
Surface Electromyography Driven
Hand Motion Recognition for

Long-term Rehabilitation Use

Dalin Zhou

School of Computing
University of Portsmouth

The thesis is submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy

June 2019





This thesis is dedicated to my parents, Libiao Zhou and Hui Liang.





Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other
research award. The results and conclusions embodied in this thesis are the work of the
named candidate and have not been submitted for any other academic award. The final thesis
comprises 30352 words.

Dalin Zhou
June 2019





Acknowledgements

First I would like to acknowledge the contribution of my supervisor, Prof Honghai Liu,
who has continuously supported me in both academic research and career development.
Significant attention has been paid by Prof Liu to my research that has broadened my view
in the field of rehabilitation and inspired me motivationally to explore the feasibility of
this study. His encouragement and our discussion have contributed to the ideas and the
completion of this thesis.

The acknowledgement is also given to Prof Haibo Ji, Prof Yu Kang, Prof Naoyuki Kubota,
Dr Janos Botzheim and Miss Daxin Wang, who have helped me during my stay in their
research groups. A plenty of ideas and approaches have been inspired under their guidance.

And I would also like to thank my colleagues and friends in the Intelligent Systems &
Biomedical Robotics Group who have helped me during my course of study including Dr.
Zhaojie Ju, Dr Yinfeng Fang, Dr Nalinda Hettiarachchi, Dr Haibin Cai, Dr Dongxu Gao, Dr
Kairu Li, Mr Peter Boyd and Mr Wei Zeng. Special thanks go to Dr Yinfeng Fang, who has
been guiding my experiments and data analysis throughout my course of study, providing
selfless encouragement to me and sharing his knowledge and expertise in muscular sensing.

I am also thankful to Dr Kate Dingley, who has provided me with important advice on
my course progress during my study. The help from Hobbs Rehabilitation and ProActive
Prosthetics in related clinical experiments is also sincerely acknowledged here.

Last but not least, I want to express my sincere gratitude to my family. My studies could
not be possible without their unconditional love and support.





Abstract

The control of prosthetic hands and other upper-limb assistive device for rehabilitation relies
on the premise that users’ hand motion intention is accurately recognised. Among all the
feasible modalities, surface electromyography (sEMG) based hand motion recognition has
been most widely adopted for its intuitiveness and effectiveness. However, the reported
promising recognition accuracy is mostly confined to intra-day scenarios, which ignores
the performance degradation of inter-day application for long-term use. To address the
challenging inter-day hand motion recognition for long-term use, current sEMG driven
solutions are further developed with an improved performance verified by experiments in
this thesis. The contributions are recognised in terms of improved pattern recognition based
classification, additional sEMG feature extraction and selection, novel multimodal fusion
based hand motion recognition, and new long-term sEMG benchmark building.

First, both conventional pattern recognition and deep learning approaches are developed
to accommodate the long-term use with inadequate and adequate training data respectively.
Based on the feasibility of a force driven subclass division in our preliminary work, subclass
division based linear discriminant analysis (LDA) frameworks using solely sEMG signals
are proposed. Both explicit and implicit subclass division strategies are explored including
the K-nearest neighbour based LDA (KNN-LDA) and subclass discriminant analysis (SDA)
with a verified improvement of long-term hand motion recognition accuracy for inadequate
training data. A convolutional neural network (CNN) architecture is adopted using raw
sEMG as the input without preprocessing, whose significant improvement of long-term
recognition accuracy has been seen with adequate and pooled training data across multiple
days and subjects. Then the feasibility of merging handcrafted features and non-handcrafted
features is proved in combination with a diversity of classification algorithms for the long-
term hand motion recognition. And a novel multi-threshold based handcrafted feature
vector is proposed and achieves an improved recognition accuracy. The feature selection is
conducted with the bacterial memetic algorithm for achieving different targets including a
compromised yet comparable recognition result at a largely reduced computational cost with
selected subsets of existing features, and an improved recognition accuracy with selected
features from enriched sub-segments of multiple lengths. To further remedy the lack of deep



x

muscle activity sensing in myoelectric sensing, the ultrasonic sensing is investigated as a
complementary modality and integrated with the myoelectric sensing, which contributes to
an improved accuracy of hand motion recognition. Finally, the lack of long-term constraints
and low-density representations in existing public databases is addressed by building a new
dataset comprising the long-term sEMG signals of 13 hand motions captured from 10 subjects
in consecutive 10 days under a standardised protocol as a public benchmark for the research
community.
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Chapter 1

Introduction

1.1 Background and Motivation

Fine hand motor function plays a critical role in daily life activities and is essential for
performing dexterous and accurate gesture-based interaction and object manipulation. Upper
limb impairment and amputation are common causes that deprive the patients of their normal
hand movement, which in turn hinders their quality of life. The loss of hand functionality
significantly affects the autonomy of human subjects and their capability of performing
complex and useful tasks in daily living, working and social activities. Patients who have
their hands amputated usually demand the bionic replacement such as prosthetic hands and
upper-limb assistive devices to remedy the loss of hand motor function. According to NHS
England D00/P/a and D01/S/d [7, 8], the prevalence of upper limb amputation is likely to be
10000 of 250000 per year with an estimated 55000 - 60000 of amputees attending specialist
rehabilitation service centres in the UK. The rapidly growing need of upper limb motor
function replacement forms one of the primary concerns in the healthcare community. As a
result, extensive research has been conducted to develop life-like prostheses and improve their
functionality. The desired properties of an ideal prosthetic hand are studied and identified by
Cordella et al. [9] in terms of the accurate execution of daily life tasks including grasping
and manipulation with an increased number of motion types, the integration of tactile sensory
feedback into prosthetic hands to enable contact, sliding and force detection instead of solely
relying on the visual feedback, the better control system comprising both position and force
control of the fingers on the objects, and the improved dexterity of prosthetic hands with
more degrees of freedom (DoFs). In summary, the potential improvement can be arbitrarily
categorised into the development of prosthetic hardware design and the enhanced reliability
of human machine interfaces (HMIs) grounded on the current motion intention recognition
solutions.
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Within our knowledge, to meet the growing need of amputees to replace their lost upper
extremity, the development of prosthetic solutions has been continuously reported in the
rehabilitation field for decades [10–12]. Besides the cosmetic appearance, execution of
clinically viable and dexterous hand motion through prostheses is vitally desired by patients
who suffer from upper limb impairments and attracts great attention from researchers. In
the attempt to conduct fluid life-like hand motions clinically, both physical features of
prosthetic hardware design, and sensing techniques and control strategies of HMIs should
be well designed. Physical features like functionality and wearability are determined by
the mechanical design of prosthetic hands [13]. With the emphasis on the integration of
mechanisms, sensors and actuators [14], a large variety of dexterous robotic hands with
multiple DoFs have been developed in recent years. The progress in the hardware design of
assistive devices such as prostheses and exoskeletons has been propelled in both academia
and industry by the growing need of upper limb motor function restoration [15, 16]. However,
the types of executed hand motions in applications are still limited despite the improved
prosthesis dexterity [17] and the HMIs adopted in commercial devices hardly differ from
decades ago [18, 19]. The discrepancy is mainly attributed to the circumscribed development
of the adopted HMIs for prosthetic hand control, which facilitates sensing physiological
signals related to forearm muscle movement and decoding the intention of hand motion into
executable commands to prosthetic devices. Fully exploiting the dexterous prostheses with
multiple DoFs and other assistive devices for active upper-limb rehabilitation relies on the
premise that users’ motion intention is accurately recognised from their voluntary efforts
[20, 21]. Thus to accommodate the increasing dexterity of bionic device and bridge the gap
between prosthetic hardware design and HMIs for hand motion recognition, it is essential to
overcome the limitations of existing HMIs by accounting for the sensing and recognition
respectively.

Currently most HMIs for prosthetic control are noninvasive myoelectric sensing based
ones, where the recognition of hand motion intention is based on the analysis of the surface
electromyography (sEMG) over forearm muscles. And a typical flowchart of sEMG based
prosthetic hand control can be seen in Fig. 1.1. Research has been frequently published on
multiple stages including myoelectric signal capturing device development [22], preprocess-
ing of captured physiological signals [23], the sEMG based hand motion recognition [2], the
postprocessing of the decision stream generated by the recognition approach [24], and the
evaluation criteria of real-time performance [5], whose effort is mostly targeted at improving
the recognition accuracy. Though a promising recognition accuracy has been achieved in
various publications [25–27], the gap between academic progress and clinical application
keeps expanding in the absence of an ideal HMI. The myoelectric HMIs dated back to the
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1950s and 1960s are still equipped by the vast majority of commercially available powered
prostheses at present [28]. A possible cause of this situation is that the long-term usability
is not guaranteed in current control strategies. Due to the natural characteristics of sEMG
signals, inevitable physiological changes and electrode displacement in long-term use will
result in the variation of signal manifestation, which hinders the accurate motion recognition
in a clinical environment [29]. And the long-term usability is less concerned and remains to
be addressed in multiple stages as depicted in Fig. 1.1.

Fig. 1.1 A typical loop of prosthetic hand control with sEMG based HMI

Based on the background and the necessity of an improved HMI for long-term use, this
thesis aims to develop a set of methodologies and techniques for hand motion recognition to
deal with the problems and challenges described in Section 1.2.

1.2 Problems and Challenges

For prosthesis users, good intuitiveness, high success rate, low latency and limited adaptation
cost of the devices are the prior properties to be fulfilled [2]. In details, the premise of an
ideal control is crafted by the accurate recognition of users’ intention, the imperceptible delay
between the execution of the mechanical extremity and the employment of users’ residual
limb, and their consistent feasibility for long-term use. Among various feasible approaches,
sEMG based pattern recognition for prosthetic hand control has been the most widely
investigated one for its most promising performance [30]. The aim of such methodology is
to distinguish users’ intention of hand movement through classifying the patterns extracted
from sEMG signals captured during forearm muscle contractions. Increasingly high accuracy
and improved robustness have been frequently published within the framework of pattern
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recognition in academia [31, 32] in terms of development of classifiers [33] and features
[34]. And the superiority of pattern recognition based solutions in clinical scenarios has been
stated in various recent research [35–37]. However, the intrinsic randomness of the sEMG
signals contributes to a degraded performance in long-term use, which has been addressed by
researchers [38–40] yet not fully accommodated. From the users’ perspective, it is a time
consuming burden for them to conduct the re-training for every day. Thus it is meaningful to
improve the existing methods without re-training or reduce the training burden. To develop
an sEMG driven solution to the inter-day hand motion recognition for long-term use, the
following challenges need to be addressed:

1.2.1 Pattern Recognition Approaches Lacking Robustness to Inter-
day Changes

Reports have shown that long-term use will deteriorate the hand motion recognition accuracy
across multiple days. Various factors that affect the consistency of long-term sEMG signals
have been taken into account like fatigue and electrode shift. The deterioration of inter-day
performance leads to the requirement of everyday training effort from the users to adjust
the applied recognition algorithm. The burden of re-training and re-calibration prevents the
current research prototypes from being applied in clinical settings. Less or no re-training
depends on a better priori knowledge of the potential invariance and inter-day relation of
sEMG during long-term use. The inter-day performance of sEMG based hand motion
recognition is improvable under the assumption that invariance and inter-day relation could
be extracted from sEMG, which in turn is governed by jointly improved feature selection and
classifier design. Mature classification approaches like linear discriminant analysis (LDA)
have been widely applied in sEMG based hand motion recognition in combination with the
classic Hudgins’ time domain features together with autoregressive coefficients (TDAR), yet
not able to fully exploit the invariant part and transfer it to inter-day use. It is challenging to
propose suitable pattern recognition approaches for long-term use which can be identified in
the development of both consistent features and robust classifiers.

1.2.2 Inherent Limitations of Noninvasive Unimodal Myoelectric Sens-
ing

The intrinsic randomness and inevitable crosstalk of sEMG heavily prevent its feasibility
of dexterous applications in the inter-day and inter-subject scenarios. The sensitivity to
electrode shift and physiological changes like muscle fatigue and sweat also hinders sEMG
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based solutions’ long-term usability in clinical scenarios. Besides, the recognition accuracy
and motion candidates are constrained by the intrinsic property of a noninvasive myoelectric
sensing modality. SEMG only detects the electrical manifestation comprising the weighted
contributions mainly from superficial muscles while dexterous limb motions are naturally reg-
ulated by deep muscles like flexor digitorum profundus, which hardly leads to a satisfactory
recognition of finger movement. It is challenging to incorporate a suitable sensing modality
that is complementary to myoelectric sensing, and form the basis of improved sEMG driven
and multimodal fusion based solutions.

1.3 Overview of Approaches and Contributions

Taking into account the aforementioned challenges, this thesis proposes the improved pattern
recognition frameworks in terms of developing both classifiers and features, together with the
myoelectric and ultrasonic multimodal sensing. To mitigate the limited robustness to inter-
day changes, subclass division is incorporated into the state-of-the-art patttern recognition
methods for the scenario of inadequate training data while the deep learning approaches
are considered to better exploit the adequate training data. Meanwhile, the classic feature
extraction and selection strategies are further developed to enhance the robustness of the
adopted pattern recognition framework which is reflected by the improved inter-day hand
motion recognition accuracy. To remedy the constraint of unimodal myoelectric sensing, the
sensing modality of wearable ultrasound is utilised to provide complementary information of
muscular morphology to the bio-electrical manifestation of sEMG signals. The proposed
approaches and main contributions of this thesis are presented as follows.

1.3.1 Subclass Division Based Discriminant Analysis for Hand Motion
Recognition

Firstly, this thesis contributes to the hand motion recognition in conventional pattern recogni-
tion based classifier design to accommodate the training process with inadequate inter-day
samples. This setting comprises the sEMG data of 1 or 2 days for training and the rest
unseen days’ data for testing. The discriminant analysis frameworks, taking into account the
subclass division and invariant patterns that reside in sEMG signals, are proposed to improve
the recognition performance in scenarios with less or no re-training. The subclass division
is incorporated in the LDA in both explicit and implicit schemes. Similar to the fining
and coarsening process in granular computing, the explicit subclass division leads to more
class labels and the classification results of subclasses will be subsequently mapped into the
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original classes. The subclass division based discriminant analysis is adopted to provide an
improved recognition accuracy with limited training data, which reflects the potential benefits
to the reduction of burden of training. The subclass division is first conducted in an explicit
way through the totally unconstrained and unsupervised learning without a strict constraint of
the subclass number across all the pooled data and followed by the LDA classification. Then
the constrained and explicit subclass division utilising the relative distances between samples
with the priori knowledge of class labels is conducted within each class and proposed as
K-nearest neighbours based LDA (KNN-LDA). The subclass division analysis (SDA) com-
bining the implicit subclass division strategy with a modified discriminant analysis algorithm
is finally adopted for the inter-day hand motion recognition when inadequate training data is
provided. And both the explicit subclass division and implicit invariance extraction strategies
based discriminant analysis frameworks contribute to an improved hand motion recognition
for long-term use.

1.3.2 Convolutional Neural Network for Low-density sEMG Based Hand
Motion Recognition

Secondly, this thesis contributes to the low-density sEMG based hand motion recognition
with deep learning approaches to utilise the adequate data across multiple subjects which
comprises 7 days’ data from 6 subjects for training and the rest for testing. A convolutional
neural network (CNN) architecture with 2 convolution layers and 2 fully connected layers is
adopted to fit the concatenated sEMG signals of multiple channels for inter-day hand motion
recognition. A two-stage training approach comprising the pre-training and fine-tuning stages
is employed to automatically extracts features of sEMG signals from multiple days across
multiple subjects instead of using handcrafted features to gain the insight of their inter-day
relation to address the long-term usability. The pooled adequate training data across multiple
days and subjects are fed to the CNN to further address the feasibility of both inter-day and
inter-subject knowledge transfer. A significantly improved long-term recognition accuracy is
achieved by the CNN with adequate training data in comparison with the conventional pattern
recognition approaches, which contributes to a potential baseline for the future research. The
CNN is also modified to incorporate the classic handcrafted feature extraction to further
improve the recognition accuracy.

