
Towards Platforms for Improved
Recommender Systems at Social

Media Scale

Christina Diedhiou Sowinski

University of Portsmouth

The thesis is submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy

September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/363921766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis is dedicated to my family and my husband

for their strong support through my career.

Declaration

Whilst registered as a candidate for the above degree, I have not been

registered for any other research award. The results and conclusions

embodied in this thesis are the work of the named candidate and have

not been submitted for any other academic award.

Word count: 27215

Christina Diedhiou Sowinski

September 2019

Acknowledgements

I would like to express my deepest gratitude to Dr Bryan Carpenter,

my main supervisor, not only for believing in me and giving me the

opportunity to start this research but also for his endless support and

constant involvement in my doctorate journey. I have learned so much

from him, from analyzing challenges that come along the research to

tackle them while being as accurate as possible and ensuring that the

satisfactory solutions provided are irrevocable. He has been a great

inspiration and his willingness to always give his time to guide me

has been highly appreciated.

The advice and encouragement given by my second and third super-

vision: Dr Mohamed Bader and Dr Mo Adda as well as Dr Mihaela

Cocea, my assessor during my major and annual reviews, have been

a great help along with my research. I wish to particularly thank Dr

Mohamed Bader for giving me the opportunity to present my work

at the conference Women in Data Science.

I would like to offer my special thanks to my husband, Dawid Sowin-

ski for always being by my side to motivate and encourage me. Even

at my most stressful moment, I could never feel alone. His uncondi-

tional love and support have been a constant reminder of what I am

fighting for.

My Special thanks are extended to my parents and three amazing

sisters: Cecile, Ingrid and Raissa for their endless love and support

both moral and financial. I would not have been able to start this

journey if it were not for them neither would I had the strength

to complete this doctorate without their encouragement. They have

taught me how to never give up however the difficulty of the situation.

Being geographically so far from my family and yet so close with all

the technology tools and social media was such a comfort.

I am particularly grateful to my dearest colleagues at university and

at work as well as my closest friends including the club ”darlings”

(Cecile, Muriel, Sarah and Ana), for all their moral support, lovely

humour and for being so understandable for all the time I could not

socialize as I wish I could due to the fact that I needed to dedicate

myself more to my studies. I am specially grateful to my best friend

Zubilla for being such a great advisor in my life and for being like a

sister to me to whom I can share anything and everything.

I would like to express my very great appreciation to all my research

collaborators. Their knowledge and expertise have contributed to the

success of this research. I would like to extend my great appreciation

to my previous supervisor Mr St Clair Cordice who recently passed

away, for always having the right words to motivate me when I needed

it the most and for teaching me how to be a good soldier during my

studies. He taught me all the best practices and I am forever grateful

for his support and kindness.I hope to make you proud.

Finally, I would like to thank the organization Funds for Women

Graduate for their financial help during my third year. The grant I

have received from this trust has enabled to cover the shortfall of my

tuition fees. This has taken a lot of pressure off me and as a result,

I was able to focus more on my research.

Abstract

One of the challenges our society faces is the ever increasing amount

of data, requiring systems to analyze large data sets without compro-

mising their performances and humans to navigate through a deluge

of irrelevant material. Among existing platforms that address the

system requirements, Hadoop is a framework widely used to store

and analyze Big Data. On the human side, one of the aids to find-

ing the things people really want is recommendation systems. This

thesis evaluates approaches to highly scalable parallel algorithms for

recommendation systems with application to very large datasets. A

particular goal is to evaluate an open source Java message passing

library for parallel computing called MPJ Express, which has been

integrated with Hadoop. We also use MapReduce a core component

of Hadoop to partition our data and implement a parallel distribu-

tion of our datasets. These last have been acquired from well-known

recommender systems such as MovieLens and Yahoo Music. Based

on these datasets we generate our own synthetic dataset aiming for

a larger size in order to test the scalability of the model. We name

that dataset “SyntheD”.

As a demonstration we use MPJ Express to implement collaborative

filtering on various datasets using the algorithm ALSWR (Alternating-

Least-Squares with Weighted-λ-Regularization). We benchmark the

performance and demonstrate parallel speedup on Movielens, Yahoo

Music and SyntheD datasets. We then compare our results with

other frameworks such as: Mahout, Spark and Giraph then measure

the accuracy of the program with a suitable error metric. Our re-

sults indicate that MPJ Express implementation of ALSWR has a

very competitive performance and scalability in comparison with the

other frameworks we evaluated.

Contents

1 Introduction 1

1.1 Motivation and Contribution . 1

1.2 Background . 3

1.3 Methodology . 4

1.3.1 Research Design and Methodology 4

1.3.2 Description of Data and Test Environment 7

1.4 Outline of Thesis . 8

2 Literature Review 10

2.1 Introduction . 10

2.2 Overview of Recommender Systems 10

2.3 Synthetic Datasets . 12

2.3.1 GenerateData.com . 14

2.3.2 FreeDataGenerator.com 14

2.3.3 DataGenerator . 14

2.4 Recommender System Techniques 15

2.4.1 Content Based Filtering Techniques 15

2.4.2 Collaborative Filtering Techniques 16

2.4.3 Hybrid Techniques . 17

2.5 Challenges within Recommender Systems 17

2.6 Parallel Computing . 19

2.6.1 Memory Architectures of Parallel Computer 19

2.6.2 Programming Models . 20

2.7 Evaluation Metrics . 22

2.8 Related Work . 23

2.9 Summary . 25

i

3 Overview of Existing Recommender Systems Platforms 26

3.1 Introduction . 26

3.2 Overview of Hadoop . 27

3.3 Apache Mahout . 28

3.4 Apache Spark . 31

3.5 Apache Giraph . 33

3.6 Conclusion . 34

4 Implementation of ALSWR with MPJ Express 36

4.1 Introduction . 36

4.2 MPJ Express . 37

4.3 Alternating Least Squares with Weighted Lambda Regularization 39

4.4 Implementation of ALSWR . 41

4.5 Partitioning of Dataset . 44

4.5.1 Partitioning of Ratings Dataset using a Serial Java Appli-

cation . 46

4.5.2 Partitioning of Ratings Dataset with MapReduce 47

4.6 Partitioning Data within the SPMD Program 50

4.6.1 Background on CARI APIs 51

4.6.2 Use of CARI in the present work 54

4.7 Conclusion . 57

5 Performance Comparison across Hadoop-based Frameworks 59

5.1 Introduction . 59

5.2 Environment Set Up . 60

5.2.1 Prerequisites . 60

5.2.2 Setting Up the Nodes . 61

5.2.3 Bashrc File . 62

5.3 MovieLens 20M Ratings Experiments 63

5.4 Yahoo Music 700M Ratings Experiments 65

5.5 Root Mean Square Error (RMSE) Implementation 68

5.6 Analysis of the results . 68

5.7 Conclusion . 71

ii

6 SPMD Processing of Hadoop Data 73

6.1 Introduction . 73

6.2 Statement of Problem . 74

6.3 Heuristics to solve Local Block allocation to nodes 76

6.4 Evaluation on Randomly Generated Replica Distributions 83

6.5 Practical Application . 84

6.6 Conclusion . 88

7 Toward Social Media Scale 89

7.1 Introduction . 89

7.2 Example of Social Media Recommendation Techniques 90

7.2.1 Facebook . 90

7.2.2 Instagram . 91

7.2.3 Linkedin . 91

7.3 Growth of Data within Social Media 93

7.4 SyntheD: A Solution to Measure Scalability 94

7.4.1 Prerequisites . 94

7.4.2 Implementation . 95

7.4.3 Data Creation . 96

7.5 SyntheD 10B Ratings Experiments 97

7.5.1 Prospects for Processing Larger Datasets 99

7.6 Conclusion . 100

8 Conclusion 101

8.1 Introduction . 101

8.2 Summary of the Research . 101

8.3 Contributions . 102

8.4 Future Works . 103

Bibliography 105

A Ethical Review Certificate 116

B UPR16 Form 118

iii

List of Figures

1.1 Research Road Map . 5

1.2 Recommender Systems Techniques 6

2.1 Amazon Recommendation . 13

2.2 Recommendation Evolution . 13

2.3 Single Core VS Dual Core . 19

2.4 Shared Memory . 20

2.5 Distributed Memory . 21

2.6 Hybrid Shared & Distributed Memory 21

2.7 Rotational Hybrid Approach [52] 25

3.1 Hadoop 2 Architecture . 27

3.2 YARN Architecture [98] . 28

3.3 Apache Mahout Architecture . 29

3.4 Apache Spark Components . 32

4.1 MPJ Express Configuration . 37

4.2 MPJ Express Integrated in YARN 39

4.3 Visualization of an iteration of distributed ALSWR algorithm . . 42

4.4 Sparse data structure to represent locally held ratings 43

4.5 Outline Java code for step 1 of the ALSWR update (Equation 4.2)

using sparse data structures of Figure 4.4 45

4.6 MapReduce/MPJ Express Processing Pipeline, mediated by HDFS 48

4.7 Map Reduce Partitioning Class Diagram 49

4.8 Schematic C++ API for CARI 53

4.9 Actual Java API for CARI subset (various class members used

only as part of implementation are omitted) 55

4.10 Partioning code using CARI . 56

iv

5.1 Frameworks Performance Comparison MPJ Express with Movie-

Lens dataset . 64

5.2 Parallel Speedup MPJ Express vs Spark with MovieLens dataset . 64

5.3 Performance Comparison MPJ Express vs Spark with Yahoo dataset

on Max four Nodes . 65

5.4 Parallel Speedup MPJ Express vs Spark with Yahoo dataset . . . 66

5.5 Comparison MPJ Express vs Spark Time Performance with Yahoo

dataset on 12 Nodes Cluster (SPMD Model) 66

5.6 Parallel Speedup MPJ Express vs Spark with Yahoo dataset on

Max 12 nodes (SPMD model) . 67

5.7 Outline Java code for the RMSE calculation (Equation 2.1). . . . 69

5.8 RMSE Results with Different Lambda Parameters 70

6.1 Simple example of allocation of block reads. In this example the

SPMD world covers the entire cluster of four hosts. 76

6.2 A non-uniform distribution of replicas over four hosts, with the

results of various allocation heuristics. 80

6.3 Comparison of “parallel read times”. Blue plots are for “Round

Robin heuristic” and red plots for “Improved Heuristic”. 85

6.4 Example use of HDFS API for extracting metadata about blocks 86

6.5 Example use of MapReduce API for processing blocks in SPMD

program. 87

7.1 Users ’Growth of Facebook, Instagram and Linkedin 93

7.2 Synthetic Dataset Creation Process 96

7.3 MPJ Express Time Performance with SyntheD dataset on 12

Nodes . 98

7.4 Parallel Speedup with threads per node - MPJ Express with Syn-

theD on 12 nodes . 98

v

List of Tables

4.1 Time Performance in Seconds of Datasets Partitioning 50

4.2 MapReduce Partitioning on 12 Nodes Cluster in Seconds 50

4.3 CARI Partitioning on 12 Nodes Cluster in Seconds 57

5.1 Performance MPJ Express vs Spark in minutes 65

6.1 Times in seconds for reading Yahoo Training set with and without

local block read heuristic . 88

7.1 Synthetic Datasets Generation Time 97

vi

Abbreviations

ALS Alternating Least Squares.

ALSWR Alternating Least Squares with Weighted Lambda Regularization.

AM Application Master.

CARI Collective Asynchronous Remote Invocation.

CDD++ Cyclic Coordinate Descent ++.

DAAL Intel Data Analytic Acceleration Library.

HDFS Hadoop Distributed File System.

HPC High-Performance Computing.

MAE Mean Absolute Error.

MPI Message Passing Interface.

MPJ Java Message Passing Interface.

NMs Node Managers.

RDD Resilient Distributed Datasets.

RM Resource Managers.

RMSE Root Mean Square Error.

SGD Stochastic Gradient Descent.

SPMD Single Program, Multiple Data.

YARN Yet Another Resource Negotiator.

vii

Chapter 1

Introduction

1.1 Motivation and Contribution

Our daily activities are led by choices and decisions that constantly have to be

made, whether it is about some news to read, music to listen to, movies to watch,

clothes to wear and so many others. From a business perception, the main ques-

tions remain how to increase sales, who to target and what to auction and more

importantly how to retain existing customers and attract new ones. The innova-

tion of technology and the availability of the Internet have lead to data overload.

An individual looking for a particular product online, for instance, could end up

spending a large amount of time due to the variety of items available. One of

the challenges our society faces is the ever-increasing amount of data, requiring

systems to analyze large data sets without compromising their performances,

and humans to navigate through a deluge of irrelevant material. An alternative

solution to assist people in finding what they want is through recommendation

systems. Recommender systems are software tools and techniques providing sug-

gestion to users in order to help them find items that match their requirements.

In this dissertation, the term user will be used to determine a person interested in

some goods or services and the term item as a product or service recommended

by a system.

Among existing platforms that address the system requirements, Hadoop [2]

is a framework widely used to store and analyze Big Data. Some of the pa-

pers reviewed have discussed the application of High-Performance Computing

(HPC) technologies like Message Passing Interface (MPI) to recommender sys-

tems problems. Our particular interest is in employing platforms inspired by

HPC technologies specifically an open source Java message passing library for

1

parallel computing called MPJ Express [60] that can also interface and integrate

naturally with commercially important Big Data frameworks like Hadoop and

showing how the synthesis of the two can facilitate the exploitation of both for

the problems of interest. This approach has received little attention so far. The

envisaged platforms and software should appeal to commercial entities already

using Hadoop and its ecosystems. They should also leverage the performance of

HPC environment allowing practical solutions of problems on the scale envisaged

by Facebook [52] and others. Our contribution to the area therefore includes:

• The development of suitable approaches for highly scalable recommender

systems with application to the scale of data characteristic of social media.

This has been covered in chapter 4.

• To demonstrate the benefits of integrating MPJ Express platform into the

Hadoop ecosystem, including the possibility of using MPJ Express as a

phase in a processing pipeline and including traditional Hadoop platforms

like MapReduce (achieved in section 4.5.2).

• To evaluate our approach to HPC inspired parallel recommender algo-

rithms in Hadoop in comparison with other frameworks like Apache Ma-

hout, Spark and Giraph and to show the benefit of our approach. This has

been covered in chapter 5.

• To devise and test strategies for efficiently reading HDFS data into Single

Program, Multiple Data (SPMD) parallel programs including MPI or MPJ

as explained in chapter 6.

• The implementation of a method to generate synthetic datasets that can

reach beyond billions of ratings and evaluate the performance of our ap-

proach on a large synthetic dataset. This has been covered in chapter

7.

• To demonstrate a high impact on HPC technologies with MPJ Express by

achieving good parallel speedup and demonstrating a good error metric as

compared to other well-known frameworks. The results of our work are

published in the following conference papers.

i. Christina Diedhiou, Bryan Carpenter, Ramazan Esmeli: Comparison of

Platforms for Recommender Algorithm on Large Datasets. ICCSW 2018:

4:1-4:10

2

ii. C. Diedhiou, B. Carpenter, A. Shafi, S. Sarkar, R. Esmeli and R. Gadsdon,

”Performance Comparison of a Parallel Recommender Algorithm Across

Three Hadoop-Based Frameworks,” 2018 30th International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD),

Lyon, France, 2018, pp. 380-387. doi:10.1109/CAHPC.2018.8645926

1.2 Background

Over the last decade, Apache Hadoop has established itself as a pillar in the

ecosystem of software frameworks for Big Data processing. As an open source,

mostly Java-based Apache project with many industrial contributors, it retains

a commanding position in its field.

When first released Hadoop was a platform primarily supporting the MapRe-

duce programming model and other projects built on top of MapReduce. Around

2014 with the release of Hadoop 2.0 the platform was refactored into a separate

YARN (Yet Another Resource Negotiator) resource allocation manager, with

MapReduce now just one of the multiple possible distributed computation frame-

works that could be supported on top of YARN. Several other major big data

projects rapidly migrated to allow execution on the Hadoop YARN platform (for

example Apache Spark [100], Apache Giraph [1], Apache Tez [86], and Microsoft

Dryad [50]). Around the same time, Zafar, Khan, Carpenter, Shafi and Malik

envisaged adding the existing MPJ Express framework for MPI-like computation

in Java to that distinguished group and developed a version of the software that

could also run under Hadoop YARN [98].

MPJ Express is a relatively conservative port of the standard MPI 1.2 paral-

lel programming interface to Java and is provided with both “pure Java” imple-

mentations (based on Java sockets and threads) and “native” implementations

exploiting specific interconnect interfaces or implementations on top of standard

MPI. The vision was thus to support MPJ as one computational framework

among many largely Java-based or JVM-based frameworks that could be mixed

and matched for different stages of complex big data processing, with Hadoop

and Hadoop Distributed File System (HDFS) as the “glue” between stages.

Our goal in this thesis is to provide evidence that such a scenario can be

realized and that it may be advantageous. We concentrate on one particular

computationally intensive Big Data problem - generating product recommen-

dations through the collaborative filtering algorithm Alternating Least Squares

3

with Weighted Lambda Regularization (ALSWR). A version of this algorithm is

developed and evaluated using MPJ running under Hadoop. We show in passing

how our implementation can usefully be decomposed into two stages using dif-

ferent YARN-based computational frameworks—MapReduce for the partitioning

of data followed by MPJ for the parallel iterative computation. We then go on

to compare our implementation with three existing implementations of ALSWR

that can run under Hadoop—one taken from the Apache Mahout project us-

ing MapReduce, another using Apache Spark and a last using Apache Giraph.

Figure 1.1 presents a road map for this research.

1.3 Methodology

This section details the methodology adopted for this research specifying the

types of data used and the recommender system approaches as well as the hard-

ware, software and libraries required for the implementation of this project. We

furthermore justify the decision made to implement the chosen methods. We dis-

cuss the design of the research and methods employed including the frameworks

that are mostly used for large datasets and the facilities that are available to us

for the overall implementation of our study and describe the data used for the

experiments along with our test environment and resources available.

1.3.1 Research Design and Methodology

The aim of this research is to develop and evaluate approaches to scalable, highly

parallel platforms and algorithms for recommendation problems with application

to online commerce and social media. Facebook, for example, have recently de-

scribed their needs to recommend products to more than a billion users and

publicized parallel algorithms they are evaluating to achieve their goal [52]. The

authors also claimed that Facebook average dataset for collaborative filtering has

100 billion ratings. The size of this dataset is much larger than the one from

the well-known Netflix Prize recommender competition with 100 million ratings.

Therefore new updated techniques are required to deal with such large data.

Facebook favour one particular framework called Apache Giraph. It aims to

iteratively perform graph processing on very large data. Sakr [87] describes Gi-

raph as a distributed and fault-tolerant system that adopts the Bulk Synchronous

Parallel programming model to run parallel algorithms for processing large-scale

graph data. We evaluate different frameworks including especially our own MPJ

4

Figure 1.1: Research Road Map

5

Express that can run under Apache Hadoop YARN. We discuss MPJ Express

in chapter 4. We also assess frameworks such as Hadoop, MPJ Express, Apache

Mahout, Apache Spark and Apache Giraph as well as the importance of Java

as a de facto standard for much commercial computing, versus traditional HPC

languages with MPI. A good example of work using MPI for large datasets is the

experimental results of Yu, Hsieh, Si, and Dhillon [97]. They have used coordi-

nate descent approaches such as Stochastic Gradient Descent (SGD), to parallel

matrix factorization. We intend to consider different underlying algorithms in-

cluding ALSWR described in chapter 4. Figure 1.2 represents the hierarchy of the

approaches we use. Some of the recommender system techniques are discussed

in section 2.4.

Figure 1.2: Recommender Systems Techniques

We opt for iterative approaches because we want to apply some regularization

to our data in order to prevent overfitting which is a common challenge when

dealing with matrices. Once the model is built we evaluate the error metric

of the predictions by calculating their Root Mean Square Error (RMSE). In

section 2.7 we distinguish between two suitable evaluation metrics: MAE and

RMSE. MAE and RMSE are both popular and widely used. The size of the

datasets used and their complexity have put RMSE in favour as we aim for an

approach more sensitive to errors and RMSE penalises more large errors through

the least-square technique with the aim to improve the performance of the model

6

[19]. The aspiration to compare our results with those from the paper [101] has

furthermore been a motivation to choose RMSE approach. We also measure the

speed of execution on highly parallel platforms called parallel speedup. This

involves extensive benchmarking using suitable protocols. Hoefler and Belli [46]

discuss some benchmarking applicable to parallel computing. The Resources

available for the pursuit of our research include a cluster in the Big Data lab

in the school of computing composed of four nodes and a cluster located in

the school of engineering consisting of 13 nodes. These should be configured or

configurable to provide Hadoop services. It is important because we typically find

that some phases of processing certain datasets are best done using MapReduce

interspersed with iterative algorithms using other computational frameworks that

can also exploit Hadoop, MPJ Express, Spark and so on. Another reason why

it is important to have these clusters configured with Hadoop is that this last is

commercially a popular platform for distributed computing.

1.3.2 Description of Data and Test Environment

For the purpose of performance evaluation, we acquired our datasets from public

domains. These consist of anonymous user ratings from two different sources:

MovieLens and Yahoo Music. The dataset obtained from MovieLens contains

20, 000, 263 ratings for 27, 278 movies, created by 138, 493 users [37]. The dataset

from Yahoo Music—that is much larger—contains over 717 millions ratings for

136 thousand songs rated by 1.8 million users [96]. The data from Yahoo has been

separated into training and test datasets. The size of the dataset is extended by

generating a synthetic dataset in order to verify the scalability of MPJ Express

integrated with Hadoop and Yarn. Some data generator tools and libraries are

reviewed in section 2.3. We have decided to create our own data generator

program instead of using one of the generator tools described in section 2.3

because we wanted the code to be more flexible, to easily adapt it to our changing

requirements and to have it personalised for future usage. When generating

synthetic data it is important that the data looks as real as possible and for that

reason, we produce data based on the existing models already obtained. This is

achieved by an algorithm which creates data while following the same patterns of

the designated dataset. We target to reach a dataset size ranging between billions

to trillions of ratings. In chapter 7 we further discuss the implementation of the

synthetic dataset: SyntheD.

Our initial test environment comprised a small Linux cluster composed of

7

two nodes having six cores each and two nodes with four cores, giving us in

total 20 cores. In experiments on this cluster we generally limited ourselves to

using 16 cores in order to get better load balancing across nodes. Our final test

environment consists of a cluster of 13 nodes having each 12 cores. In total,

we have at our disposal 156 cores for the experiments with the awareness that

using more processes than the number of cores available could lead to a lower

performance of the program more particularly in terms of time and parallel

speedup results. The software used for the tests consist of:

• Java 1.7

• Apache ant 1.6.2

• Hadoop-2.9.2

• MPJ Express (version 0.44), Mahout (version 0.12.2), and Spark (version

2.2.0)

• Intel Data Analytic Acceleration Library (DAAL) 2019

1.4 Outline of Thesis

This introductory chapter has given an insight into the research area. We have

defined the problem and state our contribution to the field. The rest of the thesis

is organized as follows.

