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Abstract 

Scheduling and rescheduling play a central role in day-to-day railway operations. Trains in 

a railway network are scheduled and controlled according to a timetable.  However, the 

proposed timetable cannot be always followed because of unpredictable disruptions caused 

by many factors including excessive dwell times at stations, infrastructure and/or train 

faults and late arrival of crew. When trains do not operate according to the schedule, even 

by only a few seconds, there is an increased likelihood that they will cause conflict with 

other trains, resulting in further delays. This issue is even more critical in a congested 

network with high interconnection between trains because delays are easily propagated 

across the whole network, affecting all interconnected trains in the network. 

The thesis focuses on railway scheduling problems (RSPs) by addressing the deterministic 

RSP and the stochastic RSP. Novel models and solution methods are proposed to solve 

these problems. We developed an optimisation model based on a set partitioning model 

with the main objective to minimise the total delay of trains while considering passenger 

safety and regulation principles including running times, headway and signalling system 

constraints.  Moreover, we proposed heuristic and metaheuristic methods enhanced by 

biased randomisation and local search techniques to solve the deterministic RSP. These 

included Iterated Greedy with Biased Randomised (IG-BR), Biased Randomised Iterated 

Greedy with Local Search (BR-IG-LS) and Biased Randomised Variable Neighbourhood 

Search (BR-VNS). 

Furthermore, we developed a stochastic optimisation model to handle delays and minimise 

the total delay of trains. The heuristics and metaheuristics methods which combined with 

Monte Carlo Simulation (MCS) to generate stochastic random delays including Sim-

Iterated Greedy with Biased Randomised (S-IG-BR), Sim-Biased Randomised Iterated 

Greedy with Local Search (S-BR-IG-LS) and Sim-Biased Randomised Variable 

Neighbourhood Search (S- BR-VNS).  

To the best of our knowledge, this is the first time that these proposed methods have been 

used to solve deterministic and stochastic RSPs. 

To evaluate the performance of the proposed optimisation models and the solution 

methods, we conducted computational experiments using real-world case studies from the 

Southeastern train operating company, UK and State Railway of Thailand. Results 
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indicated that the proposed methods outperformed the solutions adopted by the railway 

companies and/or existing mixed integer linear programming (MILP) obtained by CPLEX 

optimisation software package. 

  



Page | v  

 

Table of Contents 

List of Tables .......................................................................................................................... ix 

List of Figures ....................................................................................................................... xiii 

List of Algorithms ................................................................................................................ xiv 

Glossary of Abbreviations ..................................................................................................... xv 

Chapter 1: Introduction .......................................................................................................... 1 

1.1. Background and Motivation ........................................................................................ 1 

1.2. Aims and Objectives ................................................................................................... 4 

1.3. Contributions ............................................................................................................... 5 

1.4. Thesis Structure ........................................................................................................... 7 

1.5. Chapter Conclusion ..................................................................................................... 8 

Chapter 2: Literature Review ................................................................................................. 9 

2.1. Introduction ................................................................................................................. 9 

2.2. Railway planning process ............................................................................................. 9 

2.2.1. Strategic level ..................................................................................................... 10 

2.2.2. Tactical level ....................................................................................................... 11 

2.2.3. Operational level ................................................................................................. 13 

2.3. Network Topology .................................................................................................... 14 

2.4. Signalling system ...................................................................................................... 14 

2.4.1. Two-aspect signalling ......................................................................................... 15 

2.4.2. Four-aspect signalling ......................................................................................... 15 

2.5. The railway scheduling problem (RSP) under the uncertainties ............................... 16 

2.5.1. Deterministic RSP............................................................................................... 16 

2.5.2. Stochastic RSP .................................................................................................... 17 

2.6. Classification of Disturbances/Disruptions ............................................................... 18 

2.6.1. Accidents/Collisions ........................................................................................... 19 

2.6.2. Weather conditions ............................................................................................. 20 

2.6.3. Disasters .............................................................................................................. 22 



Page | vi  

 

2.6.4. Failures due to the infrastructure ........................................................................ 22 

2.6.5. Unavailability of resources ................................................................................. 23 

2.7. Impact of Disturbances/Disruptions to the rail system ............................................. 23 

2.7.1. Minor delays ....................................................................................................... 23 

2.7.2. Major delays and cancellations ........................................................................... 23 

2.8. How to handle the Disturbances/Disruptions ............................................................ 24 

2.8.1. Reactive scheduling ............................................................................................ 24 

2.8.2. Proactive scheduling ........................................................................................... 24 

2.8.3. Preventive maintenance ...................................................................................... 25 

2.8.4. Robust optimisation ............................................................................................ 25 

2.9. Solution methods ....................................................................................................... 27 

2.9.1. Exact methods ..................................................................................................... 28 

2.9.2. Approximate methods ......................................................................................... 29 

2.10. Chapter Conclusion ................................................................................................. 34 

Part I  Deterministic Railway Scheduling in the presence of uncertainties ..................... 35 

Chapter 3: Iterated Greedy with Biased Randomised (IG-BR) for deterministic RSP .. 36 

3.1. Introduction ............................................................................................................... 36 

3.2. Contribution ............................................................................................................... 37 

3.3. Deterministic RSP optimisation model ..................................................................... 38 

3.3.1. Tree search graph ................................................................................................ 38 

3.3.2. Optimisation model............................................................................................. 44 

3.4. Proposed IG with Biased Randomised (IG-BR) for solving RSP ............................. 48 

3.4.1. Basic concept of IG algorithm ............................................................................ 48 

3.4.2. IG with Biased Randomised (IG-BR) ................................................................. 50 

3.5. Computational experiments ....................................................................................... 55 

3.5.1. Southeastern train company, United Kingdom ................................................... 56 

3.5.2. State Railway of Thailand................................................................................... 65 

3.6. Chapter Conclusion ................................................................................................... 70 



Page | vii  

 

Chapter 4: Biased Randomised Iterated Greedy with Local Search (BR-IG-LS) for 

deterministic RSP ................................................................................................................... 72 

4.1. Introduction ............................................................................................................... 72 

4.2. Contribution ............................................................................................................... 73 

4.3. Proposed Biased Randomised IG with Local Search (BR-IG-LS) for solving RSP . 73 

4.4. Computational experiments ....................................................................................... 77 

4.4.1. Southeastern train company, United Kingdom ................................................... 77 

4.4.2. State Railway of Thailand................................................................................... 82 

4.5. Chapter Conclusion ................................................................................................... 84 

Chapter 5: Biased Randomised Variables Neighbourhood Search (BR-VNS) for 

deterministic RSP ................................................................................................................... 86 

5.1. Introduction ............................................................................................................... 86 

5.2. Contribution ............................................................................................................... 86 

5.3. Proposed Biased Randomised VNS for solving RSP ................................................ 87 

5.3.1. Biased Randomised VNS (BR-VNS) ................................................................. 91 

5.4. Computational experiments ....................................................................................... 92 

5.4.1. Southeastern train company, United Kingdom ................................................... 93 

5.4.2. State Railway of Thailand................................................................................. 100 

5.5. Chapter Conclusion ................................................................................................. 102 

Part II  Stochastic Railway Scheduling in the presence of uncertainties ........................ 104 

Chapter 6: Sim-Iterated Greedy with Biased Randomised (S-IG-BR) for stochastic 

RSP ........................................................................................................................................ 105 

6.1. Introduction ............................................................................................................. 105 

6.2. Contributions ........................................................................................................... 106 

6.3. Stochastic RSP optimisation model ........................................................................ 107 

6.4. Proposed Sim-IG with Biased Randomised (S-IG-BR) for solving RSP ............... 107 

6.4.1. Monte Carlo Simulation (MCS) ....................................................................... 108 

6.4.2. Sim-IG with Biased Randomised (S-IG-BR) ................................................... 109 

6.5. Computational experiments ..................................................................................... 111 

6.5.1. Southeastern train company, United Kingdom ................................................. 112 



Page | viii  

 

6.5.2. State Railway of Thailand................................................................................. 116 

6.6. Chapter Conclusion ................................................................................................. 118 

Chapter 7: Sim-Biased Randomised Iterated Greedy with Local Search (S-BR-IG-

LS) for Stochastic RSP ........................................................................................................ 120 

7.1. Introduction ............................................................................................................. 120 

7.2. Contribution ............................................................................................................. 120 

7.3. Proposed Sim-Biased Randomised IG with Local Search (S-BR-IG-LS) for solving 

RSP ................................................................................................................................. 120 

7.4. Computational experiments ..................................................................................... 122 

7.4.1. Southeastern train company, United Kingdom ................................................. 122 

7.4.2. State Railway of Thailand................................................................................. 126 

7.5. Chapter Conclusion ................................................................................................. 127 

Chapter 8: Sim-Biased Randomised Variables Neighbourhood Search (S-BR-VNS) 

for Stochastic RSP ................................................................................................................ 129 

8.1. Introduction ............................................................................................................. 129 

8.2. Contribution ............................................................................................................. 129 

8.3. Proposed Sim-Biased Randomised VNS (S-BR-VNS) for solving RSP ................ 129 

8.4. Computational experiments ..................................................................................... 132 

8.4.1. Southeastern train company, United Kingdom ................................................. 132 

8.4.2. State Railway of Thailand................................................................................. 139 

8.5. Chapter Conclusion ................................................................................................. 141 

Chapter 9: Conclusions and future work .......................................................................... 143 

9.1. Research findings and contributions ....................................................................... 143 

9.2. Impact on the Thai railway industry ........................................................................ 147 

9.3. Limitations ............................................................................................................... 148 

9.4. Future work ............................................................................................................. 149 

References ............................................................................................................................. 150 

 

  



Page | ix  

 

List of Tables 

Table 3.1 : Comparative structure between Tree Search and Railway scheduling .............. 39 

Table 3.2 : List of parameters for adding the uncertainties delay value .............................. 44 

Table 3.3 : List of parameters and decision variables in the mathematical model 

formulation ........................................................................................................................... 45 

Table 3.4 : Longer running/dwell times - minor and general disruption - Deterministic 

(UK) ..................................................................................................................................... 58 

Table 3.5 : Late departures - minor and general disruption - Deterministic (UK)............... 58 

Table 3.6 : Longer running/dwell times - major disruption – Deterministic (UK) .............. 59 

Table 3.7 : Longer running/dwell times and Late departures - major disruption - 

Deterministic (UK)............................................................................................................... 59 

Table 3.8 : Deterministic Longer running/dwell times - minor and general disruption: IG-

BR Results ............................................................................................................................ 60 

Table 3.9 : Deterministic Late departures - minor and general disruption: IG-BR Results .. 61 

Table 3.10 : Deterministic Longer running/dwell times - major disruption: IG-BR Results 62 

Table 3.11 : Deterministic Longer running/dwell times and Late departures - major 

disruption: IG-BR Results .................................................................................................... 63 

Table 3.12 : Summary of Experimental result of IG-BR - Deterministic (UK) - Small ...... 64 

Table 3.13 : Summary of Experimental result of IG-BR - Deterministic (UK) - Large ...... 64 

Table 3.14 : Summary of Experimental result of IG-BR - Deterministic (UK) - All .......... 64 

Table 3.15 : Thailand test instances and historical data - Deterministic (Thai) ................... 67 

Table 3.16 : Deterministic Thai - IG-BR Results ................................................................ 69 

Table 4.1 : Deterministic Longer running/dwell times - minor and general disruption: BR-

IG-LS Results ....................................................................................................................... 78 

Table 4.2 : Deterministic Late departures - minor and general disruption: BR-IG-LS Results

 .............................................................................................................................................. 79 

Table 4.3 : Deterministic Longer running/dwell times - major disruption: BR-IG-LS Results

 .............................................................................................................................................. 80 

Table 4.4 : Deterministic Longer running/dwell times and Late departures - major 

disruption: BR-IG-LS Results .............................................................................................. 81 

Table 4.5 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - Small .. 81 



Page | x  

 

Table 4.6 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - Large .. 82 

Table 4.7 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - All ...... 82 

Table 4.8 : Deterministic Thai – BR-IG-LS Results ............................................................ 83 

Table 5.1 : Deterministic Longer running/dwell times - minor and general disruption: BR-

VNS Results ......................................................................................................................... 94 

Table 5.2 : Deterministic Longer running/dwell times - minor and general disruption: BR-

VNS Results (RD) ................................................................................................................ 94 

Table 5.3 : Deterministic Late departures - minor and general disruption: BR-VNS Results

 .............................................................................................................................................. 95 

Table 5.4 : Deterministic Late departures - minor and general disruption: BR-VNS Results 

(RD) ..................................................................................................................................... 95 

Table 5.5 : Deterministic Longer running/dwell times - major disruption: BR-VNS Results

 .............................................................................................................................................. 96 

Table 5.6 : Deterministic Longer running/dwell times - major disruption: BR-VNS Results 

(RD) ..................................................................................................................................... 96 

Table 5.7 : Deterministic Longer running/dwell times and Late departures - major 

disruption: BR-VNS Results ................................................................................................ 97 

Table 5.8 : Deterministic Longer running/dwell times and Late departures - major 

disruption: BR-VNS Results (RD) ....................................................................................... 97 

Table 5.9 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Small .... 98 

Table 5.10 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Small 

(RD) ..................................................................................................................................... 98 

Table 5.11 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Large .. 98 

Table 5.12 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Large 

(RD) ..................................................................................................................................... 99 

Table 5.13 : Summary of Experimental result of BR-VNS - Deterministic (UK) - All ...... 99 

Table 5.14 : Summary of Experimental result of BR-VNS - Deterministic (UK) - All (RD)

 .............................................................................................................................................. 99 

Table 5.15 : Deterministic Thai – BR-VNS Results .......................................................... 100 

Table 5.16 : Deterministic Thai – BR-VNS Results (RD)Thai – BR-VNS Results (RD) . 101 

Table 6.1 : Stochastic Longer running/dwell times - minor and general disruption: S-IG-

BR Results .......................................................................................................................... 113 

Table 6.2 : Stochastic Late departures - minor and general disruption: S-IG-BR Results .. 113 



Page | xi  

 

Table 6.3 : Stochastic Longer running/dwell times - major disruption: S-IG-BR Results .. 114 

Table 6.4 : Stochastic Longer running/dwell times and Late departures - major disruption: S-

IG-BR Results .................................................................................................................... 115 

Table 6.5 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - Small ....... 115 

Table 6.6 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - Large........ 115 

Table 6.7 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - All ............ 116 

Table 6.8 : Stochastic Thai: S-BR-IG Results ................................................................... 117 

Table 7.1 :  Stochastic Longer running/dwell times - minor and general disruption: S-BR-

IG-LS Results ..................................................................................................................... 123 

Table 7.2 : Stochastic Late departures - minor and general disruption: S-BR-IG-LS Results

 ............................................................................................................................................ 123 

Table 7.3 : Stochastic Longer running/dwell times - major disruption: S-BR-IG-LS Results

 ............................................................................................................................................ 124 

Table 7.4 : Stochastic Longer running/dwell times and Late departures - major disruption: 

S-BR-IG-LS Results .......................................................................................................... 125 

Table 7.5 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - Small.. 125 

Table 7.6 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - Large.. 125 

Table 7.7 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - All ...... 126 

Table 7.8 : Stochastic Thai: S-BR-IG-LS Results ............................................................. 127 

Table 8.1 : Stochastic Longer running/dwell times - minor and general disruption: S-BR-

VNS Results ....................................................................................................................... 133 

Table 8.2 : Stochastic Longer running/dwell times - minor and general disruption: S-BR-

VNS Results (RD) .............................................................................................................. 133 

Table 8.3 : Stochastic Late departures - minor and general disruption: S-BR-VNS Results

 ............................................................................................................................................ 134 

Table 8.4 : Stochastic Late departures - minor and general disruption: S-BR-VNS Results 

(RD) ................................................................................................................................... 134 

Table 8.5 : Stochastic Longer running/dwell times - major disruption: S-BR-VNS Results

 ............................................................................................................................................ 135 

Table 8.6 : Stochastic Longer running/dwell times - major disruption: S-BR-VNS Results 

(RD) ................................................................................................................................... 135 

Table 8.7 : Stochastic Longer running/dwell times and Late departures - major disruption: 

S-BR-VNS Results ............................................................................................................. 136 



Page | xii  

 

Table 8.8 : Stochastic Longer running/dwell times and Late departures - major disruption: 

S-BR-VNS Results (RD) ................................................................................................... 136 

Table 8.9 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Small .... 137 

Table 8.10 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Small 

(RD) ................................................................................................................................... 137 

Table 8.11 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Large .. 138 

Table 8.12 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Large 

(RD) ................................................................................................................................... 138 

Table 8.13 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - All ...... 138 

Table 8.14 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - All (RD)

 ............................................................................................................................................ 138 

Table 8.15 : Stochastic Thai: BR-VNS Results (RD) ......................................................... 140 

Table 8.16 : Stochastic Thai: BR-VNS Results .................................................................. 140 

 

  



Page | xiii  

 

List of Figures 

Figure 2.1 : Railway planning process ................................................................................. 10 

Figure 2.2 : Two-aspect signalling (The Railway Technical Website, 2018) ...................... 15 

Figure 2.3 : Four-aspect signalling (The Railway Technical Website, 2018) ..................... 15 

Figure 2.4 : Overview scheme of Sim-optimisation approach (Juan et al., 2015) ............... 33 

Figure 3.1 : Tree search graph structure............................................................................... 38 

Figure 3.2 : Conjunctive graph ............................................................................................ 39 

Figure 3.3 : Conjunctive graph and Disjunctive graph ........................................................ 40 

Figure 3.4 : Alternative graph (a) two-aspect signalling and (a) four-aspect signalling 

(Khosravi, 2013) .................................................................................................................. 42 

Figure 3.5 : Conjunctive graph, Disjunctive graph and Alternative graph for four-aspect 

signals ................................................................................................................................... 43 

Figure 3.6 : Example for one iteration of the IG algorithm (Ruiz et al., 2007) ................... 49 

Figure 3.7 : Uniform randomisation vs. biased randomisation (Cáceres-Cruz, 2013) ........ 52 

Figure 3.8 : Apply IG biased randomised (Ruiz et al., 2007) .............................................. 53 

Figure 3.9 : London Bridge diagram developed for scheduling problem (Khosravi, 2013) 57 

Figure 3.10 : Thailand Rail Map (Thailand Trains, 2019) ................................................... 66 

Figure 4.1 : Apply local search to IG biased randomised (Ruiz et al., 2007) ...................... 75 

Figure 5.1 : Steps of basic VNS (Hansen et al., 2001) ......................................................... 87 

Figure 5.2 : First neighbourhood structure (k=1) ................................................................. 88 

Figure 5.3 : Second neighbourhood structure (k=2) ............................................................ 89 

Figure 5.4 : Third neighbourhood structure (k=3) ............................................................... 89 

Figure 5.5 : Fourth neighbourhood structure (k=4) .............................................................. 89 

 



Page | xiv  

 

List of Algorithms 

Algorithm 3.1 : Procedure for RSP IG Algorithm ............................................................... 50 

Algorithm 3.2 : Procedure for Deterministic RSP IG-BR Algorithm .................................. 54 

Algorithm 4.1 : Procedure for basic Local Search Algorithm (Orlin et al., 2003) .............. 74 

Algorithm 4.2 : Procedure for Deterministic RSP BR-IG-LS Algorithm ............................ 76 

Algorithm 5.1 : Procedure for basic VNS Algorithm .......................................................... 88 

Algorithm 5.2 : Procedure for Deterministic RSP VNS Algorithm..................................... 90 

Algorithm 5.3 : Procedure for Deterministic RSP BR-VNS Algorithm .............................. 92 

Algorithm 6.1 : Procedure for MCS ................................................................................... 109 

Algorithm 6.2 : Procedure for Stochastic RSP S-IG-BR Algorithm ................................. 110 

Algorithm 7.1 : Procedure for Stochastic RSP S-BR-IG-LS Algorithm ........................... 121 

Algorithm 8.1 : Procedure for Stochastic RSP S-BR-VNS Algorithm .............................. 131 

 

  

file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589442
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589443
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589444
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589445
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589446
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589447
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589448
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589449
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589450
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589451
file:///C:/Users/User/Desktop/Nattapol%20Thesis%20Final%20Before%20VIVA.docx%23_Toc20589452


Page | xv  

 

Glossary of Abbreviations 

 

BDS-Det = Best Deterministic Solution in Deterministic scenario 

BDS-Stoch = Best Deterministic Solution in Stochastic scenario 

BR-IG-LS = Biased Randomised Iterated Greedy Local Search 

BR-VNS = Biased Randomised Variable Neighbourhood Search 

CPP = Crew Pairing Problem 

COPs = Combinatorial Optimisation Problems 

DP = Dynamic Programming 

GA = Genetic Algorithm 

IG = Iterated Greedy 

IG-BR = Iterated Greedy with Biased Randomised 

ILS = Iterative Local Search 

IP = Integer Programming 

LP = Linear programming 

LS = Local Search 

MCS = Monte Carlo Simulation 

MILP = Mixed Integer Linear Programming 

MIP = Mixed Integer Programming 

OR = Operational Research 

RD = Relative Deviation 

RSP = Railway Scheduling Problem 

S-BR-IG-LS = Sim Biased Randomised Iterated Greedy Local Search 

S-BR-VNS = Sim Biased Randomised Variable Neighbourhood Search 



Page | xvi  

 

S-IG-BR = Sim Iterated Greedy with Biased Randomised 

S-VNS = Sim Variable Neighbourhood Search Algorithm 

SA = Simulated Annealing 

SB = Shifting Bottleneck 

SSA = Sequential Search Algorithm  

SSDP = Southeastern Service Disruption Procedure 

TS = Tabu Search 

VNS = Variable Neighbourhood Search 

VRP = Vehicle Routing Problem 

  



Page | 1  

 

Chapter 1: Introduction 

1.1. Background and Motivation 

Scheduling and rescheduling problems play a central role in day-to-day railway operations. 

Trains in a railway network are scheduled and controlled according to a timetable. 

Schedules are designed to be conflict free, that is, they should not contain any situations 

where a train is restricted in its scheduled movement by other trains. 

However, in practice not all trains run according to the schedule due to delays such as 

excessive dwell times at stations, longer running time, infrastructure and/or train faults and 

late arrival of crew. When trains do not operate according to the schedule, even by only a 

few seconds, there is an increased likelihood that they will cause conflict with other trains 

which will then also be delayed. This issue is more serious in a congested network with 

high interconnections between trains because delays will quickly propagate to the whole 

network and affect all trains in the system. 

Many countries in the world invest in technology as systems to improve reliability, 

capacity utilisation and effective response to optimise railway management which 

including train control and train traffic management systems. Moreover, the easiest and 

cheapest way to improve the rail network is an effective scheduling and rescheduling 

process since costs of constructing new infrastructures and maintenance of rolling stock are 

prohibitive. Therefore, utilisation of railway systems can be improved by creating better 

operating plans or effective rescheduling processes. 

Over the last few decades, railway traffic has expanded considerably to satisfy the increase 

in customer demand. This has created the need to optimise the use of railway 

infrastructures and improve the efficiency of railway management. The real-world rail 

network is large and complex. Railway companies cannot attain the full capacity limit of 

their infrastructures; therefore, huge opportunities exist to improve the railway process. 

The most important process in real-time operation is rescheduling to provide immediate 

decisions to respond to unexpected events. Railway scheduling problem (RSP) aim to 

decrease total train delay during execution and thereby increase customer satisfaction. In 

other words, they should be able to regenerate a new schedule within a time limit which is 

the focus of this thesis. 
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According to the literature review in Chapter 2, many OR methods have been used to solve 

RSPs including exact algorithms, heuristics and metaheuristics. These techniques include 

branch and bound (D’Ariano et al., 2007), local search (Brucker et al., 2005), Shifting 

Bottleneck (Khosravi et al., 2012), Iterative Local Search (Corman, Ariano, Marra, 

Pacciarelli, & Samà, 2017), Sequential Search Algorithm (Tian & Niu, 2019), Genetic 

Algorithms (Ping et al., 2001; Nitisiri et al. 2019), Tabu Search (Törnquist et al., 2005; 

Samà et al., 2017), Simulated Annealing (Törnquist et al., 2005), and Variable 

Neighbourhood Search (Samà et al., 2017). 

A detailed review of the related literature showed that the Iterated Greedy (IG) algorithm 

has not been used to solve the deterministic RSP but provided an effective solution in 

similar optimisation problems. Moreover, only one paper used Variable Neighbourhood 

Search (VNS) to solve the deterministic RSP (Samà et al., 2017). However, an information 

gap exists in the exploration of the combination of IG with Biased Randomised (IG-BR), 

Biased Randomised IG with Local Search (BR-IG-LS) and Biased Randomised VNS (BR-

VNS) approaches for both deterministic and stochastic RSPs. A biased randomised 

heuristic allows the generation of good quality solutions using a skewed probability 

distribution to guide the solution construction process. The local search heuristic allows an 

increase in the solution search space to improve solution quality and reduce computation 

time. 

Recently, studies on stochastic optimisation problems have used a combination of 

simulation and optimisation approaches to solve complex real-life problems and also 

helped to deal with more realistic and complex scenarios. The Sim-heuristics or sim-

metaheuristics approach is a particular case of simulation-based optimisation which 

combines a heuristic or metaheuristic algorithm with simulation approaches. The potential 

of simulation techniques has been widely proven, especially with regard to stochastic 

behaviour in a real system, previously addressed using simulation (Glover et al., 1996). A 

stochastic system is a set of dynamic interdependent components where some variable 

values change randomly. Therefore, simulation processes with stochastic variables are 

related to the basic mechanism (Juan et al., 2015). Examples of the application of  

simulation-based optimisation can be found in scheduling mechanism manufacturing 

(Chong et al., 2003; Frantzén et al., 2011), flow shop scheduling (Yang et al., 2004), job 

shop scheduling (Arakawa et al., 2003; Klemmt et al., 2009; Nicoarǎ et al., 2011; 
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Korytkowski et al., 2013), train timetabling problem (Sajedinejad et al., 2011), train transit 

problem (Hassannayebi et al., 2014). 

 

To the best of our knowledge, literature review contained no paper proposing the use of 

sim-heuristics or sim-metaheuristics to solve the stochastic RSP problem. This thesis, 

therefore, is the first to apply Sim-Iterated Greedy with Biased Randomised (S-IG-BR), 

Sim-Biased Randomised Iterated Greedy with Local Search (S-BR-IG-LS) and Sim-Biased 

Randomised Variable Neighbourhood Search (S-BR-VNS) method to the stochastic RSP 

problem to reduce total train delay. Solutions from the stochastic RSP were then compared 

to the deterministic RSP. The results showed that our simulation-based optimisation was 

more effective when compared to the deterministic RSP. Two experimental case studies 

were considered as (i) Southeastern, a train company operating passenger rail services in 

the London Bridge area, and Kent, South East of the UK by Khosravi (2013) and (ii) The 

State Railway of Thailand (2019), including four main lines as Northern line, Eastern line, 

North-eastern line and Southern line. 

In the UK, one of the main transportation modes is the railway as one of the best regions 

for railway operation. Moreover, there are several train operating companies (TOC's) in the 

UK who are operated the passenger train on the same infrastructure which provided by the 

Nation Rail, so all TOC’s work together and shared their information under the supervision 

of the Network Rail. Between 4 February 2018 and 2 February 2019 only 62.5% of trains 

arrived on time (Network Rail, 2019). Therefore, there is a huge opportunity to improve 

the performance of the UK rail network. In Thailand, most of the rail system in operation is 

old-fashioned and dates from the last century. Performance is very low and not up-to-date. 

Here, we adapted the UK railway system to improve the network in Thailand.  Moreover, 

the Thai Government predicts double the numbers of passengers by 2027 and plans to 

build new infrastructures to serve 61 provinces (Jotikasthira, 2018). This requires a new 

management system. 

Therefore, new techniques were employed as operational research for scheduling and 

rescheduling to increase the performance of railway operations and customer satisfaction 

for both the UK and Thai rail networks. 
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1.2. Aims and Objectives 

This research focused on deterministic and stochastic RSPs to reduce total train delays of 

railway networks. The RSP deals with the uncertainty of delays that occur in the railway 

process. 

For the RSP with deterministic delay, we used sets of instances or historical data. All 

delays were known in advance before we started to solve a problem. 

For the RSP with stochastic delay, we did not know the exact delay before the unexpected 

event occurred; therefore, we used a simulation model to generate the delay to the railway 

network by using probability distribution. 

This research developed optimisation models and used proposed solution methods which 

have been successful in other optimisation problems to solve both the deterministic and 

stochastic RSP. 

• For the deterministic RSP, this research aimed to implement an optimisation model 

which adapted from Khosravi et al. (2012) and algorithm which provided a better 

solution than currently used by the railway company. 

• For the stochastic RSP, we used sim-optimisation to simulation a real situation. The 

delay was randomly presented in the network to solve RSP and measure the quality and 

reliability of the solution methods. 

The overall aim of this thesis was to develop optimisation models and solution methods to 

efficiently solve both deterministic and stochastic RSPs as follows: 

• Conduct a literature review on deterministic and stochastic RSPs including railway 

planning processes, topology, signalling systems, solution methods and how to deal 

with disturbances and/or disruptions. 

• Formulate an optimisation model to solve the RSP by considering the characteristics of 

the UK and Thai railway networks. The objective function of this model was to 

minimise the total delay of all trains with consideration for train priority. In this 

research, we considered two benchmark problems collected from: 

➢ Southeastern train company, United Kingdom - the London Bridge area and Kent, 

South East of the UK by Khosravi (2013). 

➢ State Railway of Thailand (2019) - the Thai rail network including four main lines 

as Northern line, Eastern line, North-eastern line and Southern line. 
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• Implement an Iterated Greedy (IG) algorithm with biased randomisation, Biased 

Randomised IG algorithm with local search and Variable Neighbourhood Search 

(VNS) and Biased Randomised VNS to solve the deterministic RSP. 

• Formulate a stochastic optimisation model to solve the stochastic RSP by considering 

the characteristics of the UK and Thai railway networks. 

• Implement a Sim-IG algorithm with biased randomisation, Sim-Biased Randomised IG 

algorithm with local search and Sim-VNS and Sim-Biased Randomised VNS to solve 

the stochastic RSP. In addition, we selected Monte Carlo Simulation (MCS) to 

combine the IG algorithm with biased randomisation, Biased Randomised IG algorithm 

with local search and VNS and Biased Randomised VNS. 

• Evaluate the performance of optimisation models and algorithms by comparing 

experimental results with CPLEX commercial software on the UK case study and 

historical data from the company on the Thai case study. The reason of using CPLEX 

as one of our results because the fact that all case studies have not been used before in 

the literature. Therefore, the CPLEX commercial software, which provided the optimal 

solution, used to compare and evaluate the performance of the proposed solution 

methods.  

• Conduct experiments to regenerate a new schedule for controlling the railway network. 

1.3. Contributions 

This thesis developed deterministic and stochastic optimisation models and new solution 

methods to solve the RSP using two types of signalling systems based on characteristics of 

the benchmark problems as four-aspect signal (UK-RSP) and two-aspect signal (Thai-

RSP). To achieve the objectives considered in section 1.2, a summary of the main 

contributions of this thesis is provided below; full details will be explained in the study. 

A. Optimisation model for the deterministic UK-RSP and Thai-RSP 

An optimisation model which adapted from Khosravi et al. (2012) was proposed for 

solving the UK-RSP and the Thai-RSP using deterministic delays compounded in each set 

of instances. The objective is to minimise the total delay of all trains, considered two types 

of signalling constraint.  

B. Solution methods for the deterministic UK-RSP and Thai-RSP  

• Iterated Greedy with Biased Randomised (IG-BR) and Biased Randomised Iterated 

Greedy with local search (BR-IG-LS) 
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With regard to the literature, some studies indicated that the IG algorithm provided an 

effective solution in similar optimisation problems such as Task assignment (Harish et al., 

2014), Task allocation (Kang et al., 2013), Parallel machine scheduling (Ying et al., 2010), 

Freight train scheduling (Yuan et al., 2008), Non-permutation flow shop scheduling (Ying, 

2008), and Flow shop scheduling (Ruiz et al., 2008). To the best of our knowledge, the IG 

algorithm has not been used in the RSP before. This is the first study to use local search 

and biased randomisation to improve the IG algorithm for the RSP with deterministic 

delays. 

• Variable Neighbourhood Search (VNS) and Biased Randomised Variable 

Neighbourhood Search (BR-VNS) 

The VNS has been used very successfully to solve some types of optimisation problems 

such as Capacitated location routing (Derbel et al., 2011), Job shop scheduling (Liao et al., 

2007; Roshanaei et al., 2009; Zandieh et al., 2010), and Vehicle routing (Bräysy, 1999; 

Polacek et al., 2005). To the best of our knowledge, this is the first study to use a biased 

randomised technique to improve the efficiency of VNS for solving the RSP with regard to 

delays. 

C. Optimisation model for the stochastic UK-RSP and Thai-RSP 

 An optimisation model was proposed for solving the UK-RSP and the Thai-RSP using 

stochastic delays that randomly occurred in the network. The objective is to minimise the 

total delay of all trains considered by two types of signalling constraint. 

D. Sim-optimisation solution methods for the stochastic UK-RSP and Thai-RSP 

• Sim-Iterated Greedy with Biased Randomised (S-IG-BR) and Sim-Biased Randomised 

Iterated Greedy with local search (S-BR-IG-LS) 

The combination of Monte Carlo Simulation (MCS) and IG with biased randomised or 

Biased Randomised IG with local search are also called Sim-IG with biased randomised or 

Sim-Biased Randomised IG with local search. To the best of our knowledge, these two 

methods have not yet been used to solve the stochastic RSP in the literature; this is the first 

study which uses S-IG-BR and S-BR-IG-LS to solve the stochastic RSP. In addition, the 

MSC was used to prove the reliability of IG-BR and BR-IG-LS.  

• Sim-Variable Neighbourhood Search (S-VNS) and Sim-Biased Randomised Variable 

Neighbourhood Search (S-BR-VNS)  
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Some researchers used the Variable Neighbourhood Search (VNS) to solve the stochastic 

RSP to deal with unexpected delays. However, in the best of our knowledge, no one has 

adapted Monte Carlo Simulation (MCS) with the VNS algorithm before, so this is the first 

study used the combination between MCS and VNS or Biased Randomised VNS which 

can be called Sim-VNS and Sim-Biased Randomised VNS to solve the stochastic RSP. 

Then, MSC was used to measure the reliability of VNS or BR-VNS. 

1.4. Thesis Structure 

This thesis is divided into seven parts (excluding the references) covering discussion on the 

topic of RSP regarding both deterministic and stochastic delays. Basic knowledge was 

provided related to the RSP under disturbances or disruptions with focus on using the 

optimisation model to implement the new algorithm for solving the RSP. Chapter contents 

are described below: 

Chapter l  - This chapter provides the introduction, motivation, contribution, aims, 

objectives and structure as the overview of the thesis. 

Chapter 2  - Literature reviews related to the RSP are presented concerning the railway 

planning process, types of RSP, solution methods, topology, explanation of disruptions, 

signalling systems and a tree search graph method comprising the main focus points. 

Chapters 3 to 8 - This thesis can be separated into two main parts each having three 

chapters (six chapters in total). In each part, an explanation of the RSP optimisation model, 

basic knowledge of the algorithm and implementation based on different algorithms are 

used to solve real-world data from UK and Thai railways.  The experimental results are 

Part I: Deterministic RSP in the presence of uncertainties 

Chapter 3  - Iterated Greedy with Biased Randomised Algorithm for Deterministic 

RSP 

Chapter 4  - Biased Randomised Iterated Greedy with Local Search Algorithm for 

Deterministic RSP 

Chapter 5  - Biased Randomised Variables Neighbourhood Search Algorithm for 

Deterministic RSP 

Part II: Stochastic RSP in the presence of uncertainties 

Chapter 6  - Sim-Iterated Greedy with Biased Randomised Algorithm for Stochastic 

RSP 
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Chapter 7  - Sim-Biased Randomised Iterated Greedy with Local Search Algorithm for 

Stochastic RSP 

Chapter 8  - Sim-Biased Randomised Variables Neighbourhood Search Algorithm for 

Stochastic RSP 

Chapter 9  - This chapter presents the conclusion and recommendations for future 

studies. 

1.5. Chapter Conclusion 

This chapter provided the background, motivation, aims, objectives and contribution and 

showed the structure of the whole thesis. Furthermore, it also developed a clear 

understanding of the thesis structure. The literature review investigated the deterministic 

and stochastic RSP, while characteristics of RSP were used to develop an optimisation 

model. Then, the IG and VNS algorithms were adapted to solve the RSP. Finally, the 

experimental results were discussed to assess the efficiency of the algorithms. 
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Chapter 2: Literature Review 

2.1. Introduction 

This chapter focuses on the available literature regarding the train scheduling problem and 

solution methods used to solve the problem and improve solution quality.  Firstly, this 

thesis provides some knowledge on the planning process to increase understanding about 

how it is undertaken. Secondly, network topology and signalling systems are provided to 

describe the problem. Then, the previous studies on deterministic and stochastic delays 

relating to the railway scheduling problem are presented. Moreover, the classification of 

disruptions, impacts of disruptions to the rail system and ways to handle the disruptions are 

presented to show strategies which can be used to improve and regenerate a new timetable. 

Finally, the solution methods usually used to solve the RSP are provided. 

2.2. Railway planning process 

Academics have solved railway transportation problems by using operation research 

techniques since the 1950s (Beckmann et al., 1955). Jespersen-Groth et al. (2009) 

investigated disruption in railroad transportation and separated their research into three 

subtopics as train scheduling, crew scheduling and rolling stock management. The main 

train transportation problem focused on here is the train scheduling problem. All trains in a 

rail network share the same infrastructure (Khosravi, 2013), therefore the company 

requires an efficient timetable to manage the time slot for every train which also shows the 

normal operation time for passengers to track and plan their journey. However, many 

incidents can affect the timetable. If they occur, the original train timetable will break or 

require change (Nielsen et al., 2012). 

Normally, railway companies design their process by using a hierarchical structure to 

divide the required decision-making ( Lusby et al. , 2011; Bussieck, 1998) . According to 

Figure 2.1, the planning process required before the company can create a train schedule is 

shown as three different levels which are: strategic level, tactical level and operational 

level (Assad, 1980; Huisman et al. , 2005; Lusby et al., 2011) . Each level has a different 

purpose to generate train scheduling. If something goes wrong in the process, the planner 

has to return to the previous stage and re-plan it (Lusby et al., 2011; Bussieck et al., 1997). 

Details of each level are as follows: 
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2.2.1. Strategic level 

The strategic level is a long-term plan which focuses on acquisition and infrastructure and 

will be used for around 5 to 15 years (Borndörfer et al., 2012; Bussieck, 1998). This level 

of the process is used to check up and reserve the resources such as infrastructure, rolling 

stock and crew because all of these resources are shared among the rail system ( Ralf 

Borndörfer et al. , 2 0 1 2 ) . Moreover, the planning used at this level is mainly network 

planning and line planning (Lusby et al., 2011; Borndörfer et al., 2012). 

2.2.1.1. Network planning 

Network planning considers the basic railway infrastructure and company plans for 

construction and/or modification of the existing setup ( Schlechte, 2011a; Lusby et al. , 

2011). Railway infrastructure consists of two main parts as the station or junction and the 

line. The station or junction is where all trains and passengers interact, while the line 

connects two junctions (Lusby et al., 2011). Moreover, the network planning phase is used 

to check the availability of the infrastructure. Minimisation of construction cost is the goal 

of network planning (Kinder, 2008). 

2.2.1.2. Line planning 

Line planning selects a route for each train, for example, train origin, train destination, 

stops, links and cycle time (Bussieck, 1998). Train origin and destination refer to the start 

point and end point of each line; stops are stations where the train receives passengers 

between the origin and destination station. Links are crossovers to other lines and cycle 

Strategic
level

• Network planning

• Line planning

Tactical level

• Timetabling and periodic time table

• Track allocation

Operational 
level

• Train scheduling

• Train re-scheduling

Figure 2.1 : Railway planning process 
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time is the frequency of trains that should be operating within the specific time period 

(Lusby et al., 2011). Furthermore, the decision to select a line for a train should be based 

on passenger demand which is calculated using statistics to forecast the number of 

passengers between the train origin and the train destination ( Bussieck et al. , 1997; 

Schlechte, 2011a). Therefore, the main objective function for the line planning problem is 

to maximise passenger satisfaction (Lusby et al., 2011). 

2.2.2. Tactical level 

The tactical level is a mid-term plan which concerns allocation and management of all 

resources for each train; it can be used for 1 to 5 years (Borndörfer et al., 2012; Schlechte, 

2011b) . In this level, each station manages a fixed arrival time, departure time and the 

tracks for each train (Lusby et al., 2011). This plan can be used to generate a complete time 

schedule. The tactical level focuses on timetabling and track allocation problems which are 

necessary to allocate times and tracks for creation of schedules in the next stage 

(Tornquist, 2006). 

2.2.2.1. Timetabling and periodic timetable 

Caprara et al. (2007) stated that after a company sets the route and cycle time of each train          

in the line planning problem, the time slot of each train can be generated, called the train 

timetabling problem. The train timetabling problem is concerned with setting an arrival 

time and departure time for each train and reserving it to generate the full schedule 

( Schlechte, 2011a; Borndörfer et al. , 2012) . In addition to creating the timetable, the 

planner needs to allow for safety requirements such as the headway time between trains 

using the same track and crossing of train in opposite directions ( Cacchiani et al. , 2012; 

Kinder, 2008; Schlechte, 2011a) . This problem can also be categorised as a cyclic and 

noncyclic timetable. A cyclic timetable has a fixed cycle time period, while the noncyclic 

has more flexible time slots depending on time periods ( Khosravi, 2013) . Consequently, 

the train timetabling problem is used to provide the time slot of each train which meets the 

safety rules for the train company and make decisions to build train scheduling. 

Caprara et al.  (2007)  claimed that most cyclic timetabling is based on the periodic event 

scheduling problem (PESP) introduced by Serafini et al.  ( 1989) . The PESP is an event 

which occurs only in a small period of time in the cyclic timetable (only 1 or 2 cycles) and 

then the normal cycle is repeated (Cacchiani et al., 2012). This event is the set of arrival 

time, departure time and cycle time as different from the normal timetable to satisfy 
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increasing passenger demand (Kinder, 2008; Huisman et al. , 2005) . For example, during 

the rush hour or peak time of the day, the PESP will operate more trains than at other times 

( Cacchiani et al. , 2012; Kinder, 2008) . Furthermore, PESP has an objective function to 

minimise passenger dwell time at the station (Cacchiani et al., 2012; Huisman et al., 2005). 

Therefore, the PESP is used to improve satisfaction of the passengers.  