1.3.3 Feature Extraction and Selection for Hand Motion

Thirdly, this thesis contributes to the hand motion recognition in feature extraction and
selection. In the context of sEMG feature extraction, both handcrafted features and non-
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handcrafted features are proposed in this thesis, in comparison with the most adopted TDAR
features. The handcrafted TDARM features are proposed in the form of time domain
(TD) descriptors with enumeration of conventional features in combination with multiple
thresholds. The non-handcrafted features are extracted from the concatenated raw sEMG
signals using the CNN with its first fully connected layer. The fusion of classic TDAR
features and CNN features is validated for contributing to a better recognition accuracy in
combination with multiple classification algorithms including both the conventional pattern
recognition approaches and the deep learning architecture of CNN. Besides the feature
extraction, feature selection is conducted to seek optimal and quasi-optimal feature subsets,
targeting at reduced computational cost and better distinguishable performance respectively.
The bacterial memetic algorithm (BMA) is utilised for its capability of simultaneous global
and local search. The results indicate that selected subsets of TDAR feature candidates can
achieve a compromised yet comparable performance at a largely reduced computational cost.
Moreover, the features selected from TDAR candidates of multi-length windowed segments
are beneficial for improving the recognition accuracy in comparison with the conventional
single-length segmentation.

1.3.4 Myoelectric and Ultrasonic Fusion Based Hand Motion Recogni-
tion

Another contribution of this thesis is the incorporation of wearable ultrasonic sensing into the
current singly myoelectric sensing based solutions. The feasibility of ultrasonic sensing based
dexterous hand motion recognition is first validated among able-bodied subjects. And the
drawback of significant sensitivity to probe shift is also identified in the wearable ultrasonic
sensing. Along this line, the multimodal fusion based hand motion recognition is investigated
using synchronously captured ultrasound and sEMG signals to exploit both the consistency of
ultrasound based morphological representation and the relatively better robustness of sEMG
to electrode distribution. In particular, the multimodal fusion based pattern recognition
approaches are proposed by conducting the feature extraction on both sEMG and ultrasound
signals and the subsequent classification of the concatenated feature vectors comprising
the myoelectric TDAR features and the ultrasonic linear fitting coefficients (LFC), thereby
improving the recognition accuracy with fused sensing modalities. And the evaluation on an
amputated subject is provided as a case study on the targeted group of subjects to verify the
superiority of multimodal sensing fusion.
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1.3.5 Benchmark for sEMG Based Long-term Hand Motion Recogni-
tion

Last but not least, this thesis contributes to the research community of prosthetic control
and hand motor function rehabilitation with a benchmark built for long-term evaluation of
sEMG based hand motion recognition. The sEMG signals in inclusion are captured from 10
subjects performing 13 hand motions in consecutive 10 days under a standardised training
and data acquisition protocol. Because of the standardised signal capturing protocol of the
benchmark, it is straightforward to incorporate new subjects and new samples in the future,
which allows the mitigation of current limitation of data size. Specifically, the dataset is
made up of low-density sEMG signals captured in a prolonged inter-day scenario, which has
not been simultaneously addressed by any other public datasets yet.

1.4 Thesis Organisation

The remaining chapters of this thesis are organised as follows.
Chapter 2 reviews the state-of-the-art work on muscular sensing based hand motion

recognition with an emphasis on sEMG driven solutions. A comprehensive understanding of
the wearable muscular activity sensing techniques and corresponding hand motion recognition
algorithms is provided to the readers. The classic and prominent works and the most recent
research perspectives are introduced in details. The concluding section finally summarises
the progress and the limitations so far, and outlines the future research directions as well.

Chapter 3 first considers the development of conventional pattern recognition approaches
of LDA. Discriminant analysis in combination with the subclass division strategy is adopted
for long-term sEMG based hand motion recognition across multiple days with the inadequate
training data provided. The conventional discriminant analysis is modified by subclass
division strategies of unconstrained unsupervised clustering, constrained nearest neighbour
based subclass division and implicit subclass division optimisation respectively. Different
from the conventional discriminant analysis, subclasses of motion types of multiple days are
generated either explicitly or implicitly to accommodate the varying sEMG patterns, which
are attributed to physiological changes in long-term use. Explicit subclass division through K-
nearest neighbours (KNN) is adopted to generate new labels of the training data by addressing
the subclass division and the invariance within sEMG signals of multiple days in multiple
subclasses within each motion type. The SDA utilises the subclass division implicitly
and seeks the invariance within to reduce or eliminate the burden of re-training. This
chapter further demonstrates the feasibility of deep learning approaches in the sEMG based
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hand motion recognition, with an emphasis on the low-density electrode distribution based
capturing system instead of the commonly used high-density ones. The data segmentation,
network structure, pre-training and fine-tuning are routinely introduced in our applications.
Specifically, the raw multi-channel sEMG signals are fed to the network for training and
classification to further verify the practicality of the deep learning approaches in dealing
with both inter-day and inter-subject knowledge transfer for long-term use, which is not
considered in the conventional sEMG based hand motion recognition.

Chapter 4 addresses the importance of features from the perspectives of extraction and
selection respectively. Both conventional priori knowledge based handcrafted features and
deep learning based non-handcrafted features are discussed about and fused into the feature
set to achieve a better classification result. A novel feature vector TDARM comprising
conventional TDAR features and the TD descriptor enumeration with multiple threshold is
proposed and tested for its feasibility. And the evolutionary algorithm BMA is adopted for the
feature selection from both classic TDAR features and the ones extracted from multi-length
windowed segments to address the need of computational cost reduction and the improvement
of recognition accuracy respectively.

Chapter 5 incorporates the ultrasonic sensing modality into the current singly myoelectric
modality based muscle activity sensing and hand motion recognition, following the verifica-
tion of its feasibility in dexterous hand motion recognition across able-bodied subjects. The
LDA classifier in combination with the TDAR features of myoelectric signals and the LFC
features of ultrasonic signals is adopted to facilitate the multimodal sensing. The merits of
myoelectric and ultrasonic fusion based hand motion recognition are validated with a case
study on an amputated subject.

Chapter 6 provides the experiment setup and data acquisition details to form a new sEMG
dataset with more subjects and prolonged scenarios involved for long-term use evaluation as
a potential benchmark, followed by the experiments and thorough discussion.

Chapter 7 finally summarises the contributions of this thesis and discusses the future
research directions.





Chapter 2

Literature Review

2.1 Muscle Activity Sensing

The taxonomy of sensing techniques for prosthetic hand control and active motor function
rehabilitation is generally described in perspectives of their invasiveness and intuitiveness.
Conservative noninvasive modules whose detecting sites are distributed over the skin surface
are naturally preferred by prosthetic hand users. Among all the feasible sensing mechanisms,
sEMG based myoelectric control has been the most adopted control strategy for decades
in both academia and industry. Other noninvasive manifestations like sonomyography
(SMG), inertial measurement units (IMU), electrooculography (EOG), electroencephalog-
raphy (EEG), mechanomyography (MMG), force myography (FMG) and near-infrared
spectroscopy (NIRS) have been utilised independently or in combination with sEMG signals
in a multimodal scheme [30, 41, 42]. An invasive sensing modality typically requires surgery
process like the electrode implantation or needle insertion for acquisition of intramuscular
electromyography (iEMG) [43], the craniotomy and electrode implantation to retrieve elec-
trocorticogram (ECoG) [44] and the grafting residual nerves that exert EMG signals to spare
muscles through targeted muscle reinnervation (TMR) surgery [45]. Though invasive sensing
approaches are rarely exploited as the sensing techniques in a commercial prosthetic hand
control system, strategies like TMR surgery are clearly more suitable for proximal amputees,
whose muscular structure of arms is no more accessible [6].

To date, let alone the numerous manifestations that represent muscle activity, sEMG
remains the main equipped sensing modality for muscular activity sensing in the active
control of almost every commercial upper limb prosthesis and exoskeleton for active limb
motor function restoration. A main reason is that the EMG signals are directly related to the
muscle contraction and provide an intuitive physiological perspective of the motion intention
generation. Furthermore, the EMG allows the recognition of motion intention through the
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muscle contraction within residual limbs and does not rely on the actual limb movement
because of its bio-electric nature. In this thesis, the main focus is attached to the noninvasive
sensing techniques with an emphasis on the sEMG driven solutions. This section primarily
reviews the myoelectric sensing technique and address the alternative modalities suitable for
multimodal fusion based sensing as a complement.

2.1.1 Myoelectric Sensing

Myoelectric signals are the electrical manifestation of active motor units (MUs) during muscle
contractions, where the information of neural control signals and muscular physiological
changes resides in [46]. MUs are the basic components involved in body movement, each
of which consists of a motor neuron and its corresponding muscle fibres, following the
all-or-none law to be recruited. When the stimulus on an MU induces a potential exceeding
the threshold voltage during muscle contractions, the MU is recruited to undergo the cycle
of depolarization and repolarization. The motor unit action potential (MUAP) occurs as
a response to the flow of ions, whose magnitude and shape depend on intrinsic properties
of muscle anatomy [47]. The MUAP intuitively depicts the electrochemical process of an
MU during muscle contractions. It is reasonable to postulate that the muscle activity can
be subtly interpreted through the potential variation of all the recruited MUs. However, the
distinct detection of MUAP for every MU is impractical in a clinical application. Detected
myoelectric signal is the weighted sum of MUAP contribution and normally illustrated
by EMG in practice. The machinery of EMG provides a mildly compromised but fully
practical approach to inspecting the MUAP with a relatively macroscopic perspective. EMG
signal processing methods have been developed to extract the information on muscle activity
dynamics and muscular physiological properties [12, 31], thus providing a natural source to
decode the forearm movement for prosthetic control and motor function rehabilitation.

EMG is generally categorised into sEMG and iEMG according to the location of detection
sites. Electrodes for sEMG detection are attached to the skin surface while iEMG requires
invasive electrode implantation. As a result, sEMG only detects the compound electrical
manifestation mostly from superficial muscles while iEMG allows selective recording from
individual superficial and deep muscles. The research conducted by Kamavuako et al. [43]
demonstrated a higher correlation between iEMG and force in comparison with sEMG,
allowing representation of the applied grasping force with a selective EMG recording.
A follow-up evaluation of iEMG based force estimation in 2 DoFs was reported with
high accuracy on 3 able-bodied subjects [39]. Further research by Smith et al. [48, 49]
demonstrated the feasibility of iEMG based simultaneous control of multiple DoFs in real-
time application. Meanwhile, the crosstalk is inevitable for sEMG but absent for iEMG. In
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another published comparison [50], strong correlation between sEMG captured from different
channels has been seen while barely no correlation was found for iEMG among detection
sites. A preliminary conclusion has been drawn that the independence of iEMG would
provide superior local information of targeted muscles which permits intuitive, simultaneous
and proportional control of multiple DoFs.

Despite the mentioned merits of iEMG, sEMG is more exploited in practice for prosthetic
hand control mainly for its noninvasiveness and easy access, which is the prior concern for
common users. SEMG signals are most commonly collected using one or more electrodes
placed on the skin surface either with reference to particular muscles or equidistantly over
an area of interest [51]. And sEMG can be captured by both wet and dry electrodes in
either a passive or active mode without complicated setup and chronic adverse effect, which
contributes to a better acceptance rate from the users [52]. A customised multi-channel
sEMG capturing system with low-density electrode distribution is shown in Fig. 2.1 and
a sample of the high-density sensing grid is shown in Fig. 2.2. In addition to the better
acceptance by users, it has been validated on 6 able-bodied subjects that iEMG does not
outperform sEMG in pattern recognition based myoelectric control [53]. And intensive
research has highlighted the attempts in improving sEMG and pattern recognition based
HMIs for prosthetic hand control. Besides the direct use of EMG in clinical applications,
further exploitation of the information that resides within EMG from the perspective of single
MUs have been revealed by extensive coherent research led by Farina et al. [54–59]. The
generation and decomposition of electrical manifestation have been explored to derive the
direct neural drive to muscles from the indirect description of neural activation based on
sEMG.

Though sEMG sensing enjoys the merits of noninvasiveness, easy access and high
temporal resolution, it still suffers from its intrinsic characteristics as will be shown in
Section 2.2.5. To remedy the limitations, a plausible way is to incorporate other sensing
modalities such as EEG, SMG, MMG, FMG and NIRS [60–62].

2.1.2 Multimodal Sensing

Besides sEMG, various noninvasive sensing modalities have been used for hand motion
recognition in prosthetic control. A brief categorisation of the sensing modalities for hand
motion recognition is given in Table 2.1.

SMG is the interpretation of morphological changes of forearm muscles such as thickness
variance during the contraction in various motions which can be applied in prosthesis control
and has attracted great attention from researchers. Fukumoto et al. [70] revealed the
capability of ultrasonic signals in the identification of muscle volume changes and estimate
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Fig. 2.1 A customised multi-channel sEMG capturing system with sleeve embedded low-
density electrode distribution

Table 2.1 Categorisation of the sensing modalities for hand motion recognition

Category Modality Physiological Type Physical Property

Muscular sensing

EMG [22] Muscle action potential Electric
SMG [63] Muscle morphology Ultrasonic
MMG [64] Muscle oscillation Acoustic
NIRS [65] Blood oxygen Infrared
FMG [66] Resistance Mechanical

Neurological sensing ENG [67] Peripheral neuronal activation Electric

Brain sensing
EEG [68] Brain neuronal activation Electric

ECoG [69] Brain neuronal activation Electric

muscular strength. Castellini et al. [71] stated in their research that there exists a clear linear
relationship between the features extracted from ultrasound images and finger positions.
Zheng et al. [72] first used the terminology of SMG and demonstrated that the relationship
between wrist extension angle and the percentage of muscle deformation can be extracted
by the selected echo features of ultrasound images. Furthermore, SMG has been used as
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Fig. 2.2 An example of the high-density forearm sEMG sensing grid [1]

the sensing modality in various research on hand motion recognition especially dexterous
finger movements. The estimation of wrist joint angles has been realised through tracking
features in a window of ultrasound images in [73]. Shi et al. [74] adopted the Horn-Schunk
optical flow algorithm to identify finger flexions from ultrasound images. Sikdar et al. [75]
showed the capability of SMG to recognise individual finger movement with a significantly
promising classification accuracy at 98%. And the feasibility of wearable SMG has been
further demonstrated by various publications [76, 77].

IMU is the electronic device that measures the specific force and angular rate of human
body, which can be used to extract limb positions for prosthetic control. A single sensing
modality of EMG deteriorates the performance when taking into account numerous factors
such as limb positions [78] and prosthesis weights [79]. The usability of sEMG signals tends
to be adversely influenced under inevitable shift and mismatch between the arm postures and
prostheses, while IMUs could compensate the lack of known geometric information. As a
result, IMUs like accelerometers have been incorporated for tracking the changes of arm
positions and applied as complement to EMG signals. Experiments have demonstrated that
the inclusion of IMU signals can improve the hand motion recognition accuracy [80, 81]
instead of adding more EMG detecting channels. In addition, IMU signals have also been
used in a multimodal mechanism to detect muscle contraction by a dynamic threshold with
MMG signals [82].
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NIRS is a spectroscopic method that uses the near-infrared region of the electromagnetic
spectrum and has been applied in the blood flow sensing over the skin surface of forearm
muscles [62]. It is well accepted that EMG signals are sensitive to muscle fatigue, which
results in faulty classification of hand motions [83]. NIRS is capable of measuring muscle
fatigue [84], and has been utilised to compensate the negative effects of muscle fatigue in
the sEMG driven multimodal fusion. Herrmann et al. [65, 85] proposed a feature named
NIRSRMS that combines the weighted NIRS with the root mean squared values of EMG,
and demonstrated that the combination of EMG and NIRS contributes to a better hand motion
recognition accuracy.

EEG is an electrophysiological monitoring method that records electrical activity of the
brain, where the recording of the nerve motor output could function as a natural HMI for
prosthetic control. Rossini et al. [86] showed that EEG signals significantly improve the
classification performance based only on electronystagmography (ENG) signal analysis,
which coincides with the idea that hand-related activities can be decoded by the combined
analysis of motor-related signals simultaneously gathered via intraneural electrodes implanted
into the peripheral nerve system and EEG signals recorded from scalp to control a dexterous
prosthesis. Tombini et al. [68] also demonstrated the improvement of recognition accuracy
through focusing ENG in an EEG driven time window. Li et al. [60] further analysed the hand
motion recognition based on the combination of sEMG and EEG signal with its feasibility
validated.

