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Abstract

The observation that distant Type Ia supernovae, the explosive death of massive stars,

were fainter than possible in a non-accelerating expanding universe lead to one of the

most significant paradigm shifts in cosmology since Einstein’s introduction of General

Relativity. Yet could the former have been the first signal that the latter’s reign as

the dominant theory of gravity is approaching its own demise? Within the bounds of

General Relativity, the simplest way to explain the late-time accelerating expansion of

the Universe required by the supernovae observations is to add a small, positive valued

cosmological constant Λ, whose negative pressure causes the acceleration. Along with

cold dark matter, the cosmological constant forms the basic of the current concordance

cosmological model. Other additional components of the Universe, under the general

label of dark energy, can replace Λ. However, what if a modification to the theory of

gravity could explain the observed acceleration instead? We will see that the quest

to answer this question is an uphill path which entails many steps that have been

overcome already and many that have yet to be surmounted.

Modified gravity theories exist that can produce accelerating expansion without a

cosmological constant, typically through the introduction of a scalar field that couples

to matter via the gravitational metric, thus modifying the strength of gravity. In some

modified gravity theories, the expansion history of the Universe in the Λ-cold-dark-

matter model can be reproduced almost perfectly. For such theories, the best signal to

search for becomes the modification to the strength of gravity. However, some theories

have a so-called screening mechanism built in, whereby in high density environments

the modifications to the strength of gravity become negligible, making tests of these

theories in the confines of the solar system ineffective. Therefore, one of the best

regimes to investigate modified gravity is on cosmological scales, where the large-scale

clustering of structure in the Universe would be enhanced relative to General Relativity.

Indeed, many upcoming galaxy surveys plan to constrain just such an enhancement.

However, this too is not as simple as it might seem. Neutrinos, one of the funda-

mental particles of the Universe, have been shown to have mass since the observation of

accelerating expansion. As a result, massive neutrinos don’t cluster on scales smaller
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than their free-streaming length. This free-streaming effect causes a suppression of

structure formation that is dependent on the neutrino masses. Again, placing a con-

straint on neutrino masses is a key aim of many upcoming galaxy surveys. However,

this sets up a potential degeneracy between the enhancement of structure formation

due to modified gravity and the suppression due to massive neutrinos. For example,

the large-scale structure of a universe with General Relativity and light neutrinos could

be statistically similar to that of a universe with a strong modification to gravity and

heavier neutrinos. Finding ways to break this degeneracy is vital if upcoming galaxy

surveys are to simultaneously constrain modfied gravity and neutrino masses.

In this thesis, we present a code, MG-PICOLA, which is capable of simulating struc-

ture formation with the scale-dependent effects of both modified gravity and massive

neutrinos. We have included a method to estimate the screening effect for three dif-

ferent mechanisms, which allowed us to build a variety of modified gravity models

in to MG-PICOLA. We show that while MG-PICOLA uses a fast, approximate simula-

tion method, its output matches that of full N-body simulations up to quasi-non-linear

scales. We next investigate whether redshift-space distortions in the clustering of large-

scale structure offer a way to break the modified gravity-massive neutrino degeneracy.

We do so by including both effects in the Taruya-Nishimichi-Saito model of redshift-

space distortions that is implemented in the MG-Copter perturbation theory code, and

compare the output of the model to that of MG-PICOLA simulations at the level of

the dark matter distribution. We find that our model is capable of capturing the de-

generacy breaking potential that us present in the redshift-space dark matter power

spectrum multipoles. We also investigate how the degeneracy evolves with redshift

and demonstrate again how our model captures the redshift evolution at the level of

the dark matter distribution. However, we cannot observe the distribution of dark

matter directly, only through galaxies, which act as a biased tracer. Therefore, we

extend our MG-Copter-based redshift-space distortion model to include bias and fit

it to friends-of-friends halo catalogues produced from MG-PICOLA simulations using a

Markov Chain Monte Carlo approach. We demonstrate that the model fits recover a

linear bias that is consistent with that estimated from the simulations. Throughout

we find that the best-fit parameters are sensitive to the fitting setup only when the

modified gravity and neutrino mass parameters in the model don’t match those in the

simulation, which can help constrain the two effects. We also find that the redshift-

space halo power spectrum multipoles have larger degeneracy breaking potential than

their dark matter counterparts, and that our extended model is effective at capturing

the behaviour seen in the multipoles of the simulated halo catalogues.
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Conventions, Constants, and

Abbreviations

The following notation and conventions are used throughout this work:

• Greek indices for vectors and tensors will take values from the set (0, 1, 2, 3)

which will refer to general four-dimensional spacetime coordinates, 0 being the

time coordinate and (1, 2, 3) being the spatial coordinates.

• Roman indices for vectors will take values from the set (1, 2, 3). These will be

used both to indicate spatial coordinates as well as order for the kernels and

perturbations. This distinction will be clear in the context.

• The Einstein Summation convention will be used, in which if an index appears

as both an upper and lower index, it indicates a summation over all coordinates.

For example gµνu
µ =

∑3
i=0 giνu

i.

• The signature (−,+,+,+) is used for all spacetime metrics.

• The partial derivative with respect to the variable xµ will be written ∂µ: ∂
∂xµ

= ∂µ.

• A subscript of 0 on any time dependent parameter (not spacetime coordinate)

value will generally denote a present day value.

• Unless otherwise stated, an overdot ˙ will denote a derivative with respect to the

FLRW metric time coordinate t.

• Unless otherwise stated, an overbar¯will denote a background average quantity.

• We will use the summation convention ~k1...n = ~k1 + · · ·+ ~kn.

• Unless otherwise stated, we work in the system of units in which c = 1. The

value of c and other phyiscal constants in S.I. units are given in Table 1.

In addition to the above, a number of abbreviations are made use of throughout this

work, which are listed in Table 2.
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Chapter 1

Introduction

1.1 Cosmological overview

The current best model for the Universe is one that expands outwards after an initial

Big Bang [3]. Quantum fluctuations in the very early Universe are thought to have

created microscopic inhomogeneities. The Universe underwent an early period of ac-

celerated expansion called inflation [4, 5, 6, 7] (see also [8, 9] for reviews), during which

the primordial fluctuations were amplified to create density perturbations that seed the

subsequent growth of structure in the Universe [10, 11, 12, 13, 14, 15]. These density

perturbations have an approximately Gaussian distribution and are characterised by an

approximately scale-invariant primordial power spectrum. The density perturbations

can be seen as minute temperature fluctuations in the cosmic microwave background

(CMB) [16] with a magnitude of δT/T̄ ≈ 10−5 [17, 18, 19]. Inflation also explains why

the Universe today is isotropic and homogeneous on large scales, almost completely

flat in terms of its curvature, and devoid of magnetic monopole relics.

After inflation ends, the energy in the scalar field of inflation - the inflaton - is

transferred to the fundamental particles we see in our Universe today - photons, quarks,

leptons, cold dark matter (CDM), and force-mediating bosons - in a process known as

reheating [20] (see [21, 22] for reviews). We must also assume dark energy, the evidence

for which we will discuss at the end of this section, is present at this time. For an as yet

unknown reason, there was an extremely small preference for the formation of matter

over antimatter, and thus after matter-antimatter annihilation only a small excess of

matter is left. The energy density of the photons and relativistic particles (collectively

called radiation) dominates over matter and dark energy. Even though the inflaton

is no longer present to accelerate the expansion, the Universe continues to expand as
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described by the Friedmann equations for a homogeneous, isotropic universe

H2 =

(
ȧ

a

)2

=
8πGρ

3
− Kc2

3
, (1.1)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
, (1.2)

where a is the scale factor, H = ȧ/a is the Hubble parameter, G is Newton’s gravi-

tational constant, c is the speed of light in a vacuum, K is the spatial curvature, and

ρ = ρr + ρr + ρDE and P = Pr + Pm + PDE are the total energy density and total

pressure respectively, both of which are the sum of the contributions from radiation,

matter, and dark energy. A quantity known as the critical density can be expressed

as ρcrit = 3H2/8πG, and each component’s contribution to the content of the Uni-

verse is then Ωi = ρi/ρcrit. If we assume dark energy is a cosmological constant then

ρDE = ρΛ = Λc2/(8πG) where Λ is the value of the cosmological constant. We shall dis-

cuss the evidence for the cosmological constant at the end of this chapter, but for now

will take it to be positive with an energy density that is initially smaller than both ρr

and ρm. For simplicity, in this section only we will (incorrectly) assume that neutrinos

are massless and so act as radiation at all times. We will cover the evidence for and

consequences of massive neutrinos in Section 1.3. Finally, there is strong evidence from

cosmological observations using a combination of probes that the Universe is spatially

flat which we will discuss further at the end of this section, so we will assume K = 0.

As stated above, radiation is dominant in this initial post-inflationary epoch, and

therefore we can neglect the effects of matter and dark energy in the Friedmann equa-

tions. For radiation, ρr ∝ a−4 and Pr = ρrc
2/3 which leads to a(t) ∝ t1/2, which

indicates that the Universe will continue expanding, albeit at a gradually decreasing

rate due to gravity.

As the Universe expands it cools, first allowing quarks to combine to form baryons

such as protons and neutrons. Free protons can become neutrons by reacting with

leptons and vice versa; initially these paired reactions happened in equilibrium and

therefore the ratio of neutrons to protons was essentially 1:1. However, as the tem-

perature dropped further, the lower mass of protons meant that their production was

energetically favoured, causing the neutron to proton ratio to drop to around 1:6 by

the time these reactions freeze-out. Additionally, free neutrons decay into protons with

a half-life of around 10 minutes; thus the ratio continues to drop after freeze-out until

all the neutrons are contained in nuclei, reaching approximately 1:7. The period in

which neutrons join with protons via nuclear fusion to form different nuclei in the early

Universe is called Big Bang nucleosynthesis (BBN). The first process that happens in

BBN is the combination of individual protons and neutrons to form deuterium 2
1H.
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Since further fusion reactions require deuterium, nothing further can occur until the

Universe has cooled sufficiently for the deuterium not to be immediately destroyed by

high energy photons; this is known as the deuterium bottleneck. Once the critical

temperature is reached, approximately 25% of the free protons fuse with nearly all of

the free neutrons to form deuterium. The deuterium then rapidly reacts with more free

protons and neutrons, as well as other deuterium nuclei to form helium-4 and small

amounts of intermediate nuclei such as unstable tritium 3
1H and stable helium-3. Addi-

tionally, tiny amounts of lithium and berrylium isotopes, such as stable lithium-7 and

unstable berryllium-7, are produced. A bottleneck due to the absence of stable nuclei

with 5 or 8 nucleons restricts the formation of heavier nuclei. At the end of BBN, the

only stable nuclei remaining are hydrogen (∼ 75% of total baryonic mass), helium-4

(∼ 25%), deuterium (∼ 0.01%), helium-3 (∼ 0.01%), and lithium-7 (∼ 10−9%). See

Chapter 23 of [23] for a complete review of BBN.

In this initial post-inflationary epoch, the Universe has been radiation-dominated.

During this period, matter perturbations smaller than the size of the horizon dH ≈
cH−1 = c2

√
3/(8πGρ) only grow logarithmically due to the rapid expansion of the

Universe. However, the energy density of radiation decreases as ρr ∝ a−4 while the

energy densities of matter and the cosmological constant evolve as ρm ∝ a−3 and

ρΛ = const respectively. Therefore, as the Universe expands, matter, and then subse-

quently the cosmological constant, will become dominant. Once the Universe becomes

matter-dominated, we can neglect the contributions of radiation and dark energy in the

Friedmann equations. For matter ρm ∝ a−3 and Pm = 0, and thus solving Eqs. (1.1)

and (1.2) with these yields a ∝ t2/3. In this regime, sub-horizon matter density pertur-

bations grow as δm ∝ a. However, in practice this only applies to the CDM component

for a time. This is because, since the end of inflation, baryons and photons have been

coupled together as a single baryon-photon fluid. Electromagnetic (EM) interactions

within this baryon-fluid produce an outwards pressure that counteracts gravitational

collapse, leading to baryon acoustic oscillations (BAO) analagous to sound waves. Thus

perturbations within this fluid are prevented from collapsing under gravity. However,

there will be an overdensity in the baryon-photon fluid at the sound horizon due to

the interaction. Since CDM particles only interact gravitationally, the density per-

turbations in the CDM grow via gravitationally instability [24] as δCDM ∝ a. The

CDM overdensities grow to form halos, as well as filaments and sheets, while the CDM

underdensities grow to form voids [25, 26].

When the Universe cools enough for electrons to recombine with nuclei to form

neutral atoms, the baryonic matter can decouple from the photons. The photons stream
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away and are seen today as the CMB. Once decoupled, the baryonic matter is able to

fall into the gravitational potential wells formed by the CDM overdensities to create

the first stars and stellar clusters, then later galaxies or clusters and superclusters of

galaxies [27]. Because of the overdensity in the baryon-photon fluid at the scale of the

fluid’s sound horizon before decoupling, there is also an enhancement to the clustering

of matter on this BAO scale. The BAO scale evolves as the Universe expands, and can

thus act as a standard ruler to measure the expansion of the Universe.

Unlike CDM, galaxies are luminous and so act as biased tracers of the underlying,

invisible CDM. Much research is being done on computing just how biased galaxies are

as tracers of CDM (see [28] for a review). Alternatively, weak lensing offers a method

of measuring the distribution of CDM more directly (see [29, 30] for reviews). We will

discuss more about structure formation in Section 1.5.

Since, unlike radiation or matter, the energy density of the cosmological constant

does not fall as the Universe expands, the cosmological constant eventually becomes

the dominant component of the Universe. In this epoch we can neglect the contri-

butions of radiation and matter in the Friedmann equations. For the cosmological

constant, PLambda = −ρΛc
2, and thus the Friedmann equations yield a ∝ exp(Ht)

where H =
√

Λ/3. At this point, the rate of expansion is too great to allow large-scale

perturbations to grow further. The expansion of the Universe will continue to accel-

erate, leading to the eventual heat death of the Universe when a state of maximum

entropy is reached.

Throughout the above description of the chronology of the Universe, we have as-

sumed that the concordance cosmological model known as ΛCDM holds. The ΛCDM

model stipulates: a flat universe with an initial post-inflationary decelerating expan-

sion, followed by a late-time acceleration caused by a small positive-valued cosmological

constant; Einstein’s General Relativity (GR) is the correct theory of gravity; and a uni-

verse currently consisting of around 70% cosmological constant, 25% cold dark matter,

and 5% baryons in terms of energy density. The first evidence for the late-time ac-

celeration came from observations of Type Ia supernovae (SNe Ia), which can act as

standardisable candles, allowing observations to yield measurements of the expansion

history of the Universe. The distant SNe Ia are fainter (thus further away) than ex-

pected in any universe except one with a late-time accelerating expansion [31, 32].

Other probes of expansion history (CMB [33] and BAO [34]), as well as large-scale

structure formation (galaxy clustering [35, 36] and weak lensing [37, 38]) and the rela-

tive abundances of primordial nuclei (BBN; Chapter 23 of [23]), are generally consistent

with this model.
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However, there are some signs of discord. Firstly, the measurements of H0 from local

probes such as SNe Ia and strong lensing which are are generally accepted to be model

independent are higher in an inconsistent fashion than those found while assuming

ΛCDM for early Universe probes such as the CMB [39]. Secondly, measurements

of structure growth via σ8 (the amplitude of the linear matter power spectrum at a

scale of 8 Mpc/h) at low redshift from weak lensing are lower than the value implied

by high redshift observations from the CMB assuming ΛCDM [40, 41]. These twin

discrepancies could be explained by unaccounted for systematic errors in either the low

or high redshift observations, but may also point towards flaws in the ΛCDM model.

There is also some recent analysis that suggests CMB observations alone prefer a closed

rather than flat universe [42, 43].

1.2 Modified Gravity

Einstein’s General Relativity (GR) has long been established as the accepted theory

of gravity. It is characterised by the Einstein-Hilbert action

S =

∫
d4x
√
−gR +

∫
d4x
√
−gLm , (1.3)

where R is the Ricci curvature, gµν is the metric, and Lm is the Lagrangian for the

standard model particles. It has been tested extensively within the solar system and

more recently in strong-field environments as well [44]. So far, GR has withstood every

test on these scales. It is known that an extension to GR that unifies the theory of

gravity with quantum field theory will be required in order to describe the pre-inflation

Universe, and there is a wide variety of ongoing attempts to do so (see [45, 46] for re-

views). However, the surprising measurement that the expansion of the Universe is

accelerating instead of decelerating as expected [32, 31] has led some cosmologists to

consider whether an alternative to GR is required in the post-inflation Universe. The

current leading candidate for the origin of the accelerating late-time expansion is a

small, positive cosmological constant Λ [47, 48]. This is a resurrection of a correction

term that Einstein put into GR by hand in order to ensure a static Universe. It is

thought that the theoretical cosmological constant is the physical quantum vacuum

energy. However, the value predicted for the energy density of the quantum vacuum

fluctuations scales as M4 where M is the cut-off mass of the theory. Depending on

where this cut-off is set, this prediction yields values between 1054 and 10120 orders of

magnitude larger than the value of the cosmological constant that is required by cosmo-

logical observations [49]. If the quantum vacuum energy is to act as the cosmological

constant, it is thought that there must be a finely-tuned cancellation of the vacuum
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energy that leaves behind only a small, positive contribution. This requirement of fine-

tuning is known as the cosmological constant problem [49]. A further issue with the

late-time accelerated expansion being caused by a small, positive cosmological constant

is that the current values of the cosmological constant and matter energy densities are

of the same order of magnitude, despite evolving very differently over the age of the

Universe. This is known as the coincidence problem [50].

Thus, as a result of these issues with the cosmological constant, investigations

considering alternative theories of gravity have resumed (see [51, 52] for reviews).

Lovelock’s theorem tells us that Einstein’s equations are the only second-order, lo-

cal equations of motion from an action in 4D spacetime involving solely the metric

tensor and its derivatives. [53, 54]. This therefore requires that modifications to GR

to must include at least one of the following [51, 52]: extra degrees of freedom (such

as Brans-Dicke gravity [55, 56]), higher order derivatives (such as f(R) gravity [57, 4]),

higher dimensional spacetime (such as DGP braneworld gravity [58]), or non-locality.

These modifications can usually be expressed as an extra scalar field φ, which couples

to matter to produce a fifth force.

The difficulty with considering alternatives to GR is that the extensive tests of grav-

ity within the solar system place tight constraints on deviations from GR within such

environments. In order to allow alternative theories to deviate from GR on cosmologi-

cal scales where they might be able to produce the late-time accelerating expansion but

still obey the constraints that come from solar system scales, many modified gravity

theories include a screening mechanism that essentially reduces the alternative theory

to GR on solar system scales but leaves the modifications of the alternative theory

untouched otherwise [59]. An alternative approach is to break the weak equivalence

principle, such that the extra scalar field couples only to dark matter and not baryons.

This alternative approach is followed in theories of interacting dark energy (see [60, 61]

for reviews).

There are a variety of possible screening mechanisms. Consider a general La-

grangian for a scalar field φ

L = −1

2
Zµν(φ, ∂φ, ∂2φ)∂µφ∂νφ− V (φ) + β(φ)T µµ . (1.4)

The dynamics of fluctuations around the background field φ̄ are determined by three

parameters: the mass of fluctuations m(φ̄), the coupling to matter β(φ̄) and the kinetic

function Zµν(φ̄). In addition to this, in the presence of non-relativistic matter T µµ = −ρ,

the scalar field’s dynamics, and therefore φ̄, depends on the local density of the system.

The three parameters can each be utilised to screen the fifth force mediated by the

additional scalar field in high density environments such as the solar system. Firstly,

6



if m2(φ̄) is large in high density environments then the scalar field will not propagate

above the Compton wavelength m−1(φ̄) and therefore the additional force is suppressed,

while in low density environments outside the solar system m2(φ̄) can be light and the

fifth force can be significant. An example of this type of mechanism is chameleon

screening [62, 63]. Secondly, if β(φ̄) is small in high density environments the strength

of the fifth force is weak, while in low density environments β(φ̄) can be large and

the fifth force can be of the same order strength as gravity. Example of this type of

screening are the dilaton [64] and symmetron [65] mechanisms. Finally, if Zµν(φ̄) is

large in high density environments, either by the first (as in k-mouflage screening [66])

or second (as in Vainshtein screening [67]) derivative of the field becoming large, then

β(φ̄), and therefore the strength of the fifth force, is effectively suppressed.

A further constraint on theories of gravity comes from the recent near-simultaneous

observation of electromagnetic radiation and gravitational waves from the binary neu-

tron star merger GW170817 [68]. The difference between the speed of gravitational

waves cGW and the speed of light in a vacuum c was determined to be constrained as

−3× 10−15 ≤ cGW

c
− 1 ≤ 7× 10−15 . (1.5)

This effectively rules out any theory of gravity where the speed of gravitational waves

is not equal to that of electromagnetic radiation [69, 70, 71, 72, 73, 74, 75]. However,

there have been some attempts to get around this constraint, for example [76].

A model that is frequently considered when looking for signatures of modified grav-

ity in structure formation is f(R) gravity [57, 4]. Here, we generalise the Einstein-

Hilbert action such that it becomes a function of the Ricci curvature R

S =

∫
d4x
√
−gf(R) +

∫
d4x
√
−gLm . (1.6)

The resulting equation of motion is fourth order and as such f(R) can be classified as

a higher derivative theory. However, it is also possible to introduce a scalar field φ and

make the equation of motion second order, thus reclassifying the model as an extra

degree of freedom theory. The action above is equivalent to

S =

∫
d4x
√
−g (f(φ) + (R− φ)f ′(φ)) , (1.7)

where f ′ = ∂f/∂φ, and by taking a further variation with respect to φ, we obtain

(R − φ)f ′′(φ) = 0. Therefore, provided f ′′(φ) 6= 0 and R = φ, we recover the original

action. Furthermore, if we define ψ = f ′(φ) and a potential V = f(φ) − φf ′(φ), the

action can be rewritten

S =

∫
d4x
√
−g (ψR− V (ψ)) . (1.8)
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Ignoring the potential, this model would be excluded by solar system constraints.

However, by choosing the form of the potential, i.e. the form of f(R), appropriately, it is

possible to incorporate the chameleon screening mechanism to evade these constraints.

One particular form of f(R) that achieves this, as well as producing an expansion

history close to that of ΛCDM, was identified by Hu and Sawicki [77]

f(R) = R− µRc

1 + (R−Rc)−2n
, (1.9)

where µ, n, and Rc are all positive constants. The theory can be rewritten such that

the free parameters are n, which typically takes the value of unity, and |fR0|, which is

typically a negative power of 10. Common notation is to refer to |fR0| = 10−4 as ‘F4’

and so on. F4 is a stronger modification to GR than F5, which in turn is a stronger

modification than F6. There is no deviation of the speed of gravitational waves from

the speed of electromagnetic waves in this theory and thus it satisfies the GW170817

constraints mentioned above.

Another frequently considered modified gravity theory is the Dvali-Gabadadze-

Porrati (DGP) model [58] which is the simplest variant of a braneworld model, in

which it is posited we live on a 4D membrane (brane) in a higher dimensional spacetime

(bulk). In braneworld theories, gravity propagates throughout the whole spacetime,

while standard model particles are confined to the brane. DGP is a 5D model described

by the action

S =
M3

5

2

∫
d5x
√
−(5)g

(5)
R +

M2
4

2

∫
d4x
√
−g
(

(4)R + Lm

)
, (1.10)

where (5)g is the metric in the bulk, and (4)R and (5)R are 4D and 5D Ricci curvature

respectively. The key parameter of this model is the cross-over scale; the ratio between

the 4D and 5D Newton’s constants rc = M2
4/2M

3
5 . The Friedmann equation in DGP

is

H2 = ±H
rc

+
8πG

3
ρ . (1.11)

At early times, Hrc � 1 and the usual 4D Friedmann equation is recovered. However,

at late times, there are two branches to the solution. In the upper branch, the Hubble

parameter tends towards a constant H → 1/rc, which causes the the expansion of the

Universe to accelerate without the need for a cosmological constant. Thus this branch

is known as the self-accelerating branch; however this solution is not viable as it suffers

from a ghost instability [78, 79, 80, 81, 82, 83]. The lower branch solution requires

a cosmological constant to yield accelerated expansion, and is thus called the normal

branch of the DGP theory, often shortened to nDGP. The Vainshtein mechanism is
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present in this theory, allowing it to evade solar system constraints. The speed of

gravitational waves is equal to the speed of electromagnetic waves in this theory and

thus it does not fall foul of the GW170817 constraints mentioned above.

Introducing modified gravity theories such as these may also have consequences for

large scale structure formation. Most modified gravity theories enhance the growth

of structure formation at intermediate scales because of the addition of a fifth force.

Such an enhancement of growth can leave observable signatures in clustering statistics

computed from galaxy surveys [84, 85]. It is vital to be able to model the effects

of modified gravity on structure formation in simulations so that the output can be

compared to galaxy surveys in order to determine whether the observations show any

evidence for deviations from GR in the clustering statistics. For the connection between

a variety of modified gravity models and perturbation theory, see Appendix D.

There is also the possibility that modifying gravity can affect the intrinsic lumi-

nosities of Type Ia supernovae (SNe Ia) standardisable candles [86]. This could affect

the evidence from SNe Ia for late-time accelerating expansion [87], or help constrain

modified gravity if SNe Ia observations are combined with measurements from other

probes of expansion that support late-time acceleration [88].

1.3 Massive Neutrinos

Neutrinos have been shown to have mass by flavour oscillation experiments [89, 90].

However, these experiments only measure the differences between the squared masses

of the neutrino mass eigenstates ∆m2
ij = m2

i −m2
j rather than the absolute masses mi.

There is strong evidence from the analysis of the invisible Z-boson width at LEP for

three neutrino mass eigenstates [91], and the three flavours νe, νµ, and ντ are linear

combinations of these mass eigenstates. The oscillation experiments show that ∆m2
21 is

small and positive, but only constrain the magnitude |∆m2
31|, which is relatively larger

than |∆m2
21|. This leads to two possible hierarchies of the three mass eigenstates;

the normal hierarchy (NH) where ∆m2
31 is positive and thus m3 � m2 > m1, or the

inverted hierarchy (IH) where ∆m2
31 is negative and thus m2 > m1 � m3. The lower

bound on the sum of the neutrino masses Mν = Σimi that comes from these constraints

depends on the hierarchy; it is approximately Mν > 0.06eV or Mν > 0.1eV for NH and

IH respectively [92, 93]. An upper bound on the sum of neutrino masses Mν < 2eV

comes from tritium decay experiments [23].