2.2.2.2. Track allocation 

After planning a route and creating a timetable for each train, the company deals with track 

allocation by using the same constraints about safety factors. The track allocation process 

is very similar to the timetabling process. The former is used to allocate a slot of time and 

the latter is used to allocate a slot of track (Schlechte, 2011a). Moreover, some logisticians 

claim that the track allocation problem and train timetabling problem are similar; they 

combine these two problems as the train timetabling problem ( Borndörfer et al. , 2007; 

Brännlund et al., 1998; Caprara et al., 2001; Caprara et al., 2002). However, some authors 

separate these facets into two sub-problems (Kroon et al., 2008; Schlechte, 2011a; Lusby et 

al., 2011). Furthermore, this step focuses on reserving an available track for trains by using 

the input of line planning and timetabling from the previous process ( Borndörfer et al. , 

2012) . For track allocation, trains should not overlap with each other if they operate 

following the timetable since one section of track cannot be used by more than one train at 

the same time. Track allocation and timetabling can be more flexible for cargo or freight 

rail operations because the arrival time and departure time are only important for the 

station loading or unloading the items. Parkes and Ungar (2001) classified type of track as 

single-track, double-track and yard section. These differences also relate to the complexity 

of a problem and may require advanced constraints for special characteristics. A single-

track is widely used for most journeys as the basic which considers only one track each 

time. A double-track refers to a pair of tracks used for operating a train in the same 

direction and allowing trains to pass each other. A yard section refers to a pair of tracks 

which are used for operating a train in the opposite direction and allowing trains to meet 

each other. In general, rail networks use double-track and yard section more than single-

track. Therefore, track allocation is the last process to create time scheduling at the 

operational level. 
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2.2.3. Operational level 

The operational level is a short-term plan which focuses on creating train scheduling, 

monitoring and then waiting for a response in real-time situations; this plan can be used for 

a day or up to a year ( Borndörfer et al. , 2012; Schlechte, 2011b) . In this stage, a train 

schedule is generated following the first two levels of planning to provide some response 

to solve real-time disruption management (Khosravi et al., 2012). At this level, problems 

mainly focus on train scheduling and train re-scheduling. 

2.2.3.1. Train scheduling 

The original train schedule is generated using the output from the first two levels as 

network planning, line planning, timetabling and track allocation (Khosravi, 2013). The 

train schedule provides a train routing which shows information about the stations between 

the start and destination point and presents a timetable which shows the arrival time and 

departure time at each Station. This stage can be called the planning decision stage because 

it combines all the outputs to create a schedule which the train company can use for a 

month or a year (Huisman et al., 2005; Schlechte, 2011a). The main purpose of the train 

schedule is to manage the rail network and show journey details to the passengers. Firstly, 

the train schedule is used to control all trains in the network for optimal operation without 

interfering with other trains (Corman et al., 2010; Gulati et al., 2016). Secondly, it provides 

details of each journey for the traveller to use to plan ahead or track the location and status 

of each train (Tornquist, 2006). Moreover, the objective function of the train scheduling 

problem is to minimise the total running time of all trains in the system by considering the 

characteristics of the rail network. Therefore, the train scheduling process is very important 

for train management to improve efficiency of the railway operations system. 

2.2.3.2. Train re-scheduling 

Train rescheduling is the last process which focuses on adjustments to the train schedule 

which are only made on a daily basis to solve real-time disturbances or disruptions such as 

weather condition, accident or crew no show (Khosravi, 2013). Management monitors how 

the trains operate following the original schedule in a real-time situation. If the rail             

network is disturbed by an unexpected event, then the rescheduling process is necessary to 

generate a new schedule (Caimi et al., 2012; Törnquist et al., 2007; Hofman, 2005). 

However, the train schedule is reset back to the original plan for the next day. The 

rescheduling process is worked out by going back to the previous levels (strategic level and 
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tactical level) and using the original plan as input to try to avoid delay propagation 

(Cacchiani et al., 2012). The main purpose of the train rescheduling problem is to minimise 

total train delay in a limited time with a small adjustment (Huo et al., 2016). Train 

rescheduling has an objective function to minimise total delays when disturbances or 

disruptions occur; however, the solution is not optimal because of the time limit. The new 

scheduling should be regenerated as quickly as possible to ensure that train operation is 

continuous without freezing the rail system (Lusby et al., 2011). Moreover, if the new 

schedule is similar to the original schedule, then this can improve customer satisfaction and 

reliability (Huo et al., 2016). Therefore, the rescheduling process is used to create a new 

timetable to manage unpredictable events that break the original time schedule. 

2.3. Network Topology 

Normally, RSP complexity can be classified using two main points as (i) size of network 

and infrastructure (topology) and (ii) trains traffic or disruptions. The network topology 

can be classified into three levels of detail concerning rail infrastructures as microscopic, 

mesoscopic or macroscopic problems (Caimi, 2009). 

• Microscopic problems provide more local detail about track and train operations. This 

level of RSP planning can generate more reliable solutions. 

• Mesoscopic problems miss some details of track and operation at the local level. 

Missing data is assumed by using data from other standard networks. Therefore, the 

results only show an overview of the planning process. 

• Macroscopic problems only consider global interdependencies over the whole rail 

system using a simplified safety model without detail on a local level. Normally, 

macroscopic timetables can be used as input for the microscopic level. 

Here, we selected network topology depending on the characteristics and propose of the 

RSP because each type has advantages over the other. In this thesis, we focused on 

microscopic level scheduling which considered track and train details. Output scheduling 

provided details of time and order of the trains on each track section. 

2.4. Signalling system 

Pachl (2009) studied signalling systems and rules of railway operations. He classified a 

signalling system into two principles dependent on number of blocks of information, 

named as one-block signalling and multiple-block signalling. In addition, track sections of 

railway are divided by signal and the section between two signals is called block. In 



Page | 15  

general, each country has their own signalling regulation dependent on the railway 

infrastructure characteristics. The signalling system is one of the most important 

components of a railway transportation system to improve the safety. 

2.4.1. Two-aspect signalling 

 

Two-aspect signalling only provide information two blocks ahead. This type of signal 

includes only two colours which are red for stop (danger) and green for clear. When a train 

has entered a block, the signal turns red. This means that other trains should stop and wait 

until the previous train leaves that block, then the signal will return to green. This type of 

signalling is commonly used in Thailand (Figure 2.2). 

2.4.2. Four-aspect signalling 

 

Four-aspect signalling is commonly used in UK railway networks. In Figure 2.3. the status 

of the next four blocks are shown as a signal colour, this means that train drivers can adjust 

the speed of the train and safely brake if an accident occurs with the previous train because 

the signalling system provides distance gaps between two trains which match safety 

Figure 2.2 : Two-aspect signalling (The Railway Technical Website, 2018)  

Figure 2.3 : Four-aspect signalling (The Railway Technical Website, 2018)  



Page | 16  

regulations. In the four-aspect signal, the signalling information of each colour is provided 

as follows (i) red for stop (danger), (ii) yellow for caution, (iii) double yellow for 

preliminary caution and (iv) green for clear. Therefore, all trains in the UK system network 

travel at a fixed speed to keep more than three blocks away from each other. 

2.5. The railway scheduling problem (RSP) under the uncertainties 

Many researchers studied the railway scheduling problem with uncertainties and separated 

it into two sub-topics depending on their input data as the deterministic railway scheduling 

problem (Deterministic RSP) and the stochastic railway scheduling problem (Stochastic 

RSP). These uncertainties include delays when the train travels, dwell time or late 

departure from the station. 

2.5.1. Deterministic RSP 

In the deterministic, input data is known before the start to find a result. Thus, running 

time, dwell time and late departure time delay should be known in advance using historical 

data and known information about the infrastructures. The deterministic scheduling 

problem has been widely studied since the mid-1950s for different types of problem, 

method and data sizes (Potts et al., 2009). 

Szpigel (1973) was the first to use a linear integer program and branch and bound 

algorithm for the deterministic railway scheduling problem. The objective function of this 

paper was to minimise total running times by using only a small test case. 

Kraft (1987) developed a deterministic train dispatching approach to minimise total delay 

based on train priority. This research aimed to regenerate a dispatching rule for the train 

when the delay occurred. 

Şahin (1999) focused on train scheduling based on inter-train conflict management with 

the aim to minimise the overall delay in the train system. A consequential delay was 

considered that propagated from other trains. The consequential delay was calculated from 

delay formulation and termed as the first train delay value. A heuristic algorithm was also 

developed to find a good solution in the shortest computation time. 

Liu et al. (2009) developed train scheduling by using a blocking parallel-machine job shop 

for both single track and double tracks. They used a case study from Queensland Rail to set 

the test instances with additional running time caused by unexpected events. The author 

provided a Shifting Bottleneck Procedure (SBP) and Feasibility Satisfaction Procedure 

(FSP) solution method to minimise the total delay. 
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Gafarov et al. (2015) studied a single-track railway scheduling problem whereby the test 

case only considered two stations. Two sets of trains run in opposite directions and all 

trains have equal speed. They stated that a single-track railway is a bottleneck point 

because two trains cannot run in opposite directions on a single track; when the first train is 

travelling on the track the second train must wait. This model was developed to solve and 

minimise the total delay. 

Samà et al. (2017) considered how to minimise train delay and avoid deadlock using 20 

instances for each test case with different initial delays from Italian, Dutch and British 

railways. The problem model used a mixed integer linear program (MILP) and 

metaheuristics to improve solution quality. 

Corman et al. (2017) proposed MILP to solve the railway traffic scheduling model and 

reduce delay in railway networks. They focused on rescheduling of real-time traffic 

management. The experimental results were based on two case studies with a set of 

deterministic delays and implemented using CPLEX and four heuristic based algorithms. 

Khadilkar (2018) used a reinforcement learning (RL) approach for bidirectional railway 

scheduling using both single-track and multi-track. The goal of this model was to minimise 

total weight tardiness and then compared results from the RL algorithm to other heuristics 

using data from the Indian rail network to reach the real-world purpose. 

2.5.2. Stochastic RSP 

The stochastic RSP has only been considered in the last ten years because it is more 

complex and harder to generate stochastic data. Random delays were generated using 

probability distribution, simulation and historical trends. The model used these values to 

solve and provide more realistic results. The main advantage of the stochastic RSP is to 

simulate the real environment whereby uncertainties randomly come into the system and 

then check that the model and algorithm work properly when used in a real situation. 

Rodriguez (2007) proposed a constraint programming model for the train routing and 

scheduling problem and used this model to find an alternative route to reduce the overall 

delays. The simulation program randomly added delays to the input data sets as test 

instances. The program ran for only 180 seconds of computation time for rescheduling. 

Kroon et al. (2008) proposed a stochastic optimisation model to improve the efficiency of 

railway scheduling with stochastic disruption. The stochastic model works by adding time 
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supplements and buffer times into the timetable. These can make a schedule more robust 

and absorb some stochastic disruption. 

Khan et al. (2010) developed a two-stage stochastic optimisation model to solve a real-time 

dispatching problem. They proposed minimising total running time and overall delays by 

considering the stochastics delay based on the Beijing-Shanghai high-speed rail in China.  

Amraoui et al. (2014) proposed a scenario-based stochastic and mixed linear programming 

model to solve the railway scheduling problem under the uncertainty of train running time. 

In their paper, a delay was randomly added to the transportation time of each train based 

on historical data. The objective function was to minimise the makespan. 

Pellegrini et al. (2014) considered optimal train routing and scheduling with MILP. The 

model proposed to minimise the delay when unpredictable events occurred. Moreover, the 

authors used two case studies from a complex junction in France to determine both 

deterministic and stochastic scheduling. For the stochastic situation, they randomly 

generated the delay based on a triangle in the Gagny area and used real data from the Lille-

Flanders Station for a deterministic approach. 

Abid et al. (2015) studied a railway scheduling problem of a single line track using the job 

shop scheduling model and branch and bound algorithm. Their model proposed minimising 

total running time using an exact lower bound rule to estimate stochastic train delays. 

Moreover, data from a real-world case study were collected from Rawalpindi to Lalamus, 

Pakistan. 

Rudan et al. (2019) applied a MILP model to reduce delay using dynamic traffic 

management to reschedule trains. Experiments were performed on the Dutch railway 

system, Netherland which consisting of 41 stations and 118 tracks. Network delays 

followed a Weibull distribution with 2 cases where 8% and 20% of the trains were selected 

to be delayed. Results were compared with other solver programs including DIP, 

SYMPHONY, CBC, GLPK and CPLEX. The CBC solution outperformed all the others. 

2.6. Classification of Disturbances/Disruptions 

Normally, the train will operate following the timetable that is created by a specialist. 

Here, this is called the original timetable. This timetable will not change unless an 

unexpected event occurs; we called that event the disturbance and disruption. Disturbance 

and disruption usually occur on a rail network and all delays cannot be avoided. 
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Disturbance and disruption can be classified into two types as the causes of the problem 

which are primary delays and secondary delays. 

Primary delays occur directly from disturbance or disruption (Shafia et al., 2012). This 

type of delay is caused by an unexpected event which occurs during the rail operation 

which cannot be avoided (Keita et al., 2016). However, a reliable schedule can be provided 

by understanding the primary delay. The way to do this is to analyse the characteristic of 

each disturbance or disruption and leave gaps in the timetable that can absorb small-sized 

delays. If the delays are too large this will require repairing/recovering or rescheduling 

(Hofman & Madsen, 2005). Examples of primary delays are accidents, weather conditions, 

disasters, failures of the infrastructure and unavailability of resources. 

After primary delays have occurred, they may spread to other trains in the same network 

such as a later train on the same track (Shafia et al., 2012) and the connection line due to 

interaction activities in the rail network (Keita et al., 2016). This can be called a secondary 

delay or knock-on delay (Jespersen-Groth et al., 2009). This delay can be avoided or 

solved by adjusting the scheduling in real-time. The event has already started and we 

already know the delay (Keita et al., 2016). Moreover, secondary delays can also be 

prevented by generating a reliable schedule; this concept is provided by the slack time in 

the timetable to limit the propagation of delay to another train (Hofman & Madsen, 2005; 

Keita et al., 2016; Shafia et al., 2012). 

2.6.1. Accidents/Collisions 

The most common disturbance types which occur in the rail process and can found daily 

are accidents and collisions ( Huo et al. , 2016; Andersson et al. , 2013) . These two basic 

disturbances provide a short-delay and small effect to the original timetable; however, both 

have a different problem source.  

Accidents are usually caused by activities of people that work in the rail network 

operation. Normally, activities that deal with people cannot be completely controlled 

because every person has a different reaction when doing the same thing. This can be 

considered as human error (Yin et al., 2016; Hofman, 2005; Jespersen-Groth et al., 2009). 

Moreover, this problem can be separated into two sides as passenger error (Andersson et 

al., 2013) and rail network staff error. Both of these are very similar and delay the train for 

only a few seconds or a few minutes (Yin et al., 2016). This type of disturbance is caused 
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by itself or considered as a primary delay, easy to solve and can prevent the reliability of 

the timetable during the planning process (Andersson, 2014). 

Moreover, collisions are not caused by the process of an individual train but through 

interaction with other trains in the rail network which share the same infrastructure 

( Andersson et al. , 2013) . These can be called secondary delays or knock-on delays 

(Jespersen-Groth et al., 2009) . This disturbance type is not hard to solve but it is hard to 

know when it occurred until the event starts because when one train in the system is 

delayed, it will affect other trains in the same line and their connection lines (Salido et al., 

2008; Hofman, 2005) . The infrastructure is limited and cannot be used at the same time 

(Yin et al., 2016). 

2.6.2. Weather conditions 

The majority of people accept that weather conditions cause large disturbances or 

disruptions for rail networks. Weather problems cannot be prevented and can cause short- 

delays, long-delays or cancellation of the train (Hofman, 2005; ; Khosravi, 2013; Amraoui 

et al. , 2014; Corman et al. , 2011; Tamannaei et al. , 2016; Jespersen-Groth et al. , 2009; 

Meng et al. , 2011; Veelenturf et al. , 2009; Huo et al. , 2016; Xia et al. , 2013) . Weather 

conditions can be separated into two parts using the weight of the problem as regular 

weather condition and extreme weather condition ( Rossetti, 2007) . Weather condition 

normally affects the speed of the train; sometimes the train driver has to reduce speed to 

meet security requirements (Amraoui et al., 2014). However, some weather conditions also 

stop rail operation such as blocking rail tracks or vision. If this occurs we need to wait until 

it is cleared (Rossetti, 2007). 

2.6.2.1. Regular weather condition 

Regular weather conditions have minimal effect on the train process and cause only minor 

delays. Examples of normal weather conditions are rain, light snow, low temperature 

(Budai-Balke, 2009), high temperature (Budai-Balke, 2009; Dobney et al., 2009; Rossetti, 

2007)  and strong wind ( Xia et al. , 2013; Rossetti, 2002) . This type of disturbance may 

require decreasing the speed of the train to be safe for passengers and not exceed the 

maximum speed level. Sometimes this may increase train travel duration from the 

estimated time in the schedule (Amraoui et al., 2014; Rossetti, 2007). Normally, security 

requirement rules are used to control train speed for safety reasons and protect passengers 

from unexpected accidents. The maximum speed that meets with security rules is 
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dependent on path and train model which have different specifications ( Hofman, 2005; 

Harrod, 2006; Yang et al., 2016). A train reduces speed because of problems such as slip, 

heat and air resistance (Rossetti, 2007). Track slip can be caused by rain (wet), snow (wet 

and/or ice) and low temperature (ice) and result in the train wheels working in a non-

effective way (Xia et al., 2013; Amraoui et al. , 2014) .  High temperature also affects the 

railway because heat from friction between wheels and track can cause fire and destroy the 

infrastructure (track and wheels) (Dobney et al., 2009). Strong winds can be split into two 

sub-types as air resistance and air support depending on train direction. All types of strong 

wind may affect the stability of the train and the driver should reduce speed ( Xia et al. , 

2013) . All regular weather conditions only cause train delays for a few minutes or a few 

seconds. These delays can be prevented by providing an extra gap of time in the train 

timetable (Schlechte et al., 2009; Cacchiani  et al., 2012). 

2.6.2.2. Extreme weather condition  

Extreme weather conditions can result in large problems or major delays to the timetable 

and cause long train delays and cancellations.  Rainstorms and snowstorms are the main 

extreme weather conditions which occur in real-world situations.  When this type of 

disruption occurs, we can only wait until it stops or decreases in level and everything 

returns to normal.  The reason why this disruption has a very large effect on the rail 

network is because it completely blocks the driver’ s vision and track, which results in a 

train shutting down their journey immediately (Rossetti, 2007). The driver’s vision is very 

important when the train is running on the track, because a driver needs to know what is 

going on in front of the train and whether the way is clear or not. When a storm occurs, the 

driver cannot see forward more than three or four metres; if a tree, vehicle, rock, animal or 

people are on the track, then the driver cannot react quickly. This may cause a big accident 

and be very dangerous for passengers ( Corman et al. , 2011) .  When the track becomes 

blocked by debris from storms or snowdrifts, the rail network must stop operations until 

the way is clear. They must use an alternative route or provide other transport 

arrangements for passengers to complete their journey (Rossetti, 2007). We cannot prevent 

this disruption and can only prepare solutions to solve these problems as smoothly as 

possible.  
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2.6.3. Disasters 

Natural disasters directly damage overall rail network infrastructure including track and 

station (Rossetti, 2002). This event occurs suddenly and provides large disruptions to the 

train scheduling, resulting in train cancellation or long delays which require rescheduling. 

Examples of natural disasters are earthquake, flood, mudslide, stonefall, fire and volcanic 

eruption ( Yin et al. , 2016; Southwell, 2012) . These issues have no specific solution but 

some can be predicted or forecast and a warning message can be provided to the 

passengers.  

Levels of disruption which affect the rail infrastructure start from blocked tracks, broken 

tracks or completely destroyed tracks ( Yin et al. , 2016) . Blocked tracks can be quickly 

repaired by railway staff but broken or destroyed main infrastructures require rail 

engineering to fix or re-build ( Southwell, 2012) . The company loses revenue, but 

reliability will not be lost through these unfortunate events if there are proper processes in 

place to solve the problem. Natural disasters cannot be predicted but we can learn how best 

to deal with them (Azad et al., 2016; Southwell, 2012). 

2.6.4. Failures due to the infrastructure 

The infrastructure is the most important part of the rail operation system. Trains cannot run 

without infrastructure. If this is limited, there may be no alternative route for continuous 

running of the train (Samà et al., 2017). Examples of infrastructure failure are signal 

failure, a break in the overhead line, error of train engine or broken tracks (Veelenturf et 

al., 2012). This type of disruption results in a long-time delay because when it occurs there 

are only two solutions to the problem.  The first is using an alternative route to drop 

passengers at their destinations and the second is to wait until engineering can fix the 

problem (Nielsen et al., 2012). Both ways usually take a long time to solve. Trains can be 

delayed more than an hour or even cancelled ( Yin et al. , 2016) . Therefore, these 

disruptions require large changes in the timetable by rescheduling all trains on the same 

route. Furthermore, the duration of the problem is not known and can only be estimated 

using historical data. Rescheduling requires real-time information (Jespersen-Groth et al., 

2009) . Moreover, this type of disruption can be minimised by regular maintenance of all 

infrastructure. However, it is difficult to plan maintenance work at high cost (Budai-Balke, 

2009). 
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2.6.5. Unavailability of resources 

Two main resources that are important for the railway process are crew and rolling stock. 

Lack of either of these resources can be the cause of train delays or cancellations and 

generate disruption ( Veelenturf et al. , 2009; Nielsen et al. , 2012) . Unavailability of 

resources which can cause disruptions include management of crew member scheduling 

such as crew sickness ( Jespersen-Groth et al. , 2009)  or delays of crew and crew strike 

action (Veelenturf et al., 2012). Crew members are vital for smooth operation and lack of 

staff causes delays (Jespersen-Groth et al., 2009). However, large disruptions are caused by 

infrastructure failure such as lack of rolling stock locomotives, carriages, wagons and 

wheels tracks (Azad et al., 2016; Khosravi, 2013) . Lack of rolling stock can increase the 

duration of engineering work Crew scheduling and rolling stock management are vitally 

important (Nielsen et al., 2012). 

2.7. Impact of Disturbances/Disruptions to the rail system 

Normally, trains operate following a timetable that is created by a specialist; we call this 

the original timetable. This timetable will not change unless an unexpected event occurs; 

this event can be called a disturbance or disruption and is classified by impact types as size 

of delay, either minor or major (Veelenturf et al., 2009). Both types of delay affect the train 

schedule and result in the train not arriving on time. There are many ways to solve this 

problem such as repairing/recovering ((Huo et al. , 2016; Hofman, 2005; Liebchen et al. , 

2009), and rescheduling (Tamannaei et al., 2016).  

2.7.1. Minor delays 

A minor delay is a small-scale delay which occurs during train operation. It can be called a 

disturbance ( Azad et al. , 2016) . Minor delays are usually caused by people such as 

passenger error or driver error; however, weather is also one of the causes of this delay 

type. When the disturbance has occurred, the train schedule must be adjusted. Only a small 

change is enough because the delay is just a few seconds or a few minutes (Yin et al., 

2016). In this type of delay, some of the effects of disturbances can be prevented in the 

original timetable by using forecasting or probabilistic based on historical data, providing 

some extra gaps of time in the timetable ( Salido et al. , 2008; Usida et al. , 2011)  or 

repairing/recovering (Huo et al., 2016; Hofman, 2005; Liebchen et al., 2009). 

2.7.2. Major delays and cancellations 

A major delay is a large-scale delay that causes a stop in the train process (Nielsen et al., 

2012). A major delay can occur suddenly and cannot be forecasted. Examples of this type 
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of delay are strong weather conditions, disasters, infrastructure failures and unavailability 

of resources (Veelenturf et al., 2012). When the disruption has occurred, the rail network 

suffers a long-time delay and this also affects other routes in the same network (Jespersen-

Groth et al., 2009). This type of delay requires a rescheduling process (Tamannaei et al., 

2016). Regular maintenance with good crew and stock management can mitigate some 

disruptions caused by infrastructure failures and unavailability of resources (Veelenturf et 

al., 2012). 

2.8. How to handle the Disturbances/Disruptions 

Many logistics specialists offer scheduling strategies to solve the railway stochastic 

scheduling problem and aim to generate a train timetable that can deal with the uncertainty. 

These strategies show how a planner can handle the disturbance or disruption event and 

they can be classified into four categories ( Van De Vonder et al. , 2007; Ouelhadj et al. , 

2009; Amraoui et al., 2014; Carvalho et al., 2016; Lambrechts et al., 2008; Fischetti et al., 

2009; Bertsimas et al., 2010; Wilson, 2016; Salido et al., 2008; Li et al., 2016; Shafia et al., 

2012)  as Reactive scheduling, Proactive scheduling, Preventive maintenance and Robust 

optimisation. These are described in more detail below. 

2.8.1. Reactive scheduling 

Reactive scheduling is used when a timetable is broken by disturbance or disruption           

activities. This strategy is used to generate a new timetable after collating all the 

information about what actually occurred to minimise train delay (Amraoui et al., 2014) . 

Furthermore, when an unexpected event occurs, decisions for rescheduling or repairing the 

schedule are made immediately (Carvalho et al., 2016; Lambrechts et al., 2008). Planners 

need to make decisions to generate new schedules as fast as possible. The priority 

dispatching rule is frequently used to make a new schedule by first selecting a train which 

has high priority. This rule is very popular because it is easy to use and gives a reasonable 

solution in short execution time (Ouelhadj et al., 2009). This category has characteristics 

that focus on real-time reaction with the uncertainty ( Van de Vonder, 2006)  and 

unexpected events are not considered before they occur (Carvalho et al., 2016). 

2.8.2. Proactive scheduling 

Proactive scheduling focuses on building the train schedule using historical information to 

predict uncertainty events through statistical knowledge, also known as “Predictive 

scheduling” (Van De Vonder et al., 2007; Lambrechts et al., 2008). Proactive scheduling 

aims to minimise the makespan or traffic frequency (Amraoui et al., 2014) and increase the 
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stability of the timetable ( Lambrechts et al. , 2008) . It should be able to absorb future 

disturbance or disruption and also make the timetable more reliable ( Van de Vonder, 

2006) ). Unfortunately, proactive scheduling cannot protect against all delays that occur 

which need to be managed when the timetable is broken (Lambrechts et al., 2008). Many 

logisticians suggest combining reactive and proactive scheduling as “Proactive- reactive 

scheduling” to solve the RSP (Van de Vonder, 2006; Lambrechts et al., 2008). Proactive-

reactive scheduling creates the original schedule through proactive planning approaches 

but uses the reactive policy to undertake rescheduling or repairing (Van De Vonder et al., 

2007). Therefore, proactive scheduling is often combined as proactive-reactive to improve 

the quality of train scheduling and rescheduling for real-time unpredictable events (Van de 

Vonder, 2006; Ouelhadj et al. , 2009) . Ouelhadj et al.  ( 2009)  suggested that proactive-

reactive scheduling might sometimes provide a new timetable which is significantly 

different from the original and decreases reliability for passengers.  

2.8.3. Preventive maintenance 

Preventive maintenance is not directly used to create rail scheduling but to increase the 

efficiency of the rail network and decrease the probability of failures due to the 

infrastructure as the cause of some major delays ( Jespersen-Groth et al. , 2009; Budai-

Balke, 2009) . Most major delays are caused by lack of infrastructure or unavailability of 

resources. These failures can be prevented by pre-planning maintenance schedules to fix 

repair infrastructure before it fails ( Jespersen-Groth et al. , 2009)  and manage the rolling 

stock (Van de Vonder, 2006). There are many ways to resolve hidden problems by repair 

or replacement to discover which spare parts are required. Pre-planned maintenance can 

improve the reliability of the train company and inform passengers in advance of any 

expected delays or schedule changes ( Budai-Balke, 2009) . Preventive maintenance is 

considered as one strategy to deal with disturbance or disruption by preventing the cause of 

the problem before it occurs. 

2.8.4. Robust optimisation 

In the last few years, many logisticians have considered ways to make train timetables 

more reliable and prevent small delays. Robust optimisation was introduced to make a 

strong timetable that can absorb unexpected events which occur during the train operation 

process (Salido et al., 2008). Robustness can be defined as a train timetable that can deal 

with an unexpected situation without significant adaptation to the original plan (Takeuchi  

et al. , 2005) . However, this case only works with a small disturbance or a low level of 
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delays. Normally, the main type of delay which occurs daily are minor delays and these 

can be absorbed by a strong, robust timetable; however, medium to large scale disruptions 

still require a rescheduling process to generate a new timetable (Li et al., 2016; Fischetti et 

al., 2009). The majority of research studies measure the degree of robustness stability using 

many factors or methods to compare between the original timetable and the simulated 

timetable and then focus on minimisation of tardiness to produce the solution (Fischetti et 

al., 2009; Bertsimas et al., 2010; Wilson, 2016; Salido et al., 2008). Only a few researchers 

used this concept to generate a robust timetable and improve the quality of service of the 

train company (Li et al., 2016; Shafia et al., 2012). 

In addition, if the company needs to get a stable time schedule, they should be considering 

a trade-off between the solution performance and timetable reliability ( Bertsimas et al. , 

2010). Salido et al. (2008) suggest three main methods that can be applied to generate a 

robustly optimised timetable are (i)  decreasing optimisation, (ii)  decreasing capacity, and 

(iii) decreasing heterogeneity. 

2.8.4.1. Decreasing optimisation 

Some small disturbances do not allow the travel duration to be calculated using maximum 

speed or slot time because when a minor delay occurs it will directly affect the network 

(Salido et al., 2008). The robustness of the timetable will be increased by providing some 

gap or extra time slot as a buffer time ( Andersson et al. , 2013; Azad et al. , 2016) . The 

buffer time will help the timetable to absorb small scale delays, as a few minutes or a few 

seconds and allow the train to follow the original timetable without any delay (Liebchen et 

al. , 2009; Nielsen et al. , 2012) .  Khosravi (2013)  suggested two types of buffer times as 

running time buffer and dwell time buffer. Both are similar; the former adds extra time to 

the theoretical travel time to absorb delays from speed reduced regulations, called a 

running time buffer, while the latter adds extra time to the dwell time at the station to stop 

minor delays propagating. However, too large a buffer time will affect the optimal result 

because a decrease in the unnecessary gap will allow the company to operate more 

journeys and gain more benefits ( Ushida et al. , 2011) . Therefore, the company should 

weigh-up optimisation and robustness of the timetable which directly connect with 

passenger reliability. The ideal is to find a balance for both the company and the 

passengers (Bertsimas et al., 2010). 

2.8.4.2. Decreasing capacity 
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For capacity level, robustness can be increased by decreasing the theoretical maximum 

capacity level of physical infrastructure (Salido et al., 2008). This enables the timetable to 

cope with an unexpected event easier and still have some spare infrastructures which can 

be used for a minor delay or an infrastructure failure (Corman et al., 2011). For example, a 

spare platform or locomotive will resolve problems such as a broken engine or all 

platforms becoming unavailable. Planners can switch to use the spare infrastructures, and 

train operations can continue without any significant delay (Harrod, 2006). However, extra 

infrastructures are very expensive and may be viewed as luxury items by train companies. 

Therefore, there is a trade-off between cost of infrastructure and robustness of timetable 

(Schlechte et al. , 2009) . Companies search for alternative ways which can save cost and 

increase reliability. 

2.8.4.3. Decreasing heterogeneity 

Heterogeneity refers to the large rail traffic caused by trains that share the same 

infrastructure but have large differences in their characteristics of average speed and 

running duration (Hofman & Madsen, 20 0 5). Freight and passenger trains also share the 

same infrastructures in large networks; this makes the timetable too complex and hard to 

control (Salido et al., 2008) and also results in delay through small headway times which 

spread to other trains in the same network (Salido et al., 2008; Vromans et al., 2006). By 

contrast, the term homogeneity is used to define trains that have similar characteristics and 

generate less train traffic (Hofman, 2005; Vromans et al. , 2006) . Both heterogeneity and 

homogeneity are directly related to the planning management stage and provide an impact 

that increases or decreases the robustness level of a timetable (Salido et al., 2008; Vromans 

et al., 2006). 

2.9. Solution methods 

This thesis focuses mainly on railway scheduling/rescheduling problems at the operational 

level of railway planning processes. Since the 1950s, scheduling problems such as machine 

scheduling and flow shop scheduling have been studied by many researchers (Potts et al., 

2009). The first paper which discussed the RSP was by Szpigel (1973) and concerned the 

exact method to solve a small case problem. Since then, many have studied the basic RSP 

with a variety of constraints for network characteristics. However, the exact method is not 

efficient for solving a huge and complex RSP with limited computation time. An 
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approximate method is required which can provide an acceptable solution in a reasonable 

time (Talbi, 2009). 

2.9.1. Exact methods 

The exact method guarantees the optimal solution for solving the optimisation problem: 

however, it usually requires extremely long computation time to solve complex, medium to 

large size problems (Talbi, 2009). Laporte et al. (1987) classified exact algorithms into 

three categories as (i) direct tree search methods such as branch and bound, branch and cut 

and branch and price, (ii) dynamic programming (DP) and (iii) integer programming (IP) 

and linear programming (LP) which are found in some commercial optimisation software 

such as CPLEX from ILOG and Xpress-MP from Dash (Talbi, 2009). Moreover, exact 

methods are usually used to solve the deterministic RSP. 

Szpigel (1973) was the first to solve an optimisation on the railway scheduling problem 

using an LP model. They proposed a branch and bound method to reschedule and minimise 

total running time to deal with traffic or disruptions which occurred in the network. With 

this problem the transit positions, departure time and speed limit of trains were known but 

it was only tested on a small case study. 

D’Ariano et al. (2007) studied a railway scheduling problem with real-time traffic 

management. They stated that when the disturbance occurred, new scheduling of the 

network should be re-computed within a limited time. They also developed a branch and 

bound method and alternative graph which they used to improve the computation speed. 

The experiment was based on a bottleneck area of the Dutch rail network. Results 

indicated that the branch and bound algorithm provided optimal or near optimal solutions 

within an acceptable time limit. 

Caimi et al. (2012) proposed an integer programming model for rescheduling in a complex 

station area. They considered a predictive control approach and many alternative routes to 

help on dispatching decision-making with the objective of maximising customer 

satisfaction. For the computation, they implemented integer programming in IBM ILOG 

CPLEX Optimiser Version 12.3, which used data from the central railway station area 

Berne, Switzerland. 

Donzella et al. (2018) solved a railway scheduling and rescheduling problem using LP 

formulations on Lingo software, aiming to reduce delays if a disturbance occurred and also 

minimise travel times of passengers to reach their destinations using alternative routing. 
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Their experiment used data from the railway network in Genoa, the capital of the Italian 

Liguria Region consisting of eight stations and considering scheduling and rescheduling of 

four different trains. Their model found the optimal solution within 30 seconds. 

Zhang et al. (2019) studied the topic of integrated optimisation of train scheduling for 

sunset-departure and sunrise-arrival trains (SDS A-trains) and maintenance planning on the 

Beijing-Guangzhou high-speed line in China. SDSA-trains depart from the origin in the 

evening and arrive at the destination the next morning which attracts more passengers for 

long travel distance. However, regular maintenance on the high-speed railway in China is 

done at night and this impacts on SDSA-train scheduling. Therefore, they proposed MILP 

models with objective function to minimise the total travel time of SDSA-trains and reduce 

the effect of regular maintenance. They implemented the MILP model using CPLEX. 

Results showed that the model solved optimality in an acceptable time. 

2.9.2. Approximate methods  

Talbi (2009) stated that “Approximate methods generate high-quality solutions in a 

reasonable time for practical use but there is no guarantee of finding a global optimal 

solution”. In real-life applications, the RSP is huge and complex because each set of data 

has their own characteristics based on their operation rule, regulation and infrastructures. 

The model was adapted depending on these constraints and this adds more complexity to 

the problem. Moreover, researchers should manage the whole railway network because 

disruption on one train will affect the whole system and the size of the problem is very 

large. Therefore, an approximate algorithm is normally applied to solve RSP. In general, 

approximate methods can be separated into two subclasses as heuristics and metaheuristics 

to solve the deterministic RSP. However, in the last two decades a simulation-based 

optimisation (sim-optimisation) has been applied to measure the realistic of using 

heuristics/metaheuristics to solve the stochastic RSP. 

2.9.2.1. Heuristics 

Talbi (2009) stated that heuristics usually find a good performance solution within 

acceptable time on large-size problem instances. Heuristics do not guarantee a feasible or 

optimal solution and are normally employed based on a rule of thumb or an educated 

guess. In addition, some heuristics are only designed to solve a specific optimisation 

problem. Some heuristics naturally relate to RSP such as local search (LS), Shifting 

Bottleneck (SB), Iterative Local Search (ILS) and Sequential Search Algorithm (SSA). 
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Brucker et al. (2005) proposed a LS to reschedule trains in cases where one track of a 

railway section consisting of two tracks in opposing directions was closed due to 

construction activities. Test results from instances of the German rail network showed that 

LS could be used to find a good and feasible solution. 

The SB heuristic was used by Khosravi et al. (2012) to solve train scheduling and 

rescheduling problems. The problem was formulated as a job shop scheduling model using 

a UK railway network case study with the aim to reschedule and minimise the total delay 

of all trains. They decomposed the problem into several single-track railway scheduling 

problems. Results confirmed that SB found a feasible solution to all instances and was a 

good choice to solve this large and complex problem. 

The ILS heuristic was provided to solve the railway scheduling and rescheduling problem 

for delay management in real-time railway traffic control (Corman et al., 2017). This paper 

mainly focused on the impact of rescheduling decisions on the quality of service perceived 

by the passengers. The experimental results were based on test cases of the real-world 

Dutch railway network and showed that this heuristic generated good quality solutions 

within a limited computation time. 

Liu et al. (2018) implemented a Lagrangian relaxation-based approach heuristics and 

CPLEX to find a good solution of the train scheduling and train connection problem, 

combined with passenger flow control strategy. They set a model which proposed to trade-

off utilisation of trains, passenger flow and number of passengers. Experimental results, 

based on three sets of instances using data from the Beijing-Yizhuang line, showed that 

Lagrangian relaxation-based approach had high performance compared with the CPLEX 

solver. Moreover, computation results also indicated that the proposed model was not 

sensitive to passenger demand. 

Tian and Niu (2019) developed SSA to solve optimised train timetables with transfer 

synchronisation for a high-speed rail network. This study had a bi-objective function which 

aimed to (i) maximise the number of connections and (ii) minimise the total transfer 

waiting time. The case study was based on data from the Chinese High-Speed Railway 

Network which has a sub-network between Beijing and Guangzhou including four double- 

track lines, three transfer stations and eight non-transfer stations. Experimental results 

showed that SSA was effective in solving this problem. 

2.9.2.2. Metaheuristics 
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According to Gendreau and Potvin (2010), metaheuristics can be defined as “high-level 

solution methods that provide guidelines to design and integrate subordinate heuristics to 

solve optimisation problems. These high-level methods characteristically focus on 

strategies to escape from local optima and perform a robust search of a solution space. 

Most of them are based, at least partially, on a neighbourhood search and the degree to 

which neighbourhoods are exploited varies according to the type of method.” 

Metaheuristics are approximate methods that do not guarantee to reach an optimal solution 

or know how near the solution is to the optimal solution. Metaheuristics provide an 

acceptable solution in a reasonable time for solving complex and large sized optimisation 

problems (Chica et al., 2017). Unlike heuristics, metaheuristics are general purpose 

algorithms which are easily applied to any optimisation problems (Talbi, 2009). 

Metaheuristics have been used in the RSP as Genetic Algorithms (GA), Tabu Search (TS), 

Simulated Annealing (SA) and Variable Neighbourhood Search (VNS). 

A GA for the railway dispatching problem was presented by Ping et al. (2001). They 

experimented with a case based on the double track of Guangzhou to Shenzhen high-speed 

railway, with the aim of adjusting the railway scheduling and minimising the total delay of 

all trains. Results confirmed that the GA was efficient for this large size real-world 

problem in terms of computation time and solution. 

Törnquist et al. (2005) applied two well-known metaheuristics algorithms as TS and SA 

separately to solve a railway traffic control problem that dealt with the uncertainty of 

disturbances. They formulated a MILP model to solve the RSP. This paper had a multi-

objective to (i) minimise the total delay and (ii) minimise costs due to the types of delays. 

After experimentation, results confirmed that TS was outperformed by SA in the analysis 

of how each type of unpredictable event affected the total delay value. 

Wang et al. (2015) studied a train scheduling problem for an urban rail transit network. 

They focused on three types of events as departure, arrival and change in passenger arrival 

rate. They also considered passenger transfer behaviour such as walking and transfer times. 

Their model aimed to trade-off between total passenger travel time and trains’ energy 

consumption. Results showed that both sequential quadratic programming (SQP) and GA 

were able to solve this problem. Moreover, SQP had better trade-off between performance 

and computational time than GA. 
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Samà et al. (2017) considered a train scheduling and routing problem using three types of 

solvers as the AGLIBRARY optimisation solver, TS and VNS. The problem was a railway 

traffic situation and they tried to improve the solution by rerouting or rescheduling with the 

objective function of the model to minimise train delays. The implementation started from 

a branch and bound algorithm to find an initial solution for the railway scheduling problem 

with fixed routes and then applied VNS and TS to solve train scheduling and routing 

problems for three case studies from Italy, the Netherlands and the United Kingdom. 

Results showed that VNS was outperformed when compared to TS and the AGLIBRARY 

optimisation solver. 

Hassan and Reynolds (2018) proposed GA to schedule and optimise on the Roy Hill’s Ore 

Train railway network, Western Australia. This paper aimed to minimise total running time 

of transporting iron ore to maximise revenue. GA provided better results compared to 

company’s current solutions. 

Nitisiri et al. (2019) implemented a parallel multi-objective GA with learning-based 

mutation to solve RSP. This paper aimed to increase the quality of service through two 

objective functions which were (i) minimise the average passenger waiting time and (ii) 

maximise the number of operating cycles. Two sets of experiments were based on a small 

case of the Bangkok Airport Rail Link (ARL) transit line in Thailand and a larger case of 

the Thailand Bangkok Rapid Transit System (BTS) transit network. Results showed that 

the proposed algorithm decreased average waiting time of the schedule and computation 

time. 

2.9.2.3. Simulation-based optimisation (Sim-heuristics/metaheuristics) 

Glover et al. (1996)  introduced new methods which combined simulation and optimisation 

approaches together called Simulation-based optimisation (Sim-optimisation) to solve a 

real-world complex case study and measure the efficiency of the optimisation methods.  

Figure 2.4 presents the overview picture of sim-optimisation. This algorithm has two parts 

which are stochastic nature and optimisation nature. Firstly, it works by using a simulation 

model to generate some random variables to the optimisation problem for simulating a real 

stochastic environment. The stochastic variable was set by using two steps as (i) choose a 

specific variable and (ii) define a probability distribution. Secondly, we used a heuristics or 

metaheuristics approach to find a near-optimal solution and then repeated these two phases 

until the end of the computation time limit. Therefore, the method provided n number of 
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solutions to find an average of the objective function value (Glover et al., 1996; Glover et 

al., 1999). The increase in number of runs will increase reliability of a solution, however it 

also needs more computation time (April et al., 2003). 

 

These methods have been used successfully in other approaches such as manufacturing 

problem (Chong et al., 2003; Klemmt et al., 2009; Frantzén et al., 2011), flow shop 

scheduling problem (Yang et al., 2004), and job shop scheduling problem (Arakawa et al., 

2003; Nicoarǎ et al., 2011; Korytkowski et al., 2013). 

To the best of our knowledge, Sajedinejad et al. (2011) is only one who used a sim-

optimisation to solve a railway problem. They focused on finding a near-optimal train 

timetable using Enterprise Dynamics (ED) as commercial simulation software and GA to 

minimise total train running time. A large-scale network based on capacity, train and 

infrastructure characteristics was used as a case study. Hassannayebi et al. (2014) also 

proposed a sim-optimisation method on GA to solve the railway transit problem. The ED 

Figure 2.4 : Overview scheme of Sim-optimisation approach (Juan et al., 2015) 
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was used to simulate a stochastic number of passengers, running time and dwell time. This 

paper aimed to minimise the average passenger dwell time at the stations by considering 

uncertainties. 