• Chapter 2 assesses and evaluates relevant tools, technologies and models

that can be applied to the research as well as related studies in the similar

field. This chapter brings a firm background to our study and presents the

options available in term of methods suitable for the accomplishment of

this thesis. Chapter 2 also describes the approaches followed to implement

our programs and determines the hardware, software and libraries we use

to achieve our goals. We additionally justify the choice of the methods

followed and outline the various datasets used for the research.

• Chapter 3 gives an overview of the frameworks reviewed for this research

and on which some experiments have been carried out. These frameworks

consist of Apache Hadoop, Mahout, Spark, and Giraph. As Hadoop is the

chosen framework for this research, we provide details of the architecture of

Hadoop 2 which is the version that includes the resource manager YARN.

8

• Chapter 4 focuses on the implementation of the Alternating Least Squares

with Weighted Lambda Regularization (ALSWR) and collective communi-

cation which is the backbone of how our accomplishment of parallel com-

puting. We review MPJ Express, its configuration and the mechanism

behind its integration with YARN (Yet Another Resource Manager). We

then describe the different methods that have been adopted to partition

the datasets, measure their performances and compare them against each

other.

• Chapter 5 compares the results obtained from MPJ Express with those

from Apache Spark, Mahout and Giraph by measuring their performance

and more particularly the time, the parallel speedup and the accuracy of

the recommendation. We break down the environment set up for the testing

and describe the variables used for the tests. The comparison between the

frameworks is followed by a thorough analysis of their results.

• Chapter 6 makes some general observations about loading data from an

HDFS file system into a Single Program, Multiple Data (SPMD) program.

The chapter discusses how the block reads can be allocated to the nodes

in order to allow records to be read locally from HDFS into a parallel

program. This approach is evaluated on block distributions that have been

randomly generated. The parallel reading time for Yahoo dataset is then

benchmarked using this approach.

• Chapter 7 discusses the steps we take to move toward the social media

scale and provides details on the implementation of our synthetic dataset:

SyntheD. We go through the steps followed that has enabled us to generate

the desired size of data and determine the software as well as libraries

required for its development.

• Chapter 8 summarizes our research and provides guidance for future works.

The chapter reviews the contributions made to the field and outlines the

limits of the research while suggesting how these drawbacks could be over-

come.

9

Chapter 2

Literature Review

2.1 Introduction

With the aim to establish a firm background of this thesis, this chapter assesses

and critically evaluates the literature relating to recommender systems and more

particularly collaborative filtering techniques. We evaluate works that have been

done so far in system recommendation and provide an understanding of the field.

This enables to position our thesis within the context and determine the con-

tribution brought to this area of study. Therefore the literature review chapter

focuses on existing techniques and previous work applied to recommender sys-

tems, their efficiency when dealing with a large amount of data and challenges

faced. This chapter is structured in four sections. Section 2.2 gives an insight

into recommender systems background and current approaches. Section 2.3 an-

alyzes some data generator tools that could be used to generate data for our

experiments on top of the datasets already acquired. Section 2.4 describes some

of the recommender system techniques. Section 2.5 outlines some of the chal-

lenges faced in the area of recommender systems. We explain the concept of

parallel computing in section 2.6 and in section 2.8 we review similar studies

while assessing their methodologies, their effectiveness and issues.

2.2 Overview of Recommender Systems

The ability to build systems recommendations emerged at an early stage in the

history of computing. Rich [84] argued that a major technique people use to build

models of other people very quickly is the evocation of stereotypes or clusters of

characteristics. Following that thought, Grundy [84], an automatic system act-

10

ing as a librarian was implemented to provide books recommendations to users

based on a stereotype model. The rationale behind the system is to simulate as

closely as possible the behaviour of a librarian by asking a few questions to the

users before suggesting them a book in which they might be interested. Although

the system was very primitive it has been identified as one of the major starting

points in the recommender systems era. The beginning of the nineties saw the

inception of the term collaborative filtering. Back then, collaborative filtering

was identified as an ideal approach to tackle information overload. It was claimed

that information filtering can be more effective when humans are involved in the

filtering process [34]. In consequence, Tapestry [34], an experimental mail system

has been developed at the Xerox Palo Alto Research Centre designed with the

aim to support both content-based filtering and collaborative filtering. The main

idea was to deal with electronic mails received and act as a mail filter and reposi-

tory at the same time. The terminology collaborative filtering is employed in the

sense that users of the Tapestry system collaborate to help each other by keeping

a record of their feedbacks such as whether a given document was interesting or

not. These feedbacks could then be reviewed at any moment whenever desired.

By the mid-nineties, recommender systems had evolved into automated collabo-

rative systems. Only ratings anonymously made by users were required. It was

not necessary anymore for a particular user to be aware of the interest of another

user and the items or users contained in the system in order to get a suggestion.

GroupLens [37], a research lab in Computer Science and Engineering adopted

the same technique. Konstan et al [55], demonstrate how the GroupLens system

applies collaborative filtering to Usenet news and how the value of this latter

can be restored by sharing their judgements of articles while protecting their

identities with pseudonyms. Automatic collaborative filtering was a big step in

the history of recommender systems from the stage where users were responsible

for entering their own reactions to a particular item and looking up previous

reactions, to a stage where the connection is already automatically established

through a system following some rules to recommend items without revealing the

identity of other users. Following this trend, many recommender systems and

collaborative filtering techniques have been developed in various domains such

as computer science, medicine, research and development, academia, e-commerce

and so many others. Sivapalan, Sadeghian, Rahnama, and Madni [90] argued

that the movement toward E-commerce has allowed companies to provide cus-

tomers with more options which are causing businesses to increase the amount

11

of information that customers must process before they are able to select their

desired items. They further state that one solution to this information overload

problem is the use of recommender systems. Surely this last has proven its abil-

ity to increase not only sales but also the consumers’ satisfaction on the service

received. Amazon.com which is a popular website widely use for various services

has a recommender system built in. Suggestions to users on products they might

be interested in are provided by the system and depend on their purchases and

browsing history. Figure 2.1 illustrates a type of recommendation sent by email

to Amazon customers based on previous purchases. Beyond collaborative filter-

ing, several techniques have been implemented such as content-based methods

mostly focusing on relevance feedback, genetic algorithms, neural networks, and

the Bayesian classifier which are among the learning techniques for evaluating

users’ profile. Another approach to designing recommender systems is through

hybrid methods. This last can combine collaborative filtering and content-based,

for instance, targeting a better performance and effectiveness of the technologies.

In 2006, research in algorithms for recommender systems gained significant im-

portance as Netflix introduced the Netflix prize an open competition intending to

improve the conception of movies recommendations. In order to win the compe-

tition candidates had to come up with their best collaborative filtering solutions

that could beat Netflix own internal CineMatch algorithm by 10 per cent on its

test set. Figure 2.2 graphically represents the main points marking the evolution

of recommender systems.

2.3 Synthetic Datasets

Many datasets are already publicly available; however, to reach a certain scale

sometimes a larger dataset might be required for testing purposes. Synthetic

datasets are defined by the production of data in a random way while following

some criteria such as the type of data needed and its value. To experiment

with our programs we gradually increase the size of the dataset and measure the

performance. The code is constantly tested against its scalability which means

that the fact of increasing the size of the data should not affect the performance

of the MPJ Express program in terms of time and accuracy.

12

Figure 2.1: Amazon Recommendation

Figure 2.2: Recommendation Evolution

13

2.3.1 GenerateData.com

GenerateData.com is an open source tool written in JavaScript, PHP and MySQL

[54]. The online service enables data to be randomly generated for free up to

a maximum of 100 rows. Users requiring more data have to make a donation

otherwise there is a possibility to download the software and modify the codes.

The codes are written in PHP and JavaScript. Developers can contribute to this

software on Github. Once the data has been generated it can be saved on different

formats including CSV, Excel, HTML, JSON, LDIF, Programming Language,

SQL and XML. One downside is the fact that it allows only the generation of

100 rows at a time, it can be time-consuming if the target is to generate billions

of rows and the user is unable to alter the code.

2.3.2 FreeDataGenerator.com

FreeDataGenerator.com is an online tool free of charge which allows users to

generate data to a maximum of 1000 rows at a time. At the moment only a beta

version is available [61]. The formats supported are CSV, Excel, XML, JSON

and SQL. Various types of data can be created. Users are suggested to log in to

their account to protect their data. On a downside, this project has not been

open sourced yet and there is currently no possibility for developers to adjust the

code to their needs. Additionally, this tool could work well for small datasets but

similar to GenerateData.com could become time-consuming for users wishing to

produce billions of data.

2.3.3 DataGenerator

DataGenerator is an open source library enabling data to be created based on

a model thus making the data as real as possible. The library is claimed to be

able to produce terabyte of data within minutes [47]. Users are required to write

a java code where they can add the DataGenerator library. DataGenerator uses

SCXML (State Chart Extensible Markup Language) which is based on XML.

This library can also be integrated with Hadoop and MapReduce. Some examples

of code, quick start guide and tutorial videos are provided to assist programmers.

The samples of code are originally written in Java. Any contribution to the

project can be made via the Google group of the project team or GitHub. This

tool is suitable for experienced programmers as they must know their way around

the tool to write their own code and integrate the required libraries. However,

14

for less experienced programmers, more time will have to be spent to understand

the architecture and to write a code which can implement the DataGenerator

tool.

2.4 Recommender System Techniques

Resnick and Varian [83] distinguished two different ways in which a recommen-

dation problem may be formulated: the prediction version of the problem and

the ranking version of the problem. The prediction version of the problem con-

sists of predicting the value of ratings obtained in order to establish a user-item

correlation. A training data anonymously revealing user preferences for certain

items is therefore required. As explained by Zhou, Wilkinson, Schreiber and Pan

[101], assuming A =
{
rij
}
nu×nm

denotes the user-movie matrix, rij represents

the rating score of movie j given by a particular user i, nu indicates the number

of users and nm the number of movies. The main task to solve the problem is

then to estimate some of the missing values in the matrix A depending on the

known values. The ranking version of the problem, otherwise called the top-k

recommendation problem, involves recommending the top-k items to a particu-

lar user. The aim is to find a few specific items which are the most interesting

to the user. Although the prediction version is more general due to the fact

that the solutions of the ranking problem can be derived from it, the method

of the ranking version is more straightforward to design. The information on

users that is necessary in order to recommend items to them can be obtained in

two different ways. It can be acquired explicitly which means that users’ rat-

ings are collected then processed or implicitly, a technique which monitors users’

behaviour for instance by keeping track on the websites visited, songs listened

to, software downloaded and so on. Many techniques related to recommender

systems have been developed along the years since it has first been used. We

describe the main ones in the following paragraphs; however, our focus will later

remain on collaborative filtering.

2.4.1 Content Based Filtering Techniques

The content-based approach provides recommendations based on an evaluation

on the profile of a user and by analyzing the content of some items purchased

in the past. A great advantage of this method as discussed in [51] is that if

the user profile changes, this technique still has the potential to adjust its rec-

15

ommendations within a very short period of time. This technique is also able

to provide new suggestions to users and the lack of ratings will not affect the

accuracy of these suggestions. Furthermore, the fact that users are not required

to share their profile keeps their privacy more secured as more detailed informa-

tion on users increase the number of threats on their privacy. Unfortunately, this

technique does not cover the notion of serendipity—an important goal for recom-

mender systems—as all recommendations made must correspond to items which

are already determined in the user’s profile. Additionally, this technique has the

ability to recommend new items to users but is not efficient when recommending

items to new users as they do not have a sufficient list of past ratings.

2.4.2 Collaborative Filtering Techniques

Collaborative filtering systems are based on users’ purchases or decisions his-

tories. Assuming two individuals share the same opinion on an item, they are

also more likely to have a similar taste on another item. Collaborative filter-

ing systems are categorized either as memory based or model-based methods.

Memory-based methods are characterized by the fact that they used the entire

database to make predictions as opposed to model-based methods which only

require the user database to make some estimations. Memory-based methods

attempt to find users that are similar to the one targeted for predictions, and

uses their preferences to predict ratings for the concerned user [10]. K Near-

est Neighbours (KNN) which is a memory based approach is arguably the most

widely used algorithm for collaborative filtering [8]. The design and usability

of this method are straightforward, but its performance tends to decrease when

data get sparse thus affecting its scalability and its aptitude to deal with large

datasets. Furthermore, new data entry adds some complexity to the mechanism.

As for Model-based methods, they use past ratings and machine learning algo-

rithms to find some patterns necessary for recommendations. The advantages

of model-based approaches compared to memory based are their ability to bet-

ter handle data sparsity and their scalability enabling this approach to better

deal with large datasets [11]. Some of the main model-based algorithms include

Bayesian network, clustering models and Latent semantic models. In our exper-

iments in chapter 5 we have opted for a model-based approach and specifically

use Alternating-Least-Squares with Weighted-λ-Regularization (ALSWR) algo-

rithm. The Alternating-Least-Squares method (ALS) can be categorized as a

matrix factorization approach otherwise called matrix decomposition. As sug-

16

gested by its name, the matrix factorization aims to decompose a matrix into

smaller components easier to manage. Matrix Factorization aims to add a penalty

function to deal with missing ratings which is the main cause of data sparsity. In

section 2.5 we go through some of the challenges faced by recommender systems

techniques.

2.4.3 Hybrid Techniques

Hybrid techniques are a mix of two or more approaches applied to a model in

order to come up with a method aiming to cover the limits of each of the cho-

sen technique. Collaborative filtering and content-based have been often used in

hybrid techniques. Hybrid techniques are claimed to have better accuracy than

other methods in [33], however, many factors must be taken into consideration

such as the type of data and the compatibility between the methods combined.

Examples of Hybrid methods can be found in [20] combining item-based collabo-

rative filtering with sequential pattern mining to improve e-learning applications

and [26] which attempts to solve the cold start and data sparsity problems by

merging deep presentation learning with matrix factorization.

2.5 Challenges within Recommender Systems

Recommender systems have been proven to enhance the manipulation of data

within businesses and to better understand the behaviour of customers; however,

even though the ability to mine data has been one of the best innovation in com-

puting for the last decade and has been used as a key tool by many organizations

to emancipate their business, it still encounters some challenges. As companies

grow, knowledge becomes more complex and technologies have to be elevated

along with the progress. We next list some of the conflicts encountered in rec-

ommender systems. It is to be noted that the following list is not exhaustive and

not in any particular order.

• High-performance computation: The speed to load and process informa-

tion is crucial with the constantly increasing competition in the market,

requiring businesses to make fast decisions. An essential feature of high-

performance computing (HPC) is parallel computing. Can a program be

effectively parallel without losing too much time on the communication

between the nodes?

17

• Predicting the trends in an accurate and efficient manner can be challeng-

ing. While industries require high-speed software, they also need all the

information collected to be as accurate as possible in order to adopt the

best approach and maximize their potential. Shilling attacks—the manip-

ulation of some recommendation scores by users with fake profiles—can

occur and systems must be built to be able to detect falsified information.

On another side, each model that is built for prediction must have a method

to measure the accuracy of its forecasts prior to its utilization in business.

• Mining complex knowledge due to complex data: data nowadays come in

different forms and shapes requiring systems to be able to deal with these

new types of data.

• Data privacy: it is important to put in place some security means to pre-

vent the privacy of consumers to be breached. Trust is imperative between

an organization and its clients. During the whole process of data min-

ing personal data must be kept confidential and under no circumstance

disclosed to a third party without authorization.

• Necessity to tackle data sparsity: each user rates only a few items leaving

a large number of elements as zero in the matrix. When half of the matrix

or more hold the value 0, this matrix is said to be sparse. Data sparsity

can affect the quality of recommendation systems.

• Cold start: otherwise called “new user or new items problems”. This issue

occurs when there is not enough information gathered on a user or item

due to their novelty. The preferences of the user cannot be forecast and

this can lead to less accurate results. Although a solution via demographic

attributes has been proposed in [85], more research is required in this field

for better results.

• Scalability: It is a constant challenge as the size of data within organiza-

tions keep increasing and new systems need to accommodate new volumes

of data as well as these of the next generations. Therefore a scalable rec-

ommender system should perform well on a large dataset the same way it

will perform on a smaller dataset.

18

Figure 2.3: Single Core VS Dual Core

2.6 Parallel Computing

Software programs were traditionally written for serial computation. This in-

volves a breakdown of the program into a series of instructions which are sequen-

tially carried out on a single processor. Conversely, parallel computing simulta-

neously executes its series of instructions on many cores or different processors.

Modern computers and laptops already have parallel architecture due to their

multiple processors/cores. Domingo in [25] stated that multicore CPUs first ap-

peared on the desktop and laptop PC platforms around 2005. The past few years

have seen an evolution on laptops and desktops toward quad-core, hexa-core and

octa-core processor. The main advantage of having a multicore CPU is its ability

to perform many tasks at the same time. Figure 2.3 illustrates single core versus

multi-core CPU chip. The end goal of parallel programming is to be able to deal

with complex applications effectively, reliably and in a faster way. Additionally,

shortening the completion time of a project by using parallel computing enables

cost savings. The following sections discuss some of the features of parallel com-

puters such as their architectures, programming models and what to consider

when designing a parallel program.

2.6.1 Memory Architectures of Parallel Computer

The architecture of parallel computers generally consists of shared memory, dis-

tributed memory or hybrid shared-distributed memory. Shared memory parallel

computer is characterized by the ability of all processors to access and share the

same memory although they can operate autonomously. Thus all processors can

19

Figure 2.4: Shared Memory

view modifications that are made by another processor in the memory location.

Figure 2.4 illustrates the architecture of a typical shared memory parallel ma-

chine. One of the advantages of having this architecture is the data distribution

speed which is relatively fast due to the closeness between the processors and

the memory. On the downside, they are not very scalable and the fact of adding

more processors make the exchanges more complex between them. Distributed

memory systems, unlike the shared memory architecture, require a network to

connect the memory of each processor to enable communication as shown in fig-

ure 2.5. Because each CPU has its own memory, modifications of a processor to

its memory do not affect the memory of other processors. One of the advantages

of having systems built this way is good scalability as there is an excellent balance

between the processors and the size of the memory. Nevertheless, programmers

have to ensure that all the elements generating communication between the pro-

cessors are specified. An alternative solution to cover part of the disadvantages of

shared and distributed memory systems is a Hybrid Distributed-Shared Memory

system (HDSM). HDSM systems can be defined as a group of shared memory

systems connected through a network as in figure 2.6. They are generally used

by the fastest supercomputers.

2.6.2 Programming Models

There are various programming models used for parallel systems although we

will only describe those which are more relevant to the implementation of our

experiments in chapter 4. These consist of threads, message passing and Sin-

gle Program, Multiple Data (SPMD). As explained by Barney [7], models are

not specific to a particular type of machine or memory architecture, they can

be implemented on any underlying hardware. For instance, threads which are

20

Figure 2.5: Distributed Memory

Figure 2.6: Hybrid Shared & Distributed Memory

typically shared memory programming model can also be used on a distributed

memory machine.

A Thread is an execution of a single sequence of instruction in a program. The

concept of multithreading is to enable the CPU to switch between the threads

which then provides an effect of parallel execution. The coder is in charge of

determining the parallelism although libraries are used to manage their imple-

mentations. OpenMP (Open Multi-Processing) programming has achieved a lot

of success in the High-Performance Computing community due to its emphasis

on structured parallel programming [94]. There are two common ways of exe-

cuting threads: through POSIX (Portable Operating System Interface) Threads

and through OpenMP.

Message Passing is a programming model for distributed systems. It enables

processes to exchange messages generally by means of signals or function with

each other. Gropp, Lusk, Doss and Skjellum in [36] stated that originally syn-

tax and precise semantics of each message-passing library implementation was

different from each other. In 1992, the process of creating standard means to

enable the portability of message-passing applications was initiated. It spawned

the Message Passing Interface (MPI). MPI was developed for software using C

21

or Fortran as the programming language. This later led to Message Passing

Interface for Java (MPJ) as this programming language was gaining significant

importance. We discuss MPJ further in chapter 4.

Single Program, Multiple Data (SPMD) is a programming method that al-

lows a program to have separate instances of a single program that can be run

loosely synchronously on many processors, thus achieving a parallel processing

distribution. This method was proposed by Darema in 1984, as a way to enable

parallel execution of applications on multiprocessors [22], [23]. The MPI model is

widely used as a framework to implement the SPMD paradigm. In MPI this can

be achieved by specifying the size of the world, the rank and the MPI communi-

cator: MPI.COMM WORLD. In this context we define the size of the world as

the number of processes used to run a program and the rank as the position of

a running process. The SPMD model is used extensively in the thesis.

2.7 Evaluation Metrics

Error metrics are some means to measure the quality of a prediction model. They

essentially enable to distinguish the difference between the results obtained by

a program and some actual values observed. Having some tools to measure the

quality of prediction facilitates the comparison between estimators which can

be the base of a decision making of an organization wishing to implement a

recommender system. The most important aspect with error metrics is their

ability to determine the accuracy of recommender systems. There are many

evaluation metrics available. The choice of the most appropriate metrics depends

on the type of data and the model which is built. Among those which are the

most used for the regression model are Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE).

The RMSE otherwise called Root Mean Square Deviation (RMSD) is a cal-

culation that aims to provide the standard deviation of a prediction model by

computing the square root of the variance between the predicted values and the

one which is observed. The value of the RMSE is always a positive number.

The lower the results achieved by an estimator, the more accurate the model is.

However, the value zero is almost impossible to attain as it would mean that the

model is a perfect fit and that all predictions are 100 per cent accurate. The

22

RMSE is defined by the following equation:

RMSE =

√√√√√ Tn∑
r=1

(Predictedr − Actualr)2

Tn
(2.1)

Assuming the RMSE evaluates a model predicting ratings given by some cus-

tomers. In principle, the dataset is split in training and testing sets to enable the

accuracy to be measured after the model is built. In equation 2.1, Tn represents

the total number of ratings and r the index of a rating.

The Mean Absolute Error (MAE) is a calculation which produces the average

difference of absolute values taken from the predicted results of an estimator and

assessed against some actual values. Similarly to the RMSE, lower values of

the MAE are favourable and only positive numbers are provided as it takes the

absolute modulus of the variance between two variables. Considering the same

case of datasets as with the RMSE, the MAE is defined by the following equation:

MAE =
1

Tn

Tn∑
r=1

|Predictedr − Actualr| (2.2)

With the MAE the weight of all variances is equal to each other hence making

it a straight forward approach to apply while RMSE has a heavier penalization

feature. The RMSE was claimed to be a better fit with model performance and

more particularly if the error distribution is expected to be Gaussian [18].

2.8 Related Work

Recommender systems have been a subject of tremendous interest lately. Our in-

terest is however focused on collaborative filtering applied to very large datasets,

leading to a need for parallel processing.

For the Netflix Prize, [101] proposed an approach called ALSWR. In order

to implement their algorithm in parallel authors used Matlab [43]. The result of

the experiments showed a better performance of the ALSWR as the number of

features and iterations increased. The metrics used for their experiments are the

parallel speedup and Root Mean Squared Error (RMSE) on which they obtained

the score 0.8985. This was accomplished with the Netflix dataset consisting of 100

million ratings acquired in 2006. The current state-of-the-art dataset comprises

23

of billions of ratings [52] and processing this requires scalable methods.