Massive neutrinos affect cosmology. We can express how their contribution to the
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content of the Universe at z = 0 depends on their mass with

Ων =
ρν
ρcrit

=
Mν

93.14h2eV
, (1.12)

where h = H0/[100km s−1 Mpc−1] is the reduced Hubble constant. This expression

is derived by assuming standard neutrino decoupling and taking moments of the neu-

trino momentum distribution, which has a Fermi-Dirac form. In the very early post-

inflationary Universe, the temperature was high enough that massive neutrinos were

relativistic, and acted as radiation. However, once the temperature of the neutrinos

fell such that 3Tν < mi, that mass eigenstate became non-relativistic. The redshift of

non-relativistic transition is approximately

1 + znr ≈ 1987
( mi

1eV

)
. (1.13)

If any of the neutrino states has mi & 0.57eV, they will have become non-relativistic

before photon decoupling and therefore have had direct effects on the CMB temper-

ature and polarisation anisotropies, as described in [94]. Since such effects are well

constrained by current CMB data [33], it is generally safe to assume that all of the

neutrino states became non-relativistic after photon decoupling and therefore have

mi . 0.57eV. However, this constraint does not prevent massive neutrinos from pro-

ducing indirect signatures in CMB observables due to their effects on the Universe as

the CMB photons propagate to reach us at late-time. There are four key effects of mas-

sive neutrinos that indirectly impact the CMB observations. Firstly, massive neutrinos

contribute to the total non-relativistic density at late times. The evolution of the total

non-relativistic density at late times can affect the CMB via the relationship between

scales on the last-scattering surface and angles on the sky, and through the late ISW

effect [95], which depend on the angular diameter distance to recombination dA(zrec)

and the redshift of matter-Λ equality zΛ,eq respectively. Although both dA(zrec) and

zΛ,eq respond to changes in Mν , by also varying H0 and ΩΛ it is possible to keep either

one fixed, but not both at the same time. Thus the exact impact on the CMB obser-

vation depends on which one is chosen to stay fixed. Since CMB observations measure

the angular scale of acoustic oscillations very well, it makes more sense to vary H0 and

ΩΛ with Mν in such a way as to keep dA(zrec) fixed. Therefore, increasing Mν leads

to a decrease in the late ISW effect and thus a depletion of the CMB temperature

anisotropy power spectrum CTT
l for l ≤ 20. Secondly, when massive neutrinos become

non-relativistic it affects the total pressure-to-density ratio of the Universe and causes

a small variation of the metric fluctuations. If this transition takes place soon after

photon decoupling, then this variation causes a dip in CTT
l for 20 ≤ l ≤ 200 via the
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early ISW effect [95]. Thirdly, due to the suppression of the matter power spectrum

by massive neutrinos (see below), the effect of weak lensing on the CMB [96] will be

reduced which can lead to oscillatory features in CTT
l for l ≥ 200. Finally, since the

massive neutrinos will have a distribution of momenta, those with the smallest mo-

menta will become non-relativistic before those with average momenta, which can lead

to a small enhancement of CTT
l for l ≥ 500 when the photon perturbations respond to

this transition through their gravitational coupling to the neutrinos.

The relatively small masses of neutrinos means that they essentially act as a warm

dark matter (WDM) component of the Universe, with a large thermal velocity at late

times [97, 98, 99, 100, 101, 102]. This large thermal velocity prevents massive neutrinos

from clustering at scales smaller than the corresponding free-streaming length lFS, while

on large scales they behave like CDM. The comoving wave number corresponding to

lFS is approximately

kFS ≈ 0.81

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

mi

1eV
h Mpc−1 . (1.14)

After its non-relativistic transition, the free-streaming scale of each eigenstate evolves

as kFS ∝ (1 + z)−1/2, and thus kFS has a minimum at znr given by

knr ≈ 0.018
( mi

1eV

)1/2

(Ωmh
2)1/2 Mpc−1 . (1.15)

Thus density modes with k < knr are never affected by neutrino free-streaming. Massive

neutrinos not contributing to the clustering of total matter for k > kfs leads to a

suppression of the matter power spectrum by a factor of approximately (1−2fν) at these

small scales. Additionally, neutrinos not clustering below the free-streaming length also

means that the CDM component feels a reduced gravitational potential. Thus CDM

clustering and the growth of CDM structure is suppressed below the neutrino free-

streaming scale by a factor of approximately (1 − 6fν). Thus the total suppression

factor of the small-scale linear matter power spectrum is approximately (1 − 8fν)
1,

although more precise computations show this may not be entirely valid, especially

for larger fν [103, 104]. The suppression of the non-linear matter power spectrum is

even more extreme. Figure 1.1 shows the ratio of the matter power spectrum with and

without massive neutrinos for several different neutrino masses at 3 different redshifts

to highlight the suppression effect and its evolution. The computations for both the

linear and non-linear power spectra in this figure were carried out using the Boltzmann

code CAMB [105], with the non-linear results produced by the built-in HALOFIT protocol

1For further information about these suppression factors, see Section 25.2.4 of [23], or Section 4.5.6

(specifically Eqs. (135)-(142)) of [103] for a derivation.
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[106]. We included massive neutrinos by increasing Ων at the expense of ΩCDM; Ωm

and all other cosmological parameters were held fixed. Figure 1.1 shows that even for

the lower bound Mν > 0.06eV the suppression of the matter power spectrum is on the

order of a few percent at redshifts relevant for galaxy surveys [103, 107].
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Figure 1.1: The suppression of the matter power spectrum by different masses of neutrinos

at z = 9 (left), z = 1 (centre), and z = 0 (right). Both the linear (solid lines) and non-

linear (dashed lines) results were produced with the Boltzmann code CAMB [105], with the

non-linear results using the built-in HALOFIT protocol [106]. Massive neutrinos were included

by increasing Ων at the expense of ΩCDM; Ωm and all other cosmological parameters were

held fixed. The vertical dotted lines show kFS for each case assuming a degenerate hierarchy

of neutrino masses.

Given that this is similar to the accuracy to which the matter power spectrum

will be measured by future galaxy surveys, it is vital to be able to model the effects of

massive neutrinos in simulations such that comparison to data from surveys is accurate.

While some of the effects described above are dependent on the individual masses mi,

most of them only depend on the total mass Mν . Thus when modelling structure

formation a degenerate hierarchy is usually assumed where m1 = m2 = m3 = 1
3
Mν .

However, there is also potential for cosmology to determine the correct hierarchy or

even measure the individual masses [108, 109, 110].

1.4 Degeneracy

With the potential for scale-dependent enhancement of structure formation arising

from modified gravity and the scale-dependent suppression due to massive neutrinos,

there is a risk of degeneracy whereby large-scale structure in a universe with a strong

modification to gravity and heavy neutrinos can be difficult to distinguish from that

of a universe with GR and light neutrinos [111, 112, 2, 113, 114, 115, 116, 117]. This
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degrades the ability of surveys to achieve their twin goals of testing gravity and con-

straining the neutrino masses in any theories of gravity beyond GR. Indeed, it has been

shown that the non-linear matter power spectrum [2] and halo mass function [118] in

f(R) models are difficult to distinguish from their equivalents in GR when the neutrino

masses are allowed to vary. A demonstration of this degeneracy is shown in Figure 1.2,

where we computed the linear and non-linear matter power spectra for various com-

binations of |fR0| and Mν using the modified Boltzmann code MGCAMB [119, 120, 121]

and the built-in HALOFIT protocol [106] respectively. The results show that for these

particular combinations of |fR0| and Mν the scale-dependent enhancement due to f(R)

gravity and scale-dependent suppression due to the free-streaming of heavy massive

neutrinos leads to a matter power spectrum that is difficult to distinguish from that

of a Universe with GR and minimal neutrino masses. Two points should be noted

here. Firstly, which particular values of |fR0| and Mν yield a degenerate matter power

spectrum depends on H0, Ωm and other cosmological parameters. Secondly, values of

|fR0| and Mν that lead to a degenerate matter power spectrum at one redshift may

not do so at another redshift due to the different evolution of the modified gravity and

massive neutrino free-streaming effects.

10 4 10 3 10 2 10 1 100 101

k [h/Mpc]

0.85
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Figure 1.2: The combined enhancement and suppression of the matter power spectrum by

different strengths of f(R) gravity and masses of neutrinos at redshift z = 1. Both the linear

(solid lines) and non-linear (dashed lines) results were produced with the modified Boltzmann

code MGCAMB [119, 120, 121], with the non-linear results using the built-in HALOFIT protocol

[106]. Massive neutrinos were included by increasing Ων at the expense of ΩCDM; Ωm and all

other cosmological parameters were held fixed.

This potential degeneracy is seldom considered in the analysis of data from large

13



surveys. The DES Collaboration considers neutrino mass and extensions to GR in

the same analysis [122], although they only state the resulting constraints on the MG

parameters and not the neutrino masses. There are some promising signs that cer-

tain observables may be better at reducing or even breaking this degeneracy, such as

higher-order weak lensing statistics [123] and weak lensing tomographic information at

multiple redshifts [124]; as well as techniques that are superior at distinguishing models

such as machine learning [125, 126].

A different observable that has degeneracy breaking potential is that of redshift-

space distortions (RSD), which we will discuss in detail in Section 1.5. For combinations

of MG parameters and neutrino masses whose enhancement and suppression of struc-

ture growth produce matter power spectra that are difficult to differentiate between,

the structure growth rate can still be different in each case and allow for models to

be distinguished between. It has recently been shown that growth rate information

imprinted in velocity statistics in real-space can be used to break the degeneracy [127].

However, real-space velocity statistics are not directly observable at high redshifts, only

in the local Universe where we can assume the Hubble flow is negligible and thereby

measure the peculiar velocities of objects from their redshifts. Fortunately, because of

the velocity information encoded in them, RSD observations can be used to extract

the linear growth rate of structure f . However, in order to extract f and break the

degeneracy, it is necessary to accurately model the non-linearities of RSD with MG

and massive neutrinos.

1.5 Structure formation

In Section 1.1, we introduced the concept that galaxies act as biased tracers of the

invisible, underlying CDM which makes up the majority of matter in the Universe. By

mapping the positions of galaxies in the observable Universe through galaxy surveys

(such as eBOSS [128], DES [129], HSC [130], DESI [131], LSST [132], Euclid [133],

4MOST [134] and WFIRST [135]), we can compute statistical measures of clustering

such as N-point correlation functions and their Fourier space equivalents [136]. By

comparing the clustering statistics of observational data to theoretical models and

computational simulations, we can discriminate between cosmological models and place

constraints on model parameters in order to learn about the underlying physical laws

governing our Universe [137, 138].

The simplest clustering statistic is ξ, the 2-point correlation function (2PCF), de-
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fined as the joint ensemble average of the density δ at two different points

ξ(~x, ~y) = 〈δ(~x)δ(~y)〉 . (1.16)

Statistical homogeneity states that the statistical properties of the translated density

field δ(~x − ~a) are the same as those of the original field δ(~x). This implies that the

2PCF is only dependent on the vector separating the two points. So if ~y = ~x+ ~r, then

ξ(~x, ~y) = 〈δ(~x)δ(~y)〉 = 〈δ(~x)δ(~x+ ~r)〉 = ξ(~r). (1.17)

Statistical isotropy states that the statistical properties of the rotated density field

δ(R−1~x) are the same as those of the original field δ(~x). Combined with statistical

homogeneity, this implies that the 2PCF is only dependent on the magnitude of the

vector, i.e. the distance, separating the two points:

ξ(~x, ~y) = 〈δ(~x)δ(~y)〉 = 〈δ(~x)δ(~x+ ~r)〉 = ξ(r). (1.18)

Thus ξ(r) is a measure of the probability above random that two galaxies are separated

by a distance r. Often it is useful to consider the density in Fourier space

δ(~k) =

∫
d3~x

(2π)3
δ(~x) exp

[
−i~k · ~x

]
. (1.19)

While the wavemode δ(~k) is a complex random variable, since δ(~x) is real it follows

that δ(~k) = δ∗(−~k), such that the density field is determined entirely by the statistical

properties of the random variable δ(~k). The 2-point correlator in Fourier space is then〈
δ(~k)δ(~k′)

〉
=

∫
d3~xd3~r

(2π)6
〈δ(~x)δ(~r)〉 exp

[
−i~k · ~x

]
exp

[
−i~k′ · (~x+ ~r)

]
=

∫
d3~xd3~r

(2π)6
ξ(r) exp

[
−i(~k + ~k′) · ~x

]
exp

[
−i~k′ · ~r

]
= δD(~k + ~k′)

∫
d3~r

(2π)3
ξ(r) exp

[
−i~k · ~r

]
= δD(~k + ~k′)P (k) , (1.20)

where the power spectrum P (k) is the Fourier space equivalent of ξ(r):

P (k) =

∫
d3~r

(2π)3
ξ(r) exp

[
−i~k · ~r

]
(1.21)

P (k) depends only on the magnitude of the wavevector due to statistical homogeneity

and isotropy, in the same way that ξ depends only on the distance r.

Statistical measures of clustering such as these can be computed directly from

particle distributions that are the output of simulations of structure formation (see

Section 1.6). Another method is to use perturbation theory to understand how the

initial density fields evolve and use this to write expressions for the clustering statistics.
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1.5.1 Standard perturbation theory

1.5.1.1 SPT for ΛCDM

To study the dynamics of particles in an expanding homogeneous and isotropic universe,

it is convenient to use the comoving position ~x, which is related to the proper position

~r through

~r = a(η)~x , (1.22)

where the scale factor a(η) is a universal function of time due to homogeneity and

isotropy, and we have chosen to define it in terms of the conformal time η, which is

related to proper time through dt = a(η)dη. The expansion rate of such a universe can

be expressed through the conformal Hubble factor H = d ln a/dη = aH. Considering

particle velocities, we find the proper particle velocity ~v = d~r/dt in terms of comoving

position and conformal time is written as

~v(~x, η) = H~x+ ~u , (1.23)

where ~u = d~x/dη. The first term in the above expression represents the background

expansion, while the second term ~u represents the peculiar velocity; the motion of the

particle relative to an observer comoving with the background. The Lagrangian for a

particle with mass m moving in a smooth, Newtonian gravitational potential ϕ(~x, η) is

L =
1

2
mv2 −mϕ =

1

2
m (H~x+ ~u)2 −mϕ . (1.24)

Applying the canonical transformation L → L − dψ/dη, where ψ = mHx2/2, which

will preserve the form of the equations of motion, reduces the Lagrangian to

L =
1

2
mu2 −mΦ(~x, η) , (1.25)

where Φ(~x, η) is the cosmological gravitational potential defined as

Φ(~x, η) =
1

2

∂H
∂η

x2 + ϕ(~x, η) . (1.26)

For ΛCDM, Φ is sourced only by fluctuations around the average mass density of the

universe ρ̄, and thus describes the deviation from the Newtonian background potential

ϕ. Lagrangian mechanics show that the canonical momentum is defined as ~p = ∂L/∂~̇x
where ~̇x = d~x/dt = ~u/a, and can therefore be written as

~p(~x, η) = ma~u(~x, η) . (1.27)
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Finally, the Newtonian equation of motion derived from the Euler-Lagrange equations

dpi/dt = dL/dxi is

d~p

dη
= −ma~∇~xΦ(~x, η) . (1.28)

The Vlasov equation describes the conservation of the particle number density in

phase-space f(~x, ~p, η):

df

dη
=
∂f

∂η
+

~p

am
· ~∇f − am~∇Φ · ∂f

∂~p
= 0 . (1.29)

Taking the zeroth momentum moment of the Vlasov equation yields the continuity

equation, and subtracting ~u(~x, η) times the continuity equation from the first moment

leads to the Euler equation. Then taking the Fourier transform of both the continuity

equation and the divergence of the Euler equation, we obtain

∂δ(~k)

∂η
+ θ(~k) = −

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k12

)
α(~k1, ~k2)θ(~k1)δ(~k2) , (1.30)

∂θ(~k)

∂η
+Hθ(~k)− k2Φ(~k) = −

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k12

)
β(~k1, ~k2)θ(~k1)θ(~k2) , (1.31)

where ~k12 = ~k1 + ~k2, the density contrast δ(~k) is defined through ρ(~x, η) = ρ̄(η)[1 +

δ(~x, η)], ρ(~x, η) and ρ̄(η) are the local and average mass densities respectively, and the

time dependence has been suppressed. We have also assumed fluid quantities to be

irrotational such that the peculiar velocity field ~u can be expressed in terms of the

velocity divergence θ =
(
~∇ · ~u

)
/H with H = aH being the conformal Hubble factor.

Changing time variables from η to a yields

a
∂δ(~k)

∂a
+ θ(~k) = −

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k12

)
α(~k1, ~k2)θ(~k1)δ(~k2) , (1.32)

a
∂θ(~k)

∂a
+

(
2 +

aH ′

H

)
θ(~k)−

(
k

aH

)2

Φ(~k) = −1

2

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k12

)
× β(~k1, ~k2)θ(~k1)θ(~k2) , (1.33)

where H ′ = ∂H/∂a, y′ = ∂y/∂a and the kernels α and β are given by

α(~k1, ~k2) = 1 +
~k1 · ~k2

|~k1|2
, (1.34)

β(~k1, ~k2) =
(~k1 · ~k2)|~k1 + ~k2|2

|~k1|2|~k2|2
. (1.35)
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The Poisson equation completes the above modified continuity and Euler equations.

For ΛCDM, this is given by

−
(
k

aH

)2

Φ(~k) =
3Ωm(a)

2
δ(~k) , (1.36)

where Ωm(a) = 8πGρm/3H
2. We want the nth order solutions of Eqs. (1.32) and (1.33)

to be of the form

δn(~k, a) =

∫
d3~k1 . . . d

3~knδD(~k − ~k1...n)Fn(~k1, . . . , ~kn, a)∆(~k1) . . .∆(~kn) , (1.37)

θn(~k, a) =

∫
d3~k1 . . . d

3~knδD(~k − ~k1...n)Gn(~k1, . . . , ~kn, a)∆(~k1) . . .∆(~kn) , (1.38)

where ~k1...n = ~k1 + . . . + ~kn and ∆(~k) = δ(~k, aini) is the initial density field. Inserting

these forms of the solutions and the ΛCDM Poisson equation into Eqs. (1.32) and (1.33)

yields a generalised system of equations for the nth order kernels [139]

L̂

[
Fn(~k1, . . . , ~kn)

Gn(~k1, . . . , ~kn)

]
=

n−1∑
j=1

[
−α(~k1...j, ~kj+1...n)Gj(~k1, . . . , ~kj)Fn−j(~kj+1, . . . , ~kn)

−1
2
β(~k1...j, ~kj+1...n)Gj(~k1, . . . , ~kj)Gn−j(~kj+1, . . . , ~kn)

]
,

(1.39)

where

L̂ =

[
a d
da

1
3Ωm

2
a d
da

+
(
2 + aH′

H

)] . (1.40)

This system of equations must be solved to compute the kernels Fi and Gi. It is

necessary to symmetrise these kernels by summing over all permutations in their spatial

arguments and dividing by the number of permutations. An example of a code that

does this is MG-Copter [140] which is built on the original code Copter [141] but based

on the approach developed by [139]. Briefly, we will note that the kernel for the first

order densities F1 is equivalent to the first order growth factor D1, which for ΛCDM

is scale-independent i.e. F1(k, z) = D1(k, z) = D1(z).

In SPT formalism, the power spectra up to 1-loop order are given as

P 1−loop
ij (k) = P L

ij(k) + P 13
ij (k) + P 22

ij (k) , (1.41)

where the 1-loop corrections are defined by〈
x2(~k)y2(~k′)

〉
= (2π)3δD(~k + ~k′)P 22

xy (k) ,〈
x1(~k)y3(~k′) + x3(~k)y1(~k′)

〉
= (2π)3δD(~k + ~k′)P 13

xy (k) , (1.42)
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where x and y can be δ or θ. Working these through, the expressions for the 1-loop

corrections in terms of the primordial power spectra Pini(k) = P L(k, zini) are, for the

22 correction,

P 22
δδ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

Pini(kr)Pini(k
√

1 + r2 − 2rx)

[D1(zini)]4
F 2

2 (k, r, x, z)dx , (1.43)

P 22
δθ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

Pini(kr)Pini(k
√

1 + r2 − 2rx)

[D1(zini)]4
F2(k, r, x, z)

×G2(k, r, x, z)dx , (1.44)

P 22
θθ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

Pini(kr)Pini(k
√

1 + r2 − 2rx)

[D1(zini)]4
G2

2(k, r, x, z)dx , (1.45)

while for the 13 correction we have

P 13
δδ (k, z) =2

k3

(2π)2
F1(k, z)

Pini(k)

[D1(zini)]2

∫ ∞
0

r2 Pini(kr)

[D1(zini)]2
F3(k, r, x, z)dr , (1.46)

P 13
δθ (k, z) =

k3

(2π)2
F1(k, z)

Pini(k)

[D1(zini)]2

∫ ∞
0

r2 Pini(kr)

[D1(zini)]2
G3(k, r, x, z)dr

+
k3

(2π)2
G1(k, z)

Pini(k)

[D1(zini)]2

∫ ∞
0

r2 Pini(kr)

[D1(zini)]2
F3(k, r, x, z)dr , (1.47)

P 13
θθ (k, z) =2

k3

(2π)2
G1(k, z)

Pini(k)

[D1(zini)]2

∫ ∞
0

r2 Pini(kr)

[D1(zini)]2
G3(k, r, x, z)dr . (1.48)

For implementation in MG-Copter, the z = 0 linear power spectra P0(k) = P L(k, z =

0) = Pini(k)[D1(z = 0)/D1(zini)]
2 are used as input instead of the primordial power

spectra. Rewriting the expressions, for the 22 correction we find

P 22
δδ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P0(kr)P0(k
√

1 + r2 − 2rx)

[D1(z = 0)]4
F 2

2 (k, r, x, z)dx , (1.49)

P 22
δθ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P0(kr)P0(k
√

1 + r2 − 2rx)

[D1(z = 0)]4
F2(k, r, x, z)

×G2(k, r, x, z)dx , (1.50)

P 22
θθ (k, z) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P0(kr)P0(k
√

1 + r2 − 2rx)

[D1(z = 0)]4
G2

2(k, r, x, z)dx , (1.51)

19



while for the 13 correction we have

P 13
δδ (k, z) =2

k3

(2π)2
F1(k, z)

P0(k)

[D1(z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(z = 0)]2
F3(k, r, x, z)dr , (1.52)

P 13
δθ (k, z) =

k3

(2π)2
F1(k, z)

P0(k)

[D1(z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(z = 0)]2
G3(k, r, x, z)dr

+
k3

(2π)2
G1(k, z)

P0(k)

[D1(z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(z = 0)]2
F3(k, r, x, z)dr , (1.53)

P 13
θθ (k, z) =2

k3

(2π)2
G1(k, z)

P0(k)

[D1(z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(z = 0)]2
G3(k, r, x, z)dr . (1.54)

1.5.1.2 SPT with modified gravity

Modified gravity models have been previously added to the original Copter [141] to

create MG-Copter [140]. The computation of the kernels Fn and Gn are affected by the

inclusion of modified gravity in SPT, as are the expressions for the 1-loop corrections

of the real-space power spectra given in Eqs. (1.49)-(1.54). We shall reproduce here the

essentials of the implementation of modified gravity in the SPT part of MG-Copter.

The modifications to gravity can be included in the Poisson equation, which up to

3rd order becomes

−
(
k

aH

)2

Φ(~k) =
3Ωm(a)

2
δ(~k)µ(k, a) + S(~k) , (1.55)

where µ(k, a) = Geff(k, a)/G is an effective Newton’s constant2 and the non-linear

source term S(~k) up to 3rd order is

S(~k) =

∫
d3~k1d

3~k2

(2π)3
δD(~k − ~k12)γ2(~k,~k1, ~k2, a)∆(~k1)∆(~k2)

+

∫
d3~k1d

3~k2d
3~k3

(2π)3
δD(~k − ~k123)γ3(~k,~k1, ~k2, ~k3, a)∆(~k1)∆(~k2)∆(~k3) . (1.56)

While the effective Newton’s constant µ(k, a) is generally responsible for the (scale-

dependent) growth of linear perturbations, at the fully non-linear level modified grav-

ity models typically include a screening mechanism that will affect the growth of non-

linearities, and the γ2 and γ3 terms provide the leading order description of this screen-

ing in perturbation theory.

2Not to be confused with the line-of-sight angle parameter µ, which will always be presented

without arguments.
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Using the same form for the nth order solutions as in Eqs. (1.37) and (1.38), the

new system of equations for the nth order kernels is

L̂

[
Fn(~k1, . . . , ~kn)

Gn(~k1, . . . , ~kn)

]

=
n−1∑
j=1

[
−α(~k1...j, ~kj+1...n)Gj(~k1, . . . , ~kj)Fn−j(~kj+1, . . . , ~kn)

−1
2
β(~k1...j, ~kj+1...n)Gj(~k1, . . . , ~kj)Gn−j(~kj+1, . . . , ~kn)−Nn(~k,~k1, . . . , ~kn)

]
,

(1.57)

where

L̂ =

[
a d
da

1
3Ωm

2
µ(k, a) a d

da
+
(
2 + aH′

H

)] , (1.58)

and

N2 =γ2(~k,~k1, ~k2)F1(~k1)F1(~k2) , (1.59)

N3 =γ2(~k,~k1, ~k23)F1(~k1)F2(~k2, ~k3) + γ2(~k,~k12, ~k3)F2(~k1, ~k2)F1(~k3)

+γ3(~k,~k1, ~k2, ~k3)F1(~k1)F1(~k2)F1(~k3) . (1.60)

In modified gravity, generally the first order growth factor will be scale-dependent.

However, if we consider only models where modified gravity becomes active at late

times, Pini(k) and D1(zini) will be unchanged from ΛCDM. Therefore Eqs. (1.49)-(1.54)

are still applicable as long as we leave P0(k) andD1(z = 0) as in ΛCDM and only modify

the kernels Fi and Gi to include the effects of modified gravity. This is the approach

taken in the standard version of MG-Copter.