2.10. Chapter Conclusion  

This chapter provided a railway planning process as RSP under the uncertainties of 

topology of network, signalling system, disruption management, how to handle the RSP 

and solution methods of RSP. The signalling system helped to identify characteristics of 

the problem when creating the model for solving the RSP.  

Generally, the RSPs are usually classified into two main types based on their input data as 

the deterministic RSP and the stochastic RSP. Basic knowledge was provided on the 

topology of network, classification of disruption, impact of disruption and ways to handle 

them. All these data can help to present an overview of disruption management.  

Then, a review of solution methods for solving the RSP by various types of algorithm was 

discussed using exacts, heuristics, metaheuristics and sim-optimisation methods. 

Therefore, all knowledge from the literature reviews will be applied and used in the next 

chapter of the thesis to solve RSP with deterministic and stochastic of uncertainties delay. 
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Chapter 3: Iterated Greedy with Biased Randomised (IG-BR) for deterministic RSP 

3.1. Introduction 

In the deterministic RSP, all disruptions which we considered such as running time, dwell 

time and late departure time delay should be known in advance as the input data before the 

start to solve the problem, this can be called as deterministic delays. The deterministic RSP 

is a large and complex combinatorial optimisation problem (COP) because it deals with 

complex infrastructures, large amounts of data and decision variables which directly affect 

the difficulty of decision-making by management. An optimisation model is defined to 

consider all characteristics of the railway network, which are defined in terms of objective 

function, decision variable and constraints mainly comprising headway and signalling. The 

headway constraints are formulated for both following and opposite trains, and signalling 

constraints are only considered for the consecutive trains. Signalling constraints use to 

managing the necessary buffer time between two following train depend on the network 

signalling system of each country. Due to the complexity of the RSP, it is very hard to find 

optimal solutions for the problems, therefore this study intends to formulate RSP in order 

to use the heuristics and metaheuristics algorithm to solve the problem. 

The IG algorithm is a heuristic that was introduced to solve the permutation flowshop 

scheduling problem to minimise the makespan. Results showed that IG was very effective 

in providing a new best solution (Ruiz et al., 2007). IG algorithms have been used 

successfully to solve many COPs; however, the RSP can be considered as a job shop 

scheduling problem or machine scheduling problem. According to safety regulation, each 

block can operate only one train at a time which is similar to a job shop scheduling 

problem where only one job can be processed at a time on a machine. Using this analogy, 

trains are presented for jobs and blocks are considered as machines. Furthermore, Ying et 

al. (2010) proposed an IG algorithm to solve a parallel machine scheduling problem 

considered with a dependent setup time. Results revealed that the IG heuristic provided a 

high performance when compared to the literature by using the same benchmark problem. 

Moreover, Bresina (1996) and Cáceres-Cruz (2013) claimed that biased randomisation 

(BR) can help to improve the solution of any heuristics by performing a diversified 

exploration of the solution space. Therefore, in this chapter, we propose an IG-BR 

algorithm to solve the RSP that deals with a deterministic delay.  

In this chapter, the basic concept of IG and BR algorithm is discussed as a heuristic 

method that is widely studied to improve the efficiency of COPs. A method to use IG-BR 
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to solve a deterministic RSP is also presented. Explanations of each case study are 

presented in detail. Data were collected from the UK and Thailand rail networks. 

Experimental results showed the efficiency of the proposed methods and how they 

improved a real-life case study with short computation time. 

The chapter is structured as follows: Section 3.2 presents the chapter contributions and the 

deterministic RSP optimisation model is proposed ln section 3.3. Section 3.4 presents the 

proposed IG with the BR algorithm to solve RSP with deterministic disruption delays. Data 

collection, test instances and all the experiments results are presented in section 3.5. 

Results are separated into two case studies (UK & Thailand) while section 3.6 concludes 

this Chapter. 

3.2. Contribution 

In the literature, the IG algorithm has been used successfully and effectively to solve many 

OR problems such as Task assignment (Harish et al., 2014), Task allocation (Kang et al., 

2013), Parallel machine scheduling (Ying et al., 2010), Freight train scheduling (Yuan et 

al., 2008), Non-permutation flow shop scheduling (Ying, 2008), and Flow shop scheduling 

(Ruiz et al., 2008). Since IG has been adapted successfully for many COPs, it is suitable to 

combine with other techniques to improve the solution of the IG algorithm and the BR 

technique was selected. The BR with some heuristics was first introduced by Bresina 

(1996) who used Heuristic Biased Stochastic Sampling as a search technique for a 

scheduling problem which outperformed in a small size case study. Moreover, Cáceres-

Cruz (2013) claimed that the BR technique can add diversity to the main algorithm. 

Other reasons behind using the IG-BR heuristic to solve deterministic RSP were that the 

IG algorithm is easy to implement, parameter free and easy to adapt to different sizes and 

types of problem. Furthermore, the BR algorithm is not a complex process and is fast in 

terms of computation time, easy to combine with every algorithm and can provide 

randomised behaviour for the search space. 

To the best of our knowledge, the combination of IG and BR has not been used in the RSP 

before; therefore, this is the first study to use biased randomised to improve the IG 

algorithm for the RSP dealing with delays. 
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3.3. Deterministic RSP optimisation model 

The RSP optimisation model has been modelling tree search graph model to describe the 

characteristics of the rail network and used it to develop an optimisation model to solve the 

deterministic RSP. 

3.3.1. Tree search graph 

Roy and Sussmann (1964) introduced the disjunctive graph to solve the scheduling 

problem. They proposed the concept of conjunctive graph and disjunctive graph to model 

the job shop scheduling problem for minimising the makespan. Furthermore, the concept 

of an alternative graph was provided by Mascis et al. (2002) to solve a job shop scheduling 

problem by adding extra arcs called alternative arcs to consider blocking and no-waiting 

time constraints. However, in this thesis, we used a tree search graph to model a RSP by 

using the longest path search to find the delay of each train. Figure 3.1 below shows an 

overview of the basic tree search structure.   

 

The graph G = (N,A) is described with a set of nodes shown by N set of conjunctive arcs A. 

In Figure 3.1, a value is shown by a node (i,m) in set N, where i refers to number of 

branches and m refers to number of elements. Set N has two types of nodes as actual and 

virtual. Virtual nodes contain two special nodes, namely a start node S and an end nodes Vi. 

The set of arcs A uses a solid line with one direction arcs that refers to the direction 

between all elements of branches i. For example, a line between (i,m) and (i,n) with the 

Branches 

pim = 0 

Figure 3.1 : Tree search graph structure 
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direction point to (i,n) means in branches i, an element m starts before the element n. 

Moreover, values at the arcs pim are equal to arc lengths between two elements in the same 

branch. Finally, the number of arcs that connect from the start node show as the number of 

branches in this figure, indicated by a rectangular red dashed line. 

In addition, we compared characteristics and structure between the tree search graph 

(Figure 3.1) and railway scheduling problem as shown in Table 3.1 as follows: 

Tree Search Railway scheduling 

Nodes (Branches and Elements) Operation (Trains and Blocks) 

Arcs Blocks 

Arc lengths Running/Dwell time and Departure from origin 

Branch Route 

Table 3.1 : Comparative structure between Tree Search and Railway scheduling 

3.3.1.1. Conjunctive arcs 

 

The graph G = (N,A) is described with a set of nodes shown by N set of conjunctive arcs A. 

In a Figure 3.2, an operation is shown by a node (i,m) in set N, where i refers to number of 

trains and m refers to number of blocks. Set N has two types of nodes as actual and virtual 

nodes. In virtual nodes there are two special nodes, namely a dummy source S and dummy 

sinks Vi. The set of conjunctive arcs A uses a solid line with one direction arcs which refers 

Figure 3.2 : Conjunctive graph 
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to the direction and route sequence between all blocks of train i. For example, a 

conjunctive line between (i,m) and (i,n) with the direction point to (i,n) means train i 

should be travelling from m to n.  

Moreover, the values of the length of the conjunctive arcs are equal to the running/dwell 

time pim of the train between two stations. However, arcs which connect the dummy source 

node S to the first operation of each train route is different; the length of these arcs can be 

used to identify the departure time ri of train i. On the RSP, the value of departure time ri 

should be fixed, because all trains need to travel after the departure time in a schedule. 

At the dummy sinks Vi, the expected arrival time di has been set and fixed in the schedule. 

If we sum up the departure time ri and running/dwell time pim of the train i, this 

formulation provides an actual arrival time Ci of train i to its destination. Then, we 

considered if the train i has an actual arrival time Ci before the scheduled arrival time di to 

the destination. If not, it means that the train was delayed and has a train delay Ti. 

Therefore, Equation 3.1 below shows how to calculate the delay of each train i. 

𝑇𝑖 = max(𝐶𝑖 − 𝑑𝑖  ,  0)                                                             (3.1) 

3.3.1.2. Disjunctive arcs 
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Figure 3.3 : Conjunctive graph and Disjunctive graph 
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In Figure 3.3, the disjunctive arcs have been added into the previous conjunctive graph 

model (Figure 3.2). Pinedo et al. (1999) introduced the disjunctive graph to solve a job 

shop scheduling problem with jobs that have different release times. Therefore, this thesis 

adapted the disjunctive graph concept to add the headway constraints into the basic RSP 

model. The headway constraint refers to a dwell time between two consecutive trains (𝑖, 𝑗) 

that operate in the same block 𝑚, this time is called headway time (ℎ𝑖𝑗
𝑚). On Figure 3.3, the 

graph G = (N,A,B) is described each operation (i,m) represented by N, set of conjunctive 

arcs A, dummy source node S, dummy sinks node Vi, running/dwell time pim, and departure 

time ri are the same. A set of disjunctive arcs B are added by using a dash line indicating 

bidirectional arcs referring to the headway constraints (ℎ𝑖𝑗
𝑚), and the path choice. For 

example, the disjunctive arcs between (i,m) and (j,m), the bidirectional arcs which means 

that the model needs to choose one direction for the bidirectional arcs to fix the order of 

two trains i and j. If we choose the direction to (j,m), this means train i has to operate 

before train j in the block m. Otherwise, train j has to operate before train i in the block m. 

In this RSP case study, the values at the length of the disjunctive arcs are shown in the 

headway (ℎ𝑖𝑗
𝑚) between two consecutive trains which operate in the same block m. 

To have a clear view of the disjunctive arcs, we drawn them in a different colour for each 

station. The delay of each train has been calculated the same as the section 3.3.1.1 

(equation 3.1); however, we need to consider both the conjunctive and disjunctive arcs by 

using longest path calculations. The departure time of the train to the next station rim was 

calculated by finding a maximum between the sum of all previous running/dwell time in 

their own route of train i (conjunctive graph), and a sum of all previous running/dwell time 

and headway time of the corresponding train j (disjunctive graph).  

3.3.1.3. Alternative arcs 

The alternative graph was first introduced to solve the scheduling by Mascis et al. (2002). 

In this thesis, we used alternative arcs to model train scheduling. A clear picture of applied 

alternative graph for RSP is shown in Figure 3.4 (a) two-aspect signalling system 

(D’Ariano et al., 2007) and Figure 3.4 (b) four-aspect signalling system (Khosravi et al., 

2012). A pair of alternative arcs is applied to tree search model when two trains i and j 

need to operate on the same block m, they need to wait for the green signal from the other 

train. If (i,m) and (j,m) are two trains which require to enter the same block, we set (i, 

𝑆𝑖(𝑚)) and (j, 𝑆𝑗(𝑚)) as their set of next successor operation in a sequence of train i or j 
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for two-aspect signalling and set of next three successor operations in a sequence of train i 

or j for four-aspect signalling. In addition, the next successor operation or next three 

successor operations refer to the next block or next three blocks that will be traversed by 

train i or j. In this pair of alternative arcs, we need to choose only one arc from node (i, 

𝑆𝑖(𝑚)) to (j,m)  or the arc from node (j, 𝑆𝑗(𝑚)) to (i,m). 

The way to select one of the alternative arcs is dependent on the disjunctive arcs that we 

choose. Figure 3.4 shows that if we choose disjunctive arc from to (i,m) to (j,m), that 

means we also have the alternative arc from node (i, 𝑆𝑖(𝑚)) to (j,m), otherwise select the 

alternative arc from node (j, 𝑆𝑗(𝑚)) to (i,m). For example, the set of next operation 𝑆𝑖(𝑚) 

for two-aspect signalling is shown in Figure 3.4(a) as 𝑚 = {2} and the set of the next three 

operations 𝑆𝑖(𝑚) for four-aspect signalling are shown in Figure 3.4(b) as 𝑚 = {2, 3, 4}. 

Moreover, the length of all alternative arcs is equal to zero, because it is only used for 

making node connections to each other and for adding signalling constraints to a model. 

 

For the calculation example, if we scheduled operation (i,m) before operation (j,m), we 

need to sum up a running/dwell time of the current operation (i,m), and next operations in a 

sequence of train i for two-aspect signalling or sum up until the next three operations in a 

sequence of train i for four-aspect signalling (∑ 𝑝𝑖𝑘(𝑖,𝑘)∈ 𝑆𝑖(𝑚) ). Therefore, the operation 

(j,m) can only wait and start after the signalling constraints (∑ 𝑝𝑖𝑘(𝑖,𝑘)∈ 𝑆𝑖(𝑚) ), which means 

the next block is free to enter, in other words the signal light should be turned to green. 

Figure 3.4 : Alternative graph (a) two-aspect signalling and (a) four-aspect signalling (Khosravi, 2013) 
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In Figure 3.5, alternative arcs have been added into the conjunctive graph, and disjunctive 

graph model (Figure 3.3). The graph G = (N,A,B,C) is described, each operation (i,m) is 

represented by N, set of conjunctive arcs A, set of disjunctive arcs B, dummy source node 

S, dummy sinks node Vi, running/dwell time pim, departure time ri, and headway time ℎ𝑖𝑗
𝑚

 

are the same. In our RSP case study, a train needs to wait at the station until the signalling 

turns green. Therefore, the set of alternative arcs C is added by using a long red dashed line 

with one direction arcs referring to signalling constraints and path choice. For example, if 

we order train 1 before train 3 at station 1, train 3 should be waiting and depart from 

station 1 after train 1 arrives at station 4 or operation node (1,4). This can be calculated by 

the sum of running/dwell time pim of train 1 from station 1 to 4 (5 + 3 + 2 = 10); a clearer 

picture of alternative arcs is shown in Figure 3.5. 

Moreover, we also studied about how to develop the RSP model by using the Tree search 

graph method which includes all objective functions and constraints, especially headway 

and signalling constraints. 
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Figure 3.5 : Conjunctive graph, Disjunctive graph and Alternative graph for four-aspect signals 
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3.3.2. Optimisation model 

In the deterministic RSP optimisation model, we considered the disruptions which are (i) 

departure time delay and (ii) running time and dwell time delay. Both types of delay were 

added into the parameters below as the input data before solving the problem: 

𝑟𝑖 departure time of train 𝑖 from its origin 

𝑝𝑖,𝑚𝑖,𝑘
 indicate the running time of train 𝑖 on the block 𝑚 at the position 𝑘, for 

𝑘 = 2,  3,  … ,  𝑙𝑖 

Table 3.2 : List of parameters for adding the uncertainties delay value 

 

We added the departure time delay into expected departure time 𝑟𝑖, then added the running 

time and dwell time delay into the running time of train 𝑖 on the block 𝑚 at the position 𝑘  

𝑝𝑖,𝑚𝑖,𝑘
. 

The following table shown more parameters and decision variables of the general 

optimisation model for the RSP. 

I set of trains 

M set of blocks denoted by 𝑀 = {1,  2, …  , 𝑚} 

𝑖, 𝑗 indicate for trains 𝑖 = {1,  2, …  , 𝐼} and 𝑗 = {1,  2, …  , 𝐽} 

𝑑𝑖 scheduled arrival time of train 𝑖 at its destination 

𝑤𝑖 importance weight of train 𝑖 

𝑡𝑖,𝑚𝑖,𝑘
 indicate the depart time of train 𝑖 on the block 𝑚 at the position 𝑘, 

for 𝑘 = 2,  3,  … ,  𝑙𝑖, where 𝑙𝑖 is the last block of sequence 

𝑔𝑖𝑚 indicate the depart time of train 𝑖 on block 𝑚 

𝑝𝑖𝑚 running/dwell time for train i on block m 

ℎ𝑖𝑗
𝑚

 required time delay (headway) between two consecutive trains (𝑖, 

𝑗) that operate in the same block 𝑚 

(𝑚𝑖1,   𝑚𝑖2,  … ,   𝑚𝑖,𝑙𝑖
) sequence of blocks (routes) to be traversed by train i, where 𝑙𝑖 is 

the last block of sequence 

(𝑖,  𝑚) Train and block indices, for 𝑖 ∈ 𝐼, and 𝑚 ∈ 𝑀 

𝒪 set of operations defined by indices (𝑖,  𝑚), for 𝑖 ∈ 𝐼, and 𝑚 ∈ 𝑀 

𝑠𝑖(𝑚) the immediate successor block (the third successor block) of 

(𝑖,  𝑚) for two-aspect signalling (four-aspect signalling) 
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𝑆𝑖(𝑚) a set containing train and block indices (𝑖,  𝑚) for two-aspect 

signalling, additionally containing the indices of its immediate 

and second successor operations for four-aspect signalling 

𝑛𝑖𝑠𝑖(𝑚) indicate the depart time of train 𝑖 on immediate successor block 

(the third successor block) of (𝑖,  𝑚) for two-aspect signalling 

(four-aspect signalling) 

𝑇𝑖 delay of train 𝑖 which occurred when the actual arrival time 𝐶𝑖 of 

train is greater than its expected arrival time 𝑑𝑖 

𝑥𝑖𝑗
𝑚 binary variable to determine the order of train that operate on the 

same block, where 𝑥𝑖𝑗
𝑚  equal to 1 when train 𝑖 operate on block 𝑚 

before train 𝑗, otherwise 𝑥𝑖𝑗
𝑚 equal to 0 

Table 3.3 : List of parameters and decision variables in the mathematical model formulation 

The RSP optimisation model was adapted from the classical job shop scheduling model 

with some additional constraints, and called this Modified Blocking Job Shop Scheduling 

(MB-JSS) model (Khosravi, 2013), which was also developed from the tree graph search 

model. In this problem, we assume that a set 𝐼 is the set of trains which are operated on a 

set of blocks 𝑚 denoted by 𝑀 = {1, 2, … , 𝑚}. Moreover, i and j are used to indicate for 

each train, where 𝑖 = {1, 2, … , 𝐼} and 𝑗 = {1, 2, … , 𝐽}. Each train 𝑖 should travel in the 

specific order as (𝑚𝑖1, 𝑚𝑖2, … , 𝑚𝑖,𝑙𝑖
), where 𝑙𝑖 is the last block of sequence. When each 

train starts on the block it must finish without any interruption (no pre-emption is allowed). 

Each train has its departure time 𝑟𝑖. All trains can start after the departure time and have a 

fixed running/dwell time 𝑝𝑖𝑚 to the next block, where (𝑖, 𝑚) indicates to train and block, 

for 𝑖 ∈ 𝐼, and 𝑚 ∈ 𝑀. In addition, one block can only operate one train at a same time. 

The objective is to find the sequence of train on each machine which provides a minimised 

total weighted of train delays ∑ 𝑤𝑖𝑇𝑖, let 𝑇𝑖 be a train delay which occurred when the actual 

arrival time 𝐶𝑖 of any train is greater than its expected arrival time 𝑑𝑖, mean the train delay 

was occurred, therefore the train delay was calculated by 𝑇𝑖 = max(𝐶𝑖 − 𝑑𝑖 , 0), where 𝑤𝑖 

is the priority of each train. The actual arrival time 𝐶𝑖 was calculated from the depart time 

of train 𝑖 on the block 𝑚 at the last block of sequence 𝑙𝑖 plus the running time at that 

position, which is 𝑡𝑖,𝑚𝑖,𝑙𝑖
+  𝑝𝑖,𝑚𝑖,𝑙𝑖

.  Moreover, we set 𝑡𝑖,𝑚𝑖,𝑘
 to indicate the depart time of 

train 𝑖 on the block 𝑚 at the position 𝑘, for 𝑘 = 2, 3, … , 𝑙𝑖 , and 𝑝𝑖,𝑚𝑖,𝑘
 to indicate the 

running/dwell time of train 𝑖 on the block 𝑚 at the position 𝑘, for 𝑘 = 2, 3, … , 𝑙𝑖. 
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According to the rail network regulations, we also need to consider the safety reasons 

which are headway and signalling.  The headway is the required dwell time between two 

consecutive trains that operate on the same block ℎ𝑖𝑗
𝑚

, where 𝑖, 𝑗 is used to indicate the 

number of trains, and 𝑚 is used to indicate the number of blocks. Then, the train needs to 

stay at the previous block until the next block is available (green signal is shown). In the 

UK, we have used four-aspect signalling system which considers that the next four blocks 

should be free, so let 𝑠𝑖(𝑚) be the third successor block. However, in Thailand, we have 

considered the two-aspect signalling system which considers that the next two blocks 

should be free, so let 𝑠𝑖(𝑚) be the next successor block. 𝑆𝑖(𝑚) a set of containing blocks 

for two-aspect signalling or four-aspect signalling.  In addition, the signalling constraints 

are depended on the characteristics of safety regulations in each country. This method can 

be adapted to use for all countries by changing the number of blocks in a set of containing 

blocks 𝑆𝑖(𝑚). Moreover, a block can be occupied by only one train at a time according to 

line blocking which is a safety regulation for train management. 

Furthermore, we set 𝑥𝑖𝑗
𝑚 as a binary variable to determine the order of trains that operate on 

the same block, where 𝑥𝑖𝑗
𝑚  is equal to 1 if train 𝑖 operates on block 𝑚 before train 𝑗, 

otherwise 𝑥𝑖𝑗
𝑚 is equal to 0. Then, let 𝒪 be the set of operations indicated by (𝑖, 𝑚), for 𝑖 ∈

𝐼, and 𝑚 ∈ 𝑀, and let 𝒩 be the large amount of positive number.  

Generally, in order to minimise the total weighted delay of the train, a mixed integer linear 

programming (MILP) model is developed to solve the problem as following: 

         𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑧 =  ∑ 𝑤𝑖𝑇𝑖                                                                                           (3.2)

𝑖 ∈𝐼

 

Subject to: 

𝑇𝑖 ≥  𝑡𝑖,𝑚𝑖,𝑙𝑖
+  𝑝𝑖,𝑚𝑖,𝑙𝑖

− 𝑑𝑖                                                 𝑖 ∈ 𝐼                                              (3.3) 

𝑡𝑖,𝑚𝑖,1
≥  𝑟𝑖                                                                             𝑖 ∈ 𝐼                                              (3.4) 

𝑡𝑖,𝑚𝑖,𝑘
≥ 𝑝𝑖,𝑚𝑖,𝑘−1

+  𝑡𝑖,𝑚𝑖,𝑘−1
                                              𝑖 ∈ 𝐼;    𝑘 = 2, 3, … , 𝑙𝑖                (3.5) 

𝑔𝑗𝑚 −  𝑡𝑖𝑚 +  𝒩(1 − 𝑥𝑖𝑗
𝑚) ≥ max{𝑝𝑖𝑚, ℎ𝑖𝑗

𝑚}                (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                     (3.6) 

𝑔𝑖𝑚 −  𝑡𝑗𝑚 +  𝒩(1 −  𝑥𝑗𝑖
𝑚) ≥ max{𝑝𝑗𝑚, ℎ𝑗𝑖

𝑚}               (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                      (3.7) 
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𝑔𝑗𝑚 −  𝑛𝑖𝑠𝑖(𝑚) +  𝒩(1 −  𝑥𝑖𝑗
𝑚) ≥ ∑ 𝑝𝑖𝑘

(𝑖,𝑘)∈ 𝑆𝑖(𝑚)

           (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                      (3.8) 

𝑔𝑖𝑚 −  𝑛𝑗𝑠𝑗(𝑚) +  𝒩(1 −  𝑥𝑗𝑖
𝑚) ≥ ∑ 𝑝𝑗𝑘

(𝑗,𝑘)∈ 𝑆𝑗(𝑚)

         (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                       (3.9) 

𝑥𝑖𝑗
𝑚 + 𝑥𝑗𝑖

𝑚 = 1                                                                     (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                     (3.10) 

𝑥𝑖𝑗
𝑚 ∈ {0, 1}                                                                          (𝑖, 𝑚), (𝑗, 𝑚)  ∈ 𝒪                     (3.11) 

𝑇𝑖 ≥  0                                                                                    𝑖 ∈ 𝐼                                            (3.12) 

According to above optimisation model, (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2) is the objective function which 

minimises the total weighted of train delays. The train delay of each train is calculated by 

constraints (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3) as the actual arrival time minus the expected arrival time. 

Constraints (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4) ensure that all trains cannot start before their departure time. 

The conjunctive constraints are shown in (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.5), which set that each train 

operates in the specific order sequence; the departure time of each train on each block 

should be calculated from the departure time of previous block plus the running/dwell 

time. 

The disjunctive constraints are defined in (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6) and (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.7), these 

formulas identify the sequence of the different trains in the same block and adapt to 

provide a minimum headway between two consecutive trains. 

The alternative constraints (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.8) and (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.9) are adapted to define the 

signalling system.  All trains should wait at the previous block until the next block 

available. 

In (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.10), the constraints set that the train can only appear once on each block. 

Decision variable is defined in (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.11) as the binary number, and equation 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.12) defines that delay should be a positive value. 

In addition, the difference between UK and Thailand optimisation models are shown in 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 3.6 − 3.9), which are headway constraint and signalling system constraint. 

For the minimum headway between two consecutive trains in (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 3.6 − 3.7), the 

UK regulation has 150 seconds of headway time and Thailand has no headway time 

between two consecutive trains. Therefore, in Thailand optimisation model we can delete 



Page | 48  

this constraint out from the model. Moreover, on the signalling system constraint in 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 3.8 − 3.9), UK rail networks run based on four-aspect signalling and Thailand 

runs following two-aspect signalling, so we can select which types of signal that we need 

to consider by changing the number of a set of containing blocks 𝑆𝑖(𝑚) as three blocks for 

four-aspect signalling (UK) or one block for two-aspect signalling (Thailand). 

3.4. Proposed IG with Biased Randomised (IG-BR) for solving RSP 

The large and complex problems are very hard to solve by using the exact method, because 

it required very huge computation time to solve a problem. Then, many methodologies 

based on heuristics and metaheuristics were developed to deal with large-scale COPs to 

support the decision-making management. Therefore, we have selected the Iterated Greedy 

(IG) algorithm which is one of the well-known heuristics that very successfully and 

effectively to solve many OR problems to solve the RSP. 

3.4.1. Basic concept of IG algorithm 

The basic concept of IG algorithm is shown in Figure 3.6. In this figure, it presents that the 

IG algorithm process has been separated into two phases which are the destruction phase, 

and construction phase. This example shows the IG process of the sequence solution for all 

trains in one block. 

The IG algorithm starts on the destruction phase by choosing trains randomly from the 

initial sequence and keeping those trains in the construction set, then using trains which 

have been selected out to reinsert in the construction process. Therefore, the initial 

sequence is separated into two sets of trains which are the remaining trains set and the 

construction set. 

Then, in the construction phase process, we reinsert the first train in the construction set 

back into all possible positions of the remaining trains set. In each inserted position, the 

objective value should be calculated by sum up the delay of each train together to find the 

minimise total train delay Tmin. Then, we select the sequence which provides the best value 

as the remain trains set. Therefore, these steps are repeated until the destruction set is 

empty and this process counts as one iteration (Ribas et al., 2011; Ruiz et al., 2008; Ruiz et 

al., 2007).  

According to the structure of the IG algorithm, all processes is working based on a 

parameter free which mean this algorithm are easy to implement, and adapt to use with 

many COPs (Ruiz et al., 2007). 
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Algorithm 3.1 presents the IG Algorithm of the RSP, which shows how to use basic IG to 

solve the railway scheduling problem. Firstly, the process starts by creating an initial 

solution based on the given timetable (Pseudocode: line 2). Then, we start to implement the 

IG for every block of the rail network to reorder the sequence (Pseudocode: line 5). In each 

block, we need to do the destruction phase and construction phase.  

In the destruction phase of IG, we randomly select a few trains from the initial sequence 

and put them in the construction set, so the trains left in the sequence are called the 

remaining set (Pseudocode: line 5 to line 8).  

Next, in the construction phase, we reinsert the construction set back into the remaining set 

by trying all possible positions and finding the best sequence that provides the best solution 

(Pseudocode: line 9 to line 14). Then, we need to check that operational constraints of the 

best sequence such as departure time, running/dwell time and headway constraints are still 

valid (Pseudocode: line 11 to line 13). Finally, the new schedule is generated to manage 

the rail network (Pseudocode: line 15). 

Figure 3.6 : Example for one iteration of the IG algorithm (Ruiz et al., 2007) 
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3.4.2. IG with Biased Randomised (IG-BR) 

In this section of the research, we add the BR technique to improve the quality of the 

solution from the basic IG algorithm. The pseudo-code of the basic IG algorithm is 

presented as Algorithm 3.1.   

To the best of our knowledge, Bresina (1996) is the first paper which used the BR heuristic 

studied. This paper presented a Heuristic-Biased Stochastic Sampling (HBSS) method to 

solve a scheduling problem.  The results of this approach provided a better solution than a 

greedy search in a small sample.  

Juan et al. (2013) developed multi-start BR of heuristics (MIRHA) with a LS for solving 

non-smooth vehicle routing problems (VRPs) by adding a biased random behaviour for the 

LS algorithm. Moreover, they suggested that the concept of applying biased probability 

distributions to randomise classical heuristics was an effective method for many COPs.  

Juan et al. (2015) developed BR with ILS heuristic to solve the multi-depot VRP. This 

method applied BR with geometric probability distribution for generating a diversification 

for the ILS and experiment on standard benchmarks. Results confirmed that BR with ILS 

outperformed as the best result in the literature.  

Algorithm 3.1 : Procedure for RSP IG Algorithm 

------------------------------------------------------------------------------------------------------------------- 

1: Procedure for RSP IG Algorithm (𝑟′, 𝑟𝐷, 𝑟𝑅, 𝑑, b) 

⊳ 𝑟′: Initial Solution 

⊳ 𝑟𝐷: Partial sequence to reconstruct 

⊳ 𝑟𝑅: Trains to reinsert 

⊳ 𝑑: Random chosen number of trains 

⊳ b: number of blocks 

2: 𝑟′: GenerateInitialSolution();     ⊳ Initial Solution 

3: set 𝑟𝑅 = empty    

4:  for 𝑖 = 1 to b do      ⊳ run for all block   

5:       for 𝑖 = 1 𝑡𝑜 𝑑 do     ⊳ Destruction step 

6:  𝑟𝑅 <- remove one node randomly from 𝑟′ and insert it in 𝑟𝑅;  

7:  𝑟𝐷 = 𝑟′ <- the remaining set of trains 

8:       end for  

9:       for j = 1 𝑡𝑜 𝑑 do      ⊳ Construction step 

10:  𝑟𝑏𝑒𝑠𝑡 = best solution obtained after inserting train from 𝑟𝑅 in all possible position of 𝑟𝐷 

11:        if 𝑟𝑏𝑒𝑠𝑡 met with all railway constraints then ⊳ check all constraints 

12:      solution (𝑟𝑏𝑒𝑠𝑡) = calculate minimise a total delay (𝑟𝑏𝑒𝑠𝑡) 

13:        end if 

14:     end for 

15: solution(𝑟𝑏𝑒𝑠𝑡) <- Using the best sequence 𝑟𝑏𝑒𝑠𝑡 in each block to generate a timetable 

16: end for 

17:end procedure 
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Agustin et al. (2016) used BR for solving the Crew Pairing Problem (CPP). The 

experimentation implemented a multi-start algorithm based on BR. The result from 

computational experimentation gave an effective solution. 

The literature review illustrated that BR improved the performance of algorithms by avoid 

the local optimal, increase diversification of the heuristics or metaheuristics and resulted in 

high quality solutions. Thus, it is reasonable to combine BR techniques with IG heuristic to 

solve RSP.  

We extend the basic IG algorithm by adding the BR concept to improve the quality of the 

solution. In the construction phase of the IG heuristics, we selected the first element in the 

construction set to reinsert it in the sequence and find the best sequence that gives the best 

objective function value. However, in the basic IG, we used the uniform distribution for 

the randomisation of that list which basically destroyed the logic behind the greedy 

behaviour of the heuristic. Therefore, the output of the randomised algorithm is unlikely to 

provide a good solution. Also, note that this procedure could be run multiple times, but it is 

likely that all the solutions generated could be significantly worse than the one provided by 

the original heuristic. Not to lose the benefits of greedy behaviour of the heuristic, we 

applied biased randomisation in construction step to improve the solution of IG algorithm. 

The randomisation process can be classified by using two types of probability distribution, 

which are uniform randomised distribution (symmetric) and a biased randomised 

distribution (non-symmetric). However, most researchers studied biased randomised 

distribution.  

Figure 3.7 shows a comparison between Uniform Randomised and Biased Randomised. 

The Uniform Randomised assigns equal chance for all items in the lists to be selected 

randomly, while Biased-Randomised needs to assign a probability by using some 

parameters and rearrange the items list based on those probabilities. The highest 

probability will be the first candidate and the lowest probability will be the last candidate 

in the list. Then, select the item that is the first candidate in the list. 
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Figure 3.8 shows where we add the biased randomisation concept into the IG algorithm 

which shown in big red arrow. The IG-BR for RSP process starts working on the 

destruction phase, then we add the biased randomised algorithm at the end of destruction 

phase for reordering the construction set. After that, we work on the construction phase by 

reinserting the first element in a construction set back into the remaining set on every 

position to find the best position that provides the best solution. All of these processes are 

repeated until the stopping criteria are met.  

Figure 3.7 : Uniform randomisation vs. biased randomisation (Cáceres-Cruz, 2013) 
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We proposed an extension by applying biased randomised technique into the IG algorithm 

in order to improve the solution of the deterministic RSP under the uncertainties delay. The 

main procedure is described as follows: (a) Initial solution based on given timetables in our 

case studies which comprises of real-world data from the UK and Thailand Rail network, 

(b) IG is used to solve the RSP by using two main phases (destruction and construction), 

(c) the use of biased randomised algorithm to improve the resulting solution (Algorithm 

3.2). 

8 5 7 3 2 6 

8 5 7 3 2 1 6 4 

8 5 7 3 2 1 6 

--- CONSTRUCTION PHASE -

After reinserting train no.5, Tmin = 7589 

After reinserting train no.1, Tmin = 8243 

After reinserting train no.4, Tmin = 8366 

4 1 7 3 8 2 5 6 

7 3 8 2 6 

1 4 5 

--- DESTRUCTION PHASE 

choose number of trains as random I = 3 

remaining trains set 

Trains to reinsert (construction set) 

1 2 3 

Apply Biased Randomised at this step - 

To reordering based on some probability 

Figure 3.8 : Apply IG biased randomised (Ruiz et al., 2007) 



Page | 54  

 

Algorithm 3.2 shows pseudocode for deterministic RSP IG-BR Algorithm. Firstly, the 

process starts by creating an initial solution from the rail timetable (Pseudocode: line 2). 

We consider the deterministic disruption situation, so the amount of the delay is known 

beforehand, and we add it together with the initial input.  

Then, we start to implement the destruction phase of IG to find a new feasible solution 

(Pseudocode: line 6 to line 9). However, at the end of the destruction phase, we apply the 

biased randomised algorithm to reorder the construction set by using the geometric 

probability distribution, which can give a probability to each train in the construction set 

was calculated by the following equation (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.13). 

               Probability of train 𝑖 in block 𝑚 = 1 −
Running time (𝑝𝑖𝑚)

Total running time (∑𝑝𝑖𝑚)
                   (3.13)  

Algorithm 3.2 : Procedure for Deterministic RSP IG-BR Algorithm  

------------------------------------------------------------------------------------------------------------------- 

1: Procedure for Deterministic RSP IG-BR Algorithm (𝑟′, 𝑟𝐷, 𝑟𝑅, 𝑑, b, 𝛽) 

⊳ 𝑟′: Initial solution 

⊳ 𝑟𝐷: Partial sequence to reconstruct 

⊳ 𝑟𝑅: Trains to reinsert 

⊳ 𝑑: Random chosen number of trains 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter for biased randomised 

    - range of parameter 𝛽 is [0,1] 

2: 𝑟′: GenerateInitialSolution();     ⊳ Initial solution 

3:   while execution_time < 400 do    ⊳ Execution time 400 seconds 

4: for 𝑖 = 1 to b do      ⊳ Run for all block 

5:     set 𝑟𝑅 = empty      

6:     for 𝑖 = 1 𝑡𝑜 𝑑 do     ⊳ Destruction step 

7:         𝑟𝑅 <- remove one node randomly from 𝑟′ and insert it in 𝑟𝑅;  

8:         𝑟𝐷 = 𝑟′ <- the remaining set of trains 
9:     end for 

10:    re-ordering 𝑟𝑅 by using 𝛽 to assign a probability ⊳ Biased randomised 

11:     for j = 1 𝑡𝑜 𝑑 do      ⊳ Construction step 

12:        𝑟ans = best solution obtained after insert train from 𝑟𝑅 in all possible position of 𝑟𝐷  

13:        if 𝑟ans met with all railway constraints then  ⊳ check all constraints 

14:             solution (𝑟ans) = calculate minimise a total delay (𝑟ans) 

15:         end if 

16:     end for 

17:        end for 

18: if solution (𝑟ans) < solution (𝑟′) then   ⊳ Minimise the total delay 

19:     solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟𝑏𝑒𝑠𝑡); 

20: else if 

21:     solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟′); 

22: end if 

23:  end while 

24:end procedure 

 



Page | 55  

Then, rearrange the trains based on those probabilities from high to low, so a smaller 

running time is more likely to be selected than longer running times before continuing to 

the next step (Pseudocode: line 10). 

Then, at the construction phase, we reinsert the construction set back into the remain set 

following the basic IG concept, which inputs in all possible positions, and calculates to 

find the best sequence that provides the best solution (Pseudocode: line 11 to line 16). In 

addition, we also need to check that operational constraints such as departure time, 

running/dwell time and headway constraints are still valid (Pseudocode: line 13 to line 15) 

Following the destruction phase, construction phase and the biased randomised phase, we 

use simplest acceptance criteria to check that a new timetable has provided a better 

solution or not, as a smallest total delay and set this as the current solution for the next 

iteration (Pseudocode: line 18 to line 22). After that, the new schedule will be sent to the 

rail control centre to manage the rail process. Finally, we have repeated all process until 

the stopping criteria of 400 seconds are met. 

3.5. Computational experiments 

In this section, we evaluate the performance of the optimisation model and IG-BR, which 

is the proposed solution method in this chapter, by comparing the results of IG-BR with 

MILP obtained by CPLEX optimisation software package and/or historical data from the 

company. We selected the CPLEX as one of the solution methods to solve the 

deterministic RSP because our case studies have not been used before in the literature. Due 

to lack of the results for evaluate the performance of our proposed solution methods, it is 

reasonable to use the CPLEX software package which can provide the optimal solution for 

discuss on the performance analysis. We experimented on the real-world case studies from 

two countries as the UK and Thailand Rail networks and considered the constraints as 

follows: 

(i) Southeastern train operating company, UK that consisted of 27 trains and 135 blocks. 

This part of the network has a complex infrastructure with bottleneck areas and dense 

traffic on interconnected lines for passengers in and out of London. Moreover, the UK rail 

network uses four-aspect signalling for rail dispatching management. In addition, the 

minimum headway between two consecutive trains set as 150 seconds due to the UK 

railway regulation. 
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(ii) State Railway of Thailand that consisted of 101 trains and 332 blocks. The data were 

collected from the whole of the Thailand rail network, including 4 main lines which are 

Northern line, Eastern line, North-eastern line, and Southern line. All trains have start and 

end at Bangkok stations, which provide the dense of traffic for passengers in and out of 

Bangkok. Moreover, Thailand rail network uses two-aspect signalling for rail dispatching 

management. In addition, there is no minimum headway between two consecutive trains 

because they only operated based on the signalling regulation. 

In the case of deterministic delay on RSP, we know the exact running time or dwell time 

delay on each block and late departure at the origin block before the simulation starts.  

We implemented IG-BR heuristic in C# programming language, then compared the result 

with CPLEX commercial optimisation tool. We executed all experiments on the same 

personal computer with Intel core i7-4500U CPU, 1.80GHz-2.4GHz, and 8GB RAM. 

Moreover, all computational experiments were set for stopping condition as 400 seconds 

because Southeastern Service Disruption Procedure (SSDP) suggests a time frame of 15 

minutes to update the service or schedule.  

3.5.1. Southeastern train company, United Kingdom 

The set of data was collected from Southeastern train company covering London Bridge 

area, Kent and South East UK (Khosravi, 2013). We selected this case study because of the 

complexity of infrastructure, bottleneck area, and the dense traffic on interconnected lines 

for passengers in and out of London, East Sussex and the Channel Tunnel as shown in 

Figure 3.9. The train service information was collected from public passenger timetables; 

however, details of the exact routes were not available.  Therefore, we used the National 

Rail Enquiries (2013) website to define platforms and routes information for our schedule 

and reschedule.  
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This area of network is about 15 km long with a total of 28 platforms which includes many 

busy stations such as London Charing Cross, London Waterloo, London Cannon Street, 

New Cross and Deptford. The most important characteristic is the signalling system. The 

UK rail network uses four-aspect signalling for rail dispatching management. 

For the UK test instances, the case study focused on the off-peak services with the 

timetable cycle every 30 minutes, 135 blocks and 27 trains in the network. Southeastern 

operating company has a Southeastern Service Disruption Procedure (SSDP) to handle 

disruptions and it classifies disruptions into three types which are minor disruption (delay 

less than 15 minutes), general disruption (delay between 15 to 30 minutes) and major 

disruption (delay more than 30 minutes), however there is no exact number for disrupted 

trains in this classification. According to this case study, there are 27 trains in a cycle and 

Khosravi (2013) has classified the number of trains into three types which are minor 

disruption, disturbing 1 to 5 trains, general disruption, disturbing 6 to 12 trains and major 

disruption disturbing 13 to 27 trains. According to the railway safety regulation, headway 

time between two consecutive trains is 150 seconds and the rail network has control by 

four-aspect signalling. 

3.5.1.1. Test instances 

In the experiment on the deterministic RSP, we used 4 sets of instances (58 test instances 

in total) from the UK case study provided by Khosravi (2013); each set of data was 

considered on different types and sizes of disruption. For the disruption types, we 

considered late departure from the origin, longer running time and longer dwell time at the 

Figure 3.9 : London Bridge diagram developed for scheduling problem (Khosravi, 2013) 
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stations. Moreover, on the type of disruption, we combined minor and general disruptions 

together for the first 2 sets of instances (Tables 3.1-3.2) and major disruptions for the other 

2 sets of instances (Tables 3.3-3.4). In addition, block delay, which refers to longer running 

time/dwell time and departure delay, which refers to late departure time are provided in 

minutes. Tables 3.4 to 3.7 below show details of the set of instances. 

