affinity (211,212). Compared to targeting individual sensor domains for specific 
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SHKs, this may be the most effective course of action (203,213). However, this approach 

holds a severe disadvantage in that the ATP-binding pocket within the SHK that may be 

targeted in this way exhibits considerable homology to multiple human protein families (213). 

As previously mentioned, the TCS family is not found in human cells yet certain domains will 

be similar or the same, as this example demonstrates. Therefore, such an approach must be 

investigated cautiously to eliminate any chance of any side effect-generating human 

interactions. 

 Consequently, several groups have looked at specific TCSs in order to find potentially 

efficacious inhibitors specific to those systems. Examples include WalKR, essential for cell 

survival, QseCB, involved in virulence and VanSR, a TCS specifically evolved for antibiotic 

resistance. In addition to these, several TCSs control envelope transporter proteins with efflux 

capability that provide multidrug resistance in well-known human pathogens such as 

Acinetobacter baumannii and Klebsiella pneumoniae (214,215). Of particular interest, VanSR 

specifically confers resistance to vancomycin and this mechanism has been reported in 

several bacteria including Staphylococcus aureus, Enterococcus faecalis and Enterococcus 

faecium. Several inhibitors have been identified for this TCS, but as they have a negative 

effect on mitochondrial respiration within human cells they could not be used safely as a 

therapeutic (213,216–218). This discovery could, however, serve as a viable template upon 

which to develop a VanSR adjunct therapy. In the case of the PhoPR TCS, molecules from 

natural sources have been shown to bind to the PhoP protein (219), eliciting an antimicrobial 

effect in Corynebacterium pseudotuberculosis.  

Returning to the EnvZ/OmpR TCS, as it is the best characterised and has a role in virulence 

in multiple organisms (220–222), any further investigation into its functionality would be 

extremely advantageous towards targeting this system.  With the recent discovery of 

Modulator of EnvZ/OmpR A (MzrA), a protein designed to modulate EnvZ activity (79,80), and 

inconclusive evidence on the specific mechanism by which EnvZ senses changes in 



 
 

139 

osmolarity it is important to define specific elements of the overall signaling mechanism in 

greater detail. Without such information, it would be far more difficult to specify viable targets 

within the protein system. It has therefore been necessary to investigate the research currently 

available regarding transmembrane communication both generally and in direct relation to the 

EnvZ/OmpR TCS. 
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Chapter 8: Future work 
8.1: Future works 

While I have suggested a model for the mechanism within the TM helices of EnvZ during 

signal transduction, the data is ultimately insufficient to conclusively state it as concrete fact. 

Further experiments will be required to solidify the findings from these projects.  

  

8.1.1: Increase in Number of 2X-Cys mutants 

The simplest way to gain more information utilising the information already acquired would be 

to extend the library by increasing the pairings to involve a wider range of potential interactions. 

Results gathered in the 2X-Cys project would inform these new pairings as there may be a 

pattern that would continue with further adjacent mutations. For example, the 2X-Cys library 

contains pairing 19-173 through 177. There may be interactions for 19-172 or 19-178 and so 

on which may illuminate us to more specific information about the dynamics of the 

transmembrane domains.  

 

8.1.2: Investigation into MzrA 

The structure of MzrA has been discovered as well as its general function, yet the specific 

mechanisms behind that function remain mysterious (79,80).  The mzrA gene, formerly known 

as yqjB was discovered via mutational analyses within a DbamBDdegP E. coli mutant. This 

mutant displays a lethal phenotype at 37°C, therefore the study aimed to find mutations within 

the DbamBDdegP that allowed survival at 37°C. Subsequent experiments narrowed the 

removal of the lethal phenotype to the mzrA gene. MzrA was then overexpressed in the 

DbamBDdegP mutant, improving cell growth, and the reasons for this were elucidated by 

examining the outer membrane protein (OMP) profile. In response to MzrA overexpression, 

OmpF levels are dramatically reduced while OmpC levels are unaffected even within a 

bamB+degP+ strain. This led to the MzrA protein being connected to the EnvZ/OmpR and 
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subsequently a more specific characterisation of this relationship (79). As EnvZ-MzrA 

interactions are enhanced, EnvZ kinase activity is increased and therefore phosphorylated 

OmpR levels rise. This could also be caused by MzrA reducing phosphatase capabilities of 

EnvZ, either in combination with increased kinase activity or instead of it. Despite these 

discoveries, the specific biophysical interactions between the MzrA and EnvZ proteins have 

not been concretely established. Therefore, to understand the full function of EnvZ within the 

context of a WT E. coli all interactions must be characterised fully.  

