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III. Abstract  

 

Understanding the comprehensive interactions between genetic changes, epigenetic 

dysregulation, aberrant metabolism and immune evasion in cancer provides a deeper 

insight into its pathogenesis and progression, and helps identify vulnerabilities for 

therapeutic exploration. This Commentary highlights a series of published studies 

uncovering the following: molecular mechanisms and prognostic impact of aberrant DNA 

methylation/hydroxymethylation in clear cell renal cell carcinoma (ccRCC) which accounts 

for 80% of all kidney cancers; the potential of ascorbic acid (AA) in reversing aberrant 

methylation in cancers (ccRCC and lymphoma) via activation of the Ten-Eleven 

Translocation (TET) enzymes in vitro and in vivo; AA-induced demethylation and re-

expression of tumor-suppressors and endogenous retroviral transcripts in lymphoma 

cells; mechanistic and anti-tumor synergy between high-dose AA and anti-PD1 

immunotherapy in a lymphoma mouse model; and important considerations while 

exploring the potential of AA as an anti-cancer agent in vitro and in vivo to enhance 

translation of pre-clinical findings.  

These findings have led to two actively accruing multi-center phase 2 randomized trials 

combining IV ascorbic acid with standard of care treatment in ccRCC and diffuse large B 

cell lymphoma (DLBCL). They also provide a compelling rationale for testing 

combinations of high-dose AA and anti-PD1 agents in patients with aggressive B cell 

lymphoma and in preclinical models of other malignancies.  
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VI. Introduction  

The eight recognized hallmarks of cancer (1) constitute fundamental building blocks in the 

complexity of cancer biology, and are as follows:  

- Sustained proliferative signaling  

- Replicative immortality 

- Evasion of tumor suppressors  

- Resisting cell death   

- Induction of angiogenesis 

- Activation of invasion and metastasis  

- Deregulation of cellular energetics  

- Avoiding immune destruction 

From a translational standpoint, understanding the molecular mechanisms governing each of 

these hallmarks, and how each hallmark interacts with and enables the other through the 

various stages of cancer pathogenesis and progression, could help delineate targetable 

vulnerabilities. Equally important is understanding the mechanisms of resistance to 

conventional therapeutic approaches, such as chemotherapy, radiotherapy, targeted therapy, 

and immunotherapy. This aids the pursuit of combinatorial strategies targeting resistance 

mechanisms, and enhancing the anti-tumor effects of conventional strategies.  

In keeping with the concepts above, this Introduction consists of 5 sub-sections that also, in 

part, form the basis of the original scientific investigation described in this thesis: (i) 

epigenetic dysregulation in cancer, (ii) aberrant metabolism in cancer, (iii) mechanisms of 

immune evasion in cancer; (iv) clear cell renal cell carcinoma as a model for resistant 

cancers; and (v) preliminary work leading to the aims of the PhD investigation.  

 

VI.1 Epigenetic dysregulation in cancer  

A brief introduction to epigenetics 

Epigenetics is any process that alters the expression of a gene, without a change in the 

genetic code, which plays a role not only in normal cellular development and differentiation, 

but also in disease. Nuclear chromatin is composed of condensed nucleosome subunits, 

each of which consists of approximately 147 base pairs of genomic DNA wrapped around a 

histone octamer core consisting of 2 copies each of the core histones H2A, H2B, H3, and H4 

(Figure 1). The H1 histone associates with linker DNA connecting nucleosomes (considered 
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by some as a part of the nucleosome complex) (2). Epigenetic processes such as DNA 

methylation and histone modifications at regulatory regions alter the three-dimensional 

structure of chromatin and accessibility of DNA, thereby  influencing the binding of 

transcription factors and subsequent gene expression (3). The proteins that lay these 

epigenetic marks are termed ‘writers’; those that interact with these marks, ‘readers’, and 

those that mitigate the marks, ‘erasers’ (4). Tightly condensed chromatin, termed 

heterochromatin, consists of predominantly ‘inactive’ genes; in contrast, open chromatin, 

termed euchromatin, consists of predominantly active genes (5, 6).    

 

Figure 1. A high-level overview of chromatin composition and epigenetic marks (7).  

 

Although RNA modifications resemble DNA modifications and can affect eventual protein 

expression, they are not widely considered a part of ‘epigenetics’; and neither are non-coding 

RNAs. In fact, an operational definition of epigenetics calls for a modification to be ‘stably 

heritable’ in order for it to be considered ‘epigenetics’ (8), although alternate definitions 

including non-heritable modifications continue to be used (9). Conceptually, however, rather 

than worry about the semantics of different definitions, it is helpful to consider the 

modifications that eventually influence biological processes without a change in the genetic 

code as a whole, and classify them as modifications at the histone/ DNA (pre-transcriptional), 

RNA (post-transcriptional) or protein (post-translational) levels (while recognizing that no 

formal definition of epigenetics encompasses all these features).  
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DNA methylation  

DNA methylation is a heritable epigenetic mark that  involves the covalent addition of a 

methyl group to the 5-carbon position of cytosine by DNA methyl transferases (DNMTs), and 

usually occurs on cytosines that precede a guanine (‘CpG’) (10). A majority of these CpG 

dinucleotides are located at ‘CpG islands’: CpG- rich regions that are present in around 70% 

of all gene promoters (11). Increased methylation of CpG islands usually leads to 

transcriptional silencing of the corresponding gene, either via preventing binding of 

transcription factors or via the recruitment of methyl-CpG binding proteins that interact with 

repressive histone modifying enzymes (10). While DNMT3A and DNMT3B are involved in de 

novo methylation, DNMT1 is involved in maintenance (12). Once a methyl mark is laid, the 

enzymes that are involved in active demethylation are the Ten-Eleven Translocation (TET) 

dioxygenase enzymes (TET 1,2,3), which belong to the family of Fe2+ and 2-oxoglutarate 

dependent enzymes (13). They accomplish demethylation via a series of oxidation reactions, 

from 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) to 5-formyl cytosine (5-

fC) to 5-carboxyl cytosine (5-caC). 5-fC and 5-caC are then excised by the enzyme thymine 

DNA glycosylase, after which they are replaced with unmodified cytosine by the base 

exchange repair (BER) pathway (Figure 2) (13-15). Recent developments in methylation 

profiling techniques such as oxidative bisulphite sequencing (16), HELP-GT assay (17) and 

hMeDIP sequencing (18), has enabled genome-wide identification and differentiation of 

oxidative 5-hmC methylation marks, in addition to 5-mC. Studies have shown that the 

inhibitory effect of methyl mark on regulated genes is lost even upon oxidation to 5-hmC (17). 

However, the relatively distinct expression/function patterns of the three TET enzymes (and 

their isoforms) are currently being delineated (19).  

 

Figure 2. The DNA cytosine methylation cycle (DNMT: DNA methyl transferases; TET: Ten-Eleven 
Translocation enzymes; 5-mC: 5-methylcytosine; 5-hmC: 5-hydroxymethylcytosine; 5-fC: 5-formyl 
cytosine; 5-caC: 5-carboxyl cytosine) (20).  
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Dysregulation of DNA methylation in cancer  

Global and gene specific changes in methylation patterns compared to normal tissue of 

origin are characteristic findings in cancers. Although many cancers have been shown to be, 

in general, characterized by global hypomethylation, hypermethylation of CpG islands 

leading to silencing of tumor suppressors has been frequently reported in cancers. Classic 

examples are the hypermethylation of Rb gene in retinoblastoma (21); p16 gene in breast, 

lung, colorectal carcinomas (22); and E-cadherin in RCC (23). On the other hand, 

hypomethylation of tumor promoters leading to enhanced expression has also been reported 

in malignancies (24-26). Furthermore, hydroxymethylcytosine, albeit a much less abundant 

mark than methylcytosine, has been shown to be relatively reduced in several cancers (27) 

compared to the tissue of origin, affecting gene expression in cancer cells.  

Mutations or expression levels of DNMTs and TET enzymes do not fully explain the degree 

of methylation/hydroxymethylation aberrancies in cancer (28). That said, mutations have 

been reported in these enzymes in cancers. Recurrent DNMT3A loss of function mutations 

have been reported in AML, associated with losses of DNA methylation (29, 30). Also, TET2 

is frequently mutated in hematologic (both myeloid and lymphoid) malignancies (31). 

Because TET enzymes use 2-oxoglutarate as a co-substrate, they are susceptible to 

competitive inhibition by accumulation of metabolic intermediates such as hydroxyglutarate, 

succinate or fumarate, as a result of inactivating mutations or deletions of genes encoding 

their metabolizing enzymes like succinate dehydrogenase and fumarate hydratase (32, 33). 

Azacytidine (Aza; Vidaza) and decitabine (5-aza-2′-deoxycytidine), the archetypal DNMT1 

inhibitors, are cytosine analogues in which carbon at the C-5 position of the pyrimidine ring is 

substituted with nitrogen. When incorporated into DNA, they bind DNMT1 irreversibly, 

resulting in DNMT1 degradation and consequently demethylation of DNA. While decitabine 

mostly incorporates into DNA, about 80-90% of Aza incorporates into RNA. These agents 

are currently used in the clinical setting in higher-risk myelodysplastic syndromes. 

Interestingly, apart from causing demethylation and re-expression of silenced tumor 

suppressor genes, a global increase of H3 and H4 acetylation has also been observed with 

Aza treatment, indicating that mechanisms other than direct DNA demethylation may 

contribute to its anti-neoplastic effect, and also indicating a close co-operation between DNA 

and histone marks (27). Furthermore, demethylation induced enhanced expression of 

endogenous retroviruses (ERVs) likely also contributes to anti-tumor effects by increasing 

immune recognition.  
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Histone modifications  

Histone modifications are also important mechanisms of regulation of gene transcription. 

Each one of the octamer core histones in a nucleosome (H2A, H2B, H3, and H4) has a tail 

extension, which are targets of histone modifications. A wide range of histone post-

translational modifications are known to occur, including acetylation, methylation, 

ubiquitination,phosphorylation and others (34, 35) (Figure 3) . Such modifications can affect 

chromatin remodeling and gene regulation through two central mechanisms: one, 

neutralization of amino acid charge; and two, serving as docking sites for proteins that then 

regulate chromatin structure (34, 36).  

Acetylation or phosphorylation of lysines on histones neutralizes the positive charge of 

lysine, thereby weakening interactions between the N terminus of the histone and the 

negatively charged phosphate group of DNA, to increase chromatin accessibility (37, 38). 

Histone acetyl transferases (HATs) lay the acetyl group, whereas histone deacetylases 

(HDACs) remove them (27). HATs are classified into Type A (acetylate chromatin bound 

histones and nuclear proteins) or Type B (acetylate newly translated histone H3 and H4). 

HDACs are divided into 4 classes based on homology and structure: classes I, II and IV are 

Zn2+-dependent HDACs while class III is made up of NAD-dependent sirtuins (3, 27, 36).  

Methylation of histones by histone methyltransferases can either activate or repress 

transcription, depending on the amino acid being methylated and the presence of other 

methyl or acetyl groups in the vicinity. For example, trimethylation of histone H3 at lysine 4 

(H3K4me3) is a signal for transcriptional activation, whereas dimethylation of histone H3 at 

lysine 9 (H3K9me2) is a signal for transcriptional silencing (39). The two major classes of 

histone methyltransferases are lysine methyltransferases (KMTs) and protein arginine 

methyltransferases (PRMTs)(27). As an opposing mechanism, histone demethylases remove 

the histone methyl mark. The two classes of lysine demethylases (KDMs) that demethylate 

histones are the amine oxidases and the 2-oxoglutarate dependent Jumonji domain (JmjC) 

containing demethylases (3, 27, 36).  
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Figure 3. The most common histone modifications (40).  

 

Dysregulation of histone modifications in cancer  

Histone deacetylases (HDACs) have been shown to be over-expressed in cancers resulting 

in loss of global histone acetylation and subsequent inhibition of tumor suppressor gene 

expression. Since HDACs (Class I, II, and IV) are Zn2+-dependent, non-selective HDAC 

inhibitors target the zinc ion in the active site of HDACs to inhibit their enzymatic activity. 