MMG is also known as vibromyography and acousticmyogram that captures the lateral
oscillations generated by dimensional changes in active muscle fibres [87], and is detected
by microphones or low-mass accelerometers. MMG has been studied for monitoring of
muscle pain, tracking of muscle fatigue, measurement of muscle contractility in myopathic
diseases, and bi-functional prosthetic upper-limb control. It is worth noting that MMG
has the potential to detect weaker muscle contractions than EMG [88] and is suitable for
prosthetic control as either the main sensing modality or the complement to EMG. A study
conducted by Zeng et al. [89] showed that an acceptable classification result can be achieved
in hand motion recognition with extracted novel features of MMG in combination with the
quadratic discriminant analysis (QDA). And Silva et al. [82] has conducted and validated the
MMG based multisensory data fusion for prosthesis control.

FMG is developed on polymer thick film technology of FSR, which externally resembles
a membrane switch but has a resistance that varies continuously with applied force [90].
FMR enjoys the robustness to external electrical interference and sweating compared to
EMG in hand motion recognition at a low cost. Additionally, FMG is capable of detecting
movements at a low speed in comparison with commercially available accelerometer based
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devices [91]. A detailed comparison among FMG, SMG and EMG sensing based hand
motion recognition [92] demonstrated that FMG yields a comparable recognition accuracy
with sEMG as opposed to SMG while enjoys a much better stability than sEMG. Within
the same article, though the typical nonlinear behaviour of the FSR sensor guarantees no
repeatability across sensors, yet can be remedied by incorporation of additional sites. Jiang
et al. [93] showed a promising result in classifying 48 hand gestures with only 8 FSR
sensors equipped in the customised sensing band. What’s more, by using all 16 FSRs on the
band, the developed device achieved a significantly higher accuracy in the same scenario.
Particularly, the multimodal sensing with the combination of the wrist FMG and forearm
sEMG contributes to accommodating potential clinical constraints in a hierarchical scheme.

Based on the fact that the singly myoelectric sensing based hand motion recognition
suffers from the intrinsic sEMG characteristics as a single modality, the significance of
multimodal fusion sensing based hand motion recognition for prosthetic control has been
addressed by various researchers and reviewed in [30]. Multimodal sensing provides a
feasible strategy to improve the overall consistency of captured signals, which promisingly
leads to a better hand motion recognition accuracy for targeted applications. In terms of
the fusion of sensing modalities, there are two approaches commonly adopted. One is the
hierarchical approach utilising a dual-stage or multi-stage scheme, which first identifies the
predefined hierarchy or indices using one single modality, and then recognises targeted hand
motions through analysis of the rest modalities. The other approach simply extends the
feature vectors of the original modality by additional features of the fused ones [78, 94].
A more detailed examination of the multimodal fusion based sensing and analysis will be
presented in Chapter 5 with an emphasis on the pattern recognition based methods applied to
myoelectric and ultrasonic sensing modalities.

2.2 Myoelectric Hand Motion Recognition

A feasible HMI for prosthetic control relies on the premise that the hand motion intention is
accurately recognised. Due to the absence of observable canonical hand movements and the
various degree of amputation across subjects, a coherent combination of sensing modalities
and corresponding recognition algorithms is desired. Conventional sEMG based hand motion
recognition strategies are generally categorised into direct recognition and pattern recognition
based recognition, both coping with the classification of users’ motion intention. This section
will introduce the recognition approaches with a specific emphasis on the pattern recognition
based solutions through a detailed review on all the involved stages.
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2.2.1 Direct Recognition

Though the pattern recognition based myoelectric hand motion recognition has reached a
promising accuracy of 90% in a laboratory environment in numerous publications, there
still exist a wide choice of direct control. This is mostly attributed to the fact that pattern
recognition control enables the recognition of more sophisticated predefined motions yet
confined to a sequential and non-proportional mechanism. In this thesis, the sEMG based
direct hand motion recognition is defined as the mapping of sEMG signals into control
commands of individual DoFs without the reference to any predefined motion templates.
Amplitude based direct control allows robust and proportional control of employed DoFs
[95], which is similar to natural movement. However, it has been revealed that the usability
of direct control is seriously affected by the crosstalk of sEMG [58]. Simultaneous activation
of multiple DoFs using direct control is only clinically feasible in individuals who have
undergone the surgery of TMR [96], which severely restricts the complexity of distinguishable
motions, and leads to a low acceptance rate because of the invasiveness.

Despite the restriction of an invasive surgery that may occurs, a most recent research
focus has been seen in the muscle synergy based control or simultaneous and proportional
control. This approach is also categorised into the direct control in this thesis because of its
direct control of multiple DoFs instead of using the predefined motion templates. Muscle
synergy is defined as the coordinated activation of grouped muscles. The feasibility of
sEMG synergies in characterising hand grasps has been proved, which is largely invariant
among different subjects [97]. And the simultaneous and proportional force and kinematics
estimation has been realised in a similar mechanism through mirrored bilateral training in
[98] and [99] respectively. Principal component analysis (PCA) and non-negative matrix
factorisation (NMF) have been frequently used to denote the synergistic sEMG activity of
hand grasping [100]. However, no solid proof of the anatomical relevance has been revealed
[101] since sEMG does not retrieve the morphological changes of muscles. Despite the
simultaneous and proportional control of multiple DoFs robust to the electrode shift [102], the
performance is with limited dexterity in the involved DoFs. Besides the anatomical relevance,
the cross-subject similarity, repeatability and stability are also disregarded in most existing
research on sEMG based hand motion recognition. To date, the DoFs controlled by muscle
synergies are mostly confined to wrist movement [103, 104], which is far from dexterity.
It is worth noting that the direct control is further developed to a large extent in a recently
published work, where Farina et al. [59] identified the motor-neuron behaviour through
deconvolution of the electrical activity of muscles and mapped the series of motor-neuron
discharges into control commands across multiple DoFs.
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Regardless of the significant scientific progress in direct control, pattern recognition
based myoelectric hand motion recognition remains essential to be further enhanced in its
clinical usability and long-term performance based on its outstanding accuracy in selected
dexterous motion templates, before the maturity of control of multiple DoFs simultaneously
and proportionally with an extended number of the available DoFs in practical applications,
which possibly relies on the incorporation of more robust sensing modalities.

2.2.2 Conventional Machine Learning Based Recognition

Pattern recognition based myoelectric control has been investigated and exploited as the
mainstream HMI in academia for the last two decades for its feasibility of multiclass classi-
fication among dexterous predefined motion templates which contributes to the sequantial
but fluid movement changing between different dexterous motions in a seamless manner
without an explicitly manual switching. A typical conventional pattern recognition flowchart
for sEMG based hand motion recognition is illustrated in Fig. 2.3. Raw sEMG signals are
first captured by either dry or wet electrodes attached on the skin surface of forearms. After
the preprocessing by filters to remove common mode noises, power line noises and irrelevant
components, the stream is segmented by windows with either overlapping or non-overlapping
increments. For each segment, its features are extracted and dimensionally reduced, then
fed to the classifier and categorised into predefined motion types, which forms the sequence
of recognition results and will be concatenated to generate the decision stream. Finally the
postprocessing techniques such as majority vote are used to transfer the decision stream into
executable commands to the prosthetic hands.

Fig. 2.3 A typical flowchart of pattern recognition based myoelectric control

Notwithstanding the high recognition accuracy in differentiating multiple complex mo-
tions, most of current commercial devices are equipped with amplitude based direct control.
A most recent study conducted by Kuiken et al. [35] has reached a preliminary conclusion
that the efficiency and efficacy of pattern recognition would enable a successful control



20 Literature Review

to complete the functional tasks. Different from previous publications, the evaluation was
conducted in a home environment through usability tests on three amputee subjects. Better
intuitiveness and improved customised response measurements such as cognitive load, per-
formance and learnability have been seen in pattern recognition based control in comparison
with direct control for clothespin relocation tasks [36]. Hargrove et al. [37] demonstrated
the effectiveness of the combination of TMR surgery and pattern recognition approaches
on transhumeral amputees equipped with commercial prostheses, while different findings
have been reported by Resnik et al. [105] to support the direct control. Though it is still
inconclusive whether pattern recognition based control strategies outweigh the direct ones in
clinical settings, the conventional stages of pattern recognition are worth further investigation
to improve the accuracy in inter-day scenarios for long-term use, which has not been fully
accommodated and keeps attracting intensive research interest.

Besides the validation of the clinical viability of pattern recognition based myoelectric
control, various combinations of feature extraction and classification strategies, from the
most classic TDAR features with LDA and support vector machine (SVM) [25] to nonlinear
recurrence qualification analysis (RQA) with fuzzy Gaussian mixture models (FGMM)
[26], have been continuously reported with a promising intra-day recognition accuracy
above 90% as a baseline in laboratory conditions [28, 106]. Let alone the emphasis on the
combination of features and classifiers, progress on other topics like the preprocessing of
captured myoelectric signals [23, 107], the onset detection of muscle activity [108, 109], the
postprocessing of decision stream generated by the classifier [24, 110], and the evaluation
paradigm for real-time performance [5, 111] have also been frequently published. Adverse
factors including electrode shift and muscle fatigue during long-term use, inherent cross-
day and cross-subject variation of sEMG signals all lead to the heavy burden of classifier
re-training that impedes the widespread use of pattern recognition based control [40], which
has been addressed by various research to overcome as well. Direct usage of the previously
trained sEMG based model on a new subject naturally provides a negative result [112], to
solve which multiple compromised solutions have been proposed. Modified classifiers within
various machine learning frameworks from adaptive learning [113] to domain adaptation [33]
have been explored to reduce the size of required data for re-training. There also have been
attempts in pooling of data captured in multiple electrode displacement conditions [114],
dynamic contraction conditions [115] and from multiple days [116] to achieve a more robust
performance.

In the last two decades, research on myoelectric sensing based pattern recognition for
hand motion recognition has been particularly marked by fragmented development, which is
introduced in details as follows.
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Preprocessing

When raw sEMG signals are captured, the bandpass Butterworth filter and the notch filter are
first applied to the signals to exclude the power line noise and preserve the signals between
desired frequencies. Then the preprocessing is conducted to polish the sEMG data to better
accommodate the subsequent analysis. Normalisation is the most trivial and frequently
used preprocessing strategy to alleviate the adverse effects brought by the varying sEMG
amplitudes of the same motion types, which is routinely done based on the amplitude of
sEMG during a preliminary training phase. Hargrove et al. [117] compared various PCA
based preprocessing techniques like motion-class-specific PCA and universal PCA across all
motion classes, whose results favoured the classwise PCA in combination with a sequential
forward selection scheme. Liu et al. [23] used the signal whitening for preprocessing
to reduce the random error of the processed sEMG. The whitening process temporally
decorrelates the sEMG signals, increasing the effective number of signal samples and
reducing the variance in the amplitude estimation, which leads to an improved classification
accuracy. A group of preprocessing techniques including sEMG whitening, spatial filtering
and PCA are examined in [110] to enhance the performance of their self-correction based
pattern recognition system.

Onset Detection

The suppression of unintentional prosthetic movement is important in both direct recognition
and pattern recognition based prosthetic control to achieve a reliable practical application.
Onset detection is commonly adopted to distinguish the active and inactive status at the very
first stage for suspension of erroneous activation. The research on onset detection has been
conducted for over 20 years [118] to improve the clinical performance of prosthetic control.
It has been stated that consistent onset patterns exist for each motion of the same subject,
however differs across subjects. Most onset detection methods adopted in real scenarios
are threshold based for the computational efficiency to meet the real-time requirement.
Merlo et al. [119] utilised the continuous wavelet transform based descriptor to detect
muscle activity. The Teager-Kaiser energy operator which highlights both amplitude and
instantaneous frequency on muscle activity has been employed for onset detection with
a threshold based avenue [120]. The experiments on 8 able-bodied subjects reported by
Lorrain et al. [115] showed the pattern recognition in combination with a threshold based
onset detection would lead to a better performance. Sample entropy (SampEn) has also been
employed with an optimised threshold for the onset detection by [108] with an improved
performance against spurious background spikes. A most recent detection method proposed
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by Yang et al. [109] applied the Teager-Kaiser energy operator to amplify the signal variance
change and used the morphological open/close operators to filter the artefacts for suppression
of sEMG outliers.

Data Segmentation

Signal segmentation is performed after the motion onset is detected. The filtered myoelectric
signals are partitioned into segments through either disjoint or overlapped windowing de-
picted in Fig. 2.4 and Fig. 2.5. The feature extraction and classification will be conducted on
the myoelectric signals within each segment to generate a recognised motion type for the time
interval. A preliminary test on the relation between hand motion recognition accuracy and
the segment length is seen in Fig. 2.6. It is visually observable that the classification results
monotonically improve with the increasing length of sEMG segments for the 2 subjects,
which favours a selection of longer windows to segment the signals. However, it has been
widely accepted that a delay of more than 300 ms is perceivable to prosthetic hand users
and leads to a low acceptance rate of the device [32]. A research based on 13 able-bodied
subjects has indicated an optimal interval of window length between 150 ms and 250 ms
[121] while Farrell et al. [122] suggested an optimal optimal delay between 100 ms and
125 ms for most people without a large variation in motor functionality. And the choice of
segmentation length does not always comply with the suggested interval. For example, a
window length of 128 ms with an increment of 50 ms was adopted for the recognition of
static parts of the signals for long-term evaluation in [123], a 300 ms window length with 75
ms increment was effective in the research on motion recognition against EMG degradation
in [124], and a window length of 100 ms with 60 ms overlapping was employed for the
prediction under varying arm postures in [125]. As mentioned above, though the perceivable
delay is well acknowledged as the segmentation is confined to a length of no more than 300
ms, yet a discrepancy remains on the optimal length of segmentation.

Feature Extraction and Classification

Similar to general pattern recognition problems, the accuracy of EMG based hand motion
recognition heavily relies on the extraction of repeatable and distinguishable features. Fea-
tures with maximum class separability, robustness and less computational complexity are
naturally desired [29]. The feature extraction strategies of sEMG signals are generally cate-
gorised into time domain (TD), frequency domain (FD) and time-frequency domain (TFD).
Despite the large amount of potential features [34], the Hudgins’ TD features proposed in
the cornerstone paper [12] and the autoregressive coefficients have been mostly exploited
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Fig. 2.4 Disjoint windowing for sEMG segmentation [2]

Fig. 2.5 Overlapped windowing for sEMG segmentation [2]

for their less time consumption and robust performance, and remained the state-of-the-art
for years as TDAR features. The detailed extraction of the TDAR features including mean
absolute value (MAV), waveform length (WL), zero crossings (ZC) and slope sign changes
(SSC) together with autoregressive coefficients (AR) are listed as follows.
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Fig. 2.6 A decreasing recognition error rate with increasing window lengths of segments

Mean absolute value provides estimation of the mean amplitude of the sEMG signal
within segment i comprising N samples where xk is the k-th sample in the i-th segment of
sEMG signals.

MAV i =
1
N

N

∑
k=1
|xk| (2.1)

Waveform length provides the information of waveform complexity in the i-th sEMG
segment, which is the cumulative length of the waveform over the segment that measures the
waveform amplitude, frequency, and duration all within a certain feature.

WLi =
N−1

∑
k=1
|xk+1− xk| (2.2)

Zero crossings provide the counting of times when the waveform crosses zero. xk and
xk+1 are two adjacent samples within the i-th sEMG segment, and the threshold ε must be
well designed to reduce the noise induced zero crossings.

ZCi =
N−1

∑
k=1

[sgn(xk+1 · xk) ·δ (|xk+1− xk|)]

δ (x) =

1, x > ε

0, x ⩽ ε

(2.3)
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Slope sign changes provide another counting of times when the slope sign of the wave-
form changes. xk−1, xk and xk+1 are three adjacent samples within the i-th sEMG segment,
and the threshold ε should also be properly picked to avoid the noise induced counting
number.