Yu, Hsieh, Si and Dhillon compared ALS methods to Stochastic Gradient De-

scent methods and Coordinate Descent methods [97]. The study introduced the

Cyclic Coordinate Descent++ algorithm (CCD++). The experimental platform

is an MPI library and datasets are from MovieLens, Netflix, Yahoo-music and a

synthetic dataset. The performance metrics reported in the study are the paral-

lel speedup and the RMSE. From their work, they demonstrate that CCD++ is

faster than ALS and SGD. Although ALS seems to have a better parallel speed

up than CDD++.

Makari et al [58] compared SGD with Asynchronous SGD (ASGD), Dis-

tributed SGD for processing environment with MapReduce (DSGD-MR), Dis-

tributed SGD on clusters (DSGD++) and SGD on a single powerful machine

with multiple shared-memory processors (CSGD). From their experiments, they

proved that CSGD is more scalable than the other algorithms but that DSGD++

had a better overall performance due to its memory consumption and runtime.

In their experiment, they used the MPICH2 library. Two datasets were used

for the tests including the Netflix dataset and the KDD dataset [45]. For the

performance metric, they opted for the parallel speedup.

Various other researchers have realized similar studies such as Karydi and

Margaritis [53] (2014) who have also used the Netflix dataset but with a different

approach called Bregman Co-clustering. There is another interesting research

geared towards very large datasets in [88] that used Alternating Least Squares

(ALS) as the algorithm on Hadoop MapReduce and JBlas as the framework.

The datasets used for the experiments were from Netflix, Yahoo Music and a

synthetic dataset they called Bigflix. Kabiljo and Ilic explained how ALS and

SGD algorithms are implemented with Apache Giraph to process an average of

100 billion ratings from Facebook [52] using the rotational hybrid approach. In

this approach illustrated in figure 2.7, the vertices correspond to users and the

workers are the items. The idea was to accomplish a clockwise rotation following

each sequence of iterations also called supersteps.

In the context of MPJ Express, previous work [98] focused on integrating

the software with YARN allowing end-users to execute Java MPI programs on

Hadoop clusters. As part of this effort, a new YARN-based runtime system

was added to the MPJ Express library. The paper demonstrated a reasonable

comparative performance of YARN-based runtime against the existing runtime.

Also, the K-Means algorithm was parallelized using MPJ Express and MapRe-

24

Figure 2.7: Rotational Hybrid Approach [52]

duce and executed on Hadoop clusters and Amazon Elastic Compute Cloud. It

was shown that the Java MPI version of K-Means outperformed the MapRe-

duce version. This study did not compare the performance of YARN-based MPJ

Express library against some of the newer technologies including Apache Spark.

2.9 Summary

In this chapter, we have studied relevant tools, techniques and approaches in

recommender systems required for the research. We have described the origin

of recommender systems, the type of resources that can be useful and the main

challenges to tackle when building a system. Recommender systems are a broad

field, thus comparing the methods available has allowed us to narrow the area

in which we wish to evolve. Reviewing related works has furthermore enabled to

position the thesis in the research area and to set our targets.

25

Chapter 3

Overview of Existing

Recommender Systems

Platforms

3.1 Introduction

This chapter reviews the main third party platforms for recommendation sys-

tems evaluated in this research. We evaluate Apache Hadoop, Mahout, Spark

and Giraph. The choices of the platforms are based on their popularity, existing

reviews on their performance and aptitude to solve some common and newly

arising challenges in high-performance computing. While each framework has

its strengths and weaknesses, some of them perform better when combined to-

gether and more particularly with Hadoop as the backbone. In each section,

we describe the main features of the corresponding framework, its components

and the method used to implement the ALS algorithm for our testing purposes.

Section 3.2 discusses Apache Hadoop and YARN, its resource manager then

outlines both their components. Section 3.3 provides information on Apache

Mahout as well as its architecture within the Hadoop ecosystem. Section 3.4

Reviews Apache Spark and explains its Resilient Distributed Datasets (RDD)

feature. Section 3.5 describes the features of Apache Giraph including its input

method.

26

Figure 3.1: Hadoop 2 Architecture

3.2 Overview of Hadoop

Hadoop is a framework that stores and processes voluminous amounts of data.

The resource management component was originally in the first version of MapRe-

duce. It was composed of a job tracker and task trackers but is now deprecated

in the second version of Hadoop. The job tracker also known as the master node,

managed all tasks and resources while task trackers executed map and reduce

tasks. These responsibilities have been shifted to YARN. Two important tasks

define the implementation of MapReduce: a map phase and a reduce phase that

are both specified by the programmer. The map phase has for input a set of

data which is divided in tuples made of key and value pairs. The reduce phase

uses the output of the map phase as input to a set of reduce tasks also running

in parallel. All completed jobs can be monitored thanks to the Job history.

As illustrated in figure 3.1, the Hadoop Distributed File System (HDFS) has

two types of node: a namenode which represents the master node, and datanodes

also called slave nodes. There is only one namenode per HDFS cluster and its

role is to manage the filesystem namespace by storing the metadata of all the

files and their directory tree within the filesystem. The namenode keeps track

of the location of each block that is stored on the datanodes. Datanodes follow

instructions from the namenode to store and retrieve data then report back to

it once the job is executed.

Since Hadoop 2, YARN (Yet Another Resource Negotiator) has been inte-

grated into the infrastructure as the resource manager, enabling many other

27

Figure 3.2: YARN Architecture [98]

distributed frameworks besides MapReduce to process their data on the Hadoop

cluster. YARN depends on three main components to complete a task: a Re-

source Manager (RM), Node Managers (NMs), and an Application Master (AM).

The RM is responsible for managing and allocating the resources across the clus-

ter. There is only one RM per cluster. NMs run on all nodes available in a

cluster and report all the tasks to the RM such as the number of cores and mem-

ory space. Each job that is started has an AM specific to the processing frame-

work that manages operation within containers and ensures there are sufficient

containers for the task. The term container is used here to describe the envi-

ronment where applications such as MapReduce tasks are processed—essentially

containers correspond to operating system processes running individual tasks.

Containers require a certain amount of resources, CPU allocation for instance.

Figure 3.2 shows the communication between the RM, the NMs and the AM

following a client’s request. The communication between the master nodes and

slave nodes is achieved through the Heart Beat Mechanism [38].

3.3 Apache Mahout

Apache Mahout is a distributed linear algebra framework which uses mathemati-

cally expressive Scala Domain Specific Languages(DSL) designed to enable users

to implement their own algorithms [3]. Mahout is widely used for its distributed

implementation on Apache Hadoop. This essentially means that datasets are

stored in HDFS and various machine learning algorithms such as collaborative

filtering can be applied to the data. Figure 3.3 illustrates the basic structure

of Mahout with Hadoop 2. Mahout’s core algorithms include clustering, rec-

ommendation including collaborative filtering and classification. Its API can be

28

Figure 3.3: Apache Mahout Architecture

implemented in either Java or Scala. Mahout also uses MapReduce for its paral-

lel processing and is consequently only disk based which means that the data is

read/written from/to local disks. Apache Mahout has many distributed engine

bindings consisting of Spark, Flink and H2O.

The ALSWR implementation with Apache Mahout is done through its ma-

chine learning library and more specifically the map-reduce implementation of

ALS. This last consists of two stages: a parallel matrix factorization phase fol-

lowed up by some recommendations. Both phases are detailed in [57]. For

instance, to run the ALS Parallel algorithm we use the following command:

$ mahout parallelALS --input /user/hdfs/ratings.csv --output

MahoutTest--lambda 0.1 --implicitFeedback false --alpha 0.8

--numFeatures 15 --numIterations 10 --numThreadsPerSolver 1

--tempDir tmp

The file given as input in this example is the ratings from Movielens; the outputs

are written in a file we name MahoutTest. We set the argument implicitFeedback

to false as we are dealing with explicit data.

To make some recommendations we use the following command taking the

result of the parallelALS algorithm as input:

$ mahout recommendfactorized --input MahoutTest/userRatings

29

--userFeatures MahoutTest/U/ --itemFeatures MahoutTest/M/

--numRecommendations 2 --output Recommendations --maxRating 5

We then print out the results of the recommendation in a file called Rec-

ommendations where 2 recommendations are provided to each user on a scale

ranging from 1 to 5.

The prerequisites in order to build Mahout jobs are Java, Maven and Hadoop.

Before running a Mahout application, JAVA HOME must be set in the bashrc

file; we explain the purpose of the bashrc file in section 5.2.3. Hadoop must be

well configured and all nodes (namenodes/ datanodes) already started. Addition-

ally, some libraries such as mahout-mr-0.12.2.jar, commons-cli-2.0-mahout.jar

and commons-math3-3.0.jar must have their classpath exported along with the

latest version of Apache Mahout core. The following are some commands used

in the bashrc file to export the required classpaths to compile Mahout jobs:

export MAHOUT_HOME=/opt/apache-mahout-distribution-0.12.2

export PATH=$PATH:$MAHOUT_HOME/bin

unset MAHOUT_LOCAL

export

CLASSPATH=/home/christina/mahout-core-0.7-sources.jar:$CLASSPATH

export

CLASSPATH=$CLASSPATH:/home/christina/commons-cli-2.0-mahout.jar

export CLASSPATH=/home/christina/mahout-mr-0.12.2.jar:$CLASSPATH

export CLASSPATH=/home/christina/commons-math3-3.0.jar:$CLASSPATH

One of the greatest advantages of Apache Mahout integrated with Hadoop is

its ability to either run in local mode or in MapReduce mode. It is to be noted

that in our case it is important to unset Mahout from local, as we do not wish

for Mahout jobs to be run locally but rather in Hadoop file system. As a result,

we are exploiting all the benefits of HDFS given that our datasets are relatively

large.

Many organizations have adopted Apache Mahout as their analytic tool to

study the behaviour of their consumers. Among these organizations, Amazon

greatly contributes to Mahout with its project: Apache Mahout on Amazon

Elastic MapReduce (EMR). EMR was launched in 2009 and is developed by

Amazon Web Service platform (AWS). More information on their projects are

available in [62] and [89].

30

3.4 Apache Spark

Apache Spark is an open-source cluster-computing framework suitable for large

scale data processing. It has been claimed to be able to run 100 times faster than

Hadoop MapReduce in memory and 10 times faster on disk [4]. Since Hadoop 2,

Spark has been integrated with Hadoop allowing its programs to run on YARN.

Spark differs from other frameworks integrated with Hadoop in the fact that it

does not use MapReduce for parallel processing. While MapReduce is fully disk-

based, Spark can use memory and disk processing. Programmers can choose

between three languages for the API: Java, Scala or Python. the key feature

of Spark is its Resilient Distributed Datasets (RDD). RDD is a data structure

enabling fast and efficient data processing by storing intermediate results in dis-

tributed memory instead of a disk [5]. As explained in [99], the default is to keep

the RDD in memory; when there is no more space in the RAM, Spark stores the

rest on disk. Although Spark is an extremely fast framework it is an expensive

approach as it requires a considerable large amount of RAM in order to fully

exploit its potential when dealing with massive datasets such as billion ratings.

To allow a processor to share data with other processors Spark provides shared

variables. These are usually copied to all the machines available; however, Sparks

also allows programmers to generate two restricted types of variable: broadcast

variables and accumulators. The parallel operations that can be executed on an

RDD include reduce, collect and foreach. There are two different types of

operation: transformation which generate new RDDs and action which exe-

cutes the transformation operation. Shared variables and parallel operations

available in Spark are detailed in [100] and [24]. We have implemented ALS on

Spark through its standard machine learning library (MLib). Figure 3.4 shows

the components of Spark including the MLib. MLib is further grouped into four

different categories of algorithms: Clustering, Regression, Classification and Rec-

ommendation, which contains the ALS algorithm. It is to be noted that Apache

Spark can be deployed as standalone or by using YARN for its deployment. In

the first case, Spark runs on the top of Hadoop whereby only the HDFS is used

as a data storage. On the second case Spark not only uses the HDFS to store

datasets but Spark jobs are additionally run on YARN hence allowing other

components to be combined to the structure.

For the prerequisites, Spark and PySpark must be installed as well as either

Java, Python or Scala. The Spark environment may be set up in the bashrc file

by commands as:

31

Figure 3.4: Apache Spark Components

export SPARK_HOME=/home/christina/

export PATH=$PATH:$SPARK_HOME/bin

Spark provides for interactive work with its shell, which implements a Read,

Evaluate and Print Loop environment for the users’ input, without interrupting

the analysis of the data [95]. To start writing an application the developer

must open a Spark Session and generate an RDD. RDDs are created either by

using the parallelize() function to which data can be passed or by referencing a

dataset from HDFS, for instance. In our case, considering the fact that we have

already stored our dataset in HDFS, referencing to an external dataset in Java

is as simple as the following line:

JavaRDD<String> distFile = sc.textFile("YahooTrainData.txt");

Spark does not require the dataset to be partitioned beforehand as the par-

titioning is done automatically although the number of desired partitions is con-

figurable. The dataset may already be split into training and testing sets or

this can also be achieved with the randomSplit() function in Spark. With

the RDDs created, they are now ready to be used for parallel processing via 2

types of operations: transformations such as map() and filter() functions, for

instance and actions implemented by methods like reduce() and collect(). The

32

next step is to create a model. We chose the ALS algorithm and by applying the

transform() function we can provide predictions.

Spark is deployed in cluster mode using YARN as the master. By experi-

ence as we are dealing with large datasets we use the following configuration

parameter.

spark.executor.memory

In our case, with 32 Gigabytes per node, we increase the memory to 28

Gigabytes. This prevents us from having Spark errors such as: Max number of

executor failures (8) reached.

To solve another following common error due to the number of cores used:

Invalid resource request, requested virtual cores < 0,

or requested virtual cores > max configured,

requestedVirtualCores=12, maxVirtualCores=4

Because we are using 12 cores processors, we add the following property in yarn-

site.xml located in the etc folder in Hadoop :

<property>

<name>yarn.nodemanager.resource.cpu-vcores</name>

<value>12</value>

</property>

We then restart the YARN nodes if necessary.

3.5 Apache Giraph

Apache Giraph is a fast scalable and iterative graph processing open source

framework, built on top of Apache Hadoop. Facebook is an active users and

developer of Giraph. Facebook has used Apache Giraph to study graphs socially

established by its users via their connections with each other [1]. The experiments

have been done at the scale of trillions of edges [44]. Giraph takes vertices and

edges as data input. The vertices represent the users and items while the edges

are the ratings which have been obtained. Before deploying Giraph, Git and

Maven 3 or higher must be installed; furthermore, Hadoop must be configured

as explained in section 5.2. Then once Apache Giraph has been downloaded

33

or cloned it can be exported in the bashrc file with a command similar to the

following:

export GIRAPH_HOME=/home/christina/

export PATH=$PATH:$GIRAPH_HOME/bin

It is important to update Hadoop files such as core-site.xml, mapred-site.xml

and hdfs-site.xml for better performance optimization. A step-by-step guide on

a quick start with Giraph is available on Apache Giraph website [30]. The fact

that Apache Giraph was written in Java makes this framework compatible with

Hadoop.

Giraph follows the same concept as Pregel which was introduced by Google

in 2010 [59]. Pregel enable graphs to be generated from very large datasets and

uses the model Bulk Synchronous Parallel. Pregel has not been open sourced,

hence the rationale for Apache Giraph. More details on Giraph and Pregel can

also be found in [42]. By default, Apache Giraph runs in memory except for

input, output and checkpointing when it computes on disk. Some of the few

drawbacks that have been claimed are the adding up of a significant overhead

due to the fact that Apache Giraph is slow to read/write from disk [29] and the

complexity of changes required in Giraph in order to fully exploit its potentiality

and obtain more efficient results [21].

The ALS algorithm is implemented on Giraph through Okapi. Okapi is an

open source library which can be integrated to Giraph for machine learning and

graph mining algorithms. The types of algorithms that are available include

collaborative filtering, graph, clustering and Sybil-detection [82]. Sybil attacks

can be defined as a malicious users with multiple identities aiming to gain control

of a system [27]. The programming languages that can be used with Okapi

are Java, Python and JavaScript. The Apache Giraph project itself does not

currently have the ALS algorithm available; hence we have opted to use Okapi.

3.6 Conclusion

This chapter has provided a survey about four different platforms for recommen-

dation systems that can be applied to large datasets. Hadoop is mostly known

for its distributed file system (HDFS) and its ability to have other frameworks

easily integrated into its ecosystem. Apache Mahout, Apache Spark and Apache

Giraph have one point in common, they all use HDFS as the main storage for

34

datasets which is then processed differently according to the features of the frame-

work. We have described the components of each platform, their configurations

in the bashrc file and the method chosen to implement the collaborative filtering

with ALS. The configuration of each of the frameworks mentioned in this chapter

plays an important part as most frameworks have some default values already

set to enable a quick and easier use. It is nevertheless up to the users to amend

these default values to better fit their purposes. In chapter 5, we compare and

analyze the different results obtained with these frameworks.

35

Chapter 4

Implementation of ALSWR with

MPJ Express

4.1 Introduction

The implementation of ALSWR with MPJ Express is a crucial part of this thesis.

First we explain how MPJ Express is integrated into Hadoop and allows jobs to

be run in YARN nodes. We furthermore go through the ALSWR algorithm

following the study made in [101] then adapt it to our model by interpreting and

outlining each of the required stages. In principle, the data is first partitioned,

then the program can read data from the partitioned datasets to implement the

ALSWR method. We defer discussion of partitioning to the end of this chapter.

In section 4.2 we discuss the configuration and communication devices of

MPJ Express before detailing step by step its integration to YARN. Section 4.3

provides an insight on how the ALSWR is applied to our matrices for prediction

purposes. In section 4.4 we describe the implementation of the collaborative

filtering technique with ALSWR while using the MPJ Express API as well as

its features for parallel computation. We additionally briefly explain the impor-

tance of collective communication and indicate the ones that have been used

on the program code to achieve parallel computation. The second part of sec-

tion 4.4 focuses on the Intel Data Analytic Acceleration Library (DAAL) and

more importantly on the Cholesky decomposition which is used to solve the

symmetric positive definite matrix. Section 4.5.1 discusses about the original

method followed to partition our various datasets. Section 4.5.2 describes the

MapReduce version of the partitioning and outlines the main phases required

for its implementation. In section 4.6 we introduce another alternative approach

36

Figure 4.1: MPJ Express Configuration

to MapReduce: the Single Program, Multiple Data (SPMD) and give a back-

ground on the application platform interface of Collective Asynchronous Remote

Invocation (CARI) and its usage.

4.2 MPJ Express

MPJ Express [60] is an open source Java MPI-like library that allows appli-

cation developers to write and execute parallel applications on multicore pro-

cessors and compute clusters. The MPJ Express software can be configured in

two ways as depicted in Figure 4.1. The first configuration—called the multi-

core configuration—allows parallel Java processes to execute on shared memory

systems including multicore processors. The second configuration—called cluster

configuration—allows execution of parallel Java processes on distributed memory

platforms including compute clusters.

Under the cluster configuration, the MPJ Express software provides various

communication devices that are suitable for the underlying interconnect of the

cluster. Currently, there are four communication devices available under the

cluster configuration:

1. niodev - uses Java New I/O (NIO) Sockets

2. mxdev - uses Myrinet eXpress (MX) library for Myrinet networks

3. hybdev - for clusters of multicore processors

4. native - uses a native MPI library (like MPICH, MVAPICH, Open MPI)

Since 2015, the MPJ Express software has provided a YARN-based runtime

that exploits the niodev communication device to execute parallel Java code on

Hadoop clusters. Under this setting, HDFS is used as the distributed file system

37

where application datasets, MPJ Express libraries, and application programs are

loaded to allow all processes to access the material. YARN execution is requested

by using the -yarn switch as an option in the usual mpjrun command:

mpjrun.sh -yarn -np 2 -dev niodev MPJApp.jar

In this command -yarn instructs the program to operate with the YARN-

based runtime and -np 2 specifies the number of nodes for the parallel processing—

just two nodes in this example.

Figure 4.2 presents the implementation of the MPJ Express library on YARN.

In this setting, the Hadoop cluster consists of a client node, where Resource

Manager (RM) executes, and two compute nodes, where a Node Manager (NM)

executes. The NM process executes on each active node and is responsible for

executing assigned tasks.

Figure 4.2 labels various stages of executing a parallel program with the

YARN-based MPJ Express runtime.

1. mpjrun module starts the MPJYarnClient

2. the MPJYarnClient enable the execution of AM by requesting to the RM

the allocation of a container

3. MPJAppMaster generates a CLC and a mpj-yarn-wrapper.jar for each con-

tainer

4. The mpj-yarn-wrapper send outputs and error streams of the program to

the MPJYarnClient

Assuming that the user wants to execute the MPJApp Java class. As a pre-

requisite, the user needs to bundle the MPJApp class in a Java Archive (JAR)

file that might be placed in the local disk of the client node. Later, the user essen-

tially launches the execution of the parallel program from this node by invoking

the MPJYarnClient process. In order to pass the user’s application program to

YARN, the MPJYarnClient makes a request to the RM to allocate a container

and enable the execution of the Application Master (AM). The components of

YARN are explained in section 3.2. The MPJYarnClient is also liable for ini-

tializing a Container Launch Context (CLC) and for submitting the number of

nodes specified by the command (-np 2) as well as the JAR (MPJApp.jar) to the

AM. The CLC holds all information that is required for a task to run, including

38

Figure 4.2: MPJ Express Integrated in YARN

the command arguments, environment variables, and authentication tokens. The

AM contacts the RM to acknowledge the memory and available processing cores.

This information is later used to decide the number of containers required for the

execution of the parallel program. Further the allocation of all the containers to

the NM, the AM generates a CLC holding the JAR (MPJApp.jar) and a mpj-

yarn-wrapper.jar for each of these containers. The mpj-yarn-wrapper JAR file

consists of a binary code for the mpj-yarn-wrapper module and is responsible for

sending back output and error streams of the program to the MPJYarnClient.

4.3 Alternating Least Squares with Weighted

Lambda Regularization

In this section, following Zhou et al. [101], we will often refer to items as

“movies”; but of course identical math applies to any kind of item or service.

Assume we have nu users and nm movies, and R is the nu×nm matrix of input

ratings. Usually, each user can rate only a few movies. Therefore the matrix R

will initially have many missing values or loosely speaking it will be sparse. The

39

problem is to predict the unknown elements of R from the known elements. We

model the preferences of users by assuming they have a simple numeric level

of preference for each of a number nf of features to be found in movies; thus

the behaviour of user i is modelled by a vector ui of length nf . The features

are sometimes called Latent features, because they are implicitly constructed by

the algorithm, Similarly, each movie is assumed to have each these features to a

simple numeric degree so each movie j is modelled by a vector mj of the same

size. The predicted preference of user i for movie j is the dot product ui ·mj. The

vectors are conveniently collected together in matrices U and M of size nu × nf

and nm × nf respectively. To fit the model to the known elements of R we use

the least squares approach, adding a regularization term parameter λ to the sum

of square deviations to prevent the model from overfitting the data. The penalty

function we strive to minimize is:

f(U,M) =
∑
i,j

(rij − ui ·mj)
2 + λ

∑
i

nui
u2
i +

∑
j

nmj
m2

j

 (4.1)

where the first sum goes over i, j values where the element rij of R is known in

advance, nui
is the number of items rated by a user i, and nmj

is the number of

users who have rated a given movie j.

