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ABSTRACT

W
e are currently living through an era of precision cosmology where we have gathered

a substantial amount of data with the aim of understanding our Universe. However,

our current understanding is far from complete as our most successful cosmological

model relies on the Universe’s energy-matter content being vastly dominated by components

that are not yet detected and not currently compatible with our wider general model of physics.

This leaves plenty more investigation to be done and new techniques for probing our Universe

are highly sought after.

Mapping unresolved neutral hydrogen within galaxies is one of these novel techniques

and has been gaining momentum over the last decade. By using the 21cm signal from neutral

hydrogen, which traces the underlying large scale cosmic structure, we can map and statistically

analyse 3D density distributions and compare these to theoretical models. I provide a detailed

introduction to this novel HI intensity mapping technique in Chapter 2.

This thesis also explores what gains can be made by combining HI intensity mapping data

with more conventional optical galaxy redshift surveys. There are many reasons why a cross-

correlation such as this will be beneficial. While the intensity mapping technique is developed

and refined, optical data can boost the inherently weak HI signal allowing detection and a deeper

understanding of the intensity mapping process. Also in the future, when we have dedicated

intensity mapping instruments gathering data, cross-correlations will see reductions in the

different systematics which could otherwise dominate the uncertainty in any auto-correlations.

With the use of computer simulations, I look to forecast benefits to be gained from this synergy

and in Chapter 3 I provide an example of how HI intensity maps can be used to constrain

photometric redshifts on optical imaging surveys.

The largest problem preventing the success of HI intensity mapping comes from 21cm fore-

grounds whose signals dominate by several orders of magnitude over the weak HI cosmological

signal. While we have several methods for cleaning these foregrounds, understanding the impact

these reconstructions have on the data is crucial and is the key theme in Chapters 4 and 5. Again

using computer simulations of cosmological HI intensity mapping signals and their foreground

contamination, I show how foregrounds can be removed and with some additional treatment,

successfully used in cross-correlation with an optical photometric galaxy survey.

This indicates a promising future for cosmology and suggests the next-generation of optical

telescopes such as LSST and Euclid, should benefit hugely from synergies with intensity mapping

data provided by a next-generation radio telescope such as the SKA.
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PREFACE

O
bserving sources of light from the night sky with the aim of understanding their origins
has been something humans have done for millennia. Historical evidence exists which
suggests ancient civilizations methodically recorded celestial objects. As our technology

developed and our wider understanding of natural sciences blossomed, we have been able to
devise models to explain the observations and make predictions which test these theories.

However, until recently in our history, this scientific discipline has been based on obser-
vations limited to within our own cosmic neighbourhood. Observing beyond our own Galaxy,
the Milky Way, presents a huge technological challenge and requires detecting photons from
other galaxies millions of light-years away which will therefore appear extremely faint. These
complications mean that regular extra-galactic observations have only been a possible scientific
discipline within the last 100 years when our telescopes have become sufficiently capable of
detecting distant galaxies.

These distant observations present the possibility for us to study the Universe as one entity.
We can now aim to build a representative map of large-scale cosmic structure and determine the
matter from which this structure is built. Through detecting faraway photons which originated
billions of years ago, we also peer deeper into our Universe’s past. Cosmologists then look to
pursue questions about our Universe’s origins, evolution and predict its fate. These are the
principal aims for the topic of cosmology.

While the topic of cosmology is a relatively young one by scientific standards, we have
succeeded in developing a standard model to explain our Universe. On one hand, this model still
has huge unanswered questions regarding the exact nature of 95% of the Universe’s energy and
matter content, the so called dark sector which includes dark energy and dark matter. However,
on the other hand, with the assumption that we broadly understand how this dark sector behaves,
our standard model proves successful at explaining our observations and replicating them with
theoretical simulations.

The standard model of cosmology is not something that can predict the exact locations
of every galaxy, cluster and void. Instead it predicts statistical properties of fields and how
the matter within them is distributed. Cosmological constraints and parameters are therefore
inherently statistical and their precision is driven in large part by access to extensive data sets.
The aim of modern, precision cosmology is therefore to record as large volumes of the Universe
as possible to maximise statistical precision, placing tighter bounds on our statistical constraints.
This in turn can potentially reinforce or rule out certain hypothese on the nature of the dark
sector. It also can reveal any tensions in independent measurements of the same parameters,
thus highlighting areas of our standard model which might not be as robust an explanation of
reality as we had hoped.

With new telescopes promising significant improvements in depth, breadth and sensitivity
over their previous generations, now is the time to plan, forecast and conduct further tests
on cosmology using these future surveys. This thesis therefore looks to focus on the future
for cosmology surveys and their aims for probing large-scale cosmic structure. There are tele-
scope surveys which look to perform this objective with completely differing methods, which

viii



PREFACE

is hugely beneficial in cross-correlation approaches. Synergies between telescope surveys will
be a central theme of this thesis. In particular it will explore how cosmology can benefit from
cross-correlations between two types of surveys. The first being conventional optical surveys
which look to detect and resolve individual galaxies and predict a radial distance to these galax-
ies based on their redshifted spectral features. The second being surveys of neutral hydrogen
emission which can be detected from the signature 21cm signal emitted from such sources.

This 21cm cosmology approach is seen as a novel way of conducting observations and has
the potential to map relevant scales with unprecedented precision and volume. As with any
novel technique, we need to understand it in detail along with the relevant systematics before
any confidence can be placed on the conclusions gleaned from it. This thesis will introduce the
21cm cosmological signal and the radio telescopes we use to survey it.

The excitement surrounding future surveys is justified but so is the emphasis on the vari-
ous challenges which need to be overcome. Cross-correlations between the surveys offers an
excellent opportunity to alleviate a large amount of systematics which threaten to be the largest
source of error. A thorough understanding and forecasting of this cross-correlation potential
is required to assure we can maximise what we can learn from these cosmological surreys.
Furthermore, synergies with optical will help lay the foundations of 21cm observations which
has the potential to lead the way for the future of precision cosmology.

ix
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1
INTRODUCTION

C
onstructing a model which describes the Universe requires agreement with the most

fundamental of observations. The most basic observable that can be made in cosmology

is that the night sky is predominantly dark. Known as Olbers’ paradox, this simple

observation seems to contradict any infinite and static model of the Universe. If we lived in a

Universe that had an infinite amount of stars, eternally stationary with respect to us, we would

be bathed in ever compounding starlight and darkness would be impossible.

However, in 1929 Edwin Hubble concluded that Doppler shifts of light from galaxies, caused

by their relative recessional motion away from us, appear to increase the more distant the galaxy

is [106]. This suggests that in general galaxies are moving away from us and the further away

a galaxy, the faster it is moving. To avoid the unsettling conclusion that we are at the exact

centre of the Universe, we explain this phenomenon by instead concluding that space in the

Universe is expanding and therefore all galaxies embedded within it are moving further apart

from each other, where they are not gravitationally bound. This appears to quash any theory

which suggests the Universe is static. Furthermore, Belgian priest Georges Lemaître noticed that

if time is reversed in an expanding Universe, eventually a point is reached where all space and

matter is on top of each other in a point-like singularity [123]. Lemaître concluded that this was

how the Universe must have begun, in a ‘Primeval Atom’ (or big bang as its now more popularly

known). If true, this also quashes any theory which suggests the Universe’s existence is infinite1.

Building on the work of Hubble and Lemaître, the early pioneers of cosmology, we now have

a model of the Universe which begins in a ‘big bang’ followed by phases of space expansion.

This means we are no longer troubled by a dark night sky as Olbers and colleagues were in

the early 19th century. The Big Bang theory, whilst strictly speaking not proven, appears very

consistent with the standard model [126]. Suggesting that the Universe is finite in age and

began with a rapid expansion of space, ultimately makes photons from all sources in an infinite

Universe incapable of travelling the distances required to reach us. The continuing phases of

1Assuming our Universe is not periodically ‘bouncing’
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CHAPTER 1. INTRODUCTION

space expansion within the Universe, first noticed by Hubble, also mean that distant photons,

including relic radiation from the Big Bang, will be redshifted into microwave wavelengths hence

why we see very little visible light in the night sky.

Central to these theories involving space expansion is the assumption that we do not exist in

a particularly special place in the Universe. We make a symmetry argument and assume that on

large enough scales (around 62h−1Mpc [149]), matter in the Universe is uniformly distributed.

This is known as the cosmological principle, which put simply states that:

The Universe is homogeneous and isotropic on sufficiently large scales.

Here homogeneous means the matter in the Universe is uniformly distributed on large scales

throughout space and hence its distribution is independent of spatial coordinates (x,y and z).

Isotropy means the large scale distribution of matter in the Universe appears the same whichever

direction an observer looks and is thus independent of n̂ the line-of-sight. The cosmological

principle allows us to greatly simplify and solve the laws of gravity which on cosmological scales

is the dominant force. The best description of gravity comes from Albert Einstein’s general

relativity field equations, which are given as [71]

Gµν = Rµν− 1

2
gµνR = 8πG

c4 Tµν−
[
gµνΛ

]
. (1.1)

A derivation of these field equations is beyond the scope of this thesis but a brief explanation

of them is warranted since it is these equations which describe the evolution of the universe.

Firstly, this is described as a set of equations since each index µ and ν can be one of the four

coordinates of space-time where the convention [0,1,2,3] ≡ [ct , x, y, z] is used. There are only 10

possible distinct permutations of these components hence (1.1) represents a set of 10 equations.

Gµν is the Einstein tensor which describes the geometry of a universe. This tensor can be

expressed using Rµν and R, the Ricci tensor and Ricci scalar respectively. Tµν is the energy-

momentum tensor which characterises the matter distribution in a universe and has the form

T00 = ε(t ) (where ε is the energy density parameter2) and Tij = p(t )δij (where p is the pressure

parameter and δij is the Kronecker delta) with i and j representing spatial indices only. G

represents Newton’s gravitational constant and c is the speed of light, both often set equal to

one for simplicity (but not in this thesis). gµν is the metric tensor and the simplest example

in flat space is referred to as the Minkowski metric where η= diag[−1,1,1,1]. Lastly within the

bracketed term we have the cosmological constantΛ, an ‘optional’ inclusion for describing a

universe undergoing accelerated expansion.

Solving these equations is the starting step for the standard model of cosmology which

primarily becomes a description of the underlying cosmological matter density field. Coupled

with our best theories of smaller scale physics i.e. Quantum Field Theory (QFT) [65][75], we

understand that structure within these cosmic matter fields originates in initial seed pertur-

bations. Evidence for these initial perturbations exits within Cosmic Microwave Background

2Often energy density ε and mass density ρ are used interchangeably since ε= ρc2 and in cosmology natural
units of c = 1 are often used.

2



CHAPTER 1. INTRODUCTION

(CMB) radiation [163][64] but the exact origin of them is not entirely clear and often attributed

to ‘quantum fluctuations’ connected with early universe physics. These tiny seeds of density

fluctuation lead to non-uniform gravitational potentials which grow causing structure to evolve.

The model is therefore consistent with the existence of complex galaxies, stars and planetary

systems which are forged from these non-linear gravitational collapses.

This chapter outlines the theoretical framework from which the standard model of cosmol-

ogy is built. Basic cosmological observables are also introduced which form the complimentary

observational framework to support the model.

1.1 The Space-Time Metric

Since Einstein’s relativity [70] suggests that space and time act as one entity, an excellent frame-

work from which to describe the physics of our Universe is a 4-dimensional manifold. In order

to describe physical distances in a 4-dimensional space-time, an infinitesimal line element can

be defined, which we call the metric. This will map coordinate distances to physical distances

turning observer dependent measurements into invariant ones. As an example, a separation

on a 2-dimensional mountain map which one measures to be 1cm will have different physical

distances depending on where the separation is on the map. It will require a metric which

considers the local gradients of the mountain to obtain an accurate physical distance. What is

very useful about metrics in cosmology is that they incorporate the curvature of space-time,

which according to general relativity, is equivalent to gravity.

For completely flat space-time with no curvature (referred to as Euclidean geometry) we can

use the Minkowski metric and we have [141]

ds2 = ηµνdxµdxν =−c2dt 2 +dx2 +dy2 +dz2. (1.2)

This can also be expressed in spherical coordinates and is given as

ds2 =−c2dt 2 +dr 2 + r 2dΩ2 (1.3)

where r is the radial distance coordinate and we also have the angular coordinate term

dΩ2 = dθ2 + sin2θdφ2 (1.4)

where θ and φ are the angular separations on the 2-dimensional sky e.g. the right-ascension and

declination coordinates which are conventionally used coordinates for Earth-based observations,

although isotropy suggests that angular coordinates for any reference frame’s origin will yield

the same results.

We ideally want to generalise the 3-dimensional spatial manifold to allow for the possibility

of spatial expansion and spatial curvature. Both of these need to be accounted for in the metric.

3



CHAPTER 1. INTRODUCTION

• Spatial Expansion

To account for the fact that the Universe is expanding, the space-time metric includes a scaling

factor a such that comoving observers have constant spatial coordinates r,θ and φ but the

proper distances between given coordinates increases in proportion to a(t ). The scale factor is a

function of time only and increases as the Universe evolves and expands. For a flat universe with

expansion on sufficiently large scales where the cosmological principle applies, the Minkowski

metric can be simply corrected by multiplying through the spatial dimensions by a(t ).

• Spatial Curvature

Devising a metric for space-time which contains spatial curvature is potentially complex. Thank-

fully, things are greatly simplified under the assumption of the cosmological principle. This

means that at a given constant time, curvature will be the same everywhere and we can assume

that the spatial elements of space-time will be a 3-dimensional, maximally symmetric manifold.

The most general metric for such a manifold is given by [63]

dl 2 =
(

dr 2

1−kr 2 + r 2dΩ2
)
. (1.5)

Here the curvature parameter k is what defines the form of this metric and there exist three

possibilities, zero curvature (flat infinite space), positive curvature (3-sphere finite space), or

negative curvature (‘saddle’-like infinite space), given by k = 0,+1,−1 respectively.

A metric that describes a 4-dimensional homogeneous and isotropic space-time which is ex-

panding with time is therefore needed for our Universe. The most generic form of this metric

is agreed upon. What is disputed is the name given to it! Various permutation of Friedmann,

Lemaître, Robertson and Walker are used with some names omitted in various versions. To avoid

offending descendants of any of these cosmology greats, I will play safe and refer to it as the

Friedmann-Lemaître-Robertson-Walker (FLRW) metric [84][122][181] which is given by

ds2 =−c2dt 2 +a2(t )

(
dr 2

1−kr 2 + r 2dΩ2
)
. (1.6)

The above (unperturbed) FLRW metric is crucial in cosmology for correctly describing the

background Universe and therefore for interpreting distance measurements.

1.2 Cosmological Observables & Parameters

1.2.1 Redshift

Wavelength shifts of light waves from distant receding galaxies tend to show that the light is

shifted to the red end of the electromagnetic spectrum, hence the term redshift which is defined

by the fractional difference between the observed wavelength of light and the emitted [66]

z +1 ≡ λobs

λemit
(1.7)
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where z is the unitless quantity for redshift and λ is the wavelength of either the observed or

emitted photons. Hence by knowing what the emitted rest wavelength is for a photon, which we

can measure in the laboratory for various elements, we can obtain the redshift z by measuring

the observed wavelength of distant signals. From special relativity, redshift is related to the

velocity v along the line-of-sight (LoS) by

z +1 =
√

1+β
1−β (1.8)

where β≡ v/c. In the v ¿ c limit, we can Taylor expand (1.8) and ignore higher terms to arrive

at the well-known approximation z ≈ v/c.

By looking at the redshift of momenta of photons, one can demonstrate that redshift is in

general a direct consequence of an expanding universe [63] i.e.

λ(t ) = a(t )λobs (1.9)

and since the overwhelming majority of measured spectra are redshifted (i.e. λobs >λ(t )), this

alone is evidence that the Universe is expanding. However, redshift alone does not tell us the

precise distances to objects. We need to assume some cosmological expansion history a(t ) in

order to make redshift-based distance measurements. Doing this relies on making some direct

distance measurements and determining a distance-redshift relationship.

1.2.2 Distances

Comoving Distance

The cosmological principle only holds in the comoving system and therefore the most common

distance measurement used in cosmology is the comoving distance dc or often referred to as

χ. This is defined such that if an object in free-fall i.e. not gravitationally bound, is at rest at

time t and a comoving distance dc away from an observer, then they remain at this comoving

distance. Put mathematically, dc(t ) = dc(t0). For a particle of light with ds2 = 0 along the radial

line-of-sight (dΩ2 = 0), equation (1.6) gives the comoving distance as

dc(t0) =
∫ t0

te

c dt

a(t )
=

∫ r

0

dr ′
p

1−kr ′2 . (1.10)

Proper Distance

The comoving distance differs for bound objects with fixed lengths e.g. a ruler with a fixed

‘proper’ size will have a decreasing size defined by its comoving distance in an expanding

universe. Proper distance can therefore be linked to comoving distance by

dpr(t ) = a(t )dc(t0) (1.11)

The proper distance we can think of as a chain of infinite neighbouring observers placed radially

out to an object, instantaneously exchanging a light signal at the same time t . Again from
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equation (1.6), but now with a(t ) outside the integral since it is measured for a constant time t ,

we find

dpr(t ) = a(t )
∫ r

0

dr ′
p

1−kr ′2 (1.12)

which is in agreement with equations (1.10) and (1.11). Equation (1.12) also shows that the

proper distance of a luminous source at present time (a(t ) = 1) is just

dpr(t ) = a(t )dpr (t0) (1.13)

which shows that this is a physical distance measurement that scales with expansion.

In terms of practically measuring distances, astronomers typically use either an objects known

luminosity or a known angular size.

Luminosity Distance

For an astrophysical object with known absolute luminosity L we can relate this to the observed

flux F = L/4πr 2 when the object is at a radial distance r away from us (assuming Euclidean

geometry). Therefore we can define the luminosity distance as

dL =
√

L

4πF
. (1.14)

However, in an expanding universe the energy emitted from each photon Eem is redshifted such

that the energy that reaches us is

E0 = Eemaem = Eem

(1+ z)
. (1.15)

An additional effect of an expanding universe comes from the stretching of the time interval

δtem. The actual time interval we observe is δt0 given by

δt0 = δtem

aem
= δtem(1+ z). (1.16)

This redefines the flux we observe since the luminosity is reduced by these two effects

Lem = Eem

δtem
⇒ L0 = E0

δt0
= 1

(1+ z)2

Eem

δtem
. (1.17)

So the effect on the observed flux from an object with absolute luminosity L at a proper distance

dpr away is a 1/(1+ z)2 reduction i.e. F = L/4πr 2(1+ z)2. Taking the radial distance to be the

proper distance dpr and using (1.14) we therefore find the relation between luminosity distance

and proper distance is given as

dL = (1+ z)dpr (1.18)
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Angular Diameter Distance

The final definition of measurement relevant for this work uses known sizes of objects or features

(often known as standard yardsticks) and their observed angular size to predict a distance. This

is known as angular distance and for an object with known length l with an observed angular

size of δθ (where we assume δθ¿ 1) we have the angular distance defined by

dA = l

δθ
. (1.19)

Measuring the distance between two objects at time t with the same radial coordinate r and

angular coordinate φ but separated by an angle δθ the metric from (1.6) is l = a(t )rδθ. Rewriting

the scale factor in terms of redshift and using equation (1.19) this gives

dA(z) = r (z)

1+ z
= dL(z)

(1+ z)2 . (1.20)

For further detailed discussion on cosmological distances, I refer the reader to [103].

1.2.3 Hubble Parameter

A useful quantity in cosmology, and one frequently used in the context of distance measurement

and expansion, is the Hubble parameter which is defined as

H(t ) = ȧ

a
(1.21)

where the dot above the scale factor ȧ represents differentiation with respect to time. By taking

the proper distance (1.13) and differentiating we get ḋpr(t ) = ȧ(t )dpr(t0). Then dividing through

by (1.13) gives

vpr(t ) = H(t )dpr(t ) (1.22)

where vpr ≡ ḋpr. This equation is known as Hubble’s law and is a theoretical description of what

Edwin Hubble discovered in 1929 [106], that more distant galaxies have a greater recession

velocity. By specifying this equation to present time we can define the Hubble constant H0 ≡
H(t = t0). This is often measured in units of km s−1Mpc−1 i.e. for each Mpc of distance, the

velocity of a distant object increases by some velocity measured in km s−1. The precise value of

the Hubble constant is an active area of research in the cosmology community since differing

measurement techniques disagree and have introduced a 3.4σ tension between their measured

H0 values [80][144]. It is customary to use H0 = 100h km s−1Mpc−1 where h is a dimensionless

number to parameterise our ignorance.

Since a = 1/(1+ z) we have da = −dz/(1+ z)2. This helps derive a relationship between

redshift and time where
ȧ

a
= H(z) = da

dz

dz

dt

1

a
=− 1

(1+ z)

dz

dt
. (1.23)

This then allows the comoving distance to be written in terms of redshift and the Hubble

parameter. Using the above and equation (1.10) we get

dc =
∫ t0

te

c dt

a(t )
=

∫ z

0

c dz ′

H(z ′)
(1.24)
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The more general Hubble parameter H(z) can be thought of as the Hubble constant measured

by an observer at redshift z and we have H(z) = H0E(z) where

E(z) ≡
√
ΩR(1+ z)4 +ΩM(1+ z)3 +Ωk (1+ z)2 +ΩΛ (1.25)

and Ωi is the energy density parameter (discussed in next section) for radiation (R), matter

(M), curvature (k) and dark energy (Λ). The Hubble distance (or horizon distance) is defined as

dH = c/H0. These further parameters allow the comoving distance to be written in some further

commonly found forms

dc = 1

H0

∫ z

0

c dz ′

E(z ′)
= dH

∫ z

0

dz ′

E(z ′)
. (1.26)

1.3 Friedmann Cosmological Models

The FLRW metric in equation (1.6) is described by just two parameters, the scale factor a and

the curvature parameter k. Assuming homogeneity, the curvature parameter is taken to be a

constant for the Universe. This means that the scale factor is the only time-dependent parameter

and thus encodes all the dynamics of the Universe.

1.3.1 Friedmann Equations

Under the assumptions of the cosmological principle, Einstein’s field equations (1.1) can be

simplified and a prediction for the evolution of the Universe i.e. a description of how a evolves,

can be made;

H 2 ≡
(

ȧ

a

)2

= 8πG

3c2 ε−
kc2

a2 +
[
Λc2

3

]
. (1.27)

This is known as the Friedmann equation [83] where we have the energy density ε which due

to homogeneity, is only a function of time. Another Friedmann equation, referred to as the

conservation (or fluid equation) is given as

ε̇+3
ȧ

a

(
ε+p

)= 0. (1.28)

This can be considered as a consequence of thermodynamics from which the first law states

dE + pdV = T dS [40]. For a reversible expansion i.e. dS = 0, using E = εV in a volume with

radius a and considering time differentials one can derive this conservation equation. We

assume the content of the Universe, given by the energy momentum tensor Tµν, is made up

of non-interacting components. Therefore this energy conservation holds for each individual

component and their solutions to the equation will be independent.

By differentiating (1.27) and rearranging with use of (1.28), we get the final Friedmann

equation referred to as the acceleration equation

ä

a
=−4πG

3c2 (ε+3p)+
[
Λc2

3

]
. (1.29)
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This immediately suggests that for a universe with no accelerated expansion, we require ε+3p = 0

(assuming Λ= 0 also). It is often useful to cast these Friedmann equations in terms of energy

density parametersΩ= ε(t )/εc(t ) where εc is the critical energy density given by

εc(t ) ≡ 3c2H 2(t )

8πG
. (1.30)

This allows the Friedmann equation in (1.27) to be expressed in present day terms as

H 2
0 (1−Ω0) =−kc2 (1.31)

thus requiringΩ0 = 1 for a flat universe.

1.3.2 Equation of State

By assuming a simple relationship between pressure and density i.e. an equation of state w

where p ≡ wε, we can solve the conservation equation (1.28) obtaining [184]

ε(t ) = ε0

(
a(t )

a0

)−3(1+w)

⇒ ε∝ a(t )−3(1+w). (1.32)

We can then explore these solutions by assuming different content in the Universe with different

equations of state. For example cold (non-relativistic) matter is defined as anything that exerts

negligible pressure, therefore will have p = 0 [17] leading to wM = 0 meaning the energy density

of matter scales like εM ∝ a−3. This makes intuitive sense, suggesting that the energy density of

matter scales as the inverse of volume. The equation of state for radiation, or anything moving

with relativistic velocities such as neutrinos, is given as wR = 1/3 [40]. This gives an energy

density evolution as εR ∝ a−4 which can be understood as a scaling with inverse volume and an

additional a−1 scaling from redshift as previously shown by equation (1.18).

These results are already telling us something about the composition of the Universe at

different times. As the Universe evolves and expands, the scale factor a increases. Therefore

matter will begin to dominate over radiation due to it falling off more slowly.

1.3.3 Late-Time Acceleration & Dark Energy

Since Hubble published his findings [106] on distance against redshift which appeared to suggest

that the Universe is expanding, one of the follow-up questions has been whether the rate of

this expansion is slowing down. One would expect the expansion to be decelerating since the

Universe is filled with content which feels the effect of gravity which acts only to attract objects

towards each other. So it was believed that evidence would exist which shows that the Universe

was expanding faster in the past [191]. As the Universe evolved, it was predicted that gravity,

caused by the energy density term in the Friedmann equation (1.27), would slow the expansion

rate.

In 1998, from observations of type 1-a supernovae (SNeIa) two independent teams [179][165]

reached the unexpected conclusion that the expansion of the Universe is not slowing down,

but accelerating. Since then it has been assumed that there must be more to the Universe than
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meets the eye. There must either exist some exotic constituent that opposes gravity and drives

the late-time accelerated expansion, or we are faced with the unsettling conclusion that the

laws of gravity are incomplete. Cosmologists often use the phrase dark energy to describe the

plethora of possibilities for solving this problem.

Perhaps the simplest form of dark energy which causes the standard model to predict an

accelerated expansion is the cosmological constant [161]. This is included in the bracketed

terms of Einstein’s equations (1.1) as theΛ term. It was originally proposed by Einstein as a way

of obtaining a static universe since the acceleration equation (1.29) requires w =−1/3 for static

solutions which cannot be obtained with a content of matter and radiation alone. Including this

term to explain accelerated expansion however, has the required effect of repulsive gravity.

The cosmological constant can equivalently be thought of as an additional form of fluid

instead of a modification to general relativity e.g. T Tot
µν = T M

µν+T R
µν+TΛ

µν. This translates into an

extra energy density εΛ which acts as a constant energy density despite the expansion of the

Universe. This recasts the Friedmann equations essentially settingΛ= 0 in the ‘optional’ brackets

and having a cosmological constant ‘fluid’ appear as an extra constituent alongside matter and

radiation. For example, the conservation equation (1.28) for theΛ component becomes

ε̇Λ+3
ȧ

a

(
εΛ+pΛ

)= 0 (1.33)

where since ε̇Λ = 0 by definition, we find the cosmological constant has a negative effective

pressure εΛ = −pΛ with equation of state wΛ = −1. This additional and exotic fluid is most

generally explained as being the energy density of the vacuum. Interestingly, a vacuum energy is

something that is independently predicted by QFT [77] but there exist some serious tensions

between what QFT predicts as the value for the energy density and what value is needed to

explain the accelerated expansion we see [222]. Despite this we can still hypothesise the existence

of such a fluid and as discussed in Section 1.4 this leads to some excellent agreement with

observational data.

It is common to use the energy density parameter Ω for describing the contents of a uni-

verse. Since we can have mixes of different independent components e.g. matter, radiation and

cosmological constant ε= εM +εR +εΛ, the energy density parameter is also given by the sum of

the individual contributions. So for a present day universe we have

Ω0 =ΩM,0 +ΩR,0 +ΩΛ,0. (1.34)

As shown in Section 1.3.2, these energy densities evolve with expansion and as will be discussed,

their relative abundances have important consequences for the dynamics of the Universe.

1.4 ΛCDM

The previous sections have outlined the basics of the standard model of concordance cosmology,

theΛCDM model. The cosmological constantΛ represents the fact that this model has an exotic

component which drives the accelerated expansion of the late Universe and the CDM stands for

10



CHAPTER 1. INTRODUCTION

Cold Dark Matter which makes up the majority of the matter content (introduced in Section

1.4.2).

Including the inflationary paradigm to describe the rapid expansion in the early Universe

[89],ΛCDM is extremely successful at explaining astrophysical observations with few parameters

[176]. I discuss some of the main examples of supporting evidence in this section. The obvious

criticism ofΛCDM is that these two main components represent ‘exotic’ forms of matter-energy

that lack a description from the standard model of particle physics built from QFT which

describes ‘ordinary’ matter and radiation with great accuracy [221].

1.4.1 The Cosmological Constant (Λ)

While a great deal of uncertainty exists over the origin of dark energy, the evidence for accelerated

expansion is robust. There exist a number of independent probes that converge on the same

conclusion, which is the existence of dark energy in the form of a cosmological constant Λ

(introduced in Section 1.3.3). I outline three of the major pieces of supporting evidence below.

• Evidence (i) - SNeIa

Supernovae are a fantastic tool for cosmologists [180]. When type Ia reach a peak in their light

curves, their absolute luminosity is approximately a known constant. This means they are

standardisable candles and as long as a light-curve for a supernova can be obtained, then an

excellent approximation can be made on the absolute luminosity and from this a luminosity

distance can be obtained [184]. By obtaining redshifts for these supernovae a distance-redshift

measurement can be made. This was the method conducted in [179] which first suggested an

accelerated expansion ä > 0. More recent measurements have been done with SNeIa [203] which

have reinforced these earlier results. Figure 1.1 shows supernovae data from the recent Dark

Energy Survey3 (DES) and its agreement with aΛCDM-like cosmology which favour values of

ΩM ∼ 0.3,ΩΛ ∼ 0.7.

• Evidence (ii) - CMB

Observations of the Cosmic Microwave Background (CMB), which is radiation from approxi-

mately 1013 seconds after the big-bang (z ∼ 1100), have been conducted since the 1960’s [163].

More recently, precise measurements of the acoustic peaks in the angular power spectrum have

been made by the WMAP and Planck satellite telescopes [100][9] (see Figure 1.2 for these latest

results provided by [9]). The precise positions of these peaks provide a wealth of cosmological

information (see [105] for a more complete review of this probe). Perhaps most importantly, for

the purposes of this section, is the position of the first peak which put simply gives the angular

scale for the strongest fluctuations in CMB temperature which we can accurately predict based

on what we know about the conditions of the Universe at this time. Measurements strongly agree

with this prediction which would not be the case if there existed spatial curvature. Setting k = 0

3www.darkenergysurvey.org
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Figure 1.1: Hubble diagram for the DES-SN3YR sample [3]. The dashed grey line shows the best
fit model, while the green and blue dotted lines show models with no dark energy and matter
densitiesΩM = 0.3 and 1.0 respectively. Bottom panel is residuals to the best fit model.

Figure 1.2: CMB power spectrum from Planck [9]. The relation between ` and θ is θ =π/`. The
positions and amplitudes of these peaks provide constraints on cosmological parameters. For
example the first peak position provides a measurement of the horizon scale at recombination.
Using the angular diameter distance to this measured scale of ` = 220.6±0.6 we get a good
agreement with aΛCDM model with near perfect flatness (Ωk = 0.0007±0.0019).

in the Friedmann equation (1.27) requires a balance between the Hubble parameter and energy

density. Including the energy density of matter and radiation alone is insufficient to achieve this

balance thus a cosmological constant termΛ or additional energy density εΛ must be included

to allow for flatness.

• Evidence (iii) - BAO

The same physics which leaves a characteristic scale on the CMB angular power spectrum,

also leaves an imprint in the late-time matter density which results in a preferred separation

rs between density peaks. Through observing the positions of galaxies, which trace the under-

lying matter density and should therefore exhibit this preferred separation (see Figure 1.3 for

an example of this measured BAO-‘bump’), rs has been used as a standard ruler to create a
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distance-redshift relationship. This distance-redshift relation from BAO also hints at an acceler-

ated expansion strongly consistent with a wΛ =−1 cosmological constant. For an example, see

recent results from SDSS-III BOSS DR12 [10].

Figure 1.3: BAO measurement in configuration space of the monopole ξ0 from [30]. Data shown
as blue points and mock catalogues as grey lines. Panels on the left (right) show the pre(post)-
reconstruction catalogs. The shaded regions represent the 68% and 95% boundaries of the
distributions of correlation functions around the mean.

These are three key probes used to infer cosmological parameters but often the best way to get

tight constraints on such values is through cross-correlations of them, a process demonstrated

in [20] and shown in Figure 1.4 produced by the Supernova Cosmology Project [203]. In addition

to the above list of probes, there are additional tools which cosmologists can use, e.g. weak

lensing ([130] for review) and probing galaxy clustering, something I discuss in the Section 1.5.

Both of these are achievable with photometric imaging surveys such as the Dark Energy Survey

(DES) [1] as demonstrated in [2].

1.4.2 Cold Dark Matter (CDM)

Our best description of particle physics is the standard model which elegantly explains bary-

onic matter. However, there is strong evidence from cosmological and astrophysical probes

[242][183][121] of matter beyond this standard model which must interact via gravity with bary-

onic matter. But since this matter shows no signs of interaction though the other forces, it is

something that should be difficult to directly detect, hence its name, dark matter. The most

successful model is from the hypothesis that dark matter is some form of weakly interacting

particle with non-relativistic velocities [202]. This is why it is referred to as ‘cold’ to distinguish it

from ‘hot’ dark matter models where the particle can have relativistic velocities e.g. in the form

of a massive neutrino [67].

The understanding of this content is fundamental to cosmology since dark matter forms the

‘skeleton’ on which galaxies grow. Hence in large part, probing large-scale structure (discussed

in Section 1.5), involves attempting to map the underlying dark matter density. The latest

cosmological probes [9] are consistent with a ΛCDM model of cosmology with present day

contents ofΩΛ = 0.689 andΩM = 0.311. For a flat universe, which the same data is also consistent
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Figure 1.4: Constraints on cosmological parameters from three combined probes; Supernovae
(SNe), Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO). Produced
by the Supernova Cosmology Project [203]. 68.3%, 95.4%, and 99.7% confidence regions shown.

with, this amounts to the Universe’s energy-matter content being 68.9% dark energy and of the

31.1% remaining matter, 26.0% is in the form of dark matter.

This dominance of dark matter in the Universe’s matter density presents a practical problem.

Cosmological theories will be largely concerned with this main substance and its behaviour

yet observations with telescopes are only capturing the visible light resulting from baryonic

interactions. This is something cosmologists are required to be mindful of when analysing

observational data and involves considering that an intrinsic bias may exist in measurements.