SSCi =
N−1

∑
k=2

δ [(xk− xk+1) · (xk− xk−1)]

δ (x) =

1, x > ε

0, x ⩽ ε

(2.4)

Autoregressive coefficients provide the autoregressive model representation of the
sEMG segment i with order p, and xt is the t-th sample within.

xt = c+
p

∑
i=1

ϕixt−i + εt (2.5)

where c is a constant, ϕ1 ... ϕp are the parameters of the model that will be concatenated
to shape the p-dimensional AR features, and εt is the white noise.

Research that addresses the feature evaluation for myoelectric prosthetic hand motion
recognition has been continuously seen for decades [126]. Besides the recognition accuracy
or error rate, multiple criteria have been utilised for feature evaluation such as mutual
information that possesses better robustness than the error rate [127], and the correlation
based feature selection that efficiently determines a separability index using the Mahalanobis
distance between classes [128]. A thorough evaluation of 50 features that covers the extraction
strategies in TD, FD and TFD can be tracked in [34]. As indicated in the review paper, FD
features such as mean frequency (MNF) and median frequency (MDF) are good indicators
for muscle fatigue. And the entropy based indices such as sample entropy (SampEn) and
approximate entropy (ApEn) perform robustly under circumstances where small contractions
and noises are included. The TFD features such as discrete wavelet transform (DWT)
and wavelet packet transform (WPT) contribute to a better recognition performance in
combination with nonlinear classifiers like SVM. A brief test of individual features in
combination with conventional classifiers like LDA, QDA and SVM is conducted on our
captured sEMG signals presented in Table 2.2. It can be seen that the extent of recognition
accuracy remains relatively consistent for a single feature type across different classifiers.
Features like RMS, MAV and the two modified versions of MAV show a similar average
recognition accuracy because they all aim at extracting the accumulated amplitude within
each segment. Besides, the performance of an individual feature or classifier is not consistent,
which supports the necessity in considering combinations of features instead of solely
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investigating single features for all classifiers. A more systematic evaluation of the enlarged
candidate sets of feature types can be referred to in [34].

Table 2.2 Test of single feature types in combination with conventional classifiers

Feature LDA SVM QDA
Accuracy % σ Accuracy % σ Accuracy % σ

AR 79.96 7.73 73.29 9.89 69.47 7.31
HG 58.44 6.84 56.76 6.08 50.09 9.22

KATZ 69.16 6.84 70.49 8.83 55.56 10.06
RMS 55.13 19.79 58.04 15.85 61.25 11.66
MAV 55.89 19.82 58.16 15.32 59.68 13.36

MMAV1 55.99 19.71 57.52 14.53 58.81 12.46
MMAV2 55.69 18.09 59.66 11.31 59.30 10.70

WL 53.45 21.99 62.16 20.39 58.68 11.66
ZC 56.61 7.69 52.05 6.68 49.87 7.55

SSC 69.29 6.09 62.34 8.24 63.60 6.75
VCF 70.46 10.66 70.96 7.79 64.77 8.53
MFL 73.50 8.67 69.39 12.90 70.78 10.07

MYOP 57.51 14.72 56.07 15.54 60.34 14.67
WAMP 57.98 13.78 60.76 18.20 59.23 16.77
MNF 68.92 9.82 64.49 8.10 57.56 8.47
MDF 60.52 6.84 58.55 6.74 58.70 4.31
APEN 47.01 7.67 46.47 9.05 48.94 9.21

SAMPEN 42.97 5.98 41.16 5.36 40.63 5.79

With a growing emphasis on the usability in research community, novel features have
been continuously proposed to accommodate clinical confounding factors. Khushaba et al.
[129] proposed a robust feature set for hand motion recognition under various limb positions.
He et al. [130] derived two features from sub-band power to achieve a robust performance
under varying muscle contraction levels. Similarly, Al-Timemy et al. [131] proposed a
feature vector based on power spectrum moments of 3 orders and validated its robustness
to force variation on 9 amputees. After the feature extraction, a step of dimensionality
reduction is usually taken to remove the components that contribute less to the targeted
application. Dimensionality reduction can be realised by either feature selection or feature
projection. Feature selection is conducted in an offline scheme while feature projection tends
to take place in an online way. PCA and its modified versions [117] are the most utilised
feature dimensionality reduction scheme to decorrelate the measured data to achieve a robust
performance.

Despite the feasibility of PCA in the dimensionality reduction, it still requires the cal-
culation of all named features to exploit the most of the information. However, with the
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increase in the number of detection sites, the increasing computational cost would heavily
hinder the real-time performance in clinical use. An alternative is to use the feature selection
strategy instead of the feature projection, which could be done in an offline scheme. Feature
selection methods such as genetic algorithm [132] and particle swarm optimisation [133]
have been previously utilised in the sEMG based hand motion recognition. The best trade-off
is to achieve a comparable recognition accuracy with the computation complexity reduced
to a certain extent. Intuitively, training the classifier with pooled samples of multiple trials
directly is plausible to utilise the redundancy to boost the across-trial performance. The
endeavour to improve the hand motion recognition with supplementary data has been seen
in many publications. Extra sEMG patterns under the displacement of detection sites are
incorporated to enhance the robustness to electrode shift [114]. The inclusion of sEMG
signals captured under various limb positions associated with normal use for training is
suggested to mitigate the corresponding clinical degradation [80]. The idea is intuitive that a
redundant dataset would cover most cases of sEMG signals exerted under various conditions,
thus providing a robust assignment of membership to new samples in an unseen scenario.
The hypothesis could be formulated by an adaptive distribution of sEMG patterns whose
parameters like mean and covariance are updated according to additional data. The update
of data distribution represents a simple but efficient trade-off between specialisation and
generalisation. The distribution is expected to favour the robustness and precision at the same
time, as long as the dataset is large and diverse enough. However, it is not always the case
because of the diversity of sEMG for its nature of randomness. A further investigation into
the feature selection and the evaluation of the feature redundancy and potential improvement
will be introduced in Section 4.2.

Conventional classification strategies have been thoroughly investigated in sEMG based
hand motion recognition, like LDA, SVM [25], QDA [27], K-nearest neighbors (KNN) [134],
multilayer perceptron network (MLP) [135], artificial neural networks (ANN) [12], hidden
Markov models (HMM) [136], Gaussian mixture models (GMM) [137], multiple-binary
classifier (MBC) [138] adopted in sEMG based prosthetic control. Among diverse sEMG
pattern classifiers, LDA and its modified versions remain the most popular techniques which
guarantee the real-time online performance while preserving the robustness to abrupt changes.
Clustering methods like fuzzy c-means have also been utilised in [139] to map EMG signals
to different functions in real time. Clustering methods allow participants to freely select and
label their own movements and require no pre-set contractions, where the HMI automatically
determines the most discernible and repeatable muscle signals individually. And numerous
modified control strategies based on classic classifiers have been continuously proposed
like LDA with rejection (LDAR) [140], uncorrelated LDA (ULDA) [141] and FGMMs [26].
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Among all the conventional classifiers, the robustness of LDA over other nonlinear classifiers
has been demonstrated in [116]. And the TDAR features showed a better performance in the
classification of both transient and stationary parts of sEMG signals using LDA. Thus in this
thesis, the hand motion recognition accuracy achieved by the LDA classifier in combination
with the TDAR features comprising MAV, WL, ZC and SSC together with AR of the same
window length is adopted as the baseline for comparison.

Postprocessing

Regardless of the possibly high recognition accuracy for each sEMG segment, a fragment
of the decision stream inevitably suffers from the artefacts and is sometimes unreliable. To
remove the spurious and abrupt outliers, the postprocessing is necessary prior to the formation
of final control commands. The majority vote is capable of eliminating the spurious error
present in the unprocessed decision stream [2, 142, 143] and has been most adopted in a vast
majority of myoelectric control applications for its simplicity. Intuitively, with a denser stream
of decisions, the majority vote processing can utilise more decisions to generate a more robust
output without abrupt changes. However, due to the strict constraint of perceivable delays, the
number of errors increases with shorter segments in the decision stream. The majority vote is
capable of averaging out these errors, thus a well balanced trade-off is required between the
length of segmentation and the population of segments involved. Khushaba et al. [144] have
proposed the Bayesian fusion based postprocessing which relies on the conditional probability
of each windowed data belonging to a certain class. When the following window arrives, the
probability of class assignment given the accumulated windowed segments is deducted by the
Bayes’ rule. Threshold based approaches are commonly adopted for postprocessing as well.
Simon et al. [24] proposed a technique named velocity ramp attenuating the movement speed
after a change in classifier decision, whose validation was conducted in the applications of
both virtual prostheses and physical prostheses. Besides the offline recognition accuracy,
the clinical criteria including completion rate, path efficiency and completion time were
improved as well. Scheme et al. [140] cascaded the LDA classifier with a rejection module
to calculate the confidence using a softmax function, which rejects the decisions with scores
below a threshold to improve the pattern recognition performance. Amsuss et al. [110]
utilised ANN to assign the confidence value according to the RMS values and maximum
likelihood of the current point with previous 10 segments. The decision is rejected when its
score is below the predefiend threshold following a similar routine.
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2.2.3 Deep Learning Based Recognition

The prevalence of deep learning approaches in sEMG based hand motion recognition has been
propelled by the cutting edges in the field of conventional pattern recognition applications like
computer vision and natural language processing. The use of CNN for sEMG analysis started
in the year of 2016 [145], inspired by the maturity of deep neural network frameworks and the
enhanced computing capability. The following years have witnessed the preference towards
CNN over other available deep learning frameworks like deep belief network (DBN) [146]
and recurrent neural network (RNN) [147] in the research community of sEMG based hand
motion recognition. Currently, most publications of deep learning solutions to sEMG based
hand motion recognition have been focusing on the utilisation of deep learning algorithms
instead of the development of architecture design and parameter tuning strategies, like the
adopted architecture in Fig. 2.7. The enumeration of some most noticeable applications is
listed in Table 2.3.

Fig. 2.7 First adopted architecture of CNN for detailed analysis of sEMG based hand motion
recognition [3]

Table 2.3 Enumeration of deep learning applications for sEMG based hand motion recognition

Model Dataset Input Type Segment Platform
[146] DBN Local data 4 TD features 166 ms DeepLearnToolbox
[147] RNN Ninapro Raw sEMG 200 ms Microsoft Cognitive Toolkit
[145] CNN Ninapro Raw sEMG 200 ms N/A
[148] CNN CapgMyo Raw sEMG Single frame MxNet
[149] CNN CapgMyo Raw sEMG Single frame MxNet
[150] CNN Local data Raw sEMG 260 ms Theano
[151] CNN Local data Raw sEMG 150 ms Tensorflow

Besides the direct application of the existing deep learning algorithms, fragmented
improvement has also been put forward for the sEMG based hand motion recognition. Zhai
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et al. [152] proposed a self-calibration CNN model using the dimensionally reduced and
realigned spectrogram that was computed by 256-point fast Fourier transform in a Hamming
window as the input. They demonstrated that the CNN model could improve the intra-session
classification accuracy on the public dataset of NinaPro DB2 by 1.15% in the comparison
with the baseline classifier RBF-SVM without self-calibration. However, it is not yet clear
if the model is suitable for inter-day scenario, because NinaPro database could not reflect
the daily difference of sEMG patterns with only 1 day’s data captured from all subjects.
Allard et al. [150, 153] adopted the CNN in the control of JACO arm Kinova, in which
the spectrograms were calculated on 8 EMG channels to form a spectrogram matrix as the
input, and a robust control in real-time experimental scenarios was achieved. Atzori et al. [3]
evaluated a CNN architecture with 4 convolution layers on intra-session gesture recognition
tests, however not able to achieve a better performance than conventional pattern recognition
based classification methods. Geng et al. [148] discovered that the hidden sEMG pattern in a
high-density sEMG amplitude map at an instant could be exploited for gesture classification,
which would allow a better responding speed for human machine interaction. Yu et al. [149]
proposed a domain adaptation approach for inter-session gesture classification, and achieved
significant improvement on inter-subject gesture recognition. A most recent work by Rehman
et al. [154] focused on the performance over multiple days using sEMG signals captured by
the commercially available MYO armband as input to deep networks in comparison with
the classic approach utilising LDA and TDAR. Besides the single architecture based deep
learning frameworks, the combination of CNN and RNN has been investigated as well [147].

A detailed discussion about the architecture of CNN and extracted non-handcrafted
features will be further presented following the deep learning based hand motion recognition
evaluation in Chapter 3 and 4 respectively, where low-density sEMG signals of multiple days
and multiple subjects are concerned.

2.2.4 Evaluation Criteria and Benchmarks

Evaluation remains a critical part in hand motion recognition for prosthetic control, by
providing both offline and online metrics for researchers to further improve their outputs.
The offline recognition accuracy is the most trivial metric and chased after in most academic
research of sEMG based hand motion recognition. As a result, various public datasets
have been proposed for coherent comparisons of recognition approaches such as NinaPro,
CSL-HDEMG and CapgMyo. NinaPro [155] built by Atzori et al. is a low-density sEMG
database comprising a total of 52 hand motions performed by 67 subjects including both
able-bodied subjects and amputees. The sEMG acquisition system comprised of 10 or 12
bi-polar electrodes that were evenly placed on the forearm. For each subject, signals of
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only 1 session and 1 day were captured with each movement repeated for 6 times. The
whole dataset is divided into 3 sub-datasets: DB1, DB2, and DB3. Although NinaPro is
the most massive public dataset with the most number of both hand motions and recruited
subjects, it is not suitable for the inter-day evaluation since the data was only captured for 1
day from each subject. CSL-HDEMG is a high-density sEMG database published by Amma
el al. [156] which was captured with 192 densely distributed electrodes from the forearm
muscles contributing to 27 hand motions. And a total of 5 subjects were employed for the
data collection on 5 days in CSL-HDEMG. CapgMyo [149] is another high-density sEMG
database comprising 128-dimensional sEMG signals acquired from 23 intact subjects through
a customised device with an 8 × 16 electrode array. CapgMyo consists of 3 sub-datasets:
DB-a, DB-b, and DB-c. Specifically, 8 hand motions obtained from 18 and 10 out of the 23
candidate subjects formed the DB-a and DB-b respectively. Besides, 12 basic movements of
the fingers were obtained from 10 out of the 23 candidate subjects to form DB-c. The number
of hand motion types, recruited subjects and the detecting channels are further introduced
in Table 2.4, together with part of their performance in intra-session (intra-day), inter-day
and inter-subject scenarios achieved so far. Currently the largest amount of motion types
are included in the benchmark of NinaPro as shown in Fig. 2.8, which can be referred to
for later establishment of datasets. Ortiz el al. [157] also established an online platform of
benchmarks for comparison of pattern recognition based prosthetic control, and has been one
of the mostly adopted platform with a compound analysis framework in research community.

Table 2.4 Publicly available datasets of sEMG based hand motion recognition

DataBase
NinaPro [155]

CSL-HDEMG [156]
CapgMyo [149]

DB1 DB2 DB3 DB-a DB-b DB-c
Motion Type No. 53 50 50 27 8 8 12

Subject No. 27 40 11 5 18 10 10
Channel No. 10 12 12 192 128 128 128

Intra-session (%) 75.32 75.27[155], 78.81[152] 46.27 90.4[156], 96.8[149] 99.5 98.6 99.2
Inter-day (%) - - - 59[156], 62.7[149] - 47.9 -

Inter-subject (%) <20 [158] - - - - 39.0 26.3

Due to the clinical nature of the application and the fact that high recognition accuracy
does not necessarily guarantee satisfactory usability [159], though numerous published
benchmarks for offline evaluation are considering the metric of recognition accuracy, the
online evaluation on performing certain tasks has been gradually proposed and adopted in
clinical tests on subjects with amputation.