Table 3.4 shows the first set of experiments which consider longer running time and longer 

dwell time added into the running time. The set of data includes 6 minor and 6 general 

disruption instances. Minor disruption delays are chosen in the set {5, 10, 15} minutes and 

general disruption delays are chosen in the set {20, 25, 30} minutes. Furthermore, the extra 

time is added into 1 or 2 blocks which then affect 3 or 5 trains for minor disruption and 9 

or 12 trains for general disruption. 

 

Table 3.5 shows the second set of experiments which considers late departure time, added 

into the departure time. The set of data includes 9 minor and 6 general disruption instances. 

Minor disruption delays are chosen in the set {5, 10, 15} minutes and general disruption 

delays are chosen in the set {20, 25} minutes. Furthermore, the extra time is added affects 

1, 3 or 5 trains on minor disruption and 6, 9 or 12 trains on general disruption. However, 

departure delays should be less than 25 minutes because departure delays larger than 25 

minutes result in shifting trains out of the original cycle. 

 

Table 3.6 shows the third set of experiments which considers longer running time and 

longer dwell time added into the running time. The set of data comprises 15 major 

disruption instances which are chosen in the set {40, 50, 60, 70, 80} minutes. Furthermore, 

we add extra time into {4, 5, 6} blocks which affects all 27 trains in a cycle. 

 Table 3.4 : Longer running/dwell times - minor and general disruption - Deterministic (UK) 

Disruption Type # of Instance(s) Block Delay # of Block(s) # of Train(s) 
Minor 6 5, 10, 15 1, 2 3, 5 

General 6 20, 25, 30 1, 2 9, 12 

 

Disruption Type # of Instance(s) Departure Delay # of Train(s) 
Minor 9 5, 10, 15 1, 3, 5 

General 6 20, 25 6, 9, 12 

 Table 3.5 : Late departures - minor and general disruption - Deterministic (UK) 
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Table 3.7 shows the fourth set of experiments which considers 16 major disruption 

instances with both longer running/ dwell times and late departures.  We created block 

delays for 40 or 50 minutes occurring on 4 or 6 blocks which affected the majority of 

services. However, departure delays were less than 25 minutes because departure delays 

larger than 25 minutes resulted in shifting trains out of the original cycle. Therefore, we 

avoided generating any departure delays longer than 20 minutes. Departure delays as 10 

and 20 minutes were tried for different numbers of trains in set {3, 5, 9, 12}. 

 

3.5.1.2. Performance analysis 

The computational experiments were conducted to compare CPLEX, and IG-BR results 

based on 400 seconds within the time frame of 15 minutes determined in SSDP for the 

update the service. We selected CPLEX as one of our solution methods because it is 

commercial software which runs based on an exact method. Normally, the CPLEX is used 

to generate the optimal solution; however, it also needs large computation time to reach the 

optimal solution. In the UK case study, we computed the CPLEX to find the optimal 

solution, but the program required more than 7 hours of execution time. According to 

SSDP, we set the model to reschedule and provide the new schedule within 400 seconds 

after the delay occurred, so we do not have enough time and the CPLEX must stop before 

reach the optimal point. Therefore, comparison between CPLEX and IG-BR will help to 

provide a clear view when we evaluate the efficiency of the IG-BR. 

Tables 3.8-3.11 show the experimental results using CPLEX and IG-BR to solve the UK 

case study. In each table, all columns before the CPLEX column show the detail of each 

instance and all delays are shown in minutes. For the CPLEX column, we only provide a 

total train delay. However, for columns IG-BR, we present the results of total delay and the 

Table 3.6 : Longer running/dwell times - major disruption – Deterministic (UK) 

Table 3.7 : Longer running/dwell times and Late departures - major disruption - 

Deterministic (UK) 
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percentages of improvement between IG-BR and CPLEX by using relative deviation (sub-

column RD (%) compared with CPLEX) for all instances. Finally, at the bottom row of 

each table, we calculated an average of the total delay and RD which can provide a clearer 

understanding of the results. The average total delay is calculated by ∑ 𝑇𝑖/𝑛𝑛
𝑖=1 , where 𝑇𝑖 is 

the total delay of each instance, i indicates the number of instances and 𝑛 is the total 

number of instances. 

Moreover, the relative deviation (RD%) which is the improvement gap used to present the 

efficiency of our proposed methodology was calculated by the following equation: 

RD% =
baseline solution −  algorithm solution

baseline solution
 𝑥 100                                             (3.13) 

where the baseline solution is considered as the solution method that we need to 

“compared with”, and algorithm solution is considered as the current solution method that 

we need to measure the performance. Therefore, the positive number of RD (%) means that 

the result of our proposed method can provide a better solution than the original results, 

while negative results mean there are no improvements. 

 

Table 3.8 shows the IG-BR results of deterministic RSP considered for minor and general 

delays on longer running time and dwell time. The best solution for each instance is 

indicated in bold. However, in the overall results, the comparison between CPLEX and IG-

CPLEX IG-BR

Delay Delay

1 3 P01 107.83 97.67 9.42

2 5 P02 143.67 140.33 2.32

1 3 P03 167.00 168.67 -1.00

2 5 P04 281.83 314.83 -11.71

1 3 P05 260.17 247.33 4.93

2 5 P06 314.67 313.33 0.42

1 9 P07 1028.00 1099.83 -6.99

2 12 P08 661.75 705.50 -6.61

1 9 P09 1272.67 1471.17 -15.60

2 12 P10 1823.00 1829.00 -0.33

1 9 P11 1021.00 1023.33 -0.23

2 12 P12 1769.58 2052.00 -15.96

737.60 788.58 -6.91

 RD (%) of 

IG-BR 

compared 

with CPLEX

# of 

Block(s)

# of 

Train(s)
Instance

Block 

Delay

5

10

15

20

25

30

Avg Delay

Table 3.8 : Deterministic Longer running/dwell times - minor and general disruption: IG-BR 

Results 
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BR shows that using CPLEX to solve the RSP decreased the average total train delay by 

6.91% more than the IG-BR. It should be noted that CPLEX was computed only 400 

seconds, therefore CPLEX cannot achieve the optimal solution. Therefore, the IG-BR 

provide lower average delay in some test instances, which means IG-BR also can be used 

for solving RSP in small cases but at slightly lower efficiency than CPLEX.  

 

Table 3.9 shows the IG-BR results of deterministic RSP considered on minor and general 

delays of late departure times. The best solution for each instance is indicated in bold. As 

expected, the CPLEX outperforms among the other algorithms in terms of average total 

train delays by 3.78% more than IG-BR. The CPLEX was implemented based on exact 

methods which provided a good solution for small sizes of disruptions. Therefore, the 

CPLEX was the best choice for rescheduling with the aim to minimise the total train delay 

for only minor and general disruptions. Moreover, the result of CPLEX was not optimal 

because the program was stopped at 400 seconds. We computed the solution based on this 

time frame to evaluate the performance of IG-BR and found only a small gap between IG-

BR and CPLEX. 

CPLEX IG-BR

Delay Delay

1 R01 61.83 70.83 -14.55

3 R02 59.83 65.50 -9.47

5 R03 73.17 75.17 -2.74

1 R04 70.67 78.50 -11.09

3 R05 82.17 83.50 -1.62

5 R06 138.00 143.83 -4.22

1 R07 67.66 68.67 -1.49

3 R08 119.33 127.33 -6.70

5 R09 167.83 171.33 -2.08

6 R10 182.33 184.00 -0.92

9 R11 240.50 250.67 -4.23

12 R12 334.17 347.67 -4.04

6 R13 230.67 240.33 -4.19

9 R14 275.67 281.67 -2.18

12 R15 376.67 385.17 -2.26

165.37 171.61 -3.78

 RD (%) of 

IG-BR 

compared 

with CPLEX

10

15

20

25

Avg Delay

Late 

Departure

# of 

Train(s)
Instance

5

Table 3.9 : Deterministic Late departures - minor and general disruption: IG-BR Results 
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Table 3.10 presents the IG-BR results of deterministic RSP considered for major delays of 

longer running time and dwell times. The best solution for each instance is indicated in 

bold. The results of this set of instances showed that IG-BR reduced the average of total 

train delays by 7.70% more than CPLEX. Noted that CPLEX was executed only 400 

seconds and not reach the optimal solution; therefore, the IG-BR performance better for 

solving the RSP when considering major disruptions of running time and dwell time delay 

within the time limit. 

CPLEX IG-BR

Delay Delay

4 HP01 7706.00 7379.33 4.24

5 HP02 7432.00 7260.75 2.30

6 HP03 7619.50 7250.47 4.84

4 HP04 9396.67 8836.87 5.96

5 HP05 9342.33 9150.20 2.06

6 HP06 8529.00 7548.50 11.50

4 HP07 11574.83 10429.50 9.90

5 HP08 9309.58 8795.90 5.52

6 HP09 9570.67 8497.00 11.22

4 HP10 13182.67 12187.30 7.55

5 HP11 10716.58 9656.60 9.89

6 HP12 13006.42 11795.70 9.31

4 HP13 15491.00 14262.90 7.93

5 HP14 14858.67 13645.60 8.16

6 HP15 15646.83 14103.50 9.86

10892.18 10053.34 7.70

 RD (%) of 

IG-BR  

compared 

with CPLEX

50

60

70

80

Avg Delay

Block 

Delay

# of 

Block(s)
Instance

40

Table 3.10 : Deterministic Longer running/dwell times - major disruption: IG-BR Results 
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Table 3.11 indicates that the IG-BR results of deterministic RSP considered on major 

disruption of late departure times. The best solution for each instance is indicated in bold. 

The overall average of the total train delay of IG-BR was lower than CPLEX by 5.61%. 

According to 400 seconds computation time limit, we can claim that IG-BR was more 

effective than CPLEX for solving the set of instances considering major delay for all types 

of disruption which are travel time delay, dwell time delay and late departure time delay 

because CPLEX was terminated by the time limit before achieving the optimal value.  

The SSDP separated the disruptions into 3 types depending on the size of disruption as 

follows: 

• Minor disruptions - the delay less than 15 minutes and affected 1 to 5 trains. 

• General disruptions - the delay between 15-30 minutes and affected 6 to 12 trains. 

• Major disruptions - the delay more than 30 minutes and affected 13 to 27 trains. 

Therefore, we summarised the results based on the disruption types as follows: 

CPLEX IG-BR

Delay Delay

3 PR01 7524.00 7379.92 1.91

5 PR02 7455.67 7285.42 2.28

9 PR03 7599.17 6975.83 8.20

12 PR04 7823.50 7107.00 9.16

3 PR05 6830.00 6930.50 -1.47

5 PR06 7773.56 7002.83 9.91

9 PR07 6518.50 6465.85 0.81

12 PR08 8088.50 7458.50 7.79

3 PR09 9462.17 9346.13 1.23

5 PR10 9615.75 9097.40 5.39

9 PR11 9589.00 7672.54 19.99

12 PR12 9863.33 9194.50 6.78

3 PR13 9346.42 8400.54 10.12

5 PR14 9737.17 9741.20 -0.04

9 PR15 8609.00 8529.00 0.93

12 PR16 8286.92 8012.83 3.31

8382.67 7912.50 5.61

 RD (%) of 

IG-BR  

compared 

with CPLEX

4

10

20

50 6

10

20

4

10

20

40 6

10

20

# of 

Block(s)

Departure 

 Delay

# of 

Train(s)
Instance

Block 

Delay

40

50

Avg Delay

Table 3.11 : Deterministic Longer running/dwell times and Late departures - major disruption: 
IG-BR Results 
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Table 3.12 shows a summary of results from Tables 3.8 and 3.9 which considered minor 

and general delay that can be group together as the small size disruption. When we 

compared between CPLEX and IG-BR, the best solution was provided by CPLEX which 

decreased the average total train delays by 6.34%. According to the basic knowledge from 

the literature review, the CPLEX implement based on the exact method had high 

performance to solve small sizes of problem. Please note that all experiments were based 

on 400 seconds of computation time and the solution of CPLEX was optimal. 

 

Table 3.13 shows the summary of results from Tables 3.10 and 3.11 which considered on 

the large disruption instances. It shows that CPLEX provided a bad solution for solving the 

major disruption for both late departures delay and longer running time/dwell time delay 

due to the complexity of the problem. The program needed more than 400 seconds to 

achieve a better solution. The results showed that IG-BR reduced average total train delays 

by 6.59% when compared to the CPLEX in the case of large sized disruptions within the 

limit of the computation time. 

 

Table 3.12 : Summary of Experimental result of IG-BR - Deterministic (UK) - Small 

CPLEX IG-BR

Delay Delay

Longer Running/dwell times 737.60 788.58 -6.91

Late Departures 165.37 171.61 -3.78

451.48 480.10 -6.34

 RD (%) of 

IG-BR  

compare 

with CPLEX

Disruption Type

Minor and 

General 

Average Delay

Table 3.13 : Summary of Experimental result of IG-BR - Deterministic (UK) - Large 

CPLEX IG-BR

Delay Delay

Longer Running/dwell times 9637.42 8982.92 6.79

Late Departures & Longer Running/dwell times 5044.45 4731.51 6.20

7340.94 6857.21 6.59

Major

Average Delay

 RD (%) of 

IG-BR  

compare 

with CPLEX

Disruption Type

CPLEX IG-BR

Delay Delay

Longer Running/dwell times 737.60 788.58 -6.91

Late Departures 165.37 171.61 -3.78

Longer Running/dwell times 10214.26 10053.34 1.58

Late Departures & Longer Running/dwell times 7892.23 7912.50 -0.26

5044.45 4731.51 6.20

 RD (%) of 

IG-BR  

compare 

with CPLEX

Disruption Type

Minor and 

General

Major

Average Delay

Table 3.14 : Summary of Experimental result of IG-BR - Deterministic (UK) - All 
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Table 3.14 presents the overall picture of all results in section 3.5.1.2. CPLEX was 

effective for solving minor and general disruption RSPs while IG-BR was a better choice 

to solve major disruption RSPs. On the average of the total train delays, IG-BR improved 

the quality of solution by 6.20%. The 400 seconds time frame required by SSDP to update 

the schedule was not long enough for CPLEX to achieve the optimal value. The IG-BR 

was more effective to use for the deterministic RSP.  

In addition, in real-life operation of the railway network, the we need to deal with mixed 

types of minor, general and major disruption together, so we highly recommend the IG-BR 

that provided the best solution in terms of overall average total train delays. 

3.5.2. State Railway of Thailand 

The State Railway of Thailand is the state-owned rail operator under the jurisdiction of the 

Ministry of Transport in Thailand. The network operates in 47 provinces and served 35 

million passengers annually in 2018. Data were collected from the whole of the Thailand 

rail network, including 4 main lines which are Northern line (from Bangkok to Chiang 

Mai), Eastern line (from Bangkok to Aranyaprathet or Pattaya), North-eastern line (from 

Bangkok to Ubon Ratchathani or Nong Khai), and Southern line (from Bangkok to 

Butterworth or Kanchanaburi). In addition, all train lines start and end at the same station 

in Bangkok, which means that the station area in Bangkok is very busy. If disruption 

occurs, it will quickly propagate into the whole network due to train interconnectivity. All 

trains are operated following the two-aspect signalling system which means the headway 

between two consecutive trains equal to the running time of the previous train. 

A map of the Thailand railway network is shown in Figure 3.10. Information regarding 

train service, route and timetable was extracted from the Thai Rail service website which is 

open to the public (State Railway of Thailand, 2019). However, some data such as tracks, 

regulation, number of platforms, running time and travelling distance are not shown on the 

website. This information was directly collected from the State Railway of Thailand 

(2019).  
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For the Thailand test instances, the case study focused on the one-day timetable, with trains 

starting from 5.00 am until 11.59 pm. The whole network includes 332 blocks/stations and 

101 trains (51 outbound trains, and 50 inbound trains). In addition, the Thailand rail 

network has considered blocks as the distance between one station and the next. Moreover, 

State Railway of Thailand (2019)  has classified disruptions into three types as minor 

disruption (delay less than 30 minutes), general disruption (delay between 30 and 60 

minutes) and major disruption (delay more than 60 minutes). 

Figure 3.10 : Thailand Rail Map (Thailand Trains, 2019) 



Page | 67  

3.5.2.1. Test instances 

In the experiments on the deterministic RSP, the State Railway of Thailand (2019) 

provided one-month historical data between 01/02/2019 and 28/02/2019, which means we 

have 28 test instances in total as shown in Table 3.15. Furthermore, this table also provides 

historical data about total delay for the whole Thailand rail network, but there is only 

information about the length of the delays and the corresponding stations where delays 

occurred. Therefore, we cannot classify cause of disruptions, and also cannot classify all 

delays separately out as minor, general, or major delay. In each test instance, we have 

considered on the mix types of disruption which are minor, general, and major disruptions 

together as they provided in the historical data. In addition, Thailand’s rail operates by 

using a manual system which follows the first come first serve (FCFS) rule, and human 

decision making. Therefore, the historical data are based on the FCFS rule implemented by 

dispatchers. Hence, efficiency of the system can be improved significantly. Test instances 

are considered for 101 trains and 332 blocks. Thus, the size of the problem is very large 

and details of test instances cannot be provided due to confidentiality issues. 

 

Historical 

 Data

Delay

1/2/2019 THAF101 2477

2/2/2019 THAF102 2138

3/2/2019 THAF103 1830

4/2/2019 THAF104 1681

5/2/2019 THAF105 2549

6/2/2019 THAF106 1750

7/2/2019 THAF107 2329

8/2/2019 THAF108 3186

9/2/2019 THAF109 2143

10/2/2019 THAF110 2180

11/2/2019 THAF111 2712

12/2/2019 THAF112 2472

13/2/2019 THAF113 2440

14/2/2019 THAF114 1807

15/2/2019 THAF115 2903

16/2/2019 THAF116 3582

17/2/2019 THAF117 3516

18/2/2019 THAF118 2895

19/2/2019 THAF119 2880

20/2/2019 THAF120 2791

21/2/2019 THAF121 3798

22/2/2019 THAF122 3658

23/2/2019 THAF123 3772

24/2/2019 THAF124 4597

25/2/2019 THAF125 3974

26/2/2019 THAF126 4873

27/2/2019 THAF127 3385

28/2/2019 THAF128 3023

2905.04Average Delay

Date Instance

Table 3.15 : Thailand test instances and historical data - Deterministic (Thai) 
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3.6.2.2. Performance analysis 

The computational experiments compare the historical data and the result of MILP and IG-

BR obtained within the 400 second time limit adapted from the UK rail network time 

frame for updating schedules. We selected CPLEX as one of our solution methods because 

it is a commercial software package which runs based on exact methods and helps to 

provide a clear view when we compare the efficiency of the solution methods. For large 

size test instances, CPLEX used more than 15 hours to find the optimal solution, so the 

program was stopped at 400 seconds to comply with the real-world situation. Therefore, 

the comparison between historical data, CPLEX and IG-BR showed the efficiency of the 

IG-BR. 

In the historical data, each test instance consists of three types of disruption which are 

minor, general, and major disruptions mixed together. Therefore, the mix types of delay 

have been added into the original timetable based on the delay information which provided 

from State Railway of Thailand. 

Table 3.16 shows the experimental result for using historical data, CPLEX and IG-BR. In 

this table, the first two columns before the historical data column show the detail of each 

instance and all delays are provided in minutes. In the historical data column, we provided 

a total delay of all trains collected from the Thailand rail company. For the CPLEX and 

IG-BR columns, we provided a total delay and RD (%) to compare the proposed methods 

with the historical data. Then, we also provided RD (%) to evaluate the performance 

between CPLEX and IG-BR. Finally, in the bottom row of the table, we calculated an 

average of the total delay and RD. In addition, RD (%) was used to show improvement of 

the solution method. 
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Table 3.16 presents the IG-BR results of deterministic RSP for the Thailand case study. 

The best solution for each instance is indicated in bold. Due to the size of Thailand rail 

network, the CPLEX would need a long computation time to find the optimal solution, so 

we set the time limit as 400 seconds to serve the real-world RSP situation. The results 

showed that when we applied our proposed optimisation model and solution methods as 

CPLEX and IG-BR to the real-world data from Thailand, an improvement was shown on 

the rail management process. The experimental results in all instances show that both 

CPLEX and IG-BR improved the current solution used by the Thai railway company. 

CPLEX reduced the average total train delays by 14.12% and IG-BR reduced the average 

total train delays by 18.50%. Moreover, comparison between IG-BR and CPLEX showed 

that average total train delays of BR-IG were lower than CPLEX at 5.10%.  

Historical 

Data

Delay Delay

 RD (%) 

compared with 

historical data 

Delay

 RD (%) 

compared with 

historical data 

1/2/2019 THAF101 2477 2121 14.37 1973 20.35 6.98

2/2/2019 THAF102 2138 2035 4.82 1998 6.55 1.82

3/2/2019 THAF103 1830 1803 1.48 1789 2.24 0.78

4/2/2019 THAF104 1681 1325 21.18 1154 31.35 12.91

5/2/2019 THAF105 2549 2379 6.67 2247 11.85 5.55

6/2/2019 THAF106 1750 1258 28.11 1234 29.49 1.91

7/2/2019 THAF107 2329 2188 6.05 2107 9.53 3.70

8/2/2019 THAF108 3186 2648 16.89 2422 23.98 8.53

9/2/2019 THAF109 2143 1907 11.01 1895 11.57 0.63

10/2/2019 THAF110 2180 1574 27.80 1535 29.59 2.48

11/2/2019 THAF111 2712 1982 26.92 1825 32.71 7.92

12/2/2019 THAF112 2472 1830 25.97 1794 27.43 1.97

13/2/2019 THAF113 2440 1874 23.20 1713 29.80 8.59

14/2/2019 THAF114 1807 1807 0.00 1780 1.49 1.49

15/2/2019 THAF115 2903 2458 15.33 2265 21.98 7.85

16/2/2019 THAF116 3582 3030 15.41 2877 19.68 5.05

17/2/2019 THAF117 3516 2740 22.07 2554 27.36 6.79

18/2/2019 THAF118 2895 2645 8.64 2321 19.83 12.25

19/2/2019 THAF119 1880 1457 22.50 1398 25.64 4.05

20/2/2019 THAF120 2791 1861 33.32 1801 35.47 3.22

21/2/2019 THAF121 3798 3050 19.69 2821 25.72 7.51

22/2/2019 THAF122 3658 3421 6.48 3293 9.98 3.74

23/2/2019 THAF123 3772 3543 6.07 3355 11.06 5.31

24/2/2019 THAF124 3597 3260 9.37 3180 11.59 2.45

25/2/2019 THAF125 3974 3477 12.51 3321 16.43 4.49

26/2/2019 THAF126 4873 4495 7.76 4288 12.00 4.61

27/2/2019 THAF127 3385 3385 0.00 3275 3.25 3.25

28/2/2019 THAF128 3023 2584 14.52 2447 19.05 5.30

2833.61 2433.46 14.12 2309.36 18.50 5.10

IG-BR
 RD (%) 

compared 

with CPLEX

Average Delay

Date Instance

CPLEX

Table 3.16 : Deterministic Thai - IG-BR Results 
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3.6. Chapter Conclusion 

This chapter developed IG-BR algorithm to improve the solutions in deterministic RSP 

under three disruption types which are late departure, longer running time, and longer 

dwell time by minimising total train delays which is a major criterion directly related to the 

efficiency of train traffic management. According to size and complexity of the RSP, the 

problem is very hard to solve by using the exact method, because it required very huge 

computation time to solve a problem. Then, many methodologies based on heuristics and 

metaheuristics were developed to deal with large-scale COPs to support the decision-

making management. Therefore, we have selected the Iterated Greedy (IG) algorithm 

which is one of the well-known heuristics that very successfully and effectively to solve 

many OR problems to solve the RSP. Moreover, the basic IG algorithms showed greater 

flexibility to implement with COPs, because of the parameter free process which make it 

easy to combine with state-of-the-art techniques. Then, the biased randomisation technique 

was selected to combine with IG algorithm because it gave good results in the other 

scheduling problems and improved the quality of heuristics. 

For the deterministic optimisation model, we developed the optimisation model following 

the formulation of Khosravi (2013) based on a blocking job shop scheduling problem. The 

objective of the optimisation model is to minimise the total weighted tardiness which is 

equivalent to total train delays. 

We proposed the solution methods called IG-BR. The proposed solution method of IG-BR 

was performed by following two main phases of IG heuristic algorithm which are 

destruction phase and construction phase. At the end of the destruction phase, the biased 

randomisation technique with geometric probability distribution was provided to reorder 

the constructed set before reinserting back in the construction phase. This added more 

diversification to the basic IG algorithm.  

We used the proposed optimisation model and algorithm to solve the real-world case 

studies from Southeastern train operating company, UK (Khosravi, 2013) and State 

Railway of Thailand. There were 400 seconds of computation time limit to update the 

schedule as suggested by SSDP. In the UK test instances, the overall results showed that 

IG-BR was the best solution for the deterministic RSP; however, for the minor and general 

disruption set of instances, the solution from CPLEX was better than IG-BR. For the 

Thailand case study, the experimental results showed that the IG-BR provided a better 
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solution compared to the company’s historical solution. Therefore, the IG-BR algorithm is 

more effectively for solving RSP in large and complex problems. 

However, this proposed IG-BR can be improved by combining with other state-of-the-art 

techniques. The LS process introduces local changes into the heuristic, which decreases the 

computation time at the construction phase and improve the search mechanism in the 

solution generation process. For this reason, in the next chapter, we developed a LS 

heuristic to the IG-BR algorithm. 
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Chapter 4:  Biased Randomised Iterated Greedy with Local Search (BR-IG-LS) for 

deterministic RSP 

4.1. Introduction 

In the previous chapter, the result of IG-BR when compared with CPLEX showed small 

improvement gap on major disruption instances, therefore this chapter will propose the 

other solution methods which can improve the results of IG-BR. Thus, we selected the 

most popular local search heuristics which can help to increase the search space size and 

improve the solutions of IG algorithm in other COPs. 

In this chapter, we propose the BR-IG-LS to solve RSPs that deal with a deterministic 

delay and improve the results of IG-BR in Chapter 3. This chapter discusses the basic 

concept of Local Search (LS) as a heuristic method. LS usually combines with the IG 

algorithm to improve efficiency in many optimisation problems such as Freight train 

scheduling (Yuan et al., 2008), and Flow shop scheduling (Ruiz et al., 2008). Ruiz et al. 

(2007) were the first to use the optional LS process to improve the IG algorithm on the 

permutation flow shop scheduling problem and provided better results when compared to 

basic IG methods. After that, the IG-LS has been used with success to solve many COPs; 

however, the problem which is the most similar to RSP is a freight train scheduling 

problem. Yuan et al. (2008) were the first to adapt IG-LS to solve freight train scheduling 

but they only considered freight RSP, not passenger RSP. The freight RSP was addressed 

by Fügenschuh et al. (2008), who used commercial integer linear programming to solve a 

small test case from Deutsche Bahn AG. They also applied IG heuristic with extension of 

LS to solve the problem and the results showed that IG heuristic with extension of LS was 

more powerful for the real-life freight RSP and suitable to use in large instances. 

Moreover, Kang et al. (2013) claimed that LS improved speed and performance of the IG 

algorithm by increasing the solution search space. Therefore, in this chapter, we propose an 

BR-IG-LS algorithm to solve RSP that deals with a deterministic delay. 

This chapter first discusses the concept of BR-IG-LS and then shows how to use BR-IG-

LS to solve a deterministic RSP. The experimental results of the UK and Thailand case 

studies show the efficiency of the proposed methods when compared with the results from 

the previous chapter and improvement when a LS heuristic is added into the IG-BR. 

The chapter is structured as follows: section 4.2 presents this chapter’s contributions. The 

proposed BR-IG-LS algorithm to solve RSP with deterministic disruption delays is 
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presented in section 4.3, while all the experimental results are shown in section 4.4 which 

separates two sets of case studies (UK & Thailand). Section 4.5 is the conclusion of this 

chapter. 

4.2. Contribution 

Regarding the literature, most researchers who studied the IG algorithm suggested that the 

local search heuristic improved the efficiency of the basic IG algorithm. The IG-LS has 

been used successfully in similar optimisation problems such as Task assignment (Harish 

et al., 2014), Task allocation (Kang et al., 2013), Parallel machine scheduling (Ying et al., 

2010), Freight train scheduling (Yuan et al., 2008), and Flow shop scheduling (Ruiz et al., 

2008).  As IG-LS has been adapted successfully on many COPs, it is reasonable to apply 

LS to improve the solution of the IG-BR algorithm, therefore the LS was chosen to 

combine with IG-BR algorithm to improve the quality of solution. Moreover, Kang et al. 

(2013) claimed that LS helped to increase the solution search space of the IG algorithm. 

In addition to improving the performance of the IG, other reasons behind using BR-IG-LS 

heuristic to solve deterministic RSP is due to the fact that it is easy to implement, 

parameter free and suitable for large-size problems. Moreover, the LS can improve the 

search mechanism on the construction phase of the IG algorithm by increasing size of the 

search space, improving speed, and providing better results in the solution generation 

procedure. 

To the best of our knowledge, our solution method is the first to use both biased 

randomised and local search to improve the IG algorithm for RSPs with disruptions. 

4.3. Proposed Biased Randomised IG with Local Search (BR-IG-LS) for solving RSP 

We propose the IG-BR algorithm and add the LS (Algorithm 4.1) to improve the quality of 

the solution. The pseudo-code of the basic IG-BR algorithm is presented as Algorithm 3.2. 

The main process of LS is moving in a search space to find the local optimal by searching 

on neighbourhood of the current solution. Let 𝑆′ be the current solution and 𝑁(𝑆′) present 

the set of solutions that can be achieved. LS attempts to select a new solution from the 

neighbourhood of 𝑁(𝑆′) using the concept of insertion neighbourhood structure. In order 

to do that, LS evaluates the neighbourhood solution, if the new solution (S) has an 

improvement, it will be saved as the new current solution (𝑆′) and we continue to search to 

find a better neighbourhood solution. Search will continue until no better neighbourhood 

solution is found , which means that we reached to a local optimal (Johnson et al., 1988).  
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Algorithm 4.1 below describes a basic local search heuristic procedure for a minimisation 

problem; the basic concept of local search is started by setting an initial feasible solution 

(Pseudocode: line 2), then finding the new neighbourhood solution around the initial 

solution (Pseudocode: line 4). In this thesis, we focus on the objective to minimise total 

train delay. Therefore, if the value of the new solution V(S) is lower than or equal to the 

value of the current solution V(S’) (Pseudocode: line 5), replace the current solution S with 

the initial solution S’ (Pseudocode: line 6). Then, repeat the process until the time limit is 

reached to find the local optimal (Orlin et al., 2003). 

 

Some researchers suggested applying LS to improve the IG in the literature as follows 

Task assignment (Harish et al., 2014), Task allocation (Kang et al., 2013), Parallel machine 

scheduling (Ying et al., 2010), Freight train scheduling (Yuan et al., 2008) and Flow shop 

scheduling (Ruiz et al., 2008). The literature review showed that LS can improve the 

efficiency of IG algorithms and the LS concept that is mostly combined with the IG 

algorithm is the insertion neighbourhood concept. Thus, it is reasonable to combine LS 

techniques with IG algorithm to solve RSP. 

Figure 4.1 shows how to investigate a local search concept in the IG-BR algorithm which 

shown in big red arrow. On the BR-IG-LS algorithm for RSP, the process starts by 

working on the destruction phase; we add the biased randomised algorithm to the end of 

the destruction phase for reordering the construction set before inserting back into the 

remaining set. After that, working on the construction phase, the local search algorithm is 

applied to the construction phase by reinserting the first element in a construction set back 

into the remaining set randomly. Then, repeat the whole process again until the stopping 

criteria are met. Moreover, the LS concept that we used in our proposed method is also the 

insertion neighbourhood concept. 

Algorithm 4.1 : Procedure for basic Local Search Algorithm (Orlin et al., 2003) 

------------------------------------------------------------------------------------------------------------------- 

1: Procedure basic Local Search Algorithm  

2: S ': GenerateInitialFeasible();         ⊳ Initial Solution 

3:      while S ' is not local optimal do  

4:      find a new neighbourhood solution S  ∈ N(S ') ⊳ using insertion neighbourhood structure 

5:  if V(S) ≤ V(S’) then 

6:     set S’ = S 

7: end if 

8:     end while 

9: end procedure 
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We propose an extension by applying LS into the IG-BR algorithm in order to improve the 

solution of the deterministic RSP under the uncertainties delay. The main procedure is 

described as follows: (a) Initial solution of timetable as our case studies from the UK and 

Thailand Rail networks, (b) IG is used to solve the RSP by using two main phases 

(destruction and construction), (c) use of biased randomised methods to re-order a 

construction set, (d) the use of local search methods to improve the speed of solution 

(Algorithm 4.2). 

Figure 4.1 : Apply local search to IG biased randomised (Ruiz et al., 2007) 

Apply Biased Randomised at this step - 

To reordering based on some probability 

Apply Local search at this step -

To reinserting random positions 
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Algorithm 4.2 presents the pseudocode for deterministic RSP BR-IG-LS Algorithm. 

Firstly, the process starts by creating an initial solution from the rail timetable 

(Pseudocode: line 2). We consider only the deterministic disruptions, so the amount of the 

delay is known beforehand and we input it together with the existing timetable.  

Then, we start to implement the destruction phase of IG to find a new feasible solution 

(Pseudocode: line 6 to line 9). However, at the end of the destruction phase, we apply the 

biased randomised algorithm to reorder the construction set by using the geometric 

probability distribution, which can give probabilities to each train in the construction set. 

Trains with smaller running time are more likely to be selected than the other ones with 

large running times before continuing to the next step (Pseudocode: line 10).  

Algorithm 4.2 : Procedure for Deterministic RSP BR-IG-LS Algorithm  

---------------------------------------------------------------------------------------------------------------- 

1: Procedure for Deterministic RSP BR-IG-LS Algorithm (𝑟′, 𝑟𝐷, 𝑟𝑅, 𝑑, b, 𝛽) 
⊳ 𝑟′: Initial solution 

⊳ 𝑟𝐷: Partial sequence to reconstruct 

⊳ 𝑟𝑅: Trains to reinsert 

⊳ 𝑑: Randomly chosen number of trains 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter for biased randomised 

2: 𝑟′: GenerateInitialSolution();      ⊳ Initial solution 

3:  while execution_time < 400 do    ⊳ Execution time 400 seconds 

4:  for 𝑖 = 1 to b do      ⊳ Run for all block 

5:     set 𝑟𝑅 = empty      

6:     for 𝑖 = 1 𝑡𝑜 𝑑 do     ⊳ Destruction step 

7:   𝑟𝑅 <- remove one node randomly from 𝑟′ and insert it in 𝑟𝑅;  

8:      𝑟𝐷 = 𝑟′ <- the remaining set of trains 

9:     end for 

10:    re-ordering 𝑟𝑅 by using 𝛽 to assign a probability ⊳ Biased randomised 

11:     for j = 1 𝑡𝑜 𝑑 do      ⊳ Construction step 

12:         𝑟ans = ApplyLocalSearch(𝑟𝑅)    ⊳ Insertion Neighbourhood (LS) 

13:         if 𝑟ans met with all railway constraints then ⊳ check all constraints 

14:       solution (𝑟ans) = calculate minimise a total delay (𝑟ans) 

15:      end if 

16:    end for 

17:        end for 

18:  if solution (𝑟ans) < solution (𝑟′) then   ⊳ Minimise the total delay 

19:      solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟𝑏𝑒𝑠𝑡); 

20:  else if 

21:       solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟′); 

22:  end if 

23:  end while 

24:end procedure 
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Moreover, at the beginning of the construction phase, we reinsert the construction set back 

into the remaining set by using the concept of local search with insertion neighbourhood 

structure. This step is reinserting in some random positions and to find the best sequence 

that provides the local optimal solution (Pseudocode: line 11 to line 16). In this step, we 

need to confirm that all railway operational constraints are met (Pseudocode: line 13 to line 

15). 

Following, the destruction phase, construction phase, biased randomised phase and the 

local search phase, we use simplest acceptance criteria to check that a new timetable has 

provided a better solution or not, as smallest total delay and set it as the current solution for 

next iteration (Pseudocode: line 18 to line 22). After that, the new schedule will be sent to 

the rail control centre for management of the rail process. Finally, we repeat all processes 

until the stopping criteria of 400 seconds are met. 

4.4. Computational experiments  

In this section, we evaluate the performance of the BR-IG-LS, which is the proposed 

solution method in this chapter by comparing the results from the previous chapter. The 

same set of data from Chapter 3 was used, consisting of two different cases which are the 

UK and Thailand Rail network. All constraints are discussed in section 3.5. 

The major aim of conducting experiments is to find the minimum total train delays. BR-

IG-LS was implemented on a personal computer using an Intel core i7-4500U CPU, 

1.80GHz-2.4GHz, and 8GB RAM.  

4.4.1. Southeastern train company, United Kingdom 

The BR-IG-LS was compared to the result from the previous chapter with the same 

computation time of 400 seconds. In this chapter, we stopped the CPLEX at 400 seconds, 

because the CPLEX using more than 7 hours to find the optimal solution for the test 

instances. Therefore, comparison between CPLEX, IG-BR and BR-IG-LS was used to 

evaluate the performance of the BR-IG-LS. 

Tables 4.1-4.4 show the solution of using CPLEX, IG-BR and BR-IG-LS to solve the UK 

case study. In each table, all columns before the CPLEX column show the detail of each 

instance and all delay are shown in minutes. The other columns present results of each 

solution method and their performance. Finally, at the end of each table, we calculated an 

average of the total delay and RD (%). 
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Table 4.1 shows the BR-IG-LS results of deterministic RSP on minor and general delays 

on longer running time and dwell time. The best solution for each instance is indicated in 

bold. We set the limit of the computation time to 400 seconds which stopped the CPLEX 

reaching the optimal solution. The overall average of total train delays showed that CPLEX 

also provided the best efficiency for this type of disruption. A comparison between 

CPLEX, IG-BR and BR-IG-LS showed that CPLEX reduced the average of total train 

delays by 6.91% more than IG-BR and 4.69% than BR-IG-LS. Moreover, if we only focus 

between IG-BR and BR-IG-LS which is the approximate algorithm, the results showed that 

BR-IG-LS reduced the total delay time by 2.08%. 

CPLEX

Delay Delay

 RD (%)  

compared 

with CPLEX

Delay

 RD (%) 

compared 

with IG-BR

 RD (%) 

compared 

with CPLEX

1 3 P01 107.83 97.67 9.42 95.33 2.40 11.59

2 5 P02 143.67 140.33 2.32 150.50 -7.25 -4.76

1 3 P03 167.00 168.67 -1.00 160.83 4.65 3.69

2 5 P04 281.83 314.83 -11.71 295.17 6.24 -4.73

1 3 P05 260.17 247.33 4.93 247.33 0.00 4.93

2 5 P06 314.67 313.33 0.42 311.67 0.53 0.95

1 9 P07 1028.00 1099.83 -6.99 1073.50 2.39 -4.43

2 12 P08 661.75 705.50 -6.61 731.00 -3.61 -10.46

1 9 P09 1272.67 1471.17 -15.60 1308.83 11.03 -2.84

2 12 P10 1823.00 1829.00 -0.33 1816.67 0.67 0.35

1 9 P11 1021.00 1023.33 -0.23 1023.33 0.00 -0.23

2 12 P12 1769.58 2052.00 -15.96 2051.83 0.01 -15.95

737.60 788.58 -6.91 772.17 2.08 -4.69

5

10

Block 

Delay

# of 

Block(s)

# of 

Train(s)
Instance

Avg Delay

BR-IG-LS

15

20

25

30

IG-BR

Table 4.1 : Deterministic Longer running/dwell times - minor and general disruption: 
BR-IG-LS Results 



Page | 79  

 

Table 4.2 shows the BR-IG-LS results of deterministic RSP on minor and general delays 

on late departure time. The best solution for each instance is indicated in bold. All 

experimentations were based on 400 seconds. CPLEX exceeded this time limit and did not 

achieve the optimal solution. The experimental results clearly showed that CPLEX gave a 

better performance to decrease average total delay of all trains than the other algorithms by 

3.78% more than IG-BR and 2.81% more than BR-IG-LS. However, if we only focused on 

both types of IG algorithms, the performance of BR-IG-LS slightly reduced the train delay 

by 0.93% lower than IG-BR. 

CPLEX

Delay Delay

 RD (%)  

compared 

with CPLEX

Delay

 RD (%) 

compared 

with IG-BR

 RD (%) 

compared 

with CPLEX

1 R01 61.83 70.83 -14.55 68.67 3.05 -11.06

3 R02 59.83 65.50 -9.47 62.83 4.08 -5.01

5 R03 73.17 75.17 -2.74 80.33 -6.86 -9.79

1 R04 70.67 78.50 -11.09 75.00 4.46 -6.13

3 R05 82.17 83.50 -1.62 82.83 0.80 -0.80

5 R06 138.00 143.83 -4.22 143.17 0.46 -3.75

1 R07 67.66 68.67 -1.49 68.67 0.00 -1.49

3 R08 119.33 127.33 -6.70 124.83 1.96 -4.61

5 R09 167.83 171.33 -2.08 171.33 0.00 -2.08

6 R10 182.33 184.00 -0.92 183.67 0.18 -0.73

9 R11 240.50 250.67 -4.23 246.83 1.53 -2.63

12 R12 334.17 347.67 -4.04 347.67 0.00 -4.04

6 R13 230.67 240.33 -4.19 233.00 3.05 -1.01

9 R14 275.67 281.67 -2.18 280.00 0.59 -1.57

12 R15 376.67 385.17 -2.26 381.33 1.00 -1.24

165.37 171.61 -3.78 170.01 0.93 -2.81

25

5

10

15

20

IG-BR

Instance

BR-IG-LS

Late 

Departure

# of 

Train(s)

Avg Delay

Table 4.2 : Deterministic Late departures - minor and general disruption: BR-IG-LS Results 
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Table 4.3 presents the BR-IG-LS results of deterministic RSP on major delays on longer 

running time and dwell times. The best solution for each instance is indicated in bold. The 

best results provided by BR-IG-LS which gave the highest performance in this set of data. 

On the overall average of total train delay, BR-IG-LS was better than CPLEX by 9.19% 

and better than IG-BR by 1.61%. Moreover, we could not confirm that BR-IG-LS was 

better than CPLEX because in this case study CPLEX execution was stopped at 400 

seconds. 