Something that is formalised in Section 1.5.1.

1.5 Large-Scale Cosmic Structure

A further piece of evidence in support of theΛCDM model comes from probing how the matter

in Universe is distributed, referred to as Large-Scale Structure (LSS). Cosmologists are not

necessarily interested in the exact structure of the Universe on these largest scales because the

aim is not to develop a theory which exactly reproduces our Universe as we see it down to the

precise position of every galaxy. Instead, the interest is in the statistical distribution of matter as

it can be shown that dark energy, which drives the background expansion of the Universe, can

affect the growth rate of structure.
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1.5.1 Two-Point Correlation Function & Power Spectrum

Since we wish to analyse the Universe as one representation in an ensemble of possible universes,

we require a statistical formalism to quantitatively describe the LSS observations we conduct

which then allows us to compare observational data with theoretical models. At any position

~x with matter density given by ρ(~x) we can describe perturbations from a background mean

density ρ by [160]

δ(~x) = ρ(~x)−ρ
ρ

. (1.35)

The two-point correlation function is then defined by

ξ(r ) ≡ 〈δ(~x)δ(~x +~r )〉 (1.36)

where~r defines the separation between two points in the density field and due to homogeneity

and averaging over all directions, ξ only depends on the modulus r = |r |. The correlation function

is a measurement of the excess probability of objects being separated by ~r compared with

a randomly distributed density field. It is often convenient to work with the Fourier space

equivalent of the correlation function P (k), referred to as the power spectrum which is related

to the Fourier transformed over density field δ(~k) by〈
δ(~k)δ(~k ′)

〉
= (2π)3P (k)δ3

D(~k −~k ′) (1.37)

where δD is the Dirac delta and the Fourier transform of the over-density is given by [218]

δ(~k) =
∫
δ(~x)e i~k·~x d3~x (1.38)

and the inverse is given by

δ(~x) = 1

(2π)3

∫
δ(~k)e−i~k·~x d3~k . (1.39)

As with the correlation function, the power spectrum is only dependent on the modulus of the

wavenumber k = |k|.
As outlined in the previous section 1.4.2, the majority of the matter content in the Universe

is in the form of dark matter which due to its weakly interacting nature is invisible to telescopes.

We therefore rely on tracers of the underlying matter which most commonly is emission from

galaxies. In the linear regime we can describe the relation between these two tracer fields by a

single linear factor referred to as the bias bg [114] where

δg = bgδ ⇒ Pg(k) = b2
gP (k). (1.40)

and the ‘g’ subscript is indicative of the galaxy tracer method.

1.5.2 Structure Growth

The Cosmological Principle is a reasonable assumption on the largest scales but if we begin to

examine the finer structure of the Universe, we find that its matter content is not homogeneous

or isotropic and our very existence is owed to these subtle inhomogeneities. The theory of
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inflation provides an initial source of perturbations in the primordial density field, the imprint

of which we see in the CMB. After inflation dark matter perturbations begin to grow under the

influence of gravity but at this early stage, baryonic matter remains tightly coupled to photons

and it is not until the decoupling epoch that baryonic matter begins to also mimic dark matter

and undergo gravitational collapse.

The framework to describe going from a primordial power spectrum encapsulating these

initial density perturbations, to a late-Universe matter power spectrum begins with either

inflationary physics or use of the CMB temperature anisotropies. Then using linear perturbation

theory and solving the coupled Einstein-Boltzmann equations, a description of the evolution

of matter perturbations is produced [17]. The Boltzmann equation, describing the collisions

between the various constituents of the Universe and the Einstein equations, which track the

evolution of cosmological perturbations, are too complex to solve analytically. This therefore,

is generally done numerically with various code packages such as CAMB [125] or CLASS [124].

These solutions can provide a transfer function T (k) for making predictions for a linear late-time

matter power spectrum Plin(k) based on a primordial power spectrum Pp(k) which is the power

spectrum of primordial matter density fluctuations

Plin(k) ∝ T 2(k)Pp(k). (1.41)

The transfer function can thus be thought of as a description for how modes in the matter density

evolve i.e.

T (k) = δ(k)

δp(k)
(1.42)

where δp are the primordial density fluctuations and δ the late-time fluctuations we see in LSS.

This is conventionally normalised such that T (k → 0) = 1.

Matter-Radiation Equality

As introduced in Section 1.3.2, the Universe passes through different phases which can be

defined by which constituent is dominating its content. The early Universe was dominated by

radiation but since this scales as εR ∝ a−4 and falls away faster than matter (εM ∝ a−3), there

will be a point where matter overtakes and becomes the dominant constituent. The point of

matter-radiation equality i.e. εM(aeq) = εR(aeq) is an important point in the Universe’s history

and has a large influence on how structure grows. By assuming flatness and utilising the critical

energy density (1.30), the first Friedmann equation (1.27) can be written(
ȧ

a

)2

= H 2
0
ε(t )

εc,0
(1.43)

Then using equation (1.32) which for a flat universe (εc,0 = ε0) is just ε= ε0a−(1+3w), we get an

expression for the growth rate of the scale factor purely as a function of the equation of state

parameter w

ȧ = H0p
a1+3w

. (1.44)

Figure 1.5 shows a plot for equation (1.44) for matter and radiation and it shows how in the
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Figure 1.5: Evolution of the scale factor a for different constituents of the Universe. Calculated
from using equation (1.44).

early Universe at low-a where radiation dominates, expansion occurs at a faster rate. This fast

radiation-driven expansion prevents dark-matter perturbations from collapsing and suppresses

growth. This means that modes which cross the horizon during the radiation dominated era

(k < keq) exhibit different behaviour to those that cross after this equality (k > keq). See left-hand

panel of Figure 1.6 for a plot of the matter power spectrum (blue line). Here keq is the scale

of the horizon at matter-radiation equality occurring at approximately keq = 10−2hMpc−1 and

depends on the matter content of the Universe, keq ∝ΩMh2. As an approximation, we find [66]

T (k) ∼
1, k ¿ keq

k−2, k À keq

(1.45)

and therefore from (1.41), on large scales (small-k) the matter power spectrum increases as

P (k) ∝ Pp(k). Generally, for a simple single-field model of inflation, the primordial power

spectrum is taken to be proportional to a power law Pp(k) ∝ kns , where ns is the scalar spectral

index. Data from the Planck satellite is consistent with a near scale-invariant ns ∼ 1 power

spectrum. The slight deviation from unity (ns = 0.9649±0.0042) is supportive of the inflationary

paradigm [9]. However, on small scales (large-k), the power spectrum turns over since these

modes were able to cross the horizon early and exist in the radiation dominated era for a long

time, becoming damped due to the faster expansion driven by radiation domination.

Evidence of Dark Energy from LSS

Figure 1.6 shows the matter power spectrum on the left, run using Nbodykit4 [92] and the

Boltzmann solver package CLASS [124]. On the right is the transfer function produced using the

Bardeen-Bond-Kaiser-Szalay (BBKS) fit [26][17] given by

T (x) = ln(1+0.171x)

0.171x

(
1+0.284x + (1.18x)2 + (0.399x)3 + (0.490x)4)−1/4

(1.46)

4https://nbodykit.readthedocs.io
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Figure 1.6: The linear matter power spectrum (left) for aΛCDM cosmology (blue thick line) with
Planck15 data [7] and a universe with no cosmological constant i.e.ΩΛ = 0 (thin grey line). Red
dashed line shows the Pk ∝ k asymptotic relation predicted for a scale-invariant primordial
power spectrum. The transfer function is shown on the right as predicted by fitting function
(1.46) outlined in [26]. Both at redshift z = 0.

where x ≡ k/keq. Figure 1.6 should immediately demonstrate how probing LSS can provide

constraints on cosmological models. The thin grey line shows the power spectrum for a universe

with ΩΛ = 0 and ΩM = 1 which changes the position of the peak and therefore the position

for the matter-radiation equality scale. Observational data in this context (see Figure 1.7), is

consistent with a matter-radiation equality scale of around 0.01hMpc−1 < keq < 0.02hMpc−1

and thus consistent with aΛCDM universe.

1.5.3 Redshift Space Distortions

Typically in LSS surveys, the aim is to record coordinates of emission (e.g. from galaxies) that

trace the underlying dark matter distribution. While obtaining angular coordinates is technically

challenging, theoretically the process is fairly straightforward. However, obtaining a reliable

radial distance is more involved. One option is to measure a luminosity distance (equation

(1.14)) but this can only be done for objects for standardisable luminosity. Most commonly

therefore, surveys rely on redshift and a well constrained distance-redshift relation to obtain this

third coordinate for the tracer data.

However, if relying on redshifts, consideration must given to the inherent peculiar velocity of

the galaxy caused by local density perturbations. The true radial velocity ~v of an object at true

distance~r can be split into a Hubble flow contribution and its peculiar velocity contribution

~v = H0~r +~vp . (1.47)

Here the peculiar velocity term ~vp is more dominant for galaxies closer to us due to the Hubble

flow contribution H0~r being small for nearby galaxies. Since these peculiar velocities are corre-

lated to density perturbations, any attempted measurement of a density field using redshift will

therefore be distorted, known as the Kaiser effect [115].
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Figure 1.7: Summary of observational data constraining the matter power spectrum at z = 0 and
its agreement with a theoretical linear power spectrum (black line) predicted by ΛCDM. Plot
produced by [9].

The impact this has on the density field measured in redshift space is that on large scales,

objects tend to fall in to high density regions which squashes the density field and the clustering

amplitude becomes stronger along the LoS as shown in the left diagram of Figure 1.8.

The conclusion from this is that when making observations in redshift space, corrections

need to be made to account for this effect. For example, the galaxy power spectrum introduced

in equation (1.40) is amended to [115][17]

Pg(k,µ) = b2 (
1+βµ2)2

P (k) (1.48)

where the term µ is introduced to account for the anisotropic effect of Redshift Space Distortions

(RSD) and is defined as the cosine of the angle between the LoS and the wave vector~k. As one

would expect, for modes perpendicular to the LoS we have µ= 0 and we recover the isotropic

power spectrum. Equation (1.48) also depends on β = f /b, where f is the growth rate and

defined as f ≡ dlnδ/dln a and approximated by f ∼ΩM(z)γ. Here γ is the growth rate index with

γ∼ 0.545 forΛCDM [160] andΩM(z) = H 2
0ΩM,0(1+ z)3/H(z)2 [186]. For a full derivation of the

above I refer the reader to the review in [91].

RSD effects are also apparent in the non-linear regime on small scales. As shown by the

diagram on the right in Figure 1.8, at the centre of a density peak the peculiar velocities can

potentially be greater than the velocity caused by the Hubble flow and this has the effect of

turning structures inside out and stretching them along the LoS. These stretched structures that

we observe are called the fingers of god [109].

To investigate the effect of RSD on the observed matter density field it is useful to expand the
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Figure 1.8: The effects of redshift space distortions on density fields observed in redshift space.
Image adapted from [91].

anisotropic power spectrum into its multipoles P`(k) using the Legendre polynomials L` [186]

Pg(k,µ) =∑
`

Pg ,`(k)L`(µ) = Pg ,`=0(k)L0(µ)+Pg ,`=2(k)L2(µ)+Pg ,`=4(k)L4(µ). (1.49)

We only need to include the monopole, quadrupole and hexadecapole (`= 0,2,4 respectively)

since equation (1.48) has terms no higher than µ4 and is an even function of µ which kills

the odd multipoles. The Legendre polynomials we need are L0 = 1, L2 = (3µ2 −1)/2 and L4 =
(35µ4 −30µ2 +3)/8 and each multipole is given by

P`(k) = 2`+1

2

∫ 1

−1
dµPg(k,µ)L`(µ). (1.50)

Plugging in these and the Kaiser power spectrum from (1.48) we derive equations for the three

multipoles

Pg,`=0(k) =
(
1+ 2

3
β+ 1

5
β2

)
b2P (k), (1.51)

Pg,`=2(k) =
(

4

3
β+ 4

7
β2

)
b2P (k), (1.52)

Pg,`=4(k) = 8

35
β2b2P (k). (1.53)

See Appendix A.1 for a more detailed derivation of these multipole moments of the power

spectrum.

By choosing realistic values for the monopole pre-factor in equation (1.51), we can examine

the impact of RSD on the power spectrum. Using b = 2 and f = 0.774 we get Pg,`=0/Pg ∼ 1.28

which is clearly a significant factor. The quadrupole and hexadecapole are therefore seen as

‘smoking guns’ for RSD and would be measured as zero if no RSD existed.
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Using RSD

Since RSD are a measurement of the cosmological velocity field which is determined by gravita-

tional potential, they are a source of information on density. They can also be used to measure

the growth rate f which is of great interest to cosmologists too. As mentioned, it is generally

considered a good approximation that [120]

f (a) ∼Ωγ

M (a) . (1.54)

This tells us that the growth rate is largely determined by the matter contentΩM of the Universe

which makes intuitive sense sinceΛ is uniformly distributed and should not act to directly effect

perturbations in the matter density. It is worth pointing out that if assuming flatness, then we

have ΩM = 1−ΩΛ and therefore the matter density must fall for an increasing ΩΛ. The effect

then from an increasing cosmological constant is a therefore a slowing growth rate.

We can also use the growth rate as an effective test of modified gravity theories. We find

γ∼ 0.55 for general relativity andΛCDM cosmological parameters, however the growth index

changes if one originates the accelerated expansion to modifications of the general relativity

equations [90].

Perhaps most importantly for cosmological surveys, if one assumes a well constrained

growth rate parameter f , RSD can be used by taking the ratio of the multipoles as a way of

measuring β i.e. [206]
P2(k)

P0(k)
=

4
3β+ 4

7β
2

1+ 2
3β+ 1

5β
2

. (1.55)

Thus from this, a good approximation can be made for biases since β= f /b.

1.6 Summary

In this chapter I have outlined the theoretical framework for the most successful model we have

to explain the Universe’s beginning stages, evolution and fate along with the best supporting

evidence. The concordance (ΛCDM) model is one which begins with Einstein’s theory of general

relativity and with a few well-reasoned assumptions, a simple model is crafted whose parameters

can be constrained to match observations.

We are far from a complete theory though. While evidence from SNeIa, CMB, BAO and LSS

all agree nicely with aΛCDM model and indicates that we have a good idea for how the Universe

works, it leaves us with the uncomfortable conclusion that we can not explain what ∼95% of it is

made of. The so-called ‘dark sector’ means the success of this model rests on being able to find

missing matter (i.e. a dark matter particle) which is consistent with the best theories of particle

physics and QFT. Furthermore, and arguably more of a challenge, is attempting to construct a

mechanism for the origins of dark energy. If rigidly sticking to the ΛCDM model, then this is

best explained as a cosmological constant with some exotic fluid which increases in content

as the Universe expands or put differently, has a non-changing density i.e. ε̇Λ(t ) = 0. However,
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attempting to explain this in-line with QFT as the energy density of the vacuum results in some

of the biggest tensions5 seen in science!

The future of cosmology is therefore tasked with further testing this model. Precision ob-

servational cosmology will allow for this and will simultaneously test alternative theories by

restricting the parameter space available. This thesis will mostly examine how we can use probes

of LSS to contribute to these objectives. As precision cosmology progresses our ability to probe

the non-linear regime of LSS becomes more achievable. While these non-linear scales are ex-

tremely useful and contain a wealth of information, this thesis will be largely focussed on the

linear regime. This is largely down to the fact that a survey of neutral hydrogen using an intensity

mapping technique with a single-dish, mostly probes linear scales (as outlined in the following

chapter).

Under a linear approximation we can use techniques such as BAO probes to constrain

cosmological parameters or RSD to understand growth histories. In the linear regime, modelling

is simplified too allowing for an easier comparison between data and theory. The conventional

approach to obtaining this observational data relies on resolving galaxies and measuring their

redshift to obtain 3-dimensional coordinates for many point-like tracers of the underlying

matter density. However, accurately obtaining redshifts for the millions of galaxies required to

beat down shot-noise is a time-expensive process. As I will discuss in the following chapter,

alternative survey methods exist which allow a more complete measurement of the underlying

cosmological structure thus improving statistical errors and providing potential to further

constrain cosmological parameters.

5Depending on the chosen method of calculation this can be as high as εvacuum/εΛ ∼ 10120. [222]
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HI (21CM) INTENSITY MAPPING

H
ydrogen is the most abundant element in the Universe comprising around 75% of its

baryonic mass. It exists in various chemical forms but the one of most interest for this

thesis is the neutral hydrogen atom which is hydrogen’s most simple atomic form. It

consists of one positively charged proton and one negatively charged electron whose charges

exactly cancel to give it electric neutrality [223]. Isolated neutral hydrogen is often referred to as

atomic hydrogen or more concisely HI (pronounced H-one).

HI has a quantum structure whereby its single electron can exist at two hyperfine levels in its

1s ground state. This hyperfine structure relates to the spin alignment between the electron and

proton. When the spin of the electron is parallel with the spin of the proton, the hydrogen atom is

in a slightly higher energy state (∼ 5.87µeV difference) than when the spins are anti-parallel. The

spontaneous un-alignment of spin will therefore produce a quantized photon with this energy

which carries a frequency of ∼1420MHz and a wavelength ∼21cm. Hence, the radiation from

this process is referred to as 21cm emission. This change in energy state is extremely rare and the

mean lifetime of the excited state is around 107 years [76][225]. Fortunately, the abundance of

HI in the Universe, at both late and earlier epochs, is sufficient for this redshifted 21cm radiation

to be a significant signal.

The story of hydrogen’s history is one which closely reflects the story of our Universe’s history

as a whole. In this chapter I will discuss this history which will lay the foundation for a discussion

on why 21cm emission from HI is such a useful tool for cosmologists. I will then introduce the

specific techniques of interest in my research, which look to map 21cm signals from unresolved

galaxies in the low-redshift, late-Universe.

2.1 Cosmic History of Hydrogen

The richness of information hydrogen signals contain can only truly be appreciated by under-

standing the timeline of events which explain its abundance and location at various epochs
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of the Universe’s history. Outlined in the following sub-sections is a basic overview of the key

points in the Universe’s timeline which affect the evolution of HI .

2.1.1 The Early Universe

For a full review on the early Universe, I refer the reader to [89][128].

• Big-Bang/Inflation (t = 0): Shortly after the poorly understood big-bang beginning, the Uni-

verse underwent a rapid phase of spatial expansion, known as inflation. Within the first

second, quarks begin to join and form protons and neutrons, thus technically forming the

first Hydrogen-1 (protium) isotope consisting of a single proton [126].

• Nucleosynthesis (10s < t < 103s): The process where protons and neutrons could fuse to forge

the first light elements. However, the Universe is still too hot and dense for electrons to be

captured and form neutral atoms thus the Universe remains an ionised plasma.

• Matter-Radiation Equality (t ∼ 1012s): As discussed in the previous chapter, the epoch at

which the abundance of matter and radiation is equal i.e. εM = εR. Matter begins to dominate

but the Universe remains too hot for atomic nuclei to form neutral atoms.

• Decoupling/Recombination (t ∼ 1013s): At redshift z ∼ 1100 the Universe expanded and

cooled to ∼ 4000K allowing for free electrons to bind with atomic nuclei, thus forming the first

neutral hydrogen (HI) atoms. This is also the epoch where photons decouple from matter,

putting an end to the constant Thompson scattering, allowing photons to stream away. These

early photons are what are visible today in the CMB.

2.1.2 Dark Ages & the Epoch of Reionization

After these early Universe processes, HI exists relatively unchanged throughout a period which is

known as the dark ages. During this time, the formation of stars and galaxies has not yet occurred

and HI is one of the rare sources of new signals through its spontaneous 21cm emission. The

challenges of detecting these faint 21cm signals from the Dark Ages are large but remain one of

the few windows of discovery into this poorly understood epoch.

The ending of the dark ages coincides with what is referred to as the epoch of reionization

(EoR). The precise point in the Universe’s past when the ‘first light’ from stars first began to shine

is unknown [172][42]. At around 400Myr after the big-bang, UV-radiation from these cosmic

dawn stars began reionizing the Universe. This initially formed ionized bubbles around these

first objects which grew in size as the ionizing radiation extended its reach. As this process

continued, supplemented by newly forming galaxies and UV emitting stars, the gas between

galaxies, referred to as the intergalactic medium (IGM), came to be dominated by ionized

hydrogen (HII). See [137][237] for a full review of the epoch of reionization which is a very active

area of research with the potential to answer questions regarding the formation and composition

of early stars and galaxies, as well as helping understand early structure formation.
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2.1.3 HI in the Post-Reionization Universe

The only neutral hydrogen to remain at the end of the EoR was that locked away in the interstellar

medium (ISM) of galaxies, self-shielded against the ionizing UV radiation which is unable to

penetrate the denser environments of massive galaxies [25]. This leaves a situation in the post-

reionization era where the only 21cm signals from HI will come from within galaxies which are

biased tracers of the underlying large scale cosmic structure. If this hypothesis is correct, then

HI is an excellent potential tool for cosmologists aiming to investigate the late Universe.

Due to the practical challenges of detecting 21cm emission (discussed in section 2.2), our

current HI observational data is limited. Therefore based on observational evidence alone, it is

difficult to claim with certainty that HI is not found in random large clumps outside galaxies in

the late Universe which would systematically bias LSS measurements which used HI as a tracer.

Fortunately the sophistication of computer simulated models is growing rapidly [200][197][81]

and a large amount can be learned from their output. Much of our understanding on the

exact distribution and abundance of HI within the post-reionization Universe therefore comes

from theoretical modelling with computer simulations [168][212]. It is understood from such

simulations that in the post-reionization Universe, the majority of HI resides within dark matter

halos [213]. These halos are defined as gravitationally bound regions of dark matter into which

baryonic matter collapses and galaxies form [219]. More will be discussed on the relationship

between HI and dark matter halos in section 2.3.3.

Given these findings from simulations, HI should be a reliable tracer of underlying structure

in the late Universe. Therefore the aim is to begin systematically detecting and mapping it on

the largest scales.

2.2 Mapping Unresolved 21cm Emission

Theoretically HI is observable from Earth out to a redshift of z ∼ 50. Above this, the relevant

observed wavelengths from 21cm emission, which are redshifted to around 10m, are unable

to penetrate our atmosphere due to its ionosphere. This thesis is interested in using HI to

explore the late-Universe and I will therefore be focussing on detecting these signals in the

post-reionization epoch. Here the majority of HI resides inside dark matter halos in dense clouds

referred to as damped Lyman-α systems which are embedded in galaxies. The 21cm emission

from HI is unfortunately relatively weak and therefore using it to detect and resolve enough

galaxies for precision cosmology is an enormous challenge beyond the capabilities of current

telescopes. To date only a few resolved galaxies at low redshifts (z < 0.2) have been detected

using HI [82] and it is likely we will have to wait for the Square Kilometre Array (SKA)1 [189][23]

until a HI galaxy survey is competitive with a conventional optical galaxy survey [234][187].

Fortunately, a different approach can be adopted whereby the combined, unresolved HI emis-

sion is measured on large angular scales; this is known as intensity mapping [29][47][167][214].

While information on small scale density fluctuations is lost under intensity mapping, scales

1skatelescope.org
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of interest for probing large scale structure and phenomena such as BAO are measurable. It is

argued that this approach is similar to that of a conventional optical galaxy redshift survey which

observes photons from billions of stars but reduce it to a single galaxy point. Similarly, albeit

on a grander scale, intensity mapping takes HI emission from multiple sources and reduces

it to a single broad pixel. Much like data from the CMB, the result from HI intensity mapping

is therefore a large scale map of fluctuations whose statistical distribution carries a wealth

of cosmological information. Unlike the CMB however, intensity maps can be 3-dimensional

providing the added advantage of a signal which is a function of redshift.

Conventional optical redshift surveys have led the way for the last two decades in our un-

derstanding of LSS [24][164][104], however intensity mapping potentially has some distinct

advantages. Firstly, galaxies in an optical survey are only entered into a catalogue if they are

detected with high confidence thus throwing away some of the emission. Conversely, intensity

mapping integrates radiation from all galaxies down to the faintest emitters and it is expected

that several galaxies will contribute to each pixel thus providing a statistically strong signal. Sec-

ondly, an optical survey needs to rely on high signal-to-noise detection to conduct spectroscopy

and obtain high precision redshift measurements. By their very nature, intensity mapping sur-

veys are spectroscopic experiments but the HI signal, which falls at frequencies of 1420MHz and

below due to redshift, is an isolated transition and hence robust against line confusion. This

fortunate advantage, coupled with the high frequency resolution of modern radio telescopes,

allows intensity mapping surveys to observe large swathes of cosmic structure faster than their

optical counterparts with excellent redshift resolution.

It is worth noting that there are further examples of emission which can be utilized with

line-intensity mapping. In this thesis I focus solely on 21cm emission from HI, which is the

most useful for large scale cosmology. However, as an example, emission from rotational carbon

monoxide (CO) transitions, the [CII] fine-structure line, or the Lyman-α line, are signals that

can be ‘intensity-mapped’. For further reading, I suggest the review in [118] which discusses

these additional line-intensity mapping strategies and the prospects they hold for the wider

astrophysics community.

2.2.1 Intensity Response for Radio Telescopes

The signal captured by the telescope antenna is received as an intensity pattern, which even for a

set pointing (i.e. fixed sky coordinates), has some angular dependence. Figure 2.1 shows a sketch

of this intensity pattern where the raw signal (shown by the back solid line) has been modelled

by P (θ) = (D/λ)2sinc2(θD/λ) which is an approximation of the radiation pattern received by

a uniformly illuminated one-dimensional aperture [56]. For this plot I used D = 15m for the

receiver dish diameter and λ= 21cm for radiation wavelength which approximately emulates

the SKA [23] at very low redshift. The majority of the power is concentrated in the main central

lobe (referred to as the primary beam) and the angular resolution of a radio telescope is defined

as the full-width-half-maximum (FWHM) of this beam, whose angular size is shown by the

shaded regions in Figure 2.1.
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Figure 2.1: Approximate radiation patterns for a uniformly illuminated one-dimensional aper-
ture. Main central lobe i.e. the primary beam, is centred at 0◦ and the beam width is defined as
the FWHM of this central lobe (show by the central darker shaded region). Side-lobes are also
visible with first side lobe peaking around ±1.2◦. The side-lobes can be mitigated by tapering
but this broadens the beam width as shown by the lighter shaded region which is the FWHM for
the central lobe of the cosine tapered pattern. Side-lobes after tapering are only still visible on
the decibel scale which is essentially equivalent to a log10 scale in this example.

In reality the beam pattern can usually be calibrated by measuring the telescope’s response

to a bright, isolated point signal. However, there is also the additional complication of side-lobes

as shown in Figure 2.1. These refer to the signals that are detected outside the primary beam

usually caused by diffraction. A large fraction of received power coming from the side-lobes

results in a degradation in the telescopes pointing capability i.e. how well it can determine the

location of a radiation source [225]. The side-lobe responses are often mitigated by tapering

at the edge of the aperture which broadens the beam [72]. This is also shown in Figure 2.1 as

the blue dashed line. While this does an excellent job at minimising side-lobe contributions, it

broadens the primary beam and thus deteriorates the telescope’s resolution.

Generally, for a signal with observed wavelength λ (i.e. λ = (1 + z)21cm) incident on a

circularly symmetric aperture of diameter Ddish with uniform illumination, its beam width in

radians can be approximated by

θFWHM = 1.22
λ

Ddish
. (2.1)

Often the factor 1.22 is replaced with a generalised scalar a where a ∼ 1.0−1.3 depends on the

illumination of the aperture and the amount of tapering carried out to mitigate contamination

from the side-lobes [22]. For a Gaussian shaped main beam, the solid angle Ωpix covered per

pointing is related to the beam width and is given by [225]

Ωpix = 1.133θ2
FWHM. (2.2)
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For further literature on the intensity response from a radio telescope, I refer the reader to

[107][56] which provide full derivations of the models used in Figure 2.1 and for equations (2.1)

and (2.2) which are beyond the scope of this thesis.

2.2.2 Interferometer or Single-Dish

From equation 2.1, it is clear that to maximise resolution, the dish size (or more generally the

baseline) needs to be as large as possible. Arrays of radio receivers in the form of interferometers

are now common in radio astronomy as a way to maximise baselines without the impracticality

of building large single-dishes. For an interferometer, the baseline D is given by the maximum

distance between two antennas in the array. In extreme cases this can allow radio telescopes

spanning continents to link together and obtain impressive resolutions. This was shown in

the recent work by the Event Horizon Telescope which allowed 8 radio receivers to image the

environment around a blackhole 55 million light-years away at the centre of Messier 87 [8].

In high resolution radio astronomy interferometers are therefore the preferred observational

strategy and operational single-dish radio telescopes are more rare due to the dish size needed

for a competitive survey [112]. As an example, for observations of 21cm radiation with sub-

arcminute resolution, a single-dish requires a diameter greater than 880m. Currently the largest

steerable radio telescope is the Green Bank Telescope (GBT)2 which has a 100m diameter dish.

However, in an intensity mapping approach, resolutions around the degree scale are accept-

able since they still resolve the cosmological scales of interest e.g. the BAO scale at 110h−1Mpc

[30] (∼ 2.8◦ at z = 1). Thus single-dish telescopes still have a place in cosmology and new

single-dish intensity mapping experiments are being commissioned e.g. the BAO in Neutral

Gas Observations (BINGO)3 telescope [28] and the Five hundred meter Aperture Spherical Tele-

scope (FAST)4 [37]. Furthermore, future radio telescopes which are primarily interferometers

are making plans to operate in single-dish mode where each receiver in the array conducts

intensity mapping observations. Both the SKA and its pathfinder MeerKAT [190][169] have plans

to operate in single-dish mode and offer a rapid way to survey large volumes of sky. Pre-existing

single-dish telescopes have already contributed enormously to our understanding of inten-

sity mapping. While not being purpose built for this approach, some have still managed to

make the first detections of the cosmological signal using a 21cm intensity mapping approach.

The GBT and the Parkes Observatory5 have both have made intensity mapping detections

[46][162][135][205][18], relying on cross-correlations with an overlapping optical galaxy redshift

survey (discussed in more detail in section 2.2.4). Outlined in Table 2.1 are the main radio

telescopes with connections to HI intensity mapping with some basic specifications.

2greenbankobservatory.org
3bingotelescope.org
4fast.bao.ac.cn
5parkes.atnf.csiro.au
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Telescope Location Dish Diameter Redshift Range First Light
Parkes[201] New South Wales, Australia 64m 0.06 < z < 0.10 1961
GBT [46] West Virginia, USA 100m 0.6 < z < 1.0 2000
FAST [37] Guizhou, China 500m 0.0 < z < 0.49 2016
MeerKAT [169] Karoo, South Africa 13.5m 0.00 < z < 1.45 2016
BINGO [28] Serra do Urubu, Brazil 40m 0.13 < z < 0.48 ∼2020
SKA-MID [189] Karoo, South Africa 15m 0 < z < 3 ∼2025
CHIME [145] British Columbia, Canada 1024×N/A∗ 0.8 < z < 2.5 2017
HIRAX [146] Karoo, South Africa 1024×6m 0.8 < z < 2.5 ∼2022

∗CHIME is not a conventional dish design and instead has four semi-cylinders (100m long, 20m
wide) populated with 1024 receivers

Table 2.1: Some important examples of radio telescopes with links to HI intensity mapping
arranged chronologically by first-light. The top section are all single-dish receivers (or will be
used in single-dish mode for intensity mapping). The bottom section are interferometers where
the number of receivers in the array is indicated in the Dish Diameter column. Italicised means
they are not yet operational at time of writing.

2.2.3 Telescope Systematics

In order for the field of intensity mapping to mature into a competitive probe of cosmology, a

detailed understanding of the source of measurement uncertainties is required. Unfortunately

HI line emission, even when integrated over many galaxies is relatively faint meaning current

intensity mapping observations are prone to systematic limitations; the main of which are

introduced below.

• Thermal Noise:

The dominant contribution to the overall noise comes from thermal noise (also often referred

to as instrument noise). This is caused by the thermal motion of electrons in the resistors which

produce a current [94]. Since this current has a mean value of zero and is uncorrelated with

received signals it can be accurately modelled as Gaussian white noise [225]. The amplitude

of this thermal noise contribution is defined by σnoise, the standard deviation of the Gaussian

distribution, which is dependent on characteristics of the telescope and survey parameters.

For a single-dish intensity mapping survey, σnoise can be modelled by [11]

σnoise = Tsys

√
4π fsky

ΩpixNdishtobsδν
. (2.3)

Here Tsys is the total system temperature for the particular telescope (discussed in [23] and

[189]), fsky is the fraction of sky covered by the survey,Ωpix is the pixel solid angle (see equation

(2.2)), Ndish the number of dishes in the survey, tobs is total observation time and δν is the

frequency bandwidth. See [171][43] for a more complete discussion on thermal noise.

• Red (1/ f ) Noise:

Radio telescopes can also be further contaminated by gain fluctuations from amplifiers which

create noise which is correlated across all frequency channels [36]. The impact of these

29



CHAPTER 2. HI (21CM) INTENSITY MAPPING

fluctuations is usually simulated in the frequency domain using a 1/ f power spectrum, hence

the name 1/ f noise. While this is a challenge for cosmology with single-dish intensity maps, it

is predicted that since this noise will be strongly correlated along the frequency direction, it

should be possible to remove the noise in a similar way to 21cm foreground cleaning methods

(discussed at length in later Chapters). See [94][50] for a complete discussion of 1/ f noise in

the context of HI intensity mapping.

• Radio Frequency Interference (RFI) Noise:

Unfortunately for the purposes of radio astronomy, much of our planet is awash with radio

signals which are used in our communication technologies. These human-made signals

interfere with the cosmological ones we are aiming to detect. This is a particular problem

for single-dish intensity mapping where discriminating between emission picked up within

the main beam or the side-lobes is difficult. Forecasts for an SKA-like single-dish intensity

mapping experiment have shown that RFI emission (in particular from Global Navigation

Satellite Systems) will exceed the expected HI signal at all frequencies within SKA Band 2

(0 < z < 0.5) [23], therefore careful consideration and removal/mitigation is required. For a

more detailed discussion, I refer the reader to [93].

• Beam Smoothing:

As discussed, the primary beam from a radio telescope targeting 21cm signals can often be

broad unless huge baselines are employed to compromise for the relatively large wavelengths.

The effects of this wide beam can be well-modelled in cosmological simulations by convolving

the simulated data with a symmetrical 2-dimensional Gaussian kernel whose FWHM matches

that of the telescope beam (see equation (2.1)). This smoothing of data is considered a system-

atic because it leads to a loss of information contained in small perpendicular modes and as

we probe higher redshifts, the number of resolvable scales decrease.