Vorinostat (used in the treatment of cutaneous T cell lymphoma, CTCL), belinostat (for 

peripheral T cell lymphomas, PTCL) and panobinostat (for multiple myeloma) are all non-

selective HDAC inhibitors that inhibit all Zn2+-dependent HDACs. Selective HDAC inhibitors 

include romidepsin (used in treatment of CTCL and PTCL), which targets specifically class I 

HDACs, and ricolinostat (in clinical trials for multiple myeloma, lymphoma), which targets a 

specifically class II HDAC (27, 41) (Figure 4).  

Histone acetyl transferases (HATs) have been reported to be inactivated via deletions or 

mutation in cancers. For example, around 40% of diffuse large B cell lymphoma (DLBCL) 

and follicular lymphoma (FL) have inactivating mutations or deletions of p300/CBP (cyclic 

AMP response element- binding protein) (42).  
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Both activation and inactivation of specific Histone methyltransferases has been 

demonstrated in cancer. Activating mutations of EZH2 (Enhancer of Zeste Homolog 2) which 

catalyzes di- and tri-methylation of H3K27 thereby repressing transcription of tumor 

suppressors has been reported in 22% of DLBCLs. EZH2 inhibitors have demonstrated 

efficacy in early phase trials in EZH2 mutated DLBCLs (43). 

 

Put together, dysregulation of DNA methylation and histone modifications (particularly 

acetylation and methylation), constitute a bulk of the currently recognized, and targeted, 

‘epigenetic’ aberrancies in cancer (Figure 4). This dysregulation in cancer allows the 

simultaneous reduction in expression of several ‘tumor-suppressor’ genes, causing their 

cumulative loss of function, even without any inactivating mutations in these genes. 

 

Figure 4. Epigenetic dysregulation in cancer and epigenetic therapeutic classes. Altered levels of 
histone and DNA epigenetic marks lead to abnormal gene expression, and 8 different classes of 
epigenetic therapeutic agents are either in clinical use or being investigated for potential benefit: 
DNMT inhibitors; HDAC inhibitors; HAT inhibitors; BRD inhibitors; KDM inhibitors; PRMT inhibitors; E3 
ligase inhibitors; and DUB inhibitors (44). (Abbreviations- DNMT: DNA Methyltransferase; HDAC: 
Histone Deacetylase; HAT: Histone Acetyltransferase; KMT: Histone lysine methyltransferase; KDM: 
Histone lysine demethylase; PRMT: Protein arginine methyltransferase; BRD: Bromodomain; DUB: 
deubiquitinating enzymes). 
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VI.2 Immune evasion in cancer 

Given the rapid clinical translation in the field of harnessing the immune system for 

therapeutic benefit, it would be beneficial to discuss this topic not only by throwing light on 

the different mechanisms adopted by cancer cells to evade immune killing, but also with a 

review/ perspective on the past, current, and future translation to the bedside. As related to 

this PhD study, one malignancy, renal cell carcinoma, is discussed here, recognizing that 

while several of the mechanisms overlap, there are significant differences in the degree to 

which a particular mechanism contributes to immune evasion between different cancers. 

Clear cell renal cell carcinoma (ccRCC) accounts for ∼75-80% of all RCC, and biallelic Von 

Hippel–Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC (45). The molecular 

etiopathogenesis of VHL mutant metastatic RCC is a sequence of events which can be 

grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation 

of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway 

due to loss of VHL activity and transcription of genes involved in angiogenesis, survival, 

anaerobic glycolysis, pentose phosphate pathway, epithelial–mesenchymal transition, 

invasion, and metastasis (iii) interactions of the HIF pathway with other oncogenic pathways; 

(iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and 

the influence of epigenetics on various apoptotic, oncogenic, cell cycle regulatory and 

mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune 

evasion, partially caused by changes in the epigenome (45). These mechanisms interact 

throughout the pathogenesis and progression of disease, and confer resistance.  

Renal cell carcinoma (RCC) is considered an immunogenic tumor, with immunotherapy 

being a part of its treatment landscape for decades. Although interleukin 2 (IL-2) and 

interferon alpha (IFN-α) were approved in the 1990s, they were effective in a small 

percentage of patients and had significant toxicity, often resulting in patients requiring 

intensive care for cytokine-driven hemodynamic instability (46, 47). The advent of checkpoint 

blockade has advanced the field of immunotherapy in RCC, both in terms of efficacy and 

safety (48, 49). However, several patients still fail to respond to single agent or combination 

checkpoint blockade. As such, a comprehensive understanding of immune evasion 

mechanisms in RCC is needed to help develop more effective combinations that provide 

mechanistic synergy and bring to light aspects that may not be currently countered in the 

clinical setting, representing potential opportunities for therapeutic exploration.  

As mentioned above, ccRCC accounts for a large majority (~80%) of all RCC (45). Non-clear 

cell renal cell carcinomas (nccRCC) include papillary, chromophobe, collecting duct, 
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unclassified, and translocation carcinomas. In the 1990s, when IL-2 and IFN-α were studied 

in metastatic renal cancer, the selection criteria did not limit patients to clear cell histology 

(50, 51). Over the last two decades, however, after the Heidelberg classification of renal 

tumors (52) and starting with the randomized study investigating high dose vs low dose IL-2 

in RCC (53), large randomized ‘RCC’ trials have limited the selection criteria to clear cell 

histology, unless otherwise specified. Therefore, where unspecified, ‘RCC’ mainly refers to 

clear cell histology.  

Recently, the FDA approved two “checkpoint inhibitor plus tyrosine kinase inhibitor (TKI)” 

combinations in the first-line setting for advanced RCC: pembrolizumab (humanized anti-PD1 

antibody) plus axitinib (small molecule TKI), and avelumab (fully human monoclonal anti-PD-

L1) plus axitinib. Both combinations were tested against sunitinib (also a small molecule TKI) 

in large, randomized, multi-center trials, and demonstrated improved median progression-

free survival with a 4-5 month margin and superior overall response rates (55-60%, in 

comparison with 26-35% with sunitinib) (54, 55). Although it remains unclear how the 

combinations fare in comparison with sequential treatment with single-agent TKIs (approved 

in the first-line setting) and single-agent anti-PD1 checkpoint inhibition (approved in the 

second-line setting), both combinations are attractive options particularly for patients with 

high disease burden and intermediate-poor risk, given the superior response rates. In these 

patients, the need for a quick disease burden reduction provides sufficient rationale to 

account for the increased risk of adverse effects, which are largely manageable except in a 

very small minority of patients. Notwithstanding these approvals, there is much room for 

improvement in combination strategies targeting immune evasion.  

This section summarizes the currently known mechanisms of immune evasion in RCC, 

categorizing them as follows: loss of antigen-presenting ability; immune checkpoint signaling; 

tumor-associated gangliosides; tumor-associated metabolites; tumor-promoting immune cells 

in the microenvironment and their inhibitory cytokines; impaired immune cell trafficking; 

inhibitory cytokines released by tumor-promoting immune cells in the microenvironment, and 

metabolite- induced immunosuppression (depicted in Figure 5) (56).  

 

Loss of antigen-presenting ability 

Major histocompatibility complex (MHC) class I molecules are highly polymorphic proteins 

that bind to antigenic peptides and present these peptides to cytotoxic T cells. Co-ordinated 

antigen processing and presentation facilitates effective anti-tumor immune function (57, 58). 
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Abnormalities in MHC class I have been reported in different tumor types leading to 

dysfunction in various steps of antigen processing. These abnormalities include structural 

alterations or dysregulation of HLA class I antigens, and of different HLA class I- associated 

antigen processing machinery (APM) components. Loss of expression/ function of HLA and 

APM components resulting in poor antigen presentation is an important mechanism of 

escaping immune surveillance in cancers (57, 58).  

ccRCC has been reported to have a partial loss of HLA class I molecules in 39% of cases, 

and complete loss in 6% (59). Down-regulation of genes needed for antigen processing, 

such as the transporters associated with antigen processing (TAP)1 and TAP2, and the 

proteasomal components low molecular weight proteins (LMP)2 and LMP7, has been 

reported in RCC (60). Furthermore, reduced expression of HLA heavy chain (HLAhc) and 

beta-2-microglobulin (B2M) in ccRCC is associated with metastatic spread and worse 

prognosis (59).  

 

Immune checkpoint signaling  

The B7 family of peripheral membrane proteins found on tumor cells and antigen presenting 

cells play a critical role in modulating T cell responses when paired with specific molecules 

on T cells (61). The growing B7 family consists of seven members: B7-1 (CD80), B7-2 

(CD86), B7-DC (CD273, PD-L2), B7-H1 (CD274, PD-L1), B7-H2 (ICOS-L), B7-H3 (CD276), 

and B7-H4 (B7x, B7S1).  

PD-L1 (Programmed death ligand 1) expressed on tumor cells and antigen presenting cells 

inhibits not only PD-1 (Programmed death 1)- expressing cytotoxic T cells (as previously 

thought), but also natural killer (NK) cells and dendritic cells, by inducing an exhaustion 

signature (62-65). The inhibitory PD-1/PD-L1 axis has been targeted in renal cell carcinoma 

with clinical benefit. Nivolumab, a human IgG4 monoclonal antibody (mAb) that blocks PD-1, 

has been approved in the second line setting after disease progression on a TKI (66). 

Nivolumab has also been approved in the first line setting in combination with Ipilimumab (a 

mAb that blocks CTLA-4) in intermediate and poor risk renal cell carcinoma (54). 

Pembrolizumab, a humanized anti-PD1 antibody, has been approved in the first line setting 

in combination with axitinib (small molecule TKI) (67). Avelumab, a fully human mAb that 

targets PD-L1, has also been approved in the first line setting in combination with axitinib 

(67). The expression of PD-L1 in RCC has been shown to have a weak correlation between 

primary tumor and metastatic sites (68), thereby making it a relatively poor biomarker for 
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patient selection for anti-PD-1/ PD-L1 immunotherapy, based on nephrectomy specimen 

expression. The PD-1/PD-L1 axis holds particularly significant therapeutic promise in 

sarcomatoid RCC, a highly aggressive form of RCC characterized by spindle cells, high 

cellularity and cellular atypia, which can be a component of either clear cell or non-clear cell 

histologies. In one study, intra-tumoral PD-1 and PD-L1 expression was found in 96% and 

54% of sarcomatoid RCC, compared to 62% and 17% of clear cell RCC specimens (69). 

Furthermore, co-expression of PD-L1 on tumor cells and PD-1 on tumor-infiltrating 

lymphocytes (TILs) was found in 50% of all sarcomatoid RCC cases, compared to only 3% 

with clear cell RCC (69). In keeping with these findings, evidence from a single institution 

retrospective study indicates that checkpoint blockade may be very beneficial in sarcomatoid 

RCC, with an objective response rate of 62% and a complete response rate of 15% (70). 

CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), an inducible receptor expressed by 

cytotoxic T cells binds with B7-1/ B7-2 on antigen presenting cells, leading to T cell inhibition 

(71, 72). As mentioned above, ipilimumab (anti-CTLA-4) has been approved in combination 

with anti-PD1 in the first line setting of advanced RCC (73).  

B7-H4 is a negative regulator of cytotoxic T cell response (74), and masking of B7-H4 with a 

specific blocking antibody may increase the cytotoxicity of T cells in ccRCC (75). Soluble 

levels of B7-H4 are higher than normal in patients with non-metastatic RCC (76) and 

correlate with less differentiated tumors, higher invasive and metastatic potential, and a 

worse response to anti-VEGF therapy (76, 77). B7-H4-mediated inhibition of cytotoxic T cell 

response may be an important reason for the low efficacy of interleukin-2 and interferons in 

metastatic RCC (75). Strategies aimed at blocking B7-H4 are being developed to restore 

antitumor T-cell responses and to improve the efficacy of cancer immunotherapy (78, 79). 