ALSWR is an iterative algorithm. It shifts between fixing two different matri-

ces. While one is fixed, the other one is updated and then roles switch, eventually

solving the matrix factorization problem. The same process goes through a cer-

tain number of iterations until a convergence is reached which implies that there

is little or no more change on either users and movies matrices. The ALSWR

algorithm as explained by Zhou et al [101] is as follows:

Step 1: Initialize matrix M by assigning the average rating movies as the first

row, and small random numbers for the remaining entries.

Step 2: Fix M , Solve U by minimizing the objective function (the sum of

squared errors);

Step 3: Fix U , Solve M by minimizing the objective function similarly;

Step 4: Repeat Steps 2 and 3 until a stopping criterion is satisfied.

Step 2 is implemented by Equation 4.2 where MIi is the sub matrix of M , rep-

resenting the selection of any column j in the set of movies rated by a user i, H

40

is a unit matrix of rank equal to nf and R(i, Ii) is the row vector where columns

j are chosen

ui = (MIiM
T
Ii

+ λnui
H)−1MIiR

T (i, Ii) (4.2)

Similarly, Step 3 is implemented by Equation 4.3. UIj is the sub matrix of U ,

representing the selection of any column i in the set of users who have rated a

certain movie j, and R is the vector of known ratings with R(Ij, j) the column

vector where rows i are chosen.

mj = (UIjU
T
Ij

+ λnmj
H)−1UIjR

T (Ij, j) (4.3)

4.4 Implementation of ALSWR

In this section, we describe our collaborative filtering implementation of ALSWR

using the MPJ Express API. HDFS which has been introduced in section 3.2 is

the framework adopted to store our dataset.

The basic strategy for distributing the ALSWR algorithm to run in parallel

was already described by the original proposers in [101]. All nodes of a cluster

contain a certain subset of the large, sparse, recommendations array, R. R

is characterized as sparse because in general users rate only a few items. In

particular, it is convenient for the R array to be duplicated across the cluster as a

whole—divided across nodes both by columns and also by rows (or, equivalently,

decomposed two ways, both by users and by items). This is illustrated in figure

4.3, where i is the subscript identifying users and j is the subscript identifying

items, and the two different forms of decomposition of R are used in the two

different steps. Step 2, as defined in equation 4.2, conveniently uses locally held

R decomposed by i to update locally owned elements ui of the user model. B

is a block size for the locally held subset of elements, approximately constant

across the cluster for good load balancing.

Because update of ui potentially involves any element of the item model m, to

simplify this step all elements of m should be stored locally, in globally replicated

fashion.

Step 3 has a complementary structure but now update of mj may require

access to any element of u. So between steps 2 and 3 all the locally computed

elements of u must be gathered together and broadcast to processing nodes.

Similarly, between step 3 and step 2 in the next iteration of the algorithm, the

locally computed elements of m must be gathered and broadcast.

41

Figure 4.3: Visualization of an iteration of distributed ALSWR algorithm

Due to the fact that we want to implement parallel computing, the nodes

of the cluster need to be able to communicate with each other. This is called

collective communication. The first point of communication is established with

the world communicator: MPI.COMM WORLD. With COMM WORLD being

a constant of type Comm in the Message Passing Interface (MPI) class of MPJ

Express. One of the principles of MPI is to enable all processes to work together

with the aim to shift data between the memories of the processors. Another

important point of communication used in our implementation is MPI AllGather.

This last enables many elements to be sent to many processes by gathering all

these elements to all processes. An illustration of MPI AllGather is provided

in figure 4.3. “Processor space” runs across the page, processes are labelled

p0, p1, . . . and so on. Time runs down the pages with distributed computational

steps labelled as on page 40. Between computational stages there are collective

synchronizations in the form of “allgather” operations.

Finally, we use MPI Allreduce to sum over all processes then distribute the

results to all of these processes. Collective communication also implies synchro-

42

Figure 4.4: Sparse data structure to represent locally held ratings

nization between processes to enable them to wait for each other at a certain

point before continuing to the next stage of the program. Synchronization can

also be realized through the function: MPI Barrier. This function thus initi-

ates a barrier preventing processes to go beyond that barrier unless they have

all send a signal through the function. A major application of this barrier is to

synchronise processes before timing in benchmarking the program.

In our program, the data that we used for the implementation of the ALSWR

code consists of a sparse matrix of ratings, partitioned by users or by items.

Figure 4.4 illustrates the organization of the data where base[i] represents the

start of entries in big arrays per entity, num[i] the number of entries in big

arrays per entity, ratings are the actual notes given and targets the global

ID of target of rating. Assuming that the decomposition is by users, then the

target is an item otherwise it is a user. For i’th local entity, Xs represent the

corresponding values in “big arrays”. This whole structure is duplicated, once for

ratings distributed by user and once for ratings distributed by items. In the “by

user” case the size of the base and num arrays is the total number of locally held

users, with num[i] being the number of ratings by user i; targets elements hold

a global index of the rated item (index in the gathered array of item models). In

the “by item” case the size of the top arrays is the number of locally held items,

with num holding the number of ratings per item; a target element now holds

the global index of the user who made the rating.

In order to solve the symmetric positive definite matrix, we use Cholesky de-

composition from The Intel Data Analytic Acceleration Library (DAAL). DAAL

is an open source library that we use to decompose our matrix into a product of

a lower triangular matrix and its conjugate transpose [48]. There are three main

steps followed to reuse the structure of DAAL: we first create an algorithm of

type Batch from DAAL libraries then set an object as input for the algorithm

and compute Cholesky decomposition. Therefore we attempt to solve the linear

43

equation of type Ax = b, where A represents our full matrix, x a vector that

will contain the result of the equation on exit and b a vector containing the

right side (RHS) of the equation. Cholesky decomposition is computed with the

global variable decomp which is a n×n element array that will contain the lower

triangular Cholesky factor of A on exit. The following paragraph describes the

implementation of the update model

The updated model takes four arguments which are the local model, the

local number, the ratings and the complement global model. We implement

the update model by using the lower triangular matrix—see figure 4.5. Arrays

base, num, targets, ratings here are for ratings distributed by user. The

arrays uLoc, mGlob correspond to the distributed version of u and the replicated

version of m in step 1 of Figure 4.3. In practice, this code is parameterized so

it can implement either step 1 or step 2. Various two dimensional arrays with

first dimension nf are “flattened” to one dimensional Java arrays for performance

reasons. The code assumes each node holds numLocal elements of the distributed

user model. Within a node, we run NUM THREADS long-lived threads (they are

started at the beginning of the program), where the NUM THREADS parameter will

usually be related to the number of cores on the node. The variable me identifies

a thread within the local node (not to be confused with the MPI rank which

identifies a node). Threads will be synchronized before MPI collective operations

using barriers implemented by java.util.concurrent.CyclicBarrier. The

MPI operations themselves are only executed by the me = 0 thread.

In the final version of the code, the rating data for the MPJ code are read

from the same HDFS text files as used by the third party implementations of

ALS discussed in chapter 3. We use HDFS API to determine the blocks that have

replicas on nodes running MPJ processes. A heuristic is used to choose a load

balanced set of local replicas to read as described in chapter 6. The locally read

ratings are then partitioned to destination nodes using a variant of the CARI

communication schedules introduced in [93]. Section 4.5 is an early strategy that

was adopted.

4.5 Partitioning of Dataset

The partitioning of a dataset is the process of dividing the data into smaller

chunks with each partition holding a part of the dataset that has been split. We

partition our datasets for better efficiency of the program as it minimizes the

44

1 // ptr: temporary holding pointer into targets and ratings arrays

2 // u: temporary - vector of length n_f.

3 // A, V: global variables - a matrix of rank n_f and vector of length n_f, both

4 // mapped permanently to DAAL HomogenNumericTable objects.

5 for(int i = me; i < numlocal ; i += NUM_THREADS) {

6 ... initialize A and V to zeroes ...

7 for(int j = 0; j < n_f; j++) {

8 A[n_f * j + j] = LAMBDA * num[i] ;

9 }

10 for(int j = 0; j < num[i]; j++) {

11 ptr = base[i] + j ;

12 target = targets[ptr] ;

13 rating = ratings[ptr] ;

14 for(int k = 0; k < n_f; k++) {

15 for(int l = 0; l <= k) { // lower triangle

16 A[n_f * k + l] += mGlob[n_f * target + k] * mGlob[n_f * target + l] ;

17 }

18 V[k] += rating * mGlob[n_f * target + k] ;

19 }

20 }

21 solveSymPosDefSystem(u, n_f) ; // use DAAL to solve A u = V

22 for(int j = 0; j < n_f; j++) {

23 uLoc[n_f * i + j] = u [j] ;

24 }

25 }

Figure 4.5: Outline Java code for step 1 of the ALSWR update (Equation 4.2)
using sparse data structures of Figure 4.4

45

network traffic between the nodes and enables the program to run in parallel.

Having an even distribution of the data across the nodes facilitate the overall

computation on the cluster more particularly when dealing with large datasets.

The number of partitions is chosen according to the number of nodes available

within the cluster. For better optimization, we partition the datasets up to

a maximum number equal to the one of the nodes that will be used for the

experiments.

The strategies discussed in sections 4.5.1 and 4.5.2 requires data to be parti-

tioned into files before starting the main program. For ALSWR, we partition each

dataset two ways—by users and items. This was originally achieved through a

serial code whereby the data was accessed from the local file system. The second

approach adapted consisted of using MapReduce to partition the data, hence

having the datasets stored into HDFS and enabling these datasets to be read

from the Hadoop file system. We then measure and compare both approaches in

term of the total duration taken to complete a job. The final approach in section

4.6 partitions data during the execution of the program.

4.5.1 Partitioning of Ratings Dataset using a Serial Java

Application

As discussed in Section 4 the training data set of ratings is a sparse structure that

is stored in memory twice—once partitioned by users and once by recommended

items (equivalently it is a sparse matrix that is distributed both by rows and

columns).

The partitioning of the ratings by users will induce the partitioned version

of the user model, and similarly for the item model (though both these are

also stored at various stages of the algorithm in a fully replicated manner). In

practice we use a simple partitioning scheme based on a naive hash of the user

id or respectively item id—these are typically numerical identifiers stored in the

original rating files. This usually gives a sufficiently even partitioning. It is

worth noting on passing that the global index in the replicated form of e.g. the

user model is that implied by simply concatenating together the segments in

the partitioned form of the model because this is what MPI AllGather provides.

This global index is what is stored in the targets arrays of the internal sparse

representation of ratings partitioned by items (Figure 4.4), for example (it is

not the original numeric identifier in the source data set, and it is necessary to

maintain translation tables to convert back to the original identifier when models

46

or rankings are output at the end of the optimization algorithm.)

In our MPJ Express implementation of ALSWR, an early decision was made

to concentrate on the efficiency of the main iteration loop of the algorithm.

A corollary of that was the business of partitioning would be delegated to a

separate Java program that read the data set input file(s) and wrote them to a

set of partitioned files—2P in all, because of the two types of partitioning. The

parallel ALSWR code would just read these pre-partitioned files, 2 per node, and

load the data to its sparse data structures before starting the algorithm (initially

all files were stored in standard file systems).

For a production collaborative filtering code this would not necessarily be

the preferred strategy, but we were initially focused on the business of efficiently

parallelizing the main loop (keeping the partitioning logic out of the main com-

putational code may also be expected to reduce the memory footprint of that

code, thus allowing it to handle larger data sets).

Fairly soon it became clear that the overheads of partitioning the data were

quite significant compared with the main computational code, once the latter

was parallelized. Representative timings for different numbers of nodes are given

in Table 4.1a.

4.5.2 Partitioning of Ratings Dataset with MapReduce

We positively interpreted the drawback explained at the end of section 4.5.1 as

an opportunity to demonstrate the value of supporting multiple computational

frameworks (in our case MapReduce and MPJ Express) on the same Hadoop clus-

ter in an extended processing pipeline as illustrated in figure 4.6. So we wrote

a MapReduce version of the partitioning code with input and output files now

stored in HDFS. The main ALSWR program now had to be slightly rewritten

to take input from HDFS files rather than the local file system. The MapRe-

duce jobs have been implemented through several classes. Because we want each

dataset to be partitioned by users and by items, we have defined two mapper

classes one for the users and the other for the item; a partitioner class, a reduce

class and a driver class. We also aim to prevent poor partitioning by creating

custom partitioner classes for both users and items. Poor partitioning is a com-

mon issue observed when keys data are unevenly distributed resulting in some

reducers having more work than others and by consequence slows down the whole

process [91]. Below we describe the role of each class involved in the partitioning

process. More details on each class are also presented in the class diagram in

47

Figure 4.6: MapReduce/MPJ Express Processing Pipeline, mediated by HDFS

figure 4.7.

• The driver class is the main component; it is in this class that the URI of

the cluster is defined and all other classes implemented. The role of the

driver class is to do all the configuration then to submit the MapReduce

job.

• The mapper classes are the first step of the partitioning process. The

classes read the data and generate key/value pairs. Their outputs will

then be used in the reduce phase.

• The partitioner class manages the partition between the map phase and the

reduce phase. It is at this stage that the number of partition is specified.

The main job of the partitioner class is to allocate the output of the mapper

to the reducer.

• The reduce class takes the outputs from the mappers; it shuffles, sorts and

reduces the key/value pairs. The final result of the reducer is then stored

in the hdfs ready to be used by our ALSWR program.

• The custom classes enable the results from the mappers to be sorted in

different reducers grouped by the key. They enable a better distribution of

the data to the reducers.

Before partitioning the data, the dataset must be added to HDFS. This can

be done with the next command assuming we wish to add the Yahoo Training

dataset to the user christina in HDFS.

$ hdfs dfs -put /home/christina/YahooTrainData/* /user/christina

48

Figure 4.7: Map Reduce Partitioning Class Diagram

The following command illustrates how a YARN job is launched to partition

the Webscope dataset (yahoo music data) assuming we want to partition the

data in 2 by user and by song. The java code PartitionYahooData.java must

have been built into a jar before it can be used.

$ yarn jar PartitionYahooData.jar DriverClass 2 YahooTrainData

2YahooPartitionedTrainbyUser 2YahooPartitionedTrainbySong

Some errors linked to the Java Heap Space could occur particularly when parti-

tioning a very large dataset. A typical MapReduce Java Heap Space is caused

by the value of the percentage of memory designated for the maximum heap

size. The default value is 0.9 This value is used for caching values when us-

ing the mark-reset functionality [41]. To solve MapReduce Java Heap Space

problem we change the value of the mapreduce.reduce.markreset.buffer.percent

in the mapred-site.xml and set the value of the attribute to 0.5 as shown in the

following property definition:

<property>

<name>mapreduce.reduce.shuffle.input.buffer.percent</name>

<value>0.5</value>

</property>

The much improved performance of partitioning is illustrated in Table 4.1b.

For instance we now obtain 37 minutes for the Yahoo training dataset compared

to 5 hours with the previous approach. These results were obtained from ex-

periments implemented on a cluster containing 3 nodes. We have run again

the same partitioning code with MapReduce but this time on a bigger cluster

49

made of 12 nodes. We additionally partition our synthetic dataset. The results

are displayed in table 4.2. As we increase the number of nodes the the time

performance improves until we reach a certain number of processes where there

is either no significant improvement or the performance is becoming unstable

which means the results obtain are unpredictable and could be better or worse.

We interpret this aspect as a communication overhead within the cluster. For

the Yahoo testing set data this issue occurs from 8 nodes and with the Yahoo

training set from 7 nodes.

Table 4.1: Time Performance in Seconds of Datasets Partitioning

(a) Serial Java Program

of MovieLens Yahoo Testing Yahoo Train
Procs Dataset Dataset

1 910 1023 7215
2 1535 1640 10859
3 2780 2957 18562

(b) MapReduce

of MovieLens Yahoo Testing Yahoo Train
Procs Dataset Dataset

1 121 126 3771
2 95 97 2328
3 80 84 2241

of Yahoo Testing Yahoo Training SyntheD
Nodes Dataset Dataset

1 110 2979 86451
2 88 1659 44547
3 74 1428 40954
4 66 1061 26271
5 65 996 43539
6 62 729 28817
7 58 908 21891
8 61 500 18512
9 58 813 19447
10 59 540 12233
11 56 475 11243
12 57 500 8657

Table 4.2: MapReduce Partitioning on 12 Nodes Cluster in Seconds

4.6 Partitioning Data within the SPMD Pro-

gram

The last two sections discussed approaches to partitioning the data before the

parallel MPJ program implementing the ALSWR processing algorithm starts.

50

The partitions are stored to separate HDFS files that the MPJ program then

reads.

This approach has some benefits of simplicity, but it can be restrictive and

awkward in practice. It is more convenient and, it turns out, more efficient in

terms of overall execution time, if the MPJ program reads the original unparti-

tioned ratings files—probably also stored in an HDFS file or an HDFS directory—

and does the partitioning of ratings to the appropriate compute node as a phase

in the execution of the parallel program.

One advantage that MapReduce has in reading data from the HDFS dis-

tributed file system is that it can “move computation to where the data is”.

HDFS files are divided into large blocks stored on different data nodes in the

Hadoop cluster. Each block may contain a large number of records to be pro-

cessed by map tasks. Map tasks instantiated on the data nodes that contain the

records (the “split”) those tasks will work on. So they only have to read from

the local file system—they largely avoid non-local reads, which are relatively

expensive in HDFS.

In Chapter 6 we will discuss a general approach to allocating HDFS block

reads to the nodes of a SPMD program such as an MPJ program that affords a

similar advantage. We use that approach in the final version of our MPJ ALSWR

program. After this phase of reading locally stored ratings records we end up

with in-memory ratings that are not necessary in the memories of the nodes

that will ultimately process them (they effectively need bucket sorting through

the hashing approach mentioned earlier in this chapter, so that in a by-users

partition, for example, all ratings made by a particular user are stored on the

same compute node).

The required redistribution of data could be done in various ways in an MPI-

like implementation, but for simplicity we adopt the Collective Asynchronous

Remote Invocation (CARI) approach introduced in [93]. CARI is a class of API

that in general supports a kind of remote method invocation in a SPMD pro-

gram. CARI is designed so that it can efficiently support very large numbers of

lightweight invocations, using a bounded amount of buffering for the communi-

cations implied.

4.6.1 Background on CARI APIs

A basic pattern for asynchronous remote method invocation in general distributed

programming is likely to have an implementation class for the body of the remote

51

method. This class resides on the server side and accesses data there. For

illustration, we can simplify it to something like:

class myImplementation extends ...base class in the run time... {

T handleRequest(S arg) {

T result ;

... calculate result in terms of arg and server data ..

return result

}

}

where handleRequest is the method to be invoked remotely, the argument in-

formation is embodied in a record of type S and the result in a record of type

T. Asynchronous invocation of the method handleRequest from a client could

look something like:

remoteStub.invoke(actual, resultHandler)

where remoteStub is some client-side proxy for the server-side remote object,

actual is an actual argument of type S, and resultHandler is an object whose

class defines the asynchronous handling of the returned result (it is a “callback”).

The class of this object could be like:

class myHandler extends ...another base class in the run time... {

void handleResponse(T result) {

... do something with result ...

}

}

The invocation is asynchronous because the invoke method returns immediately,

but in general the handleResponse method will be called later on the client when

the result comes back from the server.

CARI APIs adapt this paradigm from distributed programming to run in the

context of massively parallel SPMD programs. A possible API, adapted from

[93], is given in figure 4.8. Following the original paper, this API is given in C++.

C++ has the benefit of powerful template classes, allowing type parameters like

S and T to be primitive types or flat struct types; Java generic classes would

require these types to be object types, which is not ideal when small entities

need to be moved across the network.

The SPMD programmer now extends the single base class CARIHandler to

define both the method handleRequest (called on a“server peer”—all peers gen-

erally act as servers as well as clients) and the method handleResponse called

52

template <class S, class T>

class CARISchedule {

public:

CARISchedule(MPI_Comm comm,

CARIHandler<S, T> *hndlr,

int buffSize, void *buffer);

void invoke(S *request, int tag, int dest);

void complete(void);

};

template <class S, class T>

class CARIHandler{

public:

virtual void handleRequest(S *request,

T *response);

virtual void handleResponse(T *response,

int tag);

};

Figure 4.8: Schematic C++ API for CARI

on the invoking peer when the result returns. The invoke method called on the

“client peer” is adapted to define the target “server” node by its SPMD rank

dest and also passes in a user defined tag value, as well as the actual argument

called request here. (The tag value only has local significance on the client—it is

passed to the handleResponse method when the result asynchronously arrives,

and can be use to identify the invocation this response corresponds to).

We won’t give a detailed application here, but in general the main program

of an MPI program using CARI may have sections of code like this:

CARISchedule<int,int> cari(MPI_COMM_WORLD, myHandler,

buffSize, buffer) ;

while(... more to do locally...} {

...

cari.invoke(arg, i, dest) ;

...

}

cari.complete() ;

In this example the argument and result types are just int. At the illustrated

point in the main loop the local node remotely invokes the handleRequest

method on peer node with rank dest. It passes in a tag i. It is up to the

53

user how this tag is used in the eventual handleResponse method, but a typi-

cal example would be where i is an index into a local array where the result it

to be stored or accumulated. The complete method must be called after this

phase of local processing is finished, to ensure all outstanding communications

and handleResponse calls (etc) are completed. After this collective call is com-

pleted, we can assume all asynchronous remote invocations are complete across

the cluster.

Of course the definition of the handleRequest and handleResponse methods

on myHandler are completely under control of the programmer.

A possible implementation will partition the provided buffer, and accumulate

arguments of locally made invocations into part of this buffer, until space is ex-

hausted. Then it may sort the buffer by destination and perform a collective all-

to-all communication to send arguments to servers. The relevant handleRequest

calls are made then another collective all-to-all sends results back to clients where

handleResponse calls are made. Then processing of the main loops continues.

4.6.2 Use of CARI in the present work

The earlier examples were given in variants of C++. Throughout this dissertation

we use Java. Java has some limitations on its generic classes and has a different

philosophy of memory management, so the Java interfaces implementation will

differ in detail.

For the specific partitioning application considered here we don’t need the

full power of request and response handlers. “Void return” remote invocations

are sufficient—in other words we don’t need to return results of invocations. Also

Java doesn’t have struct types that can efficiently pack multiple scalar types in

a single argument.

Figure 4.9 lists the finite set of (non-polymorphic) CARI classes we actually

implemented.

Here CARIScheduleInt is a base class for all CARI communication schedules

that invoke void methods with some number of int arguments (and thus use

communication buffers that are arrays of integers). The only publically used

method implemented in this class is the complete method.

Then we have two derived classes that are used directly by the programmer.