CPLEX

Delay Delay

 RD (%)  

compared 

with CPLEX

Delay

 RD (%) 

compared 

with IG-BR

 RD (%) 

compared 

with CPLEX

4 HP01 7706.00 7379.33 4.24 7227.47 2.06 6.21

5 HP02 7432.00 7260.75 2.30 7118.82 1.95 4.21

6 HP03 7619.50 7250.47 4.84 7335.30 -1.17 3.73

4 HP04 9396.67 8836.87 5.96 8180.50 7.43 12.94

5 HP05 9342.33 9150.20 2.06 8997.90 1.66 3.69

6 HP06 8529.00 7548.50 11.50 7494.00 0.72 12.14

4 HP07 11574.83 10429.50 9.90 9987.60 4.24 13.71

5 HP08 9309.58 8795.90 5.52 8871.20 -0.86 4.71

6 HP09 9570.67 8497.00 11.22 8497.00 0.00 11.22

4 HP10 13182.67 12187.30 7.55 11879.10 2.53 9.89

5 HP11 10716.58 9656.60 9.89 9575.33 0.84 10.65

6 HP12 13006.42 11795.70 9.31 11685.17 0.94 10.16

4 HP13 15491.00 14262.90 7.93 14151.60 0.78 8.65

5 HP14 14858.67 13645.60 8.16 13320.50 2.38 10.35

6 HP15 15646.83 14103.50 9.86 14052.80 0.36 10.19

10892.18 10053.34 7.70 9891.62 1.61 9.19

BR-IG-LS

# of 

Block(s)

70

IG-BR

Block 

Delay

80

Avg Delay

Instance

40

50

60

Table 4.3 : Deterministic Longer running/dwell times - major disruption: BR-IG-LS Results 
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Table 4.4 indicates BR-IG-LS results of deterministic RSP for major disruption on late 

departure times. The best solution for each instance is indicated in bold. To compare the 

results based on the same execution time of 400 seconds, the average total train delays of 

BR-IG-LS were 0.83% lower than IG-BR and 6.39% lower than CPLEX. 

The SSDP separated the disruptions into 3 types depending on the size of disruption as 

minor disruptions, general disruptions and major disruptions. Then, we discussed our 

results based on the disruption types. 

 

Table 4.5 shows the summary results from Tables 4.1 and 4.2 considered on small 

disruption instances. When we computed CPLEX, IG-BR and BR-IG-LS for only 400 

seconds, the best solution was provided by CPLEX which was 6.34% better than IG-BR 

and 4.34% better than BR-IG-LS for reducing the total train delays. As we know from the 

literature, CPLEX is more suitable for small case studies because it needs huge amounts of 

computation time to solve complex RSPs. However, when only focusing on both types of 

CPLEX

Delay Delay

 RD (%)  

compared 

with CPLEX

Delay

 RD (%) 

compared 

with IG-BR

 RD (%) 

compared 

with CPLEX

3 PR01 7524.00 7379.92 1.91 7347.67 0.44 2.34

5 PR02 7455.67 7285.42 2.28 7311.70 -0.36 1.93

9 PR03 7599.17 6975.83 8.20 6884.33 1.31 9.41

12 PR04 7823.50 7107.00 9.16 7017.20 1.26 10.31

3 PR05 6830.00 6930.50 -1.47 6816.00 1.65 0.20

5 PR06 7773.56 7002.83 9.91 6997.75 0.07 9.98

9 PR07 6518.50 6465.85 0.81 6515.83 -0.77 0.04

12 PR08 8088.50 7458.50 7.79 7333.67 1.67 9.33

3 PR09 9462.17 9346.13 1.23 9212.50 1.43 2.64

5 PR10 9615.75 9097.40 5.39 8849.17 2.73 7.97

9 PR11 9589.00 7672.54 19.99 7672.54 0.00 19.99

12 PR12 9863.33 9194.50 6.78 9087.30 1.17 7.87

3 PR13 9346.42 8400.54 10.12 8367.80 0.39 10.47

5 PR14 9737.17 9741.20 -0.04 9741.20 0.00 -0.04

9 PR15 8609.00 8529.00 0.93 8432.40 1.13 2.05

12 PR16 8286.92 8012.83 3.31 7967.08 0.57 3.86

8382.67 7912.50 5.61 7847.13 0.83 6.39

40 4

10

20

Departure 

 Delay

# of 

Train(s)
Instance

IG-BR BR-IG-LS

Avg Delay

40 6

10

20

50 4

10

20

50 6

10

20

Block 

Delay

# of 

Block(s)

Table 4.4 : Deterministic Longer running/dwell times and Late departures - major disruption: 
BR-IG-LS Results 

CPLEX

Delay Delay

 RD (%)  

compare 

with CPLEX

Delay

 RD (%) 

compare 

with IG-BR

 RD (%) 

compare 

with CPLEX

Longer Running/dwell times 737.60 788.58 -6.91 772.17 2.08 -4.69

Late Departures 165.37 171.61 -3.78 170.01 0.93 -2.81

451.48 480.10 -6.34 471.09 1.88 -4.34

BR-IG-LS

Disruption Type

Minor and 

General 

Average Delay

IG-BR

Table 4.5 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - Small 
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IG algorithms, the performance of BR-IG-LS can reduce train delay by 1.88% lower than 

IG-BR. 

 

Table 4.6 shows the summary results from Tables 4.3 and 4.4 considered on large 

disruption instances. After stopping the implementation at 400 seconds, the results showed 

that BR-IG-LS was more effective at reducing the average total train delay when compared 

with the IG-BR at 1.27% and CPLEX at 7.78%. As expected, CPLEX cannot provide good 

performance in large size of disruption because it needs high computation time that 

exceeded the limit in our case study. 

 

Table 4.7 presents a summary of all results in section 4.4.1.1 and shows that CPLEX was 

effective for solving minor and general disruption RSP. However, BR-IG-LS was the best 

choice for the major disruption RSP and decreased the total delay from IG-BR solution by 

1.30%. To compare BR-IG-LS with the solution executed for 400 seconds from CPLEX, 

resulted in 7.42% gap of the average total train delays. 

In addition, if we only considered the two algorithms of IG-BR with and without LS, the 

overall results in this chapter showed that BR-IG-LS had better performance by 1.30%, 

which means that LS can improve the efficiency of IG-BR. 

4.4.2. State Railway of Thailand 

The computational experiments comparing between historical data, CPLEX, IG-BR and 

BR-IG-LS are shown in this chapter. All experiments were based on 400 seconds time 

limit to generate a new schedule. We cannot run CPLEX to receive the optimal solution, 

CPLEX

Delay Delay

 RD (%)  

compare 

with CPLEX

Delay

 RD (%) 

compare 

with IG-BR

 RD (%) 

compare 

with CPLEX

Longer Running/dwell times 9637.42 8982.92 6.79 8869.38 1.26 7.97

Late Departures & Longer Running/dwell times 5044.45 4731.51 6.20 4670.23 1.30 7.42

7340.94 6857.21 6.59 6769.80 1.27 7.78

IG-BR BR-IG-LS

Disruption Type

Major

Average Delay

Table 4.6 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - Large 

CPLEX

Delay Delay

 RD (%)  

compare 

with CPLEX

Delay

 RD (%) 

compare 

with IG-BR

 RD (%) 

compare 

with CPLEX

Longer Running/dwell times 737.60 788.58 -6.91 772.17 2.08 -4.69

Late Departures 165.37 171.61 -3.78 170.01 0.93 -2.81

Longer Running/dwell times 10892.18 10053.34 7.70 9891.62 1.61 9.19

Late Departures & Longer Running/dwell times 8382.67 7912.50 5.61 7847.13 0.83 6.39

5044.45 4731.51 6.20 4670.23 1.30 7.42

Disruption Type

Major

Average Delay

Minor and 

General

IG-BR BR-IG-LS

Table 4.7 : Summary of Experimental result of BR-IG-LS - Deterministic (UK) - All 
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because it takes more than 15 hours to solve the Thailand case study. Therefore, we 

compared all solution methods based on 400 seconds time frame to evaluate the 

performance of BR-IG-LS. 

Table 4.8 shows the experimental results using historical data, CPLEX, IG-BR and BR-IG-

LS. In this table, the first two columns show the detail of each instance and all delays data 

were provided in minutes. The historical data column showed total delay of all trains 

provided by the Thailand rail company. After that, CPLEX and IG-BR solutions from the 

previous chapter were provided in the next two columns. Then, column BR-IG-LS showed 

the total delay of each instance and the improvement when compared to the other methods 

from Chapter 3 by using RD (%). Finally, at the end of the table, we calculated an average 

of the total delay and RD.  

 
Table 4.8 : Deterministic Thai – BR-IG-LS Results 

Historical 

Data
CPLEX IG-BR

Delay Delay Delay Delay

 RD (%) 

compared with 

historical data 

 RD (%) 

compared 

with IG-BR

 RD (%) 

compared 

with CPLEX

1/2/2019 THAF101 2477 2121 1973 1937 21.80 1.82 8.68

2/2/2019 THAF102 2138 2035 1998 1958 8.42 2.00 3.78

3/2/2019 THAF103 1830 1803 1789 1755 4.10 1.90 2.66

4/2/2019 THAF104 1681 1325 1154 1187 29.39 -2.86 10.42

5/2/2019 THAF105 2549 2379 2247 2206 13.46 1.82 7.27

6/2/2019 THAF106 1750 1258 1234 1198 31.54 2.92 4.77

7/2/2019 THAF107 2329 2188 2107 2093 10.13 0.66 4.34

8/2/2019 THAF108 3186 2648 2422 2434 23.60 -0.50 8.08

9/2/2019 THAF109 2143 1907 1895 1822 14.98 3.85 4.46

10/2/2019 THAF110 2180 1574 1535 1509 30.78 1.69 4.13

11/2/2019 THAF111 2712 1982 1825 1782 34.29 2.36 10.09

12/2/2019 THAF112 2472 1830 1794 1742 29.53 2.90 4.81

13/2/2019 THAF113 2440 1874 1713 1713 29.80 0.00 8.59

14/2/2019 THAF114 1807 1807 1780 1704 5.70 4.27 5.70

15/2/2019 THAF115 2903 2458 2265 2268 21.87 -0.13 7.73

16/2/2019 THAF116 3582 3030 2877 2655 25.88 7.72 12.38

17/2/2019 THAF117 3516 2740 2554 2422 31.11 5.17 11.61

18/2/2019 THAF118 2895 2645 2321 2278 21.31 1.85 13.88

19/2/2019 THAF119 1880 1457 1398 1328 29.36 5.01 8.85

20/2/2019 THAF120 2791 1861 1801 1715 38.55 4.78 7.85

21/2/2019 THAF121 3798 3050 2821 2845 25.09 -0.85 6.72

22/2/2019 THAF122 3658 3421 3293 3287 10.14 0.18 3.92

23/2/2019 THAF123 3772 3543 3355 3317 12.06 1.13 6.38

24/2/2019 THAF124 3597 3260 3180 3034 15.65 4.59 6.93

25/2/2019 THAF125 3974 3477 3321 3358 15.50 -1.11 3.42

26/2/2019 THAF126 4873 4495 4288 4251 12.76 0.86 5.43

27/2/2019 THAF127 3385 3392 3275 3180 6.06 2.90 6.25

28/2/2019 THAF128 3023 2584 2447 2331 22.89 4.74 9.79

2833.61 2433.71 2309.36 2261.04 20.21 2.09 7.10Average Delay

BR-IG-LS

Date Instance
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Table 4.8 presents the BR-IG-LS results of deterministic RSP on the Thailand case study. 

The best solution for each instance is indicated in bold. The results show that when we 

applied LS to improve the IG-BR solution on the real-world data from Thailand, it 

provided an improvement by reducing the average total train delay by 2.09%. Moreover, if 

we consider the company’s current solution, it shows that BR-IG-LS increase the 

efficiency of the rail management process by 20.21%, decreasing the total train delays. 

However, the CPLEX did not show a good performance in this case study, with the total 

delay worse than BR-IG-LS by 7.10%, because we used limited computation time as 400 

seconds and the program needed large amounts of computation time to solve the Thailand 

case study. 

4.5. Chapter Conclusion  

The major aims in this chapter were to improve the quality of IG-BR from the previous 

chapter by added LS to increase the size of the search space, called BR-IG-LS. The LS 

satisfied the aim of improving the search procedure, so it is reasonable to combine LS 

techniques with IG-BR to tackle the RSP. In this chapter, we also used the optimisation 

model with the objective to minimise the total train delays. 

In the procedure of BR-IG-LS algorithm, trains are randomly selected out of the sequence 

in the destruction phase and reordered using biased randomisation. Then, trains were 

reinserted in the construction phase by applying the LS with neighbourhood search to 

move from one candidate to another in a search space. 

We compared the proposed method with the result of the real-world case studies from the 

Southeastern train company, UK (Khosravi, 2013) and State Railway of Thailand from 

Chapter 3. The computation time limit was 400 seconds for all instances. In the UK test 

instances, the overall results showed that BR-IG-LS was outstanding for the deterministic 

RSP; however, on the minor and general disruption set of instances, the best solution was 

provided by CPLEX. For the Thailand case study, the experimental results showed that the 

BR-IG-LS was more effective when compared with the company’s historical solution and 

IG-BR. Therefore, the BR-IG-LS was more productive for solving RSP in large and 

complex problems within the limit of computation time. 

Results in this chapter showed a large gap between BR-IG-LS and CPLEX in the minor 

and general disruption, with the opportunity to improve the quality of solution. However, 

the BR-IG-LS algorithm reached a limit and was hard to improve by combination with the 
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other techniques. Therefore, we need other methods to solve the deterministic RSP. For 

this reason, in the next chapter, we developed a combination of VNS and a biased 

randomised algorithm to generate and find a better solution for RSP.  
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Chapter 5:  Biased Randomised Variables Neighbourhood Search (BR-VNS) for 

deterministic RSP 

5.1. Introduction 

The results in the previous chapter showed that BR-IG-LS algorithm had good efficiency 

when solving the deterministic RSP. However, there was a large gap between BR-IG-LS 

and CPLEX in the minor and general disruption, so we proposed another method to 

improve the quality of solution. We selected a new metaheuristic method, namely Variable 

Neighbourhood Search (VNS) which had been successfully used in other COPs to solve 

the deterministic RSP.  

In this chapter, we proposed a BR-VNS algorithm to solve the RSP that deals with a 

deterministic delay. This chapter discusses the basic concept of VNS which is a new 

metaheuristic method introduced by Hansen et al. (2001) and widely studied to solve COPs 

in the last two decades. Samà et al. (2017) were the first to propose the VNS algorithm to 

solve RSP with effective results as a similar problem of RSP. Moreover, the parallel 

machines job shop scheduling problem which is very similar to our optimisation model 

was successfully solved by VNS (Driessel et al., 2011). According to the literature review 

and results from Chapter 3, biased randomisation can help to improve the main algorithm. 

Therefore, in this chapter, we proposed the BR-VNS algorithm to solve the RSP that deals 

with a deterministic delay. 

This chapter mainly discusses the concept of BR-VNS and then shows how to use BR-

VNS to solve a deterministic RSP. After that, experimental results of the UK and Thailand 

case studies are presented to evaluate the performance of the proposed algorithm. 

The chapter is structured as follows: section 5.2 presents this chapter’s contributions, then 

the proposed BR-VNS algorithm to solve RSP with deterministic disruption delays is 

presented in section 5.3. All the experimental results are shown in section 5.4, separate into 

two sets of case studies (UK & Thailand). Section 5.5 presents the conclusion of this 

chapter. 

5.2. Contribution 

The VNS has been very successful in solving different types of optimisation problems such 

as Capacitated location routing (Derbel et al., 2011), Job shop scheduling (Liao et al., 

2007; Roshanaei et al., 2009; Zandieh et al., 2010) and Vehicle routing (Bräysy, 1999; 

Polacek et al., 2005). Samà et al. (2017) proposed the VNS algorithm to solve a train 
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scheduling and routing problem and their results outperform Tabu Search and MILP 

methods (CPLEX). As VNS has been adapted successfully on many COPs, it was 

reasonable to apply VNS to combine with other techniques to improve the solution of the 

VNS algorithm. Juan et al. (2013) claimed that biased randomisation can add 

diversification and increase performance of the main algorithm; therefore, we selected this 

biased randomised heuristic to improve the VNS algorithm. To the best of our knowledge, 

the BR-VNS has not been used in the RSP before, therefore this is the first study to employ 

biased randomisation to improve the VNS algorithm for the RSP that deal with delays. 

In addition, other reasons behind using BR-VNS heuristic to solve deterministic RSP are 

because the BR-VNS algorithm is easy to implement and can provide randomised 

behaviour for the basic VNS algorithm. 

5.3. Proposed Biased Randomised VNS for solving RSP 

The VNS is a metaheuristic which consists of two or more neighbourhood structures to 

find the solution for many COPs. The basic steps of VNS are shown in Figure 5.1 below 

(Hansen et al., 2001).  

 

Algorithm 5.1 shows how the basic VNS works in detail. We denote Nk, k = 1, ..., kmax as a 

set of neighbourhood structures to solve the problem and Nk(x) is a set of solutions in the 

kth neighbourhood of x, where x refers to an initial solution (Pseudocode: line 2 to line 3). 

Firstly, the VNS process starts with the first neighbourhood structure Nk, (k=1) 

(Pseudocode: line 6) and generates a random start point x’ from each kth neighbourhood of 

x in order to avoid cycling (Shaking phase) (Pseudocode: line 7). Secondly, find a new 

local optimal solution x” around the solution of shaking phase by using the kth 

neighbourhood rule (Local search phase) (Pseudocode: line 8). Then, we check if the new 

solution (x”) is better than best solution (x), set x = x” and continue the search with Nk, 

(k=1); otherwise move to use the next neighbourhood structure Nk, (k=k+1) (Move or not 

Figure 5.1 : Steps of basic VNS (Hansen et al., 2001) 
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phase) (Pseudocode: line 9 to line 14). Finally, repeat the process until the stopping 

condition is met, or finish on the last neighbourhood structure Nk, (k ≥ kmax) (Pseudocode: 

line 5 to line 16). 

 

We describe the main procedure of basic VNS to solve the deterministic RSP as follows: 

(a) select the set of neighbourhood structures, which consider the rail network 

characteristics (b) initial solution of timetable, which is collected from the rail public 

website and (c) VNS, which improves the solution by using three main phases (shaking, 

local search and move or not) (Algorithm 5.2). 

For the set of neighbourhood structures, two types of neighbourhood structure mostly used 

in the scheduling problem are insertion and swap (Liao et al., 2007); we also use these 

popular structures to create the 4 neighbourhood structures in our VNS as below: 

▪  k=1; Swap two train positions on the same blocks. Randomly select two trains which 

operate on the same block, then place each train back into the position previously 

occupied by the other. 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 

1 2 7 4 5 6 3 8 9 10 11 

Algorithm 5.1 : Procedure for basic VNS Algorithm 

-------------------------------------------------------------------------------------------------------------- 

1: Procedure VNS Algorithm (x)   ⊳ x : Initial solution 

2: set of neighbourhood structures Nk; k = 1, ..., kmax ⊳ set neighbourhood structures 

3: x : 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛();    ⊳ Initial Solution 

4: k = 1 

5:  while stopping criteria are not met do  

6:      for k  = 1 to kmax do   

7:     select a random x’ from Nk(x)   ⊳ shaking 

8:     x” = neighbourhood search of x’  ⊳ local search 

9:     if x” < x then      ⊳ move or not 

10:       x = x” 

11:          k = 1 

12:    else if 

13:  k = k + 1 

14:        end if 

15:    end for 

16: end while 

17:end procedure 

   Figure 5.2 : First neighbourhood structure (k=1) 
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▪ k=2; Swap three train positions on the same block. Randomly select three trains which 

operate on the same block, then randomly place each train back into the position 

previously occupied by the others. 

 

 

 

 

 

▪ k=3; Insert one train. Randomly select one train from the sequence, then reinsert it 

back in a random position on the same block. 

 

 

 

 

 

▪ k=4; Insert two trains. Randomly select two trains from the sequence, then reinsert 

those trains back in random positions on the same block. 

 

 

 

 

 

Algorithm 5.2 describes how to use basic VNS to solve the deterministic RSP. Firstly, the 

process starts by selecting the set of neighbourhood structures as shown in Figures 5.2-5.5 

(Pseudocode: line 2). Secondly, we create an initial solution from the rail timetable 

(Pseudocode: line 3).  

1 2 3 4 5 6 7 8 9 10 11 

1 6 3 4 5 10 7 8 9 2 11 

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 5 6 7 8 9 4 10 11 

1 2 3 4 5 6 7 8 9 10 11 

1 3 4 2 6 7 8 9 10 5 11 

Figure 5.3 : Second neighbourhood structure (k=2) 

Figure 5.4 : Third neighbourhood structure (k=3) 

 Figure 5.5 : Fourth neighbourhood structure (k=4) 
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The process of VNS for deterministic RSP starts from the first neighbourhood structure 

until the last neighbourhood structure (Pseudocode: line 6). In each neighbourhood, we 

need to perform the shaking phase, local search phase and move or not phase.  

Shaking phase - we randomly select an x’ solution from the initial solution x in order to 

avoid cycling (Pseudocode: line 7) and check that the solution matches with all operational 

constraints such as departure time, running/dwell time and headway constraints 

(Pseudocode: line 8 to line 10).  

Local search phase - we use the kth neighbourhood rule to find a local optimal 

(Pseudocode: line 11) and also need to recheck that all operational constraints are still valid 

(Pseudocode: line 13 to line 14).  

Move or not phase - we check if the new solution x” is better than the best solution x or 

not, if yes set best solution x = new solution x” and continue to search on the first 

neighbourhood structure Nk, (k=1); otherwise move to use the next neighbourhood 

structure Nk, (k=k+1) (Pseudocode: line 15 to line 20).  

 

Algorithm 5.2 : Procedure for Deterministic RSP VNS Algorithm 

------------------------------------------------------------------------------------------------------------------------- 

1: Procedure Deterministic RSP based VNS Algorithm (x) 

⊳ x: Initial solution 

2: set of neighbourhood structures Nk; k = 1, ..., kmax ⊳ set neighbourhood structures 

3: x: GenerateInitialSolution();   ⊳ Initial Solution 

4: k = 1       ⊳ start from first neighbourhood structure 

5: while execution_time < 400 do   ⊳ Execution time 400 seconds 

6:    for k = 1 to kmax do      ⊳ kmax=4; four neighbourhood structures 

7:  select a random x’ from Nk(x)   ⊳ shaking 

8:  if x’ met with all railway constraints then ⊳ check all constraints 

9:      solution (x’) = calculate minimise a total delay (x’) 

10:  end if 

11:      x” = neighbourhood search of x’  ⊳ local search 

12:        if x” met with all railway constraints then ⊳ check all constraints 

13:      solution (x”) = calculate minimise a total delay (x”) 

14:  end if 

15: if solution (x”) < solution (x) then   ⊳ move or not 

16:      x = x” 

17:         k = 1      ⊳ return to first neighbourhood structure 

18: else if 

19:     k = k + 1     ⊳ move to next neighbourhood structure 

20:     end if 

21:   end for 

22: end while 

23:end procedure 
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5.3.1. Biased Randomised VNS (BR-VNS) 

The VNS algorithm to solve a train scheduling and routing problem was performed by 

Samà et al. (2017). Their results were very successful. Moreover, we know that biased 

randomisation can improve the performance of algorithms by avoiding the local optimal 

and increase diversification of the heuristics or metaheuristics. However, the VNS 

algorithm has not yet been combined with biased randomisation technique. Thus, it is 

reasonable to combine biased randomisation techniques with the basic VNS algorithm to 

solve the deterministic RSP, called BR-VNS.  

The BR-VNS uses a biased randomised algorithm concept to generate an initial solution 

and then starts the VNS algorithm to improve the solution. The process of BR-VNS 

implementation is described as follows: (a) select the set of neighbourhood structures 

which match to the rail network characteristics (b) generate an initial solution by using a 

biased randomised algorithm, and (c) VNS, which improves the solution following three 

main phases (shaking, local search and move or not) (Algorithm 5.3). 
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Algorithm 5.3 presents the pseudocode for deterministic RSP BR-VNS Algorithm. Firstly, 

the process starts by selecting the set of neighbourhood structures (Pseudocode: line 2). 

Secondly, we use the biased randomised algorithm to assign the probability to reorder the 

train sequence to generate an initial solution (Pseudocode: line 3 to line 6). Then, we repeat 

the whole VNS process as shaking phase, local search phase and move or not phase until 

the stopping condition is met (Pseudocode: line 8 to line 25). We also need to make sure 

that that all railway operational constraints are met at each step (Pseudocode: line 11 to 

line 13 and line 15 to line 17). 

5.4. Computational experiments  

We need to evaluate the performance of the BR-VNS, which is the proposed solution 

method in this chapter by comparing the results from the previous chapter. The same set of 

Algorithm 5.3 : Procedure for Deterministic RSP BR-VNS Algorithm 

----------------------------------------------------------------------------------------------------------------------- 

1: Procedure Deterministic RSP BR-VNS Algorithm (x, b, 𝛽)   

⊳ x: Initial solution 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter: biased randomised 

2: set of neighbourhood structures Nk; k = 1, ..., kmax  ⊳ set neighbourhood structures  

3: for 𝑖 = 1 to b do       ⊳ run for all block 

4:    using 𝛽 probability to assign order of train in each block ⊳ Biased randomised 

5: end for 

6: x: GenerateBiasedRandomisedInitialSolution();  ⊳ Initial solution 

7: k = 1       ⊳ start from first neighbourhood structure 

8: while execution_time < 400 do   ⊳ Execution time 400 seconds 

9:    for k = 1 to kmax do      ⊳ kmax=4; four neighbourhood structures 

10:  select a random x’ from Nk(x)   ⊳ shaking 

11:  if x’ met with all railway constraints then ⊳ check all constraints 

12:      solution (x’) = calculate minimise a total delay (x’) 

13:  end if 

14:      x” = neighbourhood search of x’  ⊳ local search 

15:        if x” met with all railway constraints then ⊳ check all constraints 

16:      solution (x”) = calculate minimise a total delay (x”) 

17:  end if 

18: if solution (x”) < solution (x) then   ⊳ move or not 

19:      x = x” 

20:         k = 1      ⊳ return to first neighbourhood structure 

21: else if 

22:     k = k + 1     ⊳ move to next neighbourhood structure 

23:     end if 

24:   end for 

25: end while 

26:end procedure 
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data from Chapter 3 was used, consisting of two different cases which are the UK and 

Thailand Rail network. All constraints follow details in section 3.5. 

The major aim of experimentation was to minimise the total train delays. BR-VNS was 

implemented on a personal computer using an Intel core i7-4500U CPU, 1.80GHz-

2.4GHz, and 8GB RAM.  

5.4.1. Southeastern train company, United Kingdom 

The BR-VNS was compared to the result from the previous chapter and the basic VNS. In 

the real-life rescheduling process, we need to update the schedule within time limits, 

however CPLEX required more than 7 hours to reach the optimal solution. Therefore, we 

set 400 seconds computation time for all methods to compare between CPLEX, IG-BR, 

BR-IG-LS, VNS and BR-VNS to evaluate the efficiency of the BR-VNS. 

Tables 5.1, 5.3, 5.5, 5.7, 5.9, 5.11 and 5.13 show the experimental results using CPLEX, 

IG-BR, BR-IG-LS, VNS and BR-VNS. In each table, all columns before the CPLEX 

column are used to provide detail of each instance. Moreover, the other columns show the 

total train delay of each instance by using a different solution method. Finally, at the 

bottom row of the table, we calculated an average of total delay. 

Tables 5.2, 5.4, 5.6, 5.8, 5.10, 5.12 and 5.14 compare the average delay between each 

solution method from Tables 5.1, 5.3, 5.5, 5.7, 5.9, 5.11 and 5.13. Each sub column under 

the name of each solution shows Relative Deviation (RD) compared to all other solution 

methods proposed in this thesis as CPLEX (RD (%) compared with CPLEX), IG-BR (RD 

(%) compared with IG-BR), BR-IG-LS (RD (%) compared with BR-IG-LS) and VNS (RD 

(%) compared with VNS). 

In addition, all delays are presented in minutes and a positive number of RD (%) means 

that the method has a better performance than the other methods, otherwise a negative 

number shows as no improvement. 
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Tables 5.1 and 5.2 show the result of using the BR-VNS to solve the deterministic RSP on 

minor and general delays for longer running time and dwell time. The average delay was 

used to evaluate the performance between the proposed methods. As expected, CPLEX 

outperformed the other algorithms in terms of average delay. However, the optimal 

solution could not be achieved due to the 400 seconds computation time limit. For average 

total train delays, the results from CPLEX were 2.96% better than VNS and 1.93% better 

than BR-VNS. However, if we only focus on our proposed algorithms, BR-VNS provided 

lowest average delays than the others with 1% lower than VNS, 2.63% lower than BR-IG-

LS and 4.66% lower than IG-BR. 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Delay Delay Delay Delay Delay

1 3 P01 107.83 97.67 95.33 95.33 93.83

2 5 P02 143.67 140.33 150.50 145.50 143.67

1 3 P03 167.00 168.67 160.83 160.83 156.50

2 5 P04 281.83 314.83 295.17 285.17 280.83

1 3 P05 260.17 247.33 247.33 252.17 244.67

2 5 P06 314.67 313.33 311.67 311.67 311.67

1 9 P07 1028.00 1099.83 1073.50 1060.83 1061.83

2 12 P08 661.75 705.50 731.00 704.25 702.25

1 9 P09 1272.67 1471.17 1308.83 1315.83 1288.00

2 12 P10 1823.00 1829.00 1816.67 1834.83 1821.33

1 9 P11 1021.00 1023.33 1023.33 1023.33 1023.33

2 12 P12 1769.58 2052.00 2051.83 1923.50 1894.33

737.60 788.58 772.17 759.44 751.85

20

25

# of 

Train(s)
Instance

5

10

15

Block 

Delay

# of 

Block(s)

30

Avg Delay

Table 5.1 : Deterministic Longer running/dwell times - minor and general disruption: BR-VNS 

Results 

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

1 3 P01 11.59 2.40 0.00 12.99 3.93 1.57 1.57

2 5 P02 -1.28 -3.68 3.32 0.00 -2.38 4.54 1.26

1 3 P03 3.69 4.65 0.00 6.29 7.22 2.69 2.69

2 5 P04 -1.18 9.42 3.39 0.36 10.80 4.86 1.52

1 3 P05 3.07 -1.96 -1.96 5.96 1.08 1.08 2.97

2 5 P06 0.95 0.53 0.00 0.95 0.53 0.00 0.00

1 9 P07 -3.19 3.55 1.18 -3.29 3.46 1.09 -0.09

2 12 P08 -6.42 0.18 3.66 -6.12 0.46 3.93 0.28

1 9 P09 -3.39 10.56 -0.53 -1.20 12.45 1.59 2.12

2 12 P10 -0.65 -0.32 -1.00 0.09 0.42 -0.26 0.74

1 9 P11 -0.23 0.00 0.00 -0.23 0.00 0.00 0.00

2 12 P12 -8.70 6.26 6.25 -7.05 7.68 7.68 1.52

-2.96 3.70 1.65 -1.93 4.66 2.63 1.00Avg RD(%)

VNS BR-VNS

5

10

15

20

25

30

Block 

Delay

# of 

Block(s)

# of 

Train(s)
Instance

Table 5.2 : Deterministic Longer running/dwell times - minor and general disruption: 
BR-VNS Results (RD) 
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Table 5.3 shows the results of using the BR-VNS to solve the deterministic RSP on minor 

and general delays for late departure times. Table 5.4 was generated for comparison 

between the proposed algorithms. CPLEX also outperformed the other algorithms in terms 

of average delays as we expected. The execution time limit of 400 seconds resulted in no 

optimal solution for CPLEX. For average total train delays, results of CPLEX were 2.14% 

lower than VNS and 1.59% lower than BR-VNS. Moreover, when we only compared 

between IG-BR, BR-IG-LS, VNS and BR-VNS the best average delays value was 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Delay Delay Delay Delay Delay

1 R01 61.83 70.83 68.67 68.17 67.83

3 R02 59.83 65.50 62.83 63.00 60.33

5 R03 73.17 75.17 80.33 75.50 74.83

1 R04 70.67 78.50 75.00 72.17 71.00

3 R05 82.17 83.50 82.83 82.67 82.17

5 R06 138.00 143.83 143.17 140.67 140.83

1 R07 67.66 68.67 68.67 68.67 68.67

3 R08 119.33 127.33 124.83 124.83 121.17

5 R09 167.83 171.33 171.33 171.33 171.33

6 R10 182.33 184.00 183.67 183.67 182.33

9 R11 240.50 250.67 246.83 244.33 242.67

12 R12 334.17 347.67 347.67 347.67 347.67

6 R13 230.67 240.33 233.00 233.00 231.78

9 R14 275.67 281.67 280.00 277.67 278.50

12 R15 376.67 385.17 381.33 380.17 378.83

165.37 171.61 170.01 168.90 168.00Avg Delay

5

10

15

20

Late 

Departure

# of 

Train(s)
Instance

25

Table 5.3 : Deterministic Late departures - minor and general disruption: BR-VNS Results 

Table 5.4 : Deterministic Late departures - minor and general disruption: BR-VNS Results (RD) 

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

1 R01 -10.25 3.76 0.73 -9.70 4.24 1.22 0.50

3 R02 -5.29 3.82 -0.27 -0.83 7.89 3.98 4.24

5 R03 -3.19 -0.44 6.01 -2.27 0.45 6.85 0.89

1 R04 -2.13 8.06 3.77 -0.47 9.55 5.33 1.62

3 R05 -0.61 0.99 0.19 0.00 1.59 0.80 0.60

5 R06 -1.93 2.20 1.75 -2.05 2.09 1.63 -0.11

1 R07 -1.49 0.00 0.00 -1.49 0.00 0.00 0.00

3 R08 -4.61 1.96 0.00 -1.54 4.84 2.93 2.93

5 R09 -2.08 0.00 0.00 -2.08 0.00 0.00 0.00

6 R10 -0.73 0.18 0.00 0.00 0.91 0.73 0.73

9 R11 -1.59 2.53 1.01 -0.90 3.19 1.69 0.68

12 R12 -4.04 0.00 0.00 -4.04 0.00 0.00 0.00

6 R13 -1.01 3.05 0.00 -0.48 3.56 0.52 0.52

9 R14 -0.73 1.42 0.83 -1.03 1.13 0.54 -0.30

12 R15 -0.93 1.30 0.30 -0.57 1.65 0.66 0.35

-2.14 1.58 0.65 -1.59 2.11 1.19 0.54

VNS BR-VNS

Late 

Departure

# of 

Train(s)
Instance

15

20

25

Avg RD(%)

5

10
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implemented by using the BR-VNS with 0.54% lower than VNS, 1.19% lower than BR-

IG-LS and 2.11% lower than IG-BR.  

 

 

Tables 5.5 and 5.6 present the results of using the BR-VNS to solve the deterministic RSP 

on major delays for longer running time and dwell times. All implementations were based 

on 400 seconds for fair comparison and CPLEX was stopped before reaching the optimal. 

Results showed that the smallest average delay was computed by BR-VNS with 0.52% less 

than VNS, 1.46% less than BR-IG-LS, 3.04% less than IG-BR and 10.50% less than 

CPLEX. Therefore, the BR-VNS outperformed for solving the major disruptions of longer 

running time and dwell time. 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Delay Delay Delay Delay Delay

4 HP01 7706.00 7379.33 7227.47 7183.58 7095.32

5 HP02 7432.00 7260.75 7118.82 7039.90 6980.77

6 HP03 7619.50 7250.47 7335.30 7250.47 7250.47

4 HP04 9396.67 8836.87 8180.50 8056.70 7925.68

5 HP05 9342.33 9150.20 8997.90 8824.50 8682.29

6 HP06 8529.00 7548.50 7494.00 7401.92 7347.02

4 HP07 11574.83 10429.50 9987.60 9885.87 9793.20

5 HP08 9309.58 8795.90 8871.20 8772.67 8706.13

6 HP09 9570.67 8497.00 8497.00 8497.00 8497.00

4 HP10 13182.67 12187.30 11879.10 11734.13 11801.50

5 HP11 10716.58 9656.60 9575.33 9530.01 9452.31

6 HP12 13006.42 11795.70 11685.17 11558.75 11521.67

4 HP13 15491.00 14262.90 14151.60 14008.20 14086.15

5 HP14 14858.67 13645.60 13320.50 13241.83 13172.80

6 HP15 15646.83 14103.50 14052.80 13987.33 13901.33

10892.18 10053.34 9891.62 9798.19 9747.58Avg Delay

40

50

60

70

80

# of 

Block(s)
Instance

Block 

Delay

Table 5.5 : Deterministic Longer running/dwell times - major disruption: BR-VNS Results 

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

4 HP01 6.78 2.65 0.61 7.92 3.85 1.83 1.23

5 HP02 5.28 3.04 1.11 6.07 3.86 1.94 0.84

6 HP03 4.84 0.00 1.16 4.84 0.00 1.16 0.00

4 HP04 14.26 8.83 1.51 15.65 10.31 3.11 1.63

5 HP05 5.54 3.56 1.93 7.07 5.11 3.51 1.61

6 HP06 13.21 1.94 1.23 13.86 2.67 1.96 0.74

4 HP07 14.59 5.21 1.02 15.39 6.10 1.95 0.94

5 HP08 5.77 0.26 1.11 6.48 1.02 1.86 0.76

6 HP09 11.22 0.00 0.00 11.22 0.00 0.00 0.00

4 HP10 10.99 3.72 1.22 10.48 3.17 0.65 -0.57

5 HP11 11.07 1.31 0.47 11.80 2.12 1.28 0.82

6 HP12 11.13 2.01 1.08 11.42 2.32 1.40 0.32

4 HP13 9.57 1.79 1.01 9.07 1.24 0.46 -0.56

5 HP14 10.88 2.96 0.59 11.35 3.46 1.11 0.52

6 HP15 10.61 0.82 0.47 11.16 1.43 1.08 0.61

10.04 2.54 0.94 10.51 3.04 1.46 0.52

VNS BR-VNS

Block 

Delay

# of 

Block(s)
Instance

60

70

80

Avg RD(%)

40

50

Table 5.6 : Deterministic Longer running/dwell times - major disruption: BR-VNS Results (RD) 
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Table 5.7 highlights the results of using the BR-VNS to solve the deterministic RSP on 

major disruption on late departures time. Then, Table 5.8 provides a comparison between 

CPLEX, IG-BR, BR-IG-LS, VNS and BR-VNS. In this set of instances, BR-VNS gave 

high performance to reduce the average train delays at 1.10% lower than VNS, 2.05% 

lower than BR-IG-LS, 2.86% lower than IG-BR and 8.30% lower than CPLEX. Moreover, 

please note that the CPLEX solution was not optimal because of the 400 seconds time 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Delay Delay Delay Delay Delay

3 PR01 7524.00 7379.92 7347.67 7298.36 7208.22

5 PR02 7455.67 7285.42 7311.70 7267.67 7135.00

9 PR03 7599.17 6975.83 6884.33 6789.83 6697.69

12 PR04 7823.50 7107.00 7017.20 6977.33 6853.13

3 PR05 6830.00 6930.50 6816.00 6732.75 6788.67

5 PR06 7773.56 7002.83 6997.75 6889.20 6721.36

9 PR07 6518.50 6465.85 6515.83 6432.85 6374.40

12 PR08 8088.50 7458.50 7333.67 7267.13 7122.92

3 PR09 9462.17 9346.13 9212.50 9123.27 9041.33

5 PR10 9615.75 9097.40 8849.17 8754.69 8667.22

9 PR11 9589.00 7672.54 7672.54 7672.54 7672.54

12 PR12 9863.33 9194.50 9087.30 8997.40 8805.45

3 PR13 9346.42 8400.54 8367.80 8210.36 8150.75

5 PR14 9737.17 9741.20 9741.20 9741.20 9741.20

9 PR15 8609.00 8529.00 8432.40 8322.50 8235.48

12 PR16 8286.92 8012.83 7967.08 7874.17 7762.17

8382.67 7912.50 7847.13 7771.95 7686.10

10

20

40 4

10

20

Block 

Delay

# of 

Block(s)

Departure 

 Delay

Avg Delay

40 6

10

20

50 4

10

20

# of 

Train(s)
Instance

50 6

Table 5.7 : Deterministic Longer running/dwell times and Late departures - major disruption: 
BR-VNS Results 

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

3 PR01 3.00 1.11 0.67 4.20 2.33 1.90 1.24

5 PR02 2.52 0.24 0.60 4.30 2.06 2.42 1.83

9 PR03 10.65 2.67 1.37 11.86 3.99 2.71 1.36

12 PR04 10.82 1.82 0.57 12.40 3.57 2.34 1.78

3 PR05 1.42 2.85 1.22 0.61 2.05 0.40 -0.83

5 PR06 11.38 1.62 1.55 13.54 4.02 3.95 2.44

9 PR07 1.31 0.51 1.27 2.21 1.41 2.17 0.91

12 PR08 10.15 2.57 0.91 11.94 4.50 2.87 1.98

3 PR09 3.58 2.38 0.97 4.45 3.26 1.86 0.90

5 PR10 8.95 3.77 1.07 9.86 4.73 2.06 1.00

9 PR11 19.99 0.00 0.00 19.99 0.00 0.00 0.00

12 PR12 8.78 2.14 0.99 10.73 4.23 3.10 2.13

3 PR13 12.16 2.26 1.88 12.79 2.97 2.59 0.73

5 PR14 -0.04 0.00 0.00 -0.04 0.00 0.00 0.00

9 PR15 3.33 2.42 1.30 4.34 3.44 2.34 1.05

12 PR16 4.98 1.73 1.17 6.33 3.13 2.57 1.42

7.29 1.78 0.96 8.31 2.86 2.05 1.10

Block 

Delay

# of 

Block(s)

Departure 

 Delay

# of 

Train(s)
Instance

Avg RD(%)

VNS BR-VNS

50 4

10

20

50 6

10

20

40 4

10

20

40 6

10

20

Table 5.8 : Deterministic Longer running/dwell times and Late departures - major disruption: 
BR-VNS Results (RD) 
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limit. Therefore, the BR-VNS provided a better value of average delays in less 

computation time. 

As mentioned before, we separated the instance sets into 2 groups depending on the size of 

disruption as minor and general size of disruption and major size of disruption. 

Computation time to generate the experimental results was set as 400 seconds. This is in 

the time frame limit required to complete the rescheduling process and update the service 

as suggested by SSDP. Therefore, we summarised the results dependent on size of delay 

separately as follows: 

 

 

Tables 5.9 and 5.10 show the summary results of small disruption instances. When we 

compared between CPLEX, IG-BR, BR-IG-LS, VNS and BR-VNS the best average train 

delay was provided by CPLEX at 2.81% better than VNS and 1.87% better than BR-VNS 

in the same computation time. This computation time was not long enough for CPLEX to 

achieve the optimal value; however, it can help to evaluate the performance of the 

proposed method. In addition, if we only focus on other proposed algorithms except 

CPLEX, the BR-VNS provided lowest average delays than the others with 0.78% lower 

than VNS, 2.37% lower than BR-IG-LS and 4.20% lower than IG-BR. 

 

Table 5.9 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Small 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Longer Running/dwell times 737.60 788.58 772.17 759.44 751.85

Late Departures 165.37 171.61 170.01 168.90 168.00

451.48 480.10 471.09 464.17 459.92

Disruption Type

Minor and 

General

Average Delay

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

Longer Running/dwell times -2.96 3.70 1.65 -1.93 4.66 2.63 0.52

Late Departures -2.14 1.58 0.65 -1.59 2.11 1.19 1.10

-2.81 3.32 1.47 -1.87 4.20 2.37 0.78Average Delay

Minor and 

General

VNS BR-VNS

Disruption Type

Table 5.10 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Small (RD) 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Longer Running/dwell times 10892.18 10053.34 9891.62 9798.19 9747.58

Late Departures & Longer Running/dwell times 8382.67 7912.50 7847.13 7771.95 7686.10

9637.42 8982.92 8869.38 8785.07 8716.84

Disruption Type

Major

Average Delay

Table 5.11 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Large 
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Tables 5.11 and 5.12 show the summary results for large disruption instances. Results of 

CPLEX, IG-BR, BR-IG-LS, VNS and BR-VNS were compared with the proposed method. 