• Foregrounds:

Another large systematic involved in HI intensity mapping comes from natural signals also

present in our Universe. Most astrophysical sources emit some form of radio radiation

[56] and due to the inherently faint HI signal it is easy for non-cosmological signals in the

1420MHz/(1+z) ranges to dominate. We call such dominant signals foregrounds. Foregrounds

will be discussed in Chapter 3 and are a main topic of research in Chapter 4, so I will leave a

more detailed discussion of them to these chapters.

2.2.4 Cross-Correlation with Optical Surveys

One could understandably ask the question, why invest time and funding in HI intensity map-

ping experiments when we could just invest more into improving optical redshift survey effi-

ciency? After all, we already have an in-depth knowledge of their technology and we know they

can provide large contributions to precision cosmology. In a way this has already been answered

earlier in this section when I outlined some advantages of intensity mapping in terms of their
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excellent redshift resolution, rapid survey time and a more inclusive use of the full signal even

from faintest emitters. However, even ignoring these advantages, one could still argue that it is

beneficial to pursue this new approach.

Having a different method for surveying the large scale cosmic structure means benefits can

be gained from cross-correlations. An excellent advantage of cross-correlations is that major

systematics that affect one probe may not necessarily affect the other. Take a basic example

where the density fluctuations in the observed data are comprised of a true cosmological signal

δcos and an additive systematic component i.e. noise δsys. For both a HI intensity map survey

and an optical galaxy survey this can be formalised by [117]

δg = δcos
g +δsys

g , (2.4)

δHI = δcos
HI +δsys

HI
. (2.5)

When we cross-correlate the HI and galaxy data we get a product of these terms and we expect

the cosmology and systematic cross-terms to be uncorrelated and drop out. However, unlike an

auto-correlation where one would expect the systematic terms to correlate and contaminate the

measurement, in a cross-correlation it is likely the systematics
〈
δ

sys
g δ

sys
HI

〉
will be uncorrelated

and also drop out, as shown below;〈
δgδHI

〉=〈
δcos

g δcos
HI

〉
+

〈
δcos

g δ
sys
HI

〉
+〈

δ
sys
g δcos

HI

〉+〈
δ

sys
g δ

sys
HI

〉
=

〈
δcos

g δcos
HI

〉
.

(2.6)

The more differing the telescopes are that are in cross-correlation, the less likely it will be that

their systematics will be correlated.

Given that future surveys are on course to gather orders of magnitude more data than

previously obtained, it is inevitable that precision cosmology will see a reduction in statistical

uncertainty. This makes the attention on systematic uncertainty all the more paramount as

it is likely that it could begin to dominate the error budget [119]. This highlights one of the

appeals of HI intensity mapping for future precision cosmology, since its radio telescopes are

fundamentally different in design to a conventional optical telescopes and therefore provide an

assured way of improving constraints on cosmological measurements.

Multiple tracers of underlying LSS also produce opportunities to limit cosmic variance

which is the variance caused by the survey’s finite volume. This so-called multi-tracer approach

works because two different tracers with different biases will have a ratio independent of the

underlying dark matter field they trace [193][6]. Thus cosmic-variance caused by stochasticity

in the particular realization of the dark matter field we observe can be limited because we are

only concerned with effects on the bias of the dark matter tracers, not on dark matter itself.

The effectiveness of this technique depends on a number of factors such as the ratio of the

different biases and their non-linearity [86]. Intensity mapping is an ideal candidate to be used

with optical LSS surveys in this multi-tracer approach and forecasts into the benefits have been

produced [12][226].
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First Detections Using Cross-Correlations

While cross-correlations offer tantalising possibilities for limiting systematics and constraining

biases in future surveys, they also offer an excellent way of conducting some of the first success-

ful HI intensity mapping detections of cosmological structure, thus vindicating the intensity

mapping method. We would expect all the systematics outlined in section 2.2.3 to be uncorre-

lated with optical survey systematics (e.g. stellar contamination, galactic extinction, photometric

calibration etc. [182]) and therefore be mitigated in a cross-correlation measurement. As the field

of HI intensity mapping matures, some of its earliest detections have relied on cross-correlations

with optical LSS data.

The first statistically significant detection came in [162] which used data from the Parkes

Telescope survey HIPASS [27], which was cross-correlated with the Six Degree Field Galaxy

Redshift Survey (6dFGS) [113] observed with the Anglo-Australian Telescope (AAT). While most

of the signal came from correlations along the LoS, it was still an early indication that HI is a

biased tracer of LSS since it is correlating with galaxies which are a known biased tracer of LSS.

The HIPASS survey was originally a HI galaxy survey but in this work they used the 21cm spectral

intensity data to claim a detection using the 21cm intensity field [162]. However, some could

reasonably argue that this approach is not the same as the ‘true’ intensity mapping technique

which involves mapping the whole patch of sky and integrating all 21cm emission, rather than

just that from targeted galaxies.

The GBT began its contributions to early detections around a decade ago and arguably

provided the first ‘proper’ intensity mapping detection. Since the GBT is able to probe lower

frequencies than Parkes, their observations were made at higher redshifts (z ∼ 0.8). Work from

[46] presented results from the GBT intensity map cross-correlations with DEEP2 [62] optical

redshift data obtained with the twin 10m Keck telescopes in Hawaii. This work began contribut-

ing measurements of the neutral gas densityΩHI which is particularly hard to measure at around

redshifts of z = 1 (as later shown in Figure 2.3 where very few data exist at z ∼ 1). A further

detection was made using the GBT data in [135] which was cross-correlated with galaxies in

the WiggleZ Dark Energy Survey [69] observed using the AAT at a redshift range of 0.6 < z < 1.0

over 41deg.sq. These same GBT observations were also auto-correlated in [205] to provide an

upper bound on the 21cm signal. More recently in [18], intensity maps from Parkes made a

lower redshift detection at 0.057 < z < 0.098 cross-correlated with earlier data from the AAT’s

2dF galaxy survey [55].

Plans are in place to continue adding to this list of successful intensity mapping detections

of cosmological structure and with new purpose built telescopes in operation (Table 2.1) the

rate of observations is only likely to increase.

2.3 HI Cosmological Formalism

Here I introduce a framework which will be used throughout the thesis for relating the 21cm

signals received from intensity mapping surveys to the cosmological structure which they trace.
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This formalism is drawn from literature on this topic e.g. [4][25][28][43][14][36][170][229].

2.3.1 Characterising the 21cm Signal

Radio telescopes observe sources which have an associated power (or luminosity) measured as

the amount of energy radiated per second. The flux defines how much luminosity is incident on

a receiver for its given area and it is an extremely important relation in observational cosmology.

The flux can be shown to be [158]

dF (ν) = dL(ν21)

4πd 2
L

= dL(ν21)

4πd 2
c (1+ z)2

(2.7)

where dL is the luminosity from a HI source emitted with a frequency ν21 ∼ 1.4GHz and the

relation is shown for both luminosity distance dL and comoving distance dc (see section 1.2.2)

regarding cosmological distances.

Radio telescopes are designed such that they are sensitive to a certain range of frequencies

defined by the bandwidth. When observing the 21cm emission from a redshifted galaxy source

it will typically have an extended line profile caused by the galaxy’s intrinsic rotation, creating an

observed signal such as the one shown in Figure 2.2. Since the bandwidth can usually be much

narrower than the 21cm line profile an intensity distribution is produced which shows separate

measurements at many points across the receiver passband and shows the 21cm spectral feature

[207]. This bandwidth thus needs to be considered when characterising the full observed signal

received by the telescope and it is common to use flux density which is the flux per bandwidth.

In radio astronomy, it is generally very common to use the unit of Janskys (Jy) to quantize flux

density where 1Jy is defined as 10−26 Wm−2 Hz−1 (with W being watts, a measure of power).

Figure 2.2: Example of an integrated HI spectrum from UGC 11707 demonstrating the typical
two-horned profile of a rotating spiral galaxy [99]. Velocity measured in km s−1 and frequency in
MHz.
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For cases where the HI emitter is an unresolved point source, telescopes will agree on flux

density measurements. However, where the source of radiation is widespread enough such

that it fills the telescope beam, as is often the case in intensity mapping, telescopes of differing

dish size provide different flux density measurements. Therefore radio astronomers often use

brightness or specific intensity which is the flux density per solid angle.

With this understanding of the observables from radio telescope data, it is possible to

measure the total HI mass MHI of a galaxy [68]. Firstly, consider a system of neutral hydrogen

which has a number density of HI atoms given by nHI = n0 +n1, where the subscripts 0 and 1

represent the lower and upper energy levels of the hyperfine structure respectively which have

corresponding energies E0 and E1. The atoms in excited state E1 will spontaneously return to

the lower level E0 with a certain probability A10 known as an Einstein coefficient. This coefficient

is defined such that n1 A10 is the number of such spontaneous transitions per second in a unit

volume. For the 21cm spontaneous emission we have A10 ∼ 2.869× 10−15s−1 which is what

makes any single transition such a rare event [225]. A useful starting point in deriving the signals

received from such emission is the emissivity which is defined as the energy per unit time,

per unit volume, per unit frequency, per unit solid angle. From atomic physics we know the

emissivity of the 21cm transition to be given by [68][225]

dε= dEe

dtdVedνedΩe
= dLe

dVedνedΩe
= hPν21 A10

4π

n1

nHI

nHIϕ(νe) (2.8)

where the e subscripts denote the quantities at time of emission.ϕ(νe) is the line profile which is

assumed to be very narrow with width dνe such that it can be approximated that ϕ(νe) = 1/dνe.

hP is Planck’s constant. The relative population of the levels of upper and lower states is governed

by an excitation temperature referred to as spin temperature and the relationship is defined by

the equation [56]
n1

n0
= g1

g0
exp

(
−hPν0

kBTs

)
(2.9)

where gi is the statistical weights for the spin states with upper and lower spin states given as

g1 = 3 and g0 = 1. The spin temperature is Ts and observations show that for HI in low redshift

galaxies this can be as large as 300K [52] which means hPν21/kBTs ¿ 1 therefore

n1

n0
≈ g1

g0
= 3 and

nHI

n1
= nHI

n0

n0

n1
= n0 +n1

n0

1

3
= 4

3
. (2.10)

Hence the emissivity from a system of HI becomes

dLe

dVedνedΩe
= 3hPν21 A10

16π
nHIϕ(νe). (2.11)

This is all assuming that the HI clump is optically thin6 and also that the spin temperature of

the gas is much larger than the background temperature (usually the CMB) which evidence

from 21cm absorption by damped Lyman-α systems support [116]. This means we can neglect

self-absorption of the HI. The above clump is in the comoving frame and therefore dVe is the

6This is only likely to be a poor assumption when the largest disc galaxies are seen close to edge on [4]
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comoving volume element of the clump and also nHI is a comoving number density. From the

discussion above we can define the HI specific intensity (or brightness) IHI quantitatively as

IHI = dFo

dνodΩo
= dLe

4π(1+ z)2d 2
c (z)dνodΩo

. (2.12)

In contrast to the emissivity, these parameters involve observed quantities and therefore have o

subscripts to denote this. We can then use equation (2.11) to relate the emissivity of a HI clump

to its brightness. We can also realise that the solid angle subtended by a spherical surface for any

of its interior points is 4π meaning we can integrate over the solid angle at emission such that∫
dΩe = 4π. This gives the following for the brightness

IHI = 3hPν21 A10

16π

nHI

(1+ z)2d 2
c (z)

dVe

dνodΩo
(2.13)

where I have also utilised the assumption that
∫
ϕ(νe)dνe = 1 for the thin line profile. We can

finally integrate over the volume of the whole clump to obtain an expression in terms of MHI,

the total HI mass of the clump, using MHI/mH = NHI =
∫

nHIdVe, where mH is the mass of the

hydrogen atom giving

IHI = 3hPν21 A10

16πmH

1

(1+ z)2d 2
c (z)

MHI(z)

dνodΩo
. (2.14)

This important relation will be used extensively in the simulations of HI intensity maps through-

out this thesis and is an excellent way of modelling a radio telescope’s HI signal from output

masses often found in simulated galaxy catalogues.

Rayleigh-Jeans Law

Radiation emitted from a source in local thermodynamic equilibrium will have a brightness I (ν)

equal to that of a blackbody at temperature T (ν) and is therefore given by Planck’s law as

I (ν) ≡ 2hPν
3

c2

1

exp
(

hPν
kBT

)
−1

(2.15)

where kB is Boltzmann’s constant and c is the speed of light [68]. This however, is a spectral

distribution of the radiation from a blackbody and to map the line intensity of HI, we are

simply interested in the ν21/(1+ z) frequency. It is customary in radio astronomy to quantify

the brightness of an extended source by the brightness temperature defined as the temperature

one gets from the Rayleigh-Jeans Law for a brightness of I (ν) [225]. The Rayleigh-Jeans Law can

be derived by first making the approximation that kBT À hPν, which for low-frequency radio

astronomy including HI signals is a very reasonable approximation. Then, utilising the fact that

exp(x) ≈ 1+x in the limit x → 0, it can be shown that the intensity I (ν) is directly proportional to

the thermodynamic temperature of the blackbody. In the context of HI, assuming it also behaves

like a blackbody, we get the relation

THI(ν) = IHIc2

2kBν2 = IHIλ
2

2kB
. (2.16)
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The HI brightness from equation (2.13) can be further simplified into a form which is widely

used in the literature [28][43][231]. Firstly consider that from ν= ν21/(1+ z) = c/λ21(1+ z) we

get the following
dν

dz
=− c

λ21(1+ z)2 . (2.17)

From the comoving distance equation derived in (1.25) we have dz = dr H(z)/c and plugging

this into the above gives

dr = λ21(1+ z)2

H(z)
dνo (2.18)

Using this result and by rewriting equation (2.13) with the volume factor to dVe = dAedr , the

brightness can be simplified to

IHI = 3hPc A10

16π

1

H(z)
nHI (2.19)

where I have also recognised that the comoving area element can be written dAe = dΩod 2
c .

Therefore in the Rayleigh-Jeans limit we can relate the brightness temperature to the HI number

density by

THI = 3hPc3 A10

32πkBν
2
21

(1+ z)2

H(z)
nHI (2.20)

where I have once again used the relation ν= ν21/(1+ z).

2.3.2 Power Spectrum

The brightness temperature defined by (2.20) can be spilt into a background homogeneous part

and a fluctuating part with THI = T HI (1+δHI). It is the fluctuating part δHI that is of interest

for the purpose of LSS investigation and therefore the cosmological quantity of interest is the

over-temperature defined as

δTHI(~θ, z) = T HI(z)δHI(~θ, z) = THI(~θ, z)−T HI(z) (2.21)

where~θ is the angular coordinate for a given voxel (3D pixel) and z is the redshift to it. T HI(z)

is the mean HI brightness temperature at redshift z. Since HI is expected to be a biased tracer

of the late Universe’s matter density field δM, we can say δTHI = T HIbHIδM. Therefore (ignoring

RSD for now and assuming a linear deterministic bias) we can expect the power spectrum of the

HI fluctuations to take the form

PHI(k, z) = T
2
HI(z)b2

HI(z)PM(k, z). (2.22)

The mean HI brightness temperature T HI is often represented as the below which can be derived

from (2.20) using nHI =ΩHI(z)ρc,0/mH where ρc,0 = 3c2H 2
0 /8πG ;

T HI(z) = 180ΩHI(z)h
(1+ z)2

E(z)
mK. (2.23)

Constraining the HI densityΩHI ∝ T HI along with the bias bHI is therefore particularly important

for the success of HI intensity mapping and seen as one of the early challenges for the field
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as it matures [171]. Since higher abundance of HI provides a stronger cosmological signal,

constrainingΩHI is also important for forecasting the signal-to-noise of surveys [43].

At certain redshifts the values ofΩHI alone are relatively well constrained as shown in Figure

2.3 which is data gained from targeted HI galaxy surveys and from observations of damped Ly-α

systems [170]. MeasuringΩHI at ‘mid’-redshift ranges of z ∼ 1 is difficult since HI galaxies are

very faint at these distances thus hard to detect and Lyman-α observations are challenging for

z < 2 [224].

Figure 2.3: Measurements of the HI densityΩHI. Plot from [23] and data obtained from [241][175]
[134][148][178][57]. Black IM points show predictions for constraints from intensity mapping
survey with the SKA as forecasted by [23] and following methodology outlined in [170]. This
shows howΩHI is more constrained at low redshifts where we can do targeted HI galaxy observa-
tions and at higher redshifts (z > 2) where we can rely on Lyman-α surveys. Around z ∼ 1 it is
likely we will rely on intensity mapping forΩHI constraints.

Intensity mapping can be useful for measuring HI abundance at these mid-redshift ranges

and forecasts are shown in Figure 2.3 (black points) for a SKA intensity mapping survey. Mea-

surements have already been conducted using the GBT intensity maps in cross-correlation as

discussed in section 2.2.4. The cross-correlation power spectrum can be written as [169]

PHI,g(k, z) = T HIbHIbgr PM(k, z) (2.24)

where I introduce the cross-correlation coefficient r which is defined as [229]

r (k) = PHI,g(k)√
PHI(k)Pg(k)

(2.25)

to reflect the fact that both tracers may exhibit some stochasticity, however on large scales we ex-

pect r → 1 [135]. As shown in [135], cross-correlations provide a constraint on the measurement

of theΩHIbHI prefactor ofΩHIbHIr = [4.3±1.1]×10−4 at redshift z = 0.8.

As can be seen from equation (2.22) and the quoted measurements of HI abundance using

intensity mapping there exists a degeneracy between bHI and ΩHI. While ΩHI is individually
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relatively well constrained at certain redshifts by several observations, the cosmological bias

is less so and is a larger source of uncertainty in the PHI signal. Previous work [135][170] has

discussed using RSD in the HI auto-correlation to break this degeneracy. Similarly to (1.48), we

can include RSD in HI auto-power spectrum so it is written as

PHI(k, z) = T HI(z)2bHI(z)2 [
1+βHI(z)µ2]2

PM(k, z). (2.26)

Assuming some fixed fiducial cosmology the T HIbHI degeneracy can theoretically be broken and

allows for a separate measurement of bHI(z) andΩHI(z), as shown in [170].

2.3.3 HI Halo Model

Along with measurements forΩHI and bHI, theoretical models can also be used to predict the

abundance and spatial distribution of HI. These are often halo-based models e.g. [213][153][157]

and they principally rely on being able to connect the HI mass within the dark matter halo to the

halo’s mass. This is formalised by the HI-halo mass (HIHM) function MHI(M , z) which assumes

HI mass is only a function of the halo mass M and redshift. While there may also be some local

environmental dependence affecting this function and also some stochasticity, in the context of

intensity mapping where low resolutions are being considered, these will have minimal impact

on this relation [43]. In this context the HI abundance can be modelled using [212]

ρHI(z) =ΩHI(z)ρc,0 =
∫ ∞

0
n(M , z)MHI(M , z)dM (2.27)

where ρHI is the mean HI density and ρc,0 is the critical density of the Universe today. n(M , z)

is referred to as the halo mass function which defines how many halos of mass M exist for a

redshift z [208] and is generally a fitted function based on results from N -body simulations. This

halo-based model assumes that the majority of HI within the late Universe resides inside dark

matter halos which, as I briefly introduced in section 2.1.3, is a reasonable assumption.

It is predicted that a large impact on the bias is the size of dark matter halos with only the

larger halos being able to gain sufficient density for self-shielding from ionizing radiation [43].

The bias can also be modelled in this halo-based approach and is given as [153]

bHI(z) = 1

ρHI(z)

∫ ∞

0
b(M , z)n(M , z)MHI(M , z)dM =

∫ ∞
0 b(M , z)n(M , z)MHI(M , z)dM∫ ∞

0 n(M , z)MHI(M , z)d M
(2.28)

where b(M , z) is the halo bias discussed in detail in [209], but put simply governs the fact that

higher mass halos are more clustered than lower mass ones and clustering is in general higher at

higher redshift [139]. While this simple prescription is sufficient, especially for the purposes of

an intensity mapping study where small scales are of little interest, it does break down in greater

detail where further factors influence the bias such as halo formation history, spin, angular

momentum, shape etc. [154]. These additional influencing factors on the bias are referred to as

assembly (or secondary) bias and I refer the reader to [73][132] for more detail on this concept.
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2.4 Simulating 21cm Cosmology

The development of reliable simulations is important for a novel observational approach such

as intensity mapping. Forecasting the benefits with simulations is encouraging, explorative

and useful for the purposes of lobbying further investment or collaboration. Producing a large

number of mocks is also crucial in the analysis of LSS data and used in the computation of

covariance matrices. Furthermore, reliable simulations is an excellent route to understanding an

observational technique’s systematics as the technique matures. This is no different for intensity

mapping where early observational data and simulated signals can be compared to understand

the range of systematics the technique is affected by. All of this suggests that the simulation of

21cm observational data is crucial for the development of the field and the eventual reliability of

the resulting conclusions.

2.4.1 Building Structure

Simulating large scale cosmological structure is most accurately done using an N -body simula-

tion where dark matter particles are evolved, allowing the formation of halos through accretion

and repeated mergers, building the so-called merger tree history. The positions and velocities of

the particles at several discrete time-steps are saved and these outputs form the cosmic density

field. Dark matter only N -body simulations have existed as a reliable tool for understanding

large scale structure for some time now [199], but added precision can be gained from inclusion

of baryonic gas particles and relevant dissipative processes or at least inclusion of analytical

prescriptions in semi-analytical models. The resulting density fields can be processed with a

halo-finding algorithm to obtain the locations and basic properties of the dark matter halos

[31]. Simulating galaxy formation inside these identified halos on the peaks of the density field

can be done using a number of different ways with varying ranges of precision and hence pro-

cessing power. I briefly summarise the different simulation approaches below in approximate

descending order of simplicity. See [34][81][197] for a full review.

• Halo Ocupation Distribution (HOD) [159][35]: The number of galaxies N assigned to a halo of

mass M is determined by a probability distribution P (N |M).

• Halo Abundance Matching (HAM) [88]: All halos above some mass cut-off host galaxies. The

mass of the halo determines the likely mass of the galaxy based on the stellar mass-halo mass

(SMHM) relation [142].

• Semi-Analytic Models [54]: Often referred to as hierarchical models, these depart from the

previous empirical approaches and look to include physical processes caused by baryonic

physics. For example how much gas accretes into halos, how much hot gas cools and turns

into stars, how feedback processes from supernovae and AGN eject gas from the halo etc. are

approximated with analytic prescriptions that are traced through the merging history of dark

matter halos [197][219].
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• Hydrodynamical Simulations [215]: The most physical approach involves full numerical cal-

culations solving the equations of gravity and hydrodynamics for each particle and include

simulation of baryonic processes, potentially including star formation, radiative transfer,

feedback from supernovae, AGN and star formation etc. [197].

Hydrodynamical simulations therefore offer the most precise results. However, the problem

with them is that they require enormous amounts of processing power to resolve the small-scale

events which affect the large scale distribution of particles. Therefore compromises are made

when large simulations (on Gpc scales) are required and in these cases, simpler halo-based,

dark matter only N -body simulations are often preferred. Advances in computational power

and numerical efficiencies in recent years are however allowing hydrodynamical simulations to

compete more with semi-analytical and empirical galaxy formation models [200].

2.4.2 Assigning HI

As with most simulations of cosmological observables, there are a number of ways of mod-

elling the HI signal with a trade-off between accuracy and computational expense. This can be

done perhaps most simply in map-space taking a given over-density dark matter field δM and

transforming this into an over-temperature map δTHI = T HIbHIδM with some assumed ficucial

models of T HI and bHI. This is of course highly empirical and reliant on accurate models for the

bias and mean brightness temperature. However, it presents a rapid option for producing multi-

ple mocks of intensity maps especially if the simulation of the matter density field is similarly

efficient e.g. a lognormal approach [14].

A further step-up in complexity is to use a set of physical prescriptions to assign HI to

individual galaxies produced in an N -body simulation, an approach adopted in e.g. [150][239].

Generally these approaches work by deriving a gas content and splitting the gas masses into

fractions of HI, HII, Helium etc. within an analytical framework. For the purposes of intensity

mapping where small scales are un-probed due to the beam, precision over realistic shape

profiles and ISM detail is not overly important and this approach represents a good model of HI

on large scales.

The most physical way of simulating the distribution and abundance of HI is with hydrody-

namical simulations where coupled gas and dark matter particles are simultaneously evolved.

With some assumption on neutral hydrogen gas fractions, which can be constrained from ob-

servations [151], HI distribution can be studied at various redshifts. Work done in [213], using

state-of-the-art magneto-hydrodynamic simulations as part of the IllustrisTNG Project, is an

example of how simulations are contributing to our understanding of the distribution and

abundance of HI in our late Universe.

Results from simulations such as these can be compared to the small amount of data we have

as a cross-check. As an example, observation and model can be compared for NHI the number

of atoms along the LoS and HI column density distribution function fHI(NHI) which is the the

number of absorbers per unit column density, per unit absorption length (see [174][212] for

further details). Since the HI column density distribution function can be constrained through
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observations of the Lyman-α forest, this represents a good test for simulations. Figure 2.4 shows

a comparison between data from these observations and the results using the IllustrisTNG [213]

and there is excellent agreement between the two.

Figure 2.4: Comparison between observational and simulated data for the HI column density
distribution function. Observational data from [166][148][57][236] are shown by the black data
points and the coloured lines are for the simulated data produced using IllustrisTNG [213].

Furthermore, observational data such as the HI abundance presented in Figure 2.3 has also

been compared with the results from [213] and they largely agree with these measurements.

These agreements with observational data allow confidence to be placed in conclusions from

simulations.

2.4.3 Mocks for HI-Galaxy Cross-Correlations

Results from [213] suggest that around 99% of HI resides in halos at z < 2, falling to 88% at

z = 5. This makes intuitive sense since at higher redshift the gas in the IGM, outside of the

halos, is denser and has had less time for UV radiation to ionise its HI content. This implies

that simulating the HI signal in the late Universe can be done sufficiently by just focusing on

HI content of each dark matter halo. This has important consequences for the efficiency of

developing mock simulations which aim to study cross-correlations between HI intensity maps

and galaxy redshift surveys.

Simulating HI intensity maps can be done rapidly and relatively accurately as I discussed

above and as presented in [14]. However, producing a galaxy catalogue alongside these intensity

maps that shares the same underlying clustering properties extends the complexity somewhat.

However, the cosmology community have been simulating optical galaxy catalogues for some

time now with increasing proficiency and computational resource [53][131][235][58][21]. It is
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Parameter Value Parameter Value
M10 4.5811 ±0.19 M11 1.56+0.53

−2.70
N10 9.89−3 ±4.89 N11 0.009+0.06

−0.001
b10 0.90±0.39 b11 -1.08+1.52

−0.08
y10 0.74±0.03 y11 4.07+0.39

−2.49

Table 2.2: Best-fit free parameter values for the HI-halo mass function in equation 4.6. Values
obtained from [156].

typical for each of these catalogues to output the hosting halo’s mass for each galaxy within the

catalogue. It is possible to use these halo masses to infer some HI content but this relies on a

realistic model of the relation between HI and its hosting halo properties. The evolution of HI

content within dark matter halos is an active area of research and the HIHM relation can take

a variety of forms. Generally it is a fitting function with free parameters which have redshift

dependence constrained by observation. Below is an example of a HIHM relation I use in this

thesis and I refer the reader to [156] for further details.

MHI = 2N1M
[( M

M1

)−b1 +
( M

M1

)y1]−1
(2.29)

Here M1, N1, b1 and y1 are all the free parameters tuned to provide a best fit. These parameters

are redshift dependent and given by

log10 M1 = log10 M10 + z

z +1
M11 ,

N1 = N10 + z

z +1
N11 ,

b1 = b10 + z

z +1
b11 ,

y1 = y10 + z

z +1
y11 ,

(2.30)

where each of the values for the equations are provided in Table 2.2. By using a HIHM function

catalogues of galaxies can be gridded into a map of HI brightness using equation (2.14) and

with further modelling of telescope effects such as the beam, instrumental noise and further

systematics, realistic simulations of intensity maps can be produced. These intensity maps will

of course then share the same underlying clustering signal as the catalogue of galaxies from

which they were produced thus allowing for studies into galaxy-HI intensity map synergies. This

is a method used throughout this thesis for simulating data and will therefore be discussed in

more detail in subsequent chapters.

The approach of simulating the HI signal was also something investigated in [213] where

they derive HI masses MHI(M , z) from halo masses M given by some HIHM function. The halos

are produced using a ‘computationally-cheap’ N -body simulation and the derived HI masses are

placed onto a grid using the coordinates for the centre of the hosting halo. These grids are then

processed to produce 2-dimensional maps of HI signal at a chosen frequency. Figure 2.5 shows

results for the power spectra of these maps given by the blue line. Also shown by the orange

line are results using the same process except the HI signal is created by spatial distribution

of HI in the hydrodynamical IllustrisTNG simualtion [200]. These results show little difference
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in terms of power spectrum shape between both methods. However, the amplitudes can show

significant difference between 10% and 40% offset. This is explained in [213] by inaccuracies of

their MHI(M , z) HIHM function. Unless this is reproducing perfectly the correct HI abundance,

then T HI will be off by some factor which is what is these results are showing.

Figure 2.5: Comparison between power spectra at different redshifts for full hydrodynamical HI

simulations (orange line) and a computationally cheaper method where HI mass and position is
derived from halo properties simulated in an N -body simulation (blue line). The lower panel in
each plot shows the ratio between the two power spectra across all scales. Plot adapted from
original in [213].

This is evidence in support of a method which produces HI intensity maps on the back of pre-

existing optical galaxy catalogues and their hosting halo masses. It suggests that this approach

should reproduce a similar shape of power spectrum as a full hydrodynamical simulation. An

aspect which needs careful consideration is the offset in amplitudes and this is especially the

case when using halo properties from optical galaxy catalogues. This is because optical surveys

only resolve the brightest galaxies above some detection threshold. Therefore simulations of

their catalogues only need to produce bright galaxies typically high in mass and for this reason

optical galaxy simulations tend to have quite a large halo mass resolution e.g. MICE7 [78] whose

dark matter halos are only resolved down to a few 1011M¯h−1. This lack of low mass halos means

the full HI abundance is unlikely to be reproduced by HIHM-based simulation. Results from

Figure 2.5 would suggest that this is likely to affect the amplitude of the power spectrum which

to correct would require a well constrained model ofΩHI.

2.5 Summary

There is strong evidence from simulations [168][212][213] and now observations [162][46][135][18]

that HI is a biased tracer of the underlying dark matter density. In this chapter I have introduced

the novel technique of using maps of unresolved 21cm emission from HI to map LSS. This

provides a different approach to probing LSS from the conventional optical galaxy redshift

survey which is the current dominant source of observational data. As Figure 2.6 shows, intensity

mapping is a technique which is slowly gathering momentum and with telescopes designed

7maia.ice.cat/mice/
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specifically for intensity mapping now beginning to gather data (as shown in Table 2.1), this

trend is unlikely to change.

Figure 2.6: The growth in HI intensity mapping publications with publication year against
number of publications. Results obtained from SAO/NASA Astrophysics Data System (ADS),
with a search for papers with ‘intensity map’ in the title and either ‘21’, ‘HI’ or ‘neutral hydrogen’
in the abstract. Search done 25th July 2019.

As shown by equation (2.14), the HI brightness IHI can be shown to be a function of HI mass

MHI(z) along with some telescope parameter dependence. Using this under the Rayleigh-Jeans

approximation (equation (2.16)) provides an expression for the HI brightness temperature THI,

the conventional observable in radio astronomy. This provides a formalism with which to begin

modelling HI signals assuming reliable HI masses can be simulated which, as I outlined in

sections 2.4.2 and 2.4.3, should be possible. I have also discussed some of the key systematics

associated with radio telescopes undertaking intensity mapping observations (section 2.2.3)

and including these in simulations is perhaps just as important as modelling the cosmological

signal correctly (as I will show in Chapter 4).

We are soon likely to enter a phase in precision cosmology where uncertainties in results are

systematic dominated rather than statistically dominated. An excellent way to limit systematics

is in cross-correlations where two separate probes e.g. a galaxy survey and an intensity mapping

survey, will see their systematical errors reduced due to the inherently different telescope designs

both operate. This means each telescope’s systematics can be considered independent from

one another leading to the reduced error under cross-correlation (as demonstrated by equation

(2.6)). I have laid the foundational framework for simulating and analysing the 21cm signal in

the context of intensity mapping and also under cross-correlation with an optical redshift survey.

The rest of the thesis will call upon this central formalism for developing a pipeline to design

and forecast various methods associated with this novel technique.

44



C
H

A
P

T
E

R

3
CLUSTERING-BASED REDSHIFT ESTIMATION WITH HI INTENSITY MAPS

Cunnington S., Harrison I., Pourtsidou A., Bacon D., (2019), Mon. Not. Roy. Astron. Soc., 482,

3341

This chapter presents work from the above published article [59] with amendments made to the

original published script for the purposes of this thesis. For all parts of this chapter, including text

and figures, I am the principal author with contributing edits from my co-authors (except Figures

3.7, 3.11 and Section 3.2.2 which were principally authored by Ian Harrison.)

P
recision cosmology requires accurate galaxy redshifts, but next generation optical surveys

will observe unprecedented numbers of resolved galaxies, placing strain on the amount

of spectroscopic follow-up required. In this chapter I show how useful information can be

gained on the redshift distributions of optical galaxy samples from spatial cross-correlations with

intensity maps of unresolved HI (21cm) spectral line emission. I construct a redshift distribution

estimator, which is tested using simulations. I utilise the S3-SAX catalogue which includes HI

emission information for each galaxy, which I use to construct HI intensity maps. I also make

use of simulated LSST and Euclid-like photometry enabling the application of HI clustering

calibration to realistic simulated photometric redshifts. While taking into account important

limitations to HI intensity mapping such as lost k-modes from foreground cleaning and poor

angular resolution due to large receiver beams, I show that excellent constraints on redshift

distributions can be provided for an optical photometric sample.

3.1 Introduction

As I discussed in Chapter 1, according to the standard cosmological model (see Section 1.4), dark

energy is responsible for the current acceleration of the Universe’s expansion [179][165]. The

next step towards constraining our cosmological model relies on precise measurements of the 3-
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dimensional large-scale structure. The majority of this structure is in the form of underlying dark

matter which does not interact with light and is therefore invisible to our telescopes. However,

making the well reasoned assumption that light emitting galaxies act as a biased tracer of this

underlying dark matter distribution, we can use large optical surveys to construct catalogues of

galaxies. We then process and analyse these catalogues to construct a 3-dimensional map of the

Universe. This relies heavily on having a good method for measuring the radial distance out to

all these galaxies, i.e. having a good estimate of the galaxy redshifts.