CARIScheduleI supports remote invocations that only take a single integer argu-

ment and CARIScheduleIII supports remote invocations that take three integer

arguments. The programmer extends CARIHandlerI or CARIHandlerIII respec-

54

class CARIScheduleInt {

public void complete() { ... }

}

class CARIScheduleI extends CARIScheduleInt {

CARIScheduleI(Intracomm comm, CARIHandlerI handler,

int buffSize) {...}

void invoke(int dest, int i1) {...}

}

abstract class CARIHandlerI implements ... {

abstract void handleRequest(int i1) ;

}

class CARIScheduleIII extends CARIScheduleInt {

CARIScheduleIII(Intracomm comm, CARIHandlerIII handler,

int buffSize) {...}

void invoke(int dest, int i1, int i2, int i3) {...}

}

abstract class CARIHandlerIII implements ... {

abstract void handleRequest(int i1, int i2, int i3) ;

}

Figure 4.9: Actual Java API for CARI subset (various class members used only
as part of implementation are omitted)

55

CARIScheduleIII schedule =

new CARIScheduleIII(MPI.COMM_WORLD, this, 1000000) ;

for(int i ; i < readRatings.size() ; i++) {

int extID = readIDs.get(i) ;

int targetExtID = readTargets.get(i) ;

int rating = readRatings.get(i) ;

schedule.invoke(extID % p, extID, targetExtID, rating) ;

}

schedule.complete() ;

[...]

void handleRequest(int extID, int targetExtID, int rating) {

int locID = layout.ext2locIDs.get(extID) ;

int ptr = base [locID] + (num [locID] ++) ;

targets [ptr] = ext2glbIDs.get(targetExtID) ;

ratings [ptr] = (short) rating ;

}

Figure 4.10: Partioning code using CARI

tively to define the implementation of these methods on the “server side”, and

passes the resulting handler classes to the constructors of the CARI schedule

classes (for now only these two pairs of classes were implemented because those

were all we needed in our ALSWR program; most of the detailed implementation

is in the CARIScheduleInt base class and adding new subclasses just involves

adding a few short “glue” methods).

No tag is needed in the invoke method, because the remote invocations

return no results.

Figure 4.10 shows part of the actual code using these CARI classes for par-

titioning the ratings data. The main loop in this code iterates over three corre-

sponding array lists readIDs, readTargets and readRatings that contain the

three fields of the locally read data records. The remote invocation is to the

destination processor with rank extID % p where p is the number of nodes the

program is running in. This is the hashing function that determines where a

given rating will be stored.

On the remote node, the method handleRequest is called. The various arrays

base, num, targets and ratings were introduced in figure 4.4. The hash tables

ext2locIDs and ext2glbIDs map external IDs stored in files to different kinds

of index internal to the program.

56

of Yahoo Training
Nodes Dataset

1 136
2 161
3 139
4 131
5 111
6 99
7 87
8 85
9 82
10 79
11 70
12 70

Table 4.3: CARI Partitioning on 12 Nodes Cluster in Seconds

Before this phase of partitioning is run, one previous phase has run that

counts the number of ratings that will be stored for a given user (or movie, in

the by-movie storage), thus defining the arrays base and also ext2locIDs, and

also computing sizes of targets and ratings. It is during this earlier phase that

our other CARI schedule CARIScheduleI is used.

Table 4.3 shows timing results for partitioning the Yahoo Training Set using

this CARI-based scheme within the main MPJ program for ALSWR. Data is

first read from a single large HDFS file containing the whole training set, using

the distributed strategy for reading data from HDFS that will be described in

chapter 6.

Comparing table 4.3 with the middle column of table 4.2, the dramatic im-

provement of this strategy over the MapReduce approach (which itself was a

major improvement over using a serial Java program) is clear.

4.7 Conclusion

MPJ Express, an open source Java MPI-like library is the main focus of this

research and can be configured on multicore devices or clusters. Since its in-

tegration with YARN in 2015, MPJ Express can be executed on YARN nodes

while using HDFS as a data storage. We use this potentiality to our advantage

and implement a collaborative technique with ALSWR opting for a cluster con-

57

figuration. In this chapter, we have analyzed the process that follows a typical

mpjrun command and dissected the ALSWR algorithm by stating the equations

that are involved and interpreting the way they are represented in our program.

We have also explained the terminology of dataset partitioning and its im-

portance in parallel computing. It is to be noted that for better performance

it is recommended to have a total number of partitions less or equal to the to-

tal number of nodes available in a cluster. Our datasets have been partitioned

following three different approaches: a Java-based program, partitioning with

MapReduce and with the SPMD program. The first approach was limited by its

time performance. Therefore with an attempt to solve this drawback MapReduce

partitioning was initiated and as a result, we were able to complete partitioning

jobs in a significantly better time frame. Nevertheless, there is still room for im-

provement and more particularly to adapt the program to much larger datasets

such as SyntheD where the distribution in 12 processes, for instance, takes over

two hours. To improve data loading time and partition the data in the same

code implementing ALSWR, we have introduced another approach called SPMD

which is further detailed in chapter 6.

58

Chapter 5

Performance Comparison across

Hadoop-based Frameworks

5.1 Introduction

In this chapter, we evaluate performance of our Hadoop MPJ-based collabora-

tive filtering approach and compare it with that of other platforms identified in

chapter 3.

We break down the steps followed for the experiments, starting from the en-

vironment set up to the analysis of the test outcomes. We run the ALSWR Java

code on Hadoop while using the version of MPJ Express which is integrated with

YARN; then compare the results obtained with 3 different Hadoop-based frame-

works: Apache Mahout, Apache Spark and Apache Giraph. We have described

these frameworks in chapter 3. For the experimentation we use datasets that

have been partitioned as explained in sections 4.5 or 4.6, consisting of Movielens

and Webscope (results for Synthed, our synthetic dataset, are deferred to chapter

7). The performance of the model built is measured on two grounds. Firstly,

we measure the time taken to compute the ALSWR code as well as its parallel

speedup across the Number of Threads available. Thereafter we measure the

accuracy of the recommendation by calculating the RMSE. Evaluation metrics

are reviewed in section 2.7.

The rest of the chapter is organized as follow. In section 5.2 we provide

details on the configurations required for the experimentation; notably variables

in the bashrc file and the preparation of the nodes. We assess the results of the

test on data from MovieLens and Webscope respectively in sections 5.3 and 5.4.

In section 5.5 we report the outcome of the RMSE calculation followed by an

59

overall analysis of the comparisons of all the frameworks that have been used on

this research in section 5.6.

5.2 Environment Set Up

Implementing the right environment in the cluster is an essential stage to our

experimentation as it determines the way resources will be used. It is at this stage

that software and frameworks are installed, classpath is defined and libraries

required for the program declared.

5.2.1 Prerequisites

Before configuring Hadoop and YARN nodes, Java and Secure Shell (ssh) must be

installed on all the nodes of the cluster and Hadoop software must be downloaded.

This can be done through Apache mirrors. To install Java on Linux, the software

is available for download from Java website [70], preferably the latest version

available. A file of type tar.gz should be available. Once the file is downloaded

and placed in the desired directory it has to be unpacked then the user should

install the Java JDK and the devel. Steps 1, 2 and 3 below respectively illustrate

the type of commands that can be input in the terminal to get the Java program

ready to run.

1. tar zxvf name-of-the-file.tar.gz

2. yum install java-name.of.version-openjdk

3. yum install java-name.of.version-openjdk-devel

To install ssh on Linux the following commands must be typed on a terminal.

1. sudo pacman -S openssh

2. sudo systemctl enable sshd

3. sudo systemctl start sshd

However, sometimes ssh could be already installed and in that case, only com-

mands 2 and 3 are required to enable the server.

60

5.2.2 Setting Up the Nodes

The configuration of Hadoop must be done on all the nodes of the cluster. In

principle depending on the size of the cluster two machines can be chosen to be

the master nodes, these will act as NameNode and others will represent slaves

nodes and perform as DataNode. These slave nodes can be registered into the

slaves’ file available in the configuration folder of Hadoop, therefore indicating

the nodes within the cluster that should be used to execute the jobs. Refer

to figure 3.1 for details on Hadoop architecture. Configuring Hadoop mainly

consist of organizing the layout of its files such as core-site.xml, hdfs-site.xml

and mapred-site.xml for instance as well as the environments of Hadoop daemons

(NameNode, Datanode and YARN nodes). We briefly describe the role of the

main files located in the Hadoop folder which must be amended prior to running

any job on the cluster.

• The core-site.xml file holds the configuration of the runtime environments

of Hadoop. Its role is to keep the Hadoop daemons informed on where

the namenode executes. It is on this file that we state which node will

represent the namenode and its port number.

• The hdfs-site.xml file holds the configuration of the namenode, second na-

menode and datanodes. We also define on this file the number of block

replication. Block replication is enabled to allow fault tolerance within the

Hadoop cluster. In case of a datanode failure, the same data is available

in another node. The default number for block replication is 3. Having a

much higher number may come at some cost to the cluster performance as

more copies will need to be saved when blocks are written.

• The mapred-site.xml file contains MapReduce configurations. On this file,

we determine the name of the framework for MapReduce. As we are using

the latest version of Hadoop which includes its resource manager YARN,

we set the value of the framework to YARN. By setting the execution

framework to YARN we inform Hadoop cluster that all MapReduce jobs

must run on YARN nodes.

Starting and stopping hdfs and yarn nodes can be done respectively with the fol-

lowing commands after logging as HDFS user. More details on these commands

can be found in [31].

• HADOOP PREFIX/sbin/start-dfs.sh

61

• HADOOP PREFIX/sbin/stop-dfs.sh

• HADOOP PREFIX/sbin/start-yarn.sh

• HADOOP PREFIX/sbin/stop-yarn.sh

These commands ensure that all the datanode daemons listed on the slave file

located within the namenode are launched or interrupted whenever requested.

There is a possibility to verify online whether the set up of Hadoop daemons has

been successful and that all the nodes are ready to use by entering the following

links corresponding to Hadoop web interface:

• http://name-of-the-host:8088/

• http://name-of-the-host:50070/

The port number 8088 correspond to the namenode default HTTP port and

the port number 50070 to the resource manager default HTTP port. We use the

host file located within the /etc folder to give names to the IP address of the

nodes for better usability. For instance the IP address: 148.197.54.18 is named

bdata02.static.port.ac.uk. Following is an example of how we certify the set up

of the nodes of our cluster.

• http://bdata02.static.port.ac.uk:8088/cluster/nodes

• http://bdata02.static.port.ac.uk:50070/dfshealth.html#tab-datanode

These links provide information such as the number of nodes active, memory

allocation, number of containers used but also report all applications that are

started on the nodes with their duration. To verify the status of the job history,

a similar structure is followed by replacing the port number by 19888.

5.2.3 Bashrc File

Bashrc is an editable shell script file wherein environment variables such as class-

path, any type of command, and downloaded libraries can be declared. At each

launch, the content of the bashrc file is run and this allows our program to run

more efficiently. It is in this file that we have exported the path and classpath of

MPJ Express, Java, Intel Data Analytic Acceleration Library (DAAL), Hadoop,

MapReduce, Ant and Maven as well as those of other frameworks which are used

along with our experimentation such as Apache Mahout, Spark and Giraph. To

62

amend the bashrc file an editor such as vi, nano or gedit can be used to open the

file. The following commands respectively illustrate how to modify the bashrc

file then run the updates made:

$ nano ~/.bashrc

$ source ~/.bashrc

In the next lines, we demonstrate how Java path and Hadoop environment vari-

ables have been set up in the bashrc file including the variables for MapReduce

and YARN.

export PATH=$JAVA_HOME/bin:$PATH

export HADOOP_INSTALL=/opt/hadoop-2.9.2

export PATH=$HADOOP_INSTALL/bin:$PATH

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

export HADOOP_CONF_DIR=/opt/hadoop-2.9.2/etc/hadoop

5.3 MovieLens 20M Ratings Experiments

The ALSWR code is tested with 50 features, 10 iterations, 0.01 for the regulariza-

tion parameter lambda λ and 0.01 for the parameter epsilon ε that is used in the

initial guess for the item model. Figure 5.1a compares the performances between

MPJ Express, Spark, Mahout and Giraph on a different Number of Threads.

MPJ Express and Spark have both good performance and parallel speedup: as

the number of cores increases the time decreases; Mahout does not show many

variances from four cores and above. We have obtained the ALS results of Apache

Giraph from a research collaborator: Matthew Barker [6]. There was a failure

with all attempts to run the ALS with Giraph on 1 thread. From 4 threads

to 8 threads, Apache Giraph time decreased from 37.15 to 7.16 minutes which

shows a great performance improvement. However, not much improvement was

observed from 12 threads onwards.

Figure 5.1b focus on MPJ and Spark to present better visibility on their time

completion. MPJ Express has the best performance amongst the four frame-

works. It is on average, 13.19 times faster than Apache Mahout, 6.97 times

63

0 5 10 15 20
0
5

10
15
20
25
30
35
40
45
50
55
60

Number of Threads

T
im

e
in

m
in

u
te

s
MPJE
Spark

Mahout
Giraph

(a) MPJE vs Spark vs Mahout & Giraph

0 5 10 15 20
0
1
2
3
4
5
6
7
8
9

10

Number of Threads

T
im

e
in

m
in

u
te

s

MPJE
Spark

(b) MPJE vs Spark

Figure 5.1: Frameworks Performance Comparison MPJ Express with MovieLens
dataset

faster than Apache Giraph and on average 1.4 faster than Apache Spark. Figure

5.2 represents the parallel speedup of MPJ Express and Spark. With sixteen

cores MPJ Express is almost 10 times faster than when it is run sequentially,

while Spark is just about 4.5 times faster than its result with one thread.

0 5 10 15 20
0

2

4

6

8

10

12

Number of Threads

P
ar

al
le

l
S
p

ee
d
u
p

MPJE
Spark

Figure 5.2: Parallel Speedup MPJ Express vs Spark with MovieLens dataset

64

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

Number of Threads

T
im

e
in

m
in
u
te
s

MPJE

Spark

Figure 5.3: Performance Comparison MPJ Express vs Spark with Yahoo dataset
on Max four Nodes

5.4 Yahoo Music 700M Ratings Experiments

Apache Mahout and Apache Giraph were unable to cope with the large Yahoo

dataset. For this reason, we have evaluated only MPJ Express and Spark versions

of the code for this dataset. Figure 5.3 shows a pattern quite similar to figure 5.1b

although this time our dataset is about 35 times bigger. Table 5.1 displays the

time measurement in minutes of the assessed frameworks. A closer look at figure

5.4 demonstrates a significant parallel speedup improvement of MPJ Express

which now runs more than 10.5 times faster on 16 cores than its sequential time.

The parallel speedup of Spark has also improved. It implements the ALS on

Yahoo dataset 7.5 times faster with 16 cores than when it is run in sequence.

However, from 12 cores onwards, the performance of the Spark version starts to

decrease.

of MPJ Express Spark
Threads

1 298 417
2 142 217
4 84.4 136
8 45.56 65
12 33.15 54
16 28.35 55

Table 5.1: Performance MPJ Express vs Spark in minutes

65

0 5 10 15 20
0

2

4

6

8

10

12

14

Number of Threads

P
ar

al
le

l
S
p

ee
d
u
p

MPJE
Spark

Figure 5.4: Parallel Speedup MPJ Express vs Spark with Yahoo dataset

1 12 24 36 48 60 72 84 96 108 120 132 144
0

0.1

0.2

0.3

0.4

0.5

1

1.66

2

2.17

·104

Number of Threads

T
im

e
in

se
co

n
d
es

MPJE

Spark

Figure 5.5: Comparison MPJ Express vs Spark Time Performance with Yahoo
dataset on 12 Nodes Cluster (SPMD Model)

66

We now execute more tests using the ALSWR code improved by the SPMD

model in chapter 6. The data no longer need to be partitioned beforehand as

it is handled directly in the code. The tests are furthermore run on the new

cluster using 12 nodes having each 12 cores hence 144 threads used in total.

The results in figure 5.5 show a much-improved performance of MPJ Express.

With 1 thread, the test is now completed in 276.08 minutes, compared with

our previous test without SPMD which was taking 298.54 minutes to load and

compute the records while the partitioning which was done separately was taking

another 49.65 minutes. With 12 thread MPJ Express was previously taking 33.15

minutes to implement ALSWR and an additional 8.33 minutes to partition the

yahoo dataset while now everything is done in 31.25 minutes. Apache Spark has

also experienced an improvement with the change of cluster. With the previous

cluster, the time performance of Spark was 417 minutes when running on 1 thread

and 54 minutes on 12 threads. With the new cluster, Spark now implements the

ALS algorithm in 361.2 minutes on 1 thread and 36.25 minutes on 12 threads.

The comparison between MPJ Express and Spark shows that for each of the

number of thread, MPJ Express had a better performance and from 84 threads

MPJ Express performs more than twice faster than Spark. Figure 5.6 shows the

parallel speedup of MPJ Express and Spark.

1 12 24 36 48 60 72 84 96 108 120 132 144
0

5

10

15

20

25

30

35

40

Number of Threads

P
ar

al
le

l
S
p

ee
d
u
p

MPJE
Spark

Figure 5.6: Parallel Speedup MPJ Express vs Spark with Yahoo dataset on Max
12 nodes (SPMD model)

67

Although on 48 and 72 threads, the parallel speedup of MPJ Express went

slightly down, it is not without saying that the overall speedup kept increasing.

There was still some improvement until 144 threads. On 144 threads MPJ Ex-

press was performing 37.14 times faster than its sequential run. On the other

side, the parallel speedup of Apache Spark was less stable with a decline on 24,

60, 96, 120 and 144 threads. The best parallel speedup of Spark was on 132

threads with the code running 22.02 faster than when ALS is run on 1 thread.

5.5 Root Mean Square Error (RMSE) Imple-

mentation

The error metric rmse is evaluated with 5 different values of lambda consisting

of: 0.01, 0.03, 0.05, 0.1 and 0.2. Lambda is our regularization parameter which

is used to prevent the overfitting problem. We start by adding to the layout the

ratings of Yahoo testing dataset as well as the predictions made with the training

dataset. We next calculate and square the residual for each rating which is equal

to the difference between the actual rating and the predicted rating. This result

enables us to calculate the mean and the squared root of this mean with the

function: Math.sqrt(). The pseudo-code in figure 5.7 gives more details of

the rmse implementation in our java code taking into consideration the MPI

Allreduce() method to sum over all the processes. Figure 5.8 displays the

results of the rmse tuned with different Lambda values on 25 iterations using the

Yahoo dataset. We aim for a rate as low as possible because it means that our

predictions are more accurate with the full awareness that the rmse cannot be

zero. A zero value would imply that the system is perfect which is unlikely due

to the fact that human being is hard to predict. The best result was achieved

with the lambda parameter 0.05 having a rmse equal to 1.0328.

5.6 Analysis of the results

The Mahout implementation of ALS—not necessarily representative of the wider

Mahout project—is based on MapReduce. The performance limitations of MapRe-

duce on iterative algorithms are well documented, see for example [28]. By con-

sequence Mahout takes more time than MPJ Express and Spark to go through

each iteration to implement the ALS algorithm. Esteves, Pais and Rong fur-

ther explain in [28] how the number of iteration can affect the communication

68

1 // ptr: temporary holding pointer into targets and ratings arrays

2 // numLocal: the size of external IDs (ExtIDs) as it appears in the file

3 for(int i = 0 ; i < numLocal ; i++) {

4 // Add in squared residuals

5 for(int j = 0 ; j < testRatings.num [i] ; j++) {

6 int ptr = testRatings.base[i] + j ;

7 int target = testRatings.targets [ptr] ;

8 int rating = testRatings.ratings [ptr] ;

9 double prediction = 0 ;

10 int iExt = testRatings.layout.extIDs.get(i) ;

11 int targetExt = complementTestRatings.globalExtIDs [target] ;

12 int iTrain = trainRatings.layout.ext2locIDs.get(iExt) ;

13 int targetTrain = trainRatings.ext2glbIDs.get(targetExt) ;

14 for(int k = 0 ; k < NUM_FEATURES ; k++) {

15 prediction += localModel [NUM_FEATURES * iTrain + k] *

16 complementGlobalModel [NUM_FEATURES * targetTrain + k] ;

17 }

18 double residual = rating - prediction ;

19 localSum += residual * residual ;

20 }

21 numLocalRatings += testRatings.num [i] ;

22 }

23 //Sum over all processes Allreduce() MPI method

24 double [] recv = new double [1] ;

25 MPI.COMM_WORLD.Allreduce(new double [] {localSum}, 0,

26 recv, 0, 1, MPI.DOUBLE, MPI.SUM) ;

27 long [] recvNum = new long [1] ;

28 MPI.COMM_WORLD.Allreduce(new long [] {numLocalRatings}, 0,

29 recvNum, 0, 1, MPI.LONG, MPI.SUM) ;

30 num = recvNum [0] ;

31 mean = recv [0] / num ;

32 return Math.sqrt(mean);

Figure 5.7: Outline Java code for the RMSE calculation (Equation 2.1).

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Number of Iteration

R
M
S
E

Lambda = 0.01

Lambda = 0.03

Lambda = 0.05

Lambda = 0.1

Lambda = 0.2

Figure 5.8: RMSE Results with Different Lambda Parameters

70

between mappers and reducers and as a result adds more network usage during

the parallel computation. The overall poor performance of Apache Giraph in

the experiments could be due to a lack of optimisation or better configuration

put in place. It also seems that Giraph needed a bigger cluster as the tests done

by Barker [6] often failed due to insufficient memory. As a solution to improve

the performance of Giraph, more time should be spent investigating on the best

configuration possible and analysing the output of the log files on Hadoop site.

The supersteps should also be observed, particularly the time taken to complete

each superstep. Another solution as proposed by Baker [6] could be to optimize

the calculation of the symmetrical matrix in the ALS code, to compute half of

the matrix instead of the full matrix similar to DAAL calculations [48].

According to pseudocode given in [100], the Spark implementation uses a

combination of its parallelize and collect operations to reproduce the communi-

cation operation called MPI Allgather here. We assume that the MPI collective

algorithms can implement this pattern more efficiently. There is a discussion

of efficient implementations of Allgather in [92] for example. Our original the-

ory regarding Spark been outperformed by MPJ Express was that there may be

some degradation of the performance of Spark when there is not enough mem-

ory (RAM) as the storage has to be on disk when the program is running out

of space. However, with the use of a bigger cluster (from 4 nodes to 12 nodes

used) we have demonstrated that MPJ Express was still performing better than

Apache Spark.

5.7 Conclusion

In this chapter, we have revealed our experiments in detail starting by the en-

vironment set up then running numerous tests on our datasets. The results of

the tests were compared with those from other widely used frameworks. Var-

ious computational frameworks have been adopted over the last few years for

running compute-intensive kernels of recommender algorithms on Hadoop plat-

forms. These include Apache Mahout, Apache Spark and Apache Giraph. We

have provided evidence that by adding MPJ Express framework to this list, it

can outperform other implementations of the central optimization algorithm.

This additional performance certainly comes at some cost in terms of program-

ming complexity. For example, the MPJ programmer has to spend more time

concerned with details of data and computation partitioning, as well as orches-

71

trating communication between Hadoop nodes. It is equally the case that the

HPC MPI paradigm does not automatically provide reliability features found

in MapReduce or Spark, and achieving resilience may need extra programming

effort. Nevertheless, we argue that for some intensive and often used kernels, the

extra investment in programming may be justified by the potential performance

gains. We see MPI-based processing stages as one more resource in the armoury

of big data frameworks that may be used in processing pipelines run on Hadoop

clusters. We also suggest that in this setting MPJ Express may be a natural

choice of MPI-like platform, given that many other such processing stages will

be coded in Java or JVM-based languages.