The target achievement control (TAC) was first proposed by Simon et al. [5] focusing
on the controllability of prosthetic hands. The TAC test evaluates the users’ control and
positioning of a multifunctional prosthesis in a virtual environment shown in Fig. 2.9. During
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Fig. 2.8 Hand motions included in NinaPro [4]

the test, users are instructed to move a virtual prosthetic hand into the targeted posture
and maintain the posture for a period of time lasting several seconds. The success of the
task is determined by whether the user could finish reaching the target posture without
unnecessary movements such as volitional control or motion misclassifications. The Motion
Test proposed by Kuiken et al. [6] still focused on the accuracy related metrics including
recognition motion selection time, motion completion time, and motion completion rate.
These quantities measure how quickly EMG signals can be translated into correct motion
recognition results. As a platform for the testing realisation, a virtual hand system in Fig. 2.10
was built for those who have undergone the TMR surgery. Both Motion Test and the TAC
test were employed in [160] to verify the capability of classifiers arranged in a distributed
topology to recognise simultaneous movement. Assessment for capacity of myoelectric
control (ACMC) was proposde by Hermansson et al. [161] to provide scores on clinical
observations of the gripping, holding and releasing daily life objects. A total of 30 items in
daily life activities were included in the ACMC test and the interaction with each of them
was assigned with a 4-point ordinal scale.

Besides the aforementioned tests, other assessment tools like the Southampton Hand
Assessment Protocol, the Jebsen-Taylor Test of Hand Function, the Box and Blocks Test,
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the Clothespin Relocation Task, and the Cubbies Task have been proposed and utilised to
prove the effectiveness of recognition algorithms in combination with commercially available
physical prostheses or implementations of virtual hands [35, 37].

Fig. 2.9 TAC test environment and tasks [5]

2.2.5 Limitations

It has been emphasised in various publications that the gap between clinical use and academic
research of myoelectric prosthetic control keeps expanding and results in a low acceptance
rate of multi-functional prostheses from the users [28]. The vast majority of prosthetic hand
users tend to choose simply aesthetically pleasing or amplitude based ones in the lack of an
ideal control. An ideal prosthetic control is of intuitiveness, robustness, low computational
complexity, real-time performance and limited burden of re-training [58]. Other desired
properties of the HMI include a minimal number of electrodes, an easy user training process,
a closed-loop control with sensory feedback and long-term usability. Efforts towards the
ideal properties have been extensively seen in recent years [131, 162, 163]. Yet to date, there
are still quite many limitations to be addressed in current myoelectric prosthetic control as
follows.
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Fig. 2.10 Motion Test environment and tasks [6]

Failure in Deep Muscle Activity Sensing

Myoelectric signals can be acquired in either an invasive or noninvasive way, which leads
to the iEMG and sEMG. The iEMG is capable of providing an insight into deep muscular
structure and changes of targeted compartments. However, it suffers from the invasiveness
while the noninvasiveness remains one of the most desired properties for prosthetic hand
users. On the other hand, the sEMG can only detect activities mostly from superficial
muscles and hardly capture the electrical manifestation of deep muscle contractions while
some dexterous finger movements are naturally related to deep muscle contraction [76].
As a result, the failure in deep muscle activity sensing impedes the dexterous hand motion
recognition especially in a long-term use, where the weak physiological signals from deep
compartments become even more unstable for sEMG based detection.

Intrinsic Randomness and Sensitivity to Physiological Changes

Irrespective of the high recognition accuracy achieved in an offline scheme and short-term
testing scenarios in a laboratory environment, the performance of hand motion recognition
deteriorates severely for long-term clinical use [162]. The premise of accurate recognition of
hand motions is crafted by the consistency of sEMG patterns. However the randomness of
myoelectric signals in long-term use will result in the large variation of signal manifestation,
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which hinders the accurate motion recognition in a clinical cross-day environment [29].
Typically, the inherent variability of myoelectric manifestation and inevitable day-to-day
physiological changes contribute to a heavy burden of re-calibration and re-training [33].
Besides, physiological changes like fatigue and sweat remain some of the most severe factors
that adversely impact the hand motion recognition accuracy. Muscle fatigue generally occurs
after long-term muscle activity and results in a decline of the muscular ability to generate the
desired force through contraction.

Electrode Shift and Crosstalk

Isotonic contraction of muscles tends to cause relative movement between targeted muscles
and skin surface where the electrode is attached and negatively impacts the predefiend
detection site distribution. The electrode shift has been pointed out as the most significant
dynamic factor that adversely influences the performance of myoelectric pattern recognition
based control [164]. Hargrove et al. [114] enriched the training dataset with samples
captured from potential displacement locations to remedy the performance degradation
caused by electrode shift. But the enlarged pooled samples are commonly captured at the
price of a heavy burden of training which is undesirable for users. Intuitively, iEMG is less
affected by muscular crosstalk than sEMG, which allows a more independent detection of
targeted muscles. But it has been validated that iEMG does not outperform sEMG in pattern
recognition based myoelectric control [53]. What’s more, crosstalk has been identified as an
influential factor on the performance of recognition [103], which can be mitigated by pattern
recognition based control [53] yet whose performance heavily depends on the robustness of
the adopted classification strategy.

Lack of Sensory Feedback

An ideal prosthetic control process is expected to be closed-loop with proper sensory feedback
modules. However, a practical feedback is missing in most cases of prosthetic hand control
and has been highlighted as the drawback of existing myoelectric control systems since last
decade [20, 28]. Though functional electrical stimulation (FES) is a module that provides
sensory feedback and has been utilised in various motor function rehabilitation targeted
applications, the inherent properties of FES inevitably lead to electrical interference in
combination with traditional myoelectric control. To date, limited clinically viable feedback
approaches have been proposed for myoelectric prosthetic control. Thus a non-electrical
manifestation is desired to support the feedback instead of using solely visual feedback.
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Burden of User Training

Controversy remains whether adequate user training is desired in clinical applications to date.
On the one hand, repeated re-training process is time-consuming and forms a heavy burden
on the users. On the other hand, the user training intuitively improves the consistency of
sEMG patterns exerted by users [165]. Inconsistencies between the academic and clinical
applications partly reside in the user training phase. In a laboratory environment the subjects
are normally seated in a comfortable position without surrounding disturbances while in
clinical scenarios the amputated users are involved in interactions with multiple objects
under various abrupt changes. Powell et al. [166] introduced a clinical protocol to train the
users with pattern recognition related concept and a prosthesis-guided training process for
classifier re-calibration. Despite the advantages of user training in improving the recognition
performance, the training burden remains to be further reduced from the users’ perspective
[33].

2.3 Summary

This chapter systematically reviews the sEMG sensing driven prosthetic control in terms of
the muscle activity sensing modalities and hand motion recognition approaches respectively,
where the myoelectric sensing based pattern recognition solutions are addressed with extra
emphasis.

First the most prevalent noninvasive and wearable muscular activity sensing techniques
are introduced. On the one hand, sEMG remains the only available sensing modality equipped
in commercial prosthetic hands with an active control, and has been extensively investigated
in both academic and clinical scenarios. On the other hand, alternative sensing modalities
have been widely considered in academia, based on which the hand motion recognition has
been improved in various directions. For example, SMG is capable of deep muscle activity
detection allowing the analysis of dexterous hand motions including finger movements. FMG
is robust to external electrical interference and physiological changes, and suitable as the
sensing modality with integration of electrical stimulus as the sensory feedback. IMUs
provide the geometric information of limb movement which potentially contributes to a
robust sensing under varying limb positions. NIRS measures the oxygen saturation and
can be utilised to identify muscle fatigue with a quantitative index to shape the hierarchical
application with various degree of fatigue. In summary, the single modalities of EMG, SMG
and FMG are suitable for forearm muscle activity sensing and have been applied for unimodal
sensing based hand motion recognition with reported promising results. Furthermore, other
modalities like IMU, NIRS and MMG can be integrated with EMG for multimodal fusion
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based sensing, which improves the integrity of pooled sensory data with supplementary
physiological information and robustness under various external changes.

Then a thorough review of myoelectric hand motion recognition approaches is provided
with an emphasis on pattern recognition based solutions. Some cornerstone works like [12]
have been emphasised in terms of the contribution to the conventionally adopted baseline of
using combined TDAR features and LDA classifier. The steps in a typical conventional pattern
recognition based myoelectric hand motion recognition are introduced with corresponding
fragmented development. The most recently trending deep learning approaches are introduced
with enumeration of several architectures as the potential complement to conventional models.
The review of recognition algorithms is followed by the evaluation criteria and some most
prevalent benchmarks at last.

Finally the limitations of existing myoelectric prosthetic control are concluded in terms
of intrinsic randomness of sEMG, sensitivity of sEMG to electrode shift, crosstalk, and
physiological changes, lack of deep muscle activity sensing, burden of re-training and
re-calibration for long-term use, and the absence of sensory feedback.

Based on the reviewed progress and limitations, potential future research directions for
sEMG driven hand motion recognition are listed as follows. Current pattern recognition
approaches for sEMG based hand motion recognition deteriorate under various factors in-
cluding limb position variation, physiological changes and long-term use. Thus a specialised
model is needed to accommodate these factors with essential development of steps within a
pattern recognition scheme including preprocessing, feature extraction and selection, clas-
sification and postprocessing. In this thesis, the long-term use targeted development of
discriminant analysis methods, CNN based deep learning, feature extraction and selection
are studied respectively in Chapter 3 and Chapter 4. Specifically, Chapter 3 focuses on the
improvement of classification to inter-day hand motion recognition to address the limited
robustness to inter-day changes by taking advantage of both implicit and explict subclass
division based discriminant analysis and a simple convolutional neural network. Chapter 4
improves the robustness in the same application through proposing novel feature extraction
and feature combination comprising the merged handcrafted and non-handcrafted features,
multi-threshold based feature extraction and computational intelligence based optimisation
of feature candidates. Given the difficulty of robust long-term control by unimodal sEMG
sensing, multimodal sensing fusion is a promising substitution and proposed. The defi-
ciency of information captured by solely sEMG can be remedied with extra sensory fusion.
Specifically, the fusion of myoelectric and ultrasonic sensing will be introduced in Chapter
5. The unique morphological information extracted by ultrasound based sensing provides
better discrimination of dexterous finger movement and forms the natural complement to
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sEMG signals which only detects the superficial muscle movement. The combination of both
myelectric and ultrasound sensing mitigate the inherent drawbacks of singly EMG based
sensing like low recognition accuracy of deep muscle related motions and randomness of
sEMG signals in inter-day changes. To further enhance the aforementioned improvement, a
targeted evaluation benchmark for long-term use of sEMG based hand motion recognition
is desired and the absence of a properly defined benchmark of low-density sEMG across
multiple days and subjects is finally addressed by building a database in this thesis, about
which the detailed data acquisition and experiment protocol are introduced in Chapter 6.



Chapter 3

Conventional Pattern Recognition and
Deep Learning Based Classification

Classifier design plays an important role in pattern recognition based applications. Specif-
ically, numerous classification strategies like LDA, SVM and GMM together with their
modifications have been applied in sEMG based hand motion recognition. Regardless of
the intensive research interest in myoelectric control, the development of classifiers with
a specific focus on the inter-day hand motion recognition for long-term use is rarely seen,
not mentioning the emphasis on various adequateness of training samples in comparison
to the testing ones. In daily life of prosthetic hand or assistive device users, the training
process is tedious and time-consuming because of the constrained motor function. And the
standard protocol of user training requires the users to repeat the motion paradigm for sEMG
signal capturing. Because of the focus on inter-day hand motion recognition in this chapter,
the inadequate training is defined as only the data captured on 1 or 2 days will be labelled
while the rest unseen days’ data are to be recognised, while the adequate training is defined
as only 1 day’s data are unseen for recognition and the 9 distinct days’ labelled data are
provided for training. This chapter aims to address this problem by developing both conven-
tional pattern recognition and deep learning approaches. In particular, discriminant analysis
frameworks and convolutional neural networks are considered to exploit their advantageous
capability in sEMG based hand motion recognition with inadequate and adequate training
data respectively.
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3.1 Discriminant Analysis Frameworks for sEMG Based
Hand Motion Recognition with Inadequate Training
Data

One of the most critical factors that impedes the clinical application of current dexterous
prosthetic hand control is the discontented long-term usability. The recognition accuracy
deteriorates severely when prosthesis donning/doffing or muscle fatigue occurs, thus resulting
in a significant rate of misclassified execution that leads to a low acceptance rate by users.
Extracted sEMG patterns under different conditions naturally form various overlapping
subclasses. An intuitive sketch can be seen in Fig. 3.1, where the first 2 principle components
of extracted sEMG TDAR features of 9 hand motions shown in Fig. 3.2 captured from the
same subject. The two trials are distinguished by square and dot symbols respectively while
different motions are indicated by different colours. Despite the most distinguishable motions,
the others are overlapped in the reduced feature space. The hindrance of overlapping has a
serious effect on the recognition accuracy when donning/doffing happens for long-term use.
A potential solution is to build a hierarchical structure which first divides the overlapping
samples of the same distinct motions yet from different trials into subclasses for a further
and finer categorisation. Thus importance is attached to the subclass division as a prior step
of the hierarchical structure where the adopted algorithm draws inferences from the data and
forms subclasses according to their distribution and distance.

LDA has been employed in the sEMG based hand motion recognition for decades and
remains the most important baseline for its robust performance in academic research. Liu et
al. [40] addressed the reduction of user re-training while preserving an acceptable inter-day
recognition accuracy by using LDA with an optimised projection. Vidovic et al. [163]
employed supervised adaptation to calibrate the model for inter-day use on both able-bodied
subjects and amputees. The aforementioned discriminant analysis methods are mostly based
on the assumption that each class is represented by a single cluster. However, separated
subclasses are possibly formed because of the nonstationary and stochastic nature of sEMG
signals. Overlapping subclasses among predefined classes could go against the assumptions
embedded in some classification methods. For example, the distribution of pooled samples
might not meet the assumption of having a common covariance matrix but different means
for LDA. The potential of subclass division in the cross-day settings has not been addressed
yet regardless of the widely developed modifications of LDA.

In our preliminary work, the effectiveness of subclass division has been proved on the
force based granular modelling for grasp recognition, where the sEMG signals and forces
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Fig. 3.1 First 2 principle components of sEMG features extracted from 9 motions for 2
different trials captured on the same subject

Fig. 3.2 Adopted 9 motion candidates for recognition

of hand grasps were captured synchronously. The grasping force was introduced by the
incorporation of an additional force sensor to the sEMG capturing system, as shown in Fig.
3.3. The confusion matrix of the subclass division based hand grasp recognition is provided
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in Fig. 3.4. It can be seen that the number of classes is enlarged by dividing each grasp type
into 3 subclasses according to the magnitude of forces. The original 8 different grasp types
were enriched by the attributes of exerted forces and formed the 24 classes in the intermediate
classification. The misclassification among subclasses that belong to the same class will
contribute to the improved correct classification through a mapping into the original classes
at last.

Fig. 3.3 Force sensing of the 8 hand grasps

Despite the improved recognition accuracy, the force driven subclass division is based on
an additional attribute of force utilising extra sensory information at an ideal setting and does
not reflect the real daily life scenarios, where human-object interaction is conducted without
the force sensing. In this section, we further examine the feasibility of subclass division for
hand motion recognition using solely sEMG signals across multiple days with inadequate
training data, whose subclasses are shaped by the inter-day changes of sEMG characteristics
and electrode shift caused by donning/doffing in long-term use. Specifically, the subclass
division is combined with discriminant analysis step by step from an explicit and totally
unconstrained division to an explicit yet constrained division and finally to an implicit and
constrained implementation, with the improved performance of the latter two approaches
verified.

3.1.1 Unconstrained Subclass Division Based Discriminant Analysis

In this section, the subclass division is first conducted without a strict constraint of the subclass
number. What’s more, we consider the fully unsupervised subclass division by pooling all the
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Fig. 3.4 The confusion matrix of the sEMG based hand grasp recognition with force driven
subclass division

training data for division without taking advantages of any priori knowledge of their classes.
And the self organising technique of growing neural gas (GNG) is firstly combined with
LDA for the subclass division based hand motion recognition in an unconstrained way for
the sublcass division among all the pooled data. GNG can extract and dynamically change
the topological structure of the data based on the relation between adjacent reference nodes
and sampling points. The distances between unseen samples and the extracted representation
nodes are used as the membership or further fed to the following classifier. The GNG
algorithm is implemented following the steps below.
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Step 1. The sets of nodes, edges and ages are initialised with two random nodes n1 and
n2 from the node set N and the corresponding edge between them is saved.