1.5.2 Lagrangian perturbation theory

In Lagrangian dynamics, the position of a particle xi is written as the sum of its initial

position qi and the displacement field Ψi:

xi(τ) = qi + Ψi(~q, τ) . (1.61)

Unless stated otherwise all time-derivatives in this subsection are with respect to the

super-comoving time coordinate τ defined by dτ = dt
a2

. The equation of motion in

conformal time η, where dη = dt/a, given in Eq. (1.28) can be rewritten as

d2~x

dη2
+H(η)

d~x

dη
= −~∇~xΦ(~x, η) . (1.62)
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Converting to super-comoving time τ , and writing vectors as ~y = yi, this becomes

d2xi
dτ 2

= −∇xiΦ(~x, τ) . (1.63)

Substituting in Eq.(1.61) and taking the divergence of Eq.(1.63) yields the Lagrangian

equation of motion:

∇x
i

[
d2Ψi(~q, τ)

dτ 2

]
= −∇x

2Φ(~x, τ) . (1.64)

This is tricky, since we’re applying a differentiation w.r.t. x to a variable that is a

function of q. However, the density of particles in Lagrangian coordinates is simply

the average particle density of the universe, so we can use mass conservation to write

ρ̄(~x) (1 + δ(~x)) d3~x = ρ̄(~q)d3~q . (1.65)

But the conservation is defined through the Jacobian:

ρ̄(~x)d3~x = ρ̄(~q)J(~q, τ)d3~q , (1.66)

therefore we have

1

J(~q, τ)
=

∣∣∣∣d3q

d3x

∣∣∣∣ = 1 + δ(~x) , (1.67)

where Eq. (1.61) yields

J(~q, τ) = det(δij + Ψi,j(~q, τ)) , (1.68)

and we define

Ψi,j =
∂Ψi

∂qj
. (1.69)

The chain rule gives us

∇x
i =

[
d3q

d3x

]
ij

∇q
j =

1

δij + Ψi,j

∂

∂qj
, (1.70)

such that we can rewrite Eq. (1.64) as

1

δij + Ψi,j

∇q
j

[
d2Ψi(~q, τ)

dτ 2

]
= −∇x

2Φ(~x, τ) . (1.71)

We can approximate [δij + Ψi,j]
−1 ≈ δij − Ψi,j, and using the perturbative expansion

of Ψi(~q, τ):

Ψi(~q, τ) = εΨ
(1)
i + ε2Ψ

(2)
i + ... , (1.72)
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we find Eq.(1.71) can be rewritten up to 2nd order as(
∂

∂qi
− ε

∂Ψ
(1)
j

∂qi

∂

∂qj
− ε2

∂Ψ
(2)
j

∂qi

∂

∂qj

)[
ε
d2Ψ

(1)
i

dτ 2
+ ε2

d2Ψ
(2)
i

dτ 2

]
= −∇x

2Φ(~x, τ) . (1.73)

To 1st order, Eq.(1.73) becomes

∂

∂qi

[
d2Ψ

(1)
i

dτ 2

]
=
d2Ψ

(1)
i,i

dτ 2
= −∇x

2Φ(~x, τ) , (1.74)

and to 2nd order Eq.(1.73) becomes

∂

∂qi

[
d2Ψ

(2)
i

dτ 2

]
−
∂Ψ

(1)
j

∂qi

∂

∂qj

[
d2Ψ

(1)
i

dτ 2

]
=
d2Ψ

(2)
i,i

dτ 2
−Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2
= −∇x

2Φ(~x, τ) . (1.75)

We can use the Jacobian of the transform of between x and q to write the density

contrast in terms of Ψ order by order. Starting from 1 + δ(~x) = 1/J(~q, τ), where

J(~q, τ) = det(δij + Ψi,j). Using the matrix identities

det(I + A) = 1 + tr(A) +
1

2

[
tr2(A)− tr(A2)

]
+ (O)(A3) , (1.76)

and

1

det(I + A)
= 1− tr(A) +

1

2

[
tr2(A) + tr(A2)

]
+ (O)(A3) , (1.77)

we can approximate the Jacobian and its inverse up to 2nd order as

J ≈ 1 + Ψ
(1)
i,i + Ψ

(2)
i,i +

1

2

[(
Ψ

(1)
i,i

)2

−Ψ
(1)
i,j Ψ

(1)
j,i

]
, (1.78)

J−1 ≈ 1−Ψ
(1)
i,i −Ψ

(2)
i,i +

1

2

[(
Ψ

(1)
i,i

)2

+ Ψ
(1)
i,j Ψ

(1)
j,i

]
, (1.79)

which finally yields

δ(1)(~x, τ) = −Ψ
(1)
i,i (~q, τ) , (1.80)

δ(2)(~x, τ) = −Ψ
(2)
i,i (~q, τ) +

1

2

[
Ψ

(1)
i,i Ψ

(1)
j,j + Ψ

(1)
i,j Ψ

(1)
j,i

]
. (1.81)

For simplicity, we choose to work in Fourier space. Taking the Fourier transforms

of Eqs. (1.74) and (1.75) with respect to q leads to

Fq

[
d2Ψ

(1)
i,i

dτ 2

]
(~k) = −Fq

[
∇x

2Φ(~x, τ)
]
, (1.82)

Fq

[
d2Ψ

(2)
i,i

dτ 2

]
(~k)−Fq

[
Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2

]
(~k) = −Fq

[
∇x

2Φ(~x, τ)
]
. (1.83)
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Therefore, we also need the Fourier transforms of our perturbatively expanded densities

w.r.t. q. Applying this Fourier transform to Eqs. (1.80) and (1.81) yields are:

δ̃(1)(~k, τ) = Fq
[
δ(1)(~x, τ)

]
(~k) =−Fq

[
Ψ

(1)
i,i (~q, τ)

]
(~k) , (1.84)

δ̃(2)(~k, τ) = Fq
[
δ(2)(~x, τ)

]
(~k) =−Fq

[
Ψ

(2)
i,i (~q, τ)

]
(~k)

+
1

2
Fq
[
Ψ

(1)
i,i Ψ

(1)
j,j + Ψ

(1)
i,j Ψ

(1)
j,i

]
(~k) . (1.85)

Since Ψi is curl-free up to second order, we can write it as the gradient of a scalar field:

Ψi(~q, τ) = ∇iφ(~q, τ), and thus Ψi,i(~q, τ) = ∇i∇iφ(~q, τ). After a Fourier transform, we

have

Fq [Ψi(~q, τ)] (~k) = ikiφ(~k, τ) , (1.86)

Fq [Ψi,i(~q, τ)] (~k) = ikiik
iφ(~k, τ) = −k2φ(~k, τ) . (1.87)

To solve the above set of equations, it is necessary to specify a form for the Poisson

equation.

1.5.2.1 LPT in ΛCDM

In ΛCDM, assuming matter-domination, the only matter content contributing to the

Poisson equation is CDM and baryons:

Fq
[
∇x

2ΦN

]
(~k) = κ δ̃(~k, τ) = κ

(
δ̃(1) + δ̃(2) + . . .

)
, (1.88)

where κ ≡ 4πGρa4 = 3
2
ΩmH

2
0a and δ̃ is the CDM+baryon density.

To solve for the 1st order displacement Ψ
(1)
i , we begin by inserting this into Eq. (1.82),

and utilising Eq. (1.84) yields

Fq

[
d2Ψ

(1)
i,i

dτ 2

]
(~k) = −κ δ̃(1)

cb = κFq
[
Ψ

(1)
i,i

]
(~k) , (1.89)

and after using Eq. (1.87), this becomes

−k2d
2φ(~k, τ)

dτ 2
= −k2 κφ(~k, τ) . (1.90)

Because the growth of density perturbations is scale-independent in ΛCDM, we can

write φ(~k, τ) = D1(τ)φ(~k, τini) where D1(τ) is the 1st order growth factor, dependent

only on τ , and φ(~k, τini) is the initial state of the scalar field. With these definitions,

Eq. (1.89) reduces to [
d2

dτ 2
− κ
]
D1(τ) = 0 , (1.91)
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where φ(~k, τini) = δ̃(~k, τini)/k
2 is specified by Eqs. (1.84) and (1.87). This differ-

ential equation can be solved analytically, as long as initial conditions for D1 and

dD1/dτ are provided. The initial conditions are set such that D1,cb(τini) = 1 and
dD1,cb(τini)

dτ
=
(

1
a
da
dτ

)∣∣
τ=τini

corresponding to the growing mode in a ΛCDM, matter-

dominated universe (Einstein-de Sitter). Once D1(τ) is known, we can finally express

Ψ(1)(~k, τ) = ikiφ
(1)(~k, τ) = iki

D1(~k, τ)δ̃(1)(~k, τini)

k2
, (1.92)

and then use an inverse Fourier transform to get the real-space 1st order displacement:

Ψ(1)(~q, τ) = D1(τ)

∫
d3k

(2π)3
ei
~k·~q iki
k2
δ̃(1)(~k, τini) . (1.93)

For the 2nd order displacement Ψ
(2)
i , we insert Eq. (1.88) into Eq. (1.85), and then

substitute Eq. (1.85), which yields

Fq

[
d2Ψ

(2)
i,i

dτ 2

]
(~k)−Fq

[
Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2

]
(~k) =− κ δ̃(2)

cb

=κFq
[
Ψ

(2)
i,i (~q, τ)

]
(~k)

− κ

2
Fq
[
Ψ

(1)
i,i Ψ

(1)
j,j + Ψ

(1)
i,j Ψ

(1)
j,i

]
(~k) . (1.94)

Using the 1st order solution for d2Ψ(1)/dτ 2 yields

Fq

[
d2Ψ

(2)
i,i

dτ 2

]
(~k)− κFq

[
Ψ

(1)
j,i Ψ

(1)
i,j

]
(~k) =κFq

[
Ψ

(2)
i,i (~q, τ)

]
(~k)

− κ

2
Fq
[
Ψ

(1)
i,i Ψ

(1)
j,j + Ψ

(1)
i,j Ψ

(1)
j,i

]
(~k) . (1.95)

Simplifying, this reduces to[
d2

dτ 2
− κ
]
Fq
[
Ψ

(2)
i,i (~q, τ)

]
(~k) = −κ

2
Fq
[
Ψ

(1)
i,i Ψ

(1)
j,j −Ψ

(1)
i,j Ψ

(1)
j,i

]
(~k) . (1.96)

In a similar way to Eq.(1.93), the quantity Ψ
(1)
l,m(~q, τ) needed to simplify Eq. (1.96) can

be written as an inverse Fourier transform:

Ψ
(1)
l,m(~q, τ) = D1(τ)

∫
d3 ~k1

(2π)3
ik1

mei
~k1·~q ik1l

k2
1

δ̃(~k1, τini) . (1.97)

Therefore, the convolutions are

Ψ
(1)
l,m(~q, τ)Ψ

(1)
m,l(~q, τ)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
ik1

mei
~k1·~q ik1l

k2
1

ik2
lei

~k2·~q ik2m

k2
2

δ̃(~k1, τini)δ̃(~k2, τini)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
i4ei(

~k1+ ~k2).~q k1
mk1lk2

lk2m

k2
1k

2
2

δ̃(~k1, τini)δ̃(~k2, τini)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
ei(

~k1+ ~k2).~q (~k1 · ~k2)2

k2
1k

2
2

δ̃(~k1, τini)δ̃(~k2, τini) , (1.98)
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Ψ
(1)
l,l (~q, τ)Ψ(1)

m,m(~q, τ)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
ik1

lei
~k1·~q ik1l

k2
1

ik2
mei

~k2·~q ik2m

k2
2

δ̃(~k1, τini)δ̃(~k2, τini)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
ei(

~k1+ ~k2).~q δ̃(~k1, τini)δ̃(~k2, τini) , (1.99)

such that

Ψ
(1)
l,l (~q, τ)Ψ(1)

m,m(~q, τ)−Ψ
(1)
l,m(~q, τ)Ψ

(1)
m,l(~q, τ)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3
ei(

~k1+ ~k2).~q

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini) . (1.100)

Then taking the Fourier transform yields

F
[
Ψ

(1)
l,l (~q, τ)Ψ(1)

m,m(~q, τ)−Ψ
(1)
l,m(~q, τ)Ψ

(1)
m,l(~q, τ)

]
= D2

1(τ)

∫
d3~q e−i

~k·~q
∫

d3 ~k1

(2π)3

d3 ~k2

(2π)3
ei(

~k1+ ~k2).~q

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini)

= D2
1(τ)

∫
d3 ~k1

(2π)3

d3 ~k2

(2π)3

∫
d3~q e−i(

~k−( ~k1+ ~k2)).~q

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini)

= D2
1(τ)

∫
d3 ~k1d

3 ~k2

(2π)3
δD(~k − ~k12)

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini) . (1.101)

Substituting Eqs. (1.87) and (1.101) into Eq. (1.96) leads to

−k2

[
d2

dτ 2
− κ
]
φ(2)(~k, τ) = −κ

2
D2

1(τ)

∫
d3 ~k1d

3 ~k2

(2π)3
δD(~k − ~k12)

×

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini) . (1.102)

If we define the following form for φ(2):

φ(2)(~k, τ) =
D2(τ)

2k2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)δ̃(~k1, τini)δ̃(~k2, τini) , (1.103)

then Eq. (1.102) reduces to[
d2

dτ 2
− κ
]
D2(τ) = κ

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
D2

1(τ) . (1.104)

We can solve this differential equation for D2, provided we know D1 and supply initial

conditions for D2 and dD2/dτ . For ΛCDM during matter domination, the physically

relevant Einstein-de Sitter solution has D2 = −3
7
D2

1 so the initial conditions can be
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taken as D2(τini) = −3
7

and dD2(τini)
dτ

= −6
7

(
1
a
da
dτ

)∣∣
τ=τini

. The real-space second order

displacement Ψ
(2)
i (~q, τ) can then be written as an inverse Fourier transform:

Ψ
(2)
i (~q, τ) =

D2(τ)

2

∫
d3~k

(2π)3
ei
~k·~q iki
k2

×
∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)δ̃(~k1, τini)δ̃(~k2, τini) , (1.105)

which allows the full 2nd order solution Ψ
(2)
i (~q, τ) to be recovered using the D2(τ) values

from solving Eq. (1.104) as long as the initial density field δ̃(~k, τini) is known.

1.5.3 Redshift-space distortions

When computing clustering statistics from observational data, it is necessary to know

the three-dimensional positions of whatever astrophysical object is being considered

as a biased tracer of the underlying matter distribution. Such positions are usually

mapped as two angles which determine location in the sky, and the radial distance

to the object. However, since we generally cannot measure the radial distance to an

astrophysical object directly, we must infer it from the object’s redshift, which can

introduce redshift-space distortions (RSD) to the clustering [142]. RSD occur when

the radial distances to tracers are computed using their observed redshifts without

accounting for the effect of the tracers’ peculiar velocities on the redshifts which adds

to the contribution from the Hubble flow. The cosmological distance, the one given

purely by the Hubble flow, that we want to use for mapping is given by

r(zcos) =

∫ zcos

0

c

H(z)
dz , (1.106)

where zcos is the contribution to the observational redshift zobs that comes purely from

Hubble flow3. However, as mentioned above, the object’s peculiar velocity can also

contribute to zobs:

1 + zobs =
1 + zcos

1− v‖(~r)

c

, (1.107)

where v‖ is the component of the object’s peculiar velocity directed along the line-of-

sight (LoS). Consider an object with a small peculiar velocity such that there is only

3Note that this conversion between cosmological distance and cosmological redshift requires knowl-

edge of H(z). If the wrong cosmological model, and thus form of H(z), is assumed there will again

be distortions created in the clustering; this is known as the Alcock-Paczynski effect [143] and can be

detected by comparing angular and radial clustering.
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a small perturbation of ∆z to the observed redshift zobs = zcos + ∆z. The comoving

distance for this perturbed redshift is

r(zobs) = r(zcos + ∆z) =

∫ zcos+∆z

0

c

H(z)
dz

=

∫ zcos

0

c

H(z)
dz +

∫ zcos+∆z

zcos

c

H(z)
dz

= r(zcos) +
c∆z

H(zcos)
, (1.108)

where we have evaluated the second integral assuming ∆z is very small. Using the

approximation (1 + x)−1 ≈ 1− x, Eq. (1.107) leads to c∆z ≈ (1 + zcos)v‖(~r). Thus, we

find that the consequence of ignoring the peculiar velocity contribution to an object’s

redshift and mistakenly assuming zobs = zcos is that the object’s measured position in

redshift-space is displaced along the LoS:

~s = ~r +
(1 + zcos)v‖(~r)

H(zcos)
r̂ . (1.109)

For distant objects, the second term in the above expression is usually much smaller

than the first. While it can thus usually be considered negligible for individual objects,

the same cannot be said when assessing the impact on clustering statistics. This is

primarily because the peculiar velocity term breaks down rotational invariance and

thus makes the clustering anisotropic in redshift-space such that for the redshift-space

power spectrum P (s)(~k) = P (s)(k, µ) 6= P (s)(k), where µ = cos(θ) and θ is the angle

between ~k and the LoS r̂.

On linear scales, objects tend to coherently fall in to (flow out from) an overdensity

(underdensity), which results in a slight squashing (stretching) along the LoS. This

enhances (suppresses) the clustering amplitude along the LoS, which is the so-called

Kaiser effect [144]. On non-linear scales, objects tend to be virialised with large random

motions, causing a strong stretching along the LoS commonly known as the Fingers-of-

God (FoG) effect [145], which damps the clustering amplitude on these smaller scales

along the LoS.

RSD depend on the growth rate of cosmological structure formation through the

peculiar velocities of objects. In order to extract this information, it is necessary to

model RSD. A simple way to model the redshift-space power spectrum at linear order

is with the Kaiser model:

P (s),L
g (k, µ) = b2(1 + βµ2)2P L

m(k) , (1.110)

where β = f/b, b is the linear bias of the tracer and f(k, a) = d logD1(k,a)
d log a

is the growth
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rate. We can decompose P (s)(k, µ) using the Legendre polynomials Pl(µ):

P
(s)
l (k) =

2l + 1

2

∫ 1

−1

dµP (s)(k, µ)Pl(µ) . (1.111)

In the Kaiser model, P (s) only contains terms up to µ4, so only the monopole P0,

quadrupole P2, and hexadecapole P4 are non-vanishing:

P
(s)
g,l=0(k) =

(
1 +

2

3
β +

1

5
β2

)
b2P L

m(k) , (1.112)

P
(s)
g,l=2(k) =

(
4

3
β +

4

7
β2

)
b2P L

m(k) , (1.113)

P
(s)
g,l=4(k) =

8

35
β2b2P L

m(k) . (1.114)

However, the Kaiser approach fails to accurately model non-linear RSD effects. One

way to improve upon the Kaiser approach is the TNS model.

1.5.3.1 TNS Model

The TNS model for the redshift-space power spectrum P (s) as a function of scale k and

line-of-sight (LoS) angle parameter µ = cos(θ) is given by Eq. (18) of [146], which we

reproduce here with subtle changes due to the different definition of θ:

P
(s)
TNS(k, µ) = DFoG [kµσv]

{
Pδδ(k)− 2µ2Pδθ(k) + µ4Pθθ(k)

+A(k, µ) +B(k, µ)} , (1.115)

where DFoG is the Fingers-of-God damping function which we will discuss later. It

is generally a function of k, µ, and the velocity dispersion σv. The power spectra

Pδδ(k), Pδθ(k), and Pθθ(k) correspond to the density auto-correlation, density-velocity

divergence cross correlation, and the velocity divergence auto-correlation respectively.

A(k, µ) and B(k, µ) are correction terms given by

A(k, µ) = −kµ
∫

d3~p

(2π)3

pz
p2

{
Bσ(~p,~k − ~p,−~k)−Bσ(~p,~k,−~k − ~p)

}
, (1.116)

B(k, µ) = (kµ)2

∫
d3~p

(2π)3
F (~p)F (~k − ~p) , (1.117)

where Bσ is the cross bispectrum defined by〈
θ(~k1)

{
δ(~k2)− k2

2z

k2
2

θ(~k2)

}{
δ(~k3)− k2

3z

k2
3

θ(~k3)

}〉
= (2π)3δD(~k1 + ~k2 + ~k3)Bσ(~k1, ~k2, ~k3) , (1.118)
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and F (~p) is defined as

F (~p) =
pz
p2

{
Pδθ(p)−

p2
z

p2
Pθθ(p)

}
. (1.119)

Bσ can be written up to second order in P0 by expanding the perturbations up to

second order, leading to

Bσ(~k1, ~k2, ~k3) =

2

[(
F1(k2)− k2

2z

k2
2

G1(k2)

)(
F1(k3)− k2

3z

k2
3

G1(k3)

)
G2(~k2, ~k3)

P0(k2)P0(k3)

[D1(z = 0)]4

+G1(k1)

(
F1(k3)− k2

3z

k2
3

G1(k3)

)(
F2(~k1, ~k3)− k2

2z

k2
2

G2(~k1, ~k3)

)
P0(k1)P0(k3)

[D1(z = 0)]4

+G1(k1)

(
F1(k2)− k2

2z

k2
2

G1(k2)

)(
F2(~k1, ~k2)− k2

3z

k2
3

G2(~k1, ~k2)

)
P0(k1)P0(k2)

[D1(z = 0)]4

]
,

(1.120)

while F (~p) is already 2nd order in P0, and can be written in terms of perturbation

kernels as

F (~p) =
pz
p2

[
G1(p)F1(p)

P0(k)

[D1(z = 0)2]
− p2

z

p2
G1(p)G1(p)

P0(p)

[D1(z = 0)2]

]
. (1.121)

The Fingers-of-God damping factor is phenomenological; two of the most commonly

used forms are the Gaussian

DGauss
FoG [kµσv] = exp

(
−k2µ2σ2

v

)
, (1.122)

and Lorentzian

DLor
FoG [kµσv] =

1

1 + (k2µ2σ2
v/2)

. (1.123)

The velocity dispersion σv in the Fingers-of-God damping factor is a free parameter

and needs to be fitted using some other P (s) data. For example, to fit using simulations

we can minimise the likelihood function

−2 lnL =
∑
n

∑
l,l′

(
P

(s)
l, TNS(kn)− P (s)

l, sim(kn)
)

Cov−1
l,l′ (kn)

×
(
P

(s)
l′, TNS(kn)− P (s)

l′, sim(kn)
)
, (1.124)

where Pl are the multipoles of the redshift-space power spectrum described in Eq. (1.111).

With the SPT real-space power spectra Pδδ, Pδθ, Pθθ computed up to 1-loop order,

MG-Copter can then input these to the TNS model to calculate the redshift-space

power spectrum P (s)(k). We note that the TNS model of Eq. (1.115) is still applicable

when modelling RSD with modified gravity and/or massive neutrinos without changes,

although the components will be affected as described in Section 1.5.1.2 for modified

gravity and Section 3.1 for massive neutrinos.
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1.6 Simulations

As the growth of structure progresses, the process becomes non-linear. As such, per-

turbation theory can no longer accurately describe structure formation. One of the

most common ways to model structure formation in this non-linear regime is to use a

cosmological N-body simulation [147, 148, 149, 150]. The system is set up as a collec-

tion of particles inside a box. At each timestep, the force acting on each particle due

to the other particles is computed by solving the Newtonian equation of gravity

~Fi = −
∑
i 6=j

Gmimj(~ri − ~rj)
| ~ri − ~rj |3

. (1.125)

Between timesteps, the particles move under the influence of the set of forces com-

puted at the previous timestep, before the forces are then recalculated for the new

arrangement of particles. In order to maintain accuracy, the timesteps must be small

which makes the N-body method highly computationally expensive. Several differ-

ent codes have been created [151, 152, 153, 154, 155, 156, 157, 158, 159] to produce

high-resolution simulations for a wide variety of cosmological models. A recent code-

comparison project of such codes [160] demonstrated agreement at the 1% level deep

into the non-linear regime (e.g. k ∼ 5h/Mpc for the power spectrum).

Since traditional N-body simulations solve the Newtonian equations of motion,

they are incapable of modelling relativistic effects. However, there is ongoing research

working towards creating simulation codes that solve the equations of GR. One such

effort is gevolution [161], a code that is based on a weak-field expansion of GR.

Some Newtonian N-body codes have also implemented modified gravity. Originally,

modified gravity simulations were much slower than simulations of ΛCDM (typically by

a factor of 5−20 depending on model) due to having to solve complicated, highly non-

linear partial differential equations. However, recently some very interesting approaches

have been proposed to speed up such simulations making them only a factor of ∼ 1.5−2

times slower than a corresponding ΛCDM simulation without sacrificing much accuracy

[162, 163, 164]. We discuss some of the practicalities of implementing modified gravity

in Section 2.5.

When including massive neutrinos in N-body simulations, ideally we would solve

the collisionless Boltzmann equation

d

dt
f(~x, ~p, t) = 0 . (1.126)

However, unlike for CDM, the thermal velocities of massive neutrinos are comparable

to, or even larger than, the gravitationally-induced streaming velocities. This means
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that this equation should be solved in its full 6+1 dimensions, rather than the reduced

3+1 case that is applicable for CDM. Unfortunately, solving the above equation in

6+1 dimensions is not numerically feasible with current computational resources. This

leaves several options. Firstly, the full neutrinos’ distribution function f(~x, ~p, t) can

be represented as particles [165, 166, 167, 168, 169, 170, 171]. This leads to noise-

related problems when neutrino masses are small because a huge number of particles

are needed to sample the thermal velocity component of f(~x, ~p, t) properly. It is also

difficult to understand how to treat the particles when the masses are small enough to

yield relativistic velocities, unless the simulation is relativistic as in [161]. Alternatively,

a second method is to assume that neutrino perturbations remain linear. The simplest

way to implement this assumption is to realise the linear neutrino transfer function,

computed with a Boltzmann code, onto a grid to create a linear neutrino density field

[172]. This can be improved upon by solving the linear theory equations for neutrinos

with the Boltzmann code, but then computing the evolution of the neutrino perturba-

tions using the gravitational potential sourced by non-linear CDM perturbations rather

than the potential sourced purely by linear CDM [173, 174]. However, any assumption

that neutrino perturbations remain linear at all times breaks down when the neutrino

masses are large. A third approach is a hybrid combination of the first two methods,

where the neutrinos are initially followed using linear theory and then later on treated

as particles when the thermal velocities approach the magnitude of the gravitationally-

induced streaming velocities [175]. Finally, the full momentum-dependent Boltzmann

equation can be converted to a hierarchy of velocity moment equations. Since neutrinos

have a large anisotropic stress component, they cannot be treated as a perfect fluid

and the hierarchy cannot simply be closed at order 1. Instead, the hierarchy can be

closed at the second moment. One way to do this is to estimate the second moment

using the motion of test particles [176], which restricts the method to non-relativistic

fluids. Conversely, the first two moment equations can be solved in full non-linear

theory and the stress and pressure perturbations treated with linear theory (scaled by

the non-linear density field) [177], which has the advantage of guaranteeing the solu-

tion behaves correctly in the linear regime while still describing the fully non-linear

evolution of structure and being able to describe relativistic fluids. Some additional

examples of how N-body simulations including the effects of modified gravity can be

used to make predictions for cosmological observables are presented in [178, 179, 180].

There are many situations where the high computational expense of N-body sim-

ulations limits their applicability, even for ΛCDM. Several fast, approximate meth-

ods for simulating structure formation have been proposed over the last decade such
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as PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerarchical Objects) [181],

which recently has been extended to including massive neutrinos and modified grav-

ity [182], as well as Peak-Patch [183], PTHalos [184, 185, 186], QPM (Quick Particle

Mesh) [187], PATCHY (PerturbAtion Theory Catalog generator of Halo and galaxY

distributions) [188], HALOGEN [189] and COLA (COmoving Lagrangian Acceleration)

[190, 191, 192, 193, 194, 195, 196].

The COLA approach differs from traditional N-body simulations in that the particle

trajectories are written as the sum of the path predicted by Lagrangian perturbation

theory and the deviation of the full trajectory from this LPT-predicted path

~x = ~xLPT + ~xdev. (1.127)

Thus instead of computing the full particle trajectories, the N-body equations are

modified to be solved for the deviations about the LPT path

d2~xdev

dτ 2
= −~∇~xΦ−

d2~xLPT

dτ 2
, (1.128)

where the extra term d2~xLPT/dτ
2 is a ‘fictious force’ computed separately to the N-

body using LPT. The deviations are typically much smaller than the distances involved

in computing the full particle trajectories, which allows large N-body timesteps to

be taken. This makes COLA simulations faster than traditional N-body by a factor

O(100 − 1000), while at the same time keeping accuracy on the largest scales. As

the number of timesteps used increases, the method will converge to the result of a

standard N-body simulation (with the same simulation parameters). A comprehensive

study of the accuracy of COLA with respect to the simulations parameters can be

found in [197, 195, 196].

For any N-body simulation, traditional or otherwise, the initial distribution of N-

body particles must be set. A typical method is to run a Boltzmann code and output

the CDM power spectrum P (k) at the simulation’s starting redshift and use it to

construct a Gaussian density field. The distribution of Fourier modes can be expressed

as

δ(~k) = Aeiθ , (1.129)

where A is the amplitude of the mode and θ is its phase, both of which depend on ~k.

For a Gaussian field, θ is a random variable distributed uniformly between 0 and 2π,

and A follows a Raleigh distribution

p(A)dA =
A

σ2
e−A

2/2σ2

dA , (1.130)
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where σ2 = V P (k)/(16π3) and V = L3 is the volume of the simulation box with length

L. The clustering statistics of simulations produced using this approach have a so

called sample variance that arises from the finite size of the simulation box limiting the

number of modes it can contain. This is especially punitive at scales close to the box

length, where there are very few Fourier modes. To overcome this issue, one can run

a large ensemble of simulations each with a different random realisation of the initial

density distribution and compute the mean clustering statistics.

However, there is also an alternative approach. Firstly, the amplitude of the density

modes A can be fixed such that the power spectrum of the density modes exactly

matches the amplitude of the input power spectrum i.e. 〈δ(~k)δ(~k)〉 = V P (k)/(2π)3,

and has no intrinsic scatter. This is achieved with a distribution of A given by the

Dirac delta function

p(A)dA = δD

(
A−

√
V P (k)

(2π)3

)
dA . (1.131)

Secondly, a paired field is created with the same amplitude A, but inverted phase

θ → θ + π. By running a pair of simulations with this pair of initial density fields, a

variety of clustering statistics can be obtained with comparable variance to that of a

large ensemble of simulations produced with the typical Gaussian initial density fields

[198]. This approach has also been shown not to introduce a bias to the recovery of the

mean properties of the Gaussian ensemble, despite the fixing procedure introducing

non-Gaussianity [199].
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Chapter 2

COLA with scale-dependent

modified gravity and massive

neutrinos

The work in this chapter was carried out by the author and his supervisory team in

collaboration with Hans Winther. The author’s contribution was the addition of mod-

ified gravity and massive neutrinos in the 2LPT formalism, as well as helping to test

MG-PICOLA. Hans Winther wrote MG-PICOLA and produced all the simulations used in

this chapter. Figures 2.2-2.10 were created by the author; the other plots in this chap-

ter were created by Hans Winther. The supervisory team provided direction and advice

throughout.