 Disulphide crosslinking experiments similar to those carried out within the EnvZ TMs 

should be carried out to first establish inter-protein interactions within its homodimer formation. 

Following this step, Cys-mutants of both EnvZ and MzrA will be combined in order to 

determine EnvZ-MzrA interactions (Figure 8-1). Results collected from the first set of MzrA 

mutants and from the EnvZ TM mutants will be used to determine the best areas of the protein 

to target when creating EnvZ/MzrA mutant combinations. With the information gathered from 

such experiments, interacting domains can be identified within the MzrA-MzrA’ homodimer 

and within the EnvZ/MzrA interface 
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Figure 8-1: EnvZ-MzrA interactions are yet to be established. The interaction surfaces 
between EnvZ and MzrA have not been mapped. Experiments involving the combination of a 
library containing 1X-Cys substitutions at every available position within MzrA and the existing 
1X-Cys mutant libraries would show where MzrA/EnvZ TM helix interactions occur. This figure 
shows three possibilities, only one of which, interaction directly with EnvZ transmembrane 
helices (top left), would be possible through these combination experiments. To test the 
possibilities of MzrA interacting with other parts of EnvZ (periplasmic and cytoplasmic 
domains) a library of EnvZ 1X-Cys mutations would need to be created for every available 
position within the protein. This library would then be combined with all mutations within the 
MzrA library. However, these methods, whilst exhaustive of every possible interaction, would 
be time consuming and costly to run due to the high number of mutant combinations possible. 

EnvZ 
Monomer

MzrA 
Monomer
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8.2: Crosstalk Research 

EnvZ/OmpR has been shown to engage in some crosstalk with the ArcB-ArcA TCS, which 

could highlight an excellent starting point for investigation into the overall E. coli TCS network. 

Evidence shows OmpR is phosphorylated by the SHK ArcB as OmpC levels are increased 

when cells are grown under anaerobic conditions, the activating factor for the ArcB 

phosphorylation mechanism (223). To show this activation of OmpR is achieved through ArcB 

function and not EnvZ function, the same experiments were carried out in the absence of EnvZ 

and the same results were seen. Lastly, purified ArcB phosphorylates both ArcA and OmpR 

in vitro, yet other RRs such as UvrY and KdpE are not affected. While these results are highly 

suggestive of cross phosphorylation between these TCSs, activation of OmpR via ArcA has 

not been ruled out. Regardless, the systems evidently interact with one another and further 

investigation into the survival advantages for this crosstalk mechanism will be the logical next 

step.  

Generally considering the potential reasons for crosstalk overcoming specificity in TCS 

function, it is worth considering the relationship between signal input and signal output. If a 

TCS detects a particular environmental change, the outputs that are produced by this 

detection and subsequent activation will be specifically designed to allow the cell to adapt to 

its specific environment in that moment. As environments are diverse and complex, there will 

undoubtedly be occurrences in which multiple TCSs are activated simultaneously from the 

various environmental stimuli. If a RR is deliberately affected by another TCSs SHK, especially 

in the absence of the RRs stimulus, then it could be theorised that the non-cognate outputs 

address that stimulus as well as the usual stimulus. To take the previously discussed 

EnvZ/OmpR – ArcB/ArcA crosstalk as an example, if anaerobic conditions cause OmpR 

activation then the presence of the outer membrane porin OmpC could contribute to cell 

survival in an anaerobic environment. Further to this with regards to the importance of porin 

regulation, it may be important to alter porin expression in response to a variety of 



 
 

144 

environmental stimuli especially if they are in combination. For example, a bacterium will have 

a survival advantage if it reduces membrane permeability in response to the presence of 

antibiotic compounds within its environment despite the osmolarity of its environment being 

low, which would usually lead to increased membrane permeability. This would likely be 

achieved via allosteric modulation of the EnvZ protein, activating the SHK via a different signal 

pathway than its osmosensing mechanism. This could be delivered by MzrA or it could be a 

separate sensing capability – there is ample room for further investigation into these areas. 

Particularly regarding MzrA, there would logically be another signal receiving element further 

upstream of this signaling cascade that needs to be identified and understood. This could be 

another TCS, a different protein system altogether or even MzrA receiving direct stimulus itself. 

These inquiries should initially concern the role of EnvZ in deliberate crosstalk and membrane 

protein networking but ultimately branch out into other TCSs and understanding the network 

of communication as a whole. The clearer we can depict this network, the easier it will be to 

develop ways in which we can disrupt and sabotage it leading to decreased bacterial survival 

within regular environments. 