Step 2. A sample point x is drawn from the candidate sample set X for inclusion.
Step 3. The nearest two nodes np and nq to the sample point x are selected out of the

node set.

np = argmin
ni∈N

∥ni− x∥ (3.1)

nq = argmin
ni∈N\{np}

∥ni− x∥ (3.2)

Step 4. The nearest two nodes np and nq are connected, and the age of their edge is set
zero.

ap,q = 0 (3.3)

Step 5. The local error of the nearest node np is increased by its corresponding distance
from the sample point x.

Enp ← Enp +∥np− x∥ (3.4)

Step 6. The reference vectors of the nearest node np and its directly connected nodes are
moved towards the sample point x with a moving rate of α1 and α2 respectively.

np← np +α1(x−np) (3.5)

ni← ni +α2(x−ni), ∀ i ∈ {i|ni ∈ N,ci,p = 1} (3.6)

Step 7. The ages of all the edges directly connected to the nearest node np are increased
by one.

ai,p← ai,p+1, ∀ i ∈ {i|ni ∈ N,ci,p = 1} (3.7)

Step 8. The edges whose ages exceed the predefined threshold ε are eliminated. Nodes
without any edges after this operation will be removed from the node set N.

N← N\{ni}, i f ∄ai, j f or ∀ j ̸= i (3.8)

Step 9. For every predefined λ iterations, a new node nin is inserted following the steps.
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1. The node ne1 with the largest local error is selected. The node ne2 which is directly
connected to ne1 with the largest local error within the subset is selected as well.

2. The reference vector of the new node nin is interpolated by averaging the two nodes
with the largest local errors.

nin = 0.5(ne1 +ne2) (3.9)

3. The local errors of the nodes ne2, ne1 are decreased by a rate of γ . And the local error
of nin is subsequently assigned.

Ei← Ei− γEi, i ∈ {e1,e2} (3.10)

Ein = β (Ee1 +Ee2) (3.11)

Step 10. The local errors of all the nodes are decreased by a rate of η .

Ei← Ei−ηEi, ∀ ni ∈ N (3.12)

The iteration is continued until the stopping criterion is met.
In the proposed hierarchical classification framework, the classifier training follows the

phase of relabelling the given training data. The GNG is first conducted on the pooled
training data in an unsupervised way to generate representation vectors of various clusters.
The cluster indices and original labels are combined to form the enlarged set of labels. The
classifier is trained from the data with their newly assigned labels. The unseen data are
assigned with the original labels according to the newly defined labels following the inverse
transformation. The relabelling is similar to the fining process in graininess while its inverse
transformation is like the coarsening process.

The comparison of recognition accuracy between conventional LDA and hierarchical
recognition strategy GNG-LDA for inter-day evaluation is shown in Fig. 3.5. The sEMG data
of 3 experienced subjects performing 9 hand motions from Fig. 3.2 in consecutive 7 days are
adopted. For each trial of recognition, the training data comprises the labelled 9 out of 10
folded sEMG data of two randomly selected distinct days with the rest candidate days as the
testing data, whose combination is not exhausted in this experiment. The preliminary result
shows that when the subject 2 and subject 3 are performing relatively consistent patterns with
a significantly low average recognition error rate of 5% and 2%, the hierarchical classification
GNG-LDA is inferior to solely adopting conventional classifier of LDA. The slight decrease
of average recognition error rate can be observed on subject 1. A plausible explanation
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of the results is that the totally unconstrained clustering incorporates bias into the newly
labelled data. The variant size of GNG induced subclasses is a potentially severe factor for
subjects with consistent sEMG pattern exertion and leads to a larger number of samples
belonging to certain subclasses. As a result, the unseen data are more favourably assigned
with these labels. On the contrary, when the subject is not able to generate repeatable patterns
of sEMG signals, the scattering distribution of newly labelled data leads to an improved
result with the incorporation of subclass division. Another cause for the uncertain results
could be the limited training data that leads to a largely reduced samples for each subclass
when they are assigned with new subclass labels in an unconstrained way. For example, in
this applications, the number of a subclass under GNG could be half less when compared
to the 128-dimensional feature vectors. The limited training data for each unconstrained
subclass contributes to an undetermined performance with the pooled subclasses. Despite the
improved intra-day recognition shown in the preliminary work, the feasibility of GNG + LDA
in inter-day use is not guaranteed according to the preliminary results. Further validation of a
strictly constrained subclass division method in combination with classification is needed,
and presented in the following section.
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Fig. 3.5 Comparison of inter-day recognition error rate between GNG-LDA and LDA methods
for 3 subjects
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3.1.2 Constrained Subclass Division Based Discriminant Analysis

GNG-LDA fails to show consistent improvement of hand motion recognition accuracy
mainly because of the totally unconstrained subclass division where all the pooled data are
simultaneously divided into subclasses without using their original class labels. In contrast to
the aforementioned unconstrained subclass division, a constrained subclass division with the
hard constraint of the original data labels in the phase of relabelling is adopted in this section
to remedy the performance ambiguity. Specifically, the inter-sample distance based sorting
and KNN are exploited to divide the samples from a certain class into several subclasses
according to their Euclidean distances. The training and and testing are based on the new
subclass labels using a LDA classifier, and their original class labels are retrieved by the end
of the recognition. The 4-step KNN-LDA is described as follows.

Step 1. Half of the data belonging to a certain class i are first sorted and categorised into
Ci subclasses according to their inter-sample distances. A Ci-class KNN classifier is then
formed by the samples.

Step 2. For every class out of the total C classes of the training data, the rest half samples
belonging to class i are classified by KNN into Ci subclasses. The number of samples in each
subclass is set equal. The labels are re-assigned for each sample according to the cluster they
belong to, which leads to a total of Cknn subclasses.

Cknn =
C

∑
i=1

Ci (3.13)

Step 3. A Cknn-class LDA classifier is trained with the relabelled training data and
represented by their means and covariance. And the label of an unseen data x is predicted by
the Bayesian decision rule, where µi is the mean vector of the samples belonging to subclass i,
Σ and Σi are the pooled covariance matrix of all samples and the sample covariance matrix of
samples from subclass i, p(i) is the prior probability of subclass i. And the prior probability
is equal for all subclasses in the adopted settings because of the strict constraint of subclass
size.

argmaxiµi
T

Σ
−1x− 1

2
µi

T
Σ
−1

µi + ln p(i) (3.14)

Σ =
Cknn

∑
i=1

ni−1
N

Σi (3.15)

Step 4. The Cknn predicted labels of testing data are mapped back into the original C
labels, which forms the final hand motion recognition results.
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The experiments are conducted on the 3 experienced subjects with 2 days’ data for training
and the rest days’ data for testing, which can be considered as training with inadequate data
while the total number of testing samples is large enough in an exhausted comparison. And
the training phase is repeated with 9 out of 10 folded data from the 2 days’ training set.
The results shown in Fig. 3.6 and Fig. 3.7 reflect the inter-day hand motion recognition
accuracy with and without the preprocessing of normalisation respectively. It can be seen
that the KNN-LDA outperforms the single LDA in both cases which validates the feasibility
of a constrained and explicit subclass division for long-term sEMG based hand motion
recognition. It is worth noting that all the 3 subjects are experienced users of the sEMG based
hand motion recognition system, who can exert more consistent muscle contraction than
others. A detailed numerical comparison between KNN-LDA and LDA is shown in Table
3.1, where a larger improvement is achieved by the KNN-LDA method for normalised sEMG
data than that of the sEMG data without normalisation. Despite the difference between the
two settings, a consistent improvement of classification accuracy is seen for the inadequate
training of 2 days’ data.
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Fig. 3.6 Comparison of inter-day recognition error rate between KNN-LDA and LDA methods
for 3 subjects with normalisation

In comparison with the totally unconstrained subclass division based GNG-LDA, the con-
strained KNN-LDA shows a favourable support to the explicit subclass division. A plausible
explanation is that the unconstrained subclass division is conducted on the pooled training
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Fig. 3.7 Comparison of inter-day recognition error rate between KNN-LDA and LDA methods
for 3 subjects without normalisation

samples without any priori knowledge of their classes, while the constrained operation is
confined to those belonging to the same class, which avoids the false label assignment against
the given conditions. And the bias incorporated by an imbalanced subclass division is avoided
in this scheme. Despite the improvement brought by subclass division, it is worth noting that
the number of samples in a subclass can be few when the number of subclassess increases,
which potentially leads to an inferior classifier training with the explicitly divided subclasses.
Thus it is necessary to further utilise the subclass division implicitly in the discriminant
analysis in the next section.

3.1.3 Implicit Subclass Division Based Discriminant Analysis

An implicit subclass division utilises the subclass information without enlarging the class
labels in a fining and coarsening scheme, and is realised in the discriminant analysis directly.
The discriminant analysis based algorithms classify the samples with a projection of the
original data into a reduced subspace with an optimised separability by simultaneously max-
imising the between-class distance and minimising the within-class distance. Accordingly, a
general criterion [167] of separation for most discriminant analysis algorithms is defined as
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Table 3.1 Comparison of KNN-LDA and LDA based inter-day hand motion recognition with
inadequate training data with/without normalisation processing

Subjects With Normalisation Without Normalisation
LDA (%) KNN-LDA (%) LDA (%) KNN-LDA (%)

1 97.08±2.41 99.31±0.52 98.23±0.94 98.82±0.59
2 75.98±6.87 77.65±6.64 88.21±2.14 88.86±2.34
3 82.92±6.30 84.87±6.65 94.88±2.52 95.10±2.42

Mean 85.33 87.28 93.77 94.26

S =
|ωTSBω|
|ωTSW ω|

(3.16)

where SW and SB are the scatter matrices of within-class distance and between-class
distance respectively, while ω represents the direction for projection. The discriminant
analysis aims to find an optimal projection direction by maximising S. Conventionally the
within-class scatter matrix is defined as

SW =
1
N

C

∑
i=1

Ni

∑
j=1

(xi j−µi)(xi j−µi)
T (3.17)

where N is the total number of samples, C is the number of classes, Ni is the number of
samples that belong to class i, xi j is the j-th sample within the class i, and µi is the mean
centre of class i.

Different from the previous KNN-LDA solution, an integration of subclass division into
the projection determination is adopted instead of using two independent subclass division
and linear discriminant stages. The subclass discriminant analysis (SDA) algorithm proposed
by Zhu et al. [168] is the first discriminant analysis considering the distance between
subclasses instead of the distance between classes. The idea is adopted in combination with
the nearest neighbour based division criterion to find the most convenient division of each
class into multiple subclasses in an exhaustive scheme. In this thesis, the between-class
scatter matrix is defined as

SB =
C

∑
i=1

ci

∑
p=1

C

∑
j=i+1

c j

∑
q=1

nip

Ni

n jq

N j
(µip−µ jq)(µip−µ jq)

T (3.18)

where C is the number of classes, ci is the number of subclasses within the class i, Ni and
N j are the number of samples belonging to class i and j respectively, nip is the number of
samples belonging to the subclass p of class i, and µip is the mean centre of subclass p of
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class i. The distance between subclasses is utilised instead of the distance between classes
to extract the distribution information of subclasses attributed to the overlapping classes in
long-term use.

Conventionally, once the scatter matrices are acquired, the projection direction is found
to linearly separate the pooled data following the generalised eigenvalue decomposition as

SBW = SWWΛ (3.19)

where W is the matrix whose columns are formed by the right eigenvectors and Λ is the
diagonal matrix whose diagonal elements are corresponding eigenvalues. The first k columns
of W with the greatest magnitude of eigenvalues are selected to form the projection matrix
W k for a k+1-class classification problem.

Based on the definition in 3.18, the further calculation of projection direction requires
an determined subclass division number of each class. The strategy for seeking optimal
subclass divisions with the leave-one-out test is adopted on the pooled dataset for both
training and testing with only one sample excluded to achieve the global optimum. In
this thesis, the selection of separate training and testing samples is adopted to address the
inter-day and long-term use instead of solely considering the intra-day use. Specifically, the
training samples Utrain from each class are first divided into subclasses according to their
inter-sample distances. The nearest neighbour method is adopted in the distance sorting,
which measures the Euclidean distance Dp,q between the two samples xip and xiq within the
class i to determine their subclass category. Then SDA classifiers using different subclass
division choices are compared with the recognition accuracy on the testing data Utest . The
one with the highest accuracy is finally selected for further validation on the subclass division
number Γ. The testing algorithm is summarised as Shown in Algorithm 1.

The comparison of SDA and LDA based solutions on inter-day use is depicted in Fig.
3.8. The data of 3 experienced subjects performing 9 motions in consecutive 7 days are
adopted. The classifiers are trained by only 2 day’s data and tested on the rest days’ data
using the same group of TDAR features, which means the recognition is totally conducted
on the unseen data captured in novel days. The number of subclasses is set equal among
all classes in opposition to the previous flexible settings in GNG. The average recognition
error rate decreases with slight improvement for all the 3 subjects utilising the proposed
SDA instead of LDA. However, the performance improvement on subject 1 can be ignored
in comparison with the other 2 subjects, which is possibly attributed to either the less variant
sEMG patterns exerted by the subject among multiple days or the less flexibility of the
adopted subclass division scheme. It is also worth noting that the optimal subclass division
is subject dependent with a respectively selected subclass division number of 2, 4 and 7 for
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Algorithm 1 SDA algorithm with subclass division tested on inter-day recognition
Dataset: Utrain, Utest
Output: Γ

Initialisation: T , R = {r1,r2, · · · ,rT}
Calculate the within-class scatter matrix SW of Utrain using 3.17
for i=1 to C do

Extract the data from Utrain belonging to class i, denoted as Xi = {xi1,xi2, · · · ,xini}
Let Ui1 = /0, Ui2 = /0
Construct the distance matrix D, whose element is calculated by Dp,q = ∥xip− xiq∥
Let diag(D) = +∞

Retrieve the index of the largest distance element (a1,b1) = argmax(l,m)Dl,m
Ui1 =Ui1∪{xia1}, Ui2 =Ui2∪{xib1}
for j=2 to ⌈ni/2⌉ do

a j = argmina j
Da j−1,a j ,b j = argminb j

Db j−1,b j

Ui1 =Ui1∪{xia j}, Ui2 =Ui2∪{xib j}
Let D(b j−1,t) = D(t,b j−1) = D(a j−1,t) = D(t,a j−1) =+∞,∀1≤t≤ni

end for
Ui =Ui1∪Ui2

end for
for k=1 to T do

Divide the sorted samples in Ui evenly into k subsets, ∀1≤k≤T
Calculate the between-class scatter matrix SB including all Ui using 3.18
Calculate the generalised eigenvalue decomposition SBW = SWWΛ

Let W = [w1,w2, · · · ,ws],Λ = Diag(λ1,λ2, · · · ,λs) with sorted eigenvalues
λ1 ≥ λ ≥ ·· · ≥ λs
Let WC−1 = [w1,w2, · · · ,wC−1]
Project training data Utrain and testing data Utest to subspace of WC−1

Predict label for testing data according to the decision boundary
Calculate the recognition accuracy rk

end for
Retrieve the optimal subclass division number, Γ = argmaxk rk
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each subject. Thus it is favoured that an optimisation of the subclass division should be
conducted on new users to ensure its effectiveness, yet the process of which remains time
consuming and to be further improved.

Subject 1 Subject 2 Subject 3
0

2

4

6

8

10

12

14

R
e

c
o

g
n

it
io

n
 E

rr
o

r 
R

a
te

 %

 

 

LDA SDA

Fig. 3.8 Comparison of inter-day recognition error rate between SDA and LDA methods for
3 subjects

To further validate the feasibility of SDA in inter-day hand motion recognition with
inadequate data for the implicit subclass division, a test on another dataset comprising 6
subjects, who are inexperienced at sEMG based hand motion recognition for prosthetic
control, performing 13 hand motions in 10 days is utilised, where the training is conducted
respectively with 1 day’s data in Fig. 3.9 and 2 days’ data in Fig. 3.10 whose sEMG are
captured at distinct trials and testing on the rest days’ data respectively. An improvement
of recognition accuracy across the subjects can be seen for the situation with inadequate
training of 1 day, and 9 days’ totally unseen data for testing, which supports the implicit
incorporation of subclass division when inadequate training data are provided.