In this chapter we present a code, MG-PICOLA1, based on the publicly available

L-PICOLA code [200], that allows us to perform numerical simulation of structure

formation for general theories that exhibit scale-dependent growth using the COLA

approach. The code computes the second order Lagrangian displacement-fields for

these theories and also includes general methods to take into account the all important

screening effect in modified gravity theories. We have implemented three types of com-

mon screening mechanisms: potential (chameleon [201, 202], symmetron [203, 204, 205]

etc.), gradient (k-Mouflage [206]) and density (the Vainhstein mechanism [207]; DGP,

Galileon models). We have implemented often studied models like f(R) and DGP

together with a general {m(a), β(a)} parameterization [208, 209] of modified gravity

models with chameleon-like screening. Our approach is therefore able to cover most of

1The code can be found at https://github.com/HAWinther/MG-PICOLA-PUBLIC. The original

L-PICOLA code can be found at https://github.com/CullanHowlett/l-picola
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the popular models that have been proposed in the literature. Furthermore, we have

implemented massive neutrinos using the grid-based approach.

The structure of this chapter is as follows: starting from the general Lagrangian

perturbation theory equations from Sec. 1.5.2 we describe how to extend the formalism

for a general model with scale-dependent growth of density perturbations up to second

order in Sec. 2.1. Following this, we focus on how this extended formalism allows

the implementation of modified gravity (Sec. 2.2), massive neutrinos (Sec. 2.3), and

the combination of the two (Sec. 2.4). In Sec. 2.5 we describe how to implement the

fifth force, including an approximation for the vital screening mechanism, and massive

neutrinos in the particle-mesh (PM) part of the simulation. Finally, in Sec. 2.6 we

show the results of testing our code against a variety of other methods.

Unless stated otherwise all time-derivatives are with respect to the super-comoving

time-coordinate τ defined by dτ = dt
a2

and κ ≡ 4πGρa4 = 3
2
ΩmH

2
0a.

The research on adding modified gravity to the COLA method was lead by Hans A.

Winther. My contribution was to co-derive the 2LPT equations including the effects of

modified gravity. I lead the research on adding massive neutrinos to the COLA method.

2.1 2LPT for general scale-dependent growth

For the general case where the scale-dependence at nth order is encapsulated by an

effective Newton’s constant µ(n)(~k, τ) and a mode coupling γE
n above 1st order, the

Fourier transform of ∇2
xΦ(~x, τ) with respect to x up to second order is

Fx
[
∇x

2Φ(~x, τ)
]

= κµ(1)(~kE, τ)δ(1)( ~kE, τ) + κµ(2)(~kE, τ)δ(2)( ~kE, τ)

+ a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ(1)(~k1, τ)δ(1)(~k2, τ) , (2.1)

where κ ≡ 4πGρa4 = 3
2
ΩmH

2
0a, δ( ~kE, τ) = Fx [δ(~x, τ)] ( ~kE) and ~k12 = ~k1 + ~k2. There

will be a frame lagging effect due to the fact we need the Fourier transform w.r.t.

q instead of x [210]. We can show that the corresponding Fourier transform of the
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Poisson equation w.r.t. q is then

Fq
[
∇x

2Φ(~x, τ)
]

= κµ(1)(~k, τ)δ̃(1)(~k, τ) + κµ(2)(~k, τ)δ̃(2)(~k, τ)

+ κ

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×
[
µ(1)(~k, τ)− µ(1)(~k1, τ)

] ~k1 · ~k2

k2
2

δ(1)(~k1, τ)δ(1)(~k2, τ)

+ a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ(1)(~k1, τ)δ(1)(~k2, τ) , (2.2)

where

δ̃(n)(~k, τ) = Fq
[
δ(n)(~x, τ)

]
(~k)

= Fq
[
δ(n)(~q, τ)

]
(~k) + i

∫
d3q

∫
d3kE

(2π)3
e−i(

~k−~kE)·~q(~kE · ~Ψ(1))δ(n)(~kE, τ) . (2.3)

The 1st order densities are unaffected:

δ(1)(~k, τ) = Fx
[
δ(1)(~x, τ)

]
(~k) = Fq

[
δ(1)(~x, τ)

]
(~k) = ˜δ(1)(~k, τ) , (2.4)

so we can safely rewrite Eq. (2.2) as

Fq
[
∇x

2Φ(~x, τ)
]

= κµ(1)(~k, τ)δ̃(1)(~k, τ) + κµ(2)(~k, τ)δ̃(2)(~k, τ)

+ κ

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

[
µ(1)(~k, τ)− µ(1)(~k1, τ)

]
×
~k1 · ~k2

k2
2

δ̃(1)(~k1, τ)δ̃(1)(~k2, τ)

+ a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ̃(1)(~k1, τ)δ̃(1)(~k2, τ) . (2.5)

Note that there is also a frame lagging effect on γE
2 , but this would be a third order

term so it is not included here.

To find the 1st order solution, we can use these various expressions to rewrite

Eq. (1.82) as

−k2d
2φ(1)(~k, τ)

dτ 2
= −κµ(1)δ̃(1)(~k, τ) = −κµ(1)(~k, τ)k2φ(1)(~k, τ) . (2.6)

We can separate a time dependence for each k mode by writing

φ(1)(~k, τ) = D1(~k, τ)φ
(1)
ini (

~k, τ) , (2.7)
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where φ
(1)
ini (

~k, τ) = δ̃
(1)
ini (~k, τ)/k2 and Eq. (2.6) simplifies to[

d2

dτ 2
− κµ(1)(~k, τ)

]
D1(~k, τ) = 0 . (2.8)

This second order ODE can be solved for D1(~k, τ) numerically at each (~k, τ) as long as

we set initial conditions (ICs) for D1(~k, τini) and dD1/dτ |~k,τini . We can finally express

Ψ(1)(~k, τ) = ikiφ
(1)(~k, τ) = ikiD1(~k, τ)δ̃(1)(~k, τini)/k

2, and then use an inverse Fourier

transform to get the displacement

Ψ(1)(~q, τ) =

∫
d3k

(2π)3
ei
~k·~q iki
k2
D1(~k, τ)δ̃(1)(~k, τini) . (2.9)

For the second order solution, we rewrite Eq. (1.83) as

Fq

[
d2Ψ

(2)
i,i

dτ 2

]
(~k)

−Fq

[
Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2

]
(~k)

=− κµ(2)(~k, τ)δ̃(2)(~k, τ)

− κ
∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×
[
µ(1)(~k, τ)− µ(1)(~k1, τ)

]
×
~k1 · ~k2

k2
2

δ̃(1)(~k1, τ)δ̃(1)(~k2, τ)

− a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ̃(1)(~k1, τ)× δ̃(1)(~k2, τ) , (2.10)
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and then substitute in our expression for δ̃
(2)
cb to get

Fq

[
d2Ψ

(2)
i,i

dτ 2

]
(~k)

−Fq

[
Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2

]
(~k) (2.11)

= κµ(2)(~k, τ)Fq
[
Ψ

(2)
i,i (~q, τ)

]
(~k)

− κµ(2)(~k, τ)
1

2
Fq
[
Ψ

(1)
i,i Ψ

(1)
j,j + Ψ

(1)
i,j Ψ

(1)
j,i

]
(~k)

− κ
∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×
[
µ(1)(~k, τ)− µ(1)(~k1, τ)

]
×
~k1 · ~k2

k2
2

δ̃(1)(~k1, τ)δ̃(1)(~k2, τ)

− a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ̃(1)(~k1, τ)δ̃(1)(~k2, τ) . (2.12)

We can use the 1st order solution to write

Fq

[
Ψ

(1)
j,i

d2Ψ
(1)
i,j

dτ 2

]
(~k) = κµ(1)(~k1, τ)Fq

[
Ψ

(1)
j,i Ψ

(1)
i,j

]
(~k) , (2.13)

and thus Eq. (2.11) becomes[
d2

dτ 2
− κµ(2)(~k, τ)

]
F q
[
Ψ

(2)
i,i (~q, τ)

]
(~k)

=κ

[
µ(1)(~k1, τ)− 1

2
µ(2)(~k, τ)

]
Fq
[
Ψ

(1)
j,i Ψ

(1)
i,j

]
(~k)

−1

2
κµ(2)(~k, τ)Fq

[
Ψ

(1)
i,i Ψ

(1)
j,j

]
(~k)

−κ
∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×
[
µ(1)(~k, τ)− µ(1)(~k1, τ)

] ~k1 · ~k2

k2
2

δ̃(1)(~k1, τ)δ̃(1)(~k2, τ)

−a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2 (~k,~k1, ~k2, τ)δ̃(1)(~k1, τ)δ̃(1)(~k2, τ) . (2.14)

In a similar way to Eq.(2.9), the quantity Ψ
(1)
l,m(~q, τ) needed to simplify Eq. (2.14)
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further can be written as an inverse Fourier transform:

Ψ
(1)
l,m(~q, τ) =

∫
d3~k1

(2π)3
ik1

mei
~k1·~q ik1l

k2
1

D1(~k1, τ)δ̃(~k1, τini) . (2.15)

Therefore, the convolutions are

Ψ
(1)
l,l (~q, τ)Ψ(1)

m,m(~q, τ)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3
ik1

lei
~k1·~q ik1l

k2
1

ik2
mei

~k2·~q ik2m

k2
2

D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3
ei(

~k1+~k2).~qD1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) , (2.16)

Ψ
(1)
l,m(~q, τ)Ψ

(1)
m,l(~q, τ)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3
ik1

mei
~k1·~q ik1l

k2
1

ik2
lei
~k2·~q ik2m

k2
2

D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3
i4ei(

~k1+~k2).~q k1
mk1lk2

lk2m

k2
1k

2
2

D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3
ei(

~k1+~k2).~q (~k1 · ~k2)2

k2
1k

2
2

D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) . (2.17)

Then taking the Fourier transform yields

Fq
[
Ψ

(1)
l,l (~q, τ)Ψ(1)

m,m(~q, τ)
]

(~k)

=

∫
d3~q e−i

~k·~q
∫

d3~k1

(2π)3

d3~k2

(2π)3
ei(

~k1+~k2).~qD1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3~k1

(2π)3

d3~k2

(2π)3

∫
d3~q e−i(

~k−(~k1+~k2)).~qD1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3~k1d

3~k2

(2π)3
δD(~k − ~k12)D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) , (2.18)

and

Fq
[
Ψ

(1)
l,m(~q, τ)Ψ

(1)
m,l(~q, τ)

]
(~k)

=

∫
d3~k1d

3~k2

(2π)3
δD(~k − ~k12)

(~k1 · ~k2)2

k2
1k

2
2

D1(~k1, τ)D1(~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) . (2.19)

We can substitute these expressions into Eq. (2.14) and use δ̃(1)(~k, τ) = D1(~k, τ) ×
δ̃(1)(~k, τini), as well as Fq

[
Ψ

(2)
i,i (~q, τ)

]
(~k) = Fq

[
∇2φ(2)(~q, τ)

]
(~k) = −k2φ(2)(~k, τ), to
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write

− k2

[
d2

dτ 2
− κµ(2)(~k, τ)

]
φ(2)(~k, τ)

=

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

[
κ

(
µ(1)(~k1, τ)− 1

2
µ(2)(~k, τ)

)
(~k1 · ~k2)2

k2
1k

2
2

− 1

2
κµ(2)(~k, τ)− κ

(
µ(1)(~k, τ)− µ(1)(~k1, τ)

) ~k1 · ~k2

k2
2

− a4H2γE
2 (~k,~k1, ~k2, τ)

]
D1(~k1, τ)D1(~k2, τ)

× δ̃(1)(~k1, τini)δ̃
(1)(~k2, τini) . (2.20)

We now need an expression for the 2nd order displacement field term Ψ
(2)
i (~q, τ) =

∇iφ
(2)(~q, τ), which in Fourier space is Ψ

(2)
i (~k, τ) = ikiφ

(2)(~k, τ). If we make the defini-

tion

φ(2)(~k, τ) =
1

2k2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)D2(~k,~k1, ~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) , (2.21)

then Eq. (2.20) can be rewritten as

1

2

[
d2

dτ 2
− κµ(2)(~k, τ)

]
×
∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)D2(~k,~k1, ~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini)

=

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

[
κ

(
1

2
µ(2)(~k, τ)− µ(1)(~k1, τ)

)
(~k1 · ~k2)2

k2
1k

2
2

+
1

2
κµ(2)(~k, τ)κ

[
µ(1)(~k, τ)− µ(1)(~k1, τ)

] ~k1 · ~k2

k2
2

+ a4H2γE
2 (~k,~k1, ~k2, τ)

]
D1(~k1, τ)D1(~k2, τ)

× δ̃(1)(~k1, τini)δ̃
(1)(~k2, τini) , (2.22)

which simplifies to[
d2

dτ 2
− κµ(2)(~k, τ)

]
D2(~k,~k1, ~k2, τ)

=

[
κ
(
µ(2)(~k, τ)− 2µ(1)(~k1, τ)

) (~k1 · ~k2)2

k2
1k

2
2

+ κµ(2)(~k, τ)

+ 2κ
(
µ(1)(~k, τ)− µ(1)(~k1, τ)

) ~k1 · ~k2

k2
2

+ 2a4H2γE
2 (~k,~k1, ~k2, τ)

]
D1(~k1, τ)D1(~k2, τ) . (2.23)
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This can be solved numerically for D2 for each (~k,~k1, ~k2, τ) assuming the solutions for

D1(~k, τ) are already known and ICs for D2 and dD2/dτ are supplied. Ψ
(2)
i (~q, τ) can

then be written as an inverse Fourier transform:

Ψ
(2)
i (~q, τ) =

1

2

∫
d3~k

(2π)3
ei
~k·~q iki
k2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×D2(~k,~k1, ~k2, τ)δ̃(~k1, τini)δ̃(~k2, τini) , (2.24)

which allows the full 2nd order solution Ψ
(2)
i (~q, τ) to be recovered using theD2(~k,~k1, ~k2, τ)

values from solving Eq. (2.23) as long as the initial density field δ̃(~k, τini) is known.

A subset of this general scale-dependent case is when µ(1) = µ(2) = µ, where

Eq. (2.23) reduces to[
d2

dτ 2
− κµ(~k, τ)

]
D2(~k,~k1, ~k2, τ)

=

[
κµ(~k, τ)

(
1 + 2

(
µ(~k, τ)− µ(~k1, τ)

µ(~k, τ)

)
~k1 · ~k2

k2
2

−

(
2µ(~k1, τ)− µ(~k, τ)

µ(~k, τ)

)
(~k1 · ~k2)2

k2
1k

2
2

)

+ 2a4H2γE
2 (~k,~k1, ~k2, τ)

]
D1(~k1, τ)D1(~k2, τ) . (2.25)

However, Eq. (2.24) will still be very slow to solve numerically as the dependence of

D2 on ~k1 and ~k2 means the integral over ~k1 and ~k2 must be done for each timestep, and

without being able to utilise fast Fourier transforms the speed advantage of the COLA

method will be ruined. To speed up the code, we can make the following redefinition

at 2nd order, replacing Eq.(2.21) with

φ(2)(~k, τ) =
D̂2(~k, τ)

2k2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τini)δ̃(~k2, τini) , (2.26)

such that Ψ
(2)
i (~q, τ) becomes

Ψ
(2)
i (~q, τ) =

i

2

∫
d3~k

(2π)3
ei
~k·~q ki
k2
D̂2(~k, τ)

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

×

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
δ̃(~k1, τ = 0)δ̃(~k2, τ = 0) . (2.27)
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Removing the ~k1 and ~k2 dependence from D̂2 means that the integral over ~k1 and ~k2

can be carried out only once instead of at each timestep. The equation for D̂2(~k) is

then[
d2

dτ 2
− κµ(~k, τ)

](
1− (~k1 · ~k2)2

k2
1k

2
2

)
D̂2(~k, τ)

=

[
κµ(~k, τ)

(
1 + 2

(
µ(~k, τ)− µ(~k1, τ)

µ(~k, τ)

)
~k1 · ~k2

k2
2

−

(
2µ(~k1, τ)− µ(~k, τ)

µ(~k, τ)

)
(~k1 · ~k2)2

k2
1k

2
2

)

+ 2a4H2γE
2 (~k,~k1, ~k2, τ)

]
D1(~k1, τ)D1(~k2, τ) . (2.28)

If we make the approximation that µ(~k, τ) ≈ µ(~k1, τ), then µ(~k,τ)−µ(~k1,τ)

µ(~k,τ)
≈ 0 and

2µ(~k1,τ)−µ(~k,τ)

µ(~k,τ)
≈ 1. Thus Eq. (2.28) can be approximated as

[
d2

dτ 2
− κµ(~k, τ)

](
1− (~k1 · ~k2)2

k2
1k

2
2

)
D̂2(~k, τ)

=

[
κµ(~k, τ)

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
+ 2a4H2γE

2 (~k,~k1, ~k2, τ)

]
×D1(~k1, τ)D1(~k2, τ) . (2.29)

and finally, if we approximate

γE
2 (~k,~k1, ~k2, τ)(
1− (~k1·~k2)2

k21k
2
2

) ≈ γE
2 (~k,~k/

√
2, ~k/
√

2, τ) , (2.30)

then Eq. (2.29) reduces to[
d2

dτ 2
− κµ(~k, τ)

]
D̂2(~k, τ)

=

[
κµ(~k, τ) + 2a4H2γE

2 (~k,~k/
√

2, ~k/
√

2, τ)

]
D2

1(~k, τ) , (2.31)

which, along with Eq. (2.27), will be much faster to solve than the paired Eqs. (2.24)

and (2.25).

The choice of arguments for γE
2 in our approximation above is chosen such that it

gives the correct equation for the triangle configurations of ~k,~k1, ~k2 giving rise to most

of the weight in the integral Eq. (2.21).

43



2.2 2LPT for modified gravity

The case of modified gravity theories with scale-dependent growth of density per-

turbations is covered by the formalism laid out in Sec. 2.1. For a generic scale-

dependent theory of gravity, µ(1)(~k, τ) = µ(2)(~k, τ)→ µMG(k, τ) and γE
2 (~k,~k1, ~k2, τ)→

γE
2,MG(k, k1, k2, τ). Note that because µMG and γE

2,MG are dependent only on the mag-

nitude of the wavevector(s), the same will be true of the density perturbations. Thus,

the Fourier transform of the Poisson equation w.r.t. ~q can be parameterised as [140,

210, 211]

Fq
[
∇x

2Φ(~x, τ)
]

= κµMG(k, τ)δ̃
(1)
cb (k, τ) + κµMG(k, τ)δ̃

(2)
cb (k, τ)

+ κ

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12) [µMG(k, τ)− µMG(k1, τ)]

×
~k1 · ~k2

k2
2

δ̃
(1)
cb (k1, τ)δ̃

(1)
cb (k2, τ)

+ a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2,MG(k, k1, k2, τ)δ̃

(1)
cb (k1, τ)δ̃

(1)
cb (k2, τ) . (2.32)

Consequently, the equations for the first and second order growth factors D1 and D2

become [
d2

dτ 2
− κµMG(k, τ)

]
D1(k, τ) = 0 , (2.33)

[
d2

dτ 2
− κµMG(k, τ)

]
D2(k, k1, k2, τ)

=

[
κµMG(k, τ)

(
1 + 2

(
µMG(k, τ)− µMG(k1, τ)

µMG(k, τ)

) ~k1 · ~k2

k2
2

−
(

2µMG(k1, τ)− µMG(k, τ)

µMG(k, τ)

)
(~k1 · ~k2)2

k2
1k

2
2

)

+ 2a4H2γE
2,MG(k, k1, k2, τ)

]
D1(k1, τ)D1(k2, τ) , (2.34)

while the corresponding speed-up equation for the approximate second order growth

factor D̂2 becomes[
d2

dτ 2
− κµMG(k, τ)

]
D̂2(k, τ)

=

[
κµMG(k, τ) + 2a4H2γE

2,MG(k, k/
√

2, k/
√

2, τ)

]
D2

1(k, τ) , (2.35)
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In MG-PICOLA, the base assumption is that at early times the modified gravity effects

are negligible such that the ICs are still those for an Einstein-de Sitter (EdS) universe:

D1(k, τini) = 1, dD1(k,τini)
dτ

=
(

1
a
da
dτ

)∣∣
τ=τini

, D̂ini
2 = −3

7
and

dD̂ini
2

dτ
= −6

7

(
1
a
da
dτ

)∣∣
τ=τini

. This

is true for the main models we considered (f(R) and nDGP), but is not true in full

generality. We list µMG(k, τ) and γE
2,MG formulae for different modified gravity models

in Appendix D.

The changes required to the other equations from Sec. 2.1 that are necessary to

complete the 2LPT formalism for general scale-dependent modified gravity are essen-

tially negligible, amounting to dropping the dependence on the direction of wavevectors

so that there is only a dependence on the magnitude.

If γE
2,MG = 0 (ΛCDM), then Eq. (2.35) is exact. Another case we can do exactly

is when γE
2,MG = f(τ) (1− cos2 θ) and2 µMG(k, τ) = µMG(τ), as is true in nDGP. Here

the angular dependence of the γE
2,MG term is the same as the other term in Eq. (2.34)

and we can factor out (1− cos2 θ) to get D2(k1, k2, k, τ) = (1− cos2 θ)D̂2(τ) where

d2D̂2

dτ 2
− κµMG(τ)D̂2 = −κµMG(τ)D2

1(k, τ)

(
1 +

2a4H2

κµMG(τ)
f(τ)

)
. (2.36)

To get an idea about how good the approximation for D̂2 is, in Fig. 2.1 we show the

ratio of our approximation3 Eq. (2.35) to D2(k, k1, k2, a = 1) in Eq. (2.34) for different

Fourier space triangle configurations of ~k = ~k1 +~k2. For the orthogonal and equilateral

cases these agree to ∼ 1 − 2% up to k = 5h/Mpc for the models F5 and F6 (defined

below) while for the squeezed triangle configuration the difference can be up to 10%

for k & 1h/Mpc.

2.3 2LPT for massive neutrinos

In the method that follows, we treat the massive neutrinos as entirely linear such

that δν = δ
(1)
ν . Thus the only non-linearity comes from the CDM+baryon component

δcb = δ
(1)
cb +δ

(2)
cb . This idea has been implemented and tested in N-body simulations [172]

and in Standard Perturbation Theory (SPT) [212, 213, 214]. Reference [215] raised the

issue that the treatment of massive neutrinos as purely linear causes problems stemming

from the violation of momentum conservation. We discuss the impact of this on our

work in Appendix E.

When we include massive neutrinos, the gravitational potential is sourced by both

CDM+baryons and the neutrinos, and thus the Fourier space Poisson equation up to

2We must require µMG to be independent of scale in order to put D1(k1, τ)D1(k2, τ) ≡ D2
1(τ).

3We multiply our approximation by (1− cos2 θ) when comparing this to D2(k, k1, k2, a = 1) as this

is the equivalent expression for ΛCDM. This can be seen from comparing Eq. (2.21) to Eq. (2.26).
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Figure 2.1: The ratio of D2(k, k1, k2, cos θ, a = 1) to the approximation D2(k, a = 1)(1 −
cos2 θ) for three different triangle configurations; equilateral k = k1 = k2, orthogonal k1 =

k2 = k/
√

2 and squeezed k = k1 with k2 ≈ 0. Here F5 (F6) refers to a Hu-Sawicki f(R)

model with n = 1 and |fR0| = 10−5 (|fR0| = 10−6).
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second order is

Fx
[
∇2
xΦN(~x, τ)

]
(~k) = κ

(
δ(1)

m + δ(2)
m

)
= 4πGa4ρm

(
δ(1)

m + δ(2)
m

)
. (2.37)

We can expand the expression ρm

(
δ

(1)
m + δ

(2)
m

)
as

ρm

(
δ(1)

m + δ(2)
m

)
= ρcbδ

(1)
cb + ρνδ

(1)
ν + ρcbδ

(2)
cb =

(
ρcb

ρm

+
ρν
ρm

δ
(1)
ν

δ
(1)
cb

)
ρmδ

(1)
cb + fcbρmδ

(2)
cb

=

(
fcb + fν

D1,ν(k, τ)

D1,cb(k, τ)

)
ρmδ

(1)
cb + fcbρmδ

(2)
cb

=

(
fcb + fν

Tν(k, τ)

Tcb(k, τ)

)
ρmδ

(1)
cb + fcbρmδ

(2)
cb

= ρm

(
µmν (k, τ)δ

(1)
cb + fcbδ

(2)
cb

)
, (2.38)

where Ts(k, τ) is the transfer function for species ‘s’ that can be extracted from a

Boltzmann code. The quantity µmν acts as an effective Newton’s constant, and in our

code we compute it using the transfer functions from CAMB [105]. The result of this is

that Eq. (2.37) becomes

Fx
[
∇2
xΦN(~x, τ)

]
(~k) = κ

(
µmν (k, τ)δ

(1)
cb + fcbδ

(2)
cb

)
. (2.39)

Thus massive neutrinos are covered by the general formalism laid out in Sec. 2.1, with

µ(1)(~k, τ)→ µmν (k, τ), µ(2)(~k, τ)→ fcb, and γE
2 (~k,~k1, ~k2, τ)→ 0. Therefore the Fourier

transform with respect to q instead of x is

Fq
[
∇x

2Φ(~x, τ)
]

(~k) = κµmν (k, τ)δ̃
(1)
cb (k, τ) + κ fcbδ̃

(2)
cb (k, τ)

+ κ

∫
d3~k1d

3~k2

(2π)3
δD(~k − ~k12) [µmν (k, τ)− µmν (k1, τ)]

×
~k1 · ~k2

k2
2

δ̃
(1)
cb (k1, τ)δ̃

(1)
cb (k2, τ) . (2.40)

Consequently, the equation for the first order growth factors D1 becomes

d2D1,cb(k, τ)

dτ 2
− κµmν (k, τ)D1,cb(k, τ) = 0 , (2.41)

Ideally, we would include the impact of massive neutrinos at early times in the ICs, for

example by passing the EdS ICs through the fitting functions we will mention below.

However, for simplicity we assume that at early times the massive neutrino effects are

negligible such that the ICs are still those for an EdS universe. We estimate that the

inaccuracy produced by this assumption will be minimal as long as we deal with growth

factors normalised to their value at z = 0, as is required in MG-PICOLA.
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Another way to account for the additional effect of massive neutrinos on the first

order growth factor Dmν=0
1,cb for matter perturbations in ΛCDM without massive neutri-

nos, is to follow the practice of [216] and use the following fitting formulae to calculate

the first order growth factor of CDM+baryon perturbations D1,cb and total matter

perturbations D1,cbν in cosmologies with massive neutrinos:

D1,cb(k, τ) =

1 +

(
Dmν=0

1,cb (τ)

1 + yfs(χ; fν)

)0.7
pcb/0.7Dmν=0

1,cb (τ)1−pcb , (2.42)

D1,cbν(k, τ) =

f 0.7/pcb
cb +

(
Dmν=0

1,cb (τ)

1 + yfs(χ; fν)

)0.7
pcb/0.7Dmν=0

1,cb (τ)1−pcb , (2.43)

where

pcb(fcb) ≡ 1

4

[
5−
√

1 + 24fcb

]
≥ 0 , (2.44)

yfs(χ; fν) = 17.2fν
(
1 + 0.488f−7/6

ν

)
(Nνχ/fν)

2 , (2.45)

χ(k) =
k

Mpc−1
Θ2

2.7(Ω0h
2)−1 =

k

19.0
(Ω0H

2
0 )−1/2(1 + zeq)−1/2 , (2.46)

and fi = Ωi/Ωm is the density ratio for species i, Nν is the number of massive neutrino

species, and Θ2.7 is a measure of the CMB temperature at z = 0 using TCMB = 2.7Θ2.7K.