Tim-3 (T cell immunoglobulin and mucin-domain containing-3), an inhibitory receptor on T 

cells, plays a key role in inhibiting Th1 responses and the expression of cytokines such as 

IFN-γ. It has been found to be overexpressed in ccRCC, and is associated with worse 

prognosis (80).  

LAG-3 (Lymphocyte activation gene-3), another inhibitory receptor on T cells, has been 

recently shown to be an important immune checkpoint in RCC (81). TILs and peripheral 

blood mononuclear cells isolated from RCC patients were studied with intracellular cytokine 

staining after in vitro stimulation in the presence or absence of PD-1 +/- LAG-3 or Tim-3–

specific antibodies. PD1 blockade increased LAG-3 (but not Tim-3) expression. Dual 

blockade of PD-1 and LAG-3 (not PD-1 and Tim-3) increased IFN-γ release with in vitro 
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stimulation, suggesting that dual targeting of PD-1 and LAG-3 may be a promising 

therapeutic strategy in this malignancy (81).  

HLA-G is a checkpoint molecule with emerging significance in cancers (82). Whether 

membrane bound or soluble, it strongly binds to its inhibitory receptors on effector immune 

cells (NK, T, B, monocyte/dendritic cells), and broadly inhibits the function of these cells (83). 

There are two main receptors for HLA-G on immune cells- ILT2 (expressed on monocytes/ 

dendritic cells, B cells, and some T and NK cells) and ILT4 (expressed on neutrophils and 

myeloid cells)(84).  Aberrant induction of HLA-G expression has been demonstrated in several 

malignancies, including RCC, and is associated with worse prognosis (83-85).  

HLA-E is a class Ib MHC molecule. It is overexpressed in several cancers, including RCC (86, 

87). HLA-E binds to its receptors CD94/NKG2A, -B and -C on NK and T cells, and has a 

suppressive effect on these cells. 

 

Put together, checkpoint interactions such as PD-1→ PD-L1, CTLA4→B7-1/2, TIM-

3→Galectin-9, LAG-3→MCH II, play an important role in immune evasion of cancers.  

 

Tumor-associated gangliosides  

Gangliosides are structurally diverse acidic glycosphingolipids that are present in the plasma 

membranes and play an integral role in cell signaling, cell adhesion, and differentiation and 

growth (88). Increased expression of gangliosides and its shedding into the tumor 

microenvironment disrupts the normal functioning of T cells (89-91). Gangliosides derived 

from supernatants of RCC explants have been shown to inhibit IFN-γ production, 

downregulate Th1-type responses, and skew T-cell responses toward Th2-type (92). RCC- 

associated gangliosides have been shown to inhibit NFkB activation, and also reduce BCL-2 

and BCL-X expression in effector T cells, thereby promoting apoptosis in these cells (93-95).  

Disialosyl globopentaosylceramide (DSGb5) is a ganglioside originally isolated from tissue 

extracts of RCC, and increased expression of DSGb5 is associated with lower recurrence-

free survival in RCC (96). DSGb5 expressed on RCC cells binds to sialic acid-binding lg-like 

lectin 7 (Siglec-7) on NK cells, which leads to inhibition of NK cell cytotoxicity (97).  

 

Tumor-associated metabolites  
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Tumor-associated metabolites play an important role in immunosuppression in the cancer 

microenvironment, particularly so in ccRCC. This malignancy expresses high levels of 

metabolites such as lactate, 2-hydroxylutarate and kynurenine metabolites (98), which have 

been shown to have an inhibitory effect on various effector cells and portend poor prognosis 

in ccRCC (70, 86, 99-102).  

 

Tumor-promoting immune cells in the tumor microenvironment and their inhibitory cytokines 

The tumor microenvironment (TME) is a heterogeneous network of cellular interactions that 

play a role in altering the course of tumorigenesis into either progression or suppression 

(103, 104). The TME in RCC typically has a prominent immune cell infiltrate, including CD8+ 

T cells, NK cells, macrophages and dendritic cells (105, 106). However, along with effector 

cells, the TME in RCC is also characterized by several suppressive immune cell types that 

aid immune escape:  

-A unique subset of dendritic cells [CD209+CD14+CD163+] has been shown to be highly 

infiltrated in RCC tissues and associated with an unfavorable Th1 cell balance and advanced 

stage in RCC (107). These CD209+ dendritic cells in RCC are unusual because they co-

express macrophage markers (CD14, CD163) (107). These cells secrete metalloproteinase 9 

(MMP9) and crosstalk with T-cells to increase tumor-promoting TNF- α and reduce 

chemokines relevant for Th1-polarized lymphocyte recruitment.  

-Regulatory T cells (Tregs) are CD4+CD25+FOXP3+ T cells that exert an 

immunosuppressive effect on anti-tumor immune cells (108). Tregs secrete suppressive 

cytokines such as transforming growth factor-β (TGF-β) and IL-10, express CTLA-4 and 

promote tumor progression (108). Presence of higher number of Tregs in the 

microenvironment is associated with a poor prognosis in RCC (107, 109), and a higher T 

effector/Treg ratio is associated with a lower recurrence rate (110). Tregs in RCC have 

higher CXCR4 expression and consequently, CXCR4 receptor antagonism reverses Treg 

immunosuppressive function (111). In mouse models of other tumor types, CXCR4 receptor 

blockade has been shown to induce tumor shrinkage and combinatorial efficacy with anti-

PD1 (112, 113).  

-Myeloid derived suppressor cells (MDSCs) have also been shown to play a role in immune 

evasion in RCC (101), and secrete suppressive cytokines such as IL-10 and TGF-β (114). 

Polymorphonuclear MDSCs and immature MDSCs are increased both within the RCC tumor 

and peripheral blood compared to normal control (101). Targeting PMN MDSCs with CXCR2 
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blockade enhanced the efficacy of anti-PD1 in a syngeneic renal cancer mouse model 

(Renca) (101). Similarly, targeting Interleukin 1β (a cytokine that attracts MDSCs), decreased 

intra-tumoral MDSCs, and delayed tumor growth (101).  

Tumor-associated macrophages (TAMs) in RCC show a mixed M1/M2 phenotype. A higher 

M2 phenotype is associated with worse prognosis (75, 115), and M2 macrophages stimulate 

angiogenesis as well as aid invasiveness through the secretion of cytokines such as IL-10 

and TGF-β (116, 117) as well as matrix metalloproteinases (115, 117).  

The effector TILs in ccRCC have an anergic signature (from exposure to inhibitory cytokines, 

metabolites, gangliosides and checkpoints) characterized by high diacylglycerol kinase α 

(DGKα) expression, low activation of extracellular signal-regulated kinase (ERK), c-Jun N-

terminal kinase (JNK) and AKT (118). DGKα is a physiologic inhibitor of T cell receptor (TCR) 

signaling and inhibition of DGKα leads to increased ERK activation and improved 

degranulation (118). This anergic signature may in part explain why, unlike in other tumors, a 

higher number of intratumoral CD8+ cells in ccRCC TME is actually associated with higher 

stage and worse prognosis (119). Of note, however, and importantly, this prognostic impact 

of intratumoral CD8+ T cells in ccRCC was reported prior to the era of immune checkpoint 

inhibition with anti-PD-1 and anti-CTLA-4.  

 

Impaired immune cell trafficking  

Cell adhesion molecules (CAMs) such as intercellular cell adhesion molecule-1 (ICAM-1), 

vascular endothelial cell adhesion molecule-1 (VCAM-1), E-selectin, and P-selectin are 

responsible for recruiting leukocytes and mediating leukocytes extravasation to inflammatory 

sites (120, 121). When RCC cells are enriched with TNF-alpha, they counter immune 

recognition by decreasing ICAM-1, VCAM-1 and E-selectin expression, thereby reducing 

endothelial attachment of peripheral blood lymphocytes and polymorphonuclear neutrophils 

(122, 123). Additionally, VHL tumor suppressor protein loss in RCC downregulates VCAM-1 

transcription independent of hypoxia-inducible factor (HIF) and dependent on the NFκB 

signaling pathway (123). Several studies have demonstrated that higher levels of VCAM-1 

are associated with better prognosis in RCC (123-126). Taken together, the ability of RCC to 

impair further leukocyte extravasation by reducing endothelial ICAM-1, VCAM-1 and E-

selectin expression likely contributes to immune evasion to some extent. However, given the 

reasonably prominent immune cell infiltrate in RCC TME, this mechanism of immune evasion 

is likely of lower clinical importance. 
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Other mechanisms inhibiting effector CD8+ T cells and NK cells  

RCC cells are capable of directly inducing apoptosis in activated T cells via the FAS/FASL 

interaction and subsequent activation of caspases (93, 127). Activated T cells displayed 

increased apoptosis when cultured in the presence of FasL+ RCC tumors, and the degree of 

apoptosis was significantly reduced by introduction of a neutralizing anti-FasL antibody (93).  

NKG2D is an activating transmembrane glycoprotein receptor expressed on NK and T cells. 

The interaction of NKG2D with multiple ligands leads to the activation of NK cells and co-

stimulation of CD8 T cells (128). RCC has been shown to have a marked under-expression 

of NKG2D ligands (85), thereby inhibiting this activation signal. 

 

 
Figure 5. An illustration depicting the mechanisms of immune evasion in renal cell carcinoma. (a) 
Poor antigen-presenting ability: Changes in HLA expression/APM (antigen processing machinery) 
result in loss of antigen-presenting ability. (b) Immune checkpoints: cytotoxic cell inhibitory 
interactions such as PD-1 → PD-L1, CTLA4 → B7-1/2, TIM-3 → Galectin-9, LAG-3 → MCH II 
(as depicted). (c) Tumor-associated gangliosides: decrease lymphocyte expression of Bcl-2 and 
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Bcl-xL, and also inhibit NF-kb to prompt T cell pro-apoptotic events. DSGb5 (a membrane ganglioside 
on RCC cells) binds to Siglec-7 on NK cells to dampen cytolytic activity. (d) Tumor- associated 
metabolites: metabolites such as lactate, hydroxyglutarate, kynurenine, succinate etc. released by 
RCC cells inhibit effector immune cells. (e) Tumor-promoting immune cells in the 
microenvironment and their inhibitory cytokines: such as IL-10 and TGF-beta, released by T regs, 
MDSCs, and M2 macrophages. (f) Other mechanisms inhibiting effector CD8+ T cells and NK 
cells: Reduced expression of NKG2D ligands and immune checkpoints also contribute to reduced NK 
cytolytic activity. Direct induction of CD8 T cell apoptosis via FAS→FASL and activation of 
caspases. (Abbreviations- LMP: latent membrane protein; TAP1: transporter 1; PD-1: Programmed 
cell death protein 1; PD-L1: Programmed death-ligand 1;  TIM-3: T cell immunoglobulin and mucin 
domain-containing protein 3; LAG3: Lymphocyte-activation gene 3; DSGb5: disialosyl 
globopentaosylceramide; Siglec7: Sialic acid-binding immunoglobulin-like lectin-7;  Bcl-2: B-cell 
lymphoma 2;  BAX: Bcl-2-associated X).(56) 
 
 
 
 

VI.3 Metabolic dysregulation in cancer 

Our understanding of the role of aberrant cancer metabolism in fostering the various aspects 

of cancer progression has evolved significantly over the last decade. The six ‘hallmarks of 

cancer metabolism’ (129), which provide a conceptual framework to understand the process, 

are as follows:  

1. deregulated uptake of glucose and amino acids,  

2. use of opportunistic modes of nutrient acquisition,  

3. use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production,  

4. increased demand for nitrogen,  

5. metabolite-driven gene regulation, and  

6. metabolic interactions with the microenvironment. 