The BR-VNS had higher efficiency to reduce the total delays at 9.55% lower than CPLEX, 

2.96% lower than IG-BR, 1.72% lower than BR-IG-LS and 0.78% lower than VNS. Note 

that CPLEX was terminated at 400 seconds before reaching the optimal solution.  

 

 

Tables 5.13 and 5.14 present a summary of all results in section 5.4.1.1. According to the 

literature review, CPLEX solution required long computation time to solve the complex 

RSP. Thus, stopping at 400 seconds did not achieve an optimal solution. However, CPLEX 

also proved effective for solving minor and general disruptions of RSP, while BR-VNS 

was the best choice for the major disruptions. The overview of this chapter concluded that 

BR-VNS improved the performance of deterministic RSP with the aim to minimise the 

total train delay by 0.78% better than VNS, 1.75% better than BR-IG-LS, 3.03% better 

than IG-BR and 9.04% better than CPLEX.  

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

Longer Running/dwell times 10.04 2.54 0.94 10.51 3.04 1.46 0.52

Late Departures & Longer Running/dwell times 7.29 1.78 0.96 8.31 2.86 2.05 1.10

8.84 2.20 0.95 9.55 2.96 1.72 0.78

Major

Average Delay

VNS BR-VNS

Disruption Type

Table 5.12 : Summary of Experimental result of BR-VNS - Deterministic (UK) - Large (RD) 

CPLEX IG-BR BR-IG-LS VNS BR-VNS

Longer Running/dwell times 737.60 788.58 772.17 759.44 751.85

Late Departures 165.37 171.61 170.01 168.90 168.00

Longer Running/dwell times 10892.18 10053.34 9891.62 9798.19 9747.58

Late Departures & Longer Running/dwell times 8382.67 7912.50 7847.13 7771.95 7686.10

5044.45 4731.51 4670.23 4624.62 4588.38

Major

Minor and 

General

Disruption Type

Average Delay

Table 5.13 : Summary of Experimental result of BR-VNS - Deterministic (UK) - All 

Table 5.14 : Summary of Experimental result of BR-VNS - Deterministic (UK) - All (RD) 

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

Longer Running/dwell times -2.96 3.70 1.65 -1.93 4.66 2.63 1.00

Late Departures -2.14 1.58 0.65 -1.59 2.11 1.19 0.54

Longer Running/dwell times 10.04 2.54 0.94 10.51 3.04 1.46 0.52

Late Departures & Longer Running/dwell times 7.29 1.78 0.96 8.31 2.86 2.05 1.10

8.32 2.26 0.98 9.04 3.03 1.75 0.78

Disruption Type

Major

Average Delay

Minor and 

General

VNS BR-VNS
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In addition, comparison between VNS and BR-VNS showed that biased randomisation 

improved the efficiency of basic VNS. 

5.4.2. State Railway of Thailand 

The computational experimental results compared historical data, CPLEX, IG-BR, BR-IG-

LS, basic VNS and BR-VNS based on a 400 seconds time frame limit as suggested by 

SSDP to update the train service.  

Table 5.15 shows the experimental results of historical data, CPLEX, IG-BR, BR-IG-LS, 

VNS and BR-VNS. In this table, the first two columns show the test instances, while the 

other columns show the total train delays of all methods studied in this thesis.  The average 

of total delay is shown at the end of the table and all delays are shown in minutes.  

 
Table 5.15 : Deterministic Thai – BR-VNS Results 

Date Instance
Historical 

 Data
CPLEX IG-BR BR-IG-LS VNS BR-VNS

1/2/2019 THAF101 2477 2121 1973 1937 1882 1866

2/2/2019 THAF102 2138 2035 1998 1958 1905 1838

3/2/2019 THAF103 1830 1803 1789 1755 1735 1735

4/2/2019 THAF104 1681 1325 1154 1187 1108 1061

5/2/2019 THAF105 2549 2379 2247 2206 2167 2048

6/2/2019 THAF106 1750 1258 1234 1198 1136 1125

7/2/2019 THAF107 2329 2188 2107 2093 2081 2062

8/2/2019 THAF108 3186 2648 2422 2434 2399 2349

9/2/2019 THAF109 2143 1907 1895 1822 1788 1801

10/2/2019 THAF110 2180 1574 1535 1509 1464 1411

11/2/2019 THAF111 2712 1982 1825 1782 1741 1713

12/2/2019 THAF112 2472 1830 1794 1742 1636 1655

13/2/2019 THAF113 2440 1874 1713 1713 1683 1647

14/2/2019 THAF114 1807 1807 1780 1704 1654 1600

15/2/2019 THAF115 2903 2458 2265 2268 2202 2156

16/2/2019 THAF116 3582 3030 2877 2655 2580 2440

17/2/2019 THAF117 3516 2740 2554 2422 2361 2248

18/2/2019 THAF118 2895 2645 2321 2278 2189 2197

19/2/2019 THAF119 1880 1457 1398 1328 1299 1254

20/2/2019 THAF120 2791 1861 1801 1715 1765 1687

21/2/2019 THAF121 3798 3050 2821 2845 2741 2751

22/2/2019 THAF122 3658 3421 3293 3287 3178 3119

23/2/2019 THAF123 3772 3543 3355 3317 3108 3215

24/2/2019 THAF124 3597 3260 3180 3034 3057 2978

25/2/2019 THAF125 3974 3477 3321 3358 3278 3211

26/2/2019 THAF126 4873 4495 4288 4251 4204 4152

27/2/2019 THAF127 3385 3392 3275 3180 3107 3015

28/2/2019 THAF128 3023 2584 2447 2331 2277 2220

2833.61 2433.71 2309.36 2261.04 2204.46 2162.64Average Delay
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Table 5.16 compares the average delay between each solution method from Table 5.15. 

Each sub column under the name of each solution shows Relative Deviation (RD) with 

compared to all other solution methods proposed in this thesis as CPLEX (RD (%) 

compared with CPLEX), IG-BR (RD (%) compared with IG-BR), BR-IG-LS (RD (%) 

compared with BR-IG-LS) and VNS (RD (%) compared with VNS). In addition, a positive 

number of RD (%) means that the method showed an improvement when compared with 

the other methods. 

 

In Table 5.16 BR-VNS had the smallest average delay and outperformed all the other 

algorithms. By comparison, BR-VNS provided lower average train delays than the 

company’s current solution by 23.68%. We compared our proposed method in this chapter 

using 400 seconds as the stopping condition for all experiments. The BR-VNS was 

outstanding among the other algorithms and decreased average total delays at 1.90% lower 

than VNS, 4.35% lower than BR-IG-LS, 6.35% lower than IG-BR and 11.14% lower than 

CPLEX. Moreover, please note that the solution from CPLEX was not optimal because we 

Table 5.16 : Deterministic Thai – BR-VNS Results (RD)Thai – BR-VNS Results (RD) 

RD (%) 

compared 

with Historical

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with Historical

RD (%) 

compared 

with CPLEX

RD (%) 

compared 

with IG-BR

RD (%) 

compared 

with BR-IG-LS

RD (%) 

compared 

with VNS

1/2/2019 THAF101 24.02 11.27 4.61 2.84 24.67 12.02 5.42 3.67 0.85

2/2/2019 THAF102 10.90 6.39 4.65 2.71 14.03 9.68 8.01 6.13 3.52

3/2/2019 THAF103 5.19 3.77 3.02 1.14 5.19 3.77 3.02 1.14 0.00

4/2/2019 THAF104 34.09 16.38 3.99 6.66 36.88 19.92 8.06 10.61 4.24

5/2/2019 THAF105 14.99 8.91 3.56 1.77 19.65 13.91 8.86 7.16 5.49

6/2/2019 THAF106 35.09 9.70 7.94 5.18 35.71 10.57 8.83 6.09 0.97

7/2/2019 THAF107 10.65 4.89 1.23 0.57 11.46 5.76 2.14 1.48 0.91

8/2/2019 THAF108 24.70 9.40 0.95 1.44 26.27 11.29 3.01 3.49 2.08

9/2/2019 THAF109 16.57 6.24 5.65 1.87 15.96 5.56 4.96 1.15 -0.73

10/2/2019 THAF110 32.84 6.99 4.63 2.98 35.28 10.36 8.08 6.49 3.62

11/2/2019 THAF111 35.80 12.16 4.60 2.30 36.84 13.57 6.14 3.87 1.61

12/2/2019 THAF112 33.82 10.60 8.81 6.08 33.05 9.56 7.75 4.99 -1.16

13/2/2019 THAF113 31.02 10.19 1.75 1.75 32.50 12.11 3.85 3.85 2.14

14/2/2019 THAF114 8.47 8.47 7.08 2.93 11.46 11.46 10.11 6.10 3.26

15/2/2019 THAF115 24.15 10.41 2.78 2.91 25.73 12.29 4.81 4.94 2.09

16/2/2019 THAF116 27.97 14.85 10.32 2.82 31.88 19.47 15.19 8.10 5.43

17/2/2019 THAF117 32.85 13.83 7.56 2.52 36.06 17.96 11.98 7.18 4.79

18/2/2019 THAF118 24.39 17.24 5.69 3.91 24.11 16.94 5.34 3.56 -0.37

19/2/2019 THAF119 30.90 10.84 7.08 2.18 33.30 13.93 10.30 5.57 3.46

20/2/2019 THAF120 36.76 5.16 2.00 -2.92 39.56 9.35 6.33 1.63 4.42

21/2/2019 THAF121 27.83 10.13 2.84 3.66 27.57 9.80 2.48 3.30 -0.36

22/2/2019 THAF122 13.12 7.10 3.49 3.32 14.73 8.83 5.28 5.11 1.86

23/2/2019 THAF123 17.60 12.28 7.36 6.30 14.77 9.26 4.17 3.08 -3.44

24/2/2019 THAF124 15.01 6.23 3.87 -0.76 17.21 8.65 6.35 1.85 2.58

25/2/2019 THAF125 17.51 5.72 1.29 2.38 19.20 7.65 3.31 4.38 2.04

26/2/2019 THAF126 13.73 6.47 1.96 1.11 14.80 7.63 3.17 2.33 1.24

27/2/2019 THAF127 8.21 8.40 5.13 2.30 10.93 11.11 7.94 5.19 2.96

28/2/2019 THAF128 24.68 11.88 6.95 2.32 26.56 14.09 9.28 4.76 2.50

22.20 9.42 4.54 2.50 23.68 11.14 6.35 4.35 1.90

BR-VNS

Average Delay

Date Instance

VNS
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did not have time to wait until it reached that point (more than 15 hours). Therefore, we 

need to suddenly generate a new schedule to deal with the uncertainties. 

In addition, as we expected, all proposed methods in this thesis can be used to improve the 

Thai rail management system. The company’s current solution is based on FCFS using a 

manual system. We recommended that the company should use this optimisation technique 

to improve the management system.  

5.5. Chapter Conclusion  

The main aim of this chapter was to use another metaheuristic method that improved the 

solution quality and decreased the gap of results from the previous chapter. BR-VNS was 

developed to satisfy the aim of this chapter with the major contribution of improving the 

quality of the solution. In more detail, VNS is commonly and successfully used for 

implementation of COPs. From previous chapters, biased randomisation combined with IG 

and IG-LS provided a good improvement which is the reason why we selected the BR-

VNS to solve the deterministic RSP. In this chapter, we also used the optimisation model 

with the objective to minimise the total train delays. 

The procedure of BR-VNS starts by using biased randomisation to generate the initial 

solution, then the basic concept of VNS to improve the solution quality. The basic VNS 

consists of two or more neighbourhood structures which usually involve insertion or swap 

search. The VNS algorithm process is (i) shake phase to generate new random initial 

values to avoid cycling, (ii) local search phase by using swap moves or insert moves to 

find a local optimal and (iii) move or not phase for acceptance criterion. If the solution is 

improved, the best solution is updated with continuous search in the first neighbourhood 

structure. Alternatively, if the new solution is not improved, the algorithm moves to the 

next neighbourhood structure.  

We compared the proposed method with the results of the real-world case studies from 

Southeastern train company, UK (Khosravi, 2013) and State Railway of Thailand from the 

previous chapter. All experiments were run within the 400 seconds time frame. In the UK 

test instances, the overall results showed that BR-VNS outperformed all the other 

algorithms for the deterministic RSP; however, on the minor and general disruption set of 

instances, CPLEX provided a small gap better than BR-VNS. For the Thailand case study, 

experimental results showed that the BR-VNS had high performance compared to the 
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company’s historical solution, IG-BR, and BR-IG-LS. Therefore, the BR-VNS was more 

effective in solving large and complex problems within the limited execution time. 

The experimental results in this chapter clearly showed that the BR-VNS algorithm was 

the best choice to solve the deterministic RSP. The company can decrease delay 

propagation, increase the system efficiency and increase benefits for customer satisfaction. 
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Part II  

Stochastic Railway Scheduling in the presence of 

uncertainties 
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Chapter 6:  Sim-Iterated Greedy with Biased Randomised (S-IG-BR) for stochastic 

RSP  

6.1. Introduction  

In the previous chapter, we proposed to solve RSP by considering deterministic delay time. 

In this chapter, we set a model to consider the random value of delay. This type of problem 

can be called stochastic RSP and aims to minimise the total delay of all trains in the 

network. The overview of stochastic RSP is described and added as stochastic behaviour to 

an optimisation model for simulating a real-world complex situation. In the optimisation 

model, all characteristics of the railway network are defined in terms of objective function, 

decision variable and constraints which mainly focus on headway and signalling 

constraints. Moreover, for the stochastic situation, we generate random delay which is 

added into the running/dwell time and departure time constraints. The solution methods 

consist of simulation to generate the stochastic behaviour into the model and heuristics or 

metaheuristics called sim-optimisation. We address this problem because it can improve 

the reliability and efficiency of the algorithms. To the best of our knowledge, no previous 

paper has considered sim-optimisation to solve the stochastic RSP. Therefore, this is an 

opportunity to implement sim-optimisation to improve the deterministic RSP solution 

methods. 

Results from Chapter 3 showed that IG-BR has good performance to solve the 

deterministic RSP; therefore, we propose the sim-optimisation method which combines 

simulation techniques as Monte Carlo Simulation (MCS) and IG-BR to solve the stochastic 

RSP. The MCS technique is used to model the probability distribution for a process that is 

unpredictable. We generated a random value of delay before we started to solve the 

problem and these values should be added into the main optimisation model. We found 

only one paper that used MCS to solve a topic related to the RSP in the literature. Ushida 

et al. (2011) focused on using MCS to increase robustness of the timetables. They used a 

Chromatic Diagram to collect characteristics of delay at the station for adding a buffer 

time. This is an extra period of time that is excluded from the dwell time or running time to 

generate a robust timetable. The MCS was used to random the dwell time delay value for 

testing the realistic of the problem. The result showed that the algorithm worked with real-

world timetable data from the Japan rail network. Another topic, very similar to RSP was 

studied by Juan et al. (2014a). They used MCS with ILS heuristic to solve the permutation 

flow shop problem. In this problem, the value of the processing time was uncertain, 
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therefore they used MCS to randomly generate processing time delay before solving a 

problem. Results showed that this algorithm was effective for the stochastic RSP. 

Therefore, in this chapter, we proposed MCS, which is the technique that successful with 

other COPs, combined with the IG-BR algorithm to solve the RSP that deals with a 

stochastic delay. 

This chapter discusses the basic concept of simulation optimisation, and MCS. It shows 

how to apply the MCS to the IG-BR algorithm for solving a stochastic RSP. The 

combination of this proposed solution method is called Sim-Iterated Greedy with Biased 

Randomised (S-IG-BR). We also provide an explanation of how to compare between the 

deterministic and stochastic results in both UK and Thailand rail network test instances to 

measure the efficiency of the proposed methods. 

The chapter is structured as follows: section 6.2 presents this chapter’s contributions, then 

the stochastic RSP optimisation model is proposed in section 6.3. Section 6.4 presents the 

proposed S-IG-BR algorithm to solve RSP with stochastic disruption delays. All the 

experimental results are shown in section 6.5 which is separated into two sets of case 

studies (UK & Thailand). Section 6.6 is a conclusion of this chapter. 

6.2. Contributions 

Most of the literature on RSP focused on deterministic delays that are known in advance. 

However, in the real-world situation, we do not know the delay value before it occurs; 

therefore, the MCS simulation technique is commonly used to simulate the real-life 

environment for COPs. Juan et al. (2014) claimed that simulation optimisation with 

heuristics and/or metaheuristics generated a good solution with consideration on random 

variable values for the stochastic COPs. 

The main contribution of this chapter is firstly, to develop a stochastic RSP optimisation 

model which considers random delay. Secondly, to develop and implement a hybrid 

algorithm which combines IG-BR and MCS techniques, called S-IG-BR, for solving the 

stochastic RSP. The IG-BR is used to find the solution and aims to minimise the total delay 

of all trains, while MCS generates random delays to simulate a real environment of the 

case study. In addition, MCS can randomly generate delays for the stochastic RSP. 

To the best of our knowledge, the IG-BR with MCS has not been used to solve the 

stochastic RSP before. Thus, we are the first to present the S-IG-BR algorithm for solve 

the RSP with stochastic delay. 
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6.3. Stochastic RSP optimisation model 

For the stochastics RSP optimisation model, we used an MCS to simulate the real situation 

environment for the disruption which occurs randomly in the system by using mean and 

variance (generate random delay into the system). Moreover, in this thesis, we only 

focused on late departure, dwell and travelling delay. However, the objective function of 

stochastic RSP is similar to deterministic RSP, which is to minimise total weight of train 

delays (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.1). 

                  𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒      𝑧 =  ∑ 𝑤𝑖𝑇𝑖                                                                                  (6.1)

𝑖 ∈𝐼

 

The set of constraints in the stochastic RSP optimisation model is the same as that used in 

the deterministic RSP optimisation model which presented in section 3.3.2., however 

random values which generated by MCS were added in the original optimisation model as 

follows:  

We added the random values of departure time delay (𝑟𝑣𝑖) into departure times (𝑟𝑖) to 

satisfy the late departure delay (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.2): 

𝑟𝑖 =  𝑟𝑖 + 𝑟𝑣𝑖                                               𝑖 ∈ 𝐼                                                                    (6.2) 

and other random values of running or dwell time delay (𝑝𝑣𝑖,𝑚𝑖,𝑘
) were added into running 

times (𝑝𝑖,𝑚𝑖,𝑘
) to satisfy running and dwell time delay (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.3): 

𝑝𝑖,𝑚𝑖,𝑘 =  𝑝𝑖,𝑚𝑖,𝑘  +  𝑝𝑣𝑖,𝑚𝑖,𝑘                    𝑖 ∈ 𝐼;    𝑘 = 2, 3, … , 𝑙𝑖                                       (6.3) 

6.4. Proposed Sim-IG with Biased Randomised (S-IG-BR) for solving RSP 

Simulation-based optimisation (Sim-optimisation) was introduced by Glover et al. (1996)  

to measure the efficiency and reliability of optimisation methods for a real-world complex 

case study. Sim-optimisation combines stochastic nature and optimisation nature. 

Stochastic nature operates using a simulation model with two steps of (i) choose a specific 

variable and (ii) define a probability distribution to generate a random value into the 

optimisation model. For the optimisation nature, we used a heuristics or metaheuristics 

approach to solve the optimisation model, find a near-optimal solution and then repeated 

the whole process until the stopping condition was met. This method provided n number of 

solutions to find an average objective function value (Glover et al., 1996; Glover et al., 
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1999). Moreover, the sim-optimisation method research in COPs has been widely studied 

after introduction by Glover et al. (1996), mostly applied to manufacturing problems.  

Chong et al. (2003) introduced discrete-event simulation to solve real-time scheduling 

mechanism manufacturing. This paper aimed to undertake rescheduling under 

unpredictable production disturbances for example machine error. Klemmt et al. (2009) 

also used discrete-event simulation based on the mixed integer programming (MIP) to 

generate a scheduling problem. Frantzén et al. (2011) studied real-time optimisation and 

decision-making support by using a sim-optimisation based on a GA to re-generate feasible 

schedules when disturbances occurred. 

Arakawa et al. (2003) set a model to eliminate tardiness from a job shop production 

schedule with the capacity adjustment function using an optimisation-oriented simulation-

based method. Moreover, sim-optimisation based on a GA was used to solve a flexible job 

shop scheduling problem by Nicoarǎ et al. (2011). They set a model to find multi-

objectives which minimised a total makespan, number of late jobs and average idle times 

of the job in process. Furthermore, Korytkowski et al. (2013) used an evolutionary 

simulation-based heuristic to solve a dynamic job shop scheduling. The conditions of the 

problem which they considered were the dispatching rule and the sum of internal and 

external delays. Moreover, Yang et al. (2004) developed a discrete-event simulation under 

a selected condition to model a stochastic problem for flow shop with multiple processors 

based on TS algorithm. This provided an effective schedule.  

6.4.1. Monte Carlo Simulation (MCS) 

We proposed a sim-heuristic algorithm which combined simulation with a heuristic for 

optimising our algorithm performance. In this thesis, the MCS was used as probability 

distribution for a generating the expected delays which are the unpredictable events by 

using mean and variance of the historical data or test instances, like a real situation where 

we do not know when the disruption will occur. Therefore, we used MCS to randomly 

generate the expected delays to represent a stochastic problem.  

Algorithm 6.1 shows the process of MCS for solving the problems; it starts by generating 

the initial solution and makes use of MCS to estimate the expected random values of 

running time and departure time delay (Pseudocode: line 8). After that, input this solution 

to run using some heuristic to find the solution of each iteration. In this case, the heuristic 
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that we use is IG with Biased Randomised (Pseudocode: line 9). Therefore, sum all 

solutions together and find the average (Pseudocode: line 10 to line 14). 

 

6.4.2. Sim-IG with Biased Randomised (S-IG-BR) 

To solve stochastic COPs is very challenging but necessary. Thus, it is most important to 

use the best simulation techniques to generate scenarios close to real-world situations. 

Results of IG-BR on the deterministic situation in Chapter 3 provided a good solution for 

the deterministic RSP. Therefore, we considered using the S-IG-BR to solve the stochastic 

RSP. Hence, this chapter proposed an extension to the IG-BR algorithm by applying MCS 

in IG-BR algorithm in order to improve the solution of the stochastic RSP. The main 

procedure is as follows: (a) Initial solution based on given timetables in our case studies 

which comprises of real-world data from the UK and Thailand Rail network, (b) MCS 

process which randomly generates expected delays, (c) IG is used to solve the RSP by 

using two main phases (destruction and construction) and (d) the use of biased randomised 

algorithm to improve the resulting solution (Algorithm 6.2). 

Algorithm 6.1 : Procedure for MCS 

------------------------------------------------------------------------------------------------------------------------ 

1: Procedure for MCS (𝑟′,i , α) 

⊳ 𝑟′: Initial solution 

⊳ i: Number of iterations 

⊳ α: Random value of delay 

2: heuristic <- DefineHeuristic(input) 

3: 𝑟′: GenerateInitialSolution(heuristic, input);   ⊳ Initial solution 

4: probaDist <- DefindProbabilityDistribution(input) 

5: iteration = 0; 

6:  while stopping criteria are not satisfied do  ⊳ loop until its reaches stopping condition 

7:      for each iteration i do     ⊳ start Monte Carlo simulation 

8:       GenerateRandomDelay(heuristic, probaDist, input)  ⊳ randomly generate delay 

9:  solution (𝑟ans) = Heuristic(input, α) 

10: solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟𝑏𝑒𝑠𝑡) + solution (𝑟ans)  ⊳ Sum up all solution (𝑟ans) 

11:        iteration++      ⊳ Count number of iterations 

12:    end for      

13: end while       

14: averageDelay = solution (𝑟𝑏𝑒𝑠𝑡) / iteration   ⊳ Average the total delay 

15:end procedure 
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Algorithm 6.2 presents the pseudocode for stochastic RSP S-IG-BR Algorithm. Firstly, the 

process starts by creating an initial solution from the rail timetable (Pseudocode: line 2). 

We consider the stochastic disruption situation, so the amount of the delay was generated 

by using MCS (Pseudocode: lines 5 to 7). The “generateRandomDelay” is an MCS function. 

This is shown in detail as an MCS process in Algorithm 6.1 (Pseudocode: lines 6). 

Then, we start to implement the destruction phase of IG to find a new feasible solution 

(Pseudocode: line 10 to line 13). At the end of destruction phase, we need to apply the 

biased randomised algorithm to reorder the construction set by using a geometric 

probability method, before continuing to the next step (Pseudocode: line 14).  

Algorithm 6.2 : Procedure for Stochastic RSP S-IG-BR Algorithm  

----------------------------------------------------------------------------------------------------------------- 

1: Procedure for Stochastic RSP S-IG-BR Algorithm (𝑟′, 𝑟𝐷, 𝑟𝑅, 𝑑, b, 𝛽) 

⊳ 𝑟′: Initial solution 

⊳ 𝑟𝐷: Partial sequence to reconstruct 

⊳ 𝑟𝑅: Trains to reinsert 

⊳ 𝑑: Random chosen number of trains 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter for biased randomised 

2: 𝑟′: GenerateInitialSolution();      ⊳ Initial solution  

3: iteration = 0; 

4:  while execution_time < 400 do    ⊳ Execution time 400 seconds 

5:       for each train in b do     ⊳ start Monte Carlo simulation 

6:          trainDuration = trainDuration + generateRandomDelay ⊳ randomly generate delay 

7:       end for 

8:       for 𝑖 = 1 to b do       ⊳ run for all block 

9:    set 𝑟𝑅 = empty      

10:           for 𝑖 = 1 𝑡𝑜 𝑑 do     ⊳ Destruction step 

11:        𝑟𝑅 <- remove one node at randomly from 𝑟′ and insert it in 𝑟𝑅;  

12:          𝑟𝐷 = 𝑟′ <- the remaining set of trains 

13:           end for 

14:    re-ordering 𝑟𝑅 by using 𝛽 to assign a probability ⊳ Biased randomised 

15:           for j = 1 𝑡𝑜 𝑑 do      ⊳ Construction step 

16:        𝑟ans = best solution obtained after insert train from 𝑟𝑅 in all possible position of 𝑟𝐷  

17:        if 𝑟ans met with all railway constraints then  ⊳ check all constraints 

18:        solution (𝑟ans) = calculate minimise a total delay (𝑟ans) 

19:         end if 

20:           end for 

21:     end for 

22      solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟𝑏𝑒𝑠𝑡) + solution (𝑟ans)  ⊳ Sum up all solution (𝑟ans) 

23:     iteration++      ⊳ Count number of iterations 

24:  end while       

25:  averageDelay = solution (𝑟𝑏𝑒𝑠𝑡) / iteration   ⊳ Average the total delay 

26:end procedure 
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Then, in the construction phase, we reinsert the construction set back into all possible 

positions of the remaining set and save a position solution which provides the best solution 

(Pseudocode: line 15 to line 20). Moreover, in this step, we also need to confirm that all 

railway constraints are met (Pseudocode: line 17 to line 19). 

Following the destruction and construction phases, the MCS process is used to find an 

expected average of the total delays (Pseudocode: line 22 to line 25).  

6.5. Computational experiments 

In this chapter, we proposed to evaluate the performance of the S-IG-BR by comparing it 

to the deterministic results. We executed all experiments on the same personal computer 

with Intel core i7-4500U CPU, 1.80GHz-2.4GHz, and 8GB RAM. Moreover, we used the 

same test instances as described in section 3.5.1.1. and 3.5.2.1. 

In the stochastic RSP, we cannot directly compare between the deterministic solution and 

stochastic solution, therefore we added the stochastic scenario into the best deterministic 

solution by using MCS to generate the expected total train delays and reliability.  

The process of generating the best deterministic solution in a stochastic scenario (BDS-

Stoch) starts by setting the best deterministic solution in a deterministic scenario (BDS-

Det) as the best solution that minimises total train delays obtained in the deterministic RSP 

from Chapter 6 as an initial solution. Then, we use the MCS process to generate the 

expected total train delays of the same solution with BDS-Det and add the stochastic 

scenario into the best deterministic solution called BDS-Stoch. This process also provides 

reliability to estimate the probability that the best deterministic solution can be successfully 

used in a stochastic scenario. After that, we compare the BDS-Stoch and our stochastic 

solution to measure the performance of the sim-optimisation methods. 

In addition, the reliability of a solution was computed as follows: 

𝑅 = (1 −
∑ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑛𝑆𝑖𝑚

𝑛=1

𝑛𝑆𝑖𝑚
)                                     (6.4)     

 

From 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.4, the reliability (𝑅) should be calculated by 1 minus number error 

sequence which cannot found the solution (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠) divided by number of 
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iterations (𝑛𝑆𝑖𝑚). Moreover, we transformed the level of reliability into percentages by R 

multiple by 100 for a clearer view of the comparison.   

In addition, the computation time limit was also set at 400 seconds. Therefore, the solution 

of S-IG-BR was compared to BDS-Stoch to evaluate the performance and reliability of the 

solution method. 

6.5.1. Southeastern train company, United Kingdom 

The computational experiments were compared between BDS-Stoch, which is generated 

by using MCS to transform the best deterministic solution found in the previous chapter 

and S-IG-BR which is discussed in this chapter.  

Tables 6.1-6.4 show the experimental results using BDS-Stoch and S-IG-BR to solve the 

UK case study in the stochastic situation. In each table, all columns before the column 

BDS-Stoch show the detail of each instance and all delays are shown in minutes. For 

column BDS-Stoch, we provide total train delay and reliability. Then, the columns S-IG-

BR presents the results of total train delay, the reliability of the solution methods and the 

percentages of improvement between S-IG-BR and BDS-Stoch by using RD (%). Finally, 

at the bottom row of each table we calculated an average of the total delay, reliability and 

RD, which can provide a clearer comparison between the solution methods.  

A positive number of RD (%) means that the result of our proposed method can provide 

solution better than original results. Otherwise, a negative result means that there are no 

improvements. 
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Table 6.1 shows the S-IG-BR results of stochastic RSP considered on minor and general 

delays on longer running time and dwell time. The best solution for each instance is 

indicated in bold. The comparison between BDS-Stoch and S-IG-BR showed that S-IG-

BR reduced the expected total train delay at 1.27% better than the BDS-Stoch. Moreover, 

the reliability of S-IG-BR was higher than BDS-Stoch by 24%. 

 

Delay Reliability Delay Reliability

1 3 P01 124.66 0.56 119.10 0.96 4.46

2 5 P02 159.88 0.72 155.35 0.98 2.84

1 3 P03 176.79 0.78 173.78 0.97 1.70

2 5 P04 285.86 0.74 284.46 0.97 0.49

1 3 P05 266.81 0.57 266.48 0.96 0.12

2 5 P06 316.62 0.84 316.45 1.00 0.05

1 9 P07 1133.35 0.78 1129.02 0.99 0.38

2 12 P08 771.00 0.59 733.03 0.87 4.92

1 9 P09 1409.90 0.78 1408.45 0.92 0.10

2 12 P10 1871.83 0.59 1871.06 0.88 0.04

1 9 P11 1108.30 0.77 1092.59 0.87 1.42

2 12 P12 1950.01 0.73 1903.46 0.87 2.39

797.92 0.70 787.77 0.94 1.27

RD (%) of S-

IG-BR 

compared with 

BDS-Stoch

# of 

Block(s)

# of 

Train(s)
Instance

BDS-Stoch S-IG-BR

Block 

Delay

5

10

15

20

25

30

Avg Delay

Table 6.1 : Stochastic Longer running/dwell times - minor and general disruption: S-IG-BR Results 

Delay Reliability Delay Reliability

1 R01 67.41 0.52 67.14 0.99 0.40

3 R02 67.89 0.77 66.37 0.99 2.23

5 R03 82.51 0.81 76.83 0.98 6.88

1 R04 78.32 0.64 75.07 0.99 4.15

3 R05 94.25 0.59 91.54 0.99 2.89

5 R06 157.85 0.73 148.17 0.98 6.14

1 R07 76.75 0.83 70.46 0.99 8.20

3 R08 132.96 0.88 123.80 0.98 6.89

5 R09 190.61 0.79 184.97 0.98 2.96

6 R10 208.98 0.64 190.39 0.98 8.90

9 R11 272.86 0.78 256.13 0.97 6.13

12 R12 383.79 0.62 354.18 0.95 7.71

6 R13 261.57 0.66 260.62 0.98 0.36

9 R14 315.59 0.60 305.60 0.96 3.17

12 R15 431.69 0.74 415.41 0.93 3.77

188.20 0.71 179.11 0.98 4.83

RD (%) of S-

IG-BR 

compared with 

BDS-Stoch

BDS-Stoch

5

10

15

S-IG-BR

Late 

Departure

# of 

Train(s)
Instance

20

25

Avg Delay

Table 6.2 : Stochastic Late departures - minor and general disruption: S-IG-BR Results 



Page | 114  

Table 6.2 shows the S-IG-BR results of stochastic RSP considered on minor and general 

delays of late departure times. The best solution for each instance is indicated in bold. The 

expected total train delay results which provided by S-IG-BR was 4.83% lower than the 

solution from BDS-Stoch. In terms of reliability, S-IG-BR had lower sequence failure than 

BDS-Stoch by 27%. 

 

Table 6.3 presents the S-IG-BR results of stochastic RSP considered for major delays of 

longer running time and dwell times. The best solution for each instance is indicated in 

bold. Results of this set of instances showed that S-IG-BR reduced the expected total train 

delays at 1.68% better than BDS-Stoch. Moreover, the reliability of S-IG-BR was 71% and 

BDS-Stoch was 40% with the gap of reliability at 31%. 

Delay Reliability Delay Reliability

4 HP01 8112.99 0.33 7949.56 0.62 2.01

5 HP02 8108.44 0.23 7837.70 0.98 3.34

6 HP03 7374.15 0.57 7352.63 0.48 0.29

4 HP04 9011.98 0.45 8760.50 0.54 2.79

5 HP05 9539.04 0.42 9239.39 0.71 3.14

6 HP06 7436.10 0.31 7424.27 0.96 0.16

4 HP07 10356.47 0.49 10280.29 0.48 0.74

5 HP08 9120.18 0.20 8905.48 0.57 2.35

6 HP09 9551.90 0.52 9306.72 0.75 2.57

4 HP10 14344.90 0.35 13908.34 0.80 3.04

5 HP11 11010.32 0.39 10795.17 0.74 1.95

6 HP12 13558.67 0.22 13384.99 0.72 1.28

4 HP13 15505.31 0.60 15421.20 0.89 0.54

5 HP14 14868.93 0.35 14690.12 0.75 1.20

6 HP15 16221.56 0.50 16110.78 0.69 0.68

10941.40 0.40 10757.81 0.71 1.68

RD (%) of S-

IG-BR 

compared with 

BDS-Stoch

70

80

Avg Delay

40

50

60

Block 

Delay

# of 

Block(s)
Instance

BDS-Stoch S-IG-BR

Table 6.3 : Stochastic Longer running/dwell times - major disruption: S-IG-BR Results 
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Table 6.4 indicates the S-IG-BR results of stochastic RSP considered on major disruption 

of late departure times. The best solution for each instance is indicated in bold. The overall 

expected average of the total train delay of S-IG-BR was lower than BDS-Stoch by 2.97%. 

Moreover, the reliability of S-IG-BR was 65% and 27% higher than BDS-Stoch.  

The SSDP separated disruptions into 3 types depending on the size as minor disruptions, 

general disruptions and major disruptions. Therefore, we summarised and compared the 

results dependent on size of delay separately. 

 

 

Delay Reliability Delay Reliability

3 PR01 9306.78 0.45 8236.26 0.75 11.50

5 PR02 8879.46 0.26 8652.64 0.52 2.55

9 PR03 7923.36 0.56 7643.25 0.60 3.54

12 PR04 8096.74 0.52 7905.48 0.59 2.36

3 PR05 7225.57 0.41 7180.96 0.71 0.62

5 PR06 8720.84 0.33 8717.83 0.45 0.03

9 PR07 6667.70 0.49 6666.19 0.98 0.02

12 PR08 7755.11 0.50 7735.50 0.96 0.25

3 PR09 11441.82 0.18 10322.71 0.42 9.78

5 PR10 10744.84 0.54 10406.84 0.55 3.15

9 PR11 7884.00 0.31 7814.99 0.52 0.88

12 PR12 10518.84 0.35 10415.75 0.60 0.98

3 PR13 8605.79 0.22 8532.53 0.66 0.85

5 PR14 9827.53 0.56 9819.17 0.80 0.09

9 PR15 8829.11 0.21 8701.99 0.57 1.44

12 PR16 9693.25 0.21 9141.21 0.67 5.70

8882.55 0.38 8618.33 0.65 2.97

RD (%) of S-

IG-BR 

compared with 

BDS-Stoch

50 6

10

20

Avg Delay

40 6

10

20

50 4

10

20

BDS-Stoch

40 4

10

20

S-IG-BR

Block 

Delay

# of 

Block(s)

Departure 

 Delay

# of 

Train(s)
Instance

Table 6.4 : Stochastic Longer running/dwell times and Late departures - major disruption: 
S-IG-BR Results 

Delay Reliability Delay Reliability

Longer Running/dwell times 797.92 0.70 787.77 0.94 1.27

Late Departures 188.20 0.71 179.11 0.98 4.83

493.06 0.71 483.44 0.96 1.95

S-IG-BR
RD (%)  

compared with 

BDS-Stoch

Average Delay

Disruption Type

BDS-Stoch

Minor and 

General

Table 6.5 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - Small 

Delay Reliability Delay Reliability

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 1.68

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 2.97

9911.97 0.39 9688.07 0.68 2.26

S-IG-BR
RD (%)  

compared with 

BDS-Stoch

Average Delay

Disruption Type

BDS-Stoch

Major

Table 6.6 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - Large 
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Tables 6.5 and 6.6 show the summary of results from Table. 6.1 to 6.4 considered 

separately depending on size of disruption. Table 6.5 presents the result of minor and 

general disruption. S-IG-BR decreased average train delay at 1.95% lower than BDS-

Stoch. Results of major disruption are shown in Table 6.6. S-IG-BR reduced expected train 

delay by 2.26% when compared to BDS-Stoch.  

The reliability of S-IG-BR decreased from 96% for minor and general disruption to 68% 

for major disruption. Reliability of BDS-Stoch also decreased from 71% in minor and 

general disruptions to 39% in major disruptions. When the level of uncertainty increased, 

the reliability decreased. Moreover, when we compared the reliability between S-IG-BR 

and BDS-Stoch, the result showed that S-IG-BR was more reliable at 25% higher than 

BDS-Stoch for minor and general delays and 29% more reliable than BDS-Stoch for major 

delays. 

 

Table 6.7 presents the overall picture of all results in section 6.5.1. S-IG-BR improved the 

quality of solution by 2.24% compared with the solution of BDS-Stoch. Moreover, S-IG-

BR also provided 27% higher reliability than BDS-Stoch. In addition, the results also show 

that S-IG-BR had more efficiency than the deterministic methods for dealing with the 

uncertainties of delays in term of average results and reliability. 

It should be noted that BDS-Stoch only used the MCS to generate the expected total train 

delays but did not consider the expected uncertainty values. Therefore, we used MCS to 

generate the expected value because this can be improved the performance and reliability 

of the methods. 

6.5.2. State Railway of Thailand 

The computational experiments were compared with BDS-Stoch which was generated by 

using MCS to transform the best deterministic solution found in the previous chapter and 

S-IG-BR which is discussed in this chapter.  

Delay Reliability Delay Reliability

Longer Running/dwell times 797.92 0.70 787.77 0.94 1.27

Late Departures 188.20 0.71 179.11 0.98 4.83

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 1.68

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 2.97

5202.52 0.55 5085.76 0.82 2.24

RD (%)  

compared with 

BDS-Stoch

S-IG-BR

Average Delay

Disruption Type

BDS-Stoch

Minor and 

General

Major

Table 6.7 : Summary of Experimental result of S-IG-BR - Stochastic (UK) - All 
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Table 6.8 shows the experimental results of S-IG-BR and BDS-Stoch for solving the 

stochastic RSP of Thai rail network. In this table, the first two columns show the detail of 

each instance. For BDS-Stoch and S-IG-BR columns, we give the results of total delay and 

the reliability of the solution methods. Moreover, the last column shows the comparison of 

the total delays between S-IG-BR and BDS-Stoch. Finally, in the bottom row of the table, 

we calculated an average of the total delays, reliability and RD which can provide a clearer 

understanding. In addition, all delays time are presented in minutes. A positive number of 

RD shows that the proposed method provides an improvement. 

 

Table 6.8 shows the results of stochastic RSP on the Thailand case study. The best solution 

for each instance is indicated in bold. In terms of the average expected total train delays, 

the solution of S-IG-BR was lower than BDS-Stoch by 5.96%. This means that sim-

optimisation improved the solution of the deterministic RSP. For the reliability, the result 

Table 6.8 : Stochastic Thai: S-BR-IG Results 

Delay Reliability Delay Reliability

1/2/2019 THAF101 2140.26 0.46 2132.87 0.63 0.35

2/2/2019 THAF102 2222.09 0.43 2141.47 0.77 3.63

3/2/2019 THAF103 2069.37 0.33 2046.06 0.91 1.13

4/2/2019 THAF104 1547.01 0.26 1368.37 0.81 11.55

5/2/2019 THAF105 2289.36 0.24 2284.32 0.72 0.22

6/2/2019 THAF106 1665.72 0.52 1618.95 0.69 2.81

7/2/2019 THAF107 2637.56 0.20 2500.98 0.88 5.18

8/2/2019 THAF108 2768.12 0.68 2692.45 0.71 2.73

9/2/2019 THAF109 2571.86 0.67 1984.98 0.61 22.82

10/2/2019 THAF110 1643.44 0.21 1520.22 0.74 7.50

11/2/2019 THAF111 1855.58 0.70 1826.68 0.67 1.56

12/2/2019 THAF112 1981.48 0.53 1951.20 0.61 1.53

13/2/2019 THAF113 2101.69 0.32 1807.63 0.66 13.99

14/2/2019 THAF114 2117.11 0.33 1944.44 0.73 8.16

15/2/2019 THAF115 2866.43 0.53 2645.20 0.68 7.72

16/2/2019 THAF116 3026.04 0.55 2797.11 0.81 7.57

17/2/2019 THAF117 2285.48 0.65 2273.10 0.93 0.54

18/2/2019 THAF118 2583.71 0.26 2570.77 0.62 0.50

19/2/2019 THAF119 1689.85 0.65 1537.25 0.75 9.03

20/2/2019 THAF120 1854.07 0.60 1829.25 0.79 1.34

21/2/2019 THAF121 3916.94 0.44 3212.71 0.68 17.98

22/2/2019 THAF122 3993.31 0.51 3794.86 0.77 4.97

23/2/2019 THAF123 3767.96 0.27 3460.03 0.65 8.17

24/2/2019 THAF124 3055.96 0.48 3051.14 0.87 0.16

25/2/2019 THAF125 3561.76 0.22 3400.97 0.78 4.51

26/2/2019 THAF126 5145.14 0.52 5091.63 0.71 1.04

27/2/2019 THAF127 3595.63 0.36 3283.33 0.90 8.69

28/2/2019 THAF128 3207.96 0.53 2969.39 0.89 7.44

2648.60 0.44 2490.62 0.75 5.96Average Delay

Date Instance

BDS-Stoch S-IG-BR
 RD (%) of S-IG-BR 

compared with BDS-

Stoch
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shows that S-IG-BR was more reliable than the deterministic solution (BDS-Stoch) by 

31%, because it was more suitable for solving the real-life situation of the uncertainties 

that randomly occur in the system. Moreover, the benefit of generating the expected 

running time, dwell time and departure time delays reduced expected total train delays and 

increased reliability. 