There exist two approaches to measuring redshifts in optical catalogues, spectroscopy and

photometry. Spectroscopy is the more accurate of the two but is time consuming since it relies on

gathering a large number of photons for any one galaxy. An estimation of redshift is then obtained

by observation of known emission or absorption lines in the spectral energy distribution (SED).

With the rapidly increasing orders of magnitude of galaxy numbers detected by forthcoming

surveys such as the Large Synoptic Survey Telescope1 (LSST) and Euclid2-like surveys, a time-

expensive method such as spectroscopy is unlikely to be a viable method for measuring the

redshift for these large populations.

Often surveys need to settle for the photometry approach [41], which is faster but not as

accurate as spectroscopy. This relies on obtaining the SED from broad-band photometry i.e.

measuring the amount of flux collected in each of the telescope’s broad colour filters, and

relies on strong galaxy spectral features such as the 4000Å break being detectable. Obtaining

photometric redshifts can therefore be thought of as spectroscopy with extremely low resolution;

for example the LSST plans to operate with six colour filters, ugrizy [133]. Photometric redshift

methods can generally be categorised into either template fitting methods, where various

spectrum templates are fitted to find a close match, or opting for machine learning methods

where a training set is used to derive a relation between redshifts and colour magnitudes [185].

Opting for a photometric approach means a far greater number of galaxies can have estimated

redshifts, but more detailed consideration must be taken of the redshift error associated with

this technique.

A method to calibrate photometric redshifts, without the need for verification from time-

expensive spectroscopic follow-up, is to use clustering-based redshift estimation. The general

idea is to use a pre-existing ‘reference’ sample for which some precise redshift information

has already been gained, and which spatially overlaps with the photometric sample which

can be treated as having unknown redshift. Then by utilising the spatial clustering of galaxies

within the overlapping samples through cross-correlations, we can constrain the ‘unknown’

(photometric) redshift distribution. In other words, where there is strong angular clustering

between the unknown sample and a slice of the known sample at a particular redshift, one

can infer that the unknown sample is well represented in that particular redshift bin. From this

principle we can build an estimated redshift distribution for the unknown sample, giving much

more constrained redshift information for the particular population of galaxies.

There is now a significant amount of literature on clustering-based redshift estimation, with

1www.lsst.org
2www.euclid-ec.org
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[147] being one of the first to demonstrate the method on simulations. The method has since

been refined with simulations by [136][33][192][210], and others have more recently applied

the approach to real data [143][173]. Most recently the Dark Energy Survey have applied the

clustering redshifts method to their Year 1 Data [85][61].

The appeal of this idea is that when LSST and Euclid-like surveys deliver unprecedented

galaxy catalogue sizes but lack well-constrained redshift information, we do not need to rely on

time-consuming spectroscopic follow-up on every galaxy, or representative sub-samples which

are not biased with respect to the full survey. Instead we can utilise a pre-existing, spatially over-

lapping, catalogue for which there is precise redshift information and use this as the reference

sample in a clustering-based redshift estimation.

However, there is no reason why the reference sample needs to be a sample of resolved

galaxies. The idea should work just as well if one cross-correlates with any tracer of large scale

structure. The idea that we will investigate in this paper is the use of HI intensity maps (see

Chapter 2). Intensity maps and photometric galaxy surveys are highly complementary to one

another, with photometric surveys having high spatial but low spectral resolution, and intensity

maps high spectral but low spatial resolution. Even though in the epoch of reionization (approx-

imately 6 ≤ z ≤ 15) it is thought that the power spectrum measured from HI intensity mapping

will be largely shaped by the pattern of ionized regions, in the post-reionization era i.e. once

reionization is complete (z < 6), some HI will still remain in collapsed objects and the HI power

spectrum will therefore be a measure of the underlying matter power spectrum [232].

It is apparent therefore that cross-correlations can be beneficial for both optical surveys and

radio HI intensity mapping experiments. Radio can help calibrate photometric redshifts, and

optical galaxy surveys can help radio HI intensity mapping surveys by mitigating systematic

effects and residual foreground contamination [171][170].

This chapter therefore aims to extend previous work [13] and investigate the use of HI

intensity maps for clustering-based redshift estimation. I took a simulation-based approach

and attempted to recover the redshift distribution for an optical galaxy catalogue that was

treated as the ‘unknown’ redshift sample. This was done through cross-correlations with HI

intensity maps (the ‘reference’ sample) which was simulated from the same catalogue so that

they share a clustering signal. I can then compare the estimated redshift distribution with the

true distribution of that catalogue.

3.2 Simulations

For this work I principally make use of the S3-SAX simulation [150] for investigating the limita-

tions of using HI intensity maps for clustering-based redshift estimation. However, I also make

use of other simulations depending on the specific requirements of our tests. When seeking to

demonstrate the calibration capability on photometric redshifts we require a catalogue which

has robustly simulated photometry (discussed in Section 3.2.2.1). When seeking to test the

HI intensity maps at low resolutions we require a simulation covering a much larger sky area

(discussed in Section 3.4.3.1).
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I begin by discussing the S3-SAX catalogue which is used for the majority of this work since

it contains simulated HI information for all its galaxies. This is a semi-analytic simulation

of a sky field with apparent HI emission properties for approximately 2.8×108 galaxies in a

virtual observing cone whose properties have been derived from the Millennium dark matter

simulations [199]. The catalogue I extract from S3-SAX contains galaxies spanning 36deg2 and

extends up to a redshift of z = 3, which approximately covers the redshift range of forthcoming

stage-IV photometric telescopes which could benefit from our type of clustering-based redshift

estimation. From this catalogue I use the columns for right ascension, declination, apparent

redshift (which includes peculiar velocities), and HI-mass.

By using a galaxy catalogue from a simulation like this, we can construct realistic HI intensity

maps from the integrated effect of apparent properties of each contributing galaxy. Furthermore,

since the S3-SAX catalogue already considers cosmological effects such as redshift space dis-

tortions, these will propagate into our adapted catalogues making them a robust reflection of a

realistic clustering-based redshift experiment.

From the S3-SAX catalogue we can construct two samples (explained in Sections 3.2.2 and

3.2.1 respectively) which I will refer to as

• Optical galaxy catalogue (subscripted with g)

• HI intensity maps (subscripted with HI).

The optical galaxy catalogue is the catalogue that I will be treating as our sample of ‘unknown’

redshifts, and for which I will try to recover the true redshift distribution. I will only need the

galaxy positions from this catalogue, and from these I can construct a number density field ng

by binning each galaxy into a pixel.

The intensity maps will be thin slices in chosen intervals of redshift space and as is commonly

the case with intensity maps, each slice will be a field of brightness temperature THI where

regions of higher temperature indicate a higher matter density. Figure 3.1 shows the distribution

of galaxy HI brightness (IHI) contained within our full S3-SAX catalogue.

For maps produced using the S3-SAX simulation we use a resolution of 2 pixels per arcminute

which corresponds to 720 × 720 pixels maps for our 36deg2 patch of sky. I also restrict the

catalogue to redshifts of 0 < z < 3 and use 30 redshift bins giving bin widths of ∆z = 0.1. For the

number of S3-SAX galaxies contained within these ranges this gives an average number density

of 4.6 galaxies per voxel.

3.2.1 Simulating HI Intensity Maps

While traditional optical galaxy surveys aim to resolve their targets and build a catalogue of

discrete objects above some lower flux detection limit, intensity mapping instead collects flux

from all sources of emission, even the very faint ones, to build a continuous map of intensity.

I therefore choose not to place any limits on which HI emitting galaxies to include in our

simulation to make this as realistic as possible. In other words, every galaxy within the S3-SAX

catalogue that has a non-zero amount of HI emission, regardless of how faint, is included as a
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Figure 3.1: HI brightness histograms for galaxies in the S3-SAX catalogue for different redshift
bins. This shows the range of fluxes which will contribute to our HI intensity maps.

contributor to our HI intensity map. Note however that we can only include galaxies which are

above the simulation completeness limit. In the case of the S3-SAX catalogue, the simulation is

complete for galaxies with cold hydrogen masses (HI + H II) above 108M¯.

We express our HI intensity map data T obs
HI

in the form of a brightness temperature with two

angular dimensions (θra and θdec, jointly represented by~θ) and a radial dimension which is the

redshift (z). The intensity map can be decomposed into three different map contributions

T obs
HI (~θ, z) = s(~θ, z)+ f (~θ, z)+n(~θ, z). (3.1)

Here s represents the true HI signal we are aiming to detect, f are the radio foregrounds and n is

noise associated with instrument systematics. The overall aim for successful intensity mapping

is to therefore isolate s(~θ, z) by subtracting or minimising the other unwanted components. I will

discuss each of these components further in the following sections together with our method for

simulating the “cleaned" data, i.e. the HI maps after some foreground cleaning technique has

been applied.

3.2.1.1 Signal

Much of this is discussed in more detail in Chapter 2 but I reiterate here for convenience. To

construct the intensity mapping signal I start with the HI mass MHI of each galaxy, which is

estimated in the S3-SAX catalogue. Note that in any case one can use the formula outlined in

[28] to infer MHI from the raw signal Sobsdv , which is the flux integrated over a velocity width to

capture the full HI signal that is stretched in frequency due to the galaxy’s rotational velocity;

MHI = 2.35×105M¯
1+ z

Sobsdv

Jy km s−1

(
dL(z)

Mpc

2)
. (3.2)
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This can be inferred from the brightness equation outlined in (2.14). I then place the galaxies

into a data cube with coordinates (θra,θdec, z) by binning each galaxy’s HI mass into its relevant

pixel so I end up with a gridded HI mass map MHI(~θ, zc ).

I can then convert this into a brightness field for a frequency width of δν subtending a solid

angle δΩ (which is effectively the pixel size)

IHI(~θ, z) = 3hPν21 A10

16πmH

1

(1+ z)2d 2
c (z)

MHI(~θ, z)

δνδΩ
. (3.3)

which is a repeat of equation (2.14) I derived in Chapter 2 where hP is the Planck constant, A10 the

Einstein coefficient which quantifies the rate of spontaneous photon emission by the hydrogen

atom, mH is the mass of the hydrogen atom, ν21 the rest frequency of the 21cm emission and

dc(z) is the comoving distance out to redshift z (we will assume a flat universe).

As already mentioned, it is conventional in radio astronomy, in particular intensity mapping,

to use brightness temperature which can be defined as the flux density per unit solid angle of a

source measured in units of equivalent blackbody temperature. Hence, the intensity IHI(~θ, z)

can be written in terms of a black-body temperature in the Rayleigh-Jeans approximation

T = I c2/(2kBν
2) where kB is the Boltzmann constant. Using this we can estimate the brightness

temperature at redshift z

THI(~θ, z) = 3hPc2 A10

32πmHkBν21

1

[(1+ z)dc(z)]2

MHI(~θ, z)

δνδΩ
. (3.4)

Note I have used the notation THI to distinguish this raw signal from the true observed data

T obs
HI

outlined in (3.1), which includes the foreground and noise components. Lastly, to model

the low angular resolution of an intensity map, I convolve THI with a telescope beam in Fourier

space making use of the convolution theorem. Our telescope beam is modelled as a symmetric,

two-dimensional Gaussian function with a full width half maximum of θFWHM acting only in the

directions perpendicular to the line of sight (as the frequency/redshift resolution is excellent).

Our clustering-based redshift method will cross-correlate optical galaxies with 2D angular

intensity maps at various redshifts. I therefore choose to slice the intensity maps into thin

tomographic redshift bins and collapse these to a 2D slice. The width of each tomographic

redshift bin needs to be thin enough that I can make certain thin bin assumptions, yet wide

enough that I allow for sufficient structure to obtain a strong cross-correlation signal. By thin

bin assumptions I am referring to cosmological quantities such as the bias, which I assume to be

constant within the width of the bin. This is discussed in more detail in Section 3.3. An example

of a completed intensity map tomographically sliced and collapsed into a 2D angular map is

shown in far-left map of Figure 3.2.

3.2.1.2 Foregrounds

Foregrounds are the main focus of investigation in Chapter 4, and I therefore refer the reader

there for a more complete discussion. In this chapter I use a more concise introduction and

treatment of foregrounds.
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Figure 3.2: Example of a HI intensity map from our simulation using S3-SAX catalogue galaxies.
This particular example is a slice taken at 1.3 < z < 1.4 with θFWHM = 4′. Far-left map shows the
raw signal with no foreground contamination, centre map shows the same signal but with some
large radial modes removed from the data to simulate some of the effects of a foreground clean
as explained in Section 3.2.1.2. Differences can be seen by eye between these two but I also
include the residuals in the far-right map to clarify the impact.

Arguably the biggest obstacle facing intensity mapping is the presence of foregrounds which

emit signals below 1400 MHz and which can be several orders of magnitude brighter than the HI

signal we are aiming to detect [228][188]. The term ‘foregrounds’ is perhaps misleading as some

of these contaminants do not necessarily lie in front of the HI emitters. However, it is a term that

is widely used in other literature so I will also adopt it here. The different types of foregrounds

include

• Galactic synchrotron: Caused by high-energy cosmic ray electrons accelerated by the Galactic

magnetic field. This is the most dominant of the foregrounds and has the added complication

of being polarized.

• Point sources: Emission from extragalactic point radio sources e.g. AGNs. These can potentially

cluster in the same way as the HI signal.

• Galactic & extragalactic free-free emission: caused by free electrons accelerated by ions, which

trace the warm ionised medium both within the Milky Way and in the broader cosmic field.

Modelling and addressing the foreground removal problem with dedicated simulations is a very

active area of research (see, for example, [228][196][11][230]). The conclusion of such work is

that component separation methods can in principle be used to remove these foregrounds. The

general idea is that the HI signal spectra fluctuate in frequency whereas the foreground spectra

are expected to be smooth with long frequency coherence thus making them distinguishable.

However, foreground cleaning based on this approach is typically more efficient on small scales

i.e. small radial modes. On larger scales the HI signal is more similar to the foregrounds, so the

result of these types of foreground cleaning can render larger radial modes useless. This has

particular importance in the context of using HI intensity maps for clustering redshift estimation

since information in these modes which could be utilised by the estimator are lost.
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In this chapter, rather than simulating full foreground maps, adding these onto our signal to

contaminate it and then applying some removal technique, I will instead bypass this step and

aim directly to simulate the aforementioned effects of foreground cleaning by removing large

radial modes from the data. I follow [13] in imposing that any comoving radial wavenumber k∥
below a certain scale kFG

∥ , where

kFG
∥ ≈ πH(z)

c(1+ z)ξ
(3.5)

is rendered inaccessible by foreground cleaning; I therefore remove these modes. Here, ξ

parametrises the characteristic frequency scale over which foregrounds are separable from

the signal. In other words a smaller value of ξ means more large scale signal is lost, hence we

need to remove a higher number of modes. To allow finer control of this foreground removal

in fourier space I chose to increase the resolution in the line of sight direction by splitting the

redshift bins into 5 pixels each giving our S3-SAX intensity map cube 150 pixels along the line of

sight. I will investigate the effect of different values of ξ in Section 3.4.2.

Hence, the recipe for simulating the effect of foreground cleaning can be summarised as

(i) Fourier transform the THI data cube;

(ii) Eliminate (set to zero) all pixels where k∥ < kFG
∥ ;

(iii) Inverse Fourier transform back.

The result of this process is an intensity map cube with some large radial modes lost. We can

visualise the effects this has on the tomographic slices of intensity maps in Figure 3.2.

This method of simulating foreground removal is a crude approximation of the problem

and I appreciate that this approach assumes all other modes above kFG
∥ are cleaned with 100%

efficiency, which is of course an optimistic expectation. This has particular relevance for the auto-

correlations since we expect foreground systematics to be a much bigger problem compared

to the cross-correlation. However, the main issue when using intensity mapping for clustering-

based redshift estimation is a loss of signal-to-noise on foreground dominated modes, rendering

them ineffective when using them in correlation functions. With this in mind, we can test the

main limitations of foreground cleaning by subtracting large radial modes from our reference

sample.

3.2.1.3 Noise

Systematic effects and noise typically associated with radio surveys will impact intensity maps.

Again, simulating those in detail would be a paper in its own right; for example [94] investigate

the effects of 1/ f noise (an instrumental effect that results in multiplicative gain fluctuations) in

single-dish observations.

We can partially justify omitting survey specific additive systematic effects since we would

expect these to drop out in any cross-correlations between intensity maps and optical surveys. I

discussed this in section 2.2.4 and demonstrated this with an example in equation (2.6).
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Here I used the fact that the signal-noise cross terms are uncorrelated and that the noise

maps from each survey will be uncorrelated too. Strictly speaking, while this argument is valid

for the expected cross-correlation, it is not valid for the uncertainties on that cross-correlation.

For example if we have some survey-specific large-scale noise, it will cancel out in the cross-

correlation, but will still dominate the error budget on that cross-correlation on large scales. It is

also worth noting that we make use of auto-correlations in our work too, and in these situations

the above argument does not apply. However, for the purposes of this chapter, I assume all

instrumental systematics are either negligible or drop out and do not cause any contamination

in the results. I leave a full simulation involving noise maps, which will look into whether realistic

telescope noise levels are sub-dominant, for future work.

3.2.2 Optical Galaxy Sample

It is important that the optical galaxy samples have realistic redshift distributions which tail

off at higher redshifts where resolved detection becomes more difficult. We therefore choose

not to use all galaxies in the simulated catalogue, but instead randomly exclude galaxies in

each redshift bin until a model distribution is achieved. This also means that the optical galaxy

redshift distribution will differ from the distribution of the galaxies which contribute to the HI

intensity maps, where we use all galaxies available. This makes for a more realistic test of this

method too. For our optical model redshift distribution we use

dNg

dz
= zβ exp

(
−

(
zα

zm

)γ)
(3.6)

where we use α=p
2 , β= 2 and γ= 1.5 to make the distribution representative of a typical stage-

IV optical large scale structure survey such as LSST or Euclid. For the mid-redshift parameter zm

we use the mid-redshift for the particular simulated catalogue we are applying this to. For our

S3-SAX catalogue, this will be zm = 1.5.

3.2.2.1 Simulated Optical Photometry

Large community efforts are put into simulating photometric redshift uncertainty to allow

investigation of non-linear effects on the power spectra (and biases) of various tracers, and the

testing and validation of photometric redshift estimation codes (which typically produce highly

non-Gaussian estimates with significant tails and catastrophic outliers) [138][129]. However,

for the HI clustering redshifts considered here it is necessary to simulate HI emission which

is correctly correlated with the optical emission measured by photometric surveys. This is

particularly difficult as the galaxies making up much of the HI signal in intensity maps are

expected to be within ≈ 109 h−1M¯ halos [213], orders of magnitude below the halo masses

relevant (and hence simulated) for optical surveys, particularly in simulation boxes large enough

to supply the wide and deep light-cones relevant to intensity mapping experiments. Given the

potential utility of HI clustering redshifts, and other interest in cross-correlation of stage-IV

radio and optical surveys e.g. [12][96][170], such a simulation is clearly needed, and we expect it

to be pursued in further work.

53



CHAPTER 3. CLUSTERING-BASED REDSHIFT ESTIMATION WITH HI INTENSITY MAPS

For now, we take two approaches. For our principal results making use of the S3-SAX simula-

tion, we defer this problem, estimating the full redshift distribution for the sample, rather than

binning according to an estimated photometric redshift. As described in section 3.4.4 we also

investigate the ability to calibrate realistic simulated redshifts for the LSST telescope, but using

HI intensity maps which only contain HI emission from the optically selected galaxies which we

generate ourselves by using a HI-mass halo-mass relation.

3.3 Estimator Formalism

In this section I discuss the formalism associated with our method and provide a step-by-step

construction of the estimator we use to make redshift predictions for the ‘unknown’ optical

photometric sample.

Firstly, from the optical galaxy catalogue, I take the true galaxy redshifts and build a nor-

malised redshift distribution given by

dNtrue

dz
(z) = Ng(z)∑

i
Ng(zi )

1

∆z
(3.7)

where Ng(z) is the galaxy count in a given redshift bin. I normalise by dividing through by all

galaxies in each i -bin and by the redshift bin width ∆z. The aim of this work is to be able to

recover this true redshift distribution. In this work the chosen approach for doing this is to utilise

angular correlation functions. I start by binning the HI intensity map into thin tomographic

redshift slices and take the observable HI brightness temperature fluctuations δTHI for each

slice defined as

δTHI(~θ, z) = THI(~θ, z)−T HI(z) , (3.8)

where a barred quantity denotes the average value for the particular field. I also take the optical

galaxy count overdensity δg for the full redshift range defined as

δg(~θ) = ng(~θ)−ng

ng
. (3.9)

I then calculate the angular cross-correlation between each HI slice δTHI(~θ, z) and the unknown-

redshift optical galaxy overdensity δg(~θ);

wg,HI(z) = 〈δg(~θ)δTHI(~θ, z)〉 (3.10)

where the angled brackets signify an averaging over all positions in the field. This approach is

therefore only focusing on the zero-lag of the angular correlation function, as I am only averaging

over pixels in each map which share the same position~θ. Previous clustering redshift works

using resolved galaxy positions for both samples tend to extend beyond the zero-lag and attempt

to gain more signal from the full-correlation function at extending separations. They then weight

their correlation function such that it delivers the best signal-to-noise. For example, [85] and

[61] average their correlation function w over a separation range such that

w(z) =
∫ Rmax

Rmin

W (R)w(R, z)dR (3.11)
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where R is the separation distance between galaxies being correlated and W (R) ∝ R−1 is a

weighting function, whose integral is normalised to unity and constructed to give higher weight

to smaller scales; this maximises the signal-to-noise of the correlation function. They choose to

use integration limits of 500 kpc and 1500 kpc and discuss how including larger scales tends to

give a poorer signal-to-noise while smaller scales are more likely to suffer from non-linear bias.

Since I am using low resolution maps and correlating pixels rather than resolved galaxies, the

choice is somewhat simplified. The low resolutions I use, which are constrained by the intensity

mapping instrument’s beam size, mean that often one or two pixels are representative of the

preferred separations probed by the resolved optical galaxy clustering redshift methods. Also,

given that the weight function prioritises smaller scales, the full-correlation function method

will be very similar to using the zero-lag at the low resolutions I work with. I experimented with

this using a maximum separation of Rmax = 1500 kpc which, for the resolutions used on the

S3-SAX catalogue, corresponds to 1 pixel of separation for z ≥ 1.95, 2 pixels for 0.95 < z < 1.95

and only reaching 16 and 9 pixels of separation for the lowest two redshift bins. Only very small

deviations from the zero-lag approach would therefore be expected given this and I do in fact

find that the results from the two approaches converge in the regime where the full correlation

function is tuned to maximise the signal-to-noise ratio.

Where we have strong correlation I infer that the particular redshift bin is well represented

in the overall redshift distribution i.e. I suppose

dNg

dz
(z) ∝ wg,HI(z) . (3.12)

To understand the full version of this equation and build an estimator for dNg /dz we must

consider the clustering amplitudes (bias terms), the underlying dark matter density, and the

relationship between them. We can begin by looking at the δg and δTHI fields separately. Firstly,

under the assumption of linear and deterministic biasing (expected to be accurate on large

scales), we have

δg =
∫ zmax

0
bg(z)δ(~θ, z)

dNg

dz
(z)dz (3.13)

where bg is the bias for the optical galaxies, δ is the dark matter over-density field and dNg /dz

represents the normalised redshift distribution. Similarly, for the HI brightness temperature

fluctuations we have

δTHI =
∫ zmax

0
T HI(z)bHI(z)δ(~θ, z)

dNHI

dz
(z)dz . (3.14)

We can slice the reference intensity maps into appropriately thin redshift bins,

dNHI

dz
(z) =Θ(z1, z2) , (3.15)

Θ(z1, z2) =


0 z < z1

1 z1 ≤ z ≤ z2

0 z > z2 ,

(3.16)
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where I have used the top-hat function Θ to take a slice of the HI intensity map. I now cross-

correlate δg and δTHI for the redshift range chosen byΘ,

〈δgδTHI〉 =
Ï

T HI(z ′)bg(z)bHI(z ′)〈δ(~θ, z)δ(~θ, z ′)〉dNg

dz
(zc)Θ(z1, z2)dzdz ′. (3.17)

The top-hat functionΘ restricts the integral to a thin redshift range and at this point I assume

that I have picked a sufficiently thin bin width such that all terms become constant over this

redshift range with central redshift zc, leading to

〈δgδTHI〉 = T HI(zc)bg(zc)bHI(zc)〈δ(~θ, zc)δ(~θ, zc)〉dNg

dz
(zc)∆z. (3.18)

Here, ∆z appears from the Limber approximation [127]. This assumes the coherence length of

the correlation function is relatively small and inside a thick enough bin will not significantly

evolve. Therefore, I assume zero correlation outside the redshift range, so I just integrate over the

small dz segments where non-zero signal exists. ∆z therefore represents the bin width. 〈δgδTHI〉
is the zero-lag angular cross-correlation statistic where I average over all positions in the field as

expressed in equation (3.10) i.e. wg,HI ≡ 〈δgδTHI〉, so writing in this form gives

wg,HI(zc ) = T HI(zc)bg(zc)bHI(zc)wDM(zc)
dNg

dz
(zc)∆z , (3.19)

where wDM = 〈δδ〉 is the dark matter auto-correlation function. We can make use of the auto-

correlation of the intensity maps to eliminate the dark matter density auto-correlation wDM

from equation (3.19). This auto-correlation is derived using similar steps to those above and is

given by

wHI,HI(zc) = T
2
HI(zc)b2

HI(zc)wDM(zc ) . (3.20)

Effects from foreground contamination and noise, which should largely drop-out in the cross-

correlation, could potentially affect this auto-correlation. For deriving this estimator we assume

these effects are minimal. Dividing equation (3.19) through by wHI,HI(zc) we therefore get

wg,HI(zc)

wHI,HI(zc)
= 1

T HI(zc)

bg(zc)

bHI(zc)

dNg

dz
(zc)∆z . (3.21)

Rearranging we get our final estimator for the redshift distribution

dNg

dz
(zc) = wg,HI(zc)

wHI,HI(zc)
T HI(zc)

bHI(zc)

bg(zc)

1

∆z
. (3.22)

Since∆z is defined and wg,HI, wHI,HI can be measured, we just need to know the factor T HIbHI/bg

to recover our redshift distribution.

In our simulations T HI can easily be obtained, since we know the brightness temperature

THI from each galaxy and therefore the average brightness temperature for the map. However, in

reality, the actual observable is the brightness temperature fluctuation defined in equation (3.8).

T HI is really an unknown quantity that needs to be inferred from our measurements. I discussed

this in section 2.3.2 and in equation (2.23) which is repeated below

T HI = 180ΩHI(z)h
(1+ z)2

H(z)/H0
mK, (3.23)
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withΩHI the HI density (abundance). In principleΩHI can be measured using the auto-correlation

HI power spectrum with redshift space distortions, assuming a fixed fiducial cosmology [135][170].

This then gives a measurement of T HI. In this work for simplicity I will assume T HI is known (or

can be modelled accurately) and just use the mean of our catalogue brightness temperatures.

Note that T HI is a global quantity which is defined, and can be measured, independently of a

clustering redshift experiment, unlike similar normalisations for optical clustering redshift sub-

samples, which will be unique to the tracer selection of each experiment. The only remaining

factor to address is therefore the bias ratio, which I discuss in the following section.

3.3.1 Bias Treatment

Since using HI as a tracer of large scale structure as a way to explore cosmology is a relatively

new concept, it is still unclear how biased this tracer is. In order to obtain the relevant factor

bHI/bg, I take the simple approach of measuring the angular auto power spectra C` for both the

optical number density field and the intensity maps. If we restrict to the large linear scales and

neglect redshift space distortions, we can obtain the bias factor through

bHI(z)

bg(z)
= 1

T HI

√
CHIHI(`, z)

Cgg(`, z)
. (3.24)

It is worth pointing out that this method uses the power spectra in each redshift bin for both

intensity maps and opticals. This therefore relies on the optical galaxies being binned by redshift,

which is information I am assuming is poorly constrained, so the question of circularity arises.

An approach that is viable is to bin the optical galaxies using the photometric redshifts, undergo

our whole clustering redshift approach with this approximate bias ratio, and then refine and

repeat so that self-consistency is reached.

The exact form of the neutral hydrogen bias is an area of active research [155][211][45][213]

and recent detections in [18] relied on measurements from the ALFALFA survey [98] to obtain

bHI (see also the work by [152]). Furthermore, modelling bias amplitude differences between

the reference and unknown samples is a problem that appears universal to clustering redshift

methods. For example spectroscopic surveys cross-correlated with photometric surveys have

not fully constrained these biases and offer a range of proposed solutions for addressing this

in practice. In the context of this work, a further solution could be to build a model for the

HI bias through its cross-correlation with a spectroscopic or weak-lensing survey. Again, it is

worth pointing out that the HI bias may be determined independently of the clustering redshift

survey, rather than in analyses where samples of optical galaxies are used, where the bias must

be determined for the galaxy types making up that particular sample, which will be a function of

the experiment.

For now we rely on the approach as outlined in equation (3.24) where we assume we can

successfully obtain thin redshift slices in the optical sample and obtain perfect foreground

removal (of the relevant modes) for the HI sample.

From our simulations I find that the bias factor is scale independent only at large scales, as

expected. As the left panel of Figure 3.3 shows for an example redshift bin, we appear to have a
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Figure 3.3: [Left] The bias ratio bHI/bg as a function of angular scale at redshift z = 2. This ratio is
only constant on the largest scales so we therefore choose to measure this bias at scales with
`< 103. [Right] The bias ratio bHI/bg as per equation (3.24) in each redshift bin with the grey
dashed line showing a polynomial fit to the data points. As expected, the bias ratio that I use in
our estimator evolves with redshift.

constant bias ratio on scales `< 103. I find a similar relation holds in all redshift bins. I therefore

chose to take the mean value for this bias ratio at the angular scales of `< 103. The right panel

of Figure 3.3 shows how the mean value of the bias ratio used in our estimator evolves with

redshift.

One final point is that in the estimator, I choose to focus on the zero-lag of the correlation

function, which includes small scales. However, we are only estimating the large-scale linear

biases. This should not cause a problem since the small scale non-linear bias contributions

are integrated out due to the low resolutions I am using. These are approximately 2 pixels per

arcminute (or 2 pixels per 1Mpc at z ∼ 1). As we will see in the next section, our results show

that the use of the zero-lag statistic in conjunction with large-scale linear biases appears not to

cause any issues; but consideration should be given to this point when choosing bin sizes in real

survey analyses.

3.4 Results & Discussion

Here I present the analysis and findings on the viability of using HI intensity mapping for

clustering-based redshift estimation. Throughout I use the estimator as laid out in Section 3.3

and in particular equation (3.22) and proceed to investigate some of the properties that affect

this method.

• I begin in Section 3.4.1 by examining the effect of HI-bright sources on the method using basic

mock-catalogues which I simulate.

• In Section 3.4.2 I carry out the first test of the method using the adapted S3-SAX catalogue

(introduced in Section 3.2) which I construct realistic HI intensity maps from (albeit over a

small sky area) and put particular emphasis on some of the effects from foreground cleaning.
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• Section 3.4.3 looks at the Gaussian beam size θFWHM and whether increasing this to realistic

amounts (comparable to some single-dish experiments such as the SKA) is too damaging to

the redshift predictions. This relies on extending the simulation to a larger sky area so I make

use of the MICE catalogue [78][58][79][44][102] which has a wider light-cone than S3-SAX.

• I then finish in Section 3.4.4 by looking at how this method can provide excellent information

on the error associated with stage-IV photometric redshifts. For this I use simulated LSST-like

photometric redshifts from [19].

3.4.1 Bright HI-Rich Sources

Correlation functions in conventional optical surveys consider separation between different

resolved point-like positions of galaxies. For intensity mapping, where we have different intensity

objects binned into pixels, care needs to be taken when computing correlation functions for

fields where there is not much signal or where extremely bright sources are dominating over the

rest of the signal. This will cause the shot noise in the sample to increase since this is effected by

the HI mass present i.e. the strength of the signal for intensity maps [45][198].

Having a HI-rich galaxy fall in a particular bin, whose signal vastly dominates over everything

else in the field, could result in the rest of the field having essentially zero relative contribution

to the signal. This can lead to the correlation function being shot-noise dominated. We want to

try to avoid our fields having such extreme non-Gaussian properties, which constitute a poor

representation of the underlying density field.

I investigated the effects of this behaviour by producing mock intensity maps and then

contaminated them with dominant bright sources to see how this would affect the correlation

functions and impact our clustering redshift method. I did this with a simplified model where

we generate galaxies with a given distribution in redshift, simulate HI intensity maps with these

galaxies, and then attempt to recover the redshift distribution with our clustering-based method.

To initially ensure that no galaxy’s flux was too dominant over the rest of the field I assigned all 107

galaxies in our mock a uniformly random HI flux emission between 0 and 1 (units are irrelevant

for this mock example). For this simple model the input redshift distribution could be recovered

since the intensity maps being produced were very uniform with Gaussian-like properties (see

the blue triangle lines in Figure 3.4). However, it is possible that some galaxies will be several

orders of magnitude brighter than the rest of the field as supported by the simulated fluxes

from the S3-SAX catalogue (Figure 3.1). So to investigate the effects of bright dominant sources

I reassigned 1% of the galaxies in the mock catalogue a much higher HI flux emission, with

uniformly random values between 1 and 10,000. At this point scaling problems were encountered

in our mock situation along with large noise when recovering the redshift distribution, as shown

in Figure 3.4. This shows that if bright sources dominate, they can contaminate the field and

affect the results of the distribution recovery. The large scaling problem, shown by the red solid

line in Figure 3.4, can be overcome since we are free to run a post-normalisation on the results to

correct these scaling issues (shown by the dashed lines). However, the shape of the distribution

still carries a large amount of noise for the contaminated case.
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Figure 3.4: Mock simulation with an input redshift distribution (black dashed line) which I aim to
recover. In the case where I have bright contaminating sources in our intensity maps (red square
lines) our estimator struggles to recover this distribution presenting noise and scaling problems.
However, results are improved when I remove these bright contaminants (blue triangle lines).
The dotted lines in both cases show the results but normalised to unity to match the amplitude
of the true redshift distribution which is also normalised to unity.

Therefore where possible, one should aim to avoid working with intensity maps where

bright sources dominate the field and induce this extra noise in the correlation functions. An

example of where this should be considered is when choosing which areas of redshift space

to probe. Even when HI is mapped in a continuous way, as done with intensity mapping, the

signal is still coming from discrete sources. At very low redshifts the survey volume is small,

so the number of galaxies contributing to the intensity map is low making them more prone

to bright source contamination and shot noise. This in turn makes them more likely to have

non-Gaussian like fields leading to a poor distribution estimation for that redshift bin. It is

therefore imperative to choose a redshift space region, and redshift bin width, which include

sufficient numbers of contributing galaxies so that one does not produce shot-noise dominated

intensity maps. For this reason I exclude low redshifts (z < 0.1) from all the catalogues I use and

select a sufficient redshift bin width of either ∆z = 0.05 or 0.1 depending on redshift range of the

particular catalogue.