72

Chapter 6

SPMD Processing of Hadoop

Data

6.1 Introduction

In early stages of development of our SPMD MPJ code for collaborative filtering

on Hadoop, the overheads of loading data into the program were unexpectedly

large and reduced the performance margin the MPJ approach might have over

other Hadoop based approaches (as discussed in chapter 5). In section 4.6 we

pointed out that some of these other approaches, like MapReduce, make best

use of the properties of the HDFS file system by “moving work to the data”.

Distributed file systems like HDFS have the not-surprising property that reads

from data blocks stored on the local file system are significantly faster than reads

that have to fetch blocks from remote hosts. So if processing of locally stored

blocks can be done on the local CPU, significant performance gains are possible.

Our early MPJ implementations of ALSWR read pre-partitioned data from

2P HDFS files (ratings data partitioned by user and by item—see section 4.5).

It suffered from the overhead that most of the data accesses would have been

remote accesses because no attempt was made to localize the partitioned files to

the hosts that would load each file. Doing that would have been difficult because

at the time files are written we don’t generally know which hosts will later be

running particular processes of the SPMD program.

To avoid the overheads of non-local accesses, the final version of our ALSWR

program adopted an approach to loading files where blocks of an HDFS file were

indeed read by a SPMD process running on the same node of the cluster that held

a copy of that block—similar in spirit to how a MapReduce “split” is processed

73

by a map process running on a host that contains a copy of that split in an HDFS

block in its local file system.

In a general SPMD program this strategy means that a record of data will

not always be read by the process that ultimately “needs” this item. But our

experience with ALSWR was that it works well to do the reads locally then

do a permutation of the data within the parallel program to get each value to

the process that needs it (see section 4.6 for how we did this permutation in

our program). For some types of parallel program, for example embarrassingly

parallel programs, such a permutation may not even be needed.

Because this general strategy of reading records locally from an HDFS files

system into a parallel program may be useful beyond our ALSWR code for

collaborative filtering, we treat it here in a self contained chapter.

6.2 Statement of Problem

We assume that we have a data set stored in HDFS files. The data set therefore

consists of a set of N blocks stored in a replicated way across the nodes or hosts

of a Hadoop cluster (we will use the terms node and host interchangeably). Each

block typically has a small, fixed number of replicas, stored in the file systems of

different hosts, those hosts chosen by a policy we will treat as random—though

in practice it may not be very uniform. Three replicas of each block is common,

but this number is configurable. The size of individual blocks is typically quite

large. 128MB is common, but again configurable. So even quite large data sets

will have a relatively manageable number of blocks—e.g. thousands of blocks for

a terabyte data set.

We want to process this data set using an SPMD program, running across

nodes of the Hadoop cluster—with processes on either all or a substantial subset

of nodes.

The problem we want to address here is how to divide blocks between node

processes of the SPMD program so that:

1. every block is read into exactly one process,

2. the division of blocks between processes is as even as possible, i.e. all nodes

of the program read and process similar numbers of blocks, and,

3. as far as possible, processes read their blocks from the local host—in other

words processes consume blocks that have a replica on the same host of

74

the Hadoop cluster that the process themselves are running on.

For simplicity we will assume there is at most one SPMD process in the job per

host of the cluster.

According to requirement 3 above, SPMD processes are supposed to read

blocks from their local file system as far as possible. We will implement this

requirement by a strategy in which we first allocate block reads to processes

where it is possible to do these reads locally. In general this is possible if and

only if the subset of hosts running the SPMD program actually hold a replica

of the blocks in question. The likelihood of this depends on how large a fraction

this is of the total number of nodes in the cluster, and the replication factor

of blocks (we will discuss this further in section 6.4). After all blocks that can

be are allocated as local reads—distributed as fairly as possible over the SPMD

hosts—the remaining blocks will be read by non-local HDFS reads, probably by

less loaded hosts. The remainder of this section is concerned with the first part

of the problem—allocating all possible local reads.

Figure 6.1 gives a simple example of a possible distribution of replicas in

an HDFS cluster, and an ideal allocation of block reads. The distribution in

figure 6.1a has been generated by a uniform random processes. The pink shaded

replicas in figure 6.1b then represent a possible allocation of block reads to the

local host, such that every block is read once, and there are the same number

(six) of block reads for every host. For illustration, this figure assumes that

SPMD processes from our job run in every node of the Hadoop cluster—most

often in practice this will not be the case, not least because Hadoop clusters are

usually shared resources.

It seems hard to give an algorithm for solving this problem with any proof of

optimality. Instead we will consider heuristic approaches, which are observed to

work reasonably well in practise. The algorithmic complexity of these approaches

are controlled by the number of blocks and the number of nodes, and we expect

both these numbers to be small compared with the data size and thus the com-

putational complexity of the processing eventually done by the SPMD program.

So it is reasonable for the allocation of blocks to processes to be done centrally at

the start of the program—we won’t try to make this allocation heuristic parallel

or dynamic.

75

(a) Random distribution of replicas of 24 blocks over four
hosts, with replication count two.

(b) Ideal allocation of block reads from local replicas (pink
blocks).

Figure 6.1: Simple example of allocation of block reads. In this example the
SPMD world covers the entire cluster of four hosts.

6.3 Heuristics to solve Local Block allocation to

nodes

Inputs to the local allocation problem include

1. a set of blocks we call Blocks:

|Blocks| = N (6.1)

2. a set of hosts called Hosts comprising the nodes of the Hadoop cluster,

3. a labelled series of subsets of Blocks called Replicash, where h ∈ Hosts

76

runs over all hosts of the cluster. Replicash is the subset of blocks that

have a copy stored in the file system of host h. And finally

4. the subset World ⊂ Hosts of hosts that the SPMD program will be

running on.

The output of the algorithm will be another series of subsets of Blocks called

Alloch, where now Alloch is the set of blocks that will be read and processed

by the SPMD process running on host h.

To avoid introducing too many new names, below we will treat the Alloch

as a collection of variables that are all initialized to empty sets then iteratively

updated to yield their final output value Another variable that will be used in the

algorithm is Avail. This is another subset of blocks, namely those that have not

yet been allocated to any SPMD process. Its initial value will be just Blocks,

and the goal is to reduce this to the empty set—i.e. to allocate all blocks.

For all hosts h ∈World, we will define:

Availh = Avail ∩Replicash (6.2)

which is the subset of blocks that have not been allocated and have replicas on

h, or in other words the set of replicas on h that are still available for allocation.

We say that a host h in World is live if Availh is not empty. So it is still

possible to allocate new blocks to live processes. Formally:

Live = {h : World|Availh 6= ∅} (6.3)

Now we can give our simplest heuristic for allocating blocks to hosts, which

is a Round Robin scheme:

Round Robin Heuristic

Avail = Blocks

For all hosts g in World:

Allocg = ∅
h = First(World)

Repeat while any host is live:

if h ∈ Live:

Copy an element of Availh to Alloch and remove it from Avail

h = Next(World, h)

77

Here the function First() simply chooses some first element from a set, and the

function Next() iterates repeatedly through elements of a set in a round robin

fashion.

In this pseudo-code it is important to note that the definition of Availh

in equation 6.2 is maintained, so removing the block from the set Avail also

removes that block from Availh, and removes it from the Availg set of any

other host g that has a replica of this block. Mathematically the presentation

above is concise, but in practise the way this is implemented is that the object

representing a block holds a short list of hosts on which that block is replicated.

When a block is “removed from Avail”, the actual implementation is to iterate

through hosts, g, of its replicas, removing the block from a Hash-Set representing

Availg on host g.

It is easy to see that the algorithm given above always converges. If time

to access Hash-Sets and Hash-Tables is considered constant, and the number

or replicas of each block is treated as a small constant factor, typical execution

time to allocate all N blocks will be O(N). However what is not guaranteed is

that this scheme in fact allocates all blocks; in other words, when the heuristic

completes it is not guaranteed that:⋃
h∈World

Alloch = Blocks (6.4)

No similar scheme can guarantee this, because World is a subset of Hosts

and some blocks may simply not have replicas within World so local reads are

impossible (this is discussed more quantitatively in 6.4). What this and similar

heuristics later in this section do guarantee, however, is that all blocks that do a

have a replica inside World will have a local block read allocated for them. In

other words if we define:

Blocks′ =
⋃

h∈World

Replicash (6.5)

all blocks in Blocks′ will get allocated. This is simply because the initial value

of ⋃
h∈World

Availh (6.6)

is Blocks’, and the algorithm doesn’t terminate until all Availh are reduced to

the empty set, and a block can only be removed from these sets by allocating it.

78

So then the main criterion for comparing such heuristics is not how many

blocks they successfully allocate, but how evenly the final Alloch are divided

across hosts h. For most purposes this can be summarized by the quantity:

max
h∈World

|Alloch| (6.7)

which we can regard as the parallel read time, where the unit is the time to do

a local read of a single block. A more balanced allocation will have a smaller

parallel run time.

Later we will present evidence that the simple Round Robin heuristic works

quite well provided the SPMD World contains a sufficiently large fraction of all

Hosts, and the distribution of replicas over the hosts is sufficiently uniform. But

our experience is that in real HDFS systems this distribution is sometimes not

particularly uniform. And experiment suggests even for the randomly generated

example of figure 6.1, around half of the time this heuristic does not get the

ideal solution—instead it may end up with local allocation sizes varying between

5 and 7 blocks.

An example of a non-uniform distribution of replicas that can be more prob-

lematic for the allocation heuristic is given in figure 6.2a.

This distribution has the property that Host 1 holds a replica of every block,

and the “second replicas” are scattered over the other three hosts. This may

seem contrived, but we have seen similar decompositions arise in practice when

the data set was originally written by a single host of the cluster—the first replica

of each block goes to the local file system (on Host 1 in the example). In any

case, here we just take this as an example of a non-uniform kind of distribution

that has been observed in practice.

Figure 6.2b is one experimentally obtained result of applying the Round

Robin heuristic to this decomposition. Load balancing is poor, with the number

of block reads varying between 4 and 8. Experimentally this is a slightly worse

than average result for this basic scenario; but it is also not a very unlikely result.

The problem here is that Host 2 starts with a smaller number of available

replicas (|Availh|) than other hosts. As other hosts have blocks allocated locally

that are shared with Host 2, the available replicas on Host 2 are further depleted.

Before long, there are no replicas of unallocated blocks remaining to allocate on

Host 2. It ceases to be “live” before a fair number of blocks have been allocated

here. This is an almost a trivial observation—that allocating replicas on other

hosts that share a block gradually depletes replicas available locally. But it

79

(a) Non-uniform distribution of repli-
cas of 24 blocks over four hosts, with
replication count two.

(b) An allocation of block reads to
hosts generated by the round-robin
heuristic.

(c) An allocation where allocation to
hosts with minimum available replicas
is prioritized.

(d) Similar to figure 6.2c but with dy-
namically bounded partition of alloca-
tions.

Figure 6.2: A non-uniform distribution of replicas over four hosts, with the results
of various allocation heuristics.

motivates the improved heuristics below.

A first attempt to improve the heuristic might simply prioritize the allocation

to hosts that have the fewest unallocated replicas available:

Straw Man Heuristic

Avail = Blocks

For all hosts g in World:

Allocg = ∅
Repeat while any host is live:

Choose a live host h that has the least |Availh|
Copy an element of Availh to Alloch and remove it from Avail

This contains the germ of an idea, but in itself provides very poor performance. A

typical outcome is given in figure 6.2c. Here the number of block reads allocated

to hosts varies between nine and zero, with zero reads allocated for the final host,

80

Host 3.

The problem with this approach is that it loses a natural fairness property

of the Round Robin scheme. When we allocate a block read to one of the hosts

least endowed with replicas, we also reduce the number of available replicas on

that host. So typically the next read is also allocated to that same host, and

so on, until all its local replicas are exhausted. This may be OK for Host 2 in

our example, because it starts with only six replicas. But when next allocation

moves on to Host 0, all nine replicas there get allocated before moving on, and

so on. By the time Host 3 might be processed, all reads have been allocated.

A slightly brute force method of tackling this overly greedy approach is to

place a bound on the maximum number of reads that may be allocated on a

particular host at a particular time. An obvious first attempt for this bound

might be just:

B = dN ′/|World|e (6.8)

where N ′ = Blocks′ (see equation 6.5). Then we modify our heuristic as follows:

Interim Heuristic

Avail = Blocks

For all hosts g in World:

Allocg = ∅
Repeat while any host is live:

Inspect the set of live hosts h with |Alloch| < B

Choose a host h from this set that has the least |Availh|
Copy an element of Availh to Alloch and remove it from Avail

This ensures that no host gets more than B block reads, and increases the chances

that all nodes get at least some of the reads. Unfortunately as it stands the static

bound in equation 6.8 may lead to divergence of the main loop, because if some

hosts run out of available replicas before saturating B, it can become impossible

to allocate all the replicas on the remaining live hosts without allocating more

than B replicas to any of them.

To fix this, we define the set of fully loaded hosts as those in the SPMD

World that are no longer live. So:

Loaded = {h : World|Availh = ∅} = World− Live (6.9)

There will be no more allocations on the fully loaded hosts, but total number of

81

blocks that we hope to eventually allocate to hosts that are currently live is the

number of blocks that haven’t already been allocated to the fully loaded hosts,

viz:

Nlive = N ′ −
∑

h∈Loaded

Alloch (6.10)

Note this is not the same thing as the number of blocks that have not yet been

allocated, because some blocks will already have been allocated on the live hosts.

So now at a given stage of processing we can define a less conservative bound on

the partition size, B, as:

B = dNlive/|Live|e (6.11)

This value of B may change as the calculation progresses (it may grow as the

live set is reduced), but its effect will still be to suppress over-eager allocation to

any single host.

With the definition of B in equation 6.11, it is easy to show that if there is

any live host, then there is a live host h with |Alloch| < B. This implies that

Interim Heuristic converges.

For our example of figure 6.2, Interim Heuristic together with the definition

in equation 6.11 gives the ideal result in figure 6.2c.

One certainly shouldn’t be complacent over a heuristic that happens to work

for one fairly contrived-looking example. And in fact Interim Heuristic is not

particularly successful on more uniform initial distributions of replicas—often

less so than the original Round Robin heuristic. It still has the undesirable

property that predominantly it visits one node and allocates all possible reads

on that node, then moves to another node and allocates all possible nodes there,

and so on. The original Round Robin approach seems intuitively fairer, and the

evidence backs this up.

But now consider the following small modification of Interim Heuristic:

Improved Heuristic

Avail = Blocks

For all hosts g in World:

Allocg = ∅
Repeat while any host is live:

Inspect the set of live hosts h with |Alloch| < B

Choose a host h from this set that has the least (|Availh|+ |Alloch|)
Copy an element of Availh to Alloch and remove it from Avail

82

The difference from Interim Heuristic is that now we prioritize allocation on

hosts with least |Availh| + |Alloch|. Initially all Alloch are empty so the host

with least |Availh| gets priority. But now, as a block is allocated to h, |Availh| is
decreased and |Alloch| is increased—so this host’s priority is unchanged. Mean-

while a side effect of the allocation on this host is to reduce |Availg| on other

hosts that share the same block, increasing the priority of those hosts. So, either

now or shortly, allocation will move on to another host. In fact the eventual

behaviour will have the allocation focus jumping from host to host in a way that

reproduces the intuitive fairness of Round Robin, whilst also giving priority to

hosts with smaller or depleted sets of available replicas.

This is in fact the heuristic that gave rise to the “ideal” allocation in figure

6.1b.

6.4 Evaluation on Randomly Generated Replica

Distributions

Assume the SPMD World has size wP , where P is the total number of hosts

in the cluster and the rational factor w is in the range 0 < w ≤ 1.0. In other

words, w is the proportion of hosts in the cluster that are running our current

SPMD job. We will also assume that the block replication factor for the HDFS

system is integer F , where F ≥ 1.

Now, assuming replicas are assigned randomly, if F = 1, the probability of

any given block not having a replica in the SPMD World is 1 − w. If F = 2,

the probability of both replicas of a given block not being in World is (1− w)2.

And so on.

So in general the probability of all replicas of a given block not being in

World is (1−w)F , and the expected number of blocks that do have a replica in

World is:

N(1− (1− w)F) (6.12)

Here we have assumed a very simple random process, and have not taken into

account the constraint that there can’t be more than one replica of any given

block on any given node. But equation 6.12 is likely to a be reasonable estimate

for many purposes (and is in good agreement with our more detailed simulations).

What this tells us is in practice is that if F is 3 (the default for an HDFS

implementation) and our SPMD job runs on half the nodes of the cluster (w =

83

1/2), then the about 88% of blocks can be read by local reads (the remainder will

have to be read by non-local HDFS reads). A well balanced set of local reads is

then likely to give a useful performance gain. If the SPMD job runs on a quarter

of the nodes, about 58% of blocks can be read locally, which may still leave good

balancing of the local reads beneficial. For smaller jobs there is probably limited

gain over just doing all reads by non-local means. Nevertheless we take these

results as encouraging for the case of large jobs.

To evaluate our heuristics we have written a program that randomly gener-

ates more realistic distributions of blocks over hosts subject to a given replication

factor. Some results of running this program are shown in figure 6.3 which com-

pares“parallel read times” (in units of individual block read times) as a function

of cluster size, for various numbers of blocks N and values of the ratio w. Blue

plots are for the original Round Robin heuristic; red plots for “Improved Heuris-

tic”. Here we have run our simulation for various sized clusters and for a few

different values of the ratio w (all for F = 3). Vertical axes are labelled as “par-

allel run time”, but this just means the largest number of local reads allocated

to any process in the SPMD program (world). We assume for simplicity that all

local reads take the same, unit amount of time. So it is really a measure of load

balance. For each value of cluster size and w, 1000 different block distributions

are generated, and the plotted value of the parallel read time is the average over

these distributions.

Nearly always, our “improved heuristic” is better than the original “round

robin” heuristic. Although the differences are often quite small, some advantage

of the improved approach seems clear, and we have used this approach in practice.

6.5 Practical Application

For reference, figures 6.4 and 6.5 illustrate some essential parts of the Hadoop

API used to implement our scheme in practice.

Figure 6.4 shows how metadata about the blocks of a file can be extracted

using the HDFS API. Here fsURI and fileName are inputs to the program

that define the URI of the HDFS file system and the name of the input file (in

reality our program also allows input of multiple files in the same HDFS directory

which requires small changes). The properties of the HDFS BlockLocations are

extracted and stored in a small serializable object of type Block that is part of

our program. The relevant properties are the file path, offset of the block from

84

(a) w = 1.0 (b) w = 0.75

(c) w = 0.5 (d) w = 0.25

Figure 6.3: Comparison of “parallel read times”. Blue plots are for “Round
Robin heuristic” and red plots for “Improved Heuristic”.

85

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.FileStatus;

import org.apache.hadoop.fs.BlockLocation ;

import org.apache.hadoop.fs.CommonConfigurationKeysPublic ;

[...]

Configuration conf = new Configuration() ;

conf.set(CommonConfigurationKeysPublic.FS_DEFAULT_NAME_KEY, fsURI) ;

FileSystem fs = FileSystem.get(conf) ;

[...]

// Extract metadata about blocks of HDFS file:

Path path = new Path(fileName) ;

FileStatus file = fs.getFileStatus(path) ;

long length = file.getLen() ;

BlockLocation[] blkLocations;

blkLocations = fs.getFileBlockLocations(file, 0, length);

for(BlockLocation blkLoc : blkLocations) {

Block block =

new Block(file.getPath().toString(),

blkLoc.getOffset(),

blkLoc.getLength(), blkLoc.getHosts()) ;

[... store block for allocation heuristics ...]

}

Figure 6.4: Example use of HDFS API for extracting metadata about blocks

the start of this file, size of the block in bytes, and the short array of hosts that

store replicas of this block. The resulting collection of Blocks is an input to our

load balancing heuristics. Presently the code in figure 6.4 and the heuristics are

run only on the rank 0 process.

After the load balancing heuristics have been run, arrays of local Blocks to

read are sent to all processes and stored there in a variable localAllocations.

Then code like figure 6.5 is run to read these blocks and extract individual records

(ratings in our case) for local processing. This makes use of a couple of classes

from the MapReduce API—FileSplit and LineRecordReader. There is no

guarantee that a block contains an exact number of records—the first and last

records in the block may be split over adjacent blocks. But the MapReduce API

takes care of any small non-local reads that may be needed to take account of

86

import org.apache.hadoop.mapred.FileSplit ;

import org.apache.hadoop.mapred.LineRecordReader ;

import org.apache.hadoop.io.LongWritable ;

import org.apache.hadoop.io.Text ;

[...]

for(Block block : localAllocations) {

// Read records in block using MapReduce API:

FileSplit split =

new FileSplit(new Path(block.path), block.start,

block.length, (String []) null) ;

LineRecordReader recordReader =

new LineRecordReader(conf, split, "\n".getBytes()) ;

LongWritable key = new LongWritable() ;

Text value = new Text() ;

while(recordReader.next(key, value)) {

byte [] record = value.getBytes() ;

[... process fields of record ...]

}

}

Figure 6.5: Example use of MapReduce API for processing blocks in SPMD
program.

this.

Note the LineRecordReader class is technically part of the internal imple-

mentation of MapReduce and its interface is flagged as “unstable” in the source

code. This is not ideal, but it would be tedious to re-implement its functionality

from scratch. The API illustrated here is based on Hadoop 2.9.2.

Table 6.1 gives actual benchmarks for the time to simply read all records

(without any processing of fields) in our ALSWR, loading the Yahoo Training

set. The first column gives times for loading when locality of blocks is ignored,

so most reads will be remote reads. The second column gives the timing when

applying our heuristic to make most reads local. When the program is running

on a number of nodes approaching the cluster size (12 nodes in our case) read

times are better by a factor up to about three.

Absolute times for reading data are however relatively small compared with

other parts of the computation reported in earlier chapter. It is worth noting

87

of Non-local With local
Nodes reads block read

heuristic
1 83 80
2 50 43
3 33.7 25.5
4 23.6 20.2
5 27.8 13.1
6 22.2 9.9
7 19.5 8.0
8 18.7 7.6
9 18.0 7.1
10 16.7 6.0
11 14.8 5.4
12 14.0 5.1

Table 6.1: Times in seconds for reading Yahoo Training set with and without
local block read heuristic

that use of the standard Java APIs for string manipulation and parsing numbers

may easily outweigh the costs of actual data loading, and in our program we

wrote custom parsing methods to read numbers from byte buffers.

6.6 Conclusion

The data loading overhead that occurred during the implementation of ALSWR

has inspired us to try a different approach and eliminate the extra step of par-

titioning datasets before running the code. The approach described here allows

the records to be read locally from HDFS and to be evenly distributed across

processes. In this chapter, we have described heuristic approaches which have

been applied then improved to allocate local blocks to nodes. Both heuristics

(original and improved) have then been evaluated through a program that ran-

domly generates distributions of blocks across the nodes available in the cluster.