6.6. Chapter Conclusion 

This chapter examined the real-world problem of unexpected situations such as late 

departure, running time and dwell time delay which affect RSP. The stochastic 

optimisation model of RSP was developed and integrated with a solution methodology for 

dealing with the delays to increase solution flexibility for RSP. The optimisation model in 

this chapter was developed to minimise total train delays under uncertainty by considering 

the rescheduling process. The proposed combination of IG-BR with MCS techniques 

provided simulated expected train delay and predicted delays which turned the solution 

approach into stochastic, called S-IG-BR. We proposed using S-IG-BR because (i) IG-BR 

had success in solving the deterministic RSP as discussed in Chapter 3 and (ii) MCS was 

more effective for simulating expected values.  

The stochastic optimisation model was based on the formulation from Chapter 3 with the 

main objective of minimising expected total train delay and then adding a random value 

into the uncertainty variable. For S-BR-IG procedures, MCS was added into RSP by 

simulating an expected value for late departure time, running time and dwell time delay. 

After generating the expected delays, the IG-BR provided a reschedule with the aim to 

minimum expected total train delays. The MCS used the mean and variance values of test 

instances to generate the expected solutions. 

The data for experimentation were collected from Southeastern operating train company, 

UK (Khosravi, 2013) and State Railway of Thailand. For computational experimentation, 

two types of delays were used: (i) minor and general disruption and (ii) major disruption 

considered for the UK case study. Historical data were used as the test instances for the 

Thailand case study. Moreover, C# was used for experimentation with this problem. The 

average result of BDS-Stoch which transferred the best deterministic solution to the 

stochastic from Chapter 5 using the MCS process was used for analysis and comparison.  

The S-IG-BR algorithm provided a good solution with 400 seconds of computation time. 

By comparing with BDS-Stoch, the expected total train delays of S-IG-BR were lower and 
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more reliable than BDS-Stoch. The result showed that it was beneficial to generate 

estimate expected train delays which lead to reduction in total train delays. In the next 

chapter, we develop an S-BR-IG-LS algorithm to make a fair comparison between IG-BR 

and BR-IG-LS algorithms.  
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Chapter 7: Sim-Biased Randomised Iterated Greedy with Local Search (S-BR-IG-LS) 

for Stochastic RSP  

7.1. Introduction 

In the previous chapter, results of the S-IG-BR algorithm were provided and compared 

with the deterministic RSP solution, showing only a small performance gap. In this 

chapter, we selected the most popular local search heuristics which can help to increase the 

solutions search space. We proposed hybridisation of MCS with the BR-IG-LS algorithm 

to solve the RSP that deals with a stochastic delay. The BR-IG-LS was selected because it 

successfully solved the deterministic RSP as shown in Chapter 4. 

This chapter describes how to add MCS into the BR-IG-LS for solving a stochastic RSP 

using proposed solution methods namely, Sim-Biased Randomised IG with Local Search 

(S-BR-IG-LS). Then, we compared the experimental results of S-BR-IG-LS with results 

from Chapter 6 to measure the efficiency of the solution methods. The experiment was 

executed based on two case studies from the UK and Thailand rail networks. 

Chapter 7 is structured as follows: section 7.2 presents the contributions and then the 

proposed S-BR-IG-LS algorithm is used to solve RSP with stochastic disruption delays as 

described in section 7.3. All the experimental results are shown in section 7.4, separated 

into two sets of case studies (UK & Thailand). Section 7.5 is the conclusion of this chapter. 

7.2. Contribution 

The main contribution of this chapter is the development and implementation the BR-IG-

LS and MCS technique, called S-BR-IG-LS, for solving the stochastic RSP. The BR-IG-

LS was used to find the solution and minimise the total delay of all trains, while MCS 

generated random delays to simulate a real environment of the case study. MSC also 

provided a fair comparison between different algorithms. 

To best of our knowledge, S-BR-IG-LS has not been used to solve the stochastic RSP 

before, therefore we are the first to propose the S-BR-IG-LS for solving stochastic RSP.  

7. 3.  Proposed Sim-Biased Randomised IG with Local Search (S-BR-IG-LS) for 

solving RSP  

Results of BR-IG-LS on the deterministic situation in Chapter 4 improved the solution of 

IG-BR for the deterministic RSP. Therefore, we proposed the S-BR-IG-LS to solve the 

stochastic RSP. This chapter added MCS to the BR-IG-LS algorithm in order to improve 

the solution of the stochastic RSP. The main procedure was as follows: (a) Initial solution 
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based on given timetables in our case studies which comprises of real-world data from the 

UK and Thailand Rail network, (b) MCS process which randomly generates expected 

delays, (c) IG is used to solve the RSP by using two main phases (destruction and 

construction), (d) the use of biased randomised algorithm to improve the resulting solution 

and (e) the use of local search methods to improve the speed of solution (Algorithm 7.1). 

 

Algorithm 7.1 presents the pseudocode for stochastic RSP S-BR-IG-LS. Firstly, the 

process starts by creating an initial solution from the rail timetable (Pseudocode: line 2). 

Then, we use MCS to randomly generate the amount of the delay (Pseudocode: line 5 to 7).  

Algorithm 7.1 : Procedure for Stochastic RSP S-BR-IG-LS Algorithm  

----------------------------------------------------------------------------------------------------------------- 

1: Procedure for Stochastic RSP S-BR-IG-LS Algorithm (𝑟′, 𝑟𝐷, 𝑟𝑅, 𝑑, b, 𝛽) 

⊳ 𝑟′: Initial solution 

⊳ 𝑟𝐷: Partial sequence to reconstruct 

⊳ 𝑟𝑅: Trains to reinsert 

⊳ 𝑑: Random chosen number of trains 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter for biased randomised 

2: 𝑟′: GenerateInitialSolution();      ⊳ Initial solution  

3: iteration = 0; 

4:  while execution_time < 400 do    ⊳ Execution time 400 seconds 

5:          for each train in b do     ⊳ start Monte Carlo simulation 

6:           trainDuration = trainDuration + generateRandomDelay ⊳ randomly generate delay 

7:        end for 

8:        for 𝑖 = 1 to b do       ⊳ run for all block 

9:  set 𝑟𝑅 = empty      

10:       for 𝑖 <- 1 𝑡𝑜 𝑑 do     ⊳ Destruction step 

11:                   𝑟𝑅 <- remove one node at randomly from 𝑟′ and insert it in 𝑟𝑅;  

12:          𝑟𝐷 = 𝑟′ <- the remaining set of trains 

13:      end for 

14: re-ordering 𝑟𝑅 by using 𝛽 to assign a probability  ⊳ Biased randomised 

15:      for j <- 1 𝑡𝑜 𝑑 do      ⊳ Construction step 

16:       𝑟ans = ApplyLocalSearch(𝑟𝑅)    ⊳ Insertion Neighbourhood (LS) 

17:       if 𝑟ans met with all railway constraints then  ⊳ check all constraints 

18:        solution (𝑟ans) = calculate minimise a total delay (𝑟ans) 

19:          end if 

20:        end for 

21:      end for 

22:       solution (𝑟𝑏𝑒𝑠𝑡) = solution (𝑟𝑏𝑒𝑠𝑡) + solution (𝑟ans)  ⊳ Sum up all solution (𝑟ans) 

23:       iteration++      

24:  end while       

25:  averageDelay = solution (𝑟𝑏𝑒𝑠𝑡) / iteration   ⊳ Average the total delay 

26:end procedure 
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After that, start to implement BR-IG-LS by adding the biased randomised algorithm at the 

end of the destruction phase of IG algorithm to reorder the construction set before 

continuing to the construction phase (Pseudocode: line 10 to line 14).  

In the construction phase, we reinsert the construction set back into the remain set using 

the local search concept, which only reinserts in random position (Pseudocode: line 15 to 

line 20). Moreover, we need to check that all railway constraints are satisfied (Pseudocode: 

line 17 to line 19). 

Following the BR-IG-LS process, the MCS provides an expected total delay (Pseudocode: 

line 22 to line 25).  

7.4. Computational experiments 

In this chapter, we proposed to evaluate the performance of the S-BR-IG-LS by comparing 

it with the BDS-Stoch and S-IG-BR from the previous chapter. We executed all 

experiment on the same personal computer with Intel core i7-4500U CPU, 1.80GHz-

2.4GHz, and 8GB RAM. Moreover, we used the same test instances as described in section 

3.5.1.1. (UK) and 3.5.2.1. (Thailand). All parameters and processes followed the outlines 

detailed in section 6.5. 

7.4.1. Southeastern train company, United Kingdom 

The computational experiments were compared between BDS-Stoch, S-IG-BR and S-BR-

IG-LS to evaluate the performance of S-BR-IG-LS. All experiments were executed for 400 

seconds which served as the real-time service update procedure that provided by SSDP. 

Tables 7.1-7.4 show the solution of using BDS-Stoch, S-IG-BR and S-BR-IG-LS to solve 

the UK case study in the stochastic situation. In each table, all columns before the column 

BDS-Stoch show the detail of each instance and all delays are shown in minutes. Then, 

BDS-Stoch and S-IG-BR columns were used to present the results from the previous 

chapter. Moreover, S-BR-IG-LS column was used to present total train delays, reliability 

and the performance of S-BR-IG-LS when compared with BDS-Stoch and S-IG-BR 

solutions from the previous chapter. Finally, at the end of each table, we calculated an 

average of the total delay, reliability and RD. A positive number of RD (%) means that S-

BR-IG-LS gave better performance than other methods from the previous chapter. 
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Table 7.1 shows the S-BR-IG-LS results of stochastic RSP considered for minor and 

general delays for longer running time and dwell time. The best solution for each instance 

is indicated in bold. This table shows the comparison between BDS-Stoch, S-IG-BR and 

S-BR-IG-LS. Results showed that S-BR-IG-LS reduced the expected total train delay at 

1.29% lower than S-IG-BR and 2.55% lower than BDS-Stoch. In terms of the solution 

reliability, S-IG-BR and S-BR-IG-LS gave the same level at 94%, however this was 24% 

higher compared to the BDS-Stoch. 

 

Table 7.2 shows S-BR-IG-LS results of stochastic RSP considered for minor and general 

delays for late departure times. The best solution in each instance is indicated in bold. The 

experimental results showed that S-BR-IG-LS decreased the expected total train delays 

Delay Reliability Delay Reliability

RD (%) 

compared 

with BDS-Stoch

Delay Reliability

 RD (%) 

compared 

with S-IG-BR

RD (%) 

compared 

with BDS-Stoch

1 3 P01 124.66 0.56 119.10 0.96 4.46 114.38 0.99 3.96 8.25

2 5 P02 159.88 0.72 155.35 0.98 2.84 154.05 0.98 0.83 3.65

1 3 P03 176.79 0.78 173.78 0.97 1.70 172.71 0.97 0.61 2.31

2 5 P04 285.86 0.74 284.46 0.97 0.49 283.51 0.98 0.33 0.82

1 3 P05 266.81 0.57 266.48 0.96 0.12 265.16 0.98 0.50 0.62

2 5 P06 316.62 0.84 316.45 1.00 0.05 316.44 0.95 0.00 0.06

1 9 P07 1133.35 0.78 1129.02 0.99 0.38 1088.16 0.96 3.62 3.99

2 12 P08 771.00 0.59 733.03 0.87 4.92 719.13 0.88 1.90 6.73

1 9 P09 1409.90 0.78 1408.45 0.92 0.10 1383.40 0.88 1.78 1.88

2 12 P10 1871.83 0.59 1871.06 0.88 0.04 1866.60 0.87 0.24 0.28

1 9 P11 1108.30 0.77 1092.59 0.87 1.42 1079.62 0.96 1.19 2.59

2 12 P12 1950.01 0.73 1903.46 0.87 2.39 1888.02 0.87 0.81 3.18

797.92 0.70 787.77 0.94 1.27 777.60 0.94 1.29 2.55

5

10

Block 

Delay

# of 

Block(s)

BDS-Stoch

# of 

Train(s)
Instance

Avg Delay

S-BR-IG-LS

15

20

25

30

S-IG-BR

Table 7.1 :  Stochastic Longer running/dwell times - minor and general disruption: 
S-BR-IG-LS Results 

Delay Reliability Delay Reliability

RD (%) 

compared with 

BDS-Stoch

Delay Reliability

RD (%) 

compared with 

BDS-Stoch

 RD (%) 

compared 

with S-IG-BR

1 R01 67.41 0.52 67.14 0.99 0.40 66.15 0.99 1.87 1.47

3 R02 67.89 0.77 66.37 0.99 2.23 63.44 0.98 6.55 4.42

5 R03 82.51 0.81 76.83 0.98 6.88 77.20 0.98 6.43 -0.48

1 R04 78.32 0.64 75.07 0.99 4.15 76.99 1.00 1.70 -2.55

3 R05 94.25 0.59 91.54 0.99 2.89 89.30 0.99 5.26 2.45

5 R06 157.85 0.73 148.17 0.98 6.14 148.08 0.98 6.19 0.06

1 R07 76.75 0.83 70.46 0.99 8.20 68.57 0.98 10.67 2.69

3 R08 132.96 0.88 123.80 0.98 6.89 123.40 0.99 7.19 0.32

5 R09 190.61 0.79 184.97 0.98 2.96 183.73 0.98 3.61 0.67

6 R10 208.98 0.64 190.39 0.98 8.90 190.71 0.99 8.74 -0.17

9 R11 272.86 0.78 256.13 0.97 6.13 252.71 0.96 7.38 1.33

12 R12 383.79 0.62 354.18 0.95 7.71 354.69 0.96 7.58 -0.15

6 R13 261.57 0.66 260.62 0.98 0.36 254.33 0.99 2.77 2.41

9 R14 315.59 0.60 305.60 0.96 3.17 304.58 0.95 3.49 0.33

12 R15 431.69 0.74 415.41 0.93 3.77 413.00 0.93 4.33 0.58

188.20 0.71 179.11 0.98 4.83 177.79 0.98 5.53 0.74

BDS-Stoch S-IG-BR

Instance

S-BR-IG-LS

15

20

5

10

Late 

Departure

# of 

Train(s)

Avg Delay

25

Table 7.2 : Stochastic Late departures - minor and general disruption: S-BR-IG-LS Results 
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when compared to the other solution methods by 0.74% better than S-IG-BR and 5.53% 

better than BDS-Stoch. However, if we only focus on the reliability of the solution, S-BR-

IG-LS and S-IG-BR have equal level of reliability at 98%, which is 27% more reliable than 

BDS-Stoch. 

 

Table 7.3 presents the S-BR-IG-LS results of stochastic RSP considered for major delays 

for longer running time and dwell times. The best solution for each instance is indicated in 

bold. The lowest average of the total train delays was recorded by S-BR-IG-LS and results 

were better than S-IG-BR by 0.84% and better than BDS-Stoch by 2.51%. The reliability 

level of S-BR-IG-LS was also 22% higher than BDS-Stoch with only a small gap of 1% 

higher than S-IG-BR. The readability of each method was 72% for S-BR-IG-LS, 71% for 

S-IG-BR and 40% for BDS-Stoch. 

Delay Reliability Delay Reliability

RD (%) 

compared with 

BDS-Stoch

Delay Reliability

RD (%) 

compared with 

BDS-Stoch

 RD (%) 

compared 

with S-IG-BR

4 HP01 8112.99 0.33 7949.56 0.62 2.01 7864.38 0.46 3.06 1.07

5 HP02 8108.44 0.23 7837.70 0.98 3.34 7663.19 0.64 5.49 2.23

6 HP03 7374.15 0.57 7352.63 0.48 0.29 7336.43 0.97 0.51 0.22

4 HP04 9011.98 0.45 8760.50 0.54 2.79 8586.35 0.48 4.72 1.99

5 HP05 9539.04 0.42 9239.39 0.71 3.14 9192.46 0.41 3.63 0.51

6 HP06 7436.10 0.31 7424.27 0.96 0.16 7411.61 0.52 0.33 0.17

4 HP07 10356.47 0.49 10280.29 0.48 0.74 10215.74 0.56 1.36 0.63

5 HP08 9120.18 0.20 8905.48 0.57 2.35 8856.10 0.97 2.90 0.55

6 HP09 9551.90 0.52 9306.72 0.75 2.57 9176.88 0.88 3.93 1.40

4 HP10 14344.90 0.35 13908.34 0.80 3.04 13660.62 0.90 4.77 1.78

5 HP11 11010.32 0.39 10795.17 0.74 1.95 10703.24 0.67 2.79 0.85

6 HP12 13558.67 0.22 13384.99 0.72 1.28 13321.67 0.83 1.75 0.47

4 HP13 15505.31 0.60 15421.20 0.89 0.54 15301.73 0.83 1.31 0.77

5 HP14 14868.93 0.35 14690.12 0.75 1.20 14612.04 0.96 1.73 0.53

6 HP15 16221.56 0.50 16110.78 0.69 0.68 16102.28 0.66 0.74 0.05

10941.40 0.40 10757.81 0.71 1.68 10666.98 0.72 2.51 0.84

S-BR-IG-LS

# of 

Block(s)

BDS-Stoch S-IG-BR

Block 

Delay

80

Avg Delay

Instance

40

50

60

70

Table 7.3 : Stochastic Longer running/dwell times - major disruption: S-BR-IG-LS 

Results 
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Table 7.4 indicates the S-BR-IG-LS results of stochastic RSP considered on major 

disruption on late departure times. The best solution for each instance is indicated in bold. 

A comparison between S-BR-IG-LS and the other algorithms showed that the average total 

delay of S-BR-IG-LS was 0.92% better than S-IG-BR and 3.87% better than BDS-Stoch. 

The reliability coefficient showed that S-BR-IG-LS had highest reliability at 66% which 

was 28% higher than BDS-Stoch and 1% higher than S-IG-BR. 

The SSDP separated disruptions into 3 types depending on the size as minor disruptions, 

general disruptions and major disruptions. Thus, we discussed our results based on the 

disruption types of each instance. 

 

 

Delay Reliability Delay Reliability

RD (%) 

compared with 

BDS-Stoch

Delay Reliability

RD (%) 

compared 

with BDS-Stoch

 RD (%) 

compared 

with S-IG-BR

3 PR01 9306.78 0.45 8236.26 0.75 11.50 8132.13 0.81 12.62 1.26

5 PR02 8879.46 0.26 8652.64 0.52 2.55 8597.31 0.44 3.18 0.64

9 PR03 7923.36 0.56 7643.25 0.60 3.54 7601.73 0.98 4.06 0.54

12 PR04 8096.74 0.52 7905.48 0.59 2.36 7862.54 0.47 2.89 0.54

3 PR05 7225.57 0.41 7180.96 0.71 0.62 7137.85 0.66 1.21 0.60

5 PR06 8720.84 0.33 8717.83 0.45 0.03 8627.82 0.55 1.07 1.03

9 PR07 6667.70 0.49 6666.19 0.98 0.02 6664.65 0.44 0.05 0.02

12 PR08 7755.11 0.50 7735.50 0.96 0.25 7542.54 0.94 2.74 2.49

3 PR09 11441.82 0.18 10322.71 0.42 9.78 10266.19 0.78 10.27 0.55

5 PR10 10744.84 0.54 10406.84 0.55 3.15 10057.87 0.94 6.39 3.35

9 PR11 7884.00 0.31 7814.99 0.52 0.88 7744.64 0.68 1.77 0.90

12 PR12 10518.84 0.35 10415.75 0.60 0.98 10404.50 0.42 1.09 0.11

3 PR13 8605.79 0.22 8532.53 0.66 0.85 8522.55 0.79 0.97 0.12

5 PR14 9827.53 0.56 9819.17 0.80 0.09 9816.59 0.51 0.11 0.03

9 PR15 8829.11 0.21 8701.99 0.57 1.44 8605.96 0.62 2.53 1.10

12 PR16 9693.25 0.21 9141.21 0.67 5.70 9040.39 0.56 6.74 1.10

8882.55 0.38 8618.33 0.65 2.97 8539.08 0.66 3.87 0.92

50 6

10

20

40 4

10

20

Departure 

 Delay

# of 

Train(s)
Instance

S-IG-BR S-BR-IG-LSBDS-Stoch

Avg Delay

40 6

10

20

50 4

10

20

Block 

Delay

# of 

Block(s)

  Table 7.4 : Stochastic Longer running/dwell times and Late departures - major disruption: 
S-BR-IG-LS Results 

Delay Reliability Delay Reliability

RD (%)  

compared with 

BDS-Stoch

Delay Reliability

 RD (%)  

compared 

with S-IG-BR

RD (%)  

compared with 

BDS-Stoch

Longer Running/dwell times 797.92 0.70 787.77 0.94 1.27 777.60 0.94 1.29 2.55

Late Departures 188.20 0.71 179.11 0.98 4.83 177.79 0.98 0.74 5.53

493.06 0.71 483.44 0.96 1.95 477.70 0.96 1.19 3.12

Disruption Type

Minor and 

General

Average Delay

S-IG-BR S-BR-IG-LSBDS-Stoch

Table 7.5 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - Small 

Delay Reliability Delay Reliability

RD (%)  

compared with 

BDS-Stoch

Delay Reliability

 RD (%)  

compared 

with S-IG-BR

RD (%)  

compared with 

BDS-Stoch

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 1.68 10666.98 0.72 0.84 2.51

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 2.97 8539.08 0.66 0.92 3.87

9911.97 0.39 9688.07 0.68 2.26 9603.03 0.69 0.88 3.12

Major

Average Delay

Disruption Type

S-IG-BR S-BR-IG-LSBDS-Stoch

Table 7.6 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - Large 
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Tables 7.5 and 7.6 show the summary results of small and large disruption instances. For 

small disruptions, S-BR-IG-LS reduced the expected total train delay by 1.19% better than 

S-IG-BR and 3.12% better than DS-Stoch. Moreover, for large disruptions, S-BR-IG-LS 

outperformed S-IG-BR by 0.88% and BDS-Stoch by 3.12%. 

A comparison between small and large disruptions on the reliability showed that the size of 

disruptions affected the reliability level. Decreasing reliability level between small and 

large cases were 71% to 39% in BDS-Stoch, 96% to 68% in S-IG-BR and 96% to 69% in 

S-BR-IG-LS. This means that high levels of disruptions resulted in decreasing reliability. 

 

Table 7.7 presents a summary of all results in section 7.4.1 and shows that CPLEX was 

effective for solving minor and general disruption RSPs. The S-BR-IG-LS was the best 

choice for major disruption RSPs and reduced the average total delay solution by 0.89% 

better than S-IG-BR and 3.12% better than BDS-Stoch. Moreover, S-BR-IG-LS also had 

the same level reliability as S-IG-BR at 82%, which was 27% higher reliability than BDS-

Stoch. The results also showed that S-BR-IG-LS was more efficient than S-IG-BR with 

equal reliability level. This means that biased randomisation improved efficiency of the 

IG-BR algorithm. 

7.4.2. State Railway of Thailand 

Table 7.8 shows the experimental results of BDS-Stoch, S-IG-BR and S-BR-IG-LS. The 

first two columns show the detail of each instance. After that, BDS-Stoch, S-IG-BR and S-

BR-IG-LS columns provided the results of total delay and reliability. Moreover, the last 

two columns provided a comparison between S-BR-IG-LS with BDS-Stoch and S-IG-BR 

as RD (%). Finally, at the bottom of the table, we calculated an average of the total delay 

and RD to provide a clearer understanding. All delays were presented in minutes and a 

positive number of RD showed that the proposed method provided an improvement, 

otherwise there was no improvement. 

Delay Reliability Delay Reliability

RD (%)  

compared with 

BDS-Stoch

Delay Reliability

 RD (%)  

compared 

with S-IG-BR

RD (%)  

compared with 

BDS-Stoch

Longer Running/dwell times 797.92 0.70 787.77 0.94 1.27 777.60 0.94 1.29 2.55

Late Departures 188.20 0.71 179.11 0.98 4.83 177.79 0.98 0.74 5.53

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 1.68 10666.98 0.72 0.84 2.51

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 2.97 8539.08 0.66 0.92 3.87

5202.52 0.55 5085.76 0.82 2.24 5040.36 0.82 0.89 3.12

BDS-Stoch

Disruption Type

S-IG-BR S-BR-IG-LS

Minor and 

General

Major

Average Delay

Table 7.7 : Summary of Experimental result of S-BR-IG-LS - Stochastic (UK) - All 
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Table 7.8 shows the results of stochastic RSP on the Thailand case study. The best solution 

for each instance is indicated in bold. Results showed that S-BR-IG-LS reduced the 

expected total delays at 2.31% lower than S-IG-BR and 8.14% lower than BDS-Stoch. For 

the reliability, the results showed that S-IG-BR had higher reliability than the BDS-Stoch 

by 31%. This high reliability suggested that the solution methods were more flexible and 

suitable for solving the real-world case study. Moreover, S-IG-BR and S-BR-IG-LS gave 

equal reliability at 75%.  

7.5. Chapter Conclusion 

This chapter proposed BR-IG-LS with MCS techniques to provide simulated expected 

train delay and predicted delays. This turned the solution approach into stochastic, called 

S-BR-IG-LS. We proposed using S-BR-IG-LS because (i) LS had previous success in 

improving the solution quality of IG-BR for the deterministic RSP as discussed in Chapter 

4 and (ii) MCS is more effective for simulating expected values.  

Table 7.8 : Stochastic Thai: S-BR-IG-LS 

Delay Reliability Delay Reliability Delay Reliability

 RD (%) 

compared 

with S-IG-BR

 RD (%) 

compared with 

BDS-Stoch

1/2/2019 THAF101 2140.26 0.46 2132.87 0.63 1922.13 0.63 9.88 10.19

2/2/2019 THAF102 2222.09 0.43 2141.47 0.77 2187.60 0.83 -2.15 1.55

3/2/2019 THAF103 2069.37 0.33 2046.06 0.91 1801.55 0.63 11.95 12.94

4/2/2019 THAF104 1547.01 0.26 1368.37 0.81 1249.54 0.83 8.68 19.23

5/2/2019 THAF105 2289.36 0.24 2284.32 0.72 2262.59 0.70 0.95 1.17

6/2/2019 THAF106 1665.72 0.52 1618.95 0.69 1522.68 0.83 5.95 8.59

7/2/2019 THAF107 2637.56 0.20 2500.98 0.88 2466.71 0.60 1.37 6.48

8/2/2019 THAF108 2768.12 0.68 2692.45 0.71 2561.55 0.69 4.86 7.46

9/2/2019 THAF109 2571.86 0.67 1984.98 0.61 1845.15 0.66 7.04 28.26

10/2/2019 THAF110 1643.44 0.21 1520.22 0.74 1517.03 0.74 0.21 7.69

11/2/2019 THAF111 1855.58 0.70 1826.68 0.67 1774.14 0.75 2.88 4.39

12/2/2019 THAF112 1981.48 0.53 1951.20 0.61 1884.80 0.81 3.40 4.88

13/2/2019 THAF113 2101.69 0.32 1807.63 0.66 1774.24 0.68 1.85 15.58

14/2/2019 THAF114 2117.11 0.33 1944.44 0.73 1913.95 0.67 1.57 9.60

15/2/2019 THAF115 2866.43 0.53 2645.20 0.68 2615.02 0.81 1.14 8.77

16/2/2019 THAF116 3026.04 0.55 2797.11 0.81 2763.69 0.64 1.19 8.67

17/2/2019 THAF117 2285.48 0.65 2273.10 0.93 2275.90 0.90 -0.12 0.42

18/2/2019 THAF118 2583.71 0.26 2570.77 0.62 2472.62 0.64 3.82 4.30

19/2/2019 THAF119 1689.85 0.65 1537.25 0.75 1472.98 0.92 4.18 12.83

20/2/2019 THAF120 1854.07 0.60 1829.25 0.79 1769.53 0.81 3.26 4.56

21/2/2019 THAF121 3916.94 0.44 3212.71 0.68 3200.53 0.60 0.38 18.29

22/2/2019 THAF122 3993.31 0.51 3794.86 0.77 3770.80 0.84 0.63 5.57

23/2/2019 THAF123 3767.96 0.27 3460.03 0.65 3393.42 0.78 1.93 9.94

24/2/2019 THAF124 3055.96 0.48 3051.14 0.87 3024.50 0.82 0.87 1.03

25/2/2019 THAF125 3561.76 0.22 3400.97 0.78 3392.38 0.72 0.25 4.76

26/2/2019 THAF126 5145.14 0.52 5091.63 0.71 5090.09 0.83 0.03 1.07

27/2/2019 THAF127 3595.63 0.36 3283.33 0.90 3224.73 0.98 1.79 10.32

28/2/2019 THAF128 3207.96 0.53 2969.39 0.89 2976.17 0.73 -0.23 7.23

2648.60 0.44 2490.62 0.75 2433.07 0.75 2.31 8.14Average Delay

S-BR-IG-LS

Date Instance

S-IG-BRBDS-Stoch
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For S-BR-IG-LS procedures, MCS was added into RSP by simulating an expected value 

for late departure time, running time and dwell delay into the initial solution. After that, the 

BR-IG-LS was shown to improve the rescheduling process by using the stochastic 

optimisation model based on the formulation from the previous chapter, with the aim to 

minimum expected total train delays. The MCS used the mean and variance values of test 

instances to generate the expected solutions. 

Data for experimentation were retrieved from the Southeastern operating train company, 

UK (Khosravi, 2013) and State Railway of Thailand. For computational experimentation, 

two types of delay were used: (i) minor and general disruption and (ii) major disruption, 

considered for the UK case study, while historical data were used as test instances for the 

Thailand case study. Moreover, C# was used for experimentation with this problem. The 

average result from Chapter 6 was used for analysis and comparison.  

The S-BR-IG-LS algorithm provided a better performance than S-IG-BR in 400 seconds of 

computation time. Moreover, the expected total train delays of S-BR-IG-LS were lower 

than BDS-Stoch. Results showed that it was beneficial to generate an estimated expected 

total train delay which then led to reduction in total train delays and increased the 

reliability.  In the next chapter, we develop a S-BR-VNS to make a fair comparison 

between all solution methods proposed in this thesis.  
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Chapter 8:  Sim-Biased Randomised Variables Neighbourhood Search (S-BR-VNS) 

for Stochastic RSP  

8.1. Introduction 

In the previous chapter, results of S-BR-IG-LS algorithm showed good performance on the 

stochastic RSP but provided only a small gap better than S-IG-BR algorithms. Therefore, 

we chose the metaheuristic method which discussed in Chapter 5, which outperform in the 

deterministic RSP, to solve the stochastic RSP and further improve the results. 

This chapter described how to add MCS into the VNS or BR-VNS for solving a stochastic 

RSP using the proposed solution methods namely, Sim-VNS (S-VNS) or Sim-Biased 

Randomised VNS (S-BR-VNS). Then, we compare the experimental results of the 

proposed solution methods with results from the previous chapter to measure their 

efficiency. The experiment was executed based on two case studies from the UK and 

Thailand rail networks. 

The chapter is structured as follows: section 8.2 presents the contributions and then the 

proposed S-BR-VNS algorithm, used to solve RSP with stochastic disruption delays is 

described in section 8.3. All the experiment results are shown in section 8.4, separated into 

two sets of case studies (UK & Thailand). Section 8.5 is the conclusion. 

8.2. Contribution 

The main contribution of this chapter is the development and implementation the VNS or 

BR-VNS and MCS technique, called S-VNS or S-BR-VNS, for solving the stochastic RSP. 

The VNS and BR-IG-VNS were used to find the solution and minimise the total delay of 

all trains, while MCS generated random delays to simulate a real environment of the case 

study. Moreover, the MSC also provide a fair comparison between different algorithms. 

According to the literature review, no one has used MCS and VNS or BR-VNS algorithm 

as sim-optimisation to solve the stochastic RSP before; therefore, this is the first study 

proposing S-VNS or S-BR-VNS to solve the RSP. 

8.3. Proposed Sim-Biased Randomised VNS (S-BR-VNS) for solving RSP  

Results of BR-VNS in Chapter 5 outperformed other methods for the deterministic RSP; 

therefore, we proposed the S-BR-VNS to solve the stochastic RSP. In this chapter, we 

proposed the S-VNS and S-BR-VNS algorithms to solve the stochastic RSP by combined 

VNS and BR-VNS with the MCS.  
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The different between S-VNS and S-BR-VSN is the initial solution. For S-VNS, we used 

the original timetable as the initial solution and then used the VNS to improve the solution. 

For the S-BR-VNS, we started by using the biased randomised algorithm to improve the 

initial solution and then solved it by using the VNS algorithm.  

The process of implementation of the S-BR-VNS is described as follows: (a) select the set 

of neighbourhood structures which consider the rail network characteristics, (b) select the 

initial solution of timetable which is generated by using a biased randomised algorithm to 

improve the initial solution of the case studies, (c) use the MCS technique to randomly 

generate some delays into the system and (d) use VNS to improve the solution by using 

three main phases (shaking, local search and move or not) (Algorithm 8.1).  



Page | 131  

 

Algorithm 8.1 presents the pseudocode for stochastic RSP S-BR-VNS Algorithm. Firstly, 

the process starts by selecting the set of neighbourhood structure (Pseudocode: line 2). 

Secondly, we use the biased randomised algorithm to assign the probability to reorder the 

train sequence and create an initial solution (Pseudocode: line 3 to line 6). Then, we set to 

repeat the whole process until a stopping condition is met (Pseudocode: line 9). We 

consider the stochastic disruption situation, so the expected delay is generated by using the 

MCS (Pseudocode: line 10 to 12).  

Algorithm 8.1 : Procedure for Stochastic RSP S-BR-VNS Algorithm 

----------------------------------------------------------------------------------------------------------------------- 

1: Procedure Stochastic RSP S-BR-VNS Algorithm (x, b, 𝛽)   

⊳ x: Initial solution 

⊳ b: Number of blocks 

⊳ 𝛽: Parameter: biased randomised 

2: set of neighbourhood structures Nk; k = 1, ..., kmax  ⊳ set neighbourhood structures  

3:   for 𝑖 = 1 to b do       ⊳ run for all block 

4:      using 𝛽 probability to assign order of train in each block ⊳ Biased randomised 

5:   end for 

6:   x: GenerateBiasedRandomisedInitialSolution();  ⊳ Initial solution 

7:   k = 1      ⊳ start from first neighbourhood structure 

8:   iteration = 0; 

9:   while execution_time < 400 do    ⊳ Execution time 400 seconds 

10:       for each train in b do     ⊳ start Monte Carlo simulation 

11:          trainDuration = trainDuration + generateRandomDelay ⊳ randomly generate delay 

12:       end for  

13:       for k = 1 to kmax do     ⊳ kmax=4; four neighbourhood structures 

14:           select a random x’ from Nk(x)   ⊳ shaking 

15:          if x’ met with all railway constraints then ⊳ check all constraints 

16:          solution (x’) = calculate minimise a total delay (x’) 

17:          end if 

18:    x” = neighbourhood search of x’  ⊳ local search 

19:          if x” met with all railway constraints then ⊳ check all constraints 

20:         solution (x”) = calculate minimise a total delay (x”) 

21:          end if 

22:   if solution (x”) < solution (x) then   ⊳ move or not 

23:       x = x” 

24:           k = 1      ⊳ return to first neighbourhood structure 

25:   else if 

26:       k = k + 1     ⊳ move to next neighbourhood structure 

27:          end if 

28:         end for 

29:         solution (xbest) = solution (xbest) + solution (x) ⊳ Sum up all solution (𝑟ans) 

30:        iteration++     ⊳ Count number of iterations 

31:  end while            

32:  averageDelay = solution (xbest) / iteration  ⊳ Average the total delay 

33:end procedure 
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Then, we start to implement the VNS from the first neighbourhood structure until the last 

neighbourhood structure (Pseudocode: line 13). In each neighbourhood, we perform the 

shaking phase, local search phase and move or not phase. For the shaking phase of VNS, 

we randomly select an x’ solution from the initial solution x in order to avoid cycling 

(Pseudocode: line 14 to line 17). Next, in the local search phase, we use the kth 

neighbourhood rule to find a new solution x” (Pseudocode: line 18 to line 21). After that, 

the move or not phase is applied to check if the new solution x” is better than the best 

solution x, set best solution x = new solution x” and continue the search on the first 

neighbourhood structure Nk, (k=1); otherwise move to use next neighbourhood structure 

Nk, (k=k+1) (Pseudocode: line 22 to line 27). Finally, the MCS process is used to find an 

expected average of the total delay (Pseudocode: line 29 to line 32). In addition, at the 

shaking and local search phases, we also required the process to confirm that all railway 

operational constraints were still valid (Pseudocode: line 15 to line 17 and line 19 to line 

21). 

8.4. Computational experiments 

In this chapter, we proposed to evaluate the performance of the S-BR-VNS by comparing 

it to the BDS-Stoch, S-IG-BR and S-BR-IG-LS from Chapter 7. We executed all 

experiments on the same personal computer with Intel core i7-4500U CPU, 1.80GHz-

2.4GHz, and 8GB RAM. Moreover, we used the same test instances as described in section 

3.5.1.1. (UK) and 3.5.2.1. (Thailand). All parameters and processes follow the outlines 

detailed in section 6.5. 

8.4.1. Southeastern train company, United Kingdom 

The S-BR-VNS was compared to the result from the previous chapter and the basic S-VNS 

to evaluate the performance and reliability of the BR-VNS.  

Tables 8.1, 8.3, 8.5, 8.7, 8.9, 8.11 and 8.13 show the experimental results using BDS-

Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS. In each table, all columns before 

the column BDS-Stoch show details of each instance. Moreover, in each solution method 

column shows the expected total train delay and reliability. Finally, at the bottom row of 

the table, we calculated an average of total delay, and the reliability level. 

Tables 8.2, 8.4, 8.6, 8.8, 8.10, 8.12 and 8.14 compares the average delay between each 

solution method from Tables 8.1, 8.3, 8.5, 8.7, 8.9, 8.11 and 8.13 for comparison. Each sub 

column under the name of each solution shows Relative Deviation (RD) with compared to 
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all other solution methods proposed in this thesis as CPLEX (RD (%) compared with 

CPLEX), IG-BR (RD (%) compared with IG-BR), BR-IG-LS (RD (%) compared with BR-

IG-LS) and VNS (RD (%) compared with VNS). 

In addition, all delays time are presented in minutes and a positive number of RD (%) 

means that the method had a better performance than the other methods, while a negative 

number shows as no improvement. 

 

 

Tables 8.1 and 8.2 show S-BR-VNS results of stochastic RSP considered on minor and 

general delays for longer running time and dwell time. The best solution for each instance 

is indicated in bold. Table 8.1, S-BR-VNS provided highest reliability at 96% with only 

1% better than S-VNS and 2% better than S-IG-BR and S-BR-IG-LS. Moreover, the BDS-

Stoch had lowest reliability at 70%. In terms of expected total train delays, Table 8.2 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

1 3 P01 124.66 0.56 119.10 0.96 114.38 0.99 111.79 0.98 108.83 0.98

2 5 P02 159.88 0.72 155.35 0.98 154.05 0.98 153.44 0.99 146.76 1.00

1 3 P03 176.79 0.78 173.78 0.97 172.71 0.97 172.68 0.96 171.01 0.96

2 5 P04 285.86 0.74 284.46 0.97 283.51 0.98 283.68 0.99 282.11 0.98

1 3 P05 266.81 0.57 266.48 0.96 265.16 0.98 264.67 0.98 262.38 0.99

2 5 P06 316.62 0.84 316.45 1.00 316.44 0.95 315.56 0.95 315.37 0.99

1 9 P07 1133.35 0.78 1129.02 0.99 1088.16 0.96 1071.66 0.99 1032.37 0.98

2 12 P08 771.00 0.59 733.03 0.87 719.13 0.88 713.44 0.85 669.69 0.92

1 9 P09 1409.90 0.78 1408.45 0.92 1383.40 0.88 1371.32 0.99 1291.66 0.95

2 12 P10 1871.83 0.59 1871.06 0.88 1866.60 0.87 1842.78 0.92 1827.94 0.91

1 9 P11 1108.30 0.77 1092.59 0.87 1079.62 0.96 1076.14 0.87 1022.81 0.93

2 12 P12 1950.01 0.73 1903.46 0.87 1888.02 0.87 1839.00 0.93 1813.82 0.91

797.92 0.70 787.77 0.94 777.60 0.94 768.01 0.95 745.40 0.96

20

25

# of 

Train(s)
Instance

S-IG-BR S-BR-VNS

5

10

15

S-BR-IG-LS

Block 

Delay

# of 

Block(s)

BDS-Stoch S-VNS

30

Avg Delay

Table 8.1 : Stochastic Longer running/dwell times - minor and general disruption: 
S-BR-VNS Results 

Table 8.2 : Stochastic Longer running/dwell times - minor and general disruption: 
S-BR-VNS Results (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

1 3 P01 10.32 6.13 2.26 12.70 8.62 4.85 2.65

2 5 P02 4.03 1.23 0.40 8.21 5.53 4.73 4.35

1 3 P03 2.32 0.63 0.02 3.27 1.60 0.99 0.97

2 5 P04 0.76 0.27 -0.06 1.31 0.83 0.49 0.55

1 3 P05 0.80 0.68 0.19 1.66 1.54 1.05 0.86

2 5 P06 0.33 0.28 0.28 0.39 0.34 0.34 0.06

1 9 P07 5.44 5.08 1.52 8.91 8.56 5.13 3.67

2 12 P08 7.47 2.67 0.79 13.14 8.64 6.88 6.13

1 9 P09 2.74 2.64 0.87 8.39 8.29 6.63 5.81

2 12 P10 1.55 1.51 1.28 2.34 2.30 2.07 0.81

1 9 P11 2.90 1.51 0.32 7.71 6.39 5.26 4.96

2 12 P12 5.69 3.39 2.60 6.98 4.71 3.93 1.37

3.75 2.51 1.23 6.58 5.38 4.14 2.94

15

Block 

Delay

# of 

Block(s)

# of 

Train(s)
Instance

20

25

30

Avg RD(%)

S-VNS S-BR-VNS

5

10
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provided a fair comparison between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-

BR-VNS. Results showed that S-BR-VNS had lower expected total train delay than the 

other solution methods at 2.94% better than S-VNS, 4.14% better than S-BR-IG-LS, 

5.38% better than S-IG-BR and 6.58% better than BDS-Stoch. Therefore, S-BR-VNS had 

the best performance in terms of average total delay and reliability. The results also 

showed that the biased randomised heuristic improve the performance of the basis VNS. 