In reality, for intensity mapping experiments that are also performing HI galaxy surveys like

SKA, it would be possible to remove the HI flux from a very bright source since it would likely

be resolved in the HI galaxy survey. This flux-cutting approach represents an alternative way to

alleviate the problem.

3.4.2 Foreground Removal

As described in Section 3.2.1.2, a key challenge when considering using HI intensity mapping

methods for precision cosmology is foreground contamination. In this work I simulate some of

the effect that foreground removal is expected to have on the recovery of the HI signal, which is
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Figure 3.5: Demonstrates the effects of large radial mode removal (one of the effects expected
from a foreground clean) and how lowering the parameter ξ, which translates to assuming a
harsher foreground clean, gives data less representative of the original signal (the dotted black
line). Done for random line of sight on our S3-SAX catalogue.

to render a certain proportion of large radial modes useless. In reality, all modes would suffer

some degree of foreground contamination as foreground cleaning can never separate signal and

foregrounds with 100% efficiency. But it is largely considered that the large scale modes in the

line-of-sight direction are the least separable from foregrounds [196] and therefore these will be

rendered useless.

I follow the recipe laid out in Section 3.2.1.2 and eliminate any radial wavenumber that has

k∥ < kFG
∥ , where kFG

∥ is defined in equation (3.5), to emulate the main impact of a foreground

clean on our data. The ξ parameter in equation (3.5) parametrises the foreground removal

whereby a lower ξ equates to more radial modes being lost, signifying a harsher foreground

clean.

Figure 3.5 shows an example of the effect that this simulated foreground removal has on

a random line of sight through redshift and shows, as we expect, a suppression of the large

radial modes which gets more severe for a higher ξ. The impact this has on the actual maps

was displayed in Figure 3.2. The expectation is that much of the angular clustering information

still remains in the smaller scale modes that are left behind, which can still be exploited for a

clustering-based redshift estimation.

Figure 3.6(a) presents the first result from a redshift estimation attempt using our method

on the S3-SAX catalogue. For the case with no foreground contamination I find that it is still

beneficial (i.e. it improves the goodness-of-fit) to nullify just one slice of pixels in k-space that

contains the largest radial modes. This represents information at 0 < k∥ < 0.7×10−3hMpc−1

scales and since these scales are so large, no useful information exists there to be used in the

estimator’s matching process. In other words these scales just contribute noise and therefore

it is not surprising that their removal improves results. However, as I start to subtract more

slices of pixels and eliminating information at larger values of k∥ we get a reduction in estimator
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Figure 3.6: Results of using the HI intensity maps to recover the redshift distribution for the
‘unknown’ optical galaxies. The dashed lines show the true distribution which we seek to recover
and the points are the estimator’s prediction using a tomographic sliced intensity map at the
particular redshift. Here I have used the S3-SAX catalogue with θFWHM = 4′. (a) is the case with no
foreground contamination and (b) is an example where I have applied our low-k∥ cut with ξ= 0.1
to simulate a foreground clean. Error bars are obtained through jackknifing over 25 samples as
explained in equation (3.25).

performance as desired to emulate a foreground clean. Figure 3.6(b) shows an example with our

simulated foreground clean where I have used ξ= 0.1.

For these plots I have used a jackknifing technique to obtain the error bars. This was done

by gridding the maps into an array of n smaller sub-samples, with n = 25. I then measure our

estimator, which I here denote as x̂i , on the map but omit the i -th sub-sample. I repeat the

procedure, averaging over the estimators obtained from omitting sub-samples, and obtain a

standard deviation via

σerror =
√

n −1

n

n∑
i=1

(x̂i − x̂)2 . (3.25)

Figure 3.6 suggests that even with quite a harsh foreground clean, a reasonable estimation of

the redshift distribution of the optical galaxies can be made. A value of ξ≈ 0.1 corresponds to

a cut that would target more complicated foreground residuals arising from leaked polarised

synchrotron. Due to Faraday rotation these would exhibit a frequency structure which is not as

spectrally smooth as other foreground contaminants hence making them more likely to remain

after a mode cut [13].

The exact scales that are rendered inaccessible after a successful foreground clean is a

subject still open for debate i.e. the most realistic value of ξ is unclear. Work by [196] proposes a

foreground cleaning method which claims to render scales with k∥ < 0.02hMpc−1 (ξ≈ 0.05 at

z = 1.5) inaccessible, whereas there is more encouraging recent work by [240] which suggests

that foreground cleaning is possible where information from these small k∥ modes may not

necessarily be lost at all. They propose using an extended method, Robust Principal Component

Analysis (RPCA), which utilises the sparsity of the frequency covariance for the HI signal.

In Figure 3.7 we examine how various values of ξ affect the precision of our redshift distri-
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Figure 3.7: Test of estimator performance for differing levels of foreground cleaning parametrised
by ξ. Shown is the Kullback-Liebler divergence D giving the information loss when describing
the true redshift distribution with the estimated one (filled blue dots, left axis), and the bias in
mean recovered for the redshift distribution (empty red dots, right axis). We see that the ability of
the clustering estimator to recover the true distribution deteriorates as we increase the amount
of foreground cleaning assumed (i.e. as we decrease ξ).

bution estimation, by analysing the Kullback-Liebler (KL) Divergence for different values of ξ

as a figure of merit. The KL divergence D(P ||Q) = ∑
i Pi log(Pi /Qi ) measures the information

lost when an approximating discrete distribution Q is used to describe a true distribution P ,

providing a well-motivated way of estimating the goodness-of-fit across a whole distribution.

Also shown is the mean recovered redshift for the distribution as a function of the same ξ. The

plot is encouraging in showing that even when approaching conservative levels of foreground

cleaning (ξ≈ 0.1), the degradation in performance is not significant when compared to the ξ= 1

case.

3.4.3 Varying Beam Size

Interferometric intensity mapping experiments such as CHIME (0.26◦ - 0.52◦) [145] or HIRAX

(0.08◦ - 0.17◦) [146] have relatively good angular resolution. However, the proposed HI intensity

mapping surveys using MeerKAT or SKA-MID in single-dish mode [190][189] are expected to

have quite large beams and therefore a low angular resolution (greater than 1.4◦). It is worth

reiterating here that SKA will also operate as an interferometer, but I choose to focus on its use

as a single-dish intensity mapping experiment to test the limitations of large receiver beams. In

general, a single-dish intensity mapping experiment will typically have a beam size given by

θFWHM ≈λ/Ddish , (3.26)

where λ is the observing wavelength and Ddish is the dish diameter. So for an SKA-like intensity

mapping experiment in single-dish mode, with dish diameters of Ddish = 15m, targeting the

redshifted λ= 21 cm signal we would expect to have a θFWHM ≈ 2 deg at a median redshift of
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Figure 3.8: Increasing the beam size to θFWHM = 16′ for our S3-SAX sample, which is equivalent
to reducing the resolution of our experiment, causes errors to increase as predicted by equation
(3.27).

z = 1.5. Unfortunately, for our simulations using the S3-SAX catalogue we are limited to a small

sky coverage of 6×6 square degrees, and this limits the extent to which we can increase our

beam size. Since the error on our redshift estimation σN (z) will be inversely proportional to the

square root of the number of effective pixels in our field, and the number of effective pixels will

just be the area of the whole field A divided by the area of our beam ≈ θ2
FWHM, we can estimate

σN (z) ∝ θFWHMp
A

. (3.27)

We therefore find an increase in error as we explore lower resolutions. Even with no simulated

foreground clean and only increasing the beam size to θFWHM = 16′, we are quadrupling our

error and we find a large deterioration in the precision of our prediction as shown in Figure 3.8.

3.4.3.1 Testing on Larger Sky Area

Because of the rapid increase in error shown in Figure 3.8 from increasing the beam size to

θFWHM = 16′, I proceeded to perform a scaled up test of clustering-based redshift estimation on

larger sky areas to check if we can successfully go to higher values of θFWHM. To do this we require

access to a catalogue with much larger sky coverage, so I chose to use the MICE simulation

[78][58][79][44][102], which is a cosmological N -body dark matter only simulation resulting in a

≈ 200 million galaxy catalogue over a 5,000 deg2 area up to a redshift z = 1.4.

For these larger sky maps we use the HEALPix package [87] where the pixelation ensures that

each pixel covers the same surface area as every other pixel. I handle the maps in HEALlPix RING

ordering scheme with resolution nside= 512, which corresponds to 12×5122 = 3,145,728 pixels

across the full sky. Since the MICE catalogue covers angular coordinates in range 0 < ra, dec < 90

deg, these only fill 1/8th of the sky so I use 393,216 pixels for each map. 28 redshift bins are used

between the redshift range of 0 < z < 1.4 giving bin sizes of ∆z = 0.05. For the number of MICE
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galaxies contained within these ranges this gives an average number density of 18.6 galaxies per

voxel.

Like I did when creating our optical galaxy sample from the S3-SAX catalogue, I use equation

(3.6) as our model for an optical redshift distribution with a mid redshift of zm = 0.7. This creates

a realistic distribution in redshift for our opticals which tails off at higher redshift and that differs

from the redshift distribution of the galaxies which contribute to the HI intensity maps.

Since this catalogue does not have apparent HI emission-line properties for each galaxy,

we must derive our own HI masses for each galaxy. I therefore take each galaxy’s halo mass as

simulated by the MICE catalogue and convert this into a predicted HI mass by following the

redshift dependent prescription laid out in [156]

MHI = 2N1M
[( M

M1

)−b1 +
( M

M1

)y1]−1
, (3.28)

where M is the galaxy’s halo mass; M1, N1, b1 and y1 are all free parameters with redshift

dependence tuned to provide a best fit; I refer the reader to [156] for details. From this I then

follow the steps laid out in Section 3.2.1.1 and produce mock intensity maps.

It is important to highlight that in MICE, which is primarily a simulation for optical tele-

scopes, the halos are only resolved down to a few 1011h−1M¯ [58], and to build realistic intensity

maps one would ideally want to go lower than this to ensure that HI emission from fainter

galaxies is included in the intensity maps. However, for now it is sufficient to use this catalogue

to demonstrate the potential of our method; improving the mass halo resolution will primarily

change the bias on our over-density field representation, which is already well sampled.

An example of a HI intensity map produced from MICE is shown in Figure 3.9. Using these

simulated intensity maps binned into suitable tomographic redshift slices of width ∆z = 0.05, I

attempt to recover the redshift distribution of an unknown optical galaxy population produced

from this large sky catalogue. Figure 3.10 shows the results when using an angular resolution

which varies with redshift as described by (3.26) to make the test representative of an SKA-like

single-dish intensity mapping experiment beam. I also note that the increased shot noise from

the higher mass cut applied to the MICE catalogue is highly sub-dominant to the beam size

effect.

These results demonstrate that even with a large beam corresponding to an SKA-like single-

dish HI intensity mapping experiment, an accurate redshift estimation can be made for the

optical population. For cosmological HI intensity mapping surveys, telescopes may cover a sky

area over 10,000 deg2 (larger than the sky coverage from the MICE catalogue galaxies), which

suggests that our results represent conservative forecasts since increased sky size should lower

the errors as suggested by (3.27). Furthermore, it is worth reiterating that intensity mapping

experiments such as CHIME and HIRAX will have better angular resolution (probing angular

scales as low as 0.26◦ and 0.08◦, respectively).

I note that these large sky maps do not include simulated foreground cleaning due to the

added complexity of not being able to use the flat-sky approximation. However, the results

obtained from Section 3.4.2 suggest that foreground contamination should not be a critical
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Figure 3.9: Large sky HI intensity map using MICE catalogue galaxies with halo masses converted
into predicted HI masses. Since this is now a much larger patch of sky, we can no longer make
the flat-sky approximation, and therefore I use a HEALPix projection for the map. This particular
example is a slice taken at 0.60 < z < 0.65 with θFWHM ≈ 1.3◦.

Figure 3.10: Results from using the large sky HI intensity maps to recover the optical redshift
distribution. Here I have used the MICE catalogue with a frequency dependent beam size given
by equation (3.26) for an SKA-like single dish experiment with a dish size of Ddish = 15m.
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problem for a clustering-based redshift estimation with intensity maps. This is investigated in

more detail in the following Chapter 4, where more robust simulations are conducted.

3.4.4 Improvement on Photometric Redshift Measurements

The main aim of this work is to offer a new way of improving upon photometric redshifts, which

is a major challenge for upcoming stage-IV optical telescopes like Euclid and LSST. In order

to investigate this and build a pipeline we need a catalogue of galaxies for which there are

robustly simulated photometric redshifts. As discussed in Section 3.2.2.1, in lieu of a simulation

containing all the ingredients we would like, we choose to use a simulation that has robustly

simulated photometry and then add HI emission to all galaxies using an analytical formula. Since

we wish to emphasise the value of using our clustering redshift technique on future stage-IV

surveys, we choose to make use of the simulated photometric redshifts from [19] (A2A). This

includes simulated LSST and Euclid-like photometry from the mock catalogues generated by

[138] using the GALFORM semi-analytic code on light-cones extracted from the Millennium

Simulation [199]. The A2A catalogues also include photometric redshift estimates obtained using

the BPZ estimation code [32], which is what we use when comparing a redshift distribution

obtained using photometric redshifts against our clustering-based method.

Firstly, I show the performance that we can expect from an LSST-like experiment when trying

to estimate the redshift distribution using photometric redshifts. This is displayed in Figure 3.11,

and it shows significant deviation from the true redshift distribution. Here I bin the photometric

galaxies using most-likely photometric redshift estimates obtained using the BPZ estimation

code. Of course in reality LSST redshift catalogues will involve calibrations of and improvements

over raw BPZ redshifts from the LSST bands, but here we simply seek to show how HI intensity

mapping calibration can be one of these methods.

The A2A catalogue I use extends to redshift z = 3 and covers a sky area of just over 25 deg2. To

simulate the HI mass for each galaxy I use equation (4.6) again as I did for the MICE catalogue

in Section 3.4.3.1. From this I can again follow the steps laid out in Section 3.2.1.1 and produce

mock intensity maps. The A2A simulation has a mass resolution of 1.72×1010 h−1M¯, which as

discussed earlier means the simulated HI emission will not include faint HI emitters. This lack

of completeness in our simulated intensity maps is not ideal but is likely to cause results to be

worse than if we had more complete intensity maps; these would be a better representation of

the underlying mass density and hence improve the precision of the correlation functions.

With only 2,950,025 galaxies in our A2A catalogue, an angular resolution which is identical

to our SAX simulation of 2 pixels per arcminute and 30 redshift bins over a 0 < z < 3 range with

∆z = 0.1, this gives a low number density of galaxies of 0.27 galaxies per voxel. Despite this a

clustering redshift recovery is still possible.

One way of demonstrating the improvements we can make in constraining this distribution

is to select a sub-population of galaxies between chosen photometric redshift limits. We can

then examine the accuracy of the redshift distribution inferred from our clustering redshift

method for this sub-population.
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Figure 3.11: The performance of a simple redshift estimation with LSST bands from the A2A cat-
alogue. Here galaxies are binned (into the four bins indicated by vertical dashed lines) according
to their most likely estimated redshift from running BPZ, with the histograms being of their true
redshifts. This is equivalent to stacking P (z) for individual galaxies in the case of Gaussian P (z)
with widths given by the BPZ widths.

The pink shaded regions in Figure 3.12 show various redshift intervals from which we are

aiming to select galaxies. I select the galaxies using their known photometric redshifts and display

their distribution with the orange line. From the photometric information alone one would

conclude that a suitable population of galaxies has been selected with the desired redshift range.

However, the black dashed line shows the true distribution, which extends significantly outside

the claimed redshift interval. With our HI clustering redshift method we can estimate this true

distribution thus allowing the experiment to calibrate the error on the photometric selection

accurately. Figure 3.12 highlights both the need for methods that calibrate the photometric

redshifts, and the potential success which our approach can have in providing this.

A further speculative approach, which is unlikely to go beyond a thought experiment level

due to computational cost, would be to explore selecting galaxies from the unknown sample

that maximise the correlation function signal. One could then claim that these galaxies fall

within a certain redshift range based on the fact that they improve the correlation function

with their inclusion. This can be put most simply by considering Figure 3.12. One could take

the galaxies that make up the photometric redshift population as the ‘first-guess’ for exactly

which galaxies lie within the target redshift range. Then, using a sophisticated trial-and-error

approach, one could remove or add galaxies that bring the true distribution (predicted by the

HI-clustering redshift estimation) into agreement with the targeted redshift range. As mentioned

this would be a computationally expensive process but the final result, assuming one could

avoid noise contaminating the final distribution, would be a population of resolved galaxies all

of which have been predicted to fall within a redshift range, which one could arguably make thin.
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Figure 3.12: Complement to Figure 3.11 where I am now selecting galaxies based on their
photometric redshift estimates. The pink shaded regions show the range in photometric redshift
which galaxies are selected from. The orange line shows the distribution of these chosen galaxies
according to their BPZ photometric redshift from LSST bands. The black-dashed line shows the
true distribution, and the blue points show our HI clustering redshift estimate. This was done
using the A2A catalogue adapted to include HI emission information using equation (4.6). Given
the small sky area, intensity map resolution was set to θFWHM = 2′.

Were this idea found to be feasible it would extend the clustering redshift method to be able to

not just calibrate photometric redshift errors, but also actually improve the redshift estimates

constraining them on the same scales as the bin width size (∆z = 0.1 and below).

3.5 Summary

By utilising realistic simulations of HI emission from galaxies, I have constructed HI intensity

maps and provided evidence that they can be used to estimate the redshift distribution of

a sample of optically resolved galaxies via the clustering cross-correlation method (Figure

3.6(a)). Our estimator uses the zero-lag element of the cross-correlation function between

the intensity map and optical galaxy count field, rendering it computationally inexpensive.

This computational efficiency, coupled with the fact that intensity mapping will be a much

faster probe compared to a spectroscopic survey, means that the method I have presented is a

rapid option for constraining the redshift distribution for a large population of galaxies. Next
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generation surveys are promising to provide larger galaxy catalogues than ever, meaning that

fast options for redshift constraints are likely to be in demand.

Given that experiments such as HIRAX, MeerKAT and the SKA have plans to operate as

intensity mapping experiments in the near future, and CHIME is already taking data, a HI

clustering redshift method has particular relevance for stage-IV optical surveys such as Euclid

and LSST, which will all run at similar times. While surveys such as Euclid are planning to

run their own spectroscopic experiments, these are time-consuming, and LSST will be purely

photometric, so in each case HI intensity mapping clustering redshifts are likely to be useful.

Euclid and LSST redshift ranges are accessible to planned intensity mapping surveys such as

CHIME, HIRAX, MeerKAT and the SKA and the sky overlap between many of these optical and

radio surveys is excellent too. Our results from Section 3.4.3.1 suggest that intensity mapping,

even with the poor angular resolution that single-dish experiments are anticipated to have, can

provide helpful redshift constraints on optical populations. It is also likely that these particular

results are pessimistic since the intensity mapping experiments will most likely cover a larger

sky area than that in the MICE simulation I used. Furthermore, in future the limit on halo mass

resolution in simulations will decrease, emulating realistic HI intensity maps which include

more faint galaxies, thus boosting the precision of the cross-correlations.

I have discussed the issue of modelling the linear bias, which is a problem that is inherent

in all clustering redshift methods. This is arguably a more serious problem for the case of HI

intensity mapping however, since the auto-correlations could potentially be further biased by

contaminating foregrounds. I have made it clear that our idealistic approach of measuring the

bias in our simulations would be difficult in reality; however, utilising cross-correlations with

lensing data is one possible way to tackle this issue.

I also discussed some of the effects of foreground cleaning necessary for HI intensity maps

to undergo. In the context of a clustering redshift method, the largest problem this poses is that

a foreground clean on intensity mapping data affects large radial modes where the foregrounds

are less distinguishable from the HI signal. I investigated this problem by removing large radial

modes from our intensity maps to emulate this loss of information.

Our results, depicted in Figures 3.6(b) and 3.7, show that even with the loss of large portions

of radial modes (low ξ), reasonable predictions of the redshift distribution can still be made. The

fact that many large radial modes can be subtracted without too much damage to our method

demonstrates that a lot of the useful matching information is in the small radial modes still

exploited in the cross-correlations.

Further encouragement comes from recent work by [240], which proposes a foreground

removal method that will not result in such losses of long-wavelength modes. This, together

with our results, suggests that foreground contamination should not be an insurmountable

problem for clustering-based redshift estimation involving HI intensity maps. However, this is

investigated in more detail in the following Chapter 4 where more robust simulations are used.

I make this claim with a few caveats however, as there are still aspects of the foreground

problem that require further exploration (some of these caveats are addressed in the following

Chapter 4). Firstly, I have only investigated the impact foreground cleaning has on large radial
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modes. Our method of simulating a foreground clean represents a basic approach to what

is a very complex problem. It is true that foregrounds can also affect smaller scales similar

to the beam size especially if considering impact from polarisation leakage. Furthermore, in

the case of interferometers, additional complications need to be considered that are caused

by the ‘foreground wedge’. This is an effect that renders an area of k-space, known as the

‘horizon-wedge’, liable to foreground contamination that can be picked up from antennae with

far side-lobe responses [194]. In Chapter 4 I will incorporate simulated foreground maps into

our intensity maps and then proceed with a foreground cleaning algorithm; this is the only way

to provide a fully realistic test of the effects of foreground removal.

Using simulated photometric redshifts from the A2A catalogue I highlighted the potential

improvements that could be made using clustering redshift estimation, as shown in Figure 3.12.

This plot summarises the main point of the paper since it identifies that photometric redshifts

have limitations in accuracy (especially at higher redshift) signalling the need for some accurate

method of calibration, which clustering-based redshift estimation with HI intensity mapping

offers.

Producing this work has also highlighted the need for catalogue simulations capable of being

used to build realistic intensity maps, which also include simulated optical photometry, and

cover a large sky area. This has been discussed throughout but I reiterate that a simulation which

included

• simulated photometry for optically resolved galaxies so estimates using photometric redshifts

can be done;

• simulated HI information for each galaxy for simulating realistic intensity maps;

• low halo-mass resolution (≈ 109h−1M¯) so intensity maps include integrated HI emission

from faint galaxies;

• large sky-coverage (≈ 10,000deg2) to allow for testing low resolutions associated with a typical

intensity mapping experiment’s beam size

would be hugely beneficial not just for extending upon this work, but also for further exploration

of potential synergies between optical and radio surveys.

The absence of such a simulation was significant when I extended our method to larger sky

areas and quantified photometric redshift improvements. I used MICE and A2A respectively

and settled for generating our own HI emission for each galaxy using an analytical formula

(equation (4.6)). Both of these catalogues however do not have sufficient halo mass resolution

for realistic HI intensity maps. I have argued that this is only a limitation on current simulated

tests and there is no reason to suppose that this will have over-inflated the effectiveness of this

method. On the contrary, it is likely that obtaining lower mass-resolution, more complete HI

intensity maps would improve our results since the more realistic intensity maps would be a

closer representation of the underlying mass density providing the potential for more precise

correlation functions.

Given that we are expecting huge increases in galaxy number densities from upcoming

galaxy surveys, the strain placed on spectroscopic follow-up is also going to increase, therefore
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motivating clustering-based redshift estimation methods. I believe that using HI intensity maps

within such clustering redshift methods provides an exciting possibility that warrants further

investigation.

In the following chapter, I will continue some of this investigation by including simulated

21cm foregrounds and a pipeline for removing their contamination. This will be provide an

understanding of the impact of foregrounds on methods such as HI clustering-based redshift

estimation and other cross-correlation techniques.
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FOREGROUND CONTAMINATION IN HI INTENSITY MAPS

Cunnington S., Wolz L., Pourtsidou A., Bacon D., (2019), Mon. Not. Roy. Astron. Soc., 488, 5452

This chapter presents work from the above published article [60] with amendments made to the

original published script for the purposes of this thesis. For all parts of this chapter, including text

and figures, I am the principal author with contributing edits from my co-authors.

T
he future of precision cosmology could benefit from cross-correlations between intensity

maps of unresolved neutral hydrogen (HI) and more conventional optical galaxy surveys.

A major challenge that needs to be overcome is removing the 21cm foreground emission

that contaminates the cosmological HI signal. In this chapter, I again use N -body simulations to

simulate HI intensity maps and optical catalogues which share the same underlying cosmology.

In an extension from the previous chapter (Chapter 3), I also add simulated foreground contami-

nation and use state-of-the-art reconstruction techniques to investigate the impacts that 21cm

foregrounds and other systematics have on these cross-correlations. I find that the impact a

FASTICA 21cm foreground clean has on the cross-correlations with spectroscopic optical surveys

with well-constrained redshifts is minimal. However, problems arise when photometric surveys

are considered: I find that a redshift uncertainty σz ≥ 0.04 causes significant degradation in the

cross power spectrum signal. I diagnose the main root of these problems, which relates to arbi-

trary amplitude changes along the line-of-sight in the intensity maps caused by the foreground

clean and suggest solutions which should be applicable to real data. These solutions involve a

reconstruction of the line-of-sight temperature means using the available overlapping optical

data along with an artificial extension to the HI data through redshift to address edge effects. I

then put these solutions through a further test in a mock experiment that uses a clustering-based

redshift estimation technique to constrain the photometric redshifts of the optical sample as

carried out in Chapter 3. I find that with my suggested reconstruction, cross-correlations can be

utilized to make an accurate prediction of the optical redshift distribution.
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4.1 Introduction

Methods involving detection of galaxies to trace large-scale structure are reliable providing

that the galaxy samples obtained by a survey have a sufficient number density. If not, the

measurements will suffer from significant statistical errors due to Poisson shot noise. Obtaining

a large number of resolved galaxies with precise redshifts is expensive; spectroscopic redshifts

with a redshift uncertainty σz ∼ 0.001 rely on long integration times making this a slow process.

Photometric redshifts offer a less precise alternative but can be obtained much more quickly

allowing dense catalogues of galaxies to be built [41][74]. It is for this reason that future stage-IV

surveys such as Euclid1 [16] will heavily rely on photometric redshifts, and the Large Synoptic

Survey Telescope (LSST)2 [133] will be entirely reliant on them.

As an alternative, radio intensity mapping techniques, which do not rely on resolving indi-

vidual sources, offer the prospect of more complete tracer maps with the redshift precision of a

spectroscopic survey. In complete contrast to optical surveys, HI intensity mapping provides

excellent constraints along the radial line-of-sight but poor angular resolution. This comple-

mentarity, together with the fact that cross-correlations are expected to alleviate survey-specific

systematic effects, makes synergies between intensity mapping and optical galaxy surveys

mutually beneficial.

The observed frequency (<1420MHz) of the photons emitted from HI places the signal in

the radio part of the electromagnetic spectrum. Therefore radio dishes are the conventional

choice of receiver for detecting these photons at low redshifts of z < 3. First detections using the

HI intensity mapping technique have already been achieved in cross-correlation with optical

galaxies in [162], [135] and [18].

The most prominent example of a next generation radio observatory is the Square Kilometre

Array (SKA)3 [23]. The mid-frequency instrument, SKA1-MID (where 1 stands for Phase 1), will

be an array of 197 dish receivers that can operate in interferometer and single-dish mode. The

low frequency instrument, SKA1-LOW, will probe the high redshift Universe, targeting the Epoch

of Reionisation. As with any interferometer, it is the largest separation (or baseline) which

determines the resolution of the instrument; hence baselines of up to 150 km are proposed to

maximize resolution. Conversely, it is the smallest baselines between receivers which determines

the largest scales that can be probed. The SKA1-MID instrument aims to perform a wide (∼
20,000 deg2) HI intensity mapping survey in single-dish mode. This compromises angular

resolution but probes the large scales needed for cosmology.

The redshifted 21cm line signal from HI benefits from being particularly isolated in frequency,

and there are few examples of spectral lines that could lead to potential line confusion, making

HI intensity mapping particularly robust for redshift experiments. However, a major challenge

for HI intensity mapping comes from foreground emission (e.g. synchrotron radiation), which

can be orders of magnitude larger than the cosmological signal. Foregrounds are spectrally

smooth signals which emit in the same range as the redshifted HI . Blind foreground removal

1www.euclid-ec.org/
2www.lsst.org/
3www.skatelescope.org/
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21cm IM Survey Photo-z Survey fsky zmin zmax

MeerKAT × DES 0.1 0 1.45
TIANLAI × DECaLS 0.15 0 1.5

SKA1-MID × Euclid 0.2 0.35 2
SKA1-MID × LSST 0.4 0.35 3

HIRAX × Euclid 0.2 0.8 2
HIRAX × LSST 0.5 0.8 2
CHIME × Euclid 0.35 0.8 2
CHIME × LSST 0.5 0.8 2.5

Table 4.1: Examples of cross-correlation opportunities between 21cm intensity mapping surveys
and optical photometric redshift surveys, with (approximate) estimates for their sky and redshift
overlap. fsky refers to the fraction of full sky for which these surveys can overlap. zmin and zmax

represent the common redshift overlap range.

techniques, which require no prior knowledge or templates of the foregrounds, can be used to

exploit the smooth form of most foreground signals along the line-of-sight to isolate and remove

them.

In this chapter I investigate how foreground removal can impact important cosmological

measurements. Several studies have investigated how foreground removal can be carried out

without detrimental impact on the HI auto-correlation power spectrum recovery [228][195][11].

In this chapter I aim to place particular emphasis on the foreground removal’s impact on cross-

correlation measurements with optical galaxy surveys. Examples of some future optical-21cm

cross-correlation possibilities are outlined in Table 4.1. In order to investigate the impact of

foregrounds on cross-correlations, I utilize mock galaxy catalogues built from N -body simula-

tions of dark matter particles. This approach allows for both optical and HI intensity map data

to share the same underlying simulated cosmology, with realistic parameters (such as number

density of galaxies) corresponding to the specifications of current and forthcoming surveys.

The plan of the chapter is as follows: In Section 4.2 I describe how I simulate the cosmological

signals, both the resolved optical galaxy number density maps and the overlapping HI intensity

maps. Section 4.3 explains how I simulate the 21cm foregrounds, which are then added into

the HI cosmological signal to contaminate the intensity maps. Section 4.4 then explains the

processes used for removing these foregrounds and details the FASTICA approach that I opt to use

on the simulations. In Section 4.5 I analyze my results and demonstrate what impact foreground

cleaning can have on a cross-correlation power spectrum. In Section 4.6 I extend these findings

and apply them to a practical experiment which utilizes these cross-correlations to constrain

photometric redshifts using HI intensity maps. I conclude and discuss in Section 4.7.

4.2 Cosmological Signals & Their Simulation

In order to probe the large-scale cosmic structure and map the matter over-density δ, we

rely on luminous sources which trace the underlying matter density. In optical galaxy redshift

surveys we use number density fields ng(~θ, z) where resolved galaxies can be counted in voxels
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(3-dimensional pixels) at angular position ~θ with a redshift z which is used for defining the

line-of-sight (LoS) distance. We can then calculate the over-density of galaxies δg, which we

assume is a linearly biased tracer of the matter over-density δ. As already introduced in previous

Chapters 1 and 3, which I re-define here for completeness, the galaxy over-density can be defined

by

δg(~θ, z) ≡ ng(~θ, z)−ng(z)

ng(z)
= bg(z)δ(~θ, z) , (4.1)

where a barred quantity represents a mean average and bg is the (linear) galaxy bias.

For HI intensity maps there are no resolved luminous sources, only combined brightness

temperatures in a given voxel. Assuming that HI is also a biased tracer of the underlying matter

density we can write

δHI(~θ, z) ≡ THI(~θ, z)−THI(z)

THI(z)
= bHI(z)δ(~θ, z) , (4.2)

where the linear bias factor is now bHI. Note that the mean brightness temperature THI is also an

unknown quantity, degenerate with bHI. Since the observable is a temperature fluctuation, it is

customary to work with temperature fluctuation maps where

δTHI(~θ, z) ≡ THI(~θ, z)−THI(z) = THI(z)bHI(z)δ(~θ, z). (4.3)

It is these quantities, δg and δTHI, which can be used to make cosmological measurements e.g.

auto-power spectra Pgg ∼ 〈|δ̃g|2〉 or cross-power spectra Pg,HI ∼ 〈Re{|δ̃gδ̃T ∗
HI
|}〉. Here the tilde

notation δ̃ represents the Fourier transform of the matter over-density.

An important measurement in cosmology, and one I heavily focus on in this chapter, is

the angular clustering of a matter density tracer. In order to apply this with HI intensity maps,

we measure the angular power spectrum by decomposing the temperature fluctuations into

spherical harmonics Y m
`

(n̂):

δTHI(n̂,ν) =
∞∑
`=0

m=`∑
m=−`

a`m(ν)Y m
` (n̂) . (4.4)

The harmonic coefficients a`m(ν) describe the amplitudes of the fluctuations in spherical

harmonic space; we can then define the angular power spectrum between tracers X and Y as

C X Y
` (ν1,ν2) = 〈aX

`m(ν1)aY ∗
`m(ν2)〉 . (4.5)

Consideration must also be given to data that does not cover the full sky and instead comes from

only the footprint covered by the survey. The simulations I use will have partial sky coverage

and therefore emulate this problem. This has consequences for the power spectrum and results

in correlated multipoles which bias the measurement. In this chapter I am not particularly

interested in making precise comparisons of a measured power spectrum to say one predicted

by aΛCDM model. Instead I am interested in the comparison of a power spectrum free of 21cm

foregrounds to one contaminated by them, which should both be biased by cut skies in the same

way. However, to ensure an accurate treatment of the cut skies I will use the pseudo-C` method

of angular power spectrum measurement [216][217] and use the unified pseudo-C` framework

NaMaster4 [15] and its python wrapper pymaster.
4https://github.com/LSSTDESC/NaMaster
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If the tracer fields are Gaussian, the power spectrum (4.5) is a complete statistical representa-

tion of the fields. The power spectrum can either represent the HI intensity map auto-correlation

where X = Y = HI, or the cross-correlation with the optical galaxies where X = g and Y = HI.

Hence, in order to use simulations to study the impact 21cm foregrounds can have on cross-

correlation cosmological measurements such as C g,HI

`
, we require a simulation which includes

HI emission and resolved optical galaxies.