The results obtained have demonstrated that most cases, the improved heuristic

approach performs better than the original one. Using the improved heuristic on

the Yahoo dataset, we have benchmarked the time performance to load records

and compared the results with non-local data loading. We found that the time

taken to load data with the improved heuristic method was almost three times

faster.

88

Chapter 7

Toward Social Media Scale

7.1 Introduction

Social media has taken huge importance in society. The number of subscribers,

followers, twitters, bloggers and so on, has massively increased since the emer-

gence of all these various communication tools. In this context, the term social

media is used to define any existing platform that is used by some participants

to exchange some information by mean of electronic devices. Social media is

used for many different ends. It is used for marketing purpose to help a business

to grow or to reach out to people and potential stakeholders. It is also used

to connect with people without geographic restriction, to share some topics of

interest or career opportunities. The fact that the basic usage of the majority of

social media platform is mostly free makes it greatly accessible around the world.

From a business point of view, connecting with people enables an organisation to

assess its customers, to be able to better target the services and products needed

and to evaluate its performance based on customers’ feedback and comparisons

with other competitive brands. To optimise the effect of social media in their

business many organisations are already applying some recommendation systems

techniques to help analyse their clients and predict their behaviour. The main

challenge we want to tackle here is the scalability of recommendation systems

and more specifically, for approaches used at present to be usable years ahead

despite the rapidity of user growth within businesses.

In section 7.2 we provide some examples of well-known social media and the

recommendation techniques they are using. In section 7.3 we evaluate the data

growth within the organisations listed as examples in section 7.2. In section 7.4

we propose a means to measure the scalability of recommendation systems and

89

its usability in future years.

7.2 Example of Social Media Recommendation

Techniques

In chapter 2 we have discussed recommender systems and reviewed some of the

available techniques. Social recommendation techniques can be defined as a set

of algorithms which enables suggestions to be offered to some individuals based

on their social connections or similarities with other users on a social network.

The suggestions sent by social media platforms are various depending on the type

of users’ interactions. On a network side, recommendations could be on friends

to add when referring to Facebook, people to connect with for Linkedin, people

to follow if referring to Instagram or Twitter for instance. From a business point

of view, suggestions are made on products or services used by individuals socially

connected and which could influence the interests of the person targeted for the

recommendation. In this section, we choose some of the most popular social

media platforms in 2019, based on the number of their monthly active users, and

analyse their recommendation techniques.

7.2.1 Facebook

Facebook is currently the most popular social media network, by its number of

monthly active users which is over 2.3 billion, and its worldwide presence. Vari-

ous algorithms are used to provide recommendations according to the platform

on Facebook. Facebook apply recommendations to the users’ timeline on the

news feed section, the market place, businesses having a page on Facebook and

for friends suggestions. Facebook is well known to offer a simple way to enable

participants to increase their network by its famous section: ”People You May

Know”. This suggestion is established from common or mutual friends, individ-

uals frequently sharing the same location or tagged in the same picture or even

new added contacts [17]. Facebook has furthermore recently launched Facebook

Dating [64]. This new project also requires the implementation of a social recom-

mendation system as it provides suggestion to users who have selected Facebook

dating and create their profile. The affinity between the participants is in general

based on their common interest.

Regarding news feed, Facebook has put in place a new ranking algorithm since

90

2018 that calculates the relevance of a post based on people reaction [63]. The

number of comments, interaction with the post including likes and posts shared

are the main factor for the level of appearance in the Facebook news feed. To

improve the posts suggested in the news feed, Facebook launched in March 2019

“Why am I seeing this post?” [65]. This section allows users to acknowledge the

reason behind the recommendations they receive. Facebook also adopts graph

processing which is implemented in Apache Giraph. This method helps users

finding contents such as pages, groups, game and so on. We have discussed this

approach in sections 1.3.1 and 3.5. Figure 2.7 shows the process involved in this

method.

7.2.2 Instagram

Instagram is a social media network whose main focus is to allow users to con-

nect with each other by sharing photos and videos. Instagram can be used for

leisure and business as it is suitable for organisations wishing to advertise con-

tent. Instagram was launched in 2010 [13]. The network has experienced a rapid

growth; in 2 years they had already reached more than 80 millions users [15].

During the same year in 2012, Instagram decided to merge with Facebook [14],

and Instagram is now officially owned by Facebook. There are currently more

than a billion monthly active users in Instagram [16]. Similarly to Facebook,

Instagram uses ranking feed algorithms to present the most relevant posts. As

posts get prioritised on other users feed, it is to be noted that three main factors

are considered for the ranking: the interactions with users on previous posts,

the interaction of users with similar posts and the novelty of the posts. Some

strategies to adapt to the way Instagram posts are displayed are proposed in

[35].

The machine learning applied in Instagram is complex and affects different ar-

eas. The modelling framework used is Caffe2 which is a deep learning framework

suitable for large scale experiments [12]. Gaussian Process is additionally added

to the prediction models [9] and Bayesian optimization used to tune normalized

values for both Instagram and Facebook [56].

7.2.3 Linkedin

Linkedin is a professional social media platform which was officially launched in

2003 [68]. Linkedin can be compared to an online resume; it exposes the skills

91

and competence of a candidate and matches the profile that has been set with the

skills defined by recruiters. As a result of the affinities between the employers and

candidates, jobs prospectus are sent by email to potential candidates showing

them how they match a given position. Linkedin additionally allows its users

to expand their network by suggesting people they might know and the place

or location they have in common in the section ”grow your network”. Behind

its interface, many techniques are adopted to ensure that the right jobs and

candidates are recommended as well as the suggestions sent to connect with

other people are relevant. When coming to recommendations, as explained by

Guo et al. [39], Linkedin aims to address three points:

• A model that ensures the interest of either party: the candidate and the

recruiter is taken into consideration. This approach is implemented by

querying the responses of InMail messages as they can indicate whether a

candidate is interested in a job offer. InMails are private messages that

can be sent to a user when the connection with that user is beyond the

second degree and by consequence would not be able to send a free message

on Linkedin. Further details on the implementation of this method are

available in [74].

• Appropriate queries must be written to enable the complexity of the pa-

rameters passed in the search engine to be well understood and processed.

Parameters can be for example the name of the candidates, the skills de-

fined in their profile or some keywords added to the searching tool. To

tackle this challenge, Linkedin implements a query building and search

ranking system [40].

• A model which ensures that personalization is achieved through each rec-

ommendation. This is to make sure that the right pool of candidate is also

matched by taking into consideration the recruiters’ preferences. Among

the solutions that were proposed, Linkedin is using a hybrid method be-

tween 2 models: generalized linear mixed (GLMix) and gradient boosted

decision tree (GBDT) [73].

From a slow start in 2003 to a quick emergence in 2013 with 225 million users

and more than 645 millions users in 2019 [68], Linkedin has established itself as

the most popular professional network. The recommender systems techniques

adopted within the company have greatly contributed to its growth.

92

7.3 Growth of Data within Social Media

In this section we analyse the user growth over the last 5 years of the social media

platforms discussed in sections 7.2.1, 7.2.2 and 7.2.3. Instagram monthly active

user statistics for the last 5 years are: 400 million in 2015, 500 million in 2016,

700 million in 2017 and more than a billion in 2018 and 2019 [16]. Linkedin

assesses their number of user in general instead of the usual ”monthly active

users” for the reason that for many users, their main activity on Linkedin after

they have found a job is to update their resume. The number of users in Linkedin

in 2015 is 396 million [66]; in 2016 there is a total of 467 million users [67]. In

2017 Linkedin has reached 500 million users [32] and in 2018, 590 million users

[49]. The current total number of Linkedin users is 645 million [69]. Facebook

in 2015 had 1591 monthly active users [77], in 2016 this number increased to

1860 million [78]. In 2017 the monthly active users was over 2 billion with 2130

million in the fourth quarter [79]; this number increased to 2320 million users in

2018 [80]. The current total number of monthly active users at the end of the

second quarter is over 2.7 billion [81]. Figure 7.1 compares the number of users

on Facebook, Instagram and Linkedin for the last 5 years. With the rapidity of

users and data growth, recommendation systems must be tested accordingly to

ensure that they will be scalable with bigger datasets in the future.

2,015 2,016 2,017 2,018 2,019

500

1,000

1,500

2,000

2,500

Year

N
u
m

b
er

of
U

se
rs

in
M

il
li
on

Facebook Instagram Linkedin

Figure 7.1: Users ’Growth of Facebook, Instagram and Linkedin

93

7.4 SyntheD: A Solution to Measure Scalability

SyntheD is a Java-based program that has been written with the purpose to

create large synthetic datasets. Our target with this program is to be able to

reach billions of ratings that will be used for testing against our MPJ Express

model for its scalability. In section 1.3.2 we have stated the acquisition of publicly

available datasets such as MovieLens (movies ratings) and Webscope (Yahoo

Music ratings). On the other hand, with the ever-increasing amount of data

in our society, the size of data in a few years is likely to be much larger than

the one which is currently handled. To that end, models that are created for

recommender systems must be trained and tested with bigger datasets to proof

their scalability. On one of his post on Facebook, Mark Zuckerberg informs his

audience that Facebook has already reached a billion users in 2015 [102], the

evidence is also displayed on the first quarter 2015 results report [76]. In 2019

the number of users is now over 2.7 billion [81]. This number includes users

of Facebook, Messenger, WhatsApp and Instagram; all also referred to as the

family of service [81]. Extremely large datasets with billions of ratings are hard if

not impossible to find and on another side surveys or interview methods used to

collect data is time-consuming. Hence the necessity to create synthetic datasets.

Existing data-generating tools are assessed in section 2.3 of the literature review.

The program SyntheD has been built in a way to enable a straightforward change

of the size of the desired dataset. We first determine the prerequisites to generate

datasets with SyntheD then we describe the step followed to implement SyntheD

and finally, we illustrate the use of generating tool to create datasets and measure

the performance of the data creation experiments.

7.4.1 Prerequisites

The application program SyntheD being Java-based, it primarily requires the

software Java (latest version preferably) to be installed and configured on the

machines. We use util.Random and io.PrintWriter libraries from Java to

generate and print out the dataset. The size of the cluster required depends on

the dataset that the user wants to generate. For instance to generate 10 billion

ratings given by 10 million users on 189 thousand items we have used a cluster

made of 13 nodes with each node consisting of 12 cores. Having insufficient

memory available could result in a Java heap space issue. The Java heap Space

is a type of OutOfMemoryError exception which occurs when there is not

94

enough space to allocate an object in the Java heap [72]. The Java heap can be

manually configured using the commands: –Xms or-Xmx as a parameter when

launching a Java job. The maximum heap size that can be used as explained in

[71] will depend on the maximum address space available in each process.

7.4.2 Implementation

The method for generating the synthetic dataset borrows its basic idea from the

generation of the Jumbo dataset described briefly in section 6 of [75]. The authors

of [75] state that Jumbo was created as a low rank matrix (rank 10 in their case).

We also generate a low rank matrix by the procedure of first randomly generating

models for the users and items that have similar structure to the models that will

eventually be inferred by the latent features collaborative filtering model (section

4.3). The rank of the full matrix of ratings would thus be nf which we set to

100 in the generation of the specific dataset considered below. So we create a

user model representing the matrix for users and an item model consisting of a

matrix for the items.

The individual elements of the user and item models are generated by the

formula:

a+ bu

where u is a uniform random variate between 0 and 1, and the constants a and b

are tuned so that the mean of the resulting generating rating are in the middle

of the range 0 to 5 (for 0 to 5 star ratings) and the standard deviation spans this

range realistically.

For as many generated ratings as we desire, user id and item id values are

randomly chosen, then the dot product of the corresponding model columns are

computed. Following is a pseudo-code of the creation of the ratings:

float rating = sum over i

userModel [user, i] * itemModel [item, i];

The output format of SyntheD takes its inspiration from the Webscope dataset

(Yahoo dataset) where each rating consists of three elements: the users’ ID, the

songs’ ID and the rates given by the users. We start the implementation by

setting the attributes such as the number of user, item and ratings we wish to

print in the output file. The program thus outputs a matrix of rows equal to the

total number of ratings and three columns to represent the users, the items and

the ratings.

95

7.4.3 Data Creation

To launch the SyntheD program on Linux we type the following command and

increase the Java heap to 16 gigabyte to accommodate the size of the new dataset

and prevent from the OutOfMemory error.

java -Xmx16G SyntheD

We start our experiments by creating a smaller set with a size similar to the

MovieLens data, then increase the data to a size comparable with the Webscope

data and finally generate 10 billion ratings which are our current target. The

diagram in figure 7.2 is an illustration of the data creation process. At each

stage of the experiment, we record the time taken to produce a new dataset.

The results are displayed in table 7.1.

Figure 7.2: Synthetic Dataset Creation Process

96

20 Million 700 Million 10 Billion

20 s 13mn 07s 2h 54mn

Table 7.1: Synthetic Datasets Generation Time

7.5 SyntheD 10B Ratings Experiments

Similarly to the experiments done in section 5.3 on the MovieLens dataset and

section 5.4 on Yahoo dataset, we benchmarked our ALSWR implementation on

SyntheD. The SPMD approach to partitioning data described in chapter 6 has

been applied to the code to ensure that we get the best results.

For this dataset it was not possible to run the program on small numbers of

nodes. Simply storing the distributed ratings takes over 100GB of memory and

our cluster only has 32GB per node. So in figure 7.3, which displays the timings

in seconds of the tests by the number of threads, all jobs have been run across all

12 worker nodes of the cluster, with the variable being the number of threads per

local node. The overall implementation tends to complete faster when using a

higher number for the threads. The program keeps improving until 144 threads

even though from 132 threads to 144 there was only a slight difference from

4499 to 4312 seconds. The differences between the performance per thread are

reflected in figure 7.4 showing the parallel speedup of the program relative to

the base case of one thread on each of the 12 nodes. The best time achieved

with 12 threads being 15944 seconds, running the code with 144 threads is then

5.49 times faster than with 12 threads. The departure from linear speedup with

thread here is mostly accounted for by the times for loading and partitioning

data, and performing the MPI collective operations, all of which are presently

single threaded on each node (a local version of Amdahl’s law).

We positively interpret the results obtained in two ways. Firstly, the fact that

we were able to run some tests on SyntheD certifies that the dataset generated

is fit for purpose and can be used to evaluate recommender systems. Secondly,

the outputs showing a similar behaviour with previous tests on smaller datasets

demonstrate that the implementation of ALSWR with MPJ Express is highly

scalable.

97

0 12 24 36 48 60 72 84 96 108 120 132 144
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

·104

Total Number of Threads

T
im

e
in

se
co

n
d
es

MPJE

Figure 7.3: MPJ Express Time Performance with SyntheD dataset on 12 Nodes

0 12 24 36 48 60 72 84 96 108 120 132 144
0

1

2

3

4

5

6

Total Number of Threads

P
ar

al
le

l
S
p

ee
d
u
p

MPJE

Figure 7.4: Parallel Speedup with threads per node - MPJ Express with SyntheD
on 12 nodes

98

7.5.1 Prospects for Processing Larger Datasets

The parallel execution time of just over one hour on the 10 billion rating dataset

is not particularly restrictive, and performance scalability to larger numbers and

cores has proven encouraging to date. But with this dataset we were close to the

limits of what could be fitted in the memory of our cluster, which has 32GB per

node. Several memory optimizations were needed to enable the runs recorded

earlier in this section. For example:

• the simplified code for data partitioning in figure 4.10 assumed that all

ratings data was initially read into array lists in memory called readIDs,

readTargets and readRatings, then routed to the final destination node.

The extra memory required by these array lists eventually exceeded our

available memory. So the final code reads the ratings data from the file

system repeatedly, in different phases of partitioning, rather than store it

temporarily in memory. This makes efficient reads from HDFS, as discussed

in chapter 6, particularly useful.

• The data structures that ultimately store the partitioned ratings (figure

4.4) involve two “big” arrays, targets and ratings. For the numbers of

ratings stored locally in our datasets, elements of type int have proven

sufficient for targets (and in any case the size limits of Java arrays mean

having a larger index type would require more general restructuring of

code). The ratings element type would most naturally be a floating point

type; but to save two bytes of memory per element we actually store a

scaled integers in a Java short element, on the grounds that user ratings

are not in their nature very high-precision quantities.

• The essential calls to MPI Allgather in figure 4.3 yield very large arrays

holding the replicated copies of the user and item models on every node.

Depending on the implementation of the Allgather operation, this may lead

to allocation of very large internal communication buffers, in addition to the

user arrays passed in as arguments. This is the case for the implementation

of this operation in the standard distribution of MPJ Express. So the

implementation code for this method was in-lined in our ALSWR code,

and pipelined so that it only used bounded size communication buffers.

For datasets with significantly larger numbers of users, the overhead of tem-

porarily storing the user model in a globally replicated fashion will become un-

tenable, and we will have to adopt something like the “rotational” approach of

99

[52] (see figure 2.7 in an earlier chapter). Similar approaches have been used in

the context of, say, parallel many body problems for a number of decades.

7.6 Conclusion

In this chapter, we have discussed social recommendation systems and given some

example of well-known social media networks actively using recommendation

systems on their platforms. By comparing the growth of users for the past 5

years we have identified the importance of having scalable systems put in place.

We have proposed an approach that can be used to evaluate the scalability via

synthetic datasets. SyntheD is a highly flexible Java-based program as it enables

datasets to be created in various ways according to the size of data required by

the user. Along with the experiments, we have proven that the program can

generate at least if not more than 10 billion ratings which currently represents

the largest dataset we are using for this project. The next step following the

creation of our synthetic data is to partition the new dataset similarly to the

MovieLens and Webscope data; then to use the partitions to train and test the

performance of the ALSWR java code.

Our future works on the program SyntheD will consist of improving the time

performance taken to produce a new dataset file. Presently to create 10 billion

ratings with 10 million users and 189 thousand item, the program takes in total

nearly 3 hours. Generating data can be time-consuming. Hence optimizing the

program for better results could make a significant difference. Presently the

main limit in terms of going to larger dataset is the requirement to keep the user

model (for example) in the memory of a single computer. One easy fix would be

to distribute the models over the memory of a cluster. Our plan is also to make

the program open-source on Github or Bitbucket for instance.

Our current simple strategy of generating a low rank matrix certainly has

scope to be made more realistic; for example to give a more realistic distribution

of ratings for popular items, or by explicitly modelling clustering in preferences

of users.

100

Chapter 8

Conclusion

8.1 Introduction

This chapter summarises the entire research and outlines the contributions. We

go through the steps followed for the completion of our work and discuss our

findings as well as limitations. We conclude this chapter by indicating future

works that could be carried on.

“There is no real ending. It’s just the place where you stop the story.”

-Frank Herbert

8.2 Summary of the Research

Recommender systems have taken significant importance with time and more

particularly with social media networks which are experiencing rapid data growth

as their number of users increase. Recommendations systems are expected to be

fast and scalable but on another hand, suggestions that are sent out must be

relevant to the targeted audience. In our research, we have shifted our focus

on high-performance computing methods such as MPJ Express which has been

integrated with Hadoop, a framework allowing distributed data processing on

large datasets.

Various datasets were used during this thesis. These first consisted of the

MovieLens data holding 20 million rating and the Yahoo Webscope with more

than 700 Million ratings. Then as we move toward social media scale, we have

developed a program allowing to create synthetic datasets: SyntheD. Finding

large datasets in the same scale of social media networks can be hard and going

101

through surveys and questionnaires can be time-consuming. Hence the impor-

tance of having a program that can generate data to use for experimentation

purpose and to test the scalability feature of recommender systems.

By using MPJ Express and Hadoop we have adapted the collaborative filter-

ing algorithm ALSWR and run the code under YARN nodes. Each dataset was

first added to the Hadoop distributed file system (HDFS) then partitioned. The

partitioning of the datasets was originally made using a serial java application

then by using MapReduce to improve the time performance. However, there

were some shortcomings of the initial implementation of ALSWR in MPJ Ex-

press. Notably the use of a separate MapReduce phase for partitioning the data,

while methodologically interesting as an example of a multistage Hadoop/HDFS

pipeline involving MPJ, was not very convenient in practice and introduced some

issues when comparing with other implementations that do not require the extra

stage. To tackle this challenge, the next version of the MPJ Express code read

local blocks of the complete HDFS rating file (in a similar way to how MapRe-

duce map tasks process local blocks) then use internal MPI communications to

repartition data in these blocks to appropriate target nodes for parallel process-

ing. As a result of this approach, the implementation of ALSWR became much

faster than using a separate MapReduce phase.

The results of the implementation have been benchmarked in two ways. For

each dataset, we have first measured the time performance then calculated the

parallel speedup across the number of processes available. We have compared

the outcome of our tests from the MovieLens and Yahoo datasets with the ALS

implementation on the same datasets but using Apache Mahout, Apache Spark

and Apache Giraph frameworks. We have demonstrated that by employing ALS

with MPJ Express our results outperform the performance of other frameworks

and achieve a better parallel speedup. MPJ Express is nevertheless limited by

the fact that it involves more complexity on the programming side. We have

furthermore measured the accuracy of the predictions by calculating the root

mean square error (RMSE). We have run some tests with different values for the

regularization parameter (lambda). The better output was obtained with the

value of lambda tuned to 0.05 which gave us a value of RMSE equal to 1.0328.

8.3 Contributions

Our contributions to the research area comprise:

102

• The development of suitable approaches for highly scalable recommender

systems with application to the scale of data characteristic of social media.

• The demonstration of the benefits of integrating MPJ Express platform

into the Hadoop ecosystem, with the possibility of using MPJ Express as a

phase in a processing pipeline and including traditional Hadoop platforms

such as MapReduce.

• The evaluation of our approach to HPC inspired parallel recommender

algorithms in Hadoop in comparison with other frameworks like Apache

Mahout, Spark and Giraph showing the benefit of our approach.

• Our test strategies for efficiently reading HDFS data into Single Program,

Multiple Data (SPMD) parallel programs including MPI or MPJ.

• The implementation of a method to generate synthetic datasets that can

reach beyond billions of ratings and the evaluation of the performance of

our approach on a large synthetic dataset.

• The demonstration of a high impact on HPC technologies with MPJ Ex-

press by achieving good parallel speedup and demonstrating a good error

metric as compared to other well-known frameworks.

8.4 Future Works

In term of future work, we need to evaluate alternative parallel organizations

of the recommender code, like the rotational hybrid approach described in [52].

Preliminary analysis suggests that implementation of similar schemes in MPI

style may benefit from extensions to the standard set of MPI collectives, currently

embodied in MPJ Express. Such an extended library could form part of a future

data-centric version of MPJ Express that builds on experiences of MPI processing

in the Hadoop environment. More prosaically the experiments in this thesis

suggest the imminent need to deal with communication buffers significantly larger

than those currently supported. In experiments reported in the thesis, we were

already increasing these buffer sizes close to their limit.

Future works could also involve improving the accuracy of the predictions.

We obtained a RMSE equal to 1.0328 compared to the collaborative filtering for

the Netflix prize which accomplished a score of 0.8985 for their RMSE [101]. We

believe that more techniques can be adopted to bring down the RMSE and by

103

consequent to provide better recommendations. Although our primary option

was to use the RMSE approach as our error metric, some experimentation with

the MAE (mean absolute error) could be done to compare the outcome. Similarly,

although we have focused the research on ALSWR, other algorithms such as SGD

could be used to test the results of the RMSE and assess its performance against

ALSWR.