A detailed numerical comparison of the recognition accuracy and corresponding numbers
of testing samples is shown in Table 3.2. It is seen that the recognition accuracy increases by
a large extent of around 10% when a new day’s data is included for the training which aligns
with the intuition. Regardless of the enriched training of 2 days’ data, the total samples are
still inadequate when compared to the 8 days’ unseen data for prediction. When adequate
training data are available across multiple days and subjects, instead of the conventional
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Fig. 3.9 Comparison of inter-day recognition accuracy between SDA and LDA methods for
6 subjects with 1 day for training
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Fig. 3.10 Comparison of inter-day recognition accuracy between SDA and LDA methods for
6 subjects with 2 days for training

pattern recognition approaches, the improved feasibility of deep learning approaches over
discriminant analysis is explored in the following sections.
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Table 3.2 Comparison of SDA and LDA based inter-day hand motion recognition accuracy
with inadequate training data of 1 day and 2 days

Subjects Training on 1 Day Training on 2 Days
LDA (%) SDA (%) LDA (%) SDA (%)

1 40.11±3.79 40.54±3.46 53.29±10.50 53.12±10.51
2 52.11±9.06 52.53±9.28 62.08±3.50 62.08±3.70
3 62.46±6.91 62.72±6.76 70.78±3.25 70.85±3.18
4 53.83±3.89 54.26±3.88 62.48±3.32 62.56±3.31
5 49.17±8.82 49.43±8.83 60.93±4.45 61.24±4.62
6 62.27±5.37 62.58±5.29 71.03±3.28 71.47±3.18

Mean 53.32 53.67 63.43 63.55

3.2 Convolutional Neural Network for sEMG Based Hand
Motion Recognition with Adequate Training Data

Deep learning approaches have been intensively applied in conventional pattern recognition
based applications after their promising success in computer vision, natural language pro-
cessing and other fields. Specifically, significant attention is attached to the deep learning
framework of CNN since the milestone achievement in the ImageNet test conducted by
Krizhevsky et al. [169]. Though there have been attempts in investigating the capability of
CNN for hand motion recognition in several works, because of the fact that current sEMG
capturing configuration is not unified as the image processing applications, it inevitably leads
to a discrepant performance under various conditions. The usage of a higher density of
electrode configuration, a smaller hand motion set, and an adaptive approach usually presents
favourable conditions in [149]. Such an ideal experimental setup may see potentially better
performance than the low-density ones for the less relative shift of the detection sites while
the high-density sEMG signals naturally form the 2-dimensional images for each sampling
frame where more information may resides in. Besides, the electrode shift can be alleviated
by the image matching techniques to utilise partial grids for recognition. In some studies,
the electrode shift is manually avoided by following the guidance of accurate positioning
markers for electrode placement to investigate long-term characteristics of sEMG signals
[34, 162]. Through the accurate electrode re-positioning approach in multiple days, these
studies could normally reach an improved average recognition accuracy, which in turn proves
that electrode shift negatively influences the classification performance and highlights the
importance of electrode configuration and fixation optimisation. However, when it comes
to daily life activities, the markers are hardly employed for the potential inconvenience.
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Thus the electrode shift is inevitable in clinical settings and should be incorporated in the
research of inter-day recognition. This thesis focuses on the 16-channel sEMG sensing
system developed by [22] at a low-density electrode distribution without putting a marker
purposely for reference, and utilises a CNN model for inter-day myoelectric hand motion
recognition with an emphasis on the performance of solely using the raw sEMG signals
as the input without signal preprocessing or handcrafted feature extraction, and the further
improvement through merging handcrafted TDAR features into non-handcrafted features
extracted by the CNN.

3.2.1 Convolutional Neural Network Architecture

The adopted architecture of CNN is shown in Fig. 3.11 which comprises 2 convolution layers
and 2 fully connected layers, and implemented in the deep learning platform of TensorFlow.
The choice of such a relatively simple architecture is based on the low-density nature of the
input signals, which in turn proves the superiority of the deep learning approaches in such
settings.

Raw sEMG signals captured from all the 16 detection channels in a segment of 256
sampling points are first concatenated in the form of a rectangle frame of their amplitudes
with the size of 256×16, and fed to the CNN as the input without rectification, filtering,
normalisation, standardisation or any other preprocessing. The 2 convolution layers are
equipped with the rectified linear units (ReLU) as the activation function. And 32 and 64
filters are applied in the first and second layers respectively with the same filter size of
3×3. A 2×2 filter based max pooling layer with a two-step stride is connected after each
convolution layer that down-sample the input feature maps to a quarter of their original
size. Following the convolution layers, 2 fully connected layers using a linear activation
function are incorporated, which map the extracted convolutional feature from the preceding
convolution layers to the final 128-dimensional features. The softmax function is adopted
routinely in the output layer to generate classification results. Besides the placement of
the multiple layers in the network, both dropout and batch normalisation are employed to
improve the CNN performance. The dropout is adopted to reduce the overfitting by dropping
units together with their corresponding connections from the neural network during the
training process [170]. In the adopted CNN architecture, the dropout is applied following
the second convolution layer and the first fully connected layer respectively with a default
retained probabilities of each neural unit at p = (1, 0.8, 0.5) going from the input layer to
the top during training. The parameter setting is determined by the one with slightly higher
accuracy among candidates with fixed-step enumeration based searching such as p = (0.95,
0.8, 0.5), p = (1, 0.8, 0.5), p = (1, 0.9, 0.5), p = (1, 1, 0.5), etc. Batch normalisation is adopted
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to accelerate the training of deep networks by removing the covariate shift from internal
activations of the network [171]. In the adopted CNN architecture, the batch normalisation
is applied directly after the first and the second convolution layers, with the batch size set
to 600 during all the experiments. In the adopted configuration, the training of the CNN
is conventionally divided into two steps of pre-training and fine-tuning, where pre-training
initialises the weights and biases of the network by related but non-targeted databases in either
supervised or unsupervised manners [172] while fine-tuning further polishes the pre-trained
network by training with samples of the targeted task only. It is reported especially helpful
to optimise the parameters of the lower-level layers in deep structured networks [173]. In
this thesis, the pre-training is specifically used to train a CNN with sEMG samples from all
the subjects or all but the targeted subjects’ sEMG signals, and solely the targeted subject’s
data, and the fine-tuning is to further train the pre-trained network with solely the training
samples captured from the targeted subject. As a result, the common knowledge and the
invariance across different subjects are first extracted, which can be applied to cross-day and
cross-subject use with a compromised performance. Afterwards the fine-tuning contributes
to a specific model with the training data from the targeted subject, which specialises the
model with an optimal performance using the common knowledge and invariance as the
complementary support. The AdamOptimiser algorithm is selected for classifier training
with an exponentially decayed learning rate at 0.95, starting from 0.01 and decays every
10 steps and experiencing 500 iterations during the pre-training phase. The learning rate
is fixed to 0.0001 with more than 500 iterations in total in the fine-tuning stage. For every
targeted subject, the size of training and testing samples are 13650 and 5850 respectively,
which provides the setting of adequate training.

3.2.2 Low-density sEMG Based Hand Motion Recognition

The inter-day hand motion recognition is conducted on a dataset comprising the low-density
sEMG signals captured by a customised 16-channel sensing system from 6 subjects perform-
ing 13 hand motions. The raw sEMG signals are concatenated and fed to the CNN for training
and testing, following the routine defined in Section 3.2.1. The classic pattern recognition
approach of combined LDA and TDAR is selected as the baseline for comparison. A steady
improvement of recognition accuracy can be seen in Fig. 3.12 and remains consistent for all 6
subjects, despite the voluntary performance varying among different subjects. Two baselines
of LDA are formed by utilising different training strategies of training solely on samples
from the same testing subject, and training on the pooled samples from all the subjects while
the CNN is provided with the same set of training samples. The results also show that the
performance of LDA degrades when trained by non-targeted subjects, which implies the
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Fig. 3.11 The adopted architecture of convolutional neural network

inferior common knowledge extraction of combined LDA classification and TDAR feature
representation in inter-day scenarios. The training is conducted on 7 days’ samples while the
testing is on the rest days, which is followed for all the comparison in this section.

Fig. 3.12 The comparison of inter-day hand motion recognition between CNN and LDA

The detailed numerical comparison of inter-day recognition accuracies with different
selections of training samples using respectively SVM with a radial basis function kernel
(Rbf-SVM), SVM with a linear kernel (L-SVM), LDA and CNN are presented. Specifically,
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the results in Table 3.3 are achieved by training on solely samples from the same testing
subject while those in Table 3.4 are achieved by training on the pooled samples from all
the subjects. An intuition can be drawn that LDA exhibits a better average recognition
accuracy in comparison with SVM based solutions, which aligns with the choice of adopting
LDA as the baseline for inter-day applications. It can be concluded in the experiment that
the conventional recognition algorithms outperform CNN when the training and testing
samples are from the same subject while on the contrary CNN exerts better performance
than all the other approaches under the previous setting when the training samples are
enriched by other subjects. What’s more, the incorporation of sEMG data from multiple
subjects contributes to the superiority of CNN in the comparison including both training
strategies. A plausible explanation is that the adequate training samples are essential for
deep learning approaches to extract useful features since no priori knowledge is provided in
comparison with the conventional ones with handcrafted features. The adequacy is identified
in both multiple days and multiple subjects in the adopted settings. The CNN operates
without restrictions from the priori knowledge, and benefits from an enlarged training dataset
of unseen subjects. The automatically extracted features and tuned classifiers contribute
to a more robust inter-day recognition accuracy above 80% for 5 out of 6 subjects with
less deviation than the conventional strategies as shown in Table. 3.4. A more intuitive
understanding of the different responses of CNN and LDA to the inclusion of unseen
subjects is illustrated in Fig. 3.13. A further comparison of the recognition accuracies of
different number of motion types is conducted between CNN and LDA. It can be seen in
Fig. 3.14 that the hand motion recognition accuracy decreases with the increasing number
of motion candidates for classification, which complies with with the intuition. Yet the
CNN remains consistently outperforming the LDA + TDAR. Despite the same decreasing
trend of recognition accuracy, the different degree of degradation is visibly observable with
the difference of accuracy between the two approaches varying from 1.33% to 3.41% and
then 3.72%. A possible explanation is that the deep learning approaches can extract more
distinguishable and repeatable patterns among similar hand motions than the conventional
TDAR handcrafted features. When the complexity of application scenarios or the number
of motions increases, the degradation of CNN is less severe than that of classic handcrafted
TDAR features based LDA.

The two-stage training convergence of the adopted CNN is shown in Fig. 3.15. In the
adopted settings, the first 500 iterations are for the pre-training and the rest are conducted for
the fine-tuning. It can be seen that the pre-training contributes to an acceptable validation
accuracy for 3 out of the 6 subjects, a mildly inferior accuracy for 2 subjects and an unsatisfac-
tory result for the last subject. The capability of CNN in extraction common knowledge and
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Table 3.3 Inter-day hand motion recognition accuracy with training on solely samples from
the same testing subject

Subjects LDA (%) L-SVM (%) Rbf-SVM (%) CNN (%)

1 79.78 70.60 77.40 77.40±1.08
2 79.65 74.96 79.56 80.70±0.45
3 80.70 78.89 79.23 76.36±1.20
4 82.65 79.06 83.28 72.86±1.24
5 85.38 84.67 86.75 80.54±0.82
6 63.38 59.45 63.06 58.79±1.75

Mean 78.59 74.61 78.21 74.44

Table 3.4 Inter-day hand motion recognition accuracy with training on the pooled samples
from all the subjects

Subjects LDA (%) L-SVM (%) Rbf-SVM (%) CNN (%)

1 74.68 71.79 77.13 84.59±0.72
2 69.27 65.90 60.22 83.57±0.53
3 80.43 78.50 76.74 84.42±0.74
4 72.21 70.31 78.14 84.83±1.36
5 81.56 79.56 85.68 87.23±0.42
6 65.78 64.70 63.49 69.21±1.23

Mean 73.99 71.79 73.56 82.31

invariance is favourably supported in the preliminary evaluation. However, due to the limited
size of involved subjects, it remains to see in an explicit way whether the pre-trained common
knowledge and invariance could contribute to a compromised yet acceptable recognition
accuracy with less or no re-training regardless of the individual difference in sEMG exertion.
And potentially a generalised model can be established by the incorporation of a large group
of subjects to simplify the time-consuming data collection procedure for new users. On the
other hand, significant improvement can be seen through fine-tuning for those with mildly
inferior and unsatisfactory pre-training performance. What’s more, the individual differences
of improvement attributed to fine-tuning reflect the possible necessity for user training when
new subjects are included. In the aforementioned experiments, we use all subjects’ data to
train a CNN model in pre-training, and further tunes the parameters with the target subject’s
training data in fine-tuning. To further validate the potential applications of the pre-trained
CNN on unseen subjects and fully understand the sensitivity of CNN to the corresponding
sEMG pattern distribution, another experiment is conducted to pre-train the model with five
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Fig. 3.13 Comparison of average recognition accuracy over subjects using CNN and LDA
with different training strategies
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Fig. 3.14 Comparison of recognition accuracy of different motion sizes using CNN and LDA
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out of the six subjects’ data, excluding the target subject, and then fine-tune the model with
training data of the target subject. The experimental results showed an average accuracy
across six subjects at 79.96± 6.28%, in comparison with the baseline accuracy achieved
on the same and solely targeted subject of LDA at 78.59±7.76%. It implies the feasibility
of creating a unified pre-trained CNN model that fits new users to achieve an acceptable
accuracy.

Fig. 3.15 The validation accuracy convergence of CNN training on 6 subjects with the first
500 iterations for pre-training and the rest for fine-tuning

Another comparison of different combinations of features and classifiers for 10 individual
trials is shown in Fig. 3.16. The comparison is based on the 3 classifiers of LDA, SVM
and CNN. Both LDA and SVM remain the most widely adopted classification methods in
sEMG based hand motion recognition for their stable recognition accuracy and simplicity
for implementation. The features of TDAR are chosen together with LDA and SVM as the
baseline for its state-of-the-art for the last two decades since Hudgins’ proposal [12]. The
combination of both handcrafted TDAR features and non-handcrafted CNN features are
chosen to evaluate their potential complement to each other. Because of the demonstrated
difference in the aforementioned comparison between CNN and LDA+TDAR, here the CNN
classification is only combined with the merged TDAR and CNN features because the non-
handcrafted features are simultaneously learned with the parameters of networks. It is seen
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that the averaged recognition accuracy is improved to a large extent by combining the CNN
features with traditional TDAR features across classification strategies of LDA, SVM and
also CNN. All trials of the algorithms demonstrate a consistent result that the merged features
outperform single TDAR or CNN features. The experiments also illustrate that traditional
TDAR features slightly outperform the CNN features both in conventional LDA and SVM
classifiers. Additionally, LDA achieves better results than SVM with minor but consistent
improvement regardless of the choice of single features or merged features which still aligns
with the choice of LDA as the baseline classifier. Despite the promising performance of CNN
in inter-day hand motion recognition, its uncertainty remains among different trials dealing
with the same task and is inevitable especially for the specific application with a limited size
of training data which contributes to a slight deviation of recognition accuracy. A variation
of about 1% of the recognition accuracy occurs during the 10 individual trials as shown, yet
still smaller than that of the conventional approaches.

Fig. 3.16 The comparison of recognition accuracy with different combinations of classifiers
and TDAR features, CNN features and merged TDAR+CNN features for 10 individual trials
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A more detailed discussion of the handcrafted TDAR features, the non-handcrafted CNN
features, and their combination will be presented in Section 4.1.