 

Deregulated uptake of glucose and amino acids  

Otto Warburg, in 1927, postulated the shift in cancer cell metabolism toward glycolysis as the 

primary source of energy gain, in what is now known as the Warburg Effect (130). The 

upregulation of glucose transporters, primarily GLUTs 1, 3, and 4, has been observed in 

several cancers (131-135). Despite its lower yield of ATP when compared to that of oxidative 

phosphorylation, glycolysis is by far the most time-effective process to generate additional 

energy (135). Since glycolysis is a cytoplasmic process, energy is generated for unchecked 

proliferation, migration, and invasion, bypassing the need for mitochondrial transport (136). 

Several oncogenes upregulate glucose transporter expression (135).  

Glutamine serves as an important source of reduced nitrogen and as a source of carbon. 

The reduced nitrogen is used for biosynthetic reactions, and the carbon is used to replenish 

the tricarboxylic acid (TCA) cycle intermediates, producing glutathione as a precursor to 
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nucleotides and lipid synthesis via reductive carboxylation (129, 137, 138). Glutamine has 

also been reported to play a role in the uptake of essential amino acids. The import of 

leucine, an essential amino acid, through the localized neutral amino acid antiporter (LAT1) 

was shown to be coupled with simultaneous efflux of glutamine (139). The upregulation of 

transcription factors c-myc and E2Fis a principal driver of glutamine transport and utilization 

by proliferating cells. These transcription factors  enhance transcription of glutamine 

transporters ASCT2 and SN2, and also facilitate   conversion of glutamine to glutamate (140-

142).  

 

Use of opportunistic modes of nutrient acquisition  

Cancer cells also possess the ability to recover amino acids from the immediate extracellular 

microenvironment. Imbibing extracellular proteins via macropinocytosis (143, 144), entosis of 

entire living cells (145, 146), phagocytosis of apoptotic bodies (147), are some of the 

opportunistic modes of nutrient acquisition. In addition, cancer cells can also withstand long 

periods of nutrient deprivation via the self-catabolic process of macroautophagy (148).  

 

Use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production 

Metabolic intermediates from glycolysis (mainly) and TCA cycle (partly) constitute the major 

source for rapid biosynthesis of macromolecules, membranes, and organelles in cancer cells 

(Table 1).  

 

Table 1. Use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production.  

Glycolysis intermediate Biosynthetic process 

Glucose-6-phosphate 
Pentose Phosphate Pathway 

Used for NADPH production and ribose-5-phosphate- an 
integral component of nucleosides (149) 

Fructose-6-phosphate 

Hexosamine biosynthesis 
Used in heparan sulfate and hyaluronic acid biosynthesis, 

potentiation of receptor-mediated signaling, and 
stabilization of certain proteins (150) 
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Dihydroxyacetone phosphate 
Glycerol-3-phosphate biosynthesis 

Used in phospholipid synthesis 

3-Phosphoglycerate 

 
Serine biosynthesis 

Up to 50% of glucose-derived carbon is used in serine 
biosynthesis and subsequent use:  

-as a carbon donor for the one carbon cycle and 
biosynthesis of nitrogenous bases 

-biosynthesis of S-adenosyl methionine- the main substrate 
for all cellular methylation reactions 

-as a major source of cellular NADPH (151, 152) 
 

TCA cycle intermediate Biosynthetic process 

Citrate 
 

 
Transported to cytosol via the tricarboxylate carrier and 

converted to Acetyl CoA and oxaloacetate 
-Acetyl CoA is used for fatty acid/ cholesterol biosynthesis 
-Oxaloacetate is converted to malate which is imported to 

mitochondria to maintain anaplerosis (153) 
 

Oxaloacetate 
‘Non-essential’ amino acids - aspartate and asparagine 

(154) 

 

 

Increased demand for nitrogen  

Along with the increased carbon demands, a proliferating cell also has greatly enhanced 

nitrogen demands. Glutamine, a non-essential amino acid whose uptake in increased by the 

transcriptional activity of oncogenes such as c-myc, serves as the major nitrogen donor in a 

proliferating cancer cell. Its amide group is a key donor of nitrogen for the biosynthesis of 

purine and pyrimidine bases. In addition, aspartate, which is a distal catabolite of glutamine, 

is used in the formation of purine and pyrimidine rings.  

 

Metabolite-driven gene regulation 

Metabolites play a key role in epigenetic modifications (Table 2), thereby having a marked 

influence on gene regulation. In addition to these epigenetic modifications, certain metabolic 

intermediates also function as co-substrates or competitive inhibitors of enzymes involved in 

epigenetic regulation or transcription factor processing (Figure 6). This hallmark of cancer 

metabolism is of particular significance with regards to this PhD study.  
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Table 2. Metabolite-driven gene regulation.  

Metabolite Gene regulation process 

Acetyl CoA (derived from citrate and acetate) 
 

Histone acetylation→ increased accessibility 
of genomic DNA for the assembly of 

transcriptional complex (155) 
 

Crotonyl CoA (derived from lysine and 
tryptophan) 

 
Histone crotonylation→ activates gene 

expression even more potently than acetyl 
marks (156) 

 

S-Adenosyl methionine (derived from serine 
catabolism) 

 
Histone methylation, DNA (cytosine) 

methylation, mRNA (adenosine) methylation 
(157, 158) 

 

Succinyl-CoA, Malonyl CoA, Propionyl CoA, 
Butyryl CoA, Formyl CoA 

Histone succinylation, malonylation, 
propionylation, butyrylation, formylation (159-

161)→ ?effect 
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Figure 6. TCA cycle intermediates competitively inhibiting 2-oxoglutarate dependent enzymes, 

including Ten-Eleven-Translocation enzymes involved in DNA demethylation and Hypoxia Inducible 

Factor (HIF) prolyl hydroxylases involved in post-translational regulation of HIF. HIF may be involved 

in the increased expression of DNMT in some cancers, particularly the enhanced expression of 

DNMT1 in ccRCC (162)(Abbreviations: 2OG: 2-Oxoglutarate; 2HG: 2-Hydroxyglutarate; HIF: Hypoxia Inducible 

Factor; DNMT: DNA methyl transferases; TET: Ten-Eleven Translocation enzymes; 5-mC: 5-methylcytosine; 5-

hmC: 5-hydroxymethylcytosine; 5-fC: 5-formyl cytosine; 5-caC: 5-carboxyl cytosine; KDM; Lysine Demethylases; 

SDH: Succinate dehydrogenase; FH: Fumarate hydratase; MDH: Malate dehydrogenase).  

 

Metabolic interactions with the tumor microenvironment 

The metabolites secreted by cancer cells have a profound effect on the microenvironment, 

promoting an immune-permissive environment, angiogenesis, degradation of extracellular 

matrix, thereby playing a critical role in progression, invasion and metastasis of cancer cells 

(Table 3).  

 

Table 3. Metabolites that interact with the tumor microenvironment.  

Metabolite Microenvironment 

Lactate 
 

 
-Inhibits dendritic cells and cytotoxic T cells 

(163-165) 
 

-Macrophage polarization from M1 to M2 
(immune-suppressive subtype) (166) 

 
-Promotes angiogenesis (induces VEGF 
secretion from stromal cells, and HIF-1 

activation in endothelial cells) (167, 168) 
 

Kynurenine 
 

-promotes regulatory T cell phenotype (169) 
 

-promotes degradation of the extracellular 
matrix and invasion (170) 

Acidification of the extracellular space (via 
lactate, H+ and CO2) 

 

 
-stimulates proteolytic activity of matrix 

metalloproteinases (MMP) and cathepsins,  
promoting tumor invasion (171) 
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VI.4 ccRCC as a model for resistant cancers 

While most malignancies demonstrate initial sensitivity to conventional chemotherapeutic 

agents and subsequent resistance, ccRCC is relatively unique in its upfront, innate, 

chemoresistance as well as resistance to conventional radiotherapy (172-174). As a result, it 

serves as a compelling model to study mechanisms of resistance and strategies to overcome 

or evade resistance mechanisms.  

Apart from the dysregulated hypoxia signaling (secondary to VHL function loss), ccRCC has 

been found to be an epigenetically unique solid tumor, characterized by genome-wide 

hypermethylation that confers worse prognosis (175). Motif analysis of aberrantly 

hypermethylated regions revealed enrichment for binding sites to transcription factors 

involved in hypoxia signaling (175), suggesting a link between aberrant methylation and the 

pseudo-hypoxic signature in ccRCC. A comprehensive understanding of these two central 

features, therefore, is essential to discerning the pathogenesis and progression of this 

disease, and exploring therapeutic strategies.  
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VII. Sequential exploring of the unknowns (Aims of the PhD 

investigation):  

 

 

1. Shenoy N*, Pagliaro L: Sequential pathogenesis of metastatic VHL mutant clear cell renal 

cell carcinoma: putting it together with a translational perspective.” Ann Oncol, 2016 

Sep;27(9):1685-95. PMID:27329246. *corresponding 

 

2. Shenoy N*, et al. Ascorbic acid-induced TET activation mitigates adverse 

hydroxymethylcytosine loss in renal cell carcinoma. J Clin Invest 2019 Mar 4, 130:1612-

1625. *co-corresponding 

 

3. Shenoy N*, et al. Upregulation of TET activity with ascorbic acid induces epigenetic 

modulation of lymphoma cells. Blood Cancer J. 2017 Jul 21;7(7): e587. *co-corresponding   

                What is the role of DNA methylation in RCC pathogenesis?  

What is the role of dysregulated hypoxia signaling in RCC pathogenesis?  

What is the comprehensive understanding, to date, of key molecular 

pathogenetic features in ccRCC?  

How can these aberrancies be targeted? 

 

  

 

 

                What is the status of DNA hydroxymethylation (5hmC) in RCC?  

Is there a prognostic role for 5hmC in RCC?  

What is the mechanistic basis for loss of 5hmC and gain of 5mC in RCC?  

Rather than suppressing DNMT enzymes, can we enhance demethylation (via 

increased hydroxymethylation) by activating the TET enzymes using ascorbic 

acid (AA)? 

Can AA reactivate tumor-suppressor genes silenced by methylation?  

What is the protein-level interaction between the TET-2 protein and AA in the 

presence and absence of the TET inhibitory metabolite L-2-hydroxyglutarate.  

Does high dose AA have an RCC proliferation inhibitory effect in vitro and in 

vivo?  

Are the epigenetic changes induced by AA in RCC tumors in vivo?  

 

Does the AA-induced DNA demethylation have a role in other malignancies?  

Can it be used as a chemotherapy-sensitizer in lymphoma?   
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4. Shenoy N*, et al. Ascorbic acid in cancer treatment: Let the phoenix fly. Cancer Cell. 

2018 Nov 12;34(5):700-706.(Review) PMID: 30174242. *co-corresponding 

 

5. Luchtel R, Bhagat T, Pradhan K, Jacobs WR, Levine M, Verma A, Shenoy N*. High-dose 

Ascorbic acid synergizes with anti-PD1 in a Lymphoma mouse model. Proc Natl Acad Sci 

USA. 2020 Jan 21;117(3):1666-1677 *senior corresponding 

 

 

 

6. Shenoy N* et al. Drugs with anti-oxidant properties can interfere with cell viability 

measurements by assays that rely on the reducing property of viable cells. Lab Invest. 2017 

Feb 27. Pathobiology in focus. PMID: 28240748. *co-corresponding 

7. Shenoy N* et al. Association between renal cell carcinoma and myelodysplastic 

syndromes: epigenetic underpinning? Clin Genitourin Cancer. 2018 Dec.*co-corresponding 

Appendix: 

8. Shenoy N*. HIF1α is not a target of 14q deletion in clear cell renal cancer. Under review at 

PLOS Genetics *single author 

 

(Yellow highlighted articles represent original scientific investigations as first/ corresponding 

author. Turquoise highlighted articles represent comprehensive reviews as first/ 

corresponding author)

What are the different mechanisms of anti-cancer activity of AA in relation to 

pharmacokinetics?  

What is the history and evolution of ascorbic acid as an anti-cancer agent?  

What are the future directions for exploring AA as an anti-cancer agent, in light of 

new emerging data?  