In many 21cm studies it is sufficient to simulate wide continuous intensity maps through

Gaussian realizations of a HI power spectrum. However, for this chapter we need an optical

galaxy catalogue which shares the same underlying cosmology as the HI intensity maps, since

we are looking to exploit a shared clustering signal between resolved optical galaxies and HI

emission for cross-correlated measurements. It is also preferable to have the optical galaxy

simulation as a resolved catalogue of sources so that N (z) distributions can be built precisely

from individual galaxy redshifts. We can then choose to degrade the redshift accuracy in order to

emulate a photometric imaging survey.

In order to achieve this I use a similar method to that used in Chapter 3 which I discuss again

here for completion. I use existing N -body galaxy simulations and exploit certain components

of them, e.g. HI mass or halo mass to simulate HI brightness temperatures which I can build

intensity maps from. Utilizing N -body simulations also allows for a more robust representation

of a survey catalogue than Gaussian realized signals. With this in mind we ideally require a

catalogue which has the following features:

• low halo-mass resolution (≈ 109h−1M¯) so that intensity maps include integrated HI emission

from faint galaxies;

• HI information for each galaxy for simulating realistic intensity maps;

• deep redshift and wide sky coverage (0 < z < 3, ∼ 20,000deg 2) to allow for testing low resolu-

tions associated with the typical beam size of a SKA-like intensity mapping experiment;

• simulated photometry for optically resolved galaxies so that realistic cross-correlation fore-

casts can be made between intensity maps and photometric galaxy surveys.

A simulation including all of the above is not currently available, and is unlikely to be available

in the near future. This is largely due to the fact that low halo mass resolution with sufficient

galaxy number densities over large sky volumes would require N -body simulations that would

be exceptionally computationally expensive.

In this chapter I therefore utilize two simulated catalogues with differing characteristics. One

catalogue contains HI signal with a low halo mass resolution and simulated HI masses for every

galaxy. The other is a more conventional optical survey catalogue with simulated photometry

but which is not as resolved in halo mass. I will now describe the two catalogues in detail.
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Catalogue Box Volume mp Ngal fsky zmax

[(Mpc/h)3] [M¯/h]
GAEA 5003 8.6 ×108 201×106 0.5 0.5
MICE 30723 2.9 ×1010 497×106 0.125 1.4

Table 4.2: Summary of the two different mock galaxy catalogues I will be using. Both are built
from N -body simulations for which I provide the box size and particle mass mp.

• GAEA Simulation5

I make use of the GAEA semi-analytic model [239][233][101]. The catalogue was built using the

Millennium Simulation [199], which is a cosmological N -body simulation that used N = 21603

particles of mass mp = 8.6×108h−1M¯ within a comoving box of size 5003 (Mpc/h)3 with a

cosmology consistent with WMAP1 data. In particular, the values of the adopted cosmological

parameters are:ΩB = 0.045, Ωm = 0.25, ΩΛ = 0.75, H0 = 100h Mpc−1km s−1, h = 0.73, σ8 = 0.9

and ns = 1. The GAEA catalogue is built replicating this same box, but selecting galaxies from

the nearest snapshot corresponding to its co-moving distance from the observer.

GAEA used an algorithm to identify halos which allowed for a halo mass resolution of

1.7×1010M¯h−1 which resulted in just over 2×108 galaxies with a continuous sky coverage

fsky = 0.5. Redshifts are limited to 0 < z < 0.5 which means we will only be able to study cross-

correlations within this small range, but this should still allow for multiple redshift/frequency

bins given the completeness within this range. GAEA also includes simulated HI masses for all

its galaxies, which can be used to generate realistic HI brightness temperatures. I discuss this

further in Section 4.2.1.

• MICE Simulation6

I also make use of the MICECATv2.0 simulation(Chapter 3 used an earlier version for the large-

sky maps) released as part of the MICE-Grand Challenge Galaxy and Halo Light-cone Catalogue

[78][58][79][44][102], which is a cosmological N -body dark matter only simulation containing

40963 dark-matter particles of mass mp = 2.93×1010h−1M¯ in a box-size of 30723 (Mpc/h)3.

They resolved halos down to a few 1011M¯h−1 and used a hybrid Halo Occupation Distribution

(HOD) and Halo Abundance Matching (HAM) technique for galaxy modelling resulting in just

under 5× 108 galaxies. The simulation’s sky footprint is 90× 90 deg2 filling an octant of sky

( fsky = 0.125) up to a redshift z = 1.4. The assumed cosmology is a flat concordance ΛCDM

model with Ωm = 0.25, ΩΛ = 0.75, ΩB = 0.044, ns = 0.95, σ8 = 0.8 and h = 0.7 consistent with

WMAP 5-year data.

Since the MICE catalogue does not have simulated HI masses for each galaxy, we must derive

our own. I therefore take each central galaxy’s halo mass as simulated by MICE and convert this

into a predicted HI mass by following the redshift dependent prescription laid out in [156]

MHI = 2N1M
[( M

M1

)−b1 +
( M

M1

)y1]−1
, (4.6)

5http://astrosims.flatironinstitute.org/gaea
6http://maia.ice.cat/mice/
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where M is the galaxy’s halo mass; M1, N1, b1 and y1 are all free parameters with redshift de-

pendence tuned to provide a best fit; I refer the reader to [156] for details. Each central galaxy

then has a HI mass from which I can generate a HI brightness temperature signal. While this

prescription would not be ideal for small scale studies of HI distribution, since I am assuming

that all HI lies within central galaxies, it suits our purposes because I will be smoothing out any

small scale imprecisions when I simulate the effect of an intensity mapping beam.

From these catalogues, which I summarize in Table 4.2, I will produce both HI intensity maps

(Section 4.2.1) and a detected optical galaxy catalogue (Section 4.2.2), which will share the same

underlying dark-matter distribution. It is this shared clustering signal which I will look to utilize

in the cross-correlation tests. I emphasize once more that I use these two separate N -body

simulations since each one has unique advantages. For example the semi-analytical GAEA has

replication of the particle box sample which delivers larger sky sizes and also has HI masses for

each galaxy at lower mass resolution. Both of these features contribute to delivering more robust

simulations of large-beam HI intensity maps. In contrast MICE uses a HOD/HAM approach over

a larger box size, so is arguably more realistic in its cosmological signal in that no replication is

required, but perhaps less realistic in that it distributes synthetic galaxies into simulated halos

using a statistical approach rather than simulating baryonic process to drive galaxy evolution,

as performed in semi-analytic models. MICE also includes some simulated photometric red-

shifts which I utilize for forecasting the impacts of HI foregrounds in cross-correlations with a

photometric survey.

4.2.1 HI Intensity Map Simulation

I aim to express the HI intensity map data THI in the form of a brightness temperature with two

angular dimensions (θra and θdec, jointly represented by~θ for notation purposes) and a radial

dimension, the redshift z. To do this I follow the same recipe laid out in Chapter 3 and [59] which

I repeat here for completeness.

To construct THI I start with the HI mass MHI of each galaxy, which is given in the GAEA

catalogue and generated using halo masses and equation (4.6) for MICE. I then place the galaxies

into a data cube with coordinates (θra,θdec, z) by binning each galaxy’s HI mass into its relevant

voxel so I end up with a gridded HI mass map MHI(~θ, zc ).

I can then convert this into an intensity field for a frequency width of δν subtending a solid

angle δΩ (which is effectively the pixel size)

IHI(~θ, z) = 3hP A12

16πmH

1

[(1+ z)dc(z)]2

MHI(~θ, z)

δνδΩ
ν21 , (4.7)

where hP is the Planck constant, A12 the Einstein coefficient which quantifies the rate of sponta-

neous photon emission by the hydrogen atom, mH is the mass of the hydrogen atom, ν21 the

rest frequency of the 21cm emission and dc(z) is the comoving distance out to redshift z (I will

assume a flat universe).
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It is conventional in radio astronomy, in particular intensity mapping, to use brightness

temperature which can be defined as the flux density per unit solid angle of a source measured

in units of equivalent black body temperature. Hence, the intensity IHI(~θ, z) can be written in

terms of a black-body temperature in the Rayleigh-Jeans approximation T = I c2/(2kBν
2) where

kB is the Boltzmann constant. Using this we can estimate the brightness temperature at redshift

z

THI(~θ, z) = 3hPc2 A12

32πmHkBν21

1

[(1+ z)dc(z)]2

MHI(~θ, z)

δνδΩ
. (4.8)

For cosmology studies one aims to make measurements at different redshifts. I therefore choose

to slice the intensity maps into thin tomographic redshift bins and collapse these to a 2D slice

which can be auto-correlated or cross-correlated with another survey map. I will often discuss

binning by frequency (ν) or redshift (z). To clarify, these are interchangeable expressions since

z +1 = ν21/νobs. For consistency however, bin widths will always be constant in redshift. The

width of each tomographic redshift bin needs to be thin enough that we can make certain

thin bin assumptions, yet wide enough that we allow for sufficient structure to obtain a strong

cross-correlation signal. By thin bin assumptions I am referring to cosmological quantities such

as the bias, which I assume to be constant within the width of the bin (∆z = 0.02,0.05 for GAEA

and MICE respectively).

In order to ensure the HI intensity map amplitudes are in agreement with what is theoretically

predicted, I choose to rescale each redshift bin so that it agrees with a model average temperature

THI. For example [28] gives this average temperature as

THI(z) = 180ΩHI(z)h
(1+ z)2

H(z)/H0
mK (4.9)

where ΩHI is the HI density (abundance). In principle ΩHI can be measured using the auto-

correlation HI power spectrum with redshift space distortions, assuming a fixed fiducial cosmol-

ogy [135][170]. For this chapter I use a fit for the HI density [23]

ΩHI(z) = 0.00048+0.00039z −0.000065z2 . (4.10)

In radio HI intensity mapping the observable signals detected by a telescope are brightness

temperature fluctuations,

δTHI(~θ, z) = THI(~θ, z)−THI(z) . (4.11)

I will therefore convert all the intensity maps to these quantities.

4.2.1.1 Receiver Noise

As we are aiming to simulate realistic observations, we need to include the effects of instrumental

(thermal) noise. For the case of a single-dish intensity mapping experiment instrumental noise

can be modelled as uncorrelated Gaussian fluctuations. Following [11] and [189] I add onto the

observable maps a Gaussian random field with rms

σnoise = Tsys

√
4π fsky

ΩpixNdishtobsδν
. (4.12)
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Figure 4.1: Angular power spectrum at a redshift of z = 0.25 (ν= 1136 MHz) for both the cos-
mological signal (blue solid line) for a HI intensity map produced using the GAEA catalogue,
and instrumental noise (red solid line). Also included is the effect of a θFWHM = 0.5o Gaussian
convolution (blue dashed line) which shows a degradation in the cosmological HI signal on
smaller scales (high `). The grey vertical dashed line shows the angular scale of this beam. We
see that instrumental noise begins to dominate at around `> 700.

Here Tsys is the total system temperature which is the sum of the sky and receiver noise, Tsys =
Trcvr +Tsky with Trcvr = 0.1Tsky +Tinst and Tsky(ν) ≈ 60(300MHz/ν)2.55 K. I set Tinst = 20 K which

is representative of SKA1-MID for the redshift range 0 < z < 0.58.Ωpix = 1.133θ2
FWHM is the solid

angle for the intensity mapping beam. I also assume SKA1-MID-like values for the remaining

variables in the noise model with the fraction of sky fsky = 0.41 (representative of an SKA-LSST

overlap), the number of dishes Ndish = 197 and the total observation time tobs = 10,000 hours.

Lastly, δν is the frequency bandwidth for a particular redshift bin. Figure 4.1 shows the level of

this noise in relation to the cosmological HI signal. We can see that the noise only begins to

dominate when the signal has the telescope beam effects (discussed in next section) included,

and this is only at small scales (high `).

A complete noise simulation would require the inclusion of red noise (or 1/ f noise) which

originates from time correlated gain fluctuations unique to radio receivers [94]. Here I assume

that using component separation techniques, this noise can be removed [94]. There is also an

argument to include the effects of cross-shot noise caused by HI emitting galaxies, which provide

signal in the intensity maps, also being present in the optical galaxy sample [231]. I assume these

additional noise effects are sub-dominant at the scales of interest and do not include them in

my simulations.
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4.2.1.2 Beam Resolution

To model the low angular resolution of an intensity map, I convolve δTHI with a telescope beam

in Fourier space making use of the convolution theorem. The telescope beam is modelled as

a symmetric, two-dimensional Gaussian function with a full width half maximum of θFWHM

acting only in the directions perpendicular to the LoS (as the frequency/redshift resolution is

excellent). The beam size can be determined by the dimensions of the radio receiver and the

frequency which is being probed [13]:

θFWHM = 1.22c

νDmax
, (4.13)

where Dmax is the maximum baseline of the radio telescope; for a single dish receiver, Dmax

is given by the dish diameter. The GAEA redshift range of 0 < z < 0.5 would mean we are

looking at beam sizes of 0.99o < θFWHM < 1.45o for the intensity maps, where I have assumed

a maximum baseline of Dmax = 15 m which is representative of the SKA1-MID dishes [23].

The MICE catalogue, which extends to redshifts of z = 1.4 will reach even larger beam sizes of

θFWHM = 2.36o. Figure 4.1 shows how the beam effect can present challenges in that it causes

instrumental noise to dominate at small scales and potentially destroys information there. I

will include the beam scale in terms of multipole `beam on some future power spectra plots (as

done in Figure 4.1) as this is one of the most dominant effects on the results and on HI intensity

mapping power spectra in general.

An example of a completed intensity map tomographically sliced and collapsed into a 2D

angular map is shown in Figure 4.2. For all the full-sky maps I use HEALPix maps [87] where the

pixelization ensures that each pixel covers the same surface area as every other pixel. I handle

the maps in HEALPix RING ordering scheme with resolution nside= 512, which corresponds to

12×5122 = 3,145,728 pixels across the sky.

4.2.2 Optical Galaxy Catalogue Simulation

For probing large-scale cosmic structure with resolved optical galaxies I use number density

fields. While we ideally require a simulated catalogue with high number density and complete-

ness for the HI intensity maps, it would be unrealistic to expect every one of the low mass

galaxies to be resolved and detected by a conventional wide area optical survey. Therefore to

make this a realistic test we need to introduce some detection threshold which results in only

the brightest galaxies being included in the optical sample. We also desire to have realistic N (z)

redshift distributions which tail off at higher redshifts where resolved detection becomes more

difficult. The way this is all achieved is by invoking a model redshift distribution, given by

d Ng

d z
= zβexp(−(zα/zm)γ) (4.14)

where I use α=p
2 , β= 2 and γ= 1.5 [96] which are values typical of stage-IV optical large-scale

structure survey such as LSST or Euclid. zm is the mid-redshift for the particular simulated

catalogue I am applying this to e.g. for MICE this would be zm = 0.7. I make the optical samples
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Figure 4.2: δTHI intensity map at redshift z = 0.25 (ν= 1136MHz) binned using constant redshift
intervals of ∆z = 0.02. This includes the effects of SKA-like noise and beam, outlined in Sections
4.2.1.1 and 4.2.1.2 respectively. At this frequency the beam size is approximately θFWHM = 1.23o.
This example is done with the GAEA catalogue covering half of the sky ( fsky = 0.5). This example
does not include any foreground contamination.

Figure 4.3: ng optical galaxy number density field with galaxies binned by true redshift at z = 0.25
with ∆z = 0.02. Unlike the intensity map in Figure 4.2, this map has no beam smoothing since it
represents observations by an optical telescope. However, for this demonstration map only, I
have downgraded the HEALPix resolution to nside= 128. This is to make the shared structure
between this and the intensity map at the same redshift more apparent.

conform to this distribution by ordering galaxies by stellar mass in each redshift bin. Here I am

using stellar mass as a crude approximation of optical brightness which for our purposes will

be sufficient. I then pick the ‘brightest’ galaxies in each redshift bin until the model redshift

distribution is achieved. This process gives final galaxy catalogues with 2.67×107 galaxies for

GAEA, which is an average density of around 54 galaxies per square degree for each of the 24

redshift bins I use. For MICE I achieve a much denser catalogue with 3.97×108 galaxies over a

smaller sky area giving 3.2×103 galaxies per square degree.

This optical sample makes no consideration of any classifications of galaxies. All are treated

as point-like and either ‘observed’ or not. More investigation could be taken into certain classifi-

cations e.g. by colour; red and blue galaxies are expected to cluster differently and have different

densities at different redshifts. This could plausibly have an effect on these studies and bias
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the correlation function; this has been touched upon in a recent cross-correlation study using

Parkes HI intensity maps and 2dF galaxies [18].

Figure 4.3 shows an example of a final over-density field for the optical data. This has been

made using the GAEA catalogue at z = 0.25; similarities between this and Figure 4.2 should be

apparent since these are both for the same dataset at the same redshift. I have shown this map

with nside= 128 to make the clustering pattern more obvious.

4.3 21cm Foregrounds & Their Simulation

I test the effects on HI intensity maps of four main foregrounds:

(i) Galactic synchrotron

(ii) Extragalactic point sources

(iii) Galactic free-free emission

(iv) Extragalactic free-free emission

Each of these processes emit signals in the frequency region of the redshifted HI signal i.e.

∼ 1420/(1+ z) MHz. Each of them are dominant over the HI signal which is inherently weak. In

some cases, such as galactic synchrotron, the foregrounds can be several orders of magnitude

higher in observed brightness temperature. It is therefore immediately apparent that this a major

challenge for the success of the HI intensity mapping technique.

Extragalactic point source foregrounds (ii) are caused by objects beyond our own Galaxy

emitting signals with wavelengths similar to the redshifted 21cm signal, a typical example being

AGNs. (iii) & (iv) represent free-free emission which is caused by free electrons scattering off

ions without being captured and remaining free after the interaction. In this weak-scattering

interaction low-energy photons are produced which can enter the 21(1+ z) cm wavelength

window we are interested in. These free-free interaction signals can be detected both within

(galactic free-free) and beyond (extragalactic free-free) our own Galaxy.

Lastly the synchrotron emission (i) occurs when high-energy electrons are subject to an ac-

celeration perpendicular to their velocity by the application of a magnetic field. This foreground

is typically caused by relativistic cosmic ray electrons accelerated by the galactic magnetic field.

It is the galactic synchrotron which is by far the most dominant of the foreground types and is

therefore the one we would like to concentrate most on removing.

4.3.1 Galactic Synchrotron

While it would be fairly straightforward to simulate Gaussian realizations of galactic synchrotron

from a model power spectrum, it is far more robust to make use of existing data and use this

to emulate the shape of the emission on the sky. This also allows us to study the impact of

subtracting a foreground which has wide structures, potentially eliminating information at large

angular scales.
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Foreground A β α ξ

Galactic synchrotron 700 2.4 2.80 4.0
Point sources 57 1.1 2.07 1.0
Galactic free-free 0.088 3.0 2.15 35
Extra-galactic free-free 0.014 1.0 2.10 35

Table 4.3: Parameter values for foreground C`’s (see equation (4.17)) with amplitude A given in
mK2. Pivot values used are `ref = 1000 and νref = 130MHz as per [188].

Unfortunately, foregrounds within the frequency range of the redshifted 21cm signal (400MHz <
ν< 1420 MHz) are less well studied than other foregrounds, for example those which impact the

microwave background emission at higher frequencies (ν> 10GHz). Therefore, obtaining actual

data maps of galactic emission at regular frequency intervals in the range we are interested is

challenging.

Following a method which has been used in similar HI foreground studies [195][228][14] I

use the Global Sky Model (GSM) [238] to generate maps T1420(~θ) and T400(~θ) which are emission

maps at 1420 MHz and 400 MHz, then use these to construct a full-sky spectral index given by

α(~θ) = lnT1420(~θ)− lnT400(~θ)

ln1420− ln400
. (4.15)

This is then used to extrapolate the Haslam map [97], which is one of few all-sky maps for galaxy

emission around these frequencies,

T0(~θ,ν) = THaslam(~θ)
( ν

408MHz

)α(~θ)
. (4.16)

This can now be used to simulate a map of the sky at any desired frequency. However, since the

Haslam map does not provide information beyond its own resolution (∼ 1o), we need a further

process to improve the resolution of these maps for any meaningful investigation of small scales.

I add in this additional small scale information through Gaussian realizations of an angular

power spectrum which models galactic synchrotron emission. Following [188] I make this

construction using the angular power spectrum

C`(ν1,ν2) = A
(`ref

`

)β( ν2
ref

ν1ν2

)α
exp

(
− log2(ν1/ν2)

2ξ2

)
, (4.17)

where ξ is a parameter which regulates the spectral smoothness of the foreground such that

smaller ξ cases are less smooth in frequency and are therefore more of a challenge to disentangle

from the cosmological signal. The rest of the parameters are defined in Table 4.3. Figure 4.4(i)

shows a full-sky map of the simulated galactic synchrotron emission for a frequency slice.

Galactic synchrotron has the added complication of being partially linearly polarized. This

polarized portion can undergo Faraday rotation which changes the polarization angle of the

radiation. The consequences for the HI signal have been studied in [111][110][140]. Generally

speaking this polarization response tends to erode the spectral smoothness of the signal, since

it is a frequency dependent effect, and the induced spectral structure is problematic for sep-

arating the foreground from the cosmological HI signal. This requires excellent instrumental
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Figure 4.4: Full sky maps of each simulated foreground at a frequency of 1136 MHz (z = 0.25).
These examples do not include noise or beam smoothing. All temperatures are in mK but the
galactic synchrotron map (i) shows the logarithm of the temperatures.

calibration to avoid leakages of the polarization effects. The simulation of such polarization

leakage is complex and instrument specific. For this chapter I do not simulate any polarization

of the synchrotron emission, but I do opt to convolve all the maps at differing frequencies to a

common resolution based on the maximum size of the instrument beam. This is thought to be

an active step in mitigating the effects of polarization leakage. This is likely due to decreasing

the consistency with which the magnetic field can be directed, thus making the Faraday rotation

more stochastic and unable to create the structured frequency dependence which causes the

contamination problem. Mitigating the effects of polarization leakage by further smoothing the

maps is something that is carried out in the Green Bank Telescope HI intensity mapping data

analysis [205].

4.3.2 Point Sources & Free-Free Emission

While galactic synchrotron dominates over all other HI foregrounds, it is still important to con-

sider these additional contaminants since they still dominate over the HI signal. Extragalactic

point sources and extragalactic free-free emission are isotropic in nature, since they are sources

beyond our own Galaxy. Therefore it is realistic to simulate them with full-sky Gaussian realiza-

tions of the angular power spectrum I laid out in equation (4.17) using parameters from Table

4.3. This makes the assumption that the source of these foregrounds is Gaussian and also that
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Figure 4.5: Angular power spectra for all the different simulated foregrounds, and the HI cosmo-
logical signal produced using the GAEA catalogue. The black solid line represents the combined
signal from all foregrounds and the HI cosmological signal. All are at a frequency of 1136MHz
(z = 0.25) and noise free with no beam effects added.

there is no angular correlation between point sources and HI emitting galaxies. While point

sources will cluster with the underlying matter density, the continuum signals they emit mean

that in any one redshift bin, angular correlation between point source signal and HI is likely to

be small.

Galactic free-free emission is not expected to be perfectly isotropic and will have some galac-

tic latitude dependence. However, because it has a low amplitude and very smooth frequency

dependence, this will not be a difficult foreground to subtract and I therefore do not believe a

more robust modelling is needed here.

For these three foregrounds, point sources, galactic free-free and extra-galactic free-free, I

therefore use equation (4.17) and the parameters from Table 4.3 for the simulations. Figures

4.4(ii),(iii) and (iv) shows maps of these three different foregrounds using the isotropic Gaussian

realization approach I have outlined. The lack of galactic latitude dependence is immediately

apparent in contrast to the galactic synchrotron map in Figure 4.4(i).

To complete this discussion on HI foregrounds I include the angular power spectra mea-

sured for each of the produced foregrounds in Figure 4.5 along with the cosmological signal.

This immediately highlights the challenge faced when attempting foreground subtraction as it

demonstrates how dominant all the foregrounds are over the cosmological signal I am trying to

extract.
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4.3.3 Simulated Observable Signal

To summarize, the simulated sky signal is a composition of maps at certain frequencies (equiva-

lently, redshifts) which can be described by

δTsky(ν) = δTHI(ν)+∑
i
δT FG

i (ν) (4.18)

where the first term comes from the signal described in Section 4.2.1 and the second term

is the contribution from all the different foregrounds outlined previously. Once these maps

are combined I smooth the total temperature map δTsky using the Gaussian beam given by

equation (4.13). I then add the simulated random noise from equation (4.12) to emulate basic

instrumental systematics, resulting in the final simulated observation

δTobs(ν) = Sbeam

(
δTHI(ν)+∑

i
δT FG

i (ν)

)
+δTnoise(ν) (4.19)

where Sbeam is the smoothing (or convolution) function.

4.4 Foreground Removal

While foregrounds pose a huge problem for the prospects of exploring cosmology with HI inten-

sity mapping data, there are some features that help distinguish them from the cosmological

21cm signal. We can utilize the spectral smoothness of the foregrounds to separate them from

the HI , which fluctuates with frequency. Figure 4.6 shows that along a LoS, the foregrounds

are very smooth, whereas the expected signal from HI has a strong frequency dependence. It is

this property that is utilized in a class of methods referred to as blind foreground subtraction.

Less general ‘non-blind’ approaches would involve precise modelling of the foreground con-

tamination. Given the lack of data for these foreground signals at the relevant frequencies, this

approach is not currently viable.

It is apparent however, that a foreground clean based on this distinguishing spectral smooth-

ness would be more successful for small wavelength radial modes, whereas for larger wavelength

radial modes the HI signal is more similar to the foregrounds. Hence these types of foreground

cleans can render large Fourier radial modes (or small k∥) useless. Removing large-scale modes

from HI intensity maps is therefore an expected effect of a foreground clean and was used

as a toy model to emulate the effects of foreground cleaning in Chapter 3 and [59]. In this

chapter I extend the foreground investigation by directly contaminating the maps with the fore-

grounds I outlined in Section 4.3, and then use state-of-the-art foreground removal techniques

to recover the HI input data and study the impact this will have on fundamental cosmological

measurements.

There are several blind foreground removal techniques, for example principle component

analysis (PCA) and independent component analysis (ICA) whose distinctions are outlined

in [11]. Further blind component separation methods include Generalalized Morphological

Component Analysis (GMCA) [49] and Generalized Internal Linear Combination (GnILC) [177].
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Figure 4.6: Observed brightness temperatures along a chosen LoS through frequency (or redshift).
This is presented for the MICE catalogue with 100 redshift bins to show a large frequency range.
The plot demonstrates the foreground smoothness in frequency (coloured solid lines), in contrast
to the highly oscillatory fluctuations of the HI signal (black dashed line).

For this chapter I examine the FASTICA method [108][48][228][230], which I describe in the

following section. [11] found there to be very little distinction between a PCA and ICA approach

to foreground cleaning, so this choice of FASTICA as a foreground removal process should not

affect the generality of my conclusions.

4.4.1 FASTICA Formalism

Here I introduce the basic principles of the Fast Independent Component Analysis (FASTICA)

technique, which I will utilize for foreground removal. For a more complete derivation and

discussion I refer the reader to [108]. In a blind foreground removal problem we assume that a

raw observed signal, such as that outlined in equation (4.19), can be generalized into a linear

equation where the elements making up the signal are statistically independent. That is

x = As . (4.20)

The dimensions and basic description of each term in this equation are given as:

x [Nz , 1]: combined observed signal

A [Nz , m]: mixing matrix - determines the amplitudes of s

s [m, 1]: independent components (containing foregrounds)

Practically this system will have some trace residuals which have some frequency dependence

which will include instrumental noise, any residual foregrounds which cannot be classified

into an independent component (IC), and the cosmological HI signal. FASTICA aims to solve
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equation (4.20) and identify each IC so that from the remaining residual, the HI signal can

be reconstructed. For each LoS, sorted into Nz redshift bins and assuming m ICs are present,

FASTICA assumes

x = As+ε=
NIC=m∑

i=1
ai si +ε , (4.21)

with ε[Nz , 1] the residual (containing HI signal and noise).

Under the assumption that each independent component si is statistically independent, FAS-

TICA attempts to solve equation (4.21) by utilizing the central limit theorem. This states that

the greater the number of independent variables in a distribution, the more Gaussian that

distribution will be i.e. the probability density function (PDF) of several independent variables

is always more Gaussian than that of a single variable. Hence, if we can maximize any statistical

quantity that measures non-Gaussianity, then we can identify statistical independence and form

a prediction for ai and si .

The parameter m must be pre-specified before calculations. This is the number of ICs that

can be described by unique non-Gaussian descriptions and is not necessarily the number of

different foregrounds one is aiming to find. It is typically assumed that m ≈ 4 [48][228][11] and

FASTICA then works by obtaining 4 data vectors which are as statistically independent as possible.

With FASTICA going to a higher number of ICs than is required converges to the same result.

However, the computational cost is increased so for efficiency, the lowest value for m which

gives the best possible result is sought.

The FASTICA process considers all LoS simultaneously. Therefore for its calculations on maps

with a number of pixels given by Npix, the ICs s in equation (4.21) are actually maps, and hence

an array with size [m, Npix], while x and ε are arrays of size [Nz , Npix]. Furthermore, as I will

further explain below, FASTICA involves some expectation value calculations which rely on a

number of samples and for this it uses the Npix different LoS.

To obtain s we start by inverting equation (4.21), ignoring the residual term ε which will just

be left over from signal not contained within the ICs. We can therefore write

s = Wx , (4.22)

here W is the weighting matrix, defined as the inverse of A in equation (4.20). Under the as-

sumption that the elements s are as statistically independent as possible, FASTICA then begins

maximizing the non-Gaussianity. For a measure of Gaussianity it uses negentropy J(y), which

for a variable y , is based on typical entropy H(y) defined as

H(y) =−∑
i

P (y = ai ) logP (y = ai ) , (4.23)

where P (y = ai ) is the probability that y equals a possible value ai . The modification made to

obtain the negentropy J (y) is

J (y) = H(yG)−H(y) , (4.24)

where yG is a unit-variance Gaussian random variable. In practice, negentropy is computation-

ally hard to calculate and requires numerous realizations to obtain information on probability
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distributions. However, using the maximum entropy principle, we can write

J (y) ≈−
n∑
i

ki [〈Gi (y)〉θ−〈Gi (yG)〉θ] , (4.25)

where ki are positive constants, Gi is referred to as the contrast function, and all pixels are utilized

by averaging over them (this is denoted by 〈〉θ). For the contrast function, whilst practically any

non-quadratic function will work, FASTICA mainly uses

G1(y) = 1

a1
logcosh(a1 y), G2(y) =− 1

a2
exp(−a2 y2/2) , (4.26)

where 1 ≤ a1 ≤ 2 and a2 ≈ 1.

I reiterate that there is very little distinction between FASTICA and a PCA approach. In fact,

FASTICA begins with whitening the data which involves performing a full PCA analysis. It is then

that FASTICA imposes statistical independence to isolate the foreground contamination, whereas

PCA presumes that the sources should be uncorrelated. This subtle distinction is actually math-

ematically equivalent in the case where all sources are Gaussian [11]. Hence any conclusions

gleaned from using a FASTICA approach are likely valid for PCA and vice-versa.

In a nutshell, FASTICA delivers a method of reconstructing the foreground signals as m ICs

and then the residual ε between this reconstruction and the raw observed input map is the

recovered cosmological HI signal plus any receiver noise and residual foreground contaminants.

A final point to include is that the mean temperature of the HI cosmological signal is a smooth

function of frequency and is therefore incorporated into the ICs of the analysis. This information

is therefore lost and the residual maps are required to be renormalised to some model mean

temperature or treated as δT observables as in equation (4.11).

4.4.2 FASTICA Results

Here I seek to validate the FASTICA reconstruction process introduced in the previous Section

4.4.1 by presenting results from the simulations outlined in Section 4.3. Since neither of the

cosmological simulations cover the full sky, I only add and remove foregrounds to the footprint

covered by GAEA and MICE. Restricting the foreground analysis to these patches represents a

more realistic emulation of a cosmological survey. However, I found no noticeable difference

when I conduct the foreground removal over the full sky compared with conducting it over the

cosmological simulation footprint.

Figure 4.7 shows the IC maps found after FASTICA has been applied. This is the only occasion

where the foreground analysis is done for the full sky and I have chosen to do this purely for

demonstrative purposes of the FASTICA process. It is interesting to note that the third and fourth

ICs clearly seem to pick up the galactic synchrotron angular shape whereas the second IC shows

structure across the sky. The first IC is largely contained in the top half of the map, where the HI

cosmological signal lies for the GAEA catalogue. This suggests that it is this component which is

collecting large radial modes which belong to the cosmological signal along with the THI average

which smoothly fluctuates and therefore is removed. Despite trying a number of different values
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Figure 4.7: Independent component maps found using FASTICA with m = 4 on the GAEA sim-
ulation contaminated with foregrounds. This is for a constant beam of θFWHM = 0.5o at all
frequencies. Temperature fluctuations are given in µK but the true amplitudes for the estimated
foregrounds are determined by their combination with the mixing matrix.

Figure 4.8: Mixing matrix elements as outlined by equation (4.21). Combination of these with
the independent components in Figure 4.7 determines the subtraction to be made from the
combined observed signal at each frequency.
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Figure 4.9: Histogram showing the original HI temperature against the FASTICA reconstructed
value for each pixel in a range of redshift bins for the GAEA model. Each histogram has been
normalized such that the histogram values sum to 100%. I also include the Pearson correlation
coefficient ρ for each redshift to quantify the agreement. For a perfectly working foreground
clean we would expect an entirely one-to-one (ρ = 1) agreement along the thin diagonal red line.
We can see how FASTICA is less effective at extreme ends of redshift range with a wider dispersion
of values.

of m (the number of ICs) it appears that it is always the case that some cosmological signal will

be removed. These ICs from Figure 4.7 are then combined with the mixing matrix (displayed in

Figure 4.8) as described in equation (4.21).

Figure 4.9 shows a pixel-by-pixel comparison between original values in the δTHI intensity

maps and the cleaned values for some selected redshift bins in the GAEA simulation. For a

perfectly performing reconstruction we would obtain all values along the red diagonal line, i.e.

all values would match their originals. We can see that this is not the case but largely FASTICA is

performing reasonably well with a Pearson correlation coefficient of ρ ≥ 0.93 for most redshifts.

We expect a value of ρ = 1 for a perfectly performing foreground clean indicating perfect correla-

tion between original and cleaned maps. Figure 4.9 also shows that this method of foreground

cleaning performs better at the mid-ranges of redshift. This is not a redshift specific effect since

we also see similar results in the MICE model where the best agreement is at redshift z ∼ 0.8

which is the mid-redshift for its range. This suggests that there are some edge effects in the

foreground removal process causing it be less effective at the extreme radial ends of the input

data, a result previously noted e.g. [228].