 

 

Tables 8.3 and 8.4 show S-BR-VNS results of stochastic RSP considered on minor and 

general delays for late departures time. The best solution for each instance is indicated in 

bold. In Table 8.3, S-BR-VNS, S-VNS, S-BR-IG-LS and S-IG-BR had equal reliability at 

98% with 27% higher than BDS-Stoch. Moreover, Table 8.4 provided a fair comparison 

Table 8.3 : Stochastic Late departures - minor and general disruption: S-BR-VNS Results 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

1 R01 67.41 0.52 67.14 0.99 66.15 0.99 64.47 0.95 64.37 0.95

3 R02 67.89 0.77 66.37 0.99 63.44 0.98 62.07 0.99 61.84 1.00

5 R03 82.51 0.81 76.83 0.98 77.20 0.98 74.09 0.97 74.47 0.96

1 R04 78.32 0.64 75.07 0.99 76.99 1.00 71.29 0.99 70.83 1.00

3 R05 94.25 0.59 91.54 0.99 89.30 0.99 88.33 0.99 82.46 0.99

5 R06 157.85 0.73 148.17 0.98 148.08 0.98 146.64 0.96 142.23 0.96

1 R07 76.75 0.83 70.46 0.99 68.57 0.98 67.77 0.97 67.86 0.98

3 R08 132.96 0.88 123.80 0.98 123.40 0.99 123.13 0.98 120.44 1.00

5 R09 190.61 0.79 184.97 0.98 183.73 0.98 181.77 1.00 177.34 1.00

6 R10 208.98 0.64 190.39 0.98 190.71 0.99 189.05 0.99 186.88 0.97

9 R11 272.86 0.78 256.13 0.97 252.71 0.96 246.78 0.97 241.62 0.95

12 R12 383.79 0.62 354.18 0.95 354.69 0.96 350.21 0.95 342.26 1.00

6 R13 261.57 0.66 260.62 0.98 254.33 0.99 250.32 1.00 239.04 0.98

9 R14 315.59 0.60 305.60 0.96 304.58 0.95 303.56 0.99 285.01 0.97

12 R15 431.69 0.74 415.41 0.93 413.00 0.93 390.48 0.99 381.99 0.96

188.20 0.71 179.11 0.98 177.79 0.98 174.00 0.98 169.24 0.98

S-BR-VNS

5

10

15

20

Late 

Departure

# of 

Train(s)
Instance

S-IG-BR S-BR-IG-LSBDS-Stoch

25

Avg Delay

S-VNS

Table 8.4 : Stochastic Late departures - minor and general disruption: S-BR-VNS Results (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

1 R01 4.37 3.98 2.55 4.51 4.13 2.69 0.15

3 R02 8.57 6.48 2.16 8.91 6.83 2.52 0.37

5 R03 10.20 3.57 4.03 9.74 3.07 3.54 -0.51

1 R04 8.98 5.04 7.40 9.56 5.65 8.00 0.64

3 R05 6.29 3.50 1.08 12.52 9.92 7.66 6.65

5 R06 7.11 1.03 0.98 9.90 4.00 3.95 3.00

1 R07 11.71 3.82 1.17 11.59 3.70 1.04 -0.13

3 R08 7.39 0.54 0.22 9.42 2.71 2.40 2.18

5 R09 4.64 1.73 1.07 6.96 4.12 3.48 2.43

6 R10 9.54 0.70 0.87 10.58 1.84 2.01 1.15

9 R11 9.56 3.65 2.35 11.45 5.67 4.39 2.09

12 R12 8.75 1.12 1.26 10.82 3.37 3.51 2.27

6 R13 4.30 3.95 1.58 8.61 8.28 6.01 4.51

9 R14 3.81 0.67 0.33 9.69 6.74 6.42 6.11

12 R15 9.55 6.00 5.45 11.51 8.04 7.51 2.17

7.55 2.86 2.13 10.07 5.51 4.81 2.73

S-VNS

25

Avg RD(%)

S-BR-VNS

5

10

15

20

Late 

Departure

# of 

Train(s)
Instance
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between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS in terms of the 

expected total train delays. Results showed that S-BR-VNS had the best performance than 

the other solution methods at 2.73% better than S-VNS, 4.81% better than S-BR-IG-LS, 

5.51% better than S-IG-BR and 10.07% better than BDS-Stoch. Therefore, S-BR-VNS 

provided the best solution in terms of average total delay. The comparison between S-BR-

VNS and S-VNS was used to evaluate the efficiency of the biased randomised heuristic. 

 

 

Tables 8.5 and 8.6 present S-BR-VNS results of stochastic RSP considered for major 

delays of longer running time and dwell times. The best solution for each instance is 

indicated in bold. In Table 8.5, S-BR-VNS, S-VNS and S-BR-IG-LS provided highest 

BDS-Stoc

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

4 HP01 8112.99 0.33 7949.56 0.62 7864.38 0.46 7789.10 0.65 7589.06 0.55

5 HP02 8108.44 0.23 7837.70 0.98 7663.19 0.64 7636.98 0.77 7424.80 0.91

6 HP03 7374.15 0.57 7352.63 0.48 7336.43 0.97 7338.21 0.87 7326.09 0.77

4 HP04 9011.98 0.45 8760.50 0.54 8586.35 0.48 8365.81 0.92 8157.44 0.61

5 HP05 9539.04 0.42 9239.39 0.71 9192.46 0.41 9191.80 0.76 8984.89 0.82

6 HP06 7436.10 0.31 7424.27 0.96 7411.61 0.52 7410.36 0.54 7397.69 0.97

4 HP07 10356.47 0.49 10280.29 0.48 10215.74 0.56 10183.91 0.77 9837.65 0.63

5 HP08 9120.18 0.20 8905.48 0.57 8856.10 0.97 8849.81 0.87 8750.50 0.58

6 HP09 9551.90 0.52 9306.72 0.75 9176.88 0.88 9118.39 0.55 8878.88 0.73

4 HP10 14344.90 0.35 13908.34 0.80 13660.62 0.90 13622.11 0.61 13405.88 0.73

5 HP11 11010.32 0.39 10795.17 0.74 10703.24 0.67 10598.95 0.74 10385.16 0.80

6 HP12 13558.67 0.22 13384.99 0.72 13321.67 0.83 13140.91 0.60 12575.83 0.75

4 HP13 15505.31 0.60 15421.20 0.89 15301.73 0.83 15132.44 0.55 14811.11 0.55

5 HP14 14868.93 0.35 14690.12 0.75 14612.04 0.96 14592.20 0.90 14255.68 0.63

6 HP15 16221.56 0.50 16110.78 0.69 16102.28 0.66 15709.35 0.75 15489.49 0.83

10941.40 0.40 10757.81 0.71 10666.98 0.72 10578.69 0.72 10351.34 0.72Avg Delay

S-VNS S-BR-VNS

40

50

60

70

80

# of 

Block(s)
Instance

S-IG-BR S-BR-IG-LS

Block 

Delay

Table 8.5 : Stochastic Longer running/dwell times - major disruption: S-BR-VNS Results 

Table 8.6 : Stochastic Longer running/dwell times - major disruption: S-BR-VNS Results (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

4 HP01 3.99 2.02 0.96 6.46 4.53 3.50 2.57

5 HP02 5.81 2.56 0.34 8.43 5.27 3.11 2.78

6 HP03 0.49 0.20 -0.02 0.65 0.36 0.14 0.17

4 HP04 7.17 4.51 2.57 9.48 6.88 5.00 2.49

5 HP05 3.64 0.52 0.01 5.81 2.75 2.26 2.25

6 HP06 0.35 0.19 0.02 0.52 0.36 0.19 0.17

4 HP07 1.67 0.94 0.31 5.01 4.31 3.70 3.40

5 HP08 2.96 0.63 0.07 4.05 1.74 1.19 1.12

6 HP09 4.54 2.02 0.64 7.05 4.60 3.25 2.63

4 HP10 5.04 2.06 0.28 6.55 3.61 1.86 1.59

5 HP11 3.74 1.82 0.97 5.68 3.80 2.97 2.02

6 HP12 3.08 1.82 1.36 7.25 6.05 5.60 4.30

4 HP13 2.40 1.87 1.11 4.48 3.96 3.21 2.12

5 HP14 1.86 0.67 0.14 4.12 2.96 2.44 2.31

6 HP15 3.16 2.49 2.44 4.51 3.86 3.81 1.40

3.31 1.67 0.83 5.39 3.78 2.96 2.15Avg RD(%)

40

50

60

70

80

S-BR-VNS

Block 

Delay

# of 

Block(s)
Instance

S-VNS
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reliability at 72% with only 1% better than S-IG-BR. Moreover, the reliability of BDS-

Stoch solution was 40% at 32% lower than highest reliability method and 31% lower than 

S-IG-BR. Moreover, Table 8.6 provided a fair comparison of the expected average total 

train delays between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS. Results 

showed that S-BR-VNS was more effective than the other solution methods by 2.15% 

better than S-VNS, 2.96% better than S-BR-IG-LS, 3.78% better than S-IG-BR and 5.39% 

better than BDS-Stoch.  

 

 

Tables 8.7 and 8.8 highlight S-BR-VNS results of stochastic RSP considered on major 

disruption for late departures time. In terms of expected total train delays, Table 8.7 

Table 8.7 : Stochastic Longer running/dwell times and Late departures - major disruption: 
S-BR-VNS Results 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

3 PR01 9306.78 0.45 8236.26 0.75 8132.13 0.81 7922.76 0.81 7807.20 0.60

5 PR02 8879.46 0.26 8652.64 0.52 8597.31 0.44 8023.43 0.87 7508.38 0.81

9 PR03 7923.36 0.56 7643.25 0.60 7601.73 0.98 7550.27 0.77 7420.23 0.42

12 PR04 8096.74 0.52 7905.48 0.59 7862.54 0.47 7575.08 0.68 7514.76 0.97

3 PR05 7225.57 0.41 7180.96 0.71 7137.85 0.66 7119.56 0.54 7115.12 0.83

5 PR06 8720.84 0.33 8717.83 0.45 8627.82 0.55 8539.53 0.43 8534.84 0.72

9 PR07 6667.70 0.49 6666.19 0.98 6664.65 0.44 6664.04 0.48 6664.04 0.45

12 PR08 7755.11 0.50 7735.50 0.96 7542.54 0.94 7496.00 0.67 7483.10 0.44

3 PR09 11441.82 0.18 10322.71 0.42 10266.19 0.78 9790.37 0.85 9293.93 0.61

5 PR10 10744.84 0.54 10406.84 0.55 10057.87 0.94 9798.85 0.41 9335.99 0.71

9 PR11 7884.00 0.31 7814.99 0.52 7744.64 0.68 7725.66 0.51 7716.65 0.85

12 PR12 10518.84 0.35 10415.75 0.60 10404.50 0.42 10400.21 0.72 10338.93 0.52

3 PR13 8605.79 0.22 8532.53 0.66 8522.55 0.79 8492.99 0.88 8441.79 0.45

5 PR14 9827.53 0.56 9819.17 0.80 9816.59 0.51 9817.82 0.99 9812.04 0.57

9 PR15 8829.11 0.21 8701.99 0.57 8605.96 0.62 8434.54 0.54 8308.12 0.89

12 PR16 9693.25 0.21 9141.21 0.67 9040.39 0.56 8955.09 0.44 8866.78 0.95

8882.55 0.38 8618.33 0.65 8539.08 0.66 8394.14 0.66 8260.12 0.67

S-VNS S-BR-VNS

50 6

10

20

S-IG-BR S-BR-IG-LS

40 4

10

20

Block 

Delay

# of 

Block(s)

Departure 

 Delay

Avg Delay

40 6

10

20

50 4

10

20

# of 

Train(s)
Instance

BDS-Stoc

Table 8.8 : Stochastic Longer running/dwell times and Late departures - major 

disruption: S-BR-VNS Results (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

3 PR01 14.87 3.81 2.57 16.11 5.21 4.00 1.46

5 PR02 9.64 7.27 6.68 15.44 13.22 12.67 6.42

9 PR03 4.71 1.22 0.68 6.35 2.92 2.39 1.72

12 PR04 6.44 4.18 3.66 7.19 4.94 4.42 0.80

3 PR05 1.47 0.85 0.26 1.53 0.92 0.32 0.06

5 PR06 2.08 2.05 1.02 2.13 2.10 1.08 0.05

9 PR07 0.05 0.03 0.01 0.05 0.03 0.01 0.00

12 PR08 3.34 3.10 0.62 3.51 3.26 0.79 0.17

3 PR09 14.43 5.16 4.63 18.77 9.97 9.47 5.07

5 PR10 8.80 5.84 2.58 13.11 10.29 7.18 4.72

9 PR11 2.01 1.14 0.25 2.12 1.26 0.36 0.12

12 PR12 1.13 0.15 0.04 1.71 0.74 0.63 0.59

3 PR13 1.31 0.46 0.35 1.91 1.06 0.95 0.60

5 PR14 0.10 0.01 -0.01 0.16 0.07 0.05 0.06

9 PR15 4.47 3.07 1.99 5.90 4.53 3.46 1.50

12 PR16 7.62 2.04 0.94 8.53 3.00 1.92 0.99

5.50 2.60 1.70 7.01 4.16 3.27 1.60

# of 

Train(s)
Instance

50 6

10

20

Avg RD(%)

40 6

10

20
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10

20
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showed that S-BR-VNS had the highest reliability at 67% with 2% better than IG-BR and 

only 1% better than S-VNS and S-BR-IG-LS. Moreover, the BDS-Stoch had only 38% of 

reliability level. Then, Table 8.8 provided a fair evaluation of the expected total train delay 

between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS. Results showed that 

S-BR-VNS provided the best solution than the other proposed methods at 1.60% better 

than S-VNS, 3.27% better than S-BR-IG-LS, 4.16% better than S-IG-BR and 7.01% better 

than BDS-Stoch.  

As we mentioned before, we separated the instance sets into 2 groups depending on the 

size of disruption as minor and general size of disruption and major size of disruption. We 

summarise the results dependent on size of delay separately as follows: 

 

 

In Tables 8.9 and 8.10, the summary results of small disruption instances are shown. When 

we compared between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS, the 

best solution was provided by S-BR-VNS at 2.91% better than S-VNS, 4.27% better than 

S-BR-IG-LS, 5.40% better than S-IG-BR and 7.25% better than BDS-Stoch in terms of the 

expected total train delays. However, when we focused on the reliability, S-BR-VNS and 

S-VNS had highest reliability level at 97% followed by S-IG-BR and S-BR-IG-LS at 96%. 

Moreover, the BDS-Stoch had lowest reliability at 71%. 

 

 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

Longer Running/dwell times 797.92 0.70 787.77 0.94 777.60 0.94 768.01 0.95 745.40 0.96

Late Departures 188.20 0.71 179.11 0.98 177.79 0.98 174.00 0.98 169.24 0.98

493.06 0.71 483.44 0.96 477.70 0.96 471.00 0.97 457.32 0.97

S-BR-VNSS-VNSS-BR-IG-LS

Minor and 

General

Average Delay

S-IG-BRBDS-Stoch

Disruption Type

Table 8.9 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Small 

Table 8.10 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Small 

(RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

Longer Running/dwell times 3.75 2.51 1.23 6.58 5.38 4.14 2.94

Late Departures 7.55 2.86 2.13 10.07 5.51 4.81 2.73

4.47 2.57 1.40 7.25 5.40 4.27 2.91

Disruption Type

Average Delay

S-VNS S-BR-VNS

Minor and 

General
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Tables 8.11 and 8.12 show the summary results for large disruption instances. When we 

compared between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS, S-BR-

VNS reduced the expected total train delays 1.90% lower than S-VNS, 3.10% lower than 

S-BR-IG-LS, 3.95% lower than S-IG-BR and 6.12% lower than BDS-Stoch. S-BR-VNS 

had the highest reliability level at 70% followed by S-VNS and S-BR-IG-LS at 69%. 

Moreover, S-IG-BR had reliability at 68% with only 1% lower than S-VNS and S-BR-IG-

LS and the BDS-Stoch had lowest reliability at 39%. 

 

 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 10666.98 0.72 10578.69 0.72 10351.34 0.72

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 8539.08 0.66 8394.14 0.66 8260.12 0.67

9911.97 0.39 9688.07 0.68 9603.03 0.69 9486.41 0.69 9305.73 0.70

S-IG-BR S-BR-IG-LS S-VNS S-BR-VNS

Disruption Type

BDS-Stoch

Major

Average Delay

Table 8.11 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Large 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

Longer Running/dwell times 3.31 1.67 0.83 5.39 3.78 2.96 2.15

Late Departures & Longer Running/dwell times 5.50 2.60 1.70 7.01 4.16 3.27 1.60

4.29 2.08 1.21 6.12 3.95 3.10 1.90

S-VNS S-BR-VNS

Disruption Type

Average Delay

Major

Table 8.12 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - Large (RD) 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

Longer Running/dwell times 797.92 0.70 787.77 0.94 777.60 0.94 768.01 0.95 745.40 0.96

Late Departures 188.20 0.71 179.11 0.98 177.79 0.98 174.00 0.98 169.24 0.98

Longer Running/dwell times 10941.40 0.40 10757.81 0.71 10666.98 0.72 10578.69 0.72 10351.34 0.72

Late Departures & Longer Running/dwell times 8882.55 0.38 8618.33 0.65 8539.08 0.66 8394.14 0.66 8260.12 0.67

5202.52 0.55 5085.76 0.82 5040.36 0.82 4978.71 0.83 4881.52 0.83

S-BR-IG-LS S-VNS S-BR-VNS

Average Delay

Disruption Type

Major

Minor and 

General

BDS-Stoch S-IG-BR

Table 8.13 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - All 

Table 8.14 : Summary of Experimental result of S-BR-VNS - Stochastic (UK) - All (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

Longer Running/dwell times 3.75 2.51 1.23 6.58 5.38 4.14 2.94

Late Departures 7.55 2.86 2.13 10.07 5.51 4.81 2.73

Longer Running/dwell times 3.31 1.67 0.83 5.39 3.78 2.96 2.15

Late Departures & Longer Running/dwell times 5.50 2.60 1.70 7.01 4.16 3.27 1.60

4.30 2.10 1.22 6.17 4.02 3.15 1.95

Disruption Type

Major

Average Delay

S-VNS S-BR-VNS

Minor and 

General
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Tables 8.13 and 8.14 present a summary of all results in section 8.4.1 which showed that 

CPLEX was effective for solving minor and general disruption RSPs. S-BR-VNS was the 

best choice for the major disruption RSP and decreased the expected total train delay by 

1.95% better than S-VNS, 3.15% better than S-BR-IG-LS, 4.02% better than S-IG-BR and 

6.17% better than BDS-Stoch. Moreover, the reliability data showed that when the level of 

uncertainty increased, the reliability decreased. Moreover, when we compared the 

reliability between S-BR-VNS and the other methods, S-BR-VNS and S-VNS had highest 

reliability level at 83%, then S-IG-BR and S-BR-IG-LS also had the same reliability level 

at 82%. Moreover, the BDS-Stoch only had 55% of the reliability level. 

Different reliability levels between all levels of disruptions were discussed with regard to 

how the reliability was affected by size of disruptions. We compared Tables 8.9 and 

8.11which showed that the reliability of minor and general disruption was higher than the 

major disruption. This means that if the size of disruption increased, the reliability 

decreased. 

8.4.2. State Railway of Thailand 

Table 8.15 shows the experimental results of BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS 

and S-BR-VNS. The first two columns show the detail of each instance. After that, BDS-

Stoch, S-IG-BR, S-BR-IG-LS, VNS and BR-VNS columns provided the results of total 

delay and reliability. Finally, at the end of the table, we calculated an average of the total 

delay and RD to provide a clearer understanding. All delays time are presented in minutes 

and a positive number of RD showed that the proposed method provided an improvement. 
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Table 8.16 : Stochastic Thai: BR-VNS Results 

Delay Reliability Delay Reliability Delay Reliability Delay Reliability Delay Reliability

1/2/2019 THAF101 2140.26 0.46 2132.87 0.63 1922.13 0.63 2001.34 0.68 2025.60 0.96

2/2/2019 THAF102 2222.09 0.43 2141.47 0.77 2187.60 0.83 2056.23 0.85 1941.55 0.80

3/2/2019 THAF103 2069.37 0.33 2046.06 0.91 1801.55 0.63 1767.44 0.62 1761.30 0.88

4/2/2019 THAF104 1547.01 0.26 1368.37 0.81 1249.54 0.83 1221.23 0.69 1198.00 0.68

5/2/2019 THAF105 2289.36 0.24 2284.32 0.72 2262.59 0.70 2224.50 0.89 2079.66 0.87

6/2/2019 THAF106 1665.72 0.52 1618.95 0.69 1522.68 0.83 1226.27 0.90 1195.25 0.62

7/2/2019 THAF107 2637.56 0.20 2500.98 0.88 2466.71 0.60 2442.41 0.93 2162.51 0.69

8/2/2019 THAF108 2768.12 0.68 2692.45 0.71 2561.55 0.69 2552.20 0.71 2408.17 0.82

9/2/2019 THAF109 2571.86 0.67 1984.98 0.61 1845.15 0.66 1799.37 0.80 1807.82 0.62

10/2/2019 THAF110 1643.44 0.21 1520.22 0.74 1517.03 0.74 1465.65 0.64 1411.30 0.70

11/2/2019 THAF111 1855.58 0.70 1826.68 0.67 1774.14 0.75 1793.28 0.61 1753.78 0.72

12/2/2019 THAF112 1981.48 0.53 1951.20 0.61 1884.80 0.81 1835.53 0.96 1757.61 0.81

13/2/2019 THAF113 2101.69 0.32 1807.63 0.66 1774.24 0.68 1739.56 0.73 1698.18 0.83

14/2/2019 THAF114 2117.11 0.33 1944.44 0.73 1913.95 0.67 1839.86 0.60 1835.43 0.71

15/2/2019 THAF115 2866.43 0.53 2645.20 0.68 2615.02 0.81 2571.67 0.97 2560.02 0.66

16/2/2019 THAF116 3026.04 0.55 2797.11 0.81 2763.69 0.64 2734.95 0.62 2635.65 0.95

17/2/2019 THAF117 2285.48 0.65 2273.10 0.93 2275.90 0.90 2256.65 0.74 2250.49 0.74

18/2/2019 THAF118 2583.71 0.26 2570.77 0.62 2472.62 0.64 2355.80 0.77 2205.12 0.61

19/2/2019 THAF119 1689.85 0.65 1537.25 0.75 1472.98 0.92 1441.22 0.89 1374.13 0.69

20/2/2019 THAF120 1854.07 0.60 1829.25 0.79 1769.53 0.81 1695.92 0.65 1697.55 0.77

21/2/2019 THAF121 3916.94 0.44 3212.71 0.68 3200.53 0.60 3192.23 0.93 3017.71 0.92

22/2/2019 THAF122 3993.31 0.51 3794.86 0.77 3770.80 0.84 3674.02 0.76 3661.68 0.65

23/2/2019 THAF123 3767.96 0.27 3460.03 0.65 3393.42 0.78 3337.86 0.75 3244.39 0.68

24/2/2019 THAF124 3055.96 0.48 3051.14 0.87 3024.50 0.82 3015.21 0.76 3014.11 0.71

25/2/2019 THAF125 3561.76 0.22 3400.97 0.78 3392.38 0.72 3388.26 0.65 3217.76 0.72

26/2/2019 THAF126 5145.14 0.52 5091.63 0.71 5090.09 0.83 4900.02 0.76 4861.53 0.93

27/2/2019 THAF127 3595.63 0.36 3283.33 0.90 3224.73 0.98 3150.09 0.63 3097.55 0.65

28/2/2019 THAF128 3207.96 0.53 2969.39 0.89 2976.17 0.73 2906.38 0.67 2880.51 0.96

2648.60 0.44 2490.62 0.75 2433.07 0.75 2378.04 0.76 2312.66 0.76

S-BR-VNSBDS-Stoch S-IG-BR S-BR-IG-LS S-VNS

Average Delay

Date Instance

Table 8.15 : Stochastic Thai: BR-VNS Results (RD) 

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with BDS-Stoch

RD (%) 

compared 

with S-IG-BR

RD (%) 

compared with 

S-BR-IG-LS

RD (%) 

compared 

with S-VNS

1/2/2019 THAF101 6.49 6.17 -4.12 5.36 5.03 -5.38 -1.21

2/2/2019 THAF102 7.46 3.98 6.01 12.62 9.34 11.25 5.58

3/2/2019 THAF103 14.59 13.62 1.89 14.89 13.92 2.23 0.35

4/2/2019 THAF104 21.06 10.75 2.27 22.56 12.45 4.12 1.90

5/2/2019 THAF105 2.83 2.62 1.68 9.16 8.96 8.08 6.51

6/2/2019 THAF106 26.38 24.26 19.47 28.24 26.17 21.50 2.53

7/2/2019 THAF107 7.40 2.34 0.99 18.01 13.53 12.33 11.46

8/2/2019 THAF108 7.80 5.21 0.36 13.00 10.56 5.99 5.64

9/2/2019 THAF109 30.04 9.35 2.48 29.71 8.93 2.02 -0.47

10/2/2019 THAF110 10.82 3.59 3.39 14.13 7.16 6.97 3.71

11/2/2019 THAF111 3.36 1.83 -1.08 5.49 3.99 1.15 2.20

12/2/2019 THAF112 7.37 5.93 2.61 11.30 9.92 6.75 4.25

13/2/2019 THAF113 17.23 3.77 1.95 19.20 6.06 4.29 2.38

14/2/2019 THAF114 13.10 5.38 3.87 13.31 5.61 4.10 0.24

15/2/2019 THAF115 10.28 2.78 1.66 10.69 3.22 2.10 0.45

16/2/2019 THAF116 9.62 2.22 1.04 12.90 5.77 4.63 3.63

17/2/2019 THAF117 1.26 0.72 0.85 1.53 0.99 1.12 0.27

18/2/2019 THAF118 8.82 8.36 4.72 14.65 14.22 10.82 6.40

19/2/2019 THAF119 14.71 6.25 2.16 18.68 10.61 6.71 4.65

20/2/2019 THAF120 8.53 7.29 4.16 8.44 7.20 4.07 -0.10

21/2/2019 THAF121 18.50 0.64 0.26 22.96 6.07 5.71 5.47

22/2/2019 THAF122 8.00 3.18 2.57 8.30 3.51 2.89 0.34

23/2/2019 THAF123 11.41 3.53 1.64 13.90 6.23 4.39 2.80

24/2/2019 THAF124 1.33 1.18 0.31 1.37 1.21 0.34 0.04

25/2/2019 THAF125 4.87 0.37 0.12 9.66 5.39 5.15 5.03

26/2/2019 THAF126 4.76 3.76 3.73 5.51 4.52 4.49 0.79

27/2/2019 THAF127 12.39 4.06 2.31 13.85 5.66 3.94 1.67

28/2/2019 THAF128 9.40 2.12 2.34 10.21 2.99 3.21 0.89

10.22 4.52 2.26 12.68 7.15 4.95 2.75

S-VNS S-BR-VNS

Average Delay

Date Instance
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Tables 8.15 and 8.16 show the results of stochastic RSP on the Thailand case study for 

expected total train delay, reliability and RD (%). In Table 8.15, S-BR-VNS and S-VNS 

provided highest reliability at 76% with only 1% better than S-IG-BR and S-BR-IG-LS. 

Moreover, the BDS-Stoch had low reliability at 44%. Then, Table 8.16 provided a fair 

comparison between BDS-Stoch, S-IG-BR, S-BR-IG-LS, S-VNS and S-BR-VNS. The 

results showed that S-BR-VNS had lower expected total train delay than the other solution 

methods at 2.75% better than S-VNS, 4.95% better than S-BR-IG-LS, 7.15% better than S-

IG-BR and 12.68% better than BDS-Stoch. Therefore, S-BR-VNS was recommended to 

solve the stochastic RSP for the Thailand case study because it was best in terms of 

average total delay and reliability. A comparison between S-BR-VNS and S-VNS also 

proved that the biased randomised heuristic improved the performance of the basic VNS 

algorithm. 

8.5. Chapter Conclusion 

This chapter proposed BR-VNS with MCS techniques to provide simulated expected train 

delay and predicted delays. This turned the solution approach into stochastic, called S-BR-

VNS. We proposed using S-BR-VNS because (i) BR-VNS improved the solution quality 

of BR-IG-LS for the deterministic RSP as discussed in Chapter 5 and (ii) MCS is more 

effective for simulating expected values.  

Stochastic optimisation was based on the formulation from the previous chapter with the 

main objective of minimising total train delays. For S-BR-VNS procedures, MCS was 

added into RSP by simulating an expected value for late departure time, running time, and 

dwell delay into the initial solution. After that, the BR-VNS improved the rescheduling 

process by using the stochastic optimisation model based on the formulation from Chapter 

7 with the aim to minimise expected total train delays. The MCS used the mean and 

variance values of test instances to generate the expected solutions. 

Data for experimentation was obtained from the Southeastern train company, UK 

(Khosravi, 2013) and the State Railway of Thailand. For computational experimentation, 

two types of delay were used: (i) minor and general disruption and (ii) major disruption 

considered for the UK case study, while historical data was used as the test instances for 

the Thailand case study. Moreover, C# was used for experimentation with this problem. 

The average result from Chapter 7 was used for analysis and comparison.  
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The S-BR-VNS algorithm provided the best solution and high level of reliability among 

the other methods within the 400 seconds time frame. Moreover, the expected total train 

delays of S-BR-VNS were lower than BDS-Stoch. Therefore, we can confirm that it was 

beneficial to generate estimated expected total train delays which can lead to reduction in 

total train delays.  
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Chapter 9: Conclusions and future work  

Nowadays, railway companies face increased challenges in train operational management 

with greater numbers of passengers and large and complex rail networks. Network Rail 

(2019), the main rail operator in the UK, reported that 37.5% of trains are late arrivals and 

need to be rescheduled for a smooth service. Moreover, the State Railway of Thailand 

(2019) uses old technology for timetable scheduling and rescheduling. Therefore, railway 

companies turn to operation research methodologies such as heuristics, metaheuristics and 

sim-optimisation methods to solve the RSP. Real-life rail network operation processes 

have to deal with unexpected events which occur randomly in the system and are therefore 

unpredictable and unavoidable. Unexpected events focused on in this thesis included 

running time delay, dwell time delays and late departure time. Effective railway scheduling 

and rescheduling are very important for dealing with these disruptions to reduce total train 

delay which directly relates to company expenses and quality of service. Moreover, the 

availability of rescheduling plans is the main responsibility of a rail company because this 

can reduce train delays and improve customer satisfaction.  

The data for computational experimentation were sourced from two real-life case studies of  

(i) Southeastern train operating company, UK that consisted of 27 trains and 135 blocks. 

This part of the network has complex infrastructure as bottleneck areas and dense traffic on 

interconnected lines for passengers in and out of London. Moreover, the UK rail network 

uses four-aspect signalling for rail dispatching management. 

(ii) State Railway of Thailand that consisted of 101 trains and 332 blocks. Data were 

collected from the whole of the Thailand rail network including four main lines as 

Northern line, Eastern line, North-eastern line and Southern line. All trains start and end at 

Bangkok providing dense traffic in and out of the city. The Thailand rail network uses two-

aspect signalling for rail dispatching management. 

Implementation of the proposed solution methods for all case studies was conducted using 

CPLEX and C# on a personal computer, Intel Core i7-4500U CPU with 1.80GHz-2.4GHz, 

and 8GB RAM. 

9.1. Research findings and contributions 

This section summarises the main findings and contributions as follows: 
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The main findings from the literature review in Chapter 2 presented that most studies in 

areas of RSP focused on deterministic disruption management which the objective to 

minimising overall delay and total running time. However, only few researchers 

considered the real-life RSP with stochastic uncertainties disruption. This is a very large 

and complex system; therefore, to fulfil this knowledge gap we proposed using heuristics, 

metaheuristics and sim-optimisation to solve the RSP. We provided knowledge related to 

the railway process, disruption managements and the solution methods studied in the 

literature. We filled this knowledge gap by developing an optimisation model and 

implementing other solution methods such as heuristics, metaheuristics and sim-

optimisation methods to integrate with state-of-the-art techniques for solving both 

deterministic and stochastic RSPs. 

In Chapter 3, we developed a deterministic optimisation model for solving RSP by 

considering minimising total train delays. The main contribution of this chapter is provided 

a solution approach to solve the problem which called IG-BR. The IG heuristic was 

successfully implemented with a job shop scheduling problem and other COPs, then 

combine it with biased randomisation technique. The IG heuristic is simple to implement 

and parameter free. The biased randomisation technique was combined during the 

construction phase to increase the consideration of solution in a search space based on a 

geometric probability distribution. Performance of the biased randomisation technique was 

presented as a probability to rank each element in the list. The first element of the 

candidate list was selected as the lowest running time. To the best of our knowledge, the 

IG-BR algorithm has not been previously proposed to solve deterministic RSP. The limit 

of computation time was set at 400 seconds within the time frame of 15 minutes 

determined in SSDP for the update the service. The result of IG-BR presented an 

improvement of solution in the reduction of total train delays in two real-life case studies 

from the Southeastern train company, UK by 6.20% and State Railway of Thailand by 

18.5%. However, when focusing on minor and general disruption instances of the UK case 

study, the best result was the CPLEX at 6.34% better than IG-BR. 

Chapter 4 developed BR-IG-LS to improve the solution quality of IG-BR in Chapter 3. LS 

increased the effectiveness of the algorithm search procedure by choosing neighbourhoods 

through iterative improvement. Therefore, we added LS during the construction phase of 

the IG-BR procedure. The LS did not examine all possible solutions which resulted in 

decreasing computation time and increasing the size of the search space. According to the 
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literature, our proposed methodology of using BR-IG-LS to solve the deterministic RSP by 

considering minimising total train delay has not been previously studied. For experimental 

results, the BR-IG-LS showed a decrease in total train delays compared with IG-BR from 

Chapter 3. Our proposed BR-IG-LS improved the solution of IG-BR by 1.3% for the UK 

case study and 2.09% for the Thailand case study. However, if we focused on minor and 

general disruption instances of the UK case study, the best result was provided by CPLEX 

at 4.34% better than BR-IG-LS. 

The main contribution of Chapter 5 was to use the VNS algorithm combined with biased 

randomisation technique, called BR-VNS. VNS has been proven successful in solving train 

scheduling and routing; however, this has never been previously combined, with biased 

randomisation to solve the RSP. The BR-VNS process was applied using biased 

randomisation to generate an initial solution of RSP before sequencing by VNS. The 

methodology of VNS was performed as follows: (i) shake phase to generate random new 

initial conditions to avoid cycling, (ii) swap moves or insert moves to find a local optimal 

called local search phase, and (iii) move or not phase to check the algorithm loop. 

Computational experimentation of our proposed BR-VNS presented outstanding results 

with reduction of total train delays. When comparing BR-VNS with other algorithms from 

previous chapters, the BR-VNS showed the lowest result at 9.04% better than CPLEX, 

3.03% better than IG-BR and 1.75% better than BR-IG-LS for all UK test instances. For 

the case study of the railway company in Thailand, results of BR-VNS presented a 

reduction of total train delays at 23.68% lower than the company historical solution, 

11.14% lower than CPLEX, 6.35% lower than IG-BR and 4.35% lower than BR-IG-LS. 

When we considered minor and general disruption of the UK case study, the CPLEX also 

provided the best solution but there was a very small gap between BR-VNS and CPLEX at 

1.87%. Overall, the proposed BR-VNS outperformed the other methods for large and 

complex disruptions and provided a good solution in limited computation time. 

In Chapter 6, the main contribution was to model a stochastic optimisation of the RSP and 

integrate a solution methodology for dealing with disruptions to provide stability and 

flexibility for the railway company. The objective of the optimisation model was also to 

minimise total train delay for the UK and Thailand rail network characteristics. For the 

solution approach, a proposed S-IG-BR was developed with MCS to provide simulated 

expected running time, dwell time and late departure time delays. The procedure of S-IG-

BR started by generating an initial solution from case studies. After that, MCS transformed 
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the deterministic RSP into stochastic RSP by simulating expected values of running time, 

dwell time and late departure time delays into schedules. All predicted delay times were 

based on mean and variance of the test instances. The biased randomisation technique was 

combined in the construction phase of the IG heuristic to increase diversification of the 

searching procedure based on geometric distribution. This step was looped until a better 

solution was not found. After that, the algorithm provided the expected total train delays. 

Computational experimentation results of stochastic RSP with the expected train delays 

were compared to the deterministic RSP with no expected train delays (BDS-Stoch). 

Results showed that it was beneficial to generate estimated expected train delays which 

then led to reduction in expected total train delays at 1.95% for minor and general 

disruption and 2.26% for major disruption in the UK case study. Moreover, S-IG-BR 

provided a 5.96% improvement in the Thailand case study. Furthermore, in terms of the 

reliability, S-IG-BR was more robust than BDS-Stoch and provided fewer failure solutions 

by 27% for the UK case study and 31% for the Thailand case study. To the best of our 

knowledge, no other studies have proposed S-IG-BR with MCS to solve the stochastic 

RSP. 

The main contribution of Chapter 7 was to improve the solution of S-IG-BR from the 

previous chapter. Therefore, S-IG-BR was combined with LS, called S-BR-IG-LS, to 

minimise the total train delay. To the best of our knowledge, S-BR-IG-LS has not been 

reported in the literature. The main reason for integrating LS with IG-BR was to increase 

efficiency of the LS performance and provide improvement to the IG-BR solution as 

discussed in Chapter 4. The procedure of S-BR-IG-LS started after an initial solution was 

generated, then MCS randomly simulated the expected values of running time, dwell time 

and late departure time delays into deterministic schedules by using mean and variance of 

the historical data or test instances. Then the BR-IG-LS algorithm described in Chapter 4 

was used to find the expected total train delays. According to computational 

experimentation results, S-BR-IC-LS improved the quality of solution better than S-IG-BR 

from the previous chapter. In more detail, average total train delays from the S-BR-IG-LS 

improved the result of S-IG-BR by 1.19% for minor and general disruption and 0.88% for 

major disruption of the UK case study. Moreover, average total train delays of the Thailand 

case study between S-IG-BR and S-BR-IG-LS also improved by 2.31 %. Furthermore, the 

reliability of S-IG-BR and S-BR-IG-LS were equal with 82% for UK instances and 75% 

for Thailand instances. 
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The main contribution of Chapter 8 proposed the S-BR-VNS for solving the stochastic 

RSP to minimise expected total train delay. To satisfy the main contribution, MCS was 

combined with the BR-VNS algorithm already discussed in Chapter 5. MCS was used 

because it provided a fair comparison between the algorithms and BR-VNS and was more 

effective than BR-IG-LS. To the best of our knowledge, S-BR-VNS has not previously 

been presented in the literature to solve stochastic RSP. The procedure of S-BR-VNS 

started by improving the initial solution by using biased randomisation and then the MCS 

provided expected delays for the stochastic purposes. We followed three phases as shaking 

phase, local search phase and move or not phase of the basic VNS process to generate the 

solution of the stochastic RSP. Results from the implementation of S-BR-VNS decreased 

average expected total train delay in all cases of minor delays and major delays. For 

example, in the UK case study of a benchmark problem, S-BR-VNS reduced average total 

train delays at 3.15% lower than S-BR-IG-LS, 4.02% lower than S-IG-BR and 6.17% 

lower than the best deterministic result. In the case study of the State Railway of Thailand, 

the result of S-BR-VNS was 4.95% better than S-BR-IG-LS, 7.15% better than S-IG-BR 

and 12.68% better than the best deterministic result. Therefore, within the computation 

limit, average expected total train delays of S-BR-VNS outperformed the other methods. 

We concluded that S-BR-VNS was the best choice to solve the RSP with uncertain 

disruptions. In terms of reliability, S-BR-VNS was better than IG-BR and BR-IG-LS by 

1% for both the UK and Thailand case studies. 

9.2. Impact on the Thai railway industry 

For the railway company, increase in train delay directly increases in passenger waiting 

and travelling time while passenger satisfaction decreases. An effective management 

system would improve railway operational process performance. According to the high 

complexity of the rail network, operational research techniques are significant methods for 

rail management systems. In this thesis, we proposed methodologies based on optimisation 

techniques such as IG with Biased Randomised, Biased Randomised IG with Local Search 

and Biased Randomised VNS, Sim-IG with Biased Randomised, Sim-Biased Randomised 

IG with Local Search and Sim-Biased Randomised VNS to present reasonable results in 

the computation time limit of experimentation for solving deterministic and stochastic 

RSP. 

In Thailand, all trains are operated by the State Railway of Thailand and most of the rail 

network is managed by a manual system involving human-based decision-making. 
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Generally, the decision-makers dispatch and allocate trains following the first in first out 

(FCFS) rules from their own experience. This results in low performance, higher levels of 

train delay and waste of infrastructure usage. 

An effective railway rescheduling process will decrease total train delays and improve 

railway management efficiency. Therefore, the proposed methodology of Biased 

Randomised VNS provides high performance because it shows the greatest reduction of 

total train delay by 23.68% compared to the current solution of the Thai railway company. 

Therefore, Biased Randomised VNS is suitable to deal with real-life RSP in Thailand.  

According to the real-world situation, disruptions can occur anytime and lead to low 

passenger satisfaction, train delays and delay propagation. The railway company faces 

many disruptions which directly impact the railway operation process. To handle 

disruptions, operational decisions based on stability and flexibility to reschedule are 

required. According to the data from State Railway of Thailand, the sim-optimisation 

solution methods as Sim-IG with Biased Randomised, Sim-Biased Randomised IG with 

Local Search and Sim-Biased Randomised VNS were developed to increase stability and 

flexibility into RSP. The proposed methodology of Sim-Biased Randomised VNS is most 

suitable for the Thailand case study because it provides the lowest total train delay in all 

test instances compared to other methods. Moreover, the reliability of Biased Randomised 

VNS is also higher than other methods and can minimise total train delays for the RSP 

within the time limit required to update the service. 

The railway company in Thailand does not have any software for railway management. 

The company should invest in railway management technology. After presenting the 

results of these methodologies to the State Railway of Thailand, the company noted the 

results of our proposed methodologies of Biased Randomised VNS and Sim-Biased 

Randomised VNS. They gave positive feedback that these methodologies could be 

effective options of their railway management process in terms of system performance. 

However, they also voiced concern on the budget required to implement the new railway 

operational system. 

9.3. Limitations 

Although this research completed its aims, some unavoidable limitations existed as 

follows: 
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• The proposed optimisation model only focused on headway and signalling constraints. 

For a more realistic solution rail transfer time, train speed and train priority should also 

be considered. 

• This proposed optimisation model and algorithms can be classified as reactive 

scheduling. This only focuses on how to handle the disruption when it has already 

occurred. 

• In the UK case study, the data for actual delay and some track information was not 

available because of the confidentiality issues.  Therefore, it was difficult to evaluate 

the performance of the solution methods. 

• The Thailand case study data were difficult to collect because the railway operates by 

using a manual process. Moreover, we waited a long time after contacting the State 

Railway of Thailand. The process of approval was very complex as the company is 

operated by the Thai Government. 

9.4. Future work 

This thesis could be extended as follows: 

• Integration of routing and scheduling to develop a more realistic railway system 

management process. 

• Integration of railway scheduling and crew scheduling or rolling stock management to 

improve an efficiency of the planning process. 

• Investigate a robust optimisation model which can absorb unexpected events that occur 

during the train operation process for easier rescheduling and improve efficiency of the 

rail process.  

• Examine the relationships between customer satisfaction and train delay to better 

understand the consideration of an acceptable delay range by passengers. 

• Include more constraints such as train priority, interconnection journey and mix of 

passenger and freight trains. 

• Our proposed algorithms could be applied to other rail networks or benchmark 

problems to compare performance and efficiency. 

• Ongoing discussion with the Thai railway company to implement a train management 

system based on the results of this thesis. 
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