 

Can we use the demethylating property of AA and increase the expression of 

endogenous retroviral elements in cancer cells, thereby making them more 

immunogenic (i.e. using AA to enhance immune recognition of cancer)? 

Is there an additive or synergistic effect of AA with anti-PD1 immunotherapy?  

 

Technical observations and offshoot projects during the PhD investigation  
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VIII.1 Sequential pathogenesis of metastatic VHL mutant clear cell 

renal cell carcinoma: putting it together with a translational 

perspective 

(Shenoy N*, Pagliaro L. Ann Oncol, 2016; *corresponding)(45) 
 
[Personal contribution: conceptualization; literature search; drafting manuscript; editing manuscript; 

visualization (figure); correspondence. This article was submitted as a single author-paper to a Nature 

reviews journal (and rejected), prior to submission to Annals of Oncology after Dr. Pagliaro’s edits] 

 

 

This comprehensive review cum perspective article details the step-wise molecular 

pathogenesis and progression of ccRCC, with a perspective on translational strategies.  

 

The review groups the sequence of events in the molecular etiopathogenesis of VHL mutant 

metastatic RCC as follows: (i) loss of VHL activity (germline/somatic mutation + inactivation 

of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway 

due to loss of VHL activity and transcription of genes involved in angiogenesis, survival, 

anaerobic glycolysis, pentose phosphate pathway, epithelial–mesenchymal transition, 

invasion, and metastasis (iii) interactions of the HIF pathway with other oncogenic pathways; 

(iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and 

the influence of epigenetics on various apoptotic, oncogenic, cell cycle regulatory and 

mismatch repair pathways (e.g. through inhibition of multiple tumor suppressor genes); (v) 

immune evasion, partially caused by changes in the epigenome.  

 

The review also reflects on the massive gap between our understanding of the molecular 

biology and (then) accepted standard of care in metastatic ccRCC, and presents ideas for 

better translational research involving therapeutic strategies with combinatorial drug 

approach, targeting different aspects of the pathogenesis. 

 

This review was an extension of prior experimental work demonstrating genome-wide 

aberrant adverse hypermethylation in ccRCC (175) as well as comprehensive reviews on the 

role of DNA methylation in ccRCC (176) and dysregulated hypoxia signaling (177).  
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VIII.2 Ascorbic acid-induced TET activation mitigates adverse 

hydroxymethylcytosine loss in renal cell carcinoma 

(Shenoy* et al. J Clin Invest, 2019; *co-corresponding)(178) 

[Personal contribution: conceptualization, leadership and direction; design; data acquisition; data 

analysis and interpretation; drafting manuscript; editing manuscript; funding; correspondence] 

 

We had previously demonstrated the adverse prognostic impact of DNA hypermethylation in 

RCC. This study unraveled the mechanisms and prognostic impact of loss of DNA 

hydroxymethylation in ccRCC, and comprehensively explored the potential of ascorbic acid 

in reversing the epigenetic aberrancy. (179)  

 

Loss of 5hmC is an independent adverse prognostic biomarker in ccRCC 

We found that loss of 5hmC is associated with aggressive clinicopathologic features and is 

an independent adverse prognostic factor in ccRCC through analysis of 576 primary ccRCC 

cases. It also predicts a shortened time to metastatic disease after surgical resection for 

localized disease. We showed that a grading of 5hmC immunohistochemistry (IHC) based on 

intensity (absent, mild, moderate and marked) or based on percent positive tumor cells, can 

be used as a strong tool to predict outcomes and could potentially be integrated in prognostic 

models, therapeutic decisions as well as clinical trial designs in the future. Given that this is a 

simple IHC test, it could potentially be adopted universally as a prognostic biomarker in this 

malignancy. Efforts are ongoing to determine if 5hmC can be a useful prognostic biomarker 

in other malignancies. 

 

Loss of 5hmc in ccRCC is due to metabolic inhibition of TET enzymes 

As discussed previously, Ten-Eleven Translocation (TET) enzymes are dioxygenase 

enzymes involved in active demethylation through a series of oxidation steps, the first of 

which is 5mC to 5hmC. We showed that gain of 5mC and loss of 5hmC in ccRCC is not due 

to mutational or transcriptional inactivation of TET enzymes, but by their functional 

inactivation by l-2-hydroxyglutarate (L2HG), an oncometabolite that accumulates largely due 

to the deletion and under-expression of l-2-hydroxyglutarate dehydrogenase (L2HGDH) 

(Figure 7). L2HG competes with 2-oxoglutarate (2OG), a necessary co-substrate of the TET 

enzymes (180). We found that the L2HGDH gene, located on chromosome 14q,  is deleted 

in 41% of all ccRCC. Furthermore, we found a strong correlation between loss of L2HGDH 
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and loss of 5hmC in ccRCC (IHC). Also, loss of L2HGDH conferred worse prognosis 

(TCGA).  

 

                                                            

          

Figure 7. Schematic representation depicting the mechanism of 5mC gain and 5hmC loss in ccRCC. 
L2HGDH (l-2-hydroxyglutarate dehydrogenase) deletion and under-expression is common in ccRCC, 
resulting in the accumulation of L2HG (l-2-hydroxyglutarate), a competitive inhiitor of TET enzymes, 
which use 2-oxoglutarate as a substrate for oxidation of 5mC to 5hmC.  

 

Ascorbic acid restores 5hmC in ccRCC and inhibits ccRCC proliferation in vitro and in 

vivo 

Ascorbic acid (AA) is a cofactor for the TET enzymes, reducing the enzyme-bound iron from 

Fe3+ to Fe2+. AA had been previously shown to cause TET-mediated demethylation of 

embryonal stem cells (181). We therefore hypothesized that AA could be used as an 

epigenetic targeting agent in ccRCC given the genome-wide aberrant methylation that is 

present in that cancer type. Indeed, we found that AA treatment increases TET activity, 

reduces 5mC and increases 5hmC in ccRCC. AA treatment was found to result in ccRCC 

proliferation inhibition in vitro and in a xenograft model in vivo. Histologic examination of the 

xenografts treated with intravenous AA revealed increased intra-tumoral 5hmC and 

enhanced differentiation. 

The following were some important considerations and findings while studying the effects of 

ascorbic acid as an anti-cancer agent in vitro and in vivo: 

 

A. Is the in vitro effect from AA or H2O2?  

Although AA is an anti-oxidant, in the presence of free catalytic ions in culture media, it 

produces hydrogen peroxide (H2O2), a pro-oxidant, through the following reactions: 

 



33 
 

1) Ascorbate reduces catalytic metal ions such as ferric ions to ferrous ions. 

AscH− (ascorbate) + Fe3+ → Asc*− (ascorbate radical) + Fe2+ 

 

2) The ferrous ions react with oxygen to form superoxide radical. 

Fe2+ + O2 → Fe3+ + O2*− 

 

3) Superoxide radicals then dismutes to H2O2 and O2. 

O2*− + O2*− + 2H+ → H2O2 + O2 

 

H2O2 is toxic to cancer cells. It is therefore important to neutralize H2O2 with catalase prior to 

studying epigenetic (or other cofactor related) effects of AA. This is particularly true with high 

doses (millimolar concentrations) of AA. Through catalase control and TET 1/2/3 knockdown 

experiments, we found that the demethylation effects of AA are independent of H2O2 and 

dependent on TET enzymes in ccRCC.  

 

B. Dosing considerations 

While designing both in vitro and in vivo experiments using AA, it is also important to 

consider the history and evolution of ascorbic acid as an anti-cancer agent and the available 

pre-clinical and clinical data. Oral AA has previously been tested as an anti-cancer agent and 

has failed (182, 183). There was no indication (either in the series by Cameron/Pauling in 

which oral AA was used after the first 7–10 days of intravenous AA treatment or in the Mayo 

studies in which only oral AA was used) to suggest that hypermethylated malignancies such 

as kidney cancer fared any better with oral AA treatment. On the other hand, pharmacologic 

AA is emerging as a promising agent in the treatment of established cancers, both in 

preclinical animal models (AA administered intraperitoneally) and more recently in early 

phase clinical trial data (AA administered intravenously at doses around 1g/kg 2–3 

times/week) (184). Intraperitoneal and intravenous administration of ascorbate in mice has 

been shown to achieve ‘pharmacologic’ plasma concentrations in the millimolar range – over 

100 times that with oral dosing – by bypassing the tight gastrointestinal regulation (185, 186). 

Intraperitoneally administered AA and not oral AA resulted in tumor shrinkage in a murine 

hepatoma model (185). 

It is therefore important to design in vitro and in vivo experiments taking into account the 

pharmacokinetics of parenteral AA in humans and mice (a cycle of ‘bench to bedside and 

bedside to bench’). Furthermore, at these high concentrations of AA in vitro, it is essential to 
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neutralize H2O2 with catalase in order to study non-free radical effects. Our xenograft study 

was the first to use tail vein injections (5d/wk) to administer AA in order to further mimic 

intravenous AA treatment in humans (178). The prior animal model studies with parenteral 

AA were done with intraperitoneal administration. Although the intraperitoneal route attains 

plasma concentrations much higher than that with oral administration, it is not as high as that 

with the IV route with the same dose. The bioavailability fraction of intraperitoneal 

administration is around 0.62 (185).  

 

C. Interaction of AA with TET enzymes  

It is very difficult to determine the concentration of AA needed for its maximal effect on the 

TET enzymes with conventional experiments. The reasons are several – Michaelis constant 

(Km) shifts of ascorbate transporters, decreased/mutated enzyme/transporter copy numbers, 

the rate of intracellular/extracellular oxidation, Km shifts and copy numbers of TET enzymes. 

Therefore, we used the fluorescence quenching technique with recombinant TET-2 and AA, 

which reflects conformational changes to the protein induced by its binding with AA. We 

found that >90% quenching of recombinant TET-2 fluorescence is obtained with 132μM AA. 

We also studied the dynamics of fluorescence quenching of the recombinant TET-2 with 

oncometabolite L2HG and co-substrate 2OG in the presence and absence of AA. We found 

that the quenching efficiency of 2OG is higher than that of L2HG, indicating that the substrate 

specificity of the TET-2 protein is 2OG over L2HG. Furthermore, the fluorescence quenching 

of the TET enzyme with AA was largely unaffected by the presence of L2HG, suggesting that 

the effect of AA is unperturbed by L2HG. Indeed, the ccRCC cell line 786-O had markedly 

higher intracellular L2HG levels compared to the immortalized kidney cell line HKC-8, and 

AA treatment of 786-O cells still caused TET enzyme-dependent demethylation and increase 

in 5hmC.  

 

D. Epigenetic reprogramming or oxidative stress?  

Two mechanisms of AA-induced anti-cancer activity have gained prominence: TET-mediated 

demethylation and H2O2-induced oxidative stress. In vitro cancer cell cytotoxicity with short-

term exposure to high dose AA is almost solely due to H2O2, given the complete reversal with 

catalase. However, it is important to recognize that for anti-oxidant AA to form pro-oxidant 

H2O2, free catalytic metal ions are required (as shown in reactions 1–3 above). While these 

are plentiful in vitro, they may be restricted in the tumor microenvironment. H2O2 has been 

shown to be generated in the extracellular fluid compartment but not within tumors in animal 
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models. In our xenograft study, we showed that high dose intravenous AA increases 5hmC 

within ccRCC tumors as well as enhances differentiation. The increased intra-tumoral 5hmC, 

enhanced differentiation and delayed tumor growth with high-dose AA, when taken together, 

suggest that epigenetic reprogramming is an important mechanism of intravenous AA-

induced anti-cancer activity. 