This method allows us to insert ΛCDM Dmν=0
1,cb values that we calculate by solving

Eq. (1.91) into Eqs. (2.42, 2.43) to calculate Dmν
1,cb and Dmν

1,cbν which then include the

effect of massive neutrinos at linear order. This alternative method for computing the

first order growth factor including the effects of massive neutrinos could be included in

our implementation alongside the current Boltzmann code method, where we use the

transfer functions Tν and Tcb to compute µmν and solve the ODE numerically. Either

method could then be used as per the user’s preference. The alternative method may

be useful if we need to run a large number of simulations with various different masses

as we could avoid storing the Boltzmann code outputs.

Figure 2.2 displays a comparison between the outputs of Eq. (2.42) and CAMB.

Specifically, the figure plots the ratio of the first order CDM+baryon growth factor at

z = 0 and z = 1, D1,cb(k, z = 0)/D1,cb(k, z = 1). The comparison is done for three

GR+massive neutrino cosmologies with mν = {0.2, 0.4, 0.6} eV. The ratio has also

been normalised to the ΛCDM case without massive neutrinos. Figure 2.2 shows that

the output of Eq. (2.42) matches CAMB to an accuracy of < 1% for neutrino masses

mν . 0.6 eV up to k = 1.0 h/Mpc.

With the first order growth factor dealt with, we turn our attention to the second
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Figure 2.2: Comparison between CAMB and the fitting formula method Eq. (2.42) for the ratio

of the first order CDM+baryon growth factor at z = 0 to z = 1 for a GR + massive neutrino

cosmology with mν = {0.2, 0.4, 0.6} eV. The ratio has been normalised to the ΛCDM case

without neutrinos, which is given by the horizontal dashed line.

order growth factor D2. The equation for D2(k, k1, k2, τ) becomes[
d2

dτ 2
− κ fcb

]
D2(~k,~k1, ~k2, τ) =

[
κ
(
fcb − 2µmν (~k1, τ)

) (~k1 · ~k2)2

k2
1k

2
2

+ κ fcb + 2κ
[
µmν (~k, τ)− µmν (~k1, τ)

] ~k1 · ~k2

k2
2

]
×D1(~k1, τ)D1(~k2, τ) , (2.47)

and if µmν (k, τ) = µmν (k1, τ) ≈ fcb, then the equation for the approximate second

order growth factor D̂2(k) becomes[
d2

dτ 2
− κ fcb

]
D̂2(k, τ) = κ fcbD

2
1(k, τ) . (2.48)

For a matter dominated Universe and for scales smaller than the neutrino free-streaming

scale we have D2,cb ' − 3fcb
3fcb+4(1−pcb)2

D2
1,cb, which could be used to derive the ICs when

solving Eq. (2.48) numerically. However, as at first order, we have again chosen to

use the EdS ICs under the same assumptions. The µmν → fcb approximation was

previously made in [212, 213] for a ΛCDM+massive neutrino cosmology in Standard

Perturbation Theory. They argued that the small value of fν suppresses the non-linear

corrections to the above approximation of treating the massive neutrinos as an exclu-

sively linear density perturbation. We have tested the effect of using µmν instead of
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Figure 2.3: The value of µmν as a function of k calculated using Eq. (2.38) at z = 0 for both

GR and F4 cosmologies with neutrinos of mass mν = {0.2, 0.4, 0.6} eV. The horizontal dashed

lines plotted are the values of fcb at each neutrino mass, which highlight the consequences of

setting µmν → fcb in the approximate second order growth factor equations Eqs. (2.48) and

(2.59).

fcb in Eq. (2.48) for the second order growth-factor in our COLA implementation (to be

presented in the upcoming section). This change was found to have an negligible effect

(. 0.1− 0.5 % ) on the total matter power spectrum for wavenumbers k . 1 h/Mpc.

Making the µmν → fcb approximation also means that Eq. (2.48), unlike Eq. (2.47),

can be solved without the Boltzmann code output, since we know fcb and D1 can be

computed with the fitting formulae.

In Figure 2.3 we show the difference between µmν , calculated using Eq. (2.38),

and fcb in the range 0.01 ≤ k ≤ 1.0 h/Mpc to highlight the consequences of making

this approximation. Figure 2.3 shows that the approximation is less important as

k → 1.0 h/Mpc, but also shows that the approximation becomes less accurate as mν

increases. Specifically, at k = 0.01 h/Mpc, the percentage difference between µmν and

fcb is 1.5/3.0/4.5% for mν = 0.2/0.4/0.6 eV respectively.
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2.4 2LPT for modified gravity and massive neutri-

nos

The effects of modified gravity and massive neutrinos on 2LPT can be combined in a

simple manner that is covered by the formalism laid out in Sec. 2.1:

µ(1)(~k, τ)→ µMG(k, τ)× µmν (k, τ) , (2.49)

µ(2)(~k, τ)→ µMG(k, τ)× fcb , (2.50)

γE
2 (~k,~k1, ~k2, τ)→ γE

2,MG(k, k1, k2, τ) . (2.51)

This leads to the Fourier transform of the Poisson equation w.r.t. ~q becoming

Fq
[
∇x

2Φ(~x, τ)
]

= κ

[
µMG(k, τ)µmν (k, τ)δ̃(1)(~k, τ) + µMG(k, τ)fcbδ̃

(2)(~k, τ)

+

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× [µMG(k, τ)µmν (k, τ)− µMG(k1, τ)µmν (k1, τ)]

×
~k1 · ~k2

k2
2

δ(1)(~k1, τ)δ(1)(~k2, τ)

]

+ a4H2

∫
d3k1d

3k2

(2π)3
δ

(3)
D (~k − ~k12)

× γE
2,MG(~k,~k1, ~k2, τ)δ(1)(~k1, τ)δ(1)(~k2, τ) , (2.52)

This leads to the following equation for the first order growth factor D1:[
d2

dτ 2
− κµMG(k, τ)µmν (k, τ)

]
D1(k, τ) = 0 . (2.53)

We again assume that at early times the modified gravity effects are negligible. How-

ever, ideally we would account for the effect of massive neutrinos in the early Universe

through the ICs, for example using the Eisenstein-Hu fitting formulae, which we will

show below are applicable to modified gravity cosmologies as well as ΛCDM ones. For

simplicity, we use the ICs for an EdS universe under the same assumptions as described

for D1 in Sec. 2.3.

Eisenstein and Hu originally only considered ΛCDM Dmν=0
1,cb values as input to

Eqs. (2.42, 2.43). We extend their idea by using Dmν=0
1,cb values for modified gravity

cosmologies without massive neutrinos as input instead, these having been calculated

numerically by solving Eq. (2.33). This adds the effect of massive neutrinos to the
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Figure 2.4: Comparison between MGCAMB and the fitting formula method Eq. (2.42) for the

ratio of the first order CDM+baryon growth factor at z = 0 to z = 1 for a f(R) + massive

neutrino cosmology with |fR0| = 10−4 and mν = {0.2, 0.4, 0.6} eV. The ratio has been

normalised to the ΛCDM case without massive neutrinos, which is given by the horizontal

dashed line.

modified gravity models, enabling us to compute growth factor values for modified

gravity + massive neutrino (MG+mν) cosmologies at linear order.

To test the fitting formula method for growth factors in MG+mν cosmologies, we

first verified that our extension to the fitting formula method gives accurate values of

D1,cb and D1,cbν by comparison with the output from MGCAMB, which is an extension

of CAMB for modified gravity models [119, 120]. These comparisons can be seen in Fig-

ures 2.4-2.6 for D1,cb in the Hu-Sawicki f(R), symmetron, and dilaton modified gravity

models. As in Figure 2.2, the plots show the ratio of the first order CDM+baryon

growth factor at z = 0 and z = 1, D1,cb(k, z = 0)/D1,cb(k, z = 1), the ratios have been

normalised to the ΛCDM case without massive neutrinos, and the comparison is made

for three different neutrino masses mν = {0.2, 0.4, 0.6} eV. Figure 2.4 shows that the

ability of the fitting formula to recover MGCAMB first order growth values for f(R) +mν

cosmologies decreases as mν increases. However, for the F4 model of f(R) gravity

(where |fR0| = 10−4) that we consider in Figure 2.4 the output of Eq. (2.42) matches

that of MGCAMB to an accuracy of < 1% up to k = 1.0 h/Mpc even for mν = 0.6 eV.

Similarly, for the values of parameters we have considered here, Eq. (2.42) matches

MGCAMB to an accuracy of < 1% up to k = 1.0 h/Mpc for both the symmetron and

dilaton cosmologies with neutrino masses mν . 0.6 eV.
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Figure 2.5: Comparison between MGCAMB and the fitting formula method Eq. (2.42) for the

ratio of the first order CDM+baryon growth factor at z = 0 to z = 1 for a symmetron +

massive neutrino cosmology with β? = 1, a? = 0.5, ξ? = 1/2998, and mν = {0.2, 0.4, 0.6} eV.

The ratio has been normalised to the ΛCDM case without massive neutrinos, which is given

by the horizontal dashed line.

Figure 2.6: Comparison between MGCAMB and the fitting formula method Eq. (2.42) for the

ratio of the first order CDM+baryon growth factor at z = 0 to z = 1 for a dilaton + massive

neutrino cosmology with β0 = 0.41, ξ0 = 1/2998, S = 0.24, R = 1, and mν = {0.2, 0.4, 0.6}
eV. The ratio has been normalised to the ΛCDM case without massive neutrinos, which is

given by the horizontal dashed line.
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Figure 2.7: The linear total matter power spectrum at z = 1.3 for a GR + massive neutrino

cosmology with mν = {0.2, 0.4, 0.6} eV, calculated using both CAMB and the fitting formula

method Eq. (2.42). This power spectrum is normalised to the fiducial ΛCDM case without

massive neutrinos, which is shown by the horizontal dashed line.

We also wanted to test whether the growth factors calculated using this method

could be used to accurately ‘backscale’ the linear total matter (CDM + baryon +

massive neutrino) power spectra at z = 0 so that they closely matched the linear total

matter power spectra output at earlier z by MGCAMB directly. This was done using the

relationship

Pcbν(k, z) =

[
D1,cbν(k, z)

D1,cbν(k, z = 0)

]2

Pcbν(k, z = 0) . (2.54)

In Figures 2.7-2.10, we display the resulting backscaled total matter linear power spec-

tra for the GR, f(R), symmetron, and dilaton gravity models with mν=[0, 0.2, 0.4,

0.6]eV at z = 1.3. As for the first order growth factors, we find that, for the values

of the model parameters considered, using the fitting formula method to backscale the

z = 0 linear total matter power spectrum to z = 1.3 recovers the same result as is

output by MGCAMB directly at z = 1.3 to an accuracy of < 1% up to k = 1.0 h/Mpc for

each of the cosmologies with neutrino masses mν . 0.6 eV.

Switching our consideration from first order to second order, the equation for the
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Figure 2.8: The linear total matter power spectrum at z = 1.3 for a f(R) + massive neutrino

cosmology with |fR0| = 10−4 and mν = {0.0, 0.2, 0.4, 0.6} eV, calculated using both MGCAMB

and the fitting formula method Eq. (2.42). This power spectrum is normalised to the fiducial

ΛCDM case without massive neutrinos, which is shown by the horizontal dashed line.
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Figure 2.9: The linear total matter power spectrum at z = 1.3 for a symmetron + massive

neutrino cosmology with β? = 1, a? = 0.5, ξ? = 1/2998, and mν = {0.0, 0.2, 0.4, 0.6} eV,

calculated using both MGCAMB and the fitting formula method Eq. (2.42). This power spectrum

is normalised to the fiducial ΛCDM case without massive neutrinos, which is shown by the

horizontal dashed line.
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Figure 2.10: The linear total matter power spectrum at z = 1.3 for a dilaton + massive neu-

trino cosmology with β0 = 0.41, ξ0 = 1/2998, S = 0.24, R = 1, and mν = {0.0, 0.2, 0.4, 0.6}
eV, calculated using both MGCAMB and the fitting formula method Eq. (2.42). This power spec-

trum is normalised to the fiducial ΛCDM case without massive neutrinos, which is shown by

the horizontal dashed line.

second order growth factor D2(k, k1, k2, τ) becomes[
d2

dτ 2
− κµMG(k, τ)fcb

]
D2(k, k1, k2, τ)

=

[
κµMG(k, τ)fcb + κ (µMG(k, τ)fcb − 2µMG(k1, τ)µmν (k1, τ))

(~k1 · ~k2)2

k2
1k

2
2

+ 2κ [µMG(k, τ)µmν (k, τ)− µMG(k1, τ)µmν (k1, τ)]
~k1 · ~k2

k2
2

+ 2a4H2γE
2,MG(k, k1, k2, τ)

]
D1(k1, τ)D1(k2, τ) . (2.55)

By making the approximations

µMG(k, τ) ≈ µMG(k1, τ) , (2.56)

µmν (k, τ) = µmν (k1, τ) ≈ fcb , (2.57)

γE
2,MG(k, k1, k2, τ)(

1− ~k1·~k2
k21k

2
2

) ≈ γE
2,MG(k, k/

√
2, k/
√

2, τ) , (2.58)
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we find the following equation for the approximate second order growth factor D̂2:[
d2

dτ 2
− κµMG(k, τ)fcb

]
D̂2(k, τ)

=

[
κµMG(k, τ)fcb + 2a4H2γE

2,MG(k, k/
√

2, k/
√

2, τ)

]
D2

1(k, τ) . (2.59)

As before, we use the EdS ICs following the same arguments presented previously.

Figure 2.3 shows that there is a negligible difference between the F4 model of f(R)

gravity and GR in the comparison between the values of µmν and fcb in the range

0.01 ≤ k ≤ 1.0 h/Mpc. Since we do approximate µmν → fcb, Eq. (2.59), unlike

Eq. (2.55), can be solved without the output of a Boltzmann code, provided we use

the fitting formulae to compute D1.

2.5 Modifying the particle mesh computation

2.5.1 Screened modified gravity theories in PM

N-body simulations of modified gravity models with screening (see e.g. [217, 218, 153,

156]) have shown that it is crucial to include the screening effect to get accurate results,

for example linear perturbation theory might predict a 50% enhancement of the matter

power spectrum relative to ΛCDM at some scale while simulations on the other hand

might only show deviations at the few % level.

In [164] a simplified approximate method to include screening was proposed which

relies on combining spherically symmetric analytical or semi-analytical solutions for the

screening effect with a linear field equation. In effect it estimates from the amplitude

of the density-field, the gravitational potential or its gradient (depending on the model

in question) how much of the mass contributes to the fifth-force and then uses this to

correct the linearised field-equation. The linearised field equation can be rapidly solved

using Fourier transforms instead of using a time consuming relaxation method to solve

a highly non-linear field equation with bad convergence properties, as is done in most

modified gravity N-body codes today.

2.5.1.1 f(R) gravity

For f(R) gravity [219], which has the chameleon screening mechanism [201], we have

that the fifth-force on an object (ignoring for now the finite range of the force) is given

approximately by

~Fφ =
1

3
· ~FNewton · εscreen(ΦN) , (2.60)
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where

εscreen(ΦN) = Min

[
1,

∣∣∣∣3fR(a)

2ΦN

∣∣∣∣] , (2.61)

and ΦN is the standard Newtonian gravitational potential. The linearised field-equation

on the other hand is given by

∇2
xφ = a2m2(a)φ+

1

3
· κ δ , (2.62)

where m(a) = 1
3fRR

is a model dependent function describing the inverse range of the

fifth-force on cosmological scales and φ is related to fR via φ ≡ −1
2

log(fR + 1) ' −fR
2

.

The field is normalised here such that ~∇xφ corresponds to the fifth-force (i.e. the total

force is ~∇xΦN + ~∇xφ). To include the effects of screening we solve the linear field

equation

∇2
xφ = a2m2(a)φ+

1

3
· κ δ · εscreen(ΦN) , (2.63)

in our simulation. ΦN is easily computed from the density field which allows us to

quickly solve for the effects of the fifth-force using Fourier transforms. This method

allows us to perform modified gravity simulations at a computational cost that is not

much larger (20− 50% is a reasonable estimate) than for ΛCDM.

2.5.1.2 nDGP

For the normal-branch DGP model [220, 221] with a ΛCDM background expansion,

the modifications to the Poisson equation are given by Φ = ΦN + φ where the scalar

field φ is determined by

∇2
xφ+

2r2
c

a4

(
(∇2

xφ)2 − (∇xi∇xjφ)2
)

=
κ δ

3βDGP(a)
. (2.64)

This equation is solved in modified gravity N-body simulations of this model.

For spherically symmetrical mass distributions the solution for the force ~Fφ = ~∇xφ

is given by

~Fφ =
1

3βDGP(a)
· ~FNewton · εscreen(ρ) , (2.65)

where

εscreen(ρ) =
2
√

1 + x

x
, (2.66)

x =
8(rcH0)2Ωm

9β2
DGP(a)

ρ

ρ
, (2.67)
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where ρ is the average density within a given radius. From this we can make the

approximate linear field equation

∇2
xφ =

1

3βDGP(a)
· κ δ · εscreen(ρ) , (2.68)

which can be solved in the code to give the fifth-force. One problem with this equation

is that the screening factor depends on density which means that the result will depend

on the resolution of the simulation. To get around this issue we first smooth the density

field with a Gaussian filter of a given radius R (R ∼ 1Mpc/h works well in practice)

and use the smoothed density field to compute the screening factor above. This choice

is motivated by the fact that the screening (Vainshtein) radius for the nDGP models

we consider here is O(1)Mpc/h for typical halos we expect to have in our simulations.

We have verified that the exact value of the smoothing radius does not significantly

change our results by comparing the results we find for R = 0.5, 1 and 2 Mpc/h.

2.5.2 Massive neutrinos in PM

The implementation of massive neutrinos in the particle mesh part of the COLA algo-

rithm is the grid-based method suggested in [172]. This method has been demonstrated

to produce a matter power spectrum that is accurate to < 1% for neutrino masses∑
mν . 0.6 eV. When we create the initial conditions for the CDM (CDM+baryon)

particles we use the same initial seed to create a realisation of massive neutrinos using

δν(~k, τini) = δcb(~k, τini)
Tν(k, τini)

Tcb(k, τini)
= δcb(~k, τini)

D1,ν(k, τini)

D1,cb(k, τini)
, (2.69)

where Tν and Tcb are the transfer functions of massive neutrinos and CDM+baryons

respectively, which we compute using CAMB.

The massive neutrinos are kept in Fourier space for the duration of the simulation

and are added to the source of the Poisson equation

−k2Φ(~k, τ) =
3

2
Ωma

[
fcbδcb(~k, τ) + fνδν(~k, τ)

]
, (2.70)

where the neutrino density at a given time τ is computed as

δν(~k, τ) = δν(~k, τini)
Tν(k, τ)

Tν(k, τini)
= δν(~k, τini)

D1,ν(k, τ)

D1,ν(k, τini)
. (2.71)

In Appendix E we show a comparison of this scheme to an alternative scheme of

modelling the non-linear neutrino density.

We have compared the consequences of computing the growth factors using the EH

fitting functions to directly solving the growth-ODEs with µν(k, τ) = fcb + fν
Tν(k,τ)
Tcb(k,τ)
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computed using transfer functions from CAMB or its alternatives. The difference between

these two approaches was found to be negligible.

As long as the cosmological model we simulate already has scale-dependent growth

then the additional computational cost of adding in massive neutrinos this way is

almost negligible, but it does require some extra memory as we need to store the initial

neutrino density field.

2.6 MG-PICOLA results

2.6.1 Modified Gravity without massive neutrinos

In this section we show test runs of our code for some example models.

To start with we made sure the code is working correctly by performing some simple

tests. First we use the scale-dependent solver to solve for ΛCDM and compare to the

standard L-PICOLA code. The agreement is found to be excellent (� % accuracy on

all scales for P (k)).

Below we show comparisons of our code with results from true N-body simulations.

To do this we created a module that reads in initial conditions from a given simulation

and uses this to generate the displacement-fields which allow us to do a comparison

without cosmic variance. In Fig. 2.11 we show a comparison of P (k) for ΛCDM using

L-PICOLA (with n = 30 time steps) compared to the results of the N-body code RAMSES

[222]. The agreement is excellent on large scales, while for wavenumbers larger than

∼ kNyquist/4 ∼ 0.7h/Mpc the results starts to deviate as we cannot resolve smaller

scales. In the rest of this sub-section we show the results relative to ΛCDM for runs

with modified gravity models.

The (friend-of-friend) halo finder used in the analysis below is MatchMaker4 and it

was run with the linking-length b = 0.2. The errors bars in the mass function plots

are Poisson errors. Since the simulations were started from the same initial conditions

these errors should be considered an upper limit to the shot noise and that it is likely

significantly smaller than that.

2.6.1.1 f(R) gravity

The N-body simulation suite we used to test the f(R) result of our code is taken from

the modified gravity code comparison project [160] (run with the ISIS code [159]) and

consists of a N = 5123 particle simulation in a B = 250Mpc/h box with a cosmology

4https://github.com/damonge/MatchMaker
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defined by Ωm = 0.269, h = 0.704, ns = 0.966 and σ8 = 0.8. The two f(R) models

have |fR0| = 10−5 (F5) and |fR0| = 10−6 (F6). The f(R) simulations were run with

the same initial condition as the ΛCDM simulation.

In Fig. 2.12 we show a comparison of the result we get when using the true f(R)

growth-factor versus using the ΛCDM growth-factor in the simulations. For this plot

we have used n = 10 time steps in the COLA simulations and we see a small difference

in the power spectrum at z = 0. For n > 20 the results are pretty much indistinguish-

able which happens because the more time steps we take the less effect the COLA

approximation has on the final results. For a small number of time steps the COLA

approximation is more important and the difference in the results comes from the true

growth-factor taking some screening into account leading to a small reduction in power

on non-linear scales. We also see that we significantly overestimate the true power

spectrum if we don’t take screening of the fifth-force into account.

In Fig. 2.13 we show the fractional difference in the matter power spectrum for

f(R) with respect to ΛCDM for our simulations including screening compared to the

results of full N-body simulations. The agreement is . 2% for F5 and < 1% for F6 up

to k ∼ 3h/Mpc.

In Fig. 2.14 we show the fractional difference in the velocity divergence power

spectrum. The agreement is slightly worse than for the matter power spectrum with

up to 5% deviation for F5 and up to 8% for F6. This is still a decent agreement

compared to the enhancement with respect to ΛCDM which is up to ∼ 50% for F5 and

up to ∼ 30% for F6.

In Fig. 2.15 we show the fractional difference in the halo mass function with respect

to ΛCDM. The agreement is . 2% for all of the mass-range for F5, but for F6 we

underestimate the enhancement of the mass function by approximately 5% for M .

5 · 1013M�/h. This is the same as was found when using the screening method in full

N-body simulations [164] and this can therefore be attributed to this approximation.

2.6.1.2 nDGP

The N-body simulation suite we used to test the nDGP version of our code was taken

from [223] and was run with the ECOSMOG code [157]. The simulations have N = 10243

particles in a B = 1024 Mpc/h box with a WMAP9 cosmology defined by Ωm = 0.281,

h = 0.697, and ns = 0.971. The two nDGP simulations have rcH0 = 0.75 (nDGP2) and

rcH0 = 4.5 (nDGP3). These values correspond to having the same value of σ8(z = 0)

as the f(R) models F5 and F6. The nDPG simulations were run with the same initial

conditions as the ΛCDM simulation.

61



In Fig. 2.16 we show the fractional difference in the matter power spectrum for

nDGP with respect to ΛCDM for our simulations with and without including screening

compared to the results of full N-body simulations. The actual P (k) starts to deviate

from the N-body result already around k ∼ 0.5hMpc−1 while the enhancement has

good < 2% accuracy all the way up to k ∼ 3h/Mpc.

In Fig. 2.17 we show the fractional difference in the velocity divergence power

spectrum with respect to ΛCDM compared to the results of full N-body simulations.

The agreement is . 2% up to k ∼ 2h/Mpc which is fairly small compared to the large

signal relative to ΛCDM which is ∼ 7% and ∼ 20% for the two models respectively.

In Fig. 2.18 we show the fractional difference in the halo mass function with respect

to ΛCDM. The agreement is . 2% for the entire mass-range 1012 − 1015M�/h probed

by this simulation.

The COLA approach for these types of models works nearly as well as for ΛCDM

and the computational cost is only ∼ 30% larger and comes from computing the

smoothed density-field at every time-step which requires one additional Fourier trans-

form.

2.6.1.3 Dependence on the number of steps

The run-time of the code is roughly proportional to the number of time steps so the

fewer steps we can use the better.

In Fig. 2.19 we show how the results for the matter power spectrum and halo mass

function in our f(R) simulations depend on the number of time steps. The enhancement

of the power spectrum relative to ΛCDM is seen to have converged for k < 1h/Mpc

already when using n = 10 time steps for both models. To get a similar convergence

on the smaller scales probed by our simulations we need to go up ∼ 20−30 time steps.

For the halo mass function we are within 5% of the n = 30 result across the whole

mass range already at n = 10 and for n = 20 the results have practically converged.

In Fig. 2.20 we show the corresponding result for our nDGP simulations. The same

type of behavior as we saw for f(R) is also found here: n = 10 time steps is enough to

get the power spectrum boost-factor (ratio with respect to ΛCDM) correct to ∼ 2% up

to k = 1h/Mpc while to get full convergence we need ∼ 20 time steps. The boost-factor

for the halo mass function is within 4% of the n = 30 result in the n = 10 run across

the whole mass range.

These results show that we can get away with using a fairly low number of time

steps n ∼ 10− 20 and still maintain percent level accuracy in the boost-factors.
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Figure 2.11: The matter power spectrum at z = 0 obtained from L-PICOLA using a

fixed mesh with N = 10243 gridcells in a box of size B = 1024 Mpc/h and using n = 30

time steps compared to a high-resolution N-body simulation (RAMSES) using the same

initial conditions.
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Figure 2.12: The ratio of the matter power spectrum in f(R) to that in ΛCDM at z = 0

when using the true growth-factor(s) or using the ΛCDM ones plus the effect of including

the screening method. Here we have used n = 10 time steps.

2.6.2 Adding massive neutrinos

We ran 5 COLA N-body simulations in a box of B = 512 Mpc/h with N = 5123 parti-

cles using the MG-PICOLA code. A smaller box of B = 256 Mpc/h with the same number

of particles was used to check the convergence of the results, and Figure 2.21 shows,

through comparison to the full N-body simulations of [2], that the CDM matter power

spectrum in our simulations can be trusted to percent level up to k ∼ 0.5−0.7 h/Mpc.

As found for modified gravity only, the relative enhancement of the power spectrum

(i.e. when considering ratios of power spectra as shown in the figures below) is accu-

rate to larger k values. The cosmological parameters for the simulations can be found

in Table 2.1 and these are the same parameters as used by [2] where they performed

combined massive neutrino and modified gravity simulations using a modified version

of the simulation code Gadget [224, 158]. We will use these simulations to compare

our results below. Ideally we would like to have run our simulations using exactly the

same initial seed as the N-body simulations, however this was not available at the time

we carried out this research and we leave such a detailed comparison to future work.

In Figure 2.22 we show the suppression of the power spectrum in ΛCDM as a

function of neutrino mass in our simulations compared to the N-body results of [2]. We
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Figure 2.13: The ratio of the matter power spectrum in f(R) to that in ΛCDM at

z = 0. All simulations have been performed using the same initial conditions and we

have used n = 30 time-steps in the COLA simulations. The N-body results correspond

to modified gravity simulations solving the exact equations to get the fifth-force. For

the COLA simulations we used the ΛCDM growth-factor. The lower panel shows

(Pf(R)/PΛCDM)COLA/(Pf(R)/PΛCDM)N−body - 1.
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Figure 2.14: The ratio of the velocity divergence power spectrum in f(R) to that

in ΛCDM at z = 0. All simulations have been performed using the same ini-

tial conditions. The N-body results correspond to modified gravity simulations

solving the exact equations to get the fifth-force. For the COLA simulations we
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Figure 2.15: The ratio of the halo mass function at z = 0 in f(R) to that in ΛCDM.