3.3 Summary

In this chapter, both conventional pattern recognition and deep learning classifiers are
developed to achieve an improved inter-day hand motion recognition for long-term use. The
discriminant analysis frameworks are first step by step developed with subclass division
in both explicit and implicit ways. The subclass division is first conducted by GNG in an
unconstrained way across all samples instead of using a separated division scheme, which
shows an ambiguous inter-day performance. Then the totally unconstrained subclass division
is replaced by the nearest neighbour based searching within the separated data belonging to a
certain class which leads to the KNN-LDA. The combined subclass division optimisation
with a modified definition of the between-class scatter matrix leads to the utilisation of
SDA. The recognition results of inter-day evaluation demonstrate the improvement attributed
to additional subclass division under the hard constraint of original classes in both KNN-
LDA and SDA. The deep learning approach of CNN is adopted for the low-density sEMG
sensing based hand motion recognition in inter-day scenarios. Raw sEMG signals are
fed to the classifier directly without signal preprocessing or handcrafted feature extraction.
The proposed CNN comprising 2 convolution layers and 2 fully connected layers steadily
improves the inter-day recognition accuracy in comparison with the baseline achieved by
LDA and TDAR and other conventional pattern recognition algorithms with handcrafted
features. And the feasibility of the two-step training using the pre-training on multiple
subjects to extract the common knowledge and invariance for the reduction of required fine-
tuning data from the targeted subject is verified. The merged TDAR and CNN features are
combined with multiple classifiers and beneficial for the improvement of inter-day recognition
performance. Various choices of the training data including the number of motion types and
the inclusion/exclusion of the targeted subject are also evaluated to demonstrate the potential
strategies for CNN based hand motion recognition in long-term use.

Besides, the importance of training data size is also identified in this chapter. In the con-
ventional classification development, the evaluation settings are confined to using inadequate
training data to test unseen samples in more days. Specifically, the experiments are conducted
on the limited training data of 1 or 2 days while the rest days are left for testing. Further
evaluation on using adequate training data of 7 days across 6 subjects and testing on the
rest days’ data is conducted when deep learning approaches are adopted, where significant
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improvement can be seen on the combination of CNN with the enlarged pooled training data
across days and subjects.

The training process of a CNN are naturally much more time consuming than the training
of classifiers like LDA and SVM. And the requirement of adequate training data for a decent
CNN will inevitably lead to a large burden of user training. Though the improvement of
inter-day recognition accuracy is seen in the proposed classification methods compared to
the classic ones, it is reasonable to achieve a well balanced trade-off between the efficiency
of both classier training and user training and recognition accuracy for inter-day use.





Chapter 4

EMG Feature Extraction and Selection

In pattern recognition based applications, features play a vital and even dominant role in
most cases, where good features can contribute to acceptable classification results with
naive classifiers. Feature extraction aims at finding the descriptors that are both consistent
and distinguishable for classification. Because of the redundant feature representations and
different targets, multiple feature combinations are suitable for a certain application. To
efficiently exploit the redundancy, offline feature selection is usually conducted to reduce
the burden of feature extraction under various constraints before real applications. In this
chapter, the feature extraction and feature selection are addressed simultaneously. In the
section of feature extraction, both handcrafted features and the non-handcrafted features will
be discussed in details. And a novel feature descriptor is proposed with a specific empha-
sis on the multi-threshold based time domain feature extraction for an improved average
recognition accuracy. In the section of feature selection, both computational cost reduction
and recognition accuracy improvement are focused on respectively and implemented by the
evolutionary algorithm based feature selection and analysis.

4.1 Feature Extraction

SEMG signals are the sum of electrical activities of the muscle fibers, as triggered by the
impulses of activation of the innervating motor neurons and obtained by the convolution
of each motor neuron spike train exerted by the MUAPs [58], and the amplitude of the
sEMG signals is a zero-mean random process. In pattern recognition based solutions, feature
extraction within a sliding window is adopted to transform the stochastic signal to meaningful
information that can be effectively classified. Conventional classifiers can obtain a higher
classification accuracy with extracted features instead of raw sEMG signals as the input. The
sEMG features are commonly extracted in both temporal and spatial domains [174, 175] to
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boost the motion recognition performance. Geng et al. [148] reported that repeatable and
distinguishable patterns exist in instantaneous sEMG frames leading to a better hand motion
recognition, which is intuitively beneficial to deep learning algorithms. The superfluity and
redundancy of features are stated by Phinyomark et al. [176] and form a feature reduction
and selection problem that remains to be addressed. Thus it is worth conducting research
on both perspectives including better exploitation of existing features and proposal of novel
features with an emphasis on the combination with both conventional and deep learning
approaches.

4.1.1 Merging Handcrafted and Non-handcrafted Features

The feasibility of handcrafted TDAR features has been proved by the extensive research after
Hudgins’ prominent work [12] in the last two decades. And the priori knowledge driven
feature extraction is applicable for the vast majority of users with a promising accuracy under
the condition that training samples are well captured in an unseen scenario.

In the previous chapter, it has already been verified that a simply structured CNN with 2
convolution layers and 2 fully connected layers is able to learn sEMG features for inter-day
use automatically without the guidance of any priori knowledge. The CNN learns features
hierarchically and automatically and allows a system to induce complex functions mapping
the input to the output directly from data, without depending heavily on handcrafted features
[173]. The results concluded from Chapter 3 imply that the extraction of handcrafted features
could be bypassed when CNN is adopted as the classifier. In comparison with conventional
classification approaches, the CNN shows significant superiority on the inter-day hand motion
recognition when the training dataset is adequate across multiple days and subjects. Based on
the fact that specific hand motions are related the contraction of certain muscles and people
share similar muscular structures, it is assumed in this thesis that common knowledge or
invariance of the sEMG patterns among multiple days can be extracted by CNN through
a proper pre-training approach. And the extracted common knowledge can accommodate
the varying conditions for long-term use. This belief can be preliminarily verified by the
acceptable inter-subject recognition accuracy with a pre-trained CNN across all the 6 subjects,
and reflected by the comparison between the pre-trained feature maps and the fine-tuned
feature maps in Fig. 4.1 where most elements of the maps remain similar. Specifically, an
example of the pre-trained and fine-tuned feature maps captured from an individual subject
whose pre-trained model could achieve an acceptable recognition accuracy is shown in Fig.
4.2. The differences between the two feature maps can hardly be visually identified. It implies
that the pre-trained feature maps hold the most information that remains unchangeable with
a user-targeted fine-tuning if the common knowledge is well extracted. This assumption is
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also supported by the training convergence plotting in Fig. 3.15, where the hand motion
recognition accuracy for all subjects steadily improves along iterations in the pre-training
phase, which acts as a proof of effective extraction of common knowledge or invariance.
CNN is a powerful tool for feature extraction from the raw sEMG signals as demonstrated in
Section 3.2.
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Fig. 4.1 The learned 32 feature maps by the first convolution layers, obtained from pooled
samples from all subjects after pre-training and fine-tuning
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Fig. 4.2 The comparison of learned 32 feature maps after pre-training and fine-tuning for a
single subject whose pre-trained model achieves an acceptable recognition accuracy

However, despite the merits of CNN, conventional TDAR features outperform the CNN
features in the test when the size of training samples is limited. Handcrafted TDAR features
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exhibit a promising performance with the training and testing on solely the targeted subject,
which is also verified in last chapter. Thus an intuitive idea is whether the two kinds of
features can be utilised simultaneously to take advantages of them both. The scatter plot
of the principal components of extracted sEMG features for 5 motions in multiple days
is depicted in Fig. 4.3. It can be seen in Fig. 4.3a that there exist several clear clusters
for hand motions like hand rest, hand open, wrist flexion and wrist extension with only
3 dimensions after PCA of TDAR features. And the feature distribution within multiple
days exhibits significant variation which potentially leads to degradation of the long-term
performance. In contrast, the distribution of the first 3 principal components of CNN features
share consistency among multiple days and the scatter within each hand motion remains
similar to those of other motions as shown in Fig. 4.3b, which means the common knowledge
and invariance of inter-day sEMG patterns could be extracted by CNN features without any
priori knowledge. As a result, the inter-day recognition with CNN features outperforms
using solely TDAR features. The merged features of both handcrafted TDAR features and
non-handcrafted CNN features are proposed to take advantage of them both as demonstrated
in Fig. 4.3c. Thus the fused features are possible to improve for long-term use even with the
classic non-deep learning based classifiers, which is verified and illustrated in Fig. 3.16. An
intuitive idea is formed that TDAR features can be separated better than CNN features with
naive classifiers for certain motions while CNN features exert better robustness against the
inter-day scenarios but can only be well distinguished with more complex classifier such as
the CNN itself, which coincides with the recognition results in Section 3.2.

4.1.2 Multi-threshold Based Time Domain Feature Extraction

To fully exploit the TD features for an improved long-term performance, a lot of efforts
have been seen in academia. Kamavuako et al. [177] investigated the optimal threshold
of typical Hudgins’ TD features like ZC and SSC using metrics of classification error,
separability index, scatter matrix separability criterion and cardinality of the features, and
verified the parameter settings with the data captured in 2 days from 8 able-bodied subjects
in an inter-day recognition scenario. Though the optimal threshold is highly data-dependant
and subject-dependent, which does not generalise well, it is claimed the results showed a
strong evidence to support that keeping the threshold equals zero provides a good trade-off
between system performance and generalisation. Determining the optimal window length
for pattern recognition based myoelectric control seeks to balance the competing effects of
classification error and controller delay [121]. Taking the importance of segment length and
the TD feature threshold into account, the research instance of simultaneously considering
both the factors is still missing and remains to be addressed. The threshold and sub-segments
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Fig. 4.3 Principal component scatter of the TDAR, CNN, and merged TDAR+CNN features
of 5 motions in multiple days

are considered respectively in this section and the following section. And the enumeration of
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SSC and ZC with multiple thresholds is considered in this section to provide a novel feature
vector named TDARM.

Conventionally, the threshold of 0 or an relatively small integer is applied for the ZC
and SSC feature extraction as reviewed in Section 2.2.2 and controls the counting of zero
crossings and slope sign changes. The evaluation of multiple thresholds in this thesis is
conducted across the subjects and utilises 2 days’ data for training and the rest for testing.
The choice of the 2 days’ combination is exhausted in the experiment to verify the feasibility
of TDARM features. A 3-threshold extraction scheme is adopted in this thesis, which
contributes to 3 additional pairs of ZC and SSC to the original TDAR features. The first set
of threshold is selected as (0,10,20) and (10,20,30) respectively for the ZC and SSC while
the other two increased thresholds of (0,15,30) and (10,30,50), (0,20,40) and (10,40,70)
are chosen, which reflects different scales of amplitude change division. The comparison
of the 3 different choices of TDARM and TDAR features is illustrated in Fig. 4.4. It can
be seen that the average recognition accuracy over all subjects is improved by around 1%
for all 3 different TDARM features. Another finding is that a smaller scale of division
plausibly contributes to a more improvement despite the slight difference of 0.1% between
the adjacent TDARM feature vectors. An intuitive understanding of ZC and SSC features is
that they reflect the waveform variation within an sEMG segment. A single threshold based
counting of slope sign changes and zero crossings simply enumerates the changes that exceed
the predefined amplitude differences of sEMG signals without a finer categorisation. The
multiple-threshold based TDARM features proposed in this thesis aim to address the diversity
of signal changes by dividing them into multiple subsets. A well designed threshold naturally
leads to the incorporation of both stable changes and significant variations of the sEMG
signals and potentially illustrates different stages during the muscle contraction. For example,
our proposed 3-threshold selection categorises the sEMG amplitude changes into 3 sets of
small, medium and large variations respectively, which provides more description of the
EMG patterns than that of a single threshold based features. Besides, the multiple threshold
based extraction is potentially improvable with an additional optimisation process through
feature selection, which will be addressed in our future work. Let alone the emphasis on
multiple thresholds, the other aforementioned property of multiple sub-segments is addressed
in Section 4.2.3.

4.2 Feature Selection

SEMG signals are the electrical manifestation exerted by a group of superficial muscles and
detected over the skin surface, which inevitably comprise more information from the muscle
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Fig. 4.4 Comparison of the TDARM features with different thresholds and TDAR features

contraction nearer to the electrodes and less from the contraction of more distant muscles.
Thus intuitively a denser distribution of more electrodes without exceeding the limit of elec-
trical interference in the sEMG capturing system could contribute to the acquisition of more
physiological information. However, despite the potential use of informative patterns brought
in by incorporating more physiological signals with extra detection sites, the extraction of
more features could be time-consuming for real-time applications. Furthermore, redundant
pooled feature sets, especially the ones comprising the handcrafted features, sometimes
degrade the recognition performance because of the overfitting of classifiers against the
non-consistent features. Besides, Phinyomark et al. [176] evaluated a group of candidate
features captured by a system equipped with 5 electrodes and stated the superfluity and
redundancy of TD features within. Though only a limited number of detecting sites can
be allocated over the forearm muscles with current low-density sEMG capturing systems
due to the size constraints of the electrodes and their mutual electrical interference, it has
been pointed out by numerous research that the required number of channels is quite low
compared to the availability. For example, Khushaba et al. [133] utilised the particle swarm
optimisation to evaluate the feature and channel combination to gain the minimum number
of channels and features required to achieve the demanded recognition accuracy, and found
that only 3 channels were enough to generate an acceptable recognition accuracy.
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As a result, let alone the aforementioned numerous research on feature extraction, feature
selection is also addressed by researchers seeking for an optimised feature combination.
Among all the research, Oskoei et al. [132] first applied the genetic algorithm in sEMG based
hand motion recognition. In their application of recognition among 6 motions, the optimal
subset of features was selected for their 4-channel and 6-channel myoelectric systems respec-
tively instead of exploiting the pooled feature ensemble. After the initial work conducted
by Oskoei et al., a trending research on the feature selection to reduce the computational
complexity and maintain the accurate recognition under various constraints has been seen
in the last decade, such as in scenarios with the varying contraction forces and limb posi-
tions. Al-Timemy et al. [178] considered the finger movement classification and achieved
a comparable accuracy with a group of selected channels instead of utilising all channels,
and further found that the classification accuracy under limb variation was improved with
the selected subset out of 10 feature candidates [128]. And Adewuyi et al. [179] aimed
to optimise the sEMG feature combination under varying wrist positions for subjects with
partial hand amputation and identified the optimal number of wrist positions needed for
classifier training, which was realised by sequential forward searching with Bhattacharyya
distance as the separability index. Besides the focus on the varying status of the subjects,
the most recent research of feature selection has been seen on the constraint of different
characteristics of the capturing system. Phinyomark et al. [180] specifically selected sEMG
features that provide better recognition for the emerging low-sampling rate systems such as
the prevalent MYO armband.

In summary, the importance of feature selection for sEMG based hand motion recognition
has been addressed in various publications since last decade. Despite their constructive
findings, the selection was confined within the combination of feature types and channels
without considering long-term use as the target. The selection of optimal feature subsets for
a reduced computational cost at a compromised yet comparable recognition accuracy or for
an improved performance with additional attributes respectively in long-term use remains to
be investigated. This section will introduce the adopted feature selection algorithm and the
feature candidates together with the verification of the ideas.

4.2.1 Bacterial Memetic Algorithm for Feature Selection

In this thesis, the bacterial memetic algorithm (BMA) is adopted for feature selection. BMA
is an evolutionary memetic algorithm inspired by the nature of microbial evolution that com-
bines both global and local search for optimisation [181]. BMA comprises basic operations
including mutation, transfer and local search, taking advantages of both evolutionary and
memetic approaches. The optimisation problem of feature selection aims to seek the optimal
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or quasi-optimal combinations of feature candidates. In BMA, the possible combinations
of features are encoded by the chromosomes with integer indices. And the evaluation of
the feature subset is to test each chromosome according to the predefined metrics such
as the recognition accuracy for a classification problem or the computational cost. After
the random initialisation of chromosomes, mutation, transfer and local search operations
will be sequentially conducted on the chromosomes according to the calculated evaluation
metrics. The loop of three operations will be continued till the termination criteria are met.
The chromosome with the best evaluation result will be finally retrieved as the output and
decoded into the selected feature combination.

Encoding and Evaluation

In the initialisation stage, a total of Nind individual bacteria are created as the whole population
to be processed in the following stages. The chromosome length