Mice have a functional L-gulonolactone oxidase (GULO) enzyme which enables them to 

produce L-AA from L-gulono-1,4-lactone. In humans, the GULO enzyme turned non-

functional over the course of evolution, making AA an essential dietary vitamin. The finding of 

enhanced intra-tumoral 5hmC with intravenous AA despite the presence of a functional 

GULO enzyme suggests that supra-physiologic plasma concentrations of AA are needed 

even for optimal cofactor functions of AA within tumors, not just for potential oxidative stress.  
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VIII.3 Upregulation of TET activity with ascorbic acid induces 

epigenetic modulation of lymphoma cells 

(Shenoy* et al. Blood Cancer J, 2017; *co-corresponding)(187) 

[Personal contribution: conceptualization and direction; design; data acquisition; data analysis and 

interpretation; drafting manuscript; editing manuscript; correspondence] 

 

Loss of function of TET enzymes can be secondary to inactivating mutation or hypoactivity of 

normal TET enzymes via competitive inhibition by metabolic intermediates. In lymphoma, a 

cancer of the lymphatic system, TET-2 mutations are found most commonly in the ‘T-cell 

lymphomas’. In angioimmunoblastic T-cell lymphoma, TET-2 has been reported to be 

mutated in up to 76% of patients, with 50% harboring 2 or 3 mutations within the TET-2 gene 

(188). Angioimmunoblastic T-cell lymphoma patients also have a high frequency of IDH2 

mutations that can inhibit TET activity through the formation of 2-hydroxyglutarate (188). 

TET-2 mutation rate is also as high as 38% in peripheral T-cell lymphoma-not otherwise 

specified (189), and 13% in diffuse large B-cell lymphoma (DLBCL), the most common type 

of non-Hodgkin lymphoma (190).  

We therefore wanted to investigate whether AA could bring about similar epigenetic changes 

in lymphoma cells as observed in renal cell carcinoma cells (Paper 2 in this thesis), and if 

these epigenetic changes could re-activate important tumor-suppressor(s) in lymphoma cells.  

 

AA enhances TET activity in lymphoma cells leading to genome-wide demethylation 

and increase in 5hmC fraction 

We showed that AA increases activity of the TET enzymes in LY-1 (DLBCL) and Karpas 299 

(T-cell) lymphoma cell lines using the ELISA-based Epigentek TET activity kit. Consistent 

with the increase in TET activity, DNA extracted from treated vs control cells revealed that 

AA treatment decreased global 5mC and increased 5hmC levels in lymphoma cells. The 

experiments were conducted such that the dose and exposure time mimicked the 

bioavailability curves of IV AA (191), and also considering potential differences between 

plasma concentrations and that of the tumor microenvironment.  

 

AA-induced epigenetic effects are independent of hydrogen peroxide  

H2O2 is formed when AA is added to the media (reactions detailed above). We wanted to 

ensure that the oxidative reaction of 5mC to 5hmC was not contributed to by the diffusion of 

H2O2 into the lymphoma cells, but a direct effect of AA. We found that addition of a high dose 
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of catalase sufficient to fully neutralize H2O2 did not alter the amount of 5hmC fraction 

produced by the same dose and exposure of AA, further indicating that the 5hmC production 

was independent of H2O2.  

 

AA reactivates SMAD1, a critical contributor of chemosensitization in DLBCL cells 

SMAD1, a component the TGF/BMP pathway, is an important tumor suppressor in DLBCL 

cells and known to be suppressed by methylation (192). Reactivation of epigenetically 

silenced SMAD1 with the DNMT inhibitor azacytidine, as well as SMAD1 transfection, had 

been shown to induce chemosensitization to conventional anti-tumor agents (192).  

We sought to determine whether AA-induced demethylation could also reactivate SMAD1 

expression. Indeed, treatment of LY-1 cells with pharmacologic doses of AA led to the 

reactivation of SMAD1. Furthermore, addition of catalase had no effect on SMAD1 transcript 

abundance, again indicating that AA-induced SMAD1 upregulation was independent of H2O2. 

Pre-treatment of lymphoma cells with AA resulted in increased sensitivity to cisplatin and 

doxorubicin, two commonly used chemotherapeutic agents in DLBCL.  

 

Low plasma AA levels are frequent in lymphoma patients with high bulk disease 

We then studied plasma AA level in 34 lymphoma patients (31 Non-Hodgkin, 3 Hodgkin). We 

found that 64% (9/14) of patients with clinical high-burden lymphoma had low AA levels 

(mean=0.39 mg/dl; range 0–1.2 mg/dl) compared to 5% (1/20) of those with low burden 

disease (mean 1.1; range 0.2–2; P<0.001).  
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VIII.4. Ascorbic acid in cancer treatment: Let the phoenix fly 

(Shenoy N* et al. Cancer Cell, 2018. *co-corresponding)(184) 

[Personal contribution: conceptualization; literature search and review; drafting manuscript; editing 

manuscript; correspondence] 

 

This review-cum-perspective article (i) highlights salient aspects of the evolution of AA in 

cancer treatment (Table 4), (ii) provides insights into the pharmacokinetics of AA, (iii) 

describes mechanisms of its anti-cancer activity in relation to the pharmacokinetics, (iv) 

outlines promising preclinical and clinical evidence, and (v) recommends future directions for 

the investigation of AA in cancer.  

Table 4. Evolution of ascorbic acid studies in cancer.  

Cameron/Pauling 
Studies 

Mayo Clinic 
Studies 

AA pharmacokinetics 
and early-phase 

clinical trials 

Studies on 
H2O2 

mechanism 

Studies on 
epigenetic 

mechanism 
 
Ewan Cameron 
and Linus Pauling 
described 
retrospectively and 
in case reports that 
patients with 
advanced cancer 
had survival 
benefit and 
symptomatic relief 
using high-dose 
ascorbate (10 
g/day i.v. followed 
by oral) (193-195) 
 

 
Two double-
blind placebo-
controlled 
prospective 
trials 
performed at 
the Mayo 
Clinic using 
the same dose 
of ascorbate, 
but orally only, 
failed to 
confirm these 
results, and 
oral ascorbate 
was dismissed 
as an anti-
cancer agent 
(182, 183) 

 
Oral ascorbate, even at 
high doses, was found 
to produce plasma 
concentrations that 
were tightly regulated 
by gastrointestinal 
absorption, but i.v. 
administration 
bypassed this control 
until the kidney restored 
homeostasis. Maximum 
tolerated doses of oral 
(∼18 g daily) ascorbate 
produced plasma 
concentrations of 
∼100–200 μM. 
Intravenous ascorbate 
was found to produce 
plasma levels hundreds 
of times higher than 
those produced by the 
maximum tolerated 
dose of oral ascorbate 
(191, 196) 
 
Early-phase clinical 
trials indicate that i.v. 
ascorbate at 1 g/kg 
over 1.5–2 hours two to 
three times weekly is 
well tolerated and may 
enhance 
chemosensitivity as 
well as decrease 
chemotherapy-related 
side effects (197-201) 

 
Plasma 
concentrations 
achieved by 
i.v. dosing 
found to act 
as a prodrug 
for hydrogen 
peroxide 
(H2O2) in the 
extracellular 
space.  
High, but not 
physiologic, 
doses of 
ascorbic acid 
were 
selectively 
toxic to cancer 
cells in vitro 
and in vivo 
(186, 198, 
202, 203) 

 
Ascorbate 
functions as a 
cofactor and 
increases the 
activity of the 
TET enzymes 
causing DNA 
demethylation.  
This function 
results in the re-
expression of 
tumor-
suppressor 
genes in cancer 
cells, promotion 
of stem cell 
differentiation 
and inhibition of 
leukemogenesis, 
and increase in  
expression of 
endogenous 
retrovirus 
transcripts (178, 
187, 204-206) 
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VIII.5 High-dose ascorbic acid synergizes with anti-PD1 in a 

lymphoma mouse model 

(Luchtel et al.... Shenoy*, PNAS 2020; *senior corresponding)(63) 

[Personal contribution: conceptualization, leadership and direction; design; data acquisition; data 

analysis and interpretation; drafting manuscript; editing manuscript; funding; correspondence] 

           

DNA methyltransferase inhibitors (DNMTIs) are being investigated in combination with anti-

PD1 therapy in hematologic malignancies (207). Enhanced endogenous retroviral expression 

and cancer testis antigen expression induced by demethylation results in increased tumor 

recognition by immune cells (208-212). Having shown that AA causes demethylation and 

corresponding increase in the hydroxymethylation fraction of lymphoma cells (187) (Paper 3 

in this thesis), we hypothesized that AA may be an optimal demethylating agent for 

combination with anti-PD1 therapy as it has also been shown to enhance the function of 

immune cells such as natural killer (NK) cells, macrophages, and dendritic cells (213, 214). 

In contrast, effects of DNMTIs on immune cells have been inconsistent, with some studies 

indicating an inhibitory effect (215-217).  

In this study, we characterized genome wide high-resolution methylation changes, 

endogenous retroviral expression, and PD-L1 expression changes in lymphoma cells with 

high-dose AA treatment and the subsequent effect on sensitivity to cytotoxic T cell-mediated 

killing. Given that T lymphocytes exhibit an enrichment of 5-hydroxymethylcytosine (5hmC) 

at gene bodies during differentiation and development (218), we determined the direct effects 

of AA on CD8+ T cells with regards to global 5hmC changes and cytotoxic function. Finally, 

we investigated antitumor effects of AA alone and in combination with anti-PD1 therapy in a 

syngeneic lymphoma mouse model and determined the changes in the tumor immune 

microenvironment. 

 

AA treatment leads to genome-wide demethylation and increased endogenous 

retroviral expression in lymphoma cells 

We further characterized the hypomethylation effect of AA in lymphoma cells with high-

resolution methylation analysis using the HELP (Hpa II tiny fragment enrichment by ligation-

mediated PCR) assay that relies on differential restriction digestion of methylated CpGs 

followed by high-throughput sequencing analysis. Unsupervised clustering showed that AA 

treatment led to significant changes in cytosine methylation patterns between control and 
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AA-treated lymphoma cells. Specifically, AA treatment led to global loss of cytosine 

methylation.  

Next, we next assessed the expression of human endogenous retroviruses (HERVs) by RNA 

sequencing. HERVs have been shown to be up-regulated by DNMT inhibition (204). HERVs 

increase immune recognition of tumor cells, trigger an interferon response by induction of the 

viral defense pathway and enhance checkpoint blockade antitumor activity (219, 220). 

Consistent with the global loss of methylation, the majority (70%) of differentially expressed 

HERVs were increased in lymphoma cells following AA treatment. Global methylation 

analysis of HERVs up-regulated with AA treatment revealed that ∼60% of the loci were 

demethylated upon AA treatment. However, there was no change in methylation at the 

CD274 locus, encoding PD-L1. Also, there was no increase in PD-L1 expression with AA 

treatment in any of the 4 DLBCL cell lines tested.  

 

AA pretreatment of lymphoma cells leads to increased sensitivity to CD8+ T cell 

cytotoxicity; AA treatment of CD8+ T cells leads to increase in its cytotoxic activity 

against lymphoma cells 

Pretreatment of lymphoma cells with high-dose AA significantly increased their 

immunogenicity, evidenced by increased percent killing of lymphoma cells by 15% and 21% 

of control by CD8+ T cells when combined at 5:1 and 10:1 effector: target cell ratios. 

Similarly, AA pretreatment of healthy donor-derived CD8+ T cells led to a 3.8-fold increase in 

their cytotoxic activity against lymphoma cells, as measured with the lactate dehydrogenase 

(LDH) cytotoxicity assay (further validated by a flow cytometry-based cytotoxicity assay). This 

was associated with a significant increase in 5hmC levels in AA-treated CD8+ T cells.  

 

High-dose AA treatment synergizes with anti-PD1 immunotherapy in a syngeneic 

lymphoma mouse model, resulting in significant tumor proliferation inhibition 

Using the A20 lymphoma syngeneic mouse model, we treated tumor-bearing mice with 

vehicle, anti-PD1, high-dose AA, or the combination of high-dose AA and anti-PD1 until the 

tumor volume endpoint was met. Daily treatment was administered from day 10 (after 

appearance of tumors) until the tumor size endpoint was met. Tumor volume (cubic 

millimeters) was monitored every 2 days over the duration of the study by caliper. Given the 

highly aggressive nature of the A20 lymphoma mouse model, humane endpoint was reached 

in one mouse in the vehicle group on day 19 (after only 9 d of treatment). To facilitate 
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comparison between the treatment groups, all mice in the 4 groups were killed on day 19 and 

tumors excised and weighed.  