All simulations have been performed using the same initial conditions. The N-body

results correspond to modified gravity simulations solving the exact equations to get the

fifth-force. For the COLA simulations we used the ΛCDM growth-factor and n = 30

time-steps. The error bars for the halo mass function are Poisson errors. The lower
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N-body results correspond to modified gravity simulations solving the exact equations
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Figure 2.17: The ratio of the velocity divergence power spectrum in nDGP to that in

ΛCDM at z = 0. All simulations have been performed using the same initial conditions

and we have used n = 30 time-steps in the COLA simulations. The N-body results
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Figure 2.18: The ratio of the halo mass function in nDGP to that in ΛCDM at z = 0.

All simulations have been performed using the same initial conditions and we have

used n = 30 time-steps in the COLA simulations. The N-body results correspond

to modified gravity simulations solving the exact equations to get the fifth-force. For

the COLA simulations we used the smoothing radius of R = 1 Mpc/h to compute

the screening factor for nDGP. The error bars for the halo mass function are Poisson

errors. The lower panel shows (nnDGP/nΛCDM)COLA/(nnDGP/nΛCDM)N−body - 1.
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Figure 2.19: The ratio of the matter power spectrum (left) and halo mass function (right)

in f(R) to that in ΛCDM at z = 0 for the two f(R) models F5 and F6 for different number

of time steps. The ratio in each case is with respect to a ΛCDM simulation using the same

number of steps. In the lower panel we show the fractional difference in the ratio with respect

to the n = 30 run. The error bars for the halo mass function are Poisson errors.

mν (eV) ΩCDM Ων σ8 (ΛCDM)

0.0 0.2685 0.0 0.850

0.2 0.2637 0.0048 0.798

0.4 0.259 0.0095 0.752

0.6 0.2542 0.0143 0.712

Table 2.1: The cosmological parameters for the simulations performed for this chapter.

Common to all simulations are Ωm = 0.3175, Ωb = 0.049, ns = 0.966, As = 2.215 · 10−9

and h = 0.671.
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Figure 2.20: The ratio of the matter power spectrum (left) and halo mass function

(right) in nDGP to that in ΛCDM at z = 0 for the two nDGP models nDGP2 and

nDGP3 for different number of time steps. The ratio in each case is with respect to

a ΛCDM simulation using the same number of steps. In the lower panel we show the

fractional difference in the ratio with respect to the n = 30 run. The error bars for the

halo mass function are Poisson errors.
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Figure 2.21: The CDM matter power spectrum P (k, z = 0) for ΛCDM in our COLA sim-

ulations compared with the result of [2]. The mν = 0.6 eV results are offset by a factor of

0.25.

show power spectrum results for both CDM+baryons Pcb(k, z) =
〈
|δcb(~k, z)|2

〉
and the

total matter content (CDM+baryons+massive neutrinos) Pm(k, z) = 〈|fcbδcb(~k, z) +

fνδν(~k, z)|2〉.
In Figure 2.23 we show the results from simulations where we have both massive

neutrinos and modified gravity. For the particular f(R) model we study here having

a total neutrino mass of mν ∼ 0.4 eV is seen to lead to a power spectrum very similar

to that of a standard ΛCDM model with massless neutrinos. This illustrates the

degeneracy of massive neutrinos (suppressing growth) and modified gravity (enhancing

growth).

Our COLA implementation gives power spectrum (both for CDM and for the total

matter) results that agree to . 1% accuracy for k . 1 h/Mpc to full N-body simulations

of [2] for both ΛCDM and f(R).

In Figures 2.24 and 2.25 we show the results for the halo mass function computed

using Rockstar [225]. We note that the results of [2] were computed using a dif-

ferent halo-finder (SUBFIND) so the results are not directly comparable; however, the

enhancement of the halo mass-function generally shows a good agreement.
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Figure 2.22: The matter power spectrum P (k, z = 0) for several values of the sum of

neutrino masses relative to the power spectrum with mν = 0.0 for ΛCDM. The solid

lines shows the result of [2]. The top panel shows the CDM+baryon power spectrum

and the bottom panel shows the total power spectrum.
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Figure 2.23: The matter power spectrum P (k, z = 0) for several values of the sum

of neutrino masses relative to the power spectrum with mν = 0.0 for f(R) gravity

with |fR0| = 10−4. The solid lines shows the result of [2]. The top panel shows the

CDM+baryon power spectrum and the bottom panel shows the total power spectrum.

75



10
-8

10
-7

10
-6

10
-5

10
-4

10
14

10
15

n
(M

)

M    (h
-1

M
O•
)

COLA mν = 0.0 eV
Baldi et al. mν = 0.0 eV

COLA mν = 0.6 eV
Baldi et al. mν = 0.6 eV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1x10
14

 1x10
15

 n
(M

) 
/ 

n
(M

) Λ
C

D
M

 m
ν 

=
 0

.0
 e

V
 

M    (h
-1

M
O•
)

mν = 0.0 eV
mν = 0.2 eV
mν = 0.4 eV
mν = 0.6 eV

Figure 2.24: The halo mass-function n(M, z = 0) for ΛCDM for several values of the
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shows the results from [2].
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Chapter 3

Dark matter redshift-space

distortions with MG and mν

The work in this chapter was carried out by the author and his supervisory team in

collaboration with Hans Winther and Ben Bose. Ben Bose had previously written

MG-Copter, which includes the effects of modified gravity. The author was responsible

for implementing massive neutrinos in MG-Copter, producing the MG-PICOLA simula-

tions used in this chapter, and fitting the RSD model to those simulations. Ben Bose

assisted with the initial setup of MG-Copter and advised on its running. Hans Winther

advised on the running of MG-PICOLA. All figures in this chapter were created by the

author. The supervisory team provided direction and advice throughout.

In this chapter, we extend the cosmological perturbation theory code Copter [141]

to include the effects of massive neutrinos in addition to those of modified gravity

allowing us to accurately model non-linear RSD in scenarios with Hu-Sawicki f(R)

gravity and non-zero neutrino masses. We build on MG-Copter, the modified version

of Copter developed in [140], which is itself based on the approach presented in [139].

We validate this implementation against simulations using the COmoving Lagrangian

Acceleration (COLA) method [226] and then investigate whether the degeneracy be-

tween the two effects is broken by RSD at the level of the dark matter field.

The chapter is organised as follows. In Section 3.1 we explain our implementation

of massive neutrinos alongside modified gravity in the Standard Perturbation Theory

(SPT) formalism and MG-Copter code. In Section 3.2, we show the results of tests

validating our implementation against simulation results. Finally, in Section 3.3 we

use our new implementation to investigate the degeneracy between massive neutrinos

and modified gravity.

78



3.1 Implementation of massive neutrinos

In order to model the combined effect of modified gravity and massive neutrinos on

real- and redshift-space power spectra with low computational expense, it is necessary

to include both effects in a semi-analytical code such as Copter which computes large-

scale structure observables using perturbation theory. For the redshift-space quantities,

Copter depends on the TNS model of redshift-space distortions which is named after

the authors of [146] (Taruya, Nishimichi, and Saito).

We have added support for massive neutrinos to the code MG-Copter developed in

[140]. To do so, we could not use the same trick as for the implementation of modified

gravity, where we merely added modified gravity effects to the computation of the SPT

kernels and left the power spectra and first order growth factors as their ΛCDM selves.

This is because massive neutrinos affect the growth of density perturbations at early

times, unlike the modified gravity models we had considered previously. In our imple-

mentation, we follow the method of [212, 213] and include massive neutrinos at the

level of the linear real-space power spectra P L, Pδθ,L = f(k)P L, and Pθθ,L = f 2(k)P L

without modifying the SPT kernels. This allows us to take P L(k) and f(k), with the ef-

fects of massive neutrinos included, from CAMB [105] (or MGCAMB [119, 120] for MG+mν)

as input to MG-Copter; note that a small modification to CAMB/MGCAMB is necessary to

get scale-dependent growth rate f(k) as output. This method for including massive

neutrinos is general enough to handle the various hierarchies of neutrino mass eigen-

states [227], but for simplicity in the results that follow we have modelled the massive

neutrinos as a single massive eigenstate with mass mν and two massless eigenstates,

such that the sum of masses Mν =
∑

imi = mν .

The expressions for the 1-loop power spectra corrections in terms of the z = 0

linear power spectrum P0(k) = P L(k, z = 0), applicable to cosmologies with massless

neutrinos, were given in Section 1.5.1.1 by Eqs. (1.49)-(1.54). For our implementation,

we want to take P L(k, z) and f(k, z), with the effects of massive neutrinos included, at

the intended MG-Copter output redshift from CAMB/MGCAMB and use these as input to

MG-Copter. Therefore we need to rewrite the expressions for the 1-loop power spectra in

terms of P L(k, z) instead of P0(k). Now that we are no longer using ΛCDM linear power

spectra, we need to account for the scale-dependent growth when changing the epoch at

which the linear power spectra are defined; P0(k) = P L(k, z)[D1(k, z = 0)/D1(k, z)]2.

As for massless neutrino cosmologies, the kernel for first order densities F1 is simply the

first order growth factor D1. Using D1(k, z) = F1(k, z) = G1(k, z)/f(k, z) we can show

P0(k) = P L(k, z)[D1(k, z = 0)/F1(k, z)]2 = f 2(k, z)P L(k, z)[D1(k, z = 0)/G1(k, z)]2.

Let’s look at the most complicated term first, P 13
δθ . The full expression based on P0(k),
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now accounting for the scale dependence of D1 is

P 13
δθ (k, z) =

k3

(2π)2
F1(k, z)

P0(k)

[D1(k, z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(kr, z = 0)]2
G3(k, r, x, z)dr

+
k3

(2π)2
G1(k, z)

P0(k)

[D1(k, z = 0)]2

∫ ∞
0

r2 P0(kr)

[D1(kr, z = 0)]2
F3(k, r, x, z)dr . (3.1)

Using the above expressions, we can rewrite this in terms of P L(k, z) as

P 13
δθ (k) =

k3

(2π)2
P L(k, z)

∫ ∞
0

r2P L(kr, z)f(k, z)f 2(kr, z)
G3(k, r, x)

G1(k)G2
1(kr)

dr

+
k3

(2π)2
f(k, z)P L(k, z)

∫ ∞
0

r2P L(kr, z)
F3(k, r, x)

F1(k)F 2
1 (kr)

dr . (3.2)

In full generality, all the power spectra, growth rates, and SPT kernels should include

the effects of massive neutrinos. However, if we assume that the quantities that are

ratios of SPT kernels, e.g. G3(k, r, x)/[G1(k)G2
1(kr)], can be approximated by their

massless neutrino form, then we only need to include the effects of massive neutrinos

on P L(k) and f(k), which can be done by CAMB/MGCAMB. Using this approach, we

do not need to modify the computation of SPT kernels from the standard version of

MG-Copter. The full list of expressions replacing Eqs. (1.49)-(1.54), starting with the

22 correction terms, are

P 22
δδ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P L(kr, z)P L(k
√

1 + r2 − 2rx, z)

× F 2
2 (k, r, x)

F 2
1 (kr)F 2

1 (k
√

1 + r2 − 2rx)
dx , (3.3)

P 22
δθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P L(kr, z)P L(k
√

1 + r2 − 2rx, z)

× f(kr, z)f(k
√

1 + r2 − 2rx, z)
G2(k, r, x)

G1(kr)G1(k
√

1 + r2 − 2rx)

× F2(k, r, x)

F1(kr)F1(k
√

1 + r2 − 2rx)
dx , (3.4)

P 22
θθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1

P L(kr, z)P L(k
√

1 + r2 − 2rx, z)

× f 2(kr, z)f 2(k
√

1 + r2 − 2rx, z)
G2

2(k, r, x)

G2
1(kr)G2

1(k
√

1 + r2 − 2rx)
dx , (3.5)

while the 13 correction terms are
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P 13
δδ (k) =2

k3

(2π)2
P L(k, z)

∫ ∞
0

r2P L(kr, z)
F3(k, r, x)

F1(k)F 2
1 (kr)

dr , (3.6)

P 13
δθ (k) =

k3

(2π)2
P L(k, z)

∫ ∞
0

r2P L(kr, z)f(k, z)f 2(kr, z)
G3(k, r, x)

G1(k)G2
1(kr)

dr

+
k3

(2π)2
f(k, z)P L(k, z)

∫ ∞
0

r2P L(kr, z)
F3(k, r, x)

F1(k)F 2
1 (kr)

dr , (3.7)

P 13
θθ =2

k3

(2π)2
P L(k, z)

∫ ∞
0

r2P L(kr, z)f 2(k, z)f 2(kr, z)
G3(k, r, x)

G1(k)G2
1(kr)

dr . (3.8)

Remember that in these expressions the only terms to contain massive neutrinos are

P L and f ; all of the kernels Fi and Gi are unmodified. The A and B terms written in

Eqs. (1.116) and (1.117) are also computed as convolutions of two linear power spectra

with kernels, and thus are rewritten using the same method as for P 13 and P 22. We

have implemented these equations in MG-Copter. Note that massive neutrinos were

also added to the original Copter code in [228].

3.2 Validation

In order to validate our implementation of massive neutrinos in the MG-Copter code,

we have tested its output against results from MG-PICOLA. In the legends of the figures

that follow we shall refer to our modified MG-Copter code simply as Copter, and the

MG-PICOLA code as COLA.

Throughout, we use paired-fixed MG-PICOLA simulations where we produce two

simulations with fixed amplitudes, meaning the initial amplitudes of the Fourier modes

of the density field are set to that of the ensemble average power spectrum, and paired,

where the initial modes in the second simulation are mirrored compared to those of the

first [198]. This procedure significantly reduces variance that arises from the sparse

sampling of wavemodes without the need for averaging over a large number of density

field realisations, and has been shown not to introduce a bias to the recovery of the mean

properties of the Gaussian ensemble, despite the fixing introducing non-Gaussianity

[199]. However, we also ran five additional MG-PICOLA simulations for each model with

randomised realisations of the initial density field. The standard deviation in the power

spectra of these additional five simulations is used for the error bars in the figures below

unless explicitly stated otherwise. The modified gravity model considered here is the

Hu-Sawicki f(R) model, which has one free parameter |fR0| and we refer to |fR0| = 10−5
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and |fR0| = 10−4 as F5 and F4 respectively. The velocity divergence field θ has been

computed using the DTFE code [229]. The cosmological parameters used in this chapter

are the same as in [2]; h = 0.671, Ωm = 0.3175, Ωb = 0.049, As = 2.215 × 10−9, and

ns = 0.966.

Note that a recent version update of MGCAMB improved the handling of massive

neutrinos by including the effect of massive neutrinos in the computation of the time

differential of the anisotropic stress for the radiation and photon components [121].

Although our results were produced using the previous version of MGCAMB, we have

verified that for the parameters we use the difference in the linear power spectrum

between the two versions is negligible.

We used the Gaussian form of the Fingers of God damping term. To fit σv, we min-

imised the likelihood first presented in Eq. (1.124) using the python package SciPy1

[230], considering the first two multipoles from our paired-fixed MG-PICOLA simulations.

We used the analytic expressions for the covariance matrix between the different multi-

poles Covl,l′ as given in Appendix C of [146]. Non-Gaussianity is not considered in this

covariance but the expressions do include the effect of shot-noise. These expressions

require the survey volume Vs and galaxy number density n̄g to be specified; we assume

an ideal survey with Vs = 10 Gpc3/h3 and n̄g = 4 × 10−3h3/Mpc. Additionally, since

we considered dark matter only, we set the linear bias b to unity. Note that we do

not attempt to fit |fR0| and mν , or the base cosmological parameters, as this would

require the loop integrals in Sec. 3.1 to be recomputed many times which would be

prohibitively expensive. This problem has been overcome for the base cosmological

parameters in the standard ΛCDM model using the FFTLog approach [231].

We first study the comparison between MG-Copter and MG-PICOLA in the real-

space power spectra, in Figs. 3.1 to 3.3. Figure 3.1 shows the real-space non-linear

power spectra at z = 1 computed with both MG-PICOLA and MG-Copter. We display

the density auto-correlation Pδδ, the velocity divergence auto-correlation Pθθ, and the

density-velocity divergence cross-correlation Pδθ, in the form k3/2Pij for ease of viewing,

for GR, F5, and F4 each with 0.0eV, 0.06eV, and 0.2eV neutrinos. The error bars on

the (paired-fixed) MG-PICOLA points are the standard deviation of the 5 additional (non-

paired-fixed) MG-PICOLA simulations. In all cases, MG-Copter reproduces the results of

the MG-PICOLA simulations very well up to the start of the quasi-non-linear scale around

k = 0.1 h/Mpc where perturbation theory begins to break down. The agreement

between MG-Copter and MG-PICOLA persists to larger k values for Pθθ and Pδθ than

Pδδ, which is consistent with the behaviour seen when MG-Copter was compared to full

1Specifically, we used the scipy.optimize.minimize function.
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Figure 3.1: Real-space non-linear power spectra for various gravity models and neutrino

masses at z = 1. Points represent the results of paired-fixed MG-PICOLA N-body simulations,

while lines are the result of MG-Copter. The blue circles and dashed-dotted line give the

density auto-correlated power spectra Pδδ, the pink squares and dashed line give the density-

velocity divergence cross-correlated power spectra Pδθ, while the orange triangles and solid

line give the velocity divergence auto-correlated power spectra Pθθ.

N-body simulations in Fig. 10 of [140].

Figure 3.2 displays the same data but presented as the ratio of the full non-linear

power spectra to their linear components, which helps to show where the modelling

of non-linearities with MG-Copter becomes inaccurate. Figure 3.3 again shows the

same data but presented as the ratio of the power spectra with and without massive

neutrinos for both the 0.06eV and 0.2eV neutrinos. The scale up to which MG-Copter

closely follows the results of the MG-PICOLA simulations is marginally improved due to

taking the ratio between power spectra in two models.

Next, we look at the comparison between MG-PICOLA and MG-Copter with σv fitted

to the MG-PICOLA simulations in the non-linear redshift-space power spectra in Figs. 3.4

to 3.6. Figure 3.4 shows the monopole P0 and quadrupole P2 of the redshift-space

power spectra for GR, F5, and F4 gravity models each with 0.0eV, 0.06eV, and 0.2eV

neutrinos. We display the results computed from paired-fixed MG-PICOLA simulations
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Figure 3.2: As in Fig. 3.1 but for the ratio of the real-space non-linear power spectra to their

linear counterparts.

and MG-Copter with the TNS velocity dispersion parameter σv fitted to the MG-PICOLA

simulations up to k = 0.15 h/Mpc in the form k3/2Pi(k); the figure includes the best-

fitting values of σv (expressed in RSD displacement units Mpc/h) and the reduced χ2

for each model χ2
r = −2 lnL/NDoF. The degrees of freedom NDoF = 2Nk − Nparams,

and Nparams = 1 since we are only fitting for σv. The error bars on the MG-PICOLA

points are taken from the inverse covariance matrices used in the σv fitting procedure,

whose computation is described at the end of Section 1.5.1.1. The σv fitting procedure

prioritises recovering the monopole P0, and thus the agreement between MG-Copter

and MG-PICOLA is slightly worse for the quadrupole P2. As expected, for each gravity

model increasing the mass of the neutrinos leads to a decrease in the best-fitting value

of σv and the quality of the fit increases, while for a fixed neutrino mass increasing

the strength of the modification of gravity from GR to F5 and then F4 leads to an

increase in the best-fitting value of σv and a slightly worse quality of fit. The reason for

this behaviour is that enhancement to gravity leads to an increase in the velocities of

galaxies around an overdensity, thus increasing the non-linear damping, while massive
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Figure 3.3: As in Fig. 3.1, but for the ratio of real-space non-linear power spectra with and

without neutrino mass.

neutrinos have the opposite effect due to their suppression of structure formation. The

quality of the fit is better when the non-linearity is smaller and vice versa. However, in

all cases the quality of the fit of MG-Copter to MG-PICOLA is good up to quasi-non-linear

scales.

Figure 3.5 displays the same data as Fig. 3.4 but presented as the ratio of the full

non-linear multipoles to their linear counterparts computed with the Kaiser RSD model

[144], while Fig. 3.6 presents the data of Fig. 3.4 as the ratio of the non-linear power

spectra multipoles with and without massive neutrinos for both the 0.06eV and 0.2eV

neutrinos. The error bars on the MG-PICOLA points in these two figures represent the

standard deviation of the 5 additional MG-PICOLA simulations. As in real-space, the

scale up to which MG-Copter closely follows the results of the MG-PICOLA simulations
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Figure 3.4: Redshift-space non-linear power spectra for various gravity models and neutrino

masses at z = 1. Points represent the results of paired-fixed MG-PICOLA N-body simulations,

while solid lines are the result of MG-Copter with velocity dispersion σv fitted to MG-PICOLA

up to k = 0.15 h/Mpc, shown by the vertical dashed line. The error bars are those of an ideal

survey with survey volume Vs = 10 Gpc3/h3 and galaxy density n̄g = 4 × 10−3 h3/Mpc3.

The blue circles and solid line give the monopole P0, and the orange squares and dashed line

give the quadrupole P2.

is slightly improved due to taking the ratio between power spectra in two models.

We also quantify the ability of MG-Copter to recover the redshift-space multipole

results of MG-PICOLA through χ2
mν ; the difference between the redshift-space multipoles

with and without neutrino mass. In Fig. 3.7 we display χ2
mν as a function of the

maximum comparison scale kmax for GR, F5, and F4 each with 0.06eV and 0.2eV

neutrinos at z = 1. Here, MG-Copter is fitted to the MG-PICOLA simulations up to

kmax with the covariance computed assuming an ideal survey as described at the end

of Section 1.5.1.1. The agreement in χ2
mν between MG-PICOLA and MG-Copter fitted

to MG-PICOLA is excellent in all cases. This implies that MG-Copter with σv fitted to

simulations is capable of capturing the effect of massive neutrinos accurately.
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Figure 3.5: As in Fig. 3.4 but for the ratio of the redshift-space power spectrum multipoles

to their linear (Kaiser) counterparts. The error bars on the MG-PICOLA points represent the

standard deviation of the five additional MG-PICOLA simulations.

3.3 Degeneracy

With the inclusion of modified gravity and massive neutrinos in MG-Copter the degen-

eracy between the two effects can be investigated. For this investigation, we again used

the Gaussian form of the Fingers of God damping term. To fit σv, we follow the same

procedure as in Sec. 3.2, but we want to model a slightly more realistic scenario, so we

assume a DESI-like survey with Vs and n̄g as given in Table 3.1 and redshift bin width

∆z = 0.2. These values are computed using the information for emission line galaxies

(ELGs) in Table V of [1].

z Vs (Gpc3/h3) n̄g (h3/Mpc3)

0.5 3.40 2.95×10−4

1.0 7.68 5.23×10−4

1.5 10.14 1.71×10−4

Table 3.1: Survey parameters for a DESI-like survey computed from the information for

emission line galaxies (ELGs) in Table V of [1]. These parameters are used in the computation

of the covariance matrices for fitting σv in MG-Copter in the study of the degeneracy in

Section 3.3.
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Figure 3.6: As in Fig. 3.4, but for the ratio of redshift-space non-linear power spectra with

and without neutrino mass. The error bars on the MG-PICOLA points represent the standard

deviation of the five additional MG-PICOLA simulations.

3.3.1 Real- and redshift-space

We start by studying the degeneracy between modified gravity and massive neutrinos

in real space.

In Fig. 3.8 we display the ratio of real-space power spectra in F4 gravity with

0.06eV neutrinos in the left panel and 0.2eV neutrinos in the right panel to a fiducial

model which we take to be GR with 0.06eV neutrinos at z = 1. We show results for

the density auto-correlation Pδδ, the velocity divergence auto-correlation Pθθ, and the

density-velocity divergence cross-correlation Pδθ. The results of paired-fixed MG-PICOLA

simulations and of MG-Copter are plotted. The error bars on the MG-PICOLA results

are computed using the standard deviation over the five additional simulations. In all

cases, the results of MG-Copter agree well with those of MG-PICOLA up to quasi-non-
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Figure 3.7: Difference between the redshift-space multipoles with and without neutrino

mass χ2
mν as a function of the maximum scale kmax at z = 1 for GR in the left panel, F5

in the middle panel, and F4 in the right panel. Points represent the results of paired-fixed

MG-PICOLA N-body simulations, while solid lines are the result of MG-Copter with velocity

dispersion σv fitted to MG-PICOLA up to k = kmax. Blue data corresponds to mν = 0.06eV,

and orange to mν = 0.2eV.

linear scales around k = 0.1 h/Mpc. The left panel, where the neutrino masses are the

same in both GR and F4, shows the scale-dependent enhancement of the real-space

power spectra provided by F4 gravity. However, when heavier neutrinos are added to

the F4 case, as in the right panel, this enhancement is opposed by the suppression

effect of the massive neutrinos. Indeed, the right panel shows that Pδδ is a poor probe

to distinguish between GR with 0.06eV neutrinos and F4 with 0.2eV neutrinos in

this particular case. However, the two models remain distinguishable in Pδθ and Pθθ,

showing that velocity information has the potential to break the degeneracy between

modified gravity and massive neutrinos. This was recently shown using the results of

full N-body simulations [127]. However, neither Pδθ nor Pθθ can be measured directly

by observations at high z (peculiar velocities can only be measured at low z when we

can assume an object is in the same Hubble flow patch as us). Instead, it is necessary

to extract the velocity information that is encoded within redshift-space distortions,

and it is to this we turn our attention. We shall refer to GR with 0.06eV neutrinos

and F4 with 0.2eV neutrinos as our two degenerate models.

In Fig. 3.9 we plot the redshift-space monopole and quadrupoles in F4 gravity

with 0.2eV neutrinos normalised to GR with 0.06eV neutrinos computed with both

MG-Copter and MG-PICOLA. For each model the MG-Copter result has been produced

by fitting σv to the paired-fixed MG-PICOLA simulation up to k = 0.15 h/Mpc with

the covariance computed assuming a DESI-like survey as detailed at the end of Sec-

tion 1.5.1.1. The error bars on the MG-PICOLA results are computed using the stan-

dard deviation over five simulations with a boxsize of 1024 Mpc/h for each model.
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Figure 3.8: Ratio of real-space power spectra in F4 with mν = 0.06eV (left panel) and

mν = 0.2eV (right panel) to the fiducial model of GR with mν = 0.06eV at z = 1. Points

represent the results of paired-fixed MG-PICOLA N-body simulations, while lines are the re-

sult of MG-Copter. The blue circles and dashed-dotted line give the density auto-correlated

power spectra Pδδ, the pink squares and dashed line give the density-velocity divergence

cross-correlated power spectra Pδθ, while the orange triangles and solid line give the velocity

divergence auto-correlated power spectra Pθθ.

Firstly, this plot shows that modelling the redshift-space monopole and quadrupole

using MG-Copter with σv fitted to MG-PICOLA simulations works well. Secondly, for our

degenerate models, while the monopole is still a poor probe for distinguishing between

the models, the quadrupole, by virtue of the encoding of velocity information, displays

differences between the two models and thus has the potential to break the degeneracy.

3.3.2 Redshift evolution

Our method also allows us to investigate how the degeneracy evolves with redshift in

both real- and redshift-space.

In Fig. 3.10 we show the real-space power spectra in the ratio between the two

degenerate models as in the right panel of Fig. 3.8 but at z = 0.5 (left panel) and z = 1.5

(right panel). In Fig. 3.11 we show the redshift-space power spectrum multipoles in

the ratio between the two degenerate models as in Fig. 3.9 but at z = 0.5 (left panel)

and z = 1.5 (right panel). These figures demonstrate that the degeneracy evolves

significantly with redshift, both in real- and redshift-space. Figure 3.10 shows that

while our two degenerate models had similar matter power spectra at z = 1 it is

easier to distinguish between the two models with the matter power spectrum at other
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redshifts.