The SyntheD program could furthermore be extended to improve its time

performance when generating datasets. We have mentioned in chapter 7 that

currently to generate 10 billion ratings with 10 million users and 189 thousand

items, the program takes two 2 hours and 54 minutes to complete. More exper-

imentation could also be done by reproducing bigger datasets with more users

toward the scale of social media. Facebook the most popular social media net-

work currently has more than 2.7 billion users. Our next target would be to

generate a dataset with a similar number of users. As the objective would be to

generate larger data on a shorter period of time, it would be interesting to im-

plement a parallel computation on the synthetic data generator code to speedup

the overall data creation process. The data generated could also be tested with

other frameworks such as Apache Spark and Apache Giraph to analyse their

performance on a larger scale.

To solve some issues we had due to insufficient memory and more particularly

for experiments on data like SyntheD, the tests could be reproduced on commer-

cial clusters as they are easily scalable based on the memory capacity required.

Surely this comes at a cost; however, one could benefit from a university grant/-

funding with the right research prospect. Having access to such clusters would

benefit the full exploitation of MPJ Express and other frameworks on datasets

synthetically generated. For instance in section 7.5 we mentioned that it was im-

possible to run the program on a small number of nodes because just by storing

the distributed ratings 100GB of memory was used while the cluster has a total

of 32GB per node and 13nodes available, therefore not leaving much memory for

the computation of MPJ Express program. Commercial clusters would surely

help overcome this problem.

104

Bibliography

[1] Apache Giraph. http://giraph.apache.org/, 2014. [accessed 19-January-

2018].

[2] Apache Hadoop. http://hadoop.apache.org, 2010. [accessed 21-September-

2017].

[3] Apache Mahout. https://mahout.apache.org/, 2017. [accessed 30-January-

2018].

[4] Apache Spark. https://spark.apache.org/, 2014. [accessed 30-January-

2018].

[5] Apache Spark Tutorial. https://www.tutorialspoint.com/apache spark/apa-

che spark rdd.htm, 2017. [accessed 19-January-2018].

[6] Matthew Barker. Evaluation of apache giraph, using a collaborative filter-

ing algorithm. Master Thesis University of Portsmouth, 2018.

[7] Blaise Barney. Introduction to parallel computing.

https://computing.llnl.gov/tutorials/parallel comp/. [accessed 01-

September-2016].

[8] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham

Gutiérrez. Recommender systems survey. Knowledge-based systems,

46:109–132, 2013.

[9] Thomas Bredillet. Lessons learned at instagram stories and feed

machine learning. https://instagram-engineering.com/lessons-learned-at-

instagram-stories-and-feed-machine-learning-54f3aaa09e56, 2018.

[10] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis

of predictive algorithms for collaborative filtering. In Proceedings of the

105

Fourteenth conference on Uncertainty in artificial intelligence, pages 43–

52. Morgan Kaufmann Publishers Inc., 1998.

[11] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso.

Comparison of collaborative filtering algorithms: Limitations of current

techniques and proposals for scalable, high-performance recommender sys-

tems. ACM Transactions on the Web, 5(1):2:1–2:33, February 2011.

[12] INFO CENTER. What is caffe2? https://caffe2.ai/docs/caffe-

migration.html. [accessed 20-September-2019].

[13] INFO CENTER. Instagram launches. https://instagram-

press.com/blog/2010/10/06/instagram-launches-2/, 2010.

[14] INFO CENTER. Instagram + facebook. https://instagram-

press.com/blog/2012/04/09/instagram-facebook/, 2012.

[15] INFO CENTER. The instagram community hits 80 million

users. https://instagram-press.com/blog/2012/07/26/the-instagram-

community-hits-80-million-users/, 2012.

[16] INFO CENTER. A quick walk through our history as a company.

https://instagram-press.com/our-story/, 2019.

[17] Facebook Help Centre. https://www.facebook.com/help/163810437015615.

[accessed 12-September-2019].

[18] T. Chai and R. R. Draxler. Root mean square error (rmse) or mean abso-

lute error (mae)? â€“ arguments against avoiding rmse in the literature.

Geoscientific Model Development, 7(3):1247–1250, 2014.

[19] Tianfeng Chai and Roland R Draxler. Root mean square error (rmse)

or mean absolute error (mae)?–arguments against avoiding rmse in the

literature. Geoscientific model development, 7(3):1247–1250, 2014.

[20] Wei Chen, Zhendong Niu, Xiangyu Zhao, and Yi Li. A hybrid recommen-

dation algorithm adapted in e-learning environments. World Wide Web,

17(2):271–284, 2014.

[21] Avery Ching. Scaling Apache Giraph to a trillion edges.

https://www.facebook.com/notes/facebook-engineering/scaling-apache-

giraph-to-a-trillion-edges/10151617006153920, 2013.

106

[22] Frederica Darema. The spmd model: Past, present and future. In Eu-

ropean Parallel Virtual Machine/Message Passing Interface Users’ Group

Meeting, pages 1–1. Springer, 2001.

[23] Frederica Darema. SPMD Computational Model, pages 1933–1943.

Springer US, Boston, MA, 2011.

[24] Spark rdd operations-transformation & action with example. https://data-

flair.training/blogs/spark-rdd-operations-transformations-actions/. [ac-

cessed 11-June-2018].

[25] Santo Domingo, Joel. Comparing dual-core vs. quad-core cpus. Laptop

Computers & Notebook Reviews, 2012. [accessed 05-September-2016].

[26] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi

Zhang. A hybrid collaborative filtering model with deep structure for rec-

ommender systems. In Thirty-First AAAI Conference on Artificial Intel-

ligence, 2017.

[27] John R Douceur. The sybil attack. In International workshop on peer-to-

peer systems, pages 251–260. Springer, 2002.

[28] Rui Maximo Esteves, Rui Pais, and Chunming Rong. K-means clustering

in the cloud–a mahout test. In Advanced Information Networking and Ap-

plications (WAINA), 2011 IEEE Workshops of International Conference

on, pages 514–519. IEEE, 2011.

[29] Sınziana Maria Filip. A scalable graph pattern matching engine on top of

Apache Giraph. PhD thesis, Master’s thesis, VU University Amsterdam,

2014.

[30] The Apache Software Foundation. Apache giraph guide.

http://giraph.apache.org/quick start.html. [accessed 02-October-2018].

[31] The Apache Software Foundation. Hadoop cluster setup.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

common/, 2018. [updated 25-January-2019].

[32] Josh Gallant. 48 eye-opening linkedin statistics for b2b marketers in 2019.

https://foundationinc.co/lab/b2b-marketing-linkedin-stats/, 2019.

107

[33] G Geetha, M Safa, C Fancy, and D Saranya. A hybrid approach using

collaborative filtering and content based filtering for recommender system.

In Journal of Physics: Conference Series, volume 1000, page 012101. IOP

Publishing, 2018.

[34] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using

collaborative filtering to weave an information tapestry. Communications

of the ACM, 35(12):61–70, 1992.

[35] Ana Gotter. How the instagram algorithm works (and where your strategy

needs to shift). https://www.shopify.com/blog/instagram-algorithm, 2019.

[36] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-

performance, portable implementation of the mpi message passing interface

standard. Parallel computing, 22(6):789–828, 1996.

[37] Datasets — GroupLens. http://grouplens.org/datasets/, 2015. [accessed

14-December-2016].

[38] Rong Gu, Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun, Bing Wang,

Chunfeng Yuan, and Yihua Huang. Shadoop: Improving mapreduce perfor-

mance by optimizing job execution mechanism in hadoop clusters. Journal

of parallel and distributed computing, 74(3):2166–2179, 2014.

[39] Qi Guo, C Geyik, Sahim, Cagri Ozcaglar, Ketan Thakka,

Nadeem Anjum, and Krishnaram Kenthapadi. The ai be-

hind linkedin recruiter search and recommendation systems.

https://engineering.linkedin.com/blog/2019/04/ai-behind-linkedin-

recruiter-search-and-recommendation-systems, 2019.

[40] Viet Ha-Thuc, Ye Xu, Satya Pradeep Kanduri, Xianren Wu, Vijay Dialani,

Yan Yan, Abhishek Gupta, and Shakti Sinha. Search by ideal candidates:

Next generation of talent search at linkedin. In Proceedings of the 25th

International Conference Companion on World Wide Web, pages 195–198.

International World Wide Web Conferences Steering Committee, 2016.

[41] Apache Hadoop. Tuning the java heap.

http://hadoop.apache.org/docs/r2.4.1/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/mapred-default.xml, 2018. [accessed 11-April-2019].

108

[42] Minyang Han and Khuzaima Daudjee. Giraph unchained: barrierless asyn-

chronous parallel execution in pregel-like graph processing systems. Pro-

ceedings of the VLDB Endowment, 8(9):950–961, 2015.

[43] Duane Hanselman and BC Littlefield. Mastering MATLAB 5: A compre-

hensive tutorial and reference prentice hall. Upper Saddle River, NJ, USA,

1997.

[44] Derrick Harris. Facebook’s trillion-edge, Hadoop-based and open source

graph-processing engine. GigaOm, 2013.

[45] S. Hettich and S. D Bay. Uci kdd archive. http://kdd.ics.uci.edu, 1999.

[accessed 28 September 2017].

[46] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel com-

puting systems: twelve ways to tell the masses when reporting performance

results. In Proceedings of the international conference for high performance

computing, networking, storage and analysis, page 73. ACM, 2015.

[47] Mohammed Ibrahim, Stephen Mele, Daniel Pulitano, Nilkamal Weeras-

inghe, Moon Kim, Marshall Peters, Bryan Robbins, and Yuriy Yankop.

Datagenerator. https://finraos.github.io/DataGenerator/. [accessed 18-

October-2018].

[48] Data analytics acceleration library. https://software.intel.com/en-us/Intel-

daal, 2017. [accessed 21-October-2017].

[49] Mansoor Iqbal. Linkedin usage and revenue statistics (2018).

https://www.businessofapps.com/data/linkedin-statistics/, 2019.

[50] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: Distributed data-parallel programs from sequential building blocks.

In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2007, EuroSys ’07, pages 59–72, New York, NY, USA,

2007. ACM.

[51] FO Isinkaye, YO Folajimi, and BA Ojokoh. Recommendation sys-

tems: Principles, methods and evaluation. Egyptian Informatics Journal,

16(3):261–273, 2015.

109

[52] Maja Kabiljo and Aleksandar Ilic. Recom-

mending items to more than a billion people.

https://code.facebook.com/posts/861999383875667/recommending-

items-to-more-than-a-billion-people/, 2015. [accessed 30-December-2017].

[53] Efthalia Karydi and Konstantinos Margaritis. Parallel and distributed col-

laborative filtering: A survey. ACM Computing Surveys (CSUR), 49(2):37,

2016.

[54] Ben Ken. Generatedata.com. https://www.generatedata.com/. [accessed

16-October-2018].

[55] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker,

Lee R Gordon, and John Riedl. Grouplens: applying collaborative filtering

to usenet news. Communications of the ACM, 40(3):77–87, 1997.

[56] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bak-

shy. Constrained bayesian optimization with noisy experiments. Bayesian

Anal., 14(2):495–519, 06 2019.

[57] Introduction to als recommendations with hadoop.

https://mahout.apache.org/users/recommender/intro-als-hadoop.html.

[accessed 22-June-2018].

[58] Faraz Makari, Christina Teflioudi, Rainer Gemulla, Peter Haas, and Yannis

Sismanis. Shared-memory and shared-nothing stochastic gradient descent

algorithms for matrix completion. Knowledge and Information Systems,

42(3):493–523, 2015.

[59] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pages 135–146. ACM,

2010.

[60] MPJ Express. http://mpjexpress.org, 2015. [accessed 18-January-2018].

[61] MrForms. Freedatagenerator. http://www.freedatagenerator.com/, 2014.

110

[62] Andrew Musselman. Building a recommender with apache mahout on

amazon elastic mapreduce (emr). https://aws.amazon.com/blogs/big-

data/building-a-recommender-with-apache-mahout-on-amazon-elastic-

mapreduce-emr/, 2014. [accessed 30-January-2019].

[63] Facebook Newsroom. Bringing people closer together.

https://newsroom.fb.com/news/2018/01/news-feed-fyi-bringing-people-

closer-together/, 2018.

[64] Facebook Newsroom. https://newsroom.fb.com/news/2019/09/facebook-

dating/, 2019.

[65] Facebook Newsroom. Why am i seeing this? we have an answer for you.

https://newsroom.fb.com/news/2019/03/why-am-i-seeing-this/, 2019.

[66] Linkedin Newsroom. Linkedin announces third quarter 2015 re-

sults. https://news.linkedin.com/2015/linkedin-announces-third-quarter-

2015-results, 2015.

[67] Linkedin Newsroom. Linkedin announces third quarter 2016 re-

sults. https://news.linkedin.com/2016/linkedin-announces-third-quarter-

2016-results, 2016.

[68] Linkedin Newsroom. About linkedin. https://news.linkedin.com/about-us,

n.d. [accessed 15-09-2019].

[69] Linkedin Newsroom. Statistics. https://news.linkedin.com/about-

us#statistics, n.d. [accessed 21-09-2019].

[70] Oracle. Java. https://java.com/en/download/help/linux x64 install.xml.

[accessed 12-November-2018].

[71] Oracle. Tuning the java heap. https://docs.oracle.com/cd/E19159-01/819-

3681/abeii/index.html, 2010. [accessed 12-March-2019].

[72] Oracle. Understand the outofmemoryerror exception.

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/

memleaks002.html, 2018. [accessed 12-March-2019].

[73] Cagri Ozcaglar, Sahin Geyik, Brian Schmitz, Prakhar Sharma, Alex

Shelkovnykov, Yiming Ma, and Erik Buchanan. Entity personalized tal-

111

ent search models with tree interaction features. In The World Wide Web

Conference, pages 3116–3122. ACM, 2019.

[74] Rohan Ramanath, Hakan Inan, Gungor Polatkan, Bo Hu, Qi Guo, Cagri

Ozcaglar, Xianren Wu, Krishnaram Kenthapadi, and Sahin Cem Geyik.

Towards deep and representation learning for talent search at linkedin. In

Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, pages 2253–2261. ACM, 2018.

[75] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent. In

J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 24,

pages 693–701. Curran Associates, Inc., 2011.

[76] Investor Relations. Facebook reports first quarter 2015 re-

sults. https://investor.fb.com/investor-news/press-release-

details/2015/Facebook-Reports-First-Quarter-2015-Results/default.aspx,

2015. [accessed 05-September-2019].

[77] Investor Relations. Facebook reports fourth quarter and full year

2015 results. https://investor.fb.com/investor-news/press-release-

details/2016/Facebook-Reports-Fourth-Quarter-and-Full-Year-2015-

Results/default.aspx, 2015.

[78] Investor Relations. Facebook reports fourth quarter and full year

2016 results. https://investor.fb.com/investor-news/press-release-

details/2017/facebook-Reports-Fourth-Quarter-and-Full-Year-2016-

Results/default.aspx, 2016.

[79] Investor Relations. Facebook reports fourth quarter and full year

2017 results. https://investor.fb.com/investor-news/press-release-

details/2018/facebook-reports-fourth-quarter-and-full-year-2017-

results/default.aspx, 2017.

[80] Investor Relations. Facebook reports fourth quarter and full year

2018 results. https://investor.fb.com/investor-news/press-release-

details/2019/Facebook-Reports-Fourth-Quarter-and-Full-Year-2018-

Results/default.aspx, 2018.

112

[81] Investor Relations. https://investor.fb.com/investor-news/press-

release-details/2019/Facebook-Reports-Second-Quarter-2019-

Results/default.aspx, 2019. [accessed 05-September-2019].

[82] Telefonica Research. Okapi. https://github.com/grafos-ml/okapi. [ac-

cessed 06-October-2018].

[83] Paul Resnick and Hal R Varian. Recommender systems. Communications

of the ACM, 40, 1997.

[84] Elaine Rich. User modeling via stereotypes. Cognitive science, 3(4):329–

354, 1979.

[85] Laila Safoury and Akram Salah. Exploiting user demographic attributes

for solving cold-start problem in recommender system. Lecture Notes on

Software Engineering, 1(3):303–307, 2013.

[86] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun

Murthy, and Carlo Curino. Apache tez: A unifying framework for modeling

and building data processing applications. In Proceedings of the 2015 ACM

SIGMOD international conference on Management of Data, pages 1357–

1369. ACM, 2015.

[87] Sherif Sakr. Processing large-scale graph data: A guide to current technol-

ogy. IBM Developerworks, page 15, 2013.

[88] Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexan-

drov, and Volker Markl. Distributed matrix factorization with mapreduce

using a series of broadcast-joins. In Proceedings of the 7th ACM Conference

on Recommender Systems, pages 281–284. ACM, 2013.

[89] Amazon Web Services. Apache mahout.

https://docs.aws.amazon.com/emr/latest /ReleaseGuide/emr-

mahout.html, 2019. [accessed 30-January-2019].

[90] Sanjeeran Sivapalan, Alireza Sadeghian, Hossein Rahnama, and Asad M

Madni. Recommender systems in e-commerce. Communications of the

ACM, pages 179–184, 2014.

[91] DATAFLAIR TEAM. Hadoop partitioner – internals of mapreduce

partitioner. https://data-flair.training/blogs/hadoop-partitioner-tutorial/,

2017. [updated 21-November-2018].

113

[92] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of

collective communication operations in mpich. The International Journal

of High Performance Computing Applications, 19(1):49–66, 2005.

[93] Bryan Carpenter Wakeel Ahmad and Aamir Shafi. Collective asynchronous

remote invocation (cari): A high-level and efficient communication api

for irregular applications. Procedia Computer Science, 4:26 – 35, 2011.

International Conference On Computational Science, ICCS 2011.

[94] Weidong Wang, Chunhua Liao, Liqiang Wang, Daniel J Quinlan, and Wei

Lu. Hbtm: A heartbeat-based behavior detection mechanism for posix

threads and openmp applications. arXiv preprint arXiv:1512.00665, 2015.

[95] Karlijn Willems. Apache spark tutorial: Ml with pyspark.

https://www.datacamp.com/community/tutorials/apache-spark-tutorial-

machine-learning, 2017. [accessed 31-January-2019].

[96] Webscope. https://research.yahoo.com/, 2006. [accessed 14-December-

2016].

[97] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. Scalable coordi-

nate descent approaches to parallel matrix factorization for recommender

systems. In Data Mining (ICDM), 2012 IEEE 12th International Confer-

ence on, pages 765–774. IEEE, 2012.

[98] Hamza Zafar, Farrukh Aftab Khan, Bryan Carpenter, Aamir Shafi, and

Asad Waqar Malik. Mpj express meets yarn: Towards java hpc on hadoop

systems. Procedia Computer Science, 51:2678 – 2682, 2015. International

Conference On Computational Science, ICCS 2015.

[99] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th USENIX conference on Net-

worked Systems Design and Implementation, pages 2–2. USENIX Associa-

tion, 2012.

[100] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Spark: Cluster computing with working sets. In Proceed-

ings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,

HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

114

[101] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-

scale parallel collaborative filtering for the netflix prize. Lecture Notes in

Computer Science, 5034:337–348, 2008.

[102] Mark Zuckerberg. https://www.facebook.com/zuck/posts/101023291883945

81?pnref=story, 2015. [accessed 11-March-2019].

115

Appendix A

Ethical Review Certificate

116

Certificate Code: 40C8-9C32-6D44-399F-8FD4-1C4A-0631-2279 Page 1

Certificate of Ethics Review
Project Title: Scalable Recommender System for very Large Dataset

with Application to Social Media
User ID: 790357
Name: Christina Pierrette Abilali Diedhiou
Application Date: 12/09/2016 15:53:09

You must download your certificate, print a copy and keep it as a record of this review.

It is your responsibility to adhere to the University Ethics Policy and any
Department/School or professional guidelines in the conduct of your study including
relevant guidelines regarding health and safety of researchers and University Health and
Safety Policy.

It is also your responsibility to follow University guidance on Data Protection Policy:

• General guidance for all data protection issues
• University Data Protection Policy

You are reminded that as a University of Portsmouth Researcher you are bound by the
UKRIO Code of Practice for Research; any breach of this code could lead to action being
taken following the University's Procedure for the Investigation of Allegations of
Misconduct in Research.

Any changes in the answers to the questions reflecting the design, management or
conduct of the research over the course of the project must be notified to the Faculty
Ethics Committee. Any changes that affect the answers given in the
questionnaire, not reported to the Faculty Ethics Committee, will invalidate this
certificate.

This ethical review should not be used to infer any comment on the academic merits or
methodology of the project. If you have not already done so, you are advised to develop
a clear protocol/proposal and ensure that it is independently reviewed by peers or others
of appropriate standing. A favourable ethical opinion should not be perceived as
permission to proceed with the research; there might be other matters of governance
which require further consideration including the agreement of any organisation hosting
the research.

GovernanceChecklist
A1-BriefDescriptionOfProject: The increasing interest in Java as a programming
language for parallel computing has brought many innovations in the multi-core era,
notably in High Performance Computing (HPC). A leading programming model remains
Message Passing in Java (MPJ). While MPJ has various benefits such as high portability,
large scale support and possibility to execute programs either on shared or distributed
memory it still encounters some issues regarding communications overhead. This causes
the speed of data loading to slow down as the scale of data increases. An approach to
resolve this concern is to integrate MPJ with Hadoop and Map Reduce in order to obtain

117

Appendix B

UPR16 Form

118

UPR16 – April 2018

FORM UPR16
Research Ethics Review Checklist

Please include this completed form as an appendix to your thesis (see the
Research Degrees Operational Handbook for more information

Postgraduate Research Student (PGRS) Information

Student ID:

UP790357

PGRS Name:

Christina Pierrette Abilali Diedhiou Sowinski

Department:

Computing

First Supervisor:

Dr Bryan Carpenter

Start Date:
(or progression date for Prof Doc students)

01/10/2015

Study Mode and Route:

Part-time

Full-time

MPhil

PhD

MD

Professional Doctorate

Title of Thesis:

Towards Platforms for Improved Recommender Systems at Social Media Scale

Thesis Word Count:
(excluding ancillary data)

27215

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee
for advice. Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University,
academic or professional guidelines in the conduct of your study

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical
conduct of this work lies with the researcher(s).

UKRIO Finished Research Checklist:
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online
version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/)

a) Have all of your research and findings been reported accurately, honestly and
within a reasonable time frame?

YES
NO

b) Have all contributions to knowledge been acknowledged?

YES
NO

c) Have you complied with all agreements relating to intellectual property, publication
and authorship?

YES
NO

d) Has your research data been retained in a secure and accessible form and will it
remain so for the required duration?

YES
NO

e) Does your research comply with all legal, ethical, and contractual requirements?

YES
NO

Candidate Statement:

I have considered the ethical dimensions of the above named research project, and have successfully
obtained the necessary ethical approval(s)

Ethical review number(s) from Faculty Ethics Committee (or from
NRES/SCREC):

40C8-9C32-6D44-399F-
8FD4-1C4A-0631-2279

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of
questions a) to e), please explain below why this is so:

Signed (PGRS):

Date: 29/09/2019

119