Compared to AA and anti-PD1 single agents, we found that AA+anti-PD1 therapy resulted in 

greater inhibition of tumor growth over time as well as markedly lower final tumor weight. 

Because the observed effect of combined AA and anti-PD1 therapies was greater than the 

expected additive effect, we applied the coefficient of drug interaction (CDI) formula (221-

224) to calculate synergy using mean tumor weight measurements whereby CDI<1 indicates 

synergism, with CDI<0.7 indicating a significantly synergistic effect. The CDI between high 

dose AA and anti-PD1, using the mean tumor weight measurements was 0.63, indicating a 

significantly synergistic effect (Fig 3E). This effect is particularly significant given the 

aggressive nature of this model and short treatment duration (10 days) after appearance of 

tumors. Furthermore, we also demonstrated that intra-tumoral 5-hmC can be increased in 

vivo through high-dose AA, consistent with the in vitro findings.  

 

High-dose AA and anti-PD1 treatment combination leads to increase in tumor CD8+ T 

cell and macrophage infiltration, enhanced granzyme B production by cytotoxic cells, 

and enhanced Interleukin 12 production by antigen-presenting cells 

Analysis of our syngeneic B-cell lymphoma model treated with AA and anti-PD1 revealed 

several important changes within the tumor immune microenvironment:  

First, AA treatment, both alone and in combination, significantly increased CD8+ T cell 

infiltration compared with vehicle and single agent anti-PD1.  

Second, granzyme B expression was markedly higher with combined AA + anti-PD1 than AA 

or anti-PD1 alone. An inverse exponential relationship was observed between granzyme B 

and final tumor weight, indicating an exponential growth of tumor with decreasing granzyme 

B expression. This is consistent with reported utility of granzyme B as a biomarker for 

response to immunotherapy in humans (225). Although the cytotoxic T cell infiltration with 

single agent AA was much higher than anti-PD1, the granzyme B expression was similar 

between both groups. Together, these data suggest that AA functions to recruit cytotoxic T 

cells to the tumor but anti-PD1 is more potent than AA at inducing a cytotoxic response.  

Third, we found that within each treatment group, the contribution of NK cells towards 

granzyme B expression was at least as much as CD8+ T cells. The combination treatment 

markedly upregulated granzyme B expression in both CD8+ T cells and NK cells.  
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Fourth, we observed significantly increased intratumoral macrophage infiltration in mice that 

received AA, alone and in combination. In the combination group only, expression of IL12, a 

cytokine produced by macrophages and dendritic cells, that stimulates cytotoxic cells (CD8+ 

T cells and NK cells) was markedly upregulated.  

Put together, this study shows that AA treatment 1) increases immunogenicity of lymphoma 

cells; 2) enhances intratumoral infiltration of CD8+ T cells and macrophages; and 3) 

synergizes with anti-PD1 checkpoint inhibition in a syngeneic lymphoma mouse model via 

marked activation of both cytotoxic cells (cytotoxic T cells and NK cells) and antigen 

presenting cells (Figure 8). The data provide a compelling rationale for testing combinations 

of high-dose AA and anti-PD1 agents in patients with aggressive B cell lymphoma and in 

preclinical models of other malignancies.  

 

Figure 8. Graphical summary of the synergistic effects of high dose AA and anti-PD1.  
 

C: cancer cell; T: CD8+ T 

lymphocyte; M: Macrophage; 

D: Dendritic cell.  

→Single agent anti-PD1: 

blocks the inhibitory PD-1/ PD-

L1 axis thereby activating the 

sparse infiltrated cytotoxic T 

lymphocytes, NK cells (not 

depicted) and macrophages.  

 

→Single agent high dose AA: 

enhances tumor immune 

recognition, and increases 

macrophage and cytotoxic T 

cell infiltration into the tumor. 

However, despite the increased 

immune cell numbers, the 

inhibitory effect of PD-1/PDL-1 

axis on cytotoxic cells and 

macrophages cannot be 

abrogated by AA. 

  

→Anti-PD1+High dose AA: 

The combination treatment 

results in both increased 

immune infiltration and 

enhanced activation of antigen 

presenting cells and cytotoxic 

cells, resulting in marked tumor 

shrinkage. 
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VIII.6 Drugs with anti-oxidant properties can interfere with cell 

viability measurements by assays that rely on the reducing property 

of viable cells.  

(Shenoy* et al. Lab Invest. 2017 *co-corresponding) (226) [Pathobiology in 

Focus section] 

[Personal contribution: conceptualization; design; data acquisition; data analysis and interpretation; 

drafting manuscript; editing manuscript; correspondence] 

 

 

Cell viability assays such as Cell Titer Blue and Alamar Blue rely on the reducing property of 

viable cells to reduce the reagent dye to a product which gives a fluorescent signal. The 

manufacture-recommended protocols do not take into account the possibility of the reagent 

substrate being reduced directly to the fluorescent product by drugs with an anti-oxidant 

property. After suspecting spurious results while determining the cytotoxic potential of 

ascorbic acid against a renal cell cancer (RCC) cell line, we aimed to establish that drugs 

with anti-oxidant property can indeed cause false-negative results with the current protocols 

of these assays by direct reduction of the reagent substrate. We also aimed to counter the 

same with a simple modification added to the protocol.  

Through our experiments, we conclusively demonstrated that drugs with anti-oxidant 

properties can indeed interfere with cell viability measurements by assays that rely on the 

reducing property of viable cells (Figure 9). We also reported that a simple modification in the 

protocol (removal of the media containing the drug and washing the cells prior to incubation 

with fresh media and Cell Titer Blue reagent) can prevent spurious results with these 

otherwise convenient assays.(step-by-step protocol in Protocol Exchange (227)) 

                            

Figure 9. Depiction of interference of anti-oxidant drugs on Cell Titer Blue and Alamar Blue assays.  
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How this seemingly obvious phenomenon escaped detection during the development of 

resazurin-based cell viability assays, and its theoretical impact on cancer research:  

The resazurin reduction test has been used for more than 60 years to detect contamination 

of milk, and to assess the quality of semen. In the 1990s, it began gaining popularity as a 

convenient method of assessing cytotoxicity. However, before the year 2000, it was unclear 

whether the resazurin dye was reduced within the cells or in the 'reduced medium' from 

increased cell growth. In the year 2000, O’Brien et al. reported that when the dye was added 

to the reduced medium separated from cells after 24–48 h incubation, it did not get converted 

to the fluorescent resorufin. They detected fluorescence in the cytoplasm of cells on addition 

of the dye, albeit at a quantity not large enough to be detected by the fluorescent microplate 

reader. They therefore concluded that the dye likely enters the cytoplasm where it is reduced 

to the fluorescent product, which is then excreted into the medium giving the fluorescent 

signal (228). Furthermore, an analysis of hepatic subcellular fractions suggested that 

resazurin can be reduced by mitochondrial, cytosolic and microsomal enzymes (229). When 

this was extrapolated into cancer research to test cell viability, the question of how the redox 

property of drugs tested would affect the dynamics seems to have escaped widespread 

attention. It was assumed that the dye could only get reduced intracellularly. The Cell Titer 

Blue protocol even mentions 'cell washing, removal of medium and multiple pipetting steps 

are not required' and states that a ‘Test compound control’ is optional. 

A majority of anti-cancer drugs developed, initially go through cell viability assays or 

proliferation assays. The decision to pursue further research with these drugs is often based 

on their effects on cell viability or proliferation. One therefore wonders how many indigenous 

agents with high redox potential tested with assays that rely on the viable cells’ reducing 

property had spurious results. Therefore, the addition of a simple step, as elaborated in the 

protocol, can eliminate such spurious results from these otherwise convenient assays. Based 

on our report, we recommended that this step be incorporated in the protocols of these 

assays, especially when testing a drug with high redox potential, and to always have a ‘test 

compound’ control without cells.  
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VIII.7 Association between renal cell carcinoma and 

myelodysplastic syndromes: epigenetic underpinning? 

(Shenoy* et al. Clin Genitourin Cancer. 2018 *co-corresponding) 

[Personal contribution: conceptualization, leadership and direction; design; data acquisition; data 

analysis and interpretation; drafting manuscript; editing manuscript; correspondence] 

 

Having determined that renal cell cancer is characterized by marked aberrant 

hypermethylation and is therefore epigenetically similar to myelodysplastic syndromes 

(MDS), and after clinical observations of patients with a personal history of both 

malignancies, we sought to explore a potential association between the two, using Mayo 

Clinic's 'Advanced Cohort Explorer' database.  

We found that the prevalence of MDS in patients > 65 years with a personal history of 

nephrectomy for RCC was ≈8.4 times that of the age-concordant general population based 

on the Dusseldorf registry (28/6490 or 395/100,000 vs. ≈ 47/100,000; P < .001), and 3.07 

times that of the age-concordant patient population at Mayo Clinic (28/6490 or 395/100,000 

vs. 128.4/100,000; P < .001).  

We therefore demonstrated a strong association between RCC and MDS. Patients with a 

history of RCC have a substantially increased risk of developing MDS compared with the 

general population, a factor that must be considered in the survivorship care plan in these 

patients.  

 

  



46 
 

IX. Future research directions 

 
 

A. CLINICAL 

 

As an outcome of the above work, there are four phase 2 clinical trials (2 ongoing, 2 pending 

regulatory approvals) to investigate the potential of high dose IV ascorbic acid in cancer:  

1. Randomized phase II trial of intravenous ascorbic acid (AA) as an adjunct to pazopanib for 

metastatic and unresectable clear cell renal cell carcinoma (ccRCC): A study of Academic 

and Community Cancer Research United (ACCRU) GU1703. (Clinicaltrials.gov Identifier: 

NCT03334409) [Shenoy: Co-PI] (230)  

  

2. IV Ascorbic acid and combination chemotherapy in treating patients with relapsed or 

refractory lymphoma (ClinicalTrials.gov Identifier: NCT03418038) [Shenoy: Co-PI] 

 

3. High dose intravenous ascorbic acid as an adjunct to azacytidine in high-risk 

myelodysplastic syndromes (pending regulatory approvals) [Shenoy: PI] 

 

4. High dose intravenous ascorbic acid plus nivolumab for relapsed/refractory diffuse large B 

cell lymphoma in patients having failed or ineligible for autologous transplantation (being 

evaluated for funding) [Shenoy: PI] 

 

 

B. LABORATORY  

 

Continuation of the above work would involve exploring several important, and exciting areas:  

 

1. Investigating the combination of AA+anti-PD1 in pre-clinical models of other cancer types 

(using both syngeneic and humanized mouse models). This project is of immediate, and 

important, translational relevance for cancer patients. If the same response is seen with 

the combination in pre-clinical models of most/ all malignancies, it could be of immense 

benefit to patients with different types of cancer. If the response to the combination is 

different between cancer types, we plan to investigate mechanisms of resistance/ 

difference by using techniques such as CyTOF and single cell RNA sequencing to dissect 

the immune microenvironment changes induced by the combination. We will also attempt 

to determine biomarkers by correlating these findings with response, and subsequent 

validation of potential candidates.  
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2. Further investigating the mechanisms of AA-induced anti-cancer activity.  

 

3. Further exploring the mechanistic basis of interactions between the metabolome and the 

epigenome in ccRCC and other malignancies. Specifically, our immediate next project 

investigates the contribution of a second oncogenic metabolite (apart from L2HG) in driving 

hypermethylation of ccRCC and its role in the pathogenesis and progression of this 

malignancy.  

 

4. Exploring the biologic basis for the increased risk of myelodysplastic syndromes in patients 

with a history of renal cell carcinoma, with a long-term goal of risk stratification and early 

intervention to mitigate the increased risk.  