In Fig. 3.12 we plot the difference between the redshift-space multipoles in the

two degenerate models quantified through χ2
MG+mν

as a function of the maximum

comparison scale kmax. We compute χ2
MG+mν

as

χ2
MG+mν (kmax) =

1

NDoF

∑
l=0,2

kmax∑
k

Cov−1
l,l (k)

[
PF4+0.2eV
l (k)− PGR+0.06eV

l (k)
]2

, (3.9)

where NDoF = 2Nk − 1. This expression is similar to Eq. (3.4) from [223]. The

inverse covariance matrix Cov−1
l,l (k) used here is from the same analytic expression used

previously; whether this was computed for GR+0.06eV or F4+0.2eV did not affect the

result. We show χ2
MG+mν

as computed by both MG-PICOLA and MG-Copter with σv

fitted to MG-PICOLA up to kmax with the covariance computed assuming a DESI-like

survey as detailed at the end of Section 1.5.1.1. The results from both methods agree

with each other very well. We plot χ2
MG+mν

at three redshifts z = 1.5, 1.0, 0.5 and

it is clear from these results, along with those in Figs. 3.10 and 3.11, that the ability

to distinguish between the redshift-space multipoles of these two models evolves with

redshift. This emphasises the potential for data at multiple redshifts to break the

degeneracy. The tomographic nature of weak lensing observations make them well

suited to this task, and the combination of redshift-space distortion measurements with

weak lensing observations could prove one of the best probes for breaking the modified

gravity-massive neutrino degeneracy. However, it should be noted that systematics

associated with weak lensing such as baryonic effects and intrinsic alignments may

impact the effectiveness of such a probe.
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Figure 3.9: Degeneracy between F4 with mν = 0.2eV and the fiducial model of GR with

mν = 0.06eV in the redshift-space power spectrum multipoles at z = 1, represented as

the ratio of power spectra in the two models. Points represent the results of paired-fixed

MG-PICOLA N-body simulations, while solid lines are the result of MG-Copter with velocity

dispersion σv fitted to MG-PICOLA up to k = 0.15 h/Mpc. The blue circles and solid line give

the monopole P0, while the orange squares and dashed line give the quadrupole P2. The

best-fitting value of σv for each model and the associated reduced χ2 are σv = 3.07 Mpc/h

with χ2
r = 0.27 for GR+0.06eV and σv = 3.23 Mpc/h with χ2

r = 0.39 for F4+0.2eV.
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Figure 3.10: As in the right panel of Fig. 3.8, but showing the evolution of the degeneracy

with redshift. The left panel corresponds to z = 0.5 and the right to z = 1.5.
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Figure 3.11: As in Fig. 3.9, but showing the evolution of the degeneracy with redshift. The

left panel corresponds to z = 0.5 and the right to z = 1.5. For GR with 0.06eV neutrinos,

the best-fitting value of σv and the corresponding reduced χ2 are σv = 3.84 Mpc/h and

χ2
r = 0.29 for z = 0.5, and σv = 2.36 Mpc/h and χ2

r = 0.065 for z = 1.5. For F4 with 0.2eV

neutrinos, the best-fitting value of σv and the corresponding reduced χ2 are σv = 4.13 Mpc/h

and χ2
r = 0.34 for z = 0.5, and σv = 2.45 Mpc/h and χ2

r = 0.079 for z = 1.5. In all cases σv

has been fitted to MG-PICOLA up to k = 0.15 h/Mpc.
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Figure 3.12: The redshift evolution of χ2
MG+mν

(kmax) which quantifies the difference be-

tween the redshift-space multipoles of the two degenerate models as a function of maximum

comparison scale. The blue circles and dashed-dotted line correspond to z = 0.5, the orange

triangles and solid line to z = 1, and the pink squares and dashed line to z = 1.5. Points

represent the results of paired-fixed MG-PICOLA N-body simulations, while lines are the result

of MG-Copter with velocity dispersion σv fitted to MG-PICOLA up to k = kmax.
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Chapter 4

Halo redshift-space distortions with

MG and mν

The work in this chapter was carried out by the author and his supervisory team in col-

laboration with Hans Winther and Ben Bose. Ben Bose implemented the bias model in

MG-Copter for ΛCDM cosmologies. The author was responsible for modifying the bias

model implemented in MG-Copter to work for modified gravity and massive neutrino

cosmologies. The author produced the MG-PICOLA simulations used in this chapter.

Hans Winther advised on use of the MatchMaker halo-finding code to produce halo cat-

alogues from the simulation output. Ben Bose also provided the MCMC code used to fit

the biased RSD model to the simulated halo catalogues and advised on its use. The au-

thor ran the MCMC code and created all of the figures in this chapter. The supervisory

team provided direction and advice throughout.

In the previous chapter we modelled RSD at the level of dark matter. However,

as introduced in Chapter 1, we do not observe dark matter directly, and instead infer

its presence from the clustering of galaxies, which act as a biased tracer of the un-

derlying dark matter distribution. Therefore in this chapter, we include bias in our

MG-Copter-based RSD model and investigate the consequences for attempts to break

the degeneracy between MG and massive neutrinos by comparing the model against

biased halo catalogues created with MG-PICOLA.

4.1 Halo RSD Model

In order to model redshift-space distortions in the clustering of biased tracers such as

halos, we follow the approach of [232] and combine the TNS model for RSD [146] with
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the McDonald and Roy tracer bias model [233]. A similar model was used to analyse

BOSS data and infer cosmological constraints [234, 235]. The model in ΛCDM is given

by

P S
TNS(k, µ) = DFoG(k2µ2σ2

v)
[
Pg,δδ(k) + 2µ2Pg,δθ(k) + µ4P 1−loop

θθ (k)

+ b3
1A(k, µ) + b4

1B(k, µ)
]
, (4.1)

where P 1−loop
ij , A, and B are the same as in the TNS model for dark matter, with

two options for the phenomenological form of DFoG being the Gaussian and Lorentzian

shown in Eqs. (1.122) and (1.123). The two biased power spectra components are given

by

Pg,δδ(k, z) = b2
1P

1−loop
δδ (k, z)

+

(
D1(z)

D1(zini)

)4 [
2b2b1Pb2,δ,ini(k) + 2bs2b1Pbs2,δ,ini(k)

+ 2b3nlb1σ
2
3,ini(k)Pini(k) + b2

2Pb22,ini(k)

+ 2b2bs2Pb2s2,ini(k) + b2
s2Pbs22,ini(k)

]
+N , (4.2)

Pg,δθ(k, z) = b1P
1−loop
δθ (k, z)

+

(
D1(z)

D1(zini)

)4 [
2b2Pb2,θ,ini(k) + bs2Pbs2,θ,ini(k)

+ b3nlσ
2
3,ini(k)Pini(k)

]
, (4.3)

where Pini(k) is the primordial power spectrum and the dependency on the linear bias

b1, second order local bias b2, second order non-local bias bs2, third order non-local bias

b3nl, and constant stochasticity N model parameters is expressed explicitly. The bias
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terms are given by

Pb2,δ,ini(k) =

∫
d3q

(2π)3
Pini(q)Pini(|~k − ~q|)

F2(~q,~k − ~q, z)

D2
1(z)

, (4.4)

Pb2,θ,ini(k) =

∫
d3q

(2π)3
Pini(q)Pini(|~k − ~q|)

G2(~q,~k − ~q, z)

D2
1(z)

, (4.5)

Pbs2,δ,ini(k) =

∫
d3q

(2π)3
Pini(q)Pini(|~k − ~q|)

F2(~q,~k − ~q, z)

D2
1(z)

S(2)(~q,~k − ~q) , (4.6)

Pbs2,θ,ini(k) =

∫
d3q

(2π)3
Pini(q)Pini(|~k − ~q|)

G2(~q,~k − ~q, z)

D2
1(z)

S(2)(~q,~k − ~q) , (4.7)

Pb22,ini(k) =
1

2

∫
d3q

(2π)3
Pini(q)

[
Pini(|~k − ~q|)− Pini(q)

]
, (4.8)

Pb2s2,ini(k) = −1

2

∫
d3q

(2π)3
Pini(q)

[
2

3
Pini(q)− Pini(|~k − ~q|)S(2)(~q,~k − ~q)

]
, (4.9)

Pbs22,ini(k) = −1

2

∫
d3q

(2π)3
Pini(q)

[
4

9
Pini(q)− Pini(|~k − ~q|)S(2)(~q,~k − ~q)2

]
, (4.10)

σ2
3,ini(k) =

210

112

∫
d3q

(2π)3
Pini(q)

[(
S(2)(−~q,~k)− 2

3

)
S(2)(~q,~k − ~q) +

4

9

]
, (4.11)

where the new kernel S(2), which comes from tidal bias, is

S(2)(~q1, ~q2) = −1

3
(1− 3µ2

1,2) , (4.12)

and µ1,2 is the cosine of the angle between ~q1 and ~q2. This particular bias model has

been derived under the assumption of negligible velocity bias. Following the approach

of [234], if we also make the local Lagrangian assumption then we can reduce the

number of parameters needed. In the local Lagrangian bias picture, the initial non-

local bias is neglected, and the amplitude of the non-local biases is predicted to be

[236, 237, 238]

bs2 = −4

7
(b1 − 1) , (4.13)

b3nl =
32

315
(b1 − 1) , (4.14)

97



which have been validated by N-body simulations [237]. Thus Eqs. (4.2) and (4.3)

become

Pg,δδ(k, z) =b2
1P

1−loop
δδ (k, z)

+

(
D1(z)

D1(zini)

)4 [
2b2b1Pb2,δ,ini(k)− 8

7
(b2

1 − b1)Pbs2,δ,ini(k)

+
64

315
(b2

1 − b1)σ2
3,ini(k)Pini(k)

+ b2
2Pb22,ini(k)− 8

7
b2(b1 − 1)Pb2s2,ini(k)

+
16

49
(b1 − 1)2Pbs22,ini(k)

]
+N , (4.15)

Pg,δθ(k, z) =b1P
1−loop
δθ (k, z)

+

(
D1(z)

D1(zini)

)4 [
2b2Pb2,θ,ini(k)− 4

7
(b1 − 1)Pbs2,θ,ini(k)

+
32

315
(b1 − 1)σ2

3,ini(k)Pini(k)
]
, (4.16)

and the set of nuisance parameters is simply {b1, b2, N, σv}.
This bias model had previously been implemented in MG-Copter for the work carried

out in [239, 232, 240], but these works only considered GR and massless neutrinos. We

also use MG-Copter in the work that follows, but since we needed to include the effects of

modified gravity and massive neutrinos, it was necessary to modify the implementation

in a way similar to what we did in Sec. 3.1. Thus Eqs (4.15) and (4.16) become

Pg,δδ(k, z) = b2
1P

1−loop
δδ (k, z) +

[
2b2b1Pb2,δ(k, z)− 8

7
(b2

1 − b1)Pbs2,δ(k, z)

+
64

315
(b2

1 − b1)σ2
3(k, z)P L(k, z)

+b2
2Pb22(k, z)− 8

7
b2(b1 − 1)Pb2s2(k, z)

+
16

49
(b1 − 1)2Pbs22(k, z)

]
+N , (4.17)

Pg,δθ(k, z) = b1P
1−loop
δθ (k, z) +

[
2b2Pb2,θ(k, z)− 4

7
(b1 − 1)Pbs2,θ(k, z)

+
32

315
(b1 − 1)σ2

3(k, z)P L(k, z)
]
,

(4.18)
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while bias terms become

Pb2,δ(k, z) =

∫
d3q

(2π)3
P L(q, z)P L(|~k − ~q|, z) F2(~q,~k − ~q, z)

F1(q, z)F1(|~k − ~q|, z)
, (4.19)

Pb2,θ(k, z) =

∫
d3q

(2π)3
P L(q, z)P L(|~k − ~q|, z)f(q, z)f(|~k − ~q|, z)

× G2(~q,~k − ~q, z)

G1(q, z)G1(|~k − ~q|, z)
, (4.20)

Pbs2,δ(k, z) =

∫
d3q

(2π)3
P L(q, z)P L(|~k − ~q|, z) F2(~q,~k − ~q, z)

F1(q, z)F1(|~k − ~q|, z)

× S(2)(~q,~k − ~q) , (4.21)

Pbs2,θ(k, z) =

∫
d3q

(2π)3
P L(q, z)P L(|~k − ~q|, z)f(q, z)f(|~k − ~q|, z)

× G2(~q,~k − ~q, z)

G1(q, z)G1(|~k − ~q|, z)
S(2)(~q,~k − ~q) , (4.22)

Pb22(k, z) =
1

2

∫
d3q

(2π)3
P L(q, z)

[
P L(|~k − ~q|, z)− P L(q, z)

]
, (4.23)

Pb2s2(k, z) = −1

2

∫
d3q

(2π)3
P L(q, z)

[
2

3
P L(q, z)− P L(|~k − ~q|, z)S(2)(~q,~k − ~q)

]
, (4.24)

Pbs22(k, z) = −1

2

∫
d3q

(2π)3
P L(q, z)

[
4

9
P L(q, z)− P L(|~k − ~q|, z)S(2)(~q,~k − ~q)2

]
, (4.25)

σ2
3(k, z) =

210

112

∫
d3q

(2π)3
P L(q, z)

[(
S(2)(−~q,~k)− 2

3

)
S(2)(~q,~k − ~q) +

4

9

]
. (4.26)

As in Sec. 3.1, we implement massive neutrinos only through PL and f ; the ratio of

SPT kernels are left in their pure GR/modified gravity form. Again for simplicity,

in the results that follow we have modelled the massive neutrinos as a single massive

eigenstate with mass mν and two massless eigenstates, such that the sum of masses

Mν =
∑

imi = mν .

When working with only dark matter in Chapter 3, we had only one parameter,

σv, to fit. Now, it is also necessary to fit for b1, b2, and N . As a result, the simple

χ2 minimisation method we used in Chapter 3 is no longer suitable. Instead, we

followed the approach of [239, 232, 240] and utilised an MCMC method to fit our four

parameters to simulation data from MG-PICOLA. We will discuss the simulation data

used later in Sec. 4.2. We chose to use the Lorentzian form for the damping factor seen

in Eq. (1.123), as the Gaussian form has been shown to give significantly worse fits to

simulation data [241, 232].

The likelihood minimised in this MCMC process is the same as Eq. (1.124), using

only the first two multipoles P0 and P2. Initially we limited the fitting to the data to 20
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k bins between kmin = 0.0368 h/Mpc and kmax = 0.153 h/Mpc to avoid issues associated

with cosmic variance/finite box size at large scales and the breakdown of perturbation

theory at small scales. We used the analytic expressions for the covariance matrix

between the different multipoles Covl,l′ as given in Appendix C of [146] and initially

assumed an ideal survey of galaxies with average number density n̄g = 10−3h3/Mpc

(the same number density used to make the cut to the simulated halo catalogue)

over a survey volume Vs = 10 Gpc3/h3. We also assume the galaxies in this ideal

survey have a linear bias equal to that estimated from the simulation being fitted to;

b1 =
√
P sim

halo/P
sim
DM|klin . However, as we will show in Section 4.3, we discovered that this

setup leads to overfitting of the data, so we repeated the analysis with 24 k bins such

that kmax = 0.178 h/Mpc, and also doubled the survey volume to Vs = 20 Gpc3/h3

which effectively corresponds to tighter errors on the simulation data.

In order to carry out the MCMC sampling at a reasonable pace, it is necessary

to split and regroup terms in the bias model according to their explicit dependence

on each of the four fitting parameters. The dependence on the fitting parameters for

each term was then factored out. Each of these term could then be computed for a

range of k values and splined. Subsequently, at each step of the MCMC, P
(s)
TNS(k, µ)

could be computed rapidly by assessing the splines and multiplying each term by the

appropriate values of the four fitting parameters. Of course, setting up these splines

requires some additional computation time at the start of the fitting process, but is

ultimately much faster than recomputing the entirety of P
(s)
TNS(k, µ) at each MCMC

step.

However, this approach does require the cosmology - both base parameters and

(|fR0|,mν) - to be specified at the start, and does not allow us to fit the cosmology

to the data, since recomputing the splines at each MCMC step would be prohibitively

expensive. We therefore fixed the base cosmological parameters to be the same as those

used to generate the simulation data, as specified in Table 4.1. In order to understand

the potential constraining power of the model, as well as fitting the model to data with

the ‘correct’ matching (|fR0|,mν) values, we also tried fitting the model to data using

‘incorrect’ (|fR0|,mν) values.

For each MCMC fitting we computed 8 chains of 500,000 samples, each starting

at a different point in the 4D parameter space, and removed the first 100,000 samples

of each chain to reduced the dependence on the starting point. After this, we are left

with 3,200,000 samples for each fitting to identify the best-fit from and constrain the

model parameters with using GetDist [242].
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mν (eV) ΩCDM Ων

0.06 0.257505 0.001404

0.2 0.254228 0.004681

Table 4.1: The cosmological parameters for the simulations performed for this chapter.

Common to all simulations are Ωm = 0.307115, Ωb = 0.048206, ΩΛ = 0.692885, ns = 0.96,

As = 2.12× 10−9 and h = 0.6777.

4.2 Simulations

To test our halo RSD model, we generated simulation data for a universe with GR and

mν = 0.06eV (GR+0.06eV) and a Hu-Sawicki f(R) universe with |fR0| = 10−4 and

mν = 0.2eV (F4+0.2eV). For each cosmology, we ran two paired-fixed simulations using

MG-PICOLA (see Sec. 3.1 for a discussion on paired-fixed simulations), with a box size of

10243(h/Mpc)3, 10243 particles, and 30723 mesh grid cells. This large number of grid

cells is required as, in order to adequately resolve small mass halos, the mesh must be

finer than the mean-inter particle distance. Following the argument made in [226] we

chose a particle mesh grid which is three times finer than the mean particle separation.

We used 30 time-steps logarithmically spaced in redshift from zini = 19 to z = 1. The

base cosmological parameters used were the same as the MultiDark-Planck simulation

suite1. Note that as in previous Chapters we include massive neutrinos at the expense

of CDM while keeping the other parameters fixed, as displayed in Table 4.1. This

pipeline of producing halo catalogues using MG-PICOLA simulations has been tested

against the full N-body code RAMSES using the same initial conditions, and P0 and P2

were found to agree within ∼ 1− 2% up to k = 0.3h/Mpc (see Appendix A of [240]).

We then used the MatchMaker friends-of-friends algorithm2 with linking length b =

0.2 to find halos from the MG-PICOLA simulation particle data at z = 1. We applied

a cut to the resulting halo catalogues based on number density nhalo ≤ 10−3(h/Mpc)3

(the same value as used for the computation of the analytic covariance). Finally, we

computed the multipoles of the redshift-space power spectrum from these cut halo

catalogues, and it is these multipoles that we fit our halo RSD model to.

1https://www.cosmosim.org/cms/documentation/projects/multidark-bolshoi-project/
2https://github.com/damonge/MatchMaker
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4.3 Results

We first investigate the fits in the 20 k bins between kmin = 0.0368 h/Mpc and kmax =

0.153 h/Mpc and assuming a survey volume of Vs = 10Gpc3/h3 when computing the

analytic covariance matrices. The best-fitting values of the model parameters for each

combination of model and data (|fR0|,mν) in this setup are presented in Table 4.2,

along with the reduced-chi-squared χ2
r = χ2/NDoF of the best-fit and the Gelman-

Rubin convergence diagnostic R− 1. For our fitting procedure, the degrees of freedom

NDoF = 2Nk −Nparams, where for now Nk = 20 and Nparams = 4 since we are fitting for

b1, b2, N , and σv; therefore NDoF = 36.

Model Data b1 b2 N σv χ2
r R− 1

GR+0.06eV GR+0.06eV 1.99 -0.115 -26.8 3.13 0.542 0.012

F4+0.2eV GR+0.06eV 2.05 0.524 -739. 3.91 0.694 0.012

GR+0.06eV F4+0.2eV 1.84 -1.56 1150 1.23 0.617 0.015

F4+0.2eV F4+0.2eV 1.88 -1.23 626 2.58 0.606 0.014

Table 4.2: Best fit model parameters, χ2 and convergence values for each combination of

model and data with the fitting restricted to 20 k bins between kmin = 0.0368 h/Mpc and

kmax = 0.153 h/Mpc and assuming a survey volume of Vs = 10Gpc3/h3.

We first consider the ‘correct’ fits to data, where the (|fR0|,mν) values specified in

the model match those used to create the simulation. The χ2
r values are all considerably

less than unity, suggesting the model is overfitting the data. The upper panel of Fig-

ure 4.1 displays the redshift-space power spectrum multipoles computed using Eq. (4.1)

with the best-fit model parameters from Table 4.2 along with the multipoles from the

MG-PICOLA simulations that the model was fitted to. The error bars on the simulation

data points are the diagonal elements of the inverse covariance matrices. This upper

panel of this figure shows that our model achieves a very good fit to the simulation

data for the 20 k points between kmin = 0.0368 h/Mpc and kmax = 0.153 h/Mpc when

the (|fR0|,mν) values specified in the model match those used to create the simulation.

The model achieves a slightly better fit for the GR+0.06eV case, where there is the

smallest deviation from scale-independent growth.

Next, let us consider the ‘incorrect’ fits to data, where the (|fR0|,mν) values specified

in the model do not match those used to create the simulation. These are useful

because, while we cannot vary (|fR0|,mν) as a free parameter in our model with the

approach we use, attempting to fit the ‘incorrect’ model can give us an idea of the

model’s potential to constrain (|fR0|,mν). Looking at the χ2
r values in Table 4.2, it
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Figure 4.1: Redshift-space halo power spectrum multipoles at z = 1. The left panels are

for GR+0.06eV and the right panels are for F4+0.2eV. The blue points and line give the

monopole P0 and the orange points and line give the quadrupole P2. Points represent the

results of paired-fixed MG-PICOLA N-body simulations, while lines are the result of fitting

the model in Eq. (4.1) to these simulations. For the upper panels, the fitting used the

initial setup with 20 k bins between kmin = 0.0368 h/Mpc and kmax = 0.153 h/Mpc and

Vs = 10Gpc3/h3. For the lower panels, the fitting used the refined setup with 24 k bins

between kmin = 0.0368 h/Mpc and kmax = 0.178 h/Mpc and Vs = 20Gpc3/h3 The reduced-

chi-squared value for each of these fits is printed in the respective panel. The error bars on

the simulation data points are taken from the inverse covariance matrices used in the fitting

process.
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is clear that the model is overfitting the data even for these ‘incorrect’ (|fR0|,mν)

value. For the GR+0.06eV simulation data, the ‘incorrect’ fit using the model with

F4+0.2eV are not as good as the ‘correct’ fit using the GR+0.06eV model. However,

for the F4+0.2eV simulation data fitting the ‘correct’ F4+0.2eV model yields only a

marginally improved fit over the using the ‘incorrect’ GR+0.06eV model.

Because the χ2
r values suggested the initial setup lead to the model being overfitted

to the data, we decided to increase Nk to 24 such that kmax = 0.178h/Mpc and assume

Vs = 20Gpc3/h3 when computing the analytic covariance matrices. We shall refer to

this as the refined fitting setup. Note that Nk = 24 corresponds to NDoF = 44. The

best-fitting values of the model parameters for each combination of model and data

(|fR0|,mν) in this setup are presented in Table 4.3, along with the reduced-chi-squared

χ2
r = χ2/NDoF of the best-fit and the Gelman-Rubin convergence diagnostic R−1. The

lower panel of Figure 4.1 displays the redshift-space power spectrum multipoles for the

‘correct’ fits in the refined fitting setup.

Model Data b1 b2 N σv χ2
r R− 1

GR+0.06eV GR+0.06eV 1.99 0.0652 -84.0 3.22 1.06 0.015

F4+0.2eV GR+0.06eV 1.90 -0.779 300 3.07 1.45 0.0093

GR+0.06eV F4+0.2eV 1.91 2.06 -576 3.06 1.46 0.10

F4+0.2eV F4+0.2eV 1.90 -0.813 327 3.05 1.45 0.040

Table 4.3: Best fit model parameters, χ2 and convergence values for each combination

of model and data with the fitting restricted to 24 k bins between kmin = 0.0368 h/Mpc

and kmax = 0.178 h/Mpc and assuming a survey volume of Vs = 20Gpc3/h3.

With this refined fitting setup, χ2
r > 1 for every case, so the model is no longer over-

fitting the data. Compared to the previous fitting setup, the best-fit model parameters

for the ‘correct’ fits change only slightly, suggesting they are relatively stable. However,

the best-fit model parameters for the ‘incorrect’ fits change significantly. This instabil-

ity of the ‘incorrect’ fits could help to constrain (|fR0|,mν); for example if the model

parameters change significantly as kmax varies for one combination of (|fR0|,mν) and

are relatively stable for another, then the latter is likely closer to the true values. As

for the previous fitting setup, the GR+0.06eV model fits the GR+0.06eV simulation

data moderately better than the F4+0.2eV model does, whereas the difference in the

quality of the fits between the models for the F4+0.2eV data is negligible. For the re-

fined fitting setup, the χ2
r values make it clearer that the ‘correct’ fit to the GR+0.06eV

data is moderately better than the ‘correct’ fit to the F4+0.2eV data. This suggests
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the model is struggling to replicate the larger deviation from scale-independent growth

in the F4+0.2eV case.

It is also interesting to investigate how well the model recovers the linear bias

of the simulated halos. The estimates of the linear bias from the simulations b1 =√
P sim

halo/P
sim
DM|klin were 2.00 and 1.91 for GR+0.06eV and F4+0.2eV respectively. Look-

ing at the MCMC contours for the models fitted to the GR+0.06eV simulation data in

Fig. 4.2, while the GR+0.06eV model recovers constraints on b1 that are fully consis-

tent with the estimate from the simulation for both the initial and refined fitting setup,

the F4+0.2eV model is barely consistent at the 1σ level for the initial setup and incon-

sistent at the 2σ level for the refined setup. In the context of applying our model to

real data, if there was a strong prior on b1 from some other observation then this could

be useful for constraining (|fR0|,mν). However, for the F4+0.2eV simulation data in

Fig. 4.3 both the F4+0.2eV and GR+0.06eV model fits are fully consistent with the

simulation estimate for both the initial and refined setup. Yet the GR+0.06eV model

fit to the F4+0.2eV data appears to favour a double peak in the 1D marginalised pa-

rameter distributions and suggests the GR+0.06eV model can fit the F4+0.2eV data

with significantly different values of b2 and N . We hypothesize this could be due to the

strong degeneracy between b2 and N that can be seen in the contours. To test this,

we repeat the fitting for both models to the F4+0.2eV data with the refined setup,

but with N fixed to 0. The best-fit parameters for the GR+0.06eV fit in this case are

b1 = 1.90, b2 = 0.0456, and σv = 2.61; the value of b2 is considerably smaller than in

the varying N case. These parameters give a slightly worse fit (χ2
r = 1.53) than the

best-fit parameters for the varying N case. The best-fit parameters for the F4+0.2eV

N = 0 fit are b1 = 1.91, b2 = −0.362, and σv = 3.22; and these are relatively unchanged

from the best-fit parameters in the varying N case. For the F4+0.2eV N = 0 fit we

have χ2
r = 1.46, demonstrating the quality of the fit is negligibly different from the

varying N case. As before, the fact that the best-fit for the ‘correct’ model is relatively

stable in response to changes to the fitting procedure while the ‘incorrect’ model is

not may prove useful for constraining (|fR0|,mν) The MCMC contours for this fixed

N case displayed in Fig. 4.4 show that fixing N yields much stronger constraints on

the remaining model parameters. In fact the constraints on b1 are strong enough to

make the GR+0.06eV N = 0 fit inconsistent at the 2σ level with the value estimated

from the simulation data, although for this small a magnitude of discrepancy we should

question how well we can estimate b1 from the simulation data before we make a firm

conclusion. The F4+0.2eV N = 0 fit still recovers a b1 value that is consistent with

the simulation data estimate despite the tight constraints.
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Figure 4.2: Contours for the MCMC fits to GR+0.06eV simulation data. The inner solid

and outer shaded contours represent the 1σ (68%) and 2σ (95%) marginalised confidence

levels respectively. The vertical dashed line for b1 = 2.00 is the linear bias estimated from

the simulation; b1 =
√
P sim

halo/P
sim
DM|klin . The blue and orange contours correspond to the

GR+0.06eV and F4+0.2eV fits using the initial setup with Nk = 20 and Vs = 10Gpc3/h3.