Figure 4.10 indicates how well the HI auto power spectrum can be recovered with FASTICA and

shows how varying the number of ICs affects the recovery. I show results from both simulations,

and it is interesting to note the difference between the two. We see that with GAEA only 3 ICs

are needed for a successful reconstruction, however for MICE even 4 ICs is not sufficient for
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Figure 4.10: Impact of foregrounds on the HI auto-power spectrum for both the GAEA and MICE
catalogues. Thick solid black line shows the original HI signal with no foregrounds. The coloured
lines then show different values of m used i.e. the number of independent components assumed
in the FASTICA process. Also included are the results from using a beam which varies with
frequency (dashed lines) and how this damages performance. These results are for mid-range
redshifts for each catalogue with z = 0.25 for GAEA and z = 0.825 for MICE.

good agreement at large scales (small-`). I tested a larger number of ICs with little improvement.

The difference in results is probably due to the fact that MICE has a smaller sky coverage (25%

of GAEA) which means less samples to average over for negentropy estimation in equation

(4.25). Furthermore, since MICE has a deeper redshift range (extending to z = 1.4 whereas GAEA

is only up to z = 0.5) the constant beam size that I convolve with is much larger for MICE,

θFWHM = 2.36o against GAEA’s θFWHM = 1.46o. This difference in beam size is also evident from

the scales at which the power spectrum seems to degrade. Due to its larger beam, the MICE

power spectrum begins to tail off at lower-` than GAEA. Lastly this plot also includes results

where each tomographic slice has been smoothed by a varying amount due to the frequency

dependence of the beam. This is shown as the dashed lines, and it is evident that results are

much worse when compared with the constant beam case. This is discussed further in the

following section.

4.4.2.1 Frequency Dependent Beam Size

As previously outlined in Section 4.2.1.2, the intensity maps at different frequencies will have

different beam sizes defined by equation (4.13), meaning intensity maps at lower redshift have

less degradation of angular scales. However, since FASTICA finds m IC maps and then subtracts

these from the total observation based on the mixing matrix A, trying to obtain e.g. 4 IC maps

based on Nz intensity maps with different resolutions for each will cause problems because the

IC map resolution will not match each of the intensity maps. This is exactly why we see poorer

performance in Figure 4.10 in the case where there is a frequency dependent beam size (dashed

lines) especially at smaller scales (large-`) where the beam has a more dominant effect.

The way we resolve this issue is by carrying out a further convolution on the intensity

maps such that each tomographic slice is smoothed to the same resolution. I therefore take the
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maximum beam for the particular redshift range and smooth over all maps with this constant

beam size. FASTICA then finds IC maps which, when subtracted from the observed signal, prove

more effective for reconstructing the original HI signal as shown by the solid lines in Figure 4.10.

Artificially re-smoothing over all the intensity maps may appear to be a wasteful process in

terms of loss of large-` modes, but it is necessary for a successful FASTICA reconstruction. In fact,

choosing a common resolution significantly larger than the max beam has additional benefits

when dealing with real data, as an effective way of mitigating the effects of polarization leakage

[205].

4.4.2.2 Increasing the Number of Frequency Bins

For both the GAEA and MICE simulations I am only using 24 redshift (frequency) bins with the

bin width determined by a constant separation in redshift ∆z. This may be seen as quite a low

number of bins to be using in an intensity mapping simulation which uses an ICA process. This

is largely out of necessity due to the choice of simulation approach: since I am using N -body

simulations there are a finite number of galaxies to use from which to build intensity maps. By

using bins which are too thin we risk under-sampling the intensity maps and making them an

unrealistic emulation of a continuous field of emission.

The MICE catalogue contains ∼ 500×108 galaxies and I bin them into 393,216 angular pixels

giving ∼ 1272 galaxies per pixel. The GAEA catalogue has fewer galaxies (∼ 200×108) and more

pixels to bin into due to the larger sky and results in ∼ 127 galaxies per pixel. These galaxies

then need to be further binned into radial redshift bins and it is obvious that if I opted to use a

large number of bins (& 100) then certainly for the GAEA simulation we would be nearing the

situation where there is on average 1 galaxy per voxel. This would be an inaccurate emulation of

an intensity mapping experiment.

In practice when using real data, the typical approach would be to perform the FASTICA

method on more maps (> 100 frequency channels), then re-stack these into fewer bins for

cosmological analysis and cross-correlations with optical data. I trialed this with the MICE

catalogue using 240 bins, and found that it made no improvement on the FASTICA foreground

removal, hence justifying the choice of using 24 frequency bins in all my analysis.

4.5 HI × Optical Cosmology with Foregrounds

In this section I investigate the impact that HI foreground contamination and removal with

FASTICA has on the cross-correlation power spectra C g,HI

`
with the simulated optical catalogues.

In recent work [38], a framework which models observational effects on 3D power spectra for

HI-optical cross-correlations has been developed. This framework can be extended to include

the effects of foreground removal and photometric redshift uncertainty. By doing this one could

analytically model the foreground removal effects, as well as the photometric redshift effects, as

a loss of small and large k∥ modes respectively, and attempt quantitative corrections accordingly.
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Figure 4.11: Cross-correlation angular power spectrum between the HI intensity map at redshift
z = 0.25, with ∆z = 0.02 bin width and the optical galaxies binned using their true redshifts.
This is representative of a scenario in which spectroscopic redshifts are used in the optical
survey. The original result with no foregrounds is shown as the black thick line and the case
where foregrounds have been included then removed by FASTICA is shown as the red thin line.
The bottom panel shows the ratio of the two spectra. This test was carried out on the GAEA
simulation where the HI intensity maps have been re-smoothed with a constant maximum
beam of θFWHM = 1.46o.

In this chapter I aim to use my simulations to investigate what corrections can be made to the

data to extract the most information from these cosmological measurements.

To begin exploring how HI foregrounds can impact cross-correlations with optical surveys I

first perform a best-case scenario test and cross-correlate with an optical survey which I assume

has very well constrained redshifts; Figure 4.11 shows the result of this cross-correlation. Here I

bin the optical galaxies from the GAEA simulation by their true redshift with constant bin width

of ∆z = 0.02. This is exactly matched to the frequency bins used for the 21cm intensity maps

using ν= ν21/(1+z)), so we have a sample of optical galaxies at z = 0.25 to cross-correlate with an

HI intensity map at the same redshift. This shows that foregrounds should have little impact on

optical spectroscopic cross-correlations. The bottom panel shows a small bias which in principle

could be corrected for by constructing a foreground cleaning transfer function [204], but it is

encouraging that these initial efforts have already reconstructed the cross-power to within 8.5%

at scales below those unaffected by the beam (`< `beam). It is only at higher `, way below the

resolution of the beam (`beam), that we start to have large errors on C`. This is unsurprising

since this is going beyond the scales of the radio instrument’s resolution. I experimented with

smoothing the optical field to replicate the HI intensity map resolution but find no mitigation of

the noise we see at `> 250.
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Figure 4.12: Cross-correlation between HI intensity maps with FASTICA reconstruction and an
optical survey using GAEA at z = 0.25 with ∆z = 0.02 bin width. I degrade the constraints on the
optical galaxy redshifts by increasing the redshift error σz shown by going from dark to ligher
blue. In other words I go from cross-correlating intensity maps with a spectroscopic-like (σz ∼ 0)
survey, to a photometric-like survey where there is significant uncertainty on the optical galaxy
redshifts. This strongly affects the measured cross-correlation power spectrum. Plot includes a
hybrid log-linear y-axis to fully demonstrate the degradation in power.

4.5.1 Optical Redshift Uncertainty

Future optical galaxy redshift surveys such as LSST and Euclid will rely on using photometric

redshifts for estimating the radial position of each galaxy (note that Euclid will also perform

a wide spectroscopic survey). It is therefore important to forecast the cross-correlation poten-

tial between HI intensity maps and photometric galaxy redshift surveys, taking into account

foreground removal effects. The higher uncertainty on redshift measurement inherent in these

photometric surveys, equates to a degradation in radial mode measurement on small scales.

Since foreground removal also impacts radial modes but on larger scales, it is unclear whether

combining these two effects will leave enough useful modes for a cross-correlation signal [226].

To investigate this I begin by simply introducing a Gaussian error on the optical redshifts

for each galaxy and cross-correlate with foreground contaminated intensity maps. Figure 4.12

shows the effect on the cross-power spectrum when I introduce a Gaussian photo-z error σz

into each of the optical galaxies. We can see how increasing the uncertainty in redshift (dark

to light blue lines) rapidly degrades the agreement with the original (black-dashed line) where

no redshift error is applied. [5] suggests a fiducial model of σz = σz0 (1+ z) is appropriate for

an LSST-like instrument, where σz0 = 0.05. Therefore, the fact that Figure 4.12 suggests the

cross-power spectra signal-to-noise will be damaged for σz ∼ 0.1, which would correspond to

LSST’s photo-z error at z = 1, is cause for concern.
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Figure 4.13: Cross-correlation between HI intensity maps with MICE optical galaxies. Dashed
lines show the cases without HI foregrounds, solid lines show the impact of including them. I use
the DES-like photometric redshifts available in MICE for the photo-z forecasts shown in blue and
compare these with using ideal true redshifts (green). While a drop in signal is inevitable when
using less constrained redshifts, including the effects of HI foregrounds (solid lines) degrades
the signal further in the photo-z case. These tests have been performed at redshift z = 0.725 with
∆z = 0.05 bin width.

We can further explore this with the use of some more robust photometric redshift simula-

tions and compare to foreground free cross-correlations. Realistic photometry for a number of

optical surveys is included within the MICEv2 simulation, for example the Dark Energy Survey

(DES)7. I thus make use of the DES-like photometric redshifts available to make a more robust

forecast of the cross-correlation between a photometric survey and HI intensity maps. I refer

the reader to the MICE website8 for more details on how these DES-like photometric redshifts

were simulated.

Figure 4.13 shows the results when I include these simulated DES-like photometric redshifts

in my simulations. The dashed lines show the cross-correlation power spectrum with the original

HI intensity map with no foreground contamination. The solid lines then show the inclusion of

foregrounds and a FASTICA reconstruction. What is clear from this plot is that while we still get a

degradation in signal from using photometric redshifts (blue line) compared with true redshifts

(green line), the signal deterioration accelerates in the case where HI foregrounds are included

in the simulation.

The conclusion from the GAEA simulation using Gaussian photometric redshifts and MICE

using DES-like photometric redshifts appears to be the same and both forecast damaging signal

loss when FASTICA reconstructed intensity maps are cross-correlated with photometric redshift

7www.darkenergysurvey.org/
8http://maia.ice.cat/mice/

98

http://maia.ice.cat/mice/


CHAPTER 4. FOREGROUND CONTAMINATION IN HI INTENSITY MAPS

Figure 4.14: The mean δT temperatures along the line-of-sight (LoS) for the original HI intensity
map against one with which has undergone a FASTICA foreground clean. This is shown for all
available LoS in the GAEA simulation which for fsky = 0.5 and nside= 512 equates to over 1.5
million pixels (or LoS). The plot shows how FASTICA essentially removes any non-zero LoS mean
present in the original HI signal and collapses it to zero.

surveys.

4.5.2 Mitigating the Effects of FASTICA

Here I begin investigating the precise reasons why combining the effects of HI foregrounds

and the poor redshift constraints from photometric galaxy surveys is so detrimental to the

cross-correlation signal. Generally, it can be considered unsurprising that combining an effect

that removes information at large radial modes, with a survey which has poor constraints at

small radial modes, can damp the amplitude of projected angular power spectra, as we see in

Figures 4.12 and 4.13. The aim here is to quantify this explanation with the hope of being able to

provide a solution.

It is interesting to look at the effects a foreground clean has along the LoS of the HI intensity

mapping data. It is known that large radial modes are removed since this is where the contami-

nation from foregrounds lies due to their smooth variation in frequency. Figure 4.14 shows the

specific effect this has and illustrates how the foreground clean removes all information on the

mean temperature along the LoS. My simulations are arranged such that the transverse mean

of each map is zero but even with this setup it is of course still possible to have a large range of

values for the LoS mean temperatures, which is what we see in Figure 4.14. However, we can see

that the large range of LoS mean values present in the original HI signal (shown on the x-axis)

are removed after the foreground clean to a much narrower range (shown on the y-axis). It is

worth pointing out that the y-axis range is two orders of magnitude smaller than the x-axis. So

essentially a blind foreground clean will destroy any non-zero mean along the LoS. The original

line-of-sight means have a slight skewness away from zero and centre at around −4µK. This is

caused by the presence of some dominant bright pixels which, when setting transverse means

in each map to zero, can result in there being more negative temperatures than positive ones.

It is conceivable that an increase in the number of redshift bins could affect this LoS result,

so I therefore conducted a test using the MICE catalogue and extended to 240 redshift bins
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Figure 4.15: GAEA δT amplitudes along chosen lines-of-sight (LoS). Original mean values along
the LoS are given in the legend along with the cleaned ones. The thick black line shows the
original amplitude and the red solid line shows the impact of a foreground contamination and
FASTICA foreground clean. The grey dashed line shows the amplitude with the LoS mean added
back on as outlined in equation (4.29).

Figure 4.16: Effect of FASTICA on a test response function. For the GAEA model, all values along
a chosen LoS have been set to 0 except one at z = 0.25 which is set to 1. This data is then subject
to a FASTICA clean. An amplitude change from the LoS mean removal is apparent and there are
also under-dense side-lobes either side of the temperature spike.

following the same procedure. Even with this more realistic number of redshift bins I still find a

similar result to Figure 4.14 suggesting that this is not a feature of the relatively low number of

redshift bins I am using.

In summary, the problem is that while FASTICA reconstructs the shape of the LoS signal,

unfortunately it changes the amplitudes in an unpredictable manner based on the original LoS

mean. The further from zero a particular LoS mean is, the greater the change in amplitude for

pixels along this LoS. I attempt to model this by hypothesising that in a blind foreground clean

the main resulting change is given by

δTclean(~θ,ν) ∼ δTorig(~θ,ν)−δTLoS(~θ) , (4.27)
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where δTLoS(~θ) is the mean fluctuation along a LoS for a pixel at position~θ,

δTLoS(~θ) =
∑

i δTorig(~θ,νi )

Nz
, (4.28)

where the summation is over the Nz number of frequency (or redshift) bins.

Figure 4.15 shows the impact along the LoS resulting from the effect outlined in equation

(4.27). I have chosen two pixels and show their δT values through redshift, taking two extreme

examples for demonstrative purposes. The plot on the left is for a pixel where the original LoS

mean δTLoS(~θ) is from the extreme low end from Figure 4.14. The plot on the right is for a pixel

with a high δTLoS. In both cases their LoS means are collapsed to zero for the reasons discussed

above and the impact this has on the agreement between individual values through redshift is

evident.

We can demonstrate that this is the main impact of a blind foreground clean by reversing

the effect, i.e. adding back in the original LoS mean to each foreground-removed pixel:

δTHI(~θ,ν) = δTclean(~θ,ν)+δTLoS(~θ) . (4.29)

The corrected δTHI should agree with the original signal δTorig. I have tested this and find this

to be the case and show the results of this approach in Figure 4.15, where I have included the

reconstructed LoS based on equation (4.29) shown by the gray dashed line.

Unfortunately, this LoS HI mean reconstruction is challenging in reality. The original δTLoS

will be information buried in the foreground contaminated maps, and which is then lost after

the foreground clean. So performing the process outlined in equation (4.29) would require some

extra information to reconstruct these LoS means.

In a similar demonstration to Figure 4.15, I also analyse the FASTICA result on a test response

function in the form of a Dirac-delta spike in temperature, shown in Figure 4.16. By manipulating

the GAEA data such that all pixels along a chosen LoS are set to 0 except for one which is set

to 1, we can gain a deeper insight into the effects of a foreground clean. The large side-lobes

which form either side of the temperature spike can explain why the cross-correlation with

photometric galaxy data is performing so badly. A galaxy at z = 0.25 with high measured redshift

uncertainty, is likely to cross-correlate with the false under-temperature regions. This effect,

compounded over many galaxies and temperature spikes, could cause signal loss.

As an additional problem, I also find that this kind of foreground removal is less successful

at the extremes of the redshift range (something already concluded from Figure 4.9). Therefore

reconstructing the LoS means will not be a sufficient correction on its own at the redshift edges

of the data.

All this highlights the problems for the future success of HI intensity mapping cross-correlations

with photometric galaxies. Nevertheless, photometric galaxy surveys are an important choice

of probe to cross-correlate with given their complementary strengths, i.e. good angular resolu-

tion for optical and good radial resolution for HI intensity maps. I therefore suggest potential

methods to mitigate the effects which a blind foreground clean has on HI intensity maps. These

not only serve to drastically improve cross-correlations with photometric optical data, but also
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provide additional improvements in cross-correlations with spectroscopic galaxy surveys, as

well as HI intensity mapping auto-correlations. The two methods I propose are:

• LoS Mean Reconstruction: This is theoretically possible using optical galaxies which measure

density along the LoS. By relating the optical over-density to the HI temperature we can make

a prediction for the LoS mean HI temperature that has been removed and reverse the effect of

this loss of information.

• Artificial Extension of Redshift Range: Introducing a buffer at either end of the data sets in

the redshift (or frequency) direction will limit edge effects and as I will demonstrate, improves

the general agreement with the original data.

I discuss both of these methods in more detail in the following sub-sections.

4.5.2.1 Line-of-Sight Mean Reconstruction

While recovering the exact LoS means from the intensity map data is not possible (they are

inaccessible before the clean, and removed after it) we can make predictions of what they are

from other data. Then by measuring the angular power spectrum of the LoS mean predictions, we

can reverse the effects of the LoS mean loss. To understand this further, consider the hypothesis

in equation (4.29) we can write

〈δgδTHI〉 = 〈δgδTclean〉+〈δgδTLoS〉 , (4.30)

and similarly for the auto-correlation we have

〈δTHIδTHI〉 = 〈δTcleanδTclean〉+2〈δTcleanδTLoS〉+〈δTLoSδTLoS〉 . (4.31)

Therefore, for a cross-correlation we require the correction term 〈δgδTLoS〉 and for an auto-

correlation we require 2〈δTcleanδTLoS〉+〈δTLoSδTLoS〉. We can utilise the optical number density

fields to make estimates for these terms. This is because we can relate the optical over-density

δg = bgδM to temperature fluctuations δTHI = THIbHIδM through

δTorig(zi ) = THI(zi )bHI(zi )

bg(zi )
δg(zi ) . (4.32)

Then we relate this to each LoS mean by

δTLoS = 1

Nz

∑
i

THI(zi )bHI(zi )

bg(zi )
δg(zi ). (4.33)

This is all that is required to construct the correction terms for the cross- and auto-correlations

outlined by equations (4.30) and (4.31). This approach does not require precise optical redshift

information for the δg(z). It is sufficient to use the poorly constrained photometric redshifts

since the error on these should not heavily impact on the slowly varying summation kernel

THI(z)bHI(z)/bg(z).

102



CHAPTER 4. FOREGROUND CONTAMINATION IN HI INTENSITY MAPS

Figure 4.17: Cross-correlation angular power spectrum for the MICE simulation at redshift of
z = 1.075 with ∆z = 0.05 bin width and like Figure 4.13 I have used the DES-like photometric
redshifts available in MICE. Again the impact from foregrounds is visible in the difference
between the blue dashed line and blue solid line. However, the effectiveness of the corrective
techniques that I outlined in Section 4.5.2, shown by the red lines, is encouraging. The dashed
red line is for the LoS mean correction, the dotted red line represents the extended-z correction
and the red solid line represents both corrections applied. Produced using bandpowers with 6
multipoles per bin for clarity.

The prefactor THI(z)bHI(z)/bg(z) is not directly observable and therefore requires inde-

pendent modelling or indirect measurement. THI (equation (4.9) and discussed thereafter) is

degenerate with bHI. Note that redshift space distortions can break this degeneracy and constrain

ΩHI and consequently THI [135]. For the purpose of testing this correction method I assume THI

has been accurately obtained, i.e. I simply use the model (4.9) which my simulated intensity

maps have been designed to conform to. For the bias terms I determine them based on fiducial

models where

bg(z) = 1+0.84z , (4.34)

which was estimated from simulation results in [220] and used in the LSST Science book [5].

Following [23] I model the HI bias as

bHI(z) = 0.67+0.18z +0.05z2 . (4.35)

4.5.2.2 Artificial Extension to Redshift Range

While the reconstruction of the LoS means works reasonably well for the mid-range redshifts,

improvements can still be made especially to the edge effects caused by a foreground clean.

These edge effects have been previously noted and suggestions have been made to exclude these

contaminated regions [228][227]. One simple solution to mitigate this effect and limit the data
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excluded, is to extend the range of the data with the idea that the new artificial edges suffer the

edge effect problems, but can then be removed from the rest of the data. I therefore take the full

observed signal in the original N redshift bins given by

[z1, z2, ..., zN−1, zN ]

and pad both ends with replicated reversed data to become

[zN , zN−1, ..., z2, z1, z1, z2, ..., zN−1, zN , zN , zN−1, ..., z2, z1].

So I have added reversed copies of the data to the beginning and the end of the original redshift

range. This ensures the padded data includes continuous foregrounds since this is what a blind

foreground clean needs to utilise in order to remove them.

Figure 4.17 shows the performance of these corrections on the MICE catalogue. I have shown

this at a redshift of z = 1.075 which is closer to the extreme end of the redshift range for MICE and

therefore has more need for correction. The solid blue line which shows the cross-correlation

signal for FASTICA foreground cleaned map demonstrates how poor the signal is without any

correction. The solid red line then shows that with the artificial extension to the redshift ranges

and the LoS mean corrections to the power spectrum outlined by equation (4.30), the signal is

significantly recovered and approaches the original signal with no foregrounds (blue dashed

line).

I also demonstrate the more general improvement made across all redshift bins with Figure

4.18 which is for the GAEA simulation. Using the relative difference between original and clean

power spectra as a gauge of performance (stated above the colour-bar), this shows how improved

the signal is across all redshifts and scales with the corrections in place. We still see some poor

disagreement in the very first redshift bin and slightly poorer performance for the last few bins,

but the catastrophic discrepancies that we were seeing previously have been addressed.

These results are encouraging and suggest that with further refinement and understanding,

cross-correlations between foreground cleaned intensity maps and photometric imaging surveys

should be a useful probe of cosmology. I stress that the suggested corrections need further testing,

preferably alongside real data to ensure they are reliable.

4.6 Clustering-Based Redshift Estimation

As a direct example of the potential impact that foreground removal can have on cross-correlations

with photometric redshift surveys, I now aim to use these simulations to see if a photometric

calibration method using such cross-correlations is still viable. This method utilises the shared

clustering signal between photometric optical galaxies and overlapping HI intensity maps. This

clustering-based redshift estimation process has previously been studied in [13] and [59] (see

Chapter 3 ), but a full analysis including simulated foreground contamination has not yet been

conducted.

104



CHAPTER 4. FOREGROUND CONTAMINATION IN HI INTENSITY MAPS

Figure 4.18: Demonstration of improvement on cross-correlation by including the corrections to
the data outlined in Section 4.5.2. This is for the GAEA data-set and shows relative differences
for cross-correlation of optical photometric-like data with HI intensity maps for the original (no
foregrounds) and cleaned cases. For the optical sample I used a catalogue with redshift error of
σz = 0.06.

Given the difficulties outlined in Section 4.5, such a method represents a stern test since

the intensity maps are correlated with a population of optical galaxies where little redshift

information is assumed. The only assumption made is that the optical galaxies are within the

redshift range covered by the reference intensity maps. This is applicable to weak-lensing probes

where wide redshift bins may be used, and where the aim is to obtain the source distribution

which is required for precise measurements of cosmological shear. This wide redshift binning

would mean huge degradation in small-scale radial modes, which is a major obstacle for this

method given the increased noise due to the redshift uncertainty as outlined in Figure 4.12.

4.6.1 HI Clustering-z Method

In order to make a prediction for the redshift distribution of optical galaxies we require an

estimator which utilises the shared clustering signal between the opticals and the HI intensity

maps. I use the following estimator and refer the reader to [59] (and Chapter 3) where a full

derivation is given:
dNg

dz
(z) = wg,HI(z)

wHI,HI(z)
THI(z)

bHI(z)

bg(z)

1

∆z
. (4.36)

Here I use angular correlations functions w where wg,HI(z) is the cross-correlation between

all the optical galaxies and an HI intensity map at a redshift z. Similarly, wHI,HI(z) is the auto-

correlation between two intensity maps at redshift z. An effective test of this estimator given

the contamination of foregrounds is to use information from the C` power spectra since this
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is a measurement of angular clustering which is what we want to utilise for estimating dNg/dz.

An effective measurement for the angular correlation functions, which closely follows previous

clustering redshift work [143] is given by

wX Y (z) =
∫ `max

`min

W (`)C X Y
` (z)d` , (4.37)

where W (`) is a weight function which can be tuned to certain scales. For our purposes W (`) = `
is sufficient to give weight to smaller scales where more useful matching is expected to exist.

Further investigation could be carried out into this to determine the function for W (`) which

delivers optimal weighting. As previously, the indexes X and Y can either be chosen to represent

the HI intensity map auto-correlation where X = Y = HI or the cross-correlation with the optical

where X = g and Y = HI.

As before, THI is the average brightness temperature which is known in the simulations.

In reality however, the observable is a temperature fluctuation and THI requires modelling as

explained previously in equation (4.9). Again, for these purposes I assume an accurate modelling

of THI has been achieved, i.e. I simply measure the quantity in the simulations.

Finally, the estimator in equation (4.36) also requires the bias ratio bHI/bg. We can find this

from the angular auto-correlation power spectra for the two samples:

bHI(z)

bg(z)
= 1

THI(z)

√
CHIHI(`, z)

Cgg(`, z)
. (4.38)

However this relies on binning the galaxies by true redshift to measure the bias at that redshift.

But I choose to assume that the optical sample has very poorly known (effectively unconstrained)

redshifts, since it will be these surveys where redshift calibration is most in demand, so obtain-

ing Cgg(z) accurately is not possible. For this study I therefore rely on fiducial models of the

individual biases as laid out in equations (4.34) and (4.35).

4.6.2 HI Clustering-z Results

We are now ready to present a simple test of the HI clustering-based redshift estimation method

and demonstrate its capability of recovering a redshift distribution using the HI intensity maps

discussed in Section 4.2.1 for the simulated optical photometric sample with a detection thresh-

old applied as discussed in Section 4.2.2. This is all in the presence of 21cm foreground contami-

nation which has been cleaned using a FASTICA process. I also apply the corrections as outlined

in Section 4.5.2 using only the photometric redshift information available.

I test this approach on both the GAEA and MICE based simulations and Figure 4.19 shows

the results. In both cases I select optical galaxies based on their photometric redshifts in targeted

redshift ranges shown as the pink shaded regions on the plots. Because these galaxies have been

selected using their poorly constrained photometric redshifts, the true redshift distribution

(black dashed line) extends way beyond these ranges. By cross-correlating with HI intensity

maps and using the estimator outlined by equation (4.36) we can make a prediction of this

true redshift distribution, shown by the blue data points. The grey shaded distributions show
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Figure 4.19: Clustering-based redshift estimation results using both the GAEA and MICE cata-
logues. The pink vertical shaded regions represent the optical sample chosen as galaxies whose
photometric redshift lies within the targeted redshift ranges. The black dashed lines show the
true redshift distributions of these galaxies. The blue data points give the estimated redshift
distributions based on cross-correlations with HI intensity maps and using the estimator in
equation (4.36). Intensity maps have foregrounds added and then removed with the FASTICA

process with corrections made (Section 4.5.2). I also include the estimated distributions with er-
rors from intensity maps absent from any foreground contamination, shown as the grey shaded
distribution. The GAEA model uses a beam size of θFWHM = 1.46o, representative of an SKA-like
beam for that redshift range. However, for MICE I have used a smaller beam size of θFWHM = 1o

because of its smaller sky coverage.

the result without any foreground contamination. I obtain the error bars for dN /dz using a

jackknifing technique, gridding the maps into an array of 25 smaller sub-samples. I then measure

the estimator on the map but omit one of the 25 sub-samples. I repeat the procedure, averaging

over the estimators obtained from omitting sub-samples, and obtain a standard deviation.

These results are very encouraging for the future of using shared clustering signals from HI

intensity maps to calibrate photometric redshifts. A small bias is present which appears to skew

the distribution, most evident in the GAEA results where the error is low. This will be caused by

the fiducial bias models I use (equations (4.34) and (4.35)) in the estimator (4.36) not agreeing

precisely with the simulated catalogues. More focused follow-up on this bias factor is required,

as discussed in the previous section, and an improved approach which constrains the biases

and mean HI temperature should mitigate this slight skewness.

Small discrepancies tend to exist at the extreme ends of the redshift distribution. When

the true redshift distribution at these edges should be close to zero, often the estimator in the

foreground contaminated case, predicts a non-zero quantity. These are due to residual edge
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effects not fully mitigated by the correction outlined in Section 4.5.2.2. Because of this, it is

difficult to place quantitative interpretation on the results in Figure 4.19 without these edge

discrepancies skewing the measurement. I calculate the Median Absolute Deviation (MAD)

which provides a robust measure of the variability of the recovered distributions. As the name

suggests, this process takes the deviation of the estimated data from the true value, orders

them in terms of their absolute deviation value, then takes the median quantity. The MAD

values are therefore calculated for the differences between the true and estimated distributions

i.e. dN /dztrue − dN /dzest, since this measurement will not be too sensitive to the incorrect

estimations near the edges. I find that for the three GAEA distributions shown in Figure 4.19

these MAD values are 0.199, 0.167 and 0.284 for 0.1 < zphoto < 0.2, 0.2 < zphoto < 0.3 and 0.3 <
zphoto < 0.4 respectively. For MICE, the MAD values for the differences in true and estimated

distributions are 0.129, 0.107 and 0.132. The similar values in each simulation demonstrate

that the redshift prediction method is behaving consistently. The relatively low MAD values,

under 5% of the normalised dN /dz peak value, also suggest the discrepancies between true

and estimated distributions are mostly small and is indicative of the estimator’s precision. This

represents an excellent test of cross-correlations between foreground affected HI intensity maps

and photometric surveys. This is because this method relies on sufficient cross-signal existing

for poorly constrained optical redshifts over wide redshift ranges. The relative success of this

method suggests that the problems outlined in Section 4.5.1 will be surmountable.

I found that a key factor regarding the success of the clustering-based redshift estimation

method using HI intensity maps is the combination of the sky area and the size of the instru-

mental beam. [59] found that the error on the estimation is directly proportional to the beam

size and can be approximated by

σN (z) ∝ θFWHMp
A

, (4.39)

where A is the area of the sky covered. Due to the smaller sky coverage in the MICE simulation

I found that I was unable to use a constant beam size of θFWHM = 2.36o which would be repre-

sentative of an SKA-like beam probing redshifts up to z = 1.4. Instead I have only smoothed

with a 1o beam. However, having larger sky coverage in future simulations would mitigate this

issue. It is interesting to note how the error does not increase too much in Figure 4.19 with the

inclusion of foreground contamination in the analysis (comparison between blue data points

and grey shaded distribution). This supports the claim that the error from this estimator is

largely dominated by the sky area and beam size and explains the larger errors on the MICE plot

compared with GAEA.

4.7 Summary

Forthcoming HI intensity mapping experiments will be able to contribute to cosmological

studies through HI auto-correlations as well as cross-correlations with optical galaxy surveys.

To ensure that HI intensity mapping is a competitive technique, it is important to understand

21cm foreground contamination, and the effects of foreground removal on the measurements.
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In this chapter I have taken a simulations-based approach to investigate these issues, fo-

cusing on the foreground removal effects on HI intensity mapping cross-correlations with

photometric galaxy surveys. By using existing N -body simulations and the galaxy catalogues

produced from them, I constructed both optical galaxy catalogue data and HI intensity map

data with the same underlying cosmological clustering signal. I then simulated the relevant

21cm foreground signals that are expected to contaminate the HI intensity maps, and used a

state-of-the-art blind foreground removal process known as FASTICA. This approach allowed me

to then examine what impact this type of foreground removal has on cosmological probes such

as the clustering measured by the angular power spectrum C`.

The main conclusions are as follows:

• I have shown evidence that a FASTICA reconstruction will successfully allow accurate auto-

correlation measurements as shown by previous work [228][195]. Figure 4.10 showcases the

results for both the simulations, GAEA and MICE. The better result obtained for the GAEA

model is likely due to its larger sky size allowing for more samples to average over in negen-

tropy calculations.

• The auto-correlation tests I performed strongly suggest that a frequency dependent beam

size will cause problems for independent component-like methods as demonstrated in Figure

4.10 and also shown by [11]. A solution to this is to re-smooth the intensity maps to match the

beam size for the highest redshift when using these foreground removal techniques.

• FASTICA also delivers good results in cross-correlation with optical galaxy data where the red-

shifts for the opticals are very well constrained as they would be in a spectroscopic-like survey.

In Figure 4.11 I used optical galaxies with true redshifts in cross-correlation with HI intensity

maps. The figure shows the excellent agreement between using the original (no foregrounds

included) intensity maps and the foreground cleaned ones.

• I find that further treatment is needed when cross-correlating foreground cleaned HI intensity

maps with photometric-like optical galaxy surveys with poor redshift constraints. Figures

4.12 and 4.13 show the impact of combining foreground cleaned intensity maps with an

imaging galaxy survey which has poorly constrained redshifts. This poor result is unsurprising

and can be generally explained by the combination of eroded large-radial modes caused by

the foreground cleaning, with eroded small radial-modes caused by the uncertainty in the

photometric redshifts [226].

• More specifically, I find that a cause of the poor results when considering HI × Photo-z is

the loss of LoS mean information when conducting the foreground clean. Figure 4.14 shows
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how any prior off-zero LoS means are collapsed to zero which has the effect of unpredictably

changing pixel values in the transverse maps, as demonstrated in Figure 4.15. As a possible

treatment for this unwanted effect I proposed a LoS reconstruction that uses information from

the optical galaxies as outlined by equation (4.29). This, coupled with artificially extending the

redshift range to mitigate the edge effects caused by the foreground clean, improves results as

shown by Figures 4.17 and 4.18.

• Finally, I conducted a comprehensive test of these methods by attempting to use foreground

contaminated intensity maps for clustering-based redshift estimation of a photometric optical

sample. By using FASTICA and my additional corrections I was able to accurately predict the

redshift distributions for mock optical catalogues in both the models (Figure 4.19).

This chapter used two independent N -body simulations, where one (GAEA) used a semi-

analytical approach to constructing a galaxy catalogue and the other (MICE) used a HOD/HAM

hybrid method. The resulting catalogues formed the basis for constructing the optical and HI

intensity map mock data. This means we can be confident that the conclusions I have made are

unlikely to be specific to these simulations.