 

 

C. A few critical remarks in conclusion 

 

1. The data revealing synergy between AA and anti-PD1 (63) highlight the limitations of using 

immunocompromised mouse models to comprehensively study AA- induced anti-cancer 

activity. Prior in vivo studies with parenteral AA in cancer (as a single agent and in 

combination with chemotherapy) were performed using immunocompromised models, 

which could not capture the effect of AA on anti-cancer immunity (immune recognition and 

function) and also could not determine how that aspect is affected in combination with 

chemotherapy. As such, even if it turns out that the randomized trials exploring IV AA in 

combination with chemotherapy are negative, it should not impede exploration of IV AA in 

combination with immunotherapy (specifically anti-PD1). With the mechanistic synergy 

between high dose AA and anti-PD1 being clearly delineated (63), the translational promise 

of the combination is perhaps higher than that with high dose AA and chemotherapy, and 

should be subjected to rigorous clinical exploration.     

 

2. The increased intra-tumoral 5hmC, enhanced differentiation and delayed tumor growth with 

high-dose intravenous AA in an RCC xenograft model (178), when taken together, suggest 

that epigenetic reprogramming is an important mechanism of IV AA-induced anti-cancer 

activity. If H2O2 (a pro-oxidant) was the main mechanism of IV AA-induced anti-cancer 

activity, enhanced differentiation and increased tumoral 5hmC (reflective of AA’s anti-

oxidant cofactor function in TET enzymes- reducing Fe3+ to Fe2+) would not be the expected 

histopathologic features. 
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3. It is important to recognize that for anti-oxidant AA to undergo auto-oxidation and 

subsequently generate pro-oxidant H2O2, free catalytic metal ions are required (as shown in 

reactions 1–3 above, page 33) (231). While these free catalytic metal ions are plentiful in 

vitro, they may be restricted in the tumor microenvironment. H2O2 has been shown to be 

generated with parenteral AA in the extracellular fluid compartment in vivo in one study 

(186), but not within tumors in animal models.   

 

A historical perspective and critical analysis of AA dosing regimens: Ewan Cameron, Allan 

Campbell, and Linus Pauling used IV AA (at 10g/ day) only for 7-10 days followed by oral 

AA (at 10 g/ day), and reported survival benefit and symptomatic relief in patients with 

advanced cancer in retrospective studies (193-195). The IV AA dose used was 10g daily 

given over 24 hours. In a pharmacokinetic study of vitamin C (196), 10 g IV ascorbate given 

over 40 minutes (i.e. 250mg/min) produced a peak plasma concentration of 5.6 millimolar 

AA. However, considering the expected simultaneous renal excretion, the 10g IV AA given 

over 24 hours in the Cameron/ Campbell/ Pauling series would be expected to produce 

peak AA concentrations only in the high micromolar or perhaps low millimolar range, which 

would then be expected to produce minimal amounts of ascorbate radical and H2O2 in the 

tumor microenvironment (as per measurements reported in (203)).  After the first 10 days, 

all patients in the Cameron/ Campbell/ Pauling series received only oral ascorbate, which 

would be expected not to generate any H2O2. Furthermore, Cameron and Campbell stated 

the following: “With increasing experience, we now tend to believe that the intravenous 

regime is probably unnecessary as a routine measure, and need only be employed in 

clinical situations, where vomiting, anorexia, or other complications of malignancy preclude 

oral administration” (193). They also stated that the few patients in their series who 

received IV AA above 10g daily (up to 45g daily) had no clear therapeutic advantage (193). 

In keeping with these statements, many patients in their series only received oral AA. And 

when Mayo Clinic shared the planned randomized clinic trial protocol with Pauling, there 

was no specific objection to using oral AA (232). For all the above reasons, attributing the 

difference in outcomes of the Cameron/ Campbell/ Pauling studies and the Mayo clinic 

studies primarily to a difference in the route of administration and H2O2 generation, as has 

been repeatedly suggested in literature, would not only be an oversimplification but also 

grossly inaccurate. That said, neither the Mayo Clinic investigators in the 1970s and 80s 

nor Cameron and Pauling were aware of the striking pharmacokinetic differences between 

IV and oral AA (196). Early phase clinical trials and pilot studies have since demonstrated 

that IV AA at 1-1.5g/kg given 2-3 times weekly (a regimen primarily borne out of practice in 

the integrative medicine circles rather than a phased bench to bedside translation (233, 
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234)) is well tolerated and may enhance chemosensitivity as well as decrease 

chemotherapy related side effects (reviewed in (184)).  

 

4. In the Cancer Cell review (184), we had indicated that the documented reports of high dose 

AA-induced oxidative hemolysis in G6PD patients was an indication of oxidative effects of 

high dose AA (in potential support of the H2O2 mechanism against cancer). However, over 

the last year and during the preparation of this thesis, I realized that there is an alternative, 

non-H2O2- related explanation for the high dose AA-induced oxidative hemolysis in G6PD 

deficient individuals: dehydroascorbic acid (DHA), oxidized vitamin C. While ascorbate 

(AscH−), the dominant form of vitamin C in plasma, is transported into cells by Na+-

dependent vitamin C transporters (SVCTs- SVCT1 and SVCT2), DHA is transported via 

Na+-independent facilitative glucose transporters (GLUTs) followed by intracellular 

reduction (235-239). Plasma DHA concentrations are very low (under 2uM) under 

physiologic conditions, and plasma glucose (which also uses GLUTs to be transported into 

cells), is significantly higher at 2-5 mM (237, 239). Therefore, intracellular ascorbate 

concentrations in most cells is determined by ascorbate uptake by SVCTs. However, red 

blood cells lack SVCTs (240) and rely on DHA uptake via GLUTs followed by intracellular 

reduction, to maintain membrane structural integrity (241, 242). G6PD is a key regulatory 

enzyme of the pentose phosphate pathway that produces NADPH and reduced glutathione 

(the major antioxidant machinery). With low G6PD, the amount of DHA entering the red 

cells with high doses of AA administration likely overwhelms the capacity for intracellular 

reduction resulting in oxidative membrane damage and hemolysis. Therefore, high dose 

AA-induced oxidative hemolysis in G6PD patients may have very little (or nothing) to do 

with H2O2 generation.  

 

5. Intra-tumoral factors that could significantly affect ascorbate concentrations within cancer 

cells and immune cells as well as affect optimal cumulative AA cofactor function within 

these cells such as: intra-tumoral perfusion, transporter (SVCT1/ 2) expression and 

function, microenvironment composition and pH, Km shifts of enzymes etc. are yet to be 

comprehensively explored. These factors may account for the requirement of high doses of 

AA given parenterally (intravenously in humans) for its anti-cancer activity. 

 

6. Given the unknown factors above, and suggestion of potential benefit with high dose IV AA 

in early phase trials as reviewed in (184), it would be prudent to continue clinical exploration 

with high dose IV AA at 1g/kg given 2-3 times/ week as recommended in (184), 

simultaneously with mechanistic exploration of the unknowns in the pre-clinical setting and 
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with correlative studies in trials. However, following this IV AA administration schedule is 

particularly challenging in the middle of a pandemic. A possible solution to reduce the 

number of healthcare center visits while keeping up with the schedule is tele-monitored 

home infusion (after adequate in-person instructions during administration of the first few 

doses in a monitored setting). The regimen has been shown to be safe in early phase trials 

in patients with no G6PD deficiency and adequate renal function.   

 

In conclusion, the implication of having a new therapeutic agent that is safe, universally 

available and accessible, with the potential of anti-cancer activity across multiple tumor 

types in combination with conventional therapy (chemo/ immuno- therapy), would be 

substantial. However, it must pass traditional response metrics in well-designed, rigorous, 

clinical trials before widespread use, and these trials must be conducted without delay.  
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XI. Appendix  
 

XI.1 HIF1α is not a target of 14q deletion in clear cell renal cancer (Shenoy N*. under 

review at PLOS Genetics. *single author) 

Clear cell renal cell carcinoma (ccRCC) is the only malignancy in which Hypoxia Inducible 

Factor 1-alpha (HIF1α) has been stated to have a tumor-suppressive role. The claim was 

primarily based on proliferation studies in ccRCC cell lines and their xenograft models in 

nude mice with HIF1α manipulation, published in 2011 (243). While the data were 

compelling, they stood in contrast with the well-established tumor-promoting properties of 

HIF1α in other malignancies (via angiogenesis, metabolic adaptation, resistance and 

survival)(177, 244, 245). The paper further stated that loss of HIF1A gene (which is located 

at 14q23.2, and encodes HIF1α) was a 'target' of 14q loss in kidney cancer (14q deletion is 

seen in up to 40% of ccRCC). Following this landmark paper, the poor prognosis of 14q 

deleted RCC patients was commonly attributed to loss of HIF1A (246). From a translational 

standpoint, inhibiting HIF1 as an anti-cancer strategy has since been viewed as murky at 

best, and indeed likely harmful in kidney cancer.  

Recently, however, HIF-2 inhibition-resistant ccRCC patient-derived xenograft tumors were 

found to have high HIF1α levels, raising the question whether HIF1α indeed played a tumor 

promoting/resistance conferring role in these ccRCC tumors 

(https://doi.org/10.1016/j.eururo.2017.10.007). Then, within the last year and half, the tumor 

suppressive role of L2HGDH (L-2-hydroxyglutarate dehydrogenase) was characterized and 

reported in ccRCC- based not only on mechanistic in vitro and in vivo studies (247) but also 

on patient histology, tumor methylation and survival data (178). L2HGDH is a flavin adenine 

dinucleotide (FAD)-dependent enzyme that oxidizes L-2-hydroxyglutarate (L2HG) to alpha-

ketoglutarate. Loss of L2HGDH in ccRCC (via deletions and under-expression) leads to the 

accumulation of L2HG, which is an oncometabolite that inhibits the TET enzymes, resulting 

in an adverse loss of 5hmC and gain of 5mC. Furthermore, this characterization of L2HGDH 

as a tumor suppressor was much more comprehensive than HIF1α.  

This manuscript reports that L2HGDH is located reasonably close to HIF1A on 14q (at 

14q21.3), and is deleted in nearly 95% of 14q deletions in ccRCC involving the HIF1A locus 

(an observation that triggered this investigation). Furthermore, the copy number of HIF1A 

correlates much stronger with L2HGDH expression (Rho=0.55) than its own gene expression 

(Rho=0.27) revealing that there is a high degree of preserved-allele compensation of HIF1A 

in 14q deleted RCC (compared to L2HGDH as well as other potential 14q tumor suppressors 

identified in this manuscript). Therefore, genetic loss of HIF1A in ccRCC is associated with a 
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markedly greater reduction in L2HGDH expression than its own gene expression. In addition, 

when genetic loss of HIF1A occurs without genetic loss of L2HGDH (which occurs in <5% of 

14q deletions), the survival is significantly greater (nearly two times) than when there is 

simultaneous genetic loss of both (p=0.007). Finally, HIF1α data from this large cohort of 

ccRCC patients (TCGA) at the mRNA (n=530) and protein (n=444) levels showed that it has 

no impact on survival. Therefore, put together, the data strongly indicate that HIF1α is not a 

target of 14q deletion, and hence a tumor suppressor, in ccRCC.  

This finding represents a significant conceptual advance for the field with high translational 

relevance. Moreover, controversially, it happens to refute a claim made by Dr. William Kaelin 

(recipient of the 2019 Nobel Prize in Medicine) that HIF1A is a target of 14q deletion in 

ccRCC. Therefore, importantly, the manuscript calls for a need to take into consideration 

differences between the biology of human cancers and that of cell lines/xenografts in nude 

mouse models, while assigning an overall tumor suppressive/promoter role for a particular 

protein in human cancers. By analogy, when a drug is considered to be a promising anti-

cancer agent based on in vitro and in vivo models but then fails to demonstrate any anti-

tumor effect in humans, it is no longer considered an effective anti-cancer agent.  
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XI.2 Research ethics review checklist 

 