The pink and green contours correspond to the GR+0.06eV and F4+0.2eV fits using the

refined setup with Nk = 24 and Vs = 20Gpc3/h3.
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dashed line for b1 = 1.91.
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outer shaded contours represent the 1σ (68%) and 2σ (95%) marginalised confidence levels

respectively. The pink and green contours correspond to the GR+0.06eV and F4+0.2eV

models respectively. The vertical dashed line for b1 = 1.91 is the linear bias estimated from

the F4+0.2eV simulation; b1 =
√
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DM|klin .

Finally, we can study how well the model captures the changes to the redshift-

space multipoles introduced by F4+0.2eV in comparison to GR+0.06eV. The upper

panel of Figure 4.5 shows the ratio of the redshift-space power spectrum multipoles in

F4+0.2eV to GR+0.06eV, for both the MG-PICOLA simulations and the ‘correct’ best-

fit model in the initial fitting setup. The lower panel displays the same but where the

fits considered used the refined fitting setup. While the model captures the effect of
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F4+0.2eV relative to GR+0.06eV well for the monopole P0, it does less well for the

quadrupole P2, which may limit the ability of our model to constrain (|fR0|,mν).

We can also compute χ2
MG+mν

to quantify the difference between the redshift-space

power spectrum multipoles in cosmological models with different (|fR0|,mν):

χ2
MG+mν =

1

NDoF

∑
l=0,2

kmax∑
k=kmin

Cov−1
l,l (k)

[
PF4+0.2eV
l (k)− PGR+0.06eV

l (k)
]2

, (4.27)

where NDoF = 2Nk − 1 since we compare Nk points for both P0 and P2. For the initial

fitting we have 20 k bins between kmin = 0.0368 h/Mpc and kmax = 0.153 h/Mpc such

that NDoF = 39, whereas for the refined fitting we have 24 k bins between kmin =

0.0368 h/Mpc and kmax = 0.178 h/Mpc yielding NDoF = 47. For the MG-PICOLA

simulations we find χ2
MG+mν

= 19.61 with kmax = 0.153 h/Mpc and χ2
MG+mν

= 24.40

for kmax = 0.178 h/Mpc, while for the ‘correct’ best-fit model we get χ2
MG+mν

= 19.57

with kmax = 0.153 h/Mpc and χ2
MG+mν

= 22.37 with kmax = 0.178 h/Mpc. This

suggests that the model is effective at capturing the changes to the redshift-space

multipoles introduced by F4+0.2eV in comparison to GR+0.06eV, but becomes less

effective the higher kmax is set. Note that the values of the equivalent statistic for the

dark matter-only multipoles in Section 3.3.2 were only of order O(1) for z = 1. The

values are much larger for halos because, as we show in Fig. 4.5, the monopole P0 is

smaller for F4+0.2eV than GR+0.06eV, which is largely due to the difference in linear

bias between the two models, whereas Fig. 3.9 showed that P0 is relatively similar for

F4+0.2eV and GR+0.06eV in the dark matter only case. Conversely, Fig. 4.5 shows

that P2 is quite similar in the two models for halos, whereas in Fig.3.9 P2 was more

different in the two models than P0 for dark matter. The form of the analytic covariance

we use is such that a difference in P0 contributes to χ2
MG+mν

more than a difference in

P2 does, hence the larger value for halos than dark matter only. Because the difference

in P0 for halos is due largely to a difference in linear bias between the models, it makes

it more difficult to identify the ‘correct’ model when fitting to data since the difference

can be compensated for by a change in the b1 model parameter. While the difference in

P2 between models is not as large as for the dark matter only scenario, it is still useful

for distinguishing between models as the difference can not be so easily replicated by

a change in b1.

Ultimately, we have shown that identifying the ‘correct’ bias model and fitting

setup is crucial to breaking the modified gravity-massive neutrino degeneracy for biased

tracers such as halos.
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Figure 4.5: The ratio of the redshift-space halo power spectrum multipoles in F4+0.2eV

and GR+0.06eV at z = 1. Points represent the results of paired-fixed MG-PICOLA N-body

simulations, while solid lines are the result of fitting Eq. (4.1) to the simulations. For the

upper panel, the fitting used the initial setup with 20 k bins between kmin = 0.0368 h/Mpc

and kmax = 0.153 h/Mpc and Vs = 10Gpc3/h3. For the lower panel, the fitting used the

refined setup with 24 k bins between kmin = 0.0368 h/Mpc and kmax = 0.178 h/Mpc and

Vs = 20Gpc3/h3. The blue points and solid line give the monopole P0, while the orange

points and dashed-dotted line give the quadrupole P2.
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Chapter 5

Discussion and Conclusions

5.1 Summary of results

First, in Chapter 2 we have presented a code, MG-PICOLA, that simulates large-scale

structure formation using the COLA approach and includes the effects of modified

gravity and massive neutrinos. The code comes with a general implementation of an

approximate method for including the three most common types of screening one finds

in modified gravity theories. We have also implemented a general parameterisation

of scalar-tensor theories of the chameleon form using the {m(a), β(a)} formulation

together with commonly studied models like f(R), nDGP and Jordan-Brans-Dicke. For

the inclusion of massive neutrinos in the particle mesh part of the COLA algorithm

we use the grid-based method of [172] where massive neutrinos are kept in Fourier

space and evolved linearly according to the neutrino growth factors. Tools for doing

on-the-fly computation of (friend-of-friend) halo catalogues plus both real space and

redshift space matter power spectra are built-in to the code.

In order to test the modified gravity implementation, we have compared MG-PICOLA

to full modified gravity simulations and the results demonstrate that the approach

works very well. The boost-factors X/XΛCDM for clustering statistics like power spectra

and halo mass function computed with MG-PICOLA are able to recover the true N-

body result to percent level accuracy deep into the non-linear regime (k ∼ 3h/Mpc)

even when using a low number of COLA time steps. A comparison to full N-body

simulations of massive neutrino cosmologies, both for ΛCDM and f(R) gravity, shows

that we can match N-body results to percent level accuracy for k . 1 h/Mpc in both

the total and CDM matter power spectra with our approach. In order to be able to

judge the accuracy of our massive neutrino scheme more directly we would need to do a

comparison to full N-body simulations where we use exactly the same initial conditions
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in COLA, and this option was not available to us at the time this study was performed.

The addition of scale-dependent growth does have the drawback of slowing down the

COLA approach relative to ΛCDM by a factor of ∼ 3−4 in the current implementation,

but as we have shown, and was previously found in [191], for f(R) (and likely other

models of this form) one can get away with using the ΛCDM growth-factor making

this approach only about ∼ 30% slower than ΛCDM. However, the scale-dependent

implementation is still needed to verify this approximation and there is no guarantee it

will hold for a general model. For the nDGP models we tested (which should also hold

for Galileon models in general) the growth-factors remain scale-independent to second

order and the only computational overlay for these simulations is in the computation

of the screening factor which requires one extra Fourier transform per step making it

only ∼ 30% slower than the corresponding ΛCDM simulation.

We have also shown that the Eisenstein-Hu fitting formulae for the growth factors

in massive neutrino cosmologies are a good approximation for a wide range of modified

gravity theories as long as we replace the ΛCDM growth factor by the modified gravity

counterpart.

MG-PICOLA is a vital tool due to its speed in comparison to full N-body simulation

methods and has proven useful for a number of different studies by the community

[243, 244, 245, 246, 240, 247, 248].

Next, in Chapter 3 we have studied the potential for redshift-space distortions to

break the degeneracy between the enhancement of structure growth provided by mod-

ifications to gravity and suppression of structure growth due to massive neutrinos, at

the level of the dark matter field. For combinations of modified gravity parameters and

neutrino masses that have similar matter power spectra at a given redshift, the growth

rates are different and will remain distinguishable. This degeneracy-breaking growth

rate information is encoded via velocities into redshift-space distortions. To carry out

this work, we have modelled the effects of both modified gravity and massive neutrinos

on real- and redshift-space CDM+baryon power spectra with Standard Perturbation

Theory through the code MG-Copter. We found the implementation of modified grav-

ity and massive neutrinos in MG-Copter produces a good agreement for both real- and

redshift-space power spectra with the simulation results from the code MG-PICOLA in

the case of Hu-Sawicki f(R) gravity at the level of the dark matter field.

We have then investigated the degeneracy and shown that the quadrupole of the

redshift-space CDM+baryon power spectrum retains enough of the velocity informa-

tion to distinguish between GR with light neutrinos and Hu-Sawicki f(R) with heavy

neutrinos, and our model is capable of capturing this degeneracy-breaking informa-
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tion. We have also briefly studied how the degeneracy evolves with redshift. There is a

clear evolution of the degeneracy with redshift even for the matter power spectrum; for

combinations of modified gravity and neutrino mass parameters that give comparable

matter power spectra at one redshift, the matter power spectra at another redshift

are in general likely to be distinguishable. The tomographic nature of weak lensing is

particularly well suited to investigating this approach to breaking the degeneracy, al-

though weak lensing systematics such as baryonic effects and intrinsic alignments could

cause complications. Alternatively, if modified gravity is only a low redshift effect, a

constraint on neutrino mass from clustering at higher redshift, for example from HI

intensity mapping [249], would help break the degeneracy.

However, our original MG-Copter-based RSD model only functions at the level of

dark matter. Therefore, in order to bring this method closer to the point where it can

be applied to observational data from galaxy surveys, in Chapter 4 we have added bi-

ased tracers to the modelling. To do so, we followed the approach of [233], which adds

3 bias parameters {b1, b2, N} to σv from the original model. We tested this extended

MG-Copter-based model by fitting the redshift-space multipoles to halo catalogues cre-

ated with MG-PICOLA, which necessitated the use of an MCMC approach due to the

increase in the number of free parameters. Since our approach requires (|fR0|,mν)

to be fixed, we fitted both ‘correct’ models, where (|fR0|,mν) in the model matched

that used to create the simulation it was being fitted to, and ‘incorrect’ models, where

(|fR0|,mν) was different in the model and simulation.

We have shown that it is necessary to identify an appropriate fitting setup, for

example through the maximum fitting scale kmax and the volume of the survey assumed

when computing the covariance Vs, in order to ensure the model does not overfit the

data. Once we had refined the fitting setup for our approach, we were able to show that

the ‘correct’ fit was excellent for GR+0.06eV and still good for F4+0.2eV, although

the stronger deviation from scale-independent growth does degrade the quality of the

fit partially in this cosmology. As well as modifying kmax and Vs, we also repeated the

analysis of the fits to the F4+0.2eV simulation with the stochasticity model parameter

N fixed to 0. We have shown that doing so removes degeneracies between model

parameters, particularly the strong degeneracy between N and b2 that is seen in the

MCMC contours, and as a result enables significantly tighter constraints to be placed

on the bias parameters and σv. We have also investigated how well our model is able to

recover the linear bias b1 that we estimated from the simulation and have demonstrated

that the ‘correct’ model fits were fully consistent with the b1 value estimated from the

simulations in each scenario we tested. For the ‘incorrect’ F4+0.2eV model fitted to
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the GR+0.06eV simulation data, we found that the quality of the fit is consistently

worse than the ‘correct’ GR+0.06eV model fit for the two fitting setups investigated.

Additionally, for the refined setup the b1 value recovered by the ‘incorrect’ F4+0.2eV

mode was not consistent with the value estimated from the GR+0.06eV simulation at

2σ level. For the ‘incorrect’ GR+0.06eV model fitted to the F4+0.2eV simulation data,

we found that the quality of the fit is as good as that of the ‘correct’ F4+0.2eV model

fit, and that the b1 value recovered is still consistent with the simulation estimate.

We identified that this was due to the ‘incorrect’ GR+0.06eV model fit preferring

a double peaked parameter distribution. Only for the fit where N had been fixed

to 0 did this double peak disappear, the quality of the fit degrade in comparison

to the ‘correct’ F4+0.2eV model fit, and the recovered b1 value become inconsistent

with the simulation estimate at the 2σ level. Throughout we observed that the best-

fit parameters for the ‘incorrect’ model fits depend significantly on the fitting setup,

whereas the ‘correct’ model fits were relatively stable to changes to the fitting setup;

this may be useful when constraining (|fR0|,mν). Finally, we investigated the f(R)-

massive neutrino degeneracy for the halo redshift-space power spectrum multipoles. In

comparison to the CDM+baryon multipoles we investigated in Chapter 3, we found

that the difference between the GR+0.06eV and F4+0.2eV halo multipoles measured

from the MG-PICOLA simulations is greater, largely due to the effect of the different

linear biases on the monopole P0. We have demonstrated that the MG-Copter-based

model is capable of capturing this difference in the halo multipoles well, although it

may become less effective the higher kmax is set.

5.2 Future work

So far, our RSD model has been limited by the necessity to fix the values of (|fR0|,mν)

as well as the base cosmological parameters. This is necessary because it is necessary

to recompute the loop integrals in SPT whenever these parameters are changed, which

is extremely time consuming. However, this issue has been overcome in the standard

ΛCDM model using the FFTLog approach [231]. The logical next step is to confirm

that we can use the computationally inexpensive modelling of RSD in MG-Copter to

recover a fiducial combination of |fR0| andmν from a mock data set. An important open

question for this endeavour is whether the process of fitting σv and the bias parameters

introduces new degeneracies, where for example σv can dampen the redshift-space

multipoles of a model with incorrect |fR0| and mν values in a way that makes them

difficult to distinguish from those of the fiducial simulation. In order to be able to
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apply our model to data where the true values of (|fR0|,mν) are unknown, we plan

to construct an emulator by interpolating between fits of our model to MG-PICOLA

simulations for many different values across the (|fR0|,mν) parameter space.

One typical downside to cosmological simulations is the need to specify a particular

modified gravity model. However, when using observations to apply constraints, it is

generally more effective to have a parameterisation of a class of theories and constrain

these parameters. One such example is the α parameterisation of Horndeski modified

gravity [250], which is connected to the effective field theory of modified gravity [251].

However, this parameterisation is problematic because it applies only to linear pertur-

bations. To model non-linear structure formation it is necessary to specify a screening

model, which narrows the coverage of theory space. As discussed in Appendix C, we

have implemented a general {m(a), β(a)} models [208] in MG-PICOLA. We are interested

in implementing other parameterisations in MG-PICOLA and investigating whether the

degeneracy with massive neutrinos persists in other models.
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Appendix A

MG-PICOLA implementation details

The main change we need to implement is to account for the scale-dependent growth-

factors. This is easily done by storing the Fourier transform of the initial displacement-

fields, multiplying by the growth-factors and performing a Fourier transform to get the

real-space displacement-fields at every time-step. Having computed the displacement-

fields we assign the displacement-vector ~Ψ(~q, τ) to the particles. This needs to be done

at every step.

An additional complication comes when we run with several processors. The parti-

cles require the displacement-field at their original Lagrangian positions so for particles

that have crossed a CPU boundary we need inter-CPU communication to obtain this.

This is done by storing the original CPU-id and q-coordinate with each particle which

requires 8 · Nparticles bytes of memory. Additional (temporary) memory is needed to

store both d~Ψ
dτ

and d2~Ψ
dτ2

which adds another 12 · 4 = 48 bytes per particle compared to

ΛCDM.

Finally we also need extra memory to store the initial displacement-fields (in k-

space), temporary memory to perform the Fourier-transforms, and temporary memory

to compute the screening factor. This makes the scale-dependent implementation much

more memory expensive that the standard ΛCDM implementation.
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Appendix B

Summary of the general equations

solved by MG-PICOLA

The fiducial choice for the background expansion is ΛCDM, however it is easy to modify

this by redefining the function H(a) and dH(a)
da

.

For the linear perturbations the user must provide µ(k, a) (and possibly γ2 if one

has this available, otherwise put this to 0). The growth factors are then determined by

d2D1

dτ 2
− κµ(k, a)D1 = 0 , (B.1)

d2D2

dτ 2
− κµ(k, a)D2 = −κµ(k, a)D2

1(k, a)×(
1 +

2γ2a
4H2

κµ(k, a)

)
. (B.2)

For the N-body part of the code we have implemented routines to solve any field

equation of the form

∇2
xφ = m2(a)a2φ+ C(a) · κ δ · εscreen(ΦN , | ~∇xΦN |,∇2

xΦN) , (B.3)

where φ is normalized such that the total force on the particles is ~∇xΦN + ~∇xφ. This

covers the three most widely known screening mechanisms: chameleon, k-Mouflage

and Vainhstein. The user can pick any of these three screening methods (i.e. either

screening by potential, gradient or density) and the screening-function εscreen needs to

be specified.

For potential screening this is done automatically by the code (see next section) as

long as the user specifies the two functions m(a) and β(a) (and in this case C(a) =

2β2(a)).

For gradient (k-Mouflage) screening arising from P (X = 1
2
(∇xφ)2) Lagrangians

with a conformal coupling to matter of the form e
βφ
MPl then the screening function is
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determined by

P 2
X(X∗)X∗ = (2βMPl)

2| ~∇xΦN |2 , (B.4)

εscreen(| ~∇xΦN |) = Min

[
1,

1

PX(X∗)

]
. (B.5)

For these models we have C(a) = 2β2 and the linear growth factor is determined by

µ = 2β2

PX(X(a))
where X(a) is the cosmological value of X. As no N-body simulation of

these types of models is found in the literature we have not yet tested this approach,

but all of the methods needed have been included in the code and one only needs to

provide an expression for X∗(| ~∇xΦN |2) and X(a) to use it.

For Vainshtein screening (DGP, Galileon models) one needs to specify εscreen(∇2
xΦN ∝

ρ) and the coupling C(a) which for nDGP is simply C(a) = 1
3βDGP(a)

as shown in

Eq. (2.64). For these models we have m(a) = 0, i.e. the range of the fifth-force is

infinite. Since the density is highly resolution dependent we need to use a smoothed

density field to compute the screening. We have implemented three common choices

for the Fourier space smoothing filter, namely the Gaussian, top-hat and sharp-k win-

dow functions. The user only needs to choose a smoothing filter and a smoothing scale

Rsmooth.
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Appendix C

MG-PICOLA implementation of

general {m(a), β(a)} models

As shown in [208] a general scalar-tensor theory with a potential and a conformal cou-

pling to matter that shows the screening effect is uniquely defined by specifying two

time-dependent functions on the cosmological background: the coupling strength of

the fifth-force β(a) and the mass of the scale (inverse range of the fifth-force) m(a).

Given these functions we can reconstruct the potential V (φ) and the conformal cou-

pling A(φ). Examples of models of this form are the chameleon, the symmetron, and

the environmental dependent dilaton model. N-body simulations for several different

functional forms of m(a) and β(a) were performed in [252, 253].

Here we will describe the implementation of a general {m(a), β(a)} model in our

code. At the level of linear perturbations we have

µ(k, a) = 1 + 2β2(a)
k2

k2 + a2m2(a)
, (C.1)

and to second order we have

γE
2 =

m2(a)dm
2(a)
da

β2(a)Ωm

2H4
0 Π(k)Π(k1)Π(k2)

k2

a4H2
, (C.2)

where Π(k) =
(

k
aH0

)2

+ m2(a)

H2
0

. For the N-body part the field equation reads

∇2
xφ = m2(a)a2φ+ 2β2(a) · 4πGδρ · εscreen(ΦN) , (C.3)

where φ is normalized such that ~∇xΦN + ~∇xφ is the total force on the particles. The

screening function is given by

εscreen(ΦN) = Min

[
1,

∣∣∣∣Φcrit(a)

ΦN

∣∣∣∣] , (C.4)
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where the critical potential for screening is

Φcrit(a) = Φcrit(aini) +
9Ωm

2β(a)

∫ a

aini

β(a′)
m2(a′)
H2

0
a4

da′ . (C.5)

The code solves the integral above for Φcrit(a), however if analytical expressions are

available then it’s recommended to use these instead.

For example the (n = 1) Hu-Sawicky f(R) model can be recast of this form with

β(a) =
1√
6
, (C.6)

m2(a) = H2
0

Ωm + 4ΩΛ

2|fR0|

(
Ωma

−3 + 4ΩΛ

Ωm + 4ΩΛ

)3

, (C.7)

and the integral above gives rise to (in the limit aini → 0)

Φcrit(a) =
3fR0

2

(
Ωma

−3 + 4ΩΛ

Ωm + 4ΩΛ

)2

. (C.8)

Another example is the symmetron model for which

β(a) = β∗

√
1− a3

∗
a3
, (C.9)

m2(a) = m2
∗

(
1− a3

∗
a3

)
, (C.10)

where β∗,
m∗
H0
, a∗ are dimensionless parameters and we take β(a) = m(a) = 0 if a < a∗.

The critical screening value becomes (we put aini = a∗ as the fifth-force is not active

for a < a∗)

Φcrit(a) =
3Ωm

2a3
∗

H2
0

m2
∗
. (C.11)

In this simple formulation we have ignored the additional screening effect in high density

regions coming from the fact that β(φ) → 0 as the ambient density gets larger and

larger. This illustrates how easy it is to include a new model of this form.
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Appendix D

Modified gravity models

In this section we give a brief overview of the modified gravity models we are using in

our research, focusing on the equations that are needed for our COLA implementation.

For a more thorough review of these models, and modified gravity in general, see

[51, 52].

D.1 f (R) gravity

For f(R) gravity [254] the growth of linear perturbations is determined by

µMG(k, a) = 1 +
1

3

k2

k2 + a2m2(a)
, (D.1)

where m(a) depends on the model in question. For the Hu-Sawicki model [255], which

is the f(R) model we will consider in our research, m(a) is given by

m2(a) =
1

3fRR
=
H2

0 (Ωm + 4ΩΛ)

(n+ 1)|fR0|

(
Ωma

−3 + 4ΩΛ

Ωm + 4ΩΛ

)n+2

, (D.2)

where

fR(a) = fR0

(
Ωm + 4ΩΛ

Ωma−3 + 4ΩΛ

)n+1

. (D.3)

The γE2 factor is likewise given by [140]

γE2 = − 9Ω2
m

48a6|fR0|2

(
k

aH

)2

× (Ωma
−3 + 4ΩΛ)5

(Ωm + 4ΩΛ)4

1

Π(k, a)Π(k1, a)Π(k2, a)
, (D.4)

where

Π(k, a) =

(
k

aH0

)2

+
(Ωma

−3 + 4ΩΛ)3

2|fR0|(Ωm + 4ΩΛ)2
. (D.5)
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D.2 nDGP gravity

In nDGP we have a ΛCDM background expansion, but with modified growth of per-

turbations. The growth of linear perturbations are determined by

µ(k, a) = 1 +
1

3βDGP(a)
, (D.6)

βDGP(a) = 1 + 2rcH(a)

(
1 +

Ḣ

3H2

)
, (D.7)

and γE2 is given by [256]

γE
2 = −

(
H0

H

)2
(rcH0)2Ω2

m

6β3
DGP(a)a6

(
1− (~k1 · ~k2)2

k2
1k

2
2

)
. (D.8)

For this model, and likely for Galileons in general, the γ2 terms have the same k1, k2

dependence as in ΛCDM so the second order growth-factor becomes a function of time

only. This means that it behaves just as ΛCDM albeit with different growth-factors.

D.3 Symmetron

In the symmetron model [203]:

µMG(k, a) = 1 +
2β2(a)k2

k2 + a2m2(a)
, (D.9)

γE
2 (k, a) =

m2(a)dm
2(a)
da

β2(a)Ωm

2H4
0 Π(k, a)Π(k1, a)Π(k2, a)

k2

a4H2

=
3Ωmβ

2
?

2ξ4
?

a3
?k

2

a8H2Π(k, a)Π(k1, a)Π(k2, a)

(
1− a3

?

a3

)2

, (D.10)

if a > a? and 0 otherwise where

β(a) =

β?
√

1− a3?
a3

if a > a?

0 otherwise
, (D.11)

m(a) =


H0

ξ?

√
1− a3?

a3
if a > a?

0 otherwise
. (D.12)
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D.4 Dilaton

In the dilaton model [257]:

µMG(k, a) = 1 +
2β2(a)k2

k2 + a2m2(a)
, (D.13)

γE
2 (k, a) =

m2(a)dm
2(a)
da

β2(a)Ωm

2H4
0 Π(k, a)Π(k1, a)Π(k2, a)

k2

a4H2

= −Rβ
2
0Ωm

ξ4
0

k2

a5+4RH2Π(k, a)Π(k1, a)Π(k2, a)
exp

2S
2R−3(a2R−3−1) , (D.14)

where

β(a) = β0 exp
S

2R−3(a2R−3−1) , (D.15)

m(a) =
H0

ξ0

a−R . (D.16)
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Appendix E

Comparison of MG-PICOLA neutrino

approach to SPT and alternative

schemes for modelling the

non-linear neutrino density

In this appendix we show a comparison of our code with linear theory and standard

perturbation theory (SPT). The SPT results were obtained by following the method

of [213] using the Einstein-de Sitter approximation. We have also carried out a test

using an alternative scheme to include the neutrino density in the Poisson equation,

Eq. (2.70). In this scheme we use

δν = δcb
δlin
ν

δlin
cb

, (E.1)

where δcb is the non-linear CDM+baryon density contrast. Here the ratio of the non-

linear neutrino and CDM+baryon density contrasts is approximated by the linear ratio

of the two, instead of simply having δν = δlin
ν as we had previously. This alternative

scheme is what [215] calls the improved external source scheme.

Fig. (E.1) shows that our implementation gives a result for the total matter power

spectrum that lies between SPT and linear theory on quasi-linear scales. The dif-

ferences we see with respect to SPT for the slightly larger wavenumbers is expected

(see Fig. (10) in [215]) as SPT slightly underestimates the power on these scales. The

improved external source scheme is seen to slightly overestimate the power on linear

scales and generally performs slightly worse on linear scales and at low redshift than

the scheme we have used in this research, especially for larger values of the neutrino

mass.
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Figure E.1: The total matter power spectrum for a GR+mν cosmology relative to the

GR case where mν = 0.0 at z = 0.0 (above) and z = 1.0 (below). We show the results

of a COLA run compared to linear theory, SPT and what we get when we use the

external source scheme in COLA. The upper lines in each figure shows the results for

mν = 0.2 eV and the lower lines shows the results for mν = 0.4 eV.
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Additionally, [215] warns of inaccuracies at large scales when treating neutrinos in

a purely linear way with δν = δlin
ν as a consequence of violation of momentum conser-

vation. This can be seen as large deviation from the full non-linear scheme at large

scales due to D2 not vanishing as k → 0. [215] showed that the previously men-

tioned improved external source scheme reduces the deviation at large scales, but does

not completely eliminate it. However, although such inaccuracies would appear from

Eqs. (2.47) and (2.55), our method does not suffer from them because the approxima-

tions we make to maintain the speed of our COLA approach in Eqs. (2.48) and (2.59)

demand that D2,cb(~k,~k1, ~k2, τ) =
(

1− (~k1·~k2)2

k21k
2
2

)
D̂2,cb(k, τ)→ 0 as k → 0.
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J. Harnois-Déraps et al., Cosmological neutrino simulations at extreme scale,

Research in Astronomy and Astrophysics 17 (Aug, 2017) 085, [1611.01545].

[172] J. Brandbyge and S. Hannestad, Grid based linear neutrino perturbations in

cosmological N-body simulations, JCAP 5 (May, 2009) 002, [0812.3149].
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