 

8.3: Developing a Biotechnology Application for Two-Component 

Systems 

As previously discussed, TCSs are promising targets for future antibacterials, thus methods 

must be developed in order to screen potential compounds for their antibacterial properties 

specifically regarding their capability to interact with TCS function. As multiple TCSs are found 

in pathogenic bacteria and influence pathogenic mechanisms, the practicalities of 

experimentation are ultimately affected. A pathogenic bacterium will need increased health 

and safety measures to perform any experiment, which increases the cost and complexities 

of protective equipment and practices. If experiments can include only the least pathogenic 

bacteria, these costs can be drastically reduced, then the overall speed and efficiency of 
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experiments will be significantly increased. As non-pathogenic E. coli is a hazard group 1 

bacterium (224) (least pathogenic concern), experiments will require far less protective 

personal equipment and safety procedures will be less restrictive. Therefore, we can move 

forward using E. coli and the EnvZ/OmpR TCS as a basis for investigating how best to target 

TCSs in general, especially considering the infrastructure and knowledge we have in place for 

developing new experiments around these systems. However, a method must be developed 

to discover new information about pathogenic bacteria and their TCSs while still using E. coli 

and the EnvZ/OmpR system. 

Chimeric proteins fuse domains of two similarly functioning proteins in order to gain 

information about the domain(s) of one protein via the output of the other protein. In the case 

of TCSs, the SHK of two separate systems can be fused to create a chimera that senses like 

one but generates a signal output like the other. As the signal output system of EnvZ/OmpR 

is easily quantifiable by the dual fluorescence reporter system described earlier in this thesis, 

the cytoplasmic domains of EnvZ will be used in these chimeras. This leaves the sensory 

domains, areas potential antibacterials may interact with, to be filled by a variety of different 

SHKs that are involved in pathogenic processes or found in pathogenic bacteria. This will 

allow quantification of the effect a novel compound has on an SHK within a pathogenic 

bacterium, via the signal output of EnvZ/OmpR within a non-pathogenic strain of E. coli.  

 To reach this stage, the chimeric protein must be tested for its robustness compared 

to the normal functioning forms of its WT constituents. Robustness is defined as the ability for 

a signaling circuit to maintain a steady response across a wide concentration/intensity range 

of stimulus input. For example, if 0.01M of a substance is added then it should illicit the same 

response as 1M of the same substance with very little fluctuation in between. If the robustness 

of a chimeric system is much lower than this range, the results that are gained from it will be 

unrepresentative of either of its constituents. In most cases, a chimeric protein will not be 

robust and therefore it must be tuned in order to restore that robustness. The key area of 
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interest when tuning a chimera is the point of fusion as one protein becomes the next, which 

is an unnatural connection and therefore highly susceptible to improper positioning or reduced 

dynamism. A way in which dynamism can be restored to this fusion point is a method known 

as aromatic tuning. This method involves the repositioning of aromatic residues at the point of 

fusion to improve dynamism and restore robustness to the signaling circuit. Multiple positions 

are used for aromatic tuning in order to locate the ideal positioning for the aromatic residues. 

This is gauged by the usual method for signal output measurement, the dual fluorescence 

reporter system, and the aromatically tuned chimeric protein will be tested across a range of 

stimulus input concentrations/intensities to determine an appropriately robust response. Once 

this has been determined, novel compounds can be delivered to the chimeric protein in order 

to ascertain any reduction or abolishment of signal. As several thousand compounds would 

be screened via this method, once entirely optimised and functional, it is likely that a wide 

variety of results will be seen. Results that may be categorised with “potential antibacterial 

properties” should be tested further in addition to finding compounds with similar chemical 

structures that have not been tested. As an in vivo experiment, this process will expedite 

progression into the next stages of drug discovery and ultimately reduce the overall cost of 

development into a viable therapeutic.  
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Closing Remarks 
This body of work investigated one small part of a much bigger mechanism in terms of EnvZ, 

the TCS network it operates within and the overall bacterial survival mechanisms that protect 

E. coli and other organisms from antibacterial interventions. The result of that investigation 

proved fruitful in beginning to define something that could be truly novel within the current 

understanding of TCS signaling mechanisms. As previously mentioned, the various paths of 

research that have been illuminated from these discoveries could each contain their own 

discoveries and a multitude of paths after that. If there is one thing that inspires me to conduct 

research, it is being happy that there will always be so much left to discover and those 

discoveries will always pose more questions than they answer. It is unlikely that I will discover 

the full working mechanisms of EnvZ/OmpR during my career, yet I can rest easy knowing 

that I pushed that section of knowledge a step further towards that end goal. The reference 

list of this thesis alone holds over 200 contributions informing my work and now my findings 

will inform other research for many years to come. Some may interpret the data differently and 

others may dispute it entirely but it will make people think and discuss the subject and 

ultimately that is all you can ask from research – to further the conversation. 
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