A limitation in using existing mock galaxy catalogues to generate HI intensity maps however

comes from the finite number of galaxies available to sample in the map. The great advantage of

HI intensity mapping is the frequency resolution which allows for numerous tomographic bins.

While the catalogues I use are large (>108 galaxies), this finite number means care was needed

when going to large numbers of tomographic bins. If the bin is too thin, it will contain a low

number of galaxies (sparse galaxy density), and therefore a sparse signal in each pixel. This is not

an accurate emulation of an intensity map which should provide a near continuous emission

profile. Tests were carried out with a higher number of bins in some cases. For example I used

240 redshift bins for the MICE catalogue and tested if we still see the LoS mean destruction

demonstrated by Figure 4.14. Even with this more realistic number of bins, I find similar results

but cannot be certain that these are accurate simulations of combined emission maps since the

number density of simulated galaxies becomes low (∼ 5 per voxel) at this fine radial resolution.

This is why I used relatively thick tomographic bins in this chapter (∆z = 0.02 for GAEA and

∆z = 0.05 for MICE).

Throughout this chapter I have made assumptions that parameters such as the mean HI

temperature (THI) can be precisely obtained. While I use a model for this parameter in the

analysis, this same model was used in the construction of the HI intensity map signal, therefore

its success is unsurprising. However, other parameters such as the clustering bias terms (bg

and bHI) are not directly fed into the simulated signals, so the success of modelling these as

scale-independent biases in the clustering-based redshift estimation is encouraging.

Note that in this chapter I have not simulated any foreground polarization leakage effects.

However, in many frequency channels I have smoothed the maps more than is required to

simulate the instrument beam, which is a treatment previously used in real data to mitigate these

effects [205] as discussed in Section 4.3.1. It is unclear whether the required level of instrument
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calibration is achievable to avoid effects such as polarization leakage. Therefore one could argue

that it will not necessarily be the foregrounds themselves that cause the biggest problems, but

instead the leakage of them through imperfect instrument calibration [140][196]. Therefore, a

follow-up study with simulations of realistic observations including polarization leakage and

other instrument systematics such as 1/ f gain fluctuations, beam side-lobes, radio-frequency

interference etc. [95] will be an important step.

Furthermore, in this chapter I did not consider the clustering of point source foregrounds,

which one could argue has potential to bias cosmological clustering measurements. Nor in the

simulations did I simulate the anisotropy of galactic free-free emission which is expected to be

stronger in the galactic plane. However, neither of these subtle features are likely to affect the

frequency coherence of the signals which FASTICA uses to isolate them.

In future work I plan to include a further analysis into the effects of foreground removal on

cosmological measurements including the 3D correlation function ξ(s) and power spectrum

P (k) multipoles, extending the work of [38].

As HI intensity mapping data becomes available alongside the plethora of high precision

optical datasets, we will be able to confirm conclusions derived from simulated mocks using

real observations. Future measurements of HI × Photo-z data, for example from MeerKAT and

DES [169][23] or TIANLAI [51] and DECaLS9 [39], will be an excellent test for the claims in

this chapter. I have demonstrated the potential of such experiments with the example of how

cross-correlations can be used for photometric redshift calibration. This is a major challenge

for forthcoming Stage-IV instruments utilising photometric optical samples, such as LSST and

Euclid. I believe that photometric redshift calibration using HI intensity mapping data is an

alternative method with great promise for tackling this challenge.

To summarise, I have shown evidence that a method such as FASTICA performs excellently

at reconstructing the inherently weak HI signal in the presence of dominant 21cm foreground

contamination. Even in cross-correlation with optical data with poorly constrained redshifts,

with the suggested corrections it is possible to make good measurements of the cosmological

signal. I have introduced a LoS mean reconstruction as a treatment for foreground cleaned

intensity mapping signal loss, which improves the fidelity of cross-correlation measurements

but which will benefit from further investigation and refinement. Foreground contamination

is a challenge for HI intensity mapping, but this work alongside others demonstrates that it is

a surmountable one. I look forward to providing even more realistic simulations, and testing

my proposed methods with real data, in the near future. In the following chapter I look to

continue the investigation into the impact of 21cm foreground contamination by considering

the 3-dimensional power spectrum and its multipole expansion.

9http://legacysurvey.org/
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3D POWER SPECTRA & MULTIPOLES

M
any of the results in this thesis, in particular Chapter 4, focussed on the angular 2D

measurements of clustering such as the angular 2-point correlation function w(θ) or

the angular power spectrum C`. However, a large amount of cosmological information

can be gleaned from the analogous 3D measurements ξ(r ) and the power spectrum P (k). I

have therefore been contributing towards a framework that can measure 2-point statistics of 3D

fluctuations mainly in the context of HI intensity maps and optical galaxy surveys with the aim

of including observational effects.

This chapter discusses some ongoing work that aims to test and extend upon the work

in [38] (hereafter Blake19) which looked at modelling the power spectrum for galaxy and HI

intensity map data including many observational effects. By providing larger simulations, further

testing of this pipeline has been possible on galaxy × HI cross-correlations and also their auto-

correlations.

A further contribution to extending this has involved including 21cm foreground contami-

nation and cleaning, something not included in the original Blake19 paper. This is discussed

in section 5.2 where interesting impact on the power spectrum multipoles from foregrounds

is apparent. The beam, in conjunction with foreground contamination, also produces some

intriguing effects which I discuss.

The results produced in this section have come from a collaborative effort between myself,

Chris Blake and my supervisors Alkistis Pourtsidou and David Bacon. This chapter uses code1

originally developed by Chris which has been extended by myself and Chris to allow for the

inclusion of my MICE-based pipeline of HI intensity maps and galaxy catalogue simulations. We

both also extended it to incorporate my 21cm foreground simulations and FASTICA foreground

removal techniques (as outlined in Chapter 4). The result in Figure 5.1 was first shown by Chris.

The first results showing the effects of foregrounds were produced by me. The splitting of the

modes into µ-wedges was first done by Chris (shown in Figure 5.6) which Alkistis developed into

1https://github.com/cblakeastro/intensitypower
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Figure 5.1: Replication of the Blake19 monopole P0(k) results at z = 0.4 with larger sky simula-
tions built from MICE. Results are for both optical and HI auto-correlations (black and red lines)
and cross-correlation (green line). Solid line shows the theoretical prediction with observational
effects included.

a toy modelling of the foreground effects (shown by Figure 5.5) which I extended upon for the

discussion in this chapter. All figures used in this chapter however, are versions which have been

reproduced by me for the inclusion in this thesis.

5.1 Testing and Extending 3D Power Spectrum Measurement

Pipelines

Work in Blake19 provided a formalism for how position-dependent selection functions, noise,

weighting, smoothing, pixelization and discretization affect power spectra in HI × optical cross-

correlations. As discussed in my introduction (Chapter 1), RSD cause the amplitude of the power

spectrum to depend on the direction relative to the global LoS for a survey. Therefore the power

spectrum can be parameterised by µ the cosine of the angle θ to the LoS, µ= cosθ. This power

spectrum P (k,µ) can then be quantified by its multipoles P`(k) where

P (k,µ) =
∞∑
`=0

P`(k)L`(µ) (5.1)

and L`(µ) are the Legendre polynomials. From this we can separate the power spectrum into its

multipole contributions. The monopole, quadrupole and hexadecapole (see Appendix A.1 for a

derivation of these). By inverting equation (5.1) the power spectrum multipoles can be given as

P`(k) = 2`+1

2

∫ 1

−1
dµP (k,µ)L`(µ). (5.2)

The Blake19 pipeline looks to include observational effects from;

• intensity mapping telescope beam
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• frequency channel binning

• angular pixelization

which were modelled as damping effects on the power spectrum such that P (~k) → P (~k)D2(~k),

where the damping function is given by

D2(~k) = 1

V

∫
d3~x |B̃(~k,~x)|2. (5.3)

Here B̃ is the Fourier transform of a dimensionless smoothing function which may vary with

position~x and is used to encapsulate of each the observational effects such that

B̃(~k,~x) = B̃beamB̃chanB̃ang = exp

(−k2
⊥|~x|2σ2

θ

2

)
× sin

(
k‖s‖(~x)/2

)
k‖~s‖(~x)/2

×Wang (k⊥|~x|) (5.4)

is a combination from telescope beam2, frequency channel, and angular pixelisation smoothing

effects respectively. I refer the reader to Blake19 [38] for full derivations of these terms and a

more detailed discussion of this topic.

Figure 5.1 shows results from using my MICE simulations (which I refer back to Section

4.2 for further details) on the extended multipole measurement pipeline developed in Blake19.

We can see the theoretical predictions are agreeing nicely for these monopole measurements.

There is arguably some discrepancy between simulation and theoretical model in the HI auto-

correlation result (red line) which requires some additional treatment to improve the fit. This

would most likely be improved with a more sophisticated non-linear model. We have tested these

results at higher redshift and find we achieve a better fit thus suggesting non-linearities, which

are less dominant at higher redshift, could be affecting results. This could also be impacting

the cross-correlation result (green line) which has some mild discrepancy too. These results

currently assume foregrounds have been perfectly cleaned, we therefore intend to include the

effects of foregrounds, examine them, and then attempt to model them.

5.2 Impact of Foregrounds on Multipole Measurements

The effect of 21cm foregrounds upon measurements of the power spectrum multipoles is some-

thing that is yet to receive much detailed investigation. This was therefore one of our aims and

we are in the process of extending the multipole pipeline from Blake19 to include foregrounds.

To do this we are using the simulations in the work outlined in Chapter 4 and examining the

difference between the multipoles of the power spectra using foreground contaminated maps,

against completely foreground free ones.

The results for this are shown in Figure 5.2. As with Figure 5.1, these are produced using the

simulations from the MICE maps. There are a few interesting conclusions to draw from these

results, with foregrounds affecting all multipoles differently. Firstly for the monopole P0, we see

damping of power at lower values of k. It is these modes that are most likely to comprise large

2Clearly, smoothing effects from the radio telescope beam need only be included once for the cross-correlation

i.e. D2(k) = 1/V
∫

d3x B̃beam
∣∣B̃chan

∣∣2 ∣∣B̃ang
∣∣2 and not included at all for the optical auto-correlation.
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Figure 5.2: Comparison between HI auto-power spectrum multipoles at z = 0.4 with no fore-
ground contamination (black points) and with simulated foregrounds added and then removed
with FASTICA (red points). Monopole (P0) shown in left panel, quadrupole (P2) centre and hex-
adecapole (P4) on the right.

Figure 5.3: Integrands for the expanded multipole equations as a function of µ. Equations are
outlined in Appendix equations (A.11), (A.12) and (A.13). The pink shaded region shows where
|µ| < 0.25 where large radial modes will dominate. These results use a value of β= f /bHI ∼ 0.95,
realistic for HI intensity maps at z = 0.4.

radial (small k∥) modes, which are the ones that should be most affected by a foreground clean.

The quadrupole P2 seems to have an opposite effect and we actually get an enhancement of

power from a foreground clean and the hexadecapole P4 changes sign on large scales (small k).

To understand these observastions, it is useful to consider the parameter µ. Since we expect

foregrounds to eliminate signal along the LoS, we can use µ to separate those parts of the signal

with large contribution from radial modes since µ is the directional cosine of the modes i.e.

µ= cos(θ) where θ is the angle to the LoS. These effects can then be understood by analysing

the expanded multipole terms as a function of µ that are integrated over (shown in the Appendix
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Figure 5.4: Demonstration of how µ, the directional cosine of modes, changes depending on
the contributions from modes parallel and perpendicular to the LoS. This is calculated from

µ= cosθ = k∥/k = k∥/
√

k2
∥ +k2

⊥ .

equations (A.11), (A.12) and (A.13)). In Figure 5.3 I have plotted the integrands as a function of µ

for these equations. Since k∥ = kµ, we expect foregrounds to have the largest effect on modes

with low-µ. This then explains some of the results we are seeing in Figure 5.2 as a foreground

clean should have a similar effect to removing contributions to the multipoles from low-µ

regions (e.g. µ< 0.25 shown as the pink shaded region). Doing this removes a lot of the negative

contribution in the quadrupole which is why we see an enhanced signal. Similarly, this also

removes positive contributions to the monopole, hence why we see an overall damping here

and the hexadecapole has enough positive contributions removed for its negative contributions

to dominate.

Figure 5.4 shows how values of µ depend on the contributions from k∥ and k⊥ which are

modes parallel and perpendicular to the LoS respectively. By considering this, we should be able

to model the results we see in Figure 5.2 by calculating theoretical multipoles with low-µ modes

removed. The theoretical multipoles are produced from an underlying matter power spectrum

generated using using Nbodykit [92] which uses the Boltzmann solver package CLASS [124].

Figure 5.5 shows these theoretical models where for the subtracted foreground cases we have

eliminated contributions with |µ| <µFG where we define µFG by

µFG = kFG
∥ /k (5.5)

where kFG
∥ is some parallel mode limit below which modes are rendered inaccessible by the

foreground clean. The power spectra in Figure 5.5 are therefore given by

PHI,`(k) = 2`+1

2∆µ

∫ |µ|=1

|µ|=µFG

dµPHI(k,µ)L`(µ) (5.6)

where ∆µ ≡ 1−µFG is the amount of µ-space being integrated over and if foregrounds are

perfectly cleaned, then µFG = 0 and we recover the standard multipole expansion equation. For
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Figure 5.5: Theoretical multipole power spectra aiming to model Figure 5.2 by removing low-µ
contributions to emulate a foreground clean. Here I have removed low-µ contributions for
the foreground subtracted cases (red lines) as defined by equation 5.6. This uses a µFG cut-off
defined by µFG = kFG

∥ /k using kFG
∥ = 0.02hMpc−1. These results use a beam of θFWHM = 0.44deg

which causes damping as outlined by equation (5.7).

this example we chose kFG
∥ = 0.02hMpc−1 consistent with previous work e.g. [196]. This chosen

cut-off can be seen in Figure 5.5 where all power with k < 0.02 is lost which is because for these

modes |µFG| ≥ 1 according to equation (5.5) but since µ is the directional cosine and cannot

be greater than 1, the integral in equation (5.6) collapses. This model also includes a damping

effect from the telescope beam which affects small perpendicular modes such that PHI(k,µ) in

equation (5.6) is given by

PHI(k,µ) = T
2
HIb

2
HI

(
1+βµ2)2

e−(1−µ2)k2σ2
P (k) (5.7)

and the exponential beam damping term comes from only perpendicular modes k⊥ = k
√

1−µ2

being smoothed withσ= dc(z)θFWHM/2
√

2log2 . For the results in Figure 5.5 a beam of θFWHM =
0.44deg was used. While this is a rather crude toy model, it agrees nicely with the more robust re-

sults from simulations shown in Figure 5.2. We see the damping of the monopole, enhancement

of the quadrupole, and sign reversal of the hexadecapole all as expected. This currently does not

encapsulate other observational effects such as the telescope noise or pixelization but the aim is

to extend this model and have a theoretical fit such as those used in Figure 5.1 (solid lines) but

with foregrounds included in the fit.

Figure 5.6 shows the effect a foreground clean has on different ‘wedges’ defined by µ. This is

also illustrative of how µ is an interesting parameter to examine in the context of foreground

contamination. Since µ is the directional cosine of the modes and therefore k∥ = kµ, a wedge

with only low-µ included (as in the top-left plot of Figure 5.6) means only small k∥ modes are

included and these are the ones most affected by the foregrounds. These results in Figure 5.6

show that the impact of foregrounds becomes smaller as µ increases as expected.

Since the quadrupole and hexadecapole are seen as ‘smoking-guns’ for RSD, their detection

using HI intensity mapping would be exciting progress. However, in order to make the first
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Figure 5.6: Multipoles separated into different ‘wedges’ defined by µ which is the directional
cosine from the LoS i.e. µ= cos(θ) where θ is the angle from the LoS. Again I show the difference
between no 21cm foregrounds (black line) and where foregrounds are added then removed with
FASTICA (red line).

Figure 5.7: Quadrupole (P2) and hexadecapole (P4) for auto-correlations of HI intensity maps,
produced using simulations with no RSD. Therefore, the results should be P2 = P4 = 0 which the
foreground free results (black lines) are fairly consistent with but due to the presence of 21cm
foregrounds (and some simulated systematic noise), a false signal appears for both.
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detection of the quadrupole or hexadecapole, careful consideration would need to be given to

the effects foreground removal has on intensity mapping data. What might appear as a detection,

could just be systematics interacting with the Legendre polynomials to create an enhanced

signal. In Figure 5.7 I have used the MICE simulation as done in the previous examples in this

section, but instead set the galaxies peculiar velocities to zero thus resulting in no RSD. This

should therefore result in a null quadrupole and hexadecapole. However, in the presence of

foregrounds that have been removed using FASTICA, a false signal appears. Therefore any future

claim of this kind of detection would need to be confident it is not just a foreground effect. Figure

5.7 does show some non-zero signal even in the no foreground case. This is being caused by the

telescope beam which also introduces anisotropic effects since it only smooths modes in the

perpendicular direction.

5.2.1 Increasing Beam

It is interesting to look at how the previous results in Section 5.2 change when the size of the

telescope beam is increased. Previously I used a small beam of θFWHM = 0.44deg (corresponding

to the size of a GBT-like beam [230]) but here I investigate the effects of increasing that beam to

one which has σ= 1deg which is equivalent to a θFWHM ∼ 2.355deg beam. It is straightforward

to tweak the model outlined by equation (5.6) (and shown in Figure 5.5) to form a prediction for

what effect this should have. Figure 5.8 shows these results and we can immediately see some

differences appear. It is perhaps unsurprising that we see damping from the larger beam begin to

affect more mid-range values of k since a larger beam will smooth larger perpendicular modes,

thus affecting smaller k⊥. However, less intuitive is the difference between the foreground free

and foreground contaminated cases. It appears that increasing the beam renders foregrounds

less of a problem for the quadrupole and hexadecapole when compared with Figure 5.5. For the

monopole, the foregrounds still seem to have a damping effect for the lowest k values.

To understand this we can again analyse the integrands for the multipoles shown in Appendix

equations (A.11), (A.12) and (A.13). These are shown in Figure 5.9 but this time I show how the

beam term parameterised by σ (outlined in equation (5.7)) affects the integrands as a function

of µ. Since the beam damping term is dependent on k, I have chosen a fixed mid-range value

(k = 0.15) to demonstrate these results. 3

Figure 5.9 shows that a larger beam damps contributions across all µ values, but it has more

of an effect at low-|µ|. It is the modes with low-|µ| which are most affected by foregrounds and

this is why we see apparent mitigation of foreground effects for intensity maps with large beams.

It is simply because the beam is damping foreground contaminated modes anyway rendering

the foreground contamination a less dominant effect. For lower values of k, it is more likely that

there will be smaller k⊥ values which are less beam contaminated. Figure 5.4 shows that high

values of µ can exist at these low-k⊥ values where there is much less beam damping and this

3As one would expect, we find that larger values of k are affected more by the beam since the beam smooths
small perpendicular scales, thus affecting large k⊥ modes. Choosing a very small value for k for the results in Figure
5.9 would show little difference between each different σ case.
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Figure 5.8: Same plot as Figure 5.5 but with an increased beam size of θFWHM = 2.355deg. We see
more damping here at high-k in comparison with Figure 5.5 as expected from equation (5.7).
The larger beam also causes less effects from foregrounds in the quadrupole and hexadecapole
in comparison to the smaller beam case of Figure 5.5.

Figure 5.9: Effect of a changing beam size on the multipoles. Similarly to Figure 5.3, this shows the
integrands for the expanded multipole equations as a function of µ but now showing the effect
of increasing the beam, parameterised by σ as show in equation (5.7). Dotted lines represent
negative values. Equations are outlined in Appendix equations (A.11), (A.12) and (A.13). These
are results are for a set value of k = 0.15.
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Figure 5.10: Comparison of simulated results of multipole measurements with and without
foreground contamination. Same plot as Figure 5.2 but with a larger beam of θFWHM = 2.355deg.
The extra damping of modes and less impact from foregrounds is something predicted by the
model shown by Figure 5.8.

allows foreground effects to dominate. This is why we still see some foreground effects at low-k

in Figure 5.8.

I have tested this understanding of the larger beam and its relationship with foreground

contamination with our MICE HI intensity map simulations in the extended Blake19 multipole

measurement pipeline. Figure 5.10 shows these results. These mostly agree with the model in

Figure 5.8 where we only really see the foregrounds have an impact at the smallest k values. At

larger k, the large beam damps more power causing it to dominate over the foreground effects

and there is little distinction between the foreground free and foreground contaminated cases.

5.2.2 Smaller Sky Analysis

The results outlined in the previous section and in the Blake19 paper are in the context of larger

skies
(
& 1000deg2) where angular pixelization and curved sky geometries need consideration.

However, the small-sky regime is likely to be more relevant in the near future for HI intensity

mapping, with radio telescopes such as GBT or MeerKAT likely to provide maps on ∼100deg2

scales initially; here flat sky approximations can be made. We therefore aim to investigate this and

provide a more applicable pipeline to near-future HI intensity mapping/optical cross-correlation

surveys.

Figure 5.11 shows multipole measurements with and without foregrounds using MICE maps

which have been created to emulate the redshift range of GBT-like intensity maps (0.6 < z < 1.0)

[230] but with a 100deg2 sky area, which is likely to be achieved by near future observations. We

see relatively similar foreground effects for the monopole and hexadecapole as was seen for the

larger sky case with the same beam size in Figure 5.2. However, the quadrupole is less conclusive

with more increased uncertainty, caused by the smaller sky size.
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Figure 5.11: Multipole measurements for smaller sky (100deg2) intensity maps. Done with GBT-
like beam (θFWHM = 0.44deg) for redshifts of 0.6 < z < 1.0. Black data points represent foreground
free maps, red represent maps with foregrounds added and cleaned using FASTICA.

The future intention is to conduct more investigation into these smaller sky simulations and

attempt to model foreground contamination in conjunction with other observational effects. It

is likely that HI intensity maps similar to these I have simulated will be in cross-correlation with

optical surveys in the near future and therefore developing a pipeline which theoretically predicts

clustering measurements such as the power spectrum multipoles will be hugely beneficial.
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THESIS CONCLUSION

T
he future challenge for cosmology can be broadly summarised. The ΛCDM model ac-

curately explains most data obtained from probes of CMB, BAO, SNeIa, LSS and more.

However, the fact that this model relies on a dark sector, not currently included in the

standard model of particle physics, means efforts should be dedicated to constraining the avail-

able dark sector candidates. The aim should also be to simultaneously confirm that we are

on the right track withΛCDM, or alternatively find tensions which force a deviation from this

concordance model.

The focus of this thesis has been on the probe of LSS and there are current (e.g. DES and

eBOSS) and future galaxy surveys (e.g. DESI, LSST and Euclid) with this objective. These galaxy

surveys can generally be divided into two categories, photometric and spectroscopic redshifts.

While spectroscopic surveys provide excellent redshift calibration, and thus good distance

constraints, they are time-consuming experiments and not able to produce the galaxy number

densities ideally required to maximise statistical precision. Conversely, photometric surveys

provide larger data sets but their imaging technique struggles to constrain redshifts, often

producing large systematic uncertainty.

A promising alternative is 21cm intensity mapping which has been a central theme of this

thesis. Instead of maps of galaxy number densities, this method involves mapping the combined

emission from 21cm radiation produced by HI within the galaxies with low angular resolution.

The lack of angular precision is deemed acceptable for the purposes of probing LSS, since many

of the scales of interest are still accessible. Intensity mapping is still in the development phases

and is not yet a competitive cosmological probe. However, assuming the related systematics can

be understood and controlled, we should see increasing use of radio data using this technique

in cosmology.

Another central theme of this thesis has been cross-correlations between radio intensity

maps and optical galaxy redshift surveys. The poor angular resolution yet excellent redshift

resolution in intensity maps is inversely complemented by the poor redshift resolution yet
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excellent angular resolution of optical surveys. Furthermore, the differing observation strategies

between radio and optical mean each experience vastly different systematics. Under a cross-

correlation, these differing systematics are uncorrelated and thus mitigated in the analysis. I

have demonstrated that not only are these synergies crucial for conducting some of the first

cosmological detections using HI intensity mapping but will continue to provide systematic

reducing benefits with future datasets e.g. SKA × LSST/Euclid.

Broadly speaking, the main conclusions from this thesis are

• Using a clustering-based redshift estimation technique, HI intensity maps can be used to con-

strain the uncertainty on photometric redshifts as shown by Figures 3.12 and 4.19. For future

imaging surveys such as weak lensing probes, which plan to extend observation depth where

constraining redshift will be even more problematic with current methods, a HI clustering

redshift technique is appealing.

• 21cm foregrounds contamination is problematic in cross-correlation with a photometric

redshift galaxy survey. Because small k∥ modes are damped by foreground cleaning and large

k∥ modes are unconstrained due to the redshift uncertainty from the photometric survey, a

combination of these factors risks destroying any cross-correlation signal.

• Corrections can be applied to foreground cleaned intensity mapping data and I have demon-

strated examples of these in Chapter 4. With sufficient treatment, foregrounds do not pose an

insurmountable problem to the success of HI clustering redshift estimation and HI × photo-z

cross-correlations in general.

• Foregrounds also affect the power spectrum multipoles in some interesting ways as I have be-

gun to investigate in Chapter 5. The impact of foregrounds on the multipoles can be accurately

modelled using the parameter µ= cosθ where θ is the angle to the LoS. Since foregrounds

largely contaminate small k∥ modes, the low-µ part of the signal is mostly affected. This

provides an explanation of the effects on the multipoles as shown in Figure 5.2.

Future Work

All of the above conclusions warrant further investigation and my future work will aim to provide

this. Intensity mapping observations are being conducted now with telescopes such as the

GBT, CHIME and MeerKAT and hopefully future observations with HIRAX, BINGO and the SKA

should not be far behind. I intend to contribute towards the first intensity mapping observations

using MeerKAT both in auto-correlation and also in cross-correlation with optical surveys

such as the WiggleZ data. This will require a detailed understanding of 21cm foregrounds and

other systematics and potentially incorporating some of the techniques I have outlined into

a pipeline which can extract the cosmological signal from this early data. I am also currently

working with GBT intensity mapping data which is looking at cross-correlating with eBOSS

Luminous Red Galaxies (LRG) and Emission Line Galaxies (ELG) galaxies. This will provide

further understanding of the 21cm signal and is allowing work to be done on multipole expansion
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of 21cm signal, binning with µ-wedges (both discussed in Chapter 5) and also new techniques

such as HI × optical correlation functions in configuration space.

I also believe HI intensity maps will be able to benefit optical surveys in the future too, not

just the other way around as has presently been the case with intensity mapping data relying

on spectroscopic optical surveys to boost their signal. As I outlined in Chapter 3, arguably the

largest challenge facing future photometric surveys such as LSST and Euclid is constraining

their redshifts, especially at deeper distances where galaxies become fainter and the challenge

is enhanced. I plan to further investigate the benefit intensity maps can have in HI clustering-

based redshift estimation with particular attention to Euclid-like data and begin more robust

forecasting of the benefits to be gained.

A crucial part of all these investigations lies in the robustness of the simulations used both

for calculating uncertainty in current data and providing forecasts for the future. I therefore also

plan to build upon my current suite of simulation techniques. However, as I emphasised in pre-

vious chapters, simulations that are fit for the purpose of HI × optical investigations ideally need

low mass resolutions, over large volumes, with sophisticated halo/galaxy finding algorithms

applied with output observables such as photometry and HI content. All of this makes them very

computer resource-intensive and naturally some approximative methods are needed such as

the ones I have used in this thesis. Detailed analysis of the robustness of these approximations

is needed to ensure that the conclusion being drawn from them can be relied upon. I plan to

investigate this in future work too.

This thesis has examined the future potential of HI intensity mapping as a probe of large scale

cosmic structure, in particular, the benefits that can be gained from cross-correlating these data

with conventional optical galaxy redshift surveys. I have shown how 21cm foregrounds present a

major challenge to overcome and stimulated the need for further investigation into their effects

and techniques for mitigation. But overall this work has shown that the excitement surround-

ing the potential of HI intensity mapping is warranted and offers an excellent opportunity to

accelerate our understanding of the Universe.
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A.1 Power Spectrum Multipoles

This provides a complete derivation of the power spectrum multipoles. Firstly, the anisotropic

P (~k) spectrum can be expanded in Legendre polynomials

P (~k) ≡ P (k,µ) =∑
`

P`(k)L`(µ) (A.1)

whereL`(µ) is the `th Legendre polynomial andµ is the cosine of the angle between the wavevec-

tor~k and the LoS. Given that the Legendre polynomials are orthogonal over (−1,1), we have the

identity ∫ 1

−1
L`(µ)Lm(µ)dµ= 2

2`+1
δ`m (A.2)

where δ`m is the Kronecker delta. By multiplying both sides of (A.1), integrating and then

rearranging we can derive a general expression for the multipoles given by

P`(k) = 2`+1

2

∫ 1

−1
dµP (k,µ)L`(µ). (A.3)

For linear RSD we can expand the Kaiser equation in (1.48) to get

P (k,µ) = b2 (
1+2βµ2 +β2µ4)PM(k) (A.4)

where PM(k) is the underlying, isotropic matter power spectrum. The only non-zero multipoles

come from `= 0,2,4 therefore the Legendre polynomials we need are given by

L(µ)0 = 1 (A.5)

L(µ)2 = 3µ2 −1

2
(A.6)

L(µ)4 = 35µ4 −30µ2 +3

8
. (A.7)
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Using these Legendre polynomials provides the three multipole equations we need as

P`=0(k) = 1

2

∫ 1

−1
dµP (k,µ) (A.8)

P`=2(k) = 5

2

∫ 1

−1
dµP (k,µ)

3µ2 −1

2
(A.9)

P`=4(k) = 9

2

∫ 1

−1
dµP (k,µ)

35µ4 −30µ2 +3

8
. (A.10)

Plugging in the expanded Kaiser galaxy power spectrum from (A.4) and rearranging gives

P`=0(k) = b2PM(k)
∫ 1

−1
dµ

[
1

2
+βµ2 + β2µ4

2

]
(A.11)

P`=2(k) = b2PM(k)
∫ 1

−1
dµ

[
−5

4
+ 15µ2

4
−β

(
5µ2

2
− 15µ4

2

)
−β2

(
5µ4

4
− 15µ6

4

)]
(A.12)

P`=4(k) = b2PM(k)
∫ 1

−1
dµ

[
27

16
− 135µ2

8
+ 315µ4

16
+β

(
27µ2

8
− 135µ4

4
+ 315µ6

8

)
+β2

(
27µ4

16
− 135µ6

8
+ 315µ8

16

)]
.

(A.13)

Using the integration identity ∫ 1

−1
µndµ= 2

n +1
(A.14)

gives the results

Pg,`=0(k) =
(
1+ 2

3
β+ 1

5
β2

)
b2PM(k) (A.15)

Pg,`=2(k) =
(

4

3
β+ 4

7
β2

)
b2PM(k) (A.16)

Pg,`=4(k) = 8

35
β2b2PM(k) . (A.17)
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∥ /k using kFG

∥ = 0.02hMpc−1. These results use

a beam of θFWHM = 0.44deg which causes damping as outlined by equation (5.7). . . 117

5.6 Multipoles separated into different ‘wedges’ defined by µ which is the directional

cosine from the LoS i.e. µ= cos(θ) where θ is the angle from the LoS. Again I show

the difference between no 21cm foregrounds (black line) and where foregrounds are

added then removed with FASTICA (red line). . . . . . . . . . . . . . . . . . . . . . . . 118
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5.7 Quadrupole (P2) and hexadecapole (P4) for auto-correlations of HI intensity maps,

produced using simulations with no RSD. Therefore, the results should be P2 = P4 = 0

which the foreground free results (black lines) are fairly consistent with but due to

the presence of 21cm foregrounds (and some simulated systematic noise), a false

signal appears for both. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 Same plot as Figure 5.5 but with an increased beam size of θFWHM = 2.355deg. We

see more damping here at high-k in comparison with Figure 5.5 as expected from

equation (5.7). The larger beam also causes less effects from foregrounds in the

quadrupole and hexadecapole in comparison to the smaller beam case of Figure 5.5. 120

5.9 Effect of a changing beam size on the multipoles. Similarly to Figure 5.3, this shows

the integrands for the expanded multipole equations as a function of µ but now

showing the effect of increasing the beam, parameterised by σ as show in equation

(5.7). Dotted lines represent negative values. Equations are outlined in Appendix

equations (A.11), (A.12) and (A.13). These are results are for a set value of k = 0.15. . 120

5.10 Comparison of simulated results of multipole measurements with and without fore-

ground contamination. Same plot as Figure 5.2 but with a larger beam of θFWHM =
2.355deg. The extra damping of modes and less impact from foregrounds is some-

thing predicted by the model shown by Figure 5.8. . . . . . . . . . . . . . . . . . . . . . 121

5.11 Multipole measurements for smaller sky (100deg2) intensity maps. Done with GBT-

like beam (θFWHM = 0.44deg) for redshifts of 0.6 < z < 1.0. Black data points represent

foreground free maps, red represent maps with foregrounds added and cleaned using

FASTICA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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LIST OF ABBREVIATIONS, CONSTANTS & NOTATIONS

LIST OF ABBREVIATIONS, CONSTANTS & NOTATIONS

Notation Description

AAT Anglo-Australian Telescope

AGN Active Galactic Nuclei

BAO Baryon Acoustic Oscillations

BINGO BAO In Neutral Gas Observations

c Speed of light ≈ 3.00×108m s−1

CHIME Canadian Hydrogen Intensity Mapping Experiment

CMB Cosmic Microwave Background

Ddish Radio telescope’s dish diameter

DES Dark Energy Survey

ELG Emission Line Galaxies

FASTICA Fast Independent Component Analysis

FLRW Friedmann-Lemaître-Robertson-Walker metric

GBT Green Bank Telescope

Gpc Gigaparsec (unit of distance)

hP Planck’s constant ≈ 6.63×10−34m2kg s−1

HAM Halo Abundance Matching

HI Neutral Hydrogen (Pronounced ‘H - one’)

HIHM HI-Halo Mass function

HOD Halo Occupation Distribution

kB Boltzmann’s constant ≈ 1.38×10−23m2kg s−2K−1

LRG Luminous Red Galaxies

LSS Large-Scale Structure

LSST Large Synoptic Survey Telescope

LoS Line-of-Sight

Mpc Megaparsec (unit of distance)

QFT Quantum Field Theory

RSD Redshift Space Distortions

SKA Square Kilometre Array

z Redshift

θFWHM Full-Width-Half-Maximum of radio telescope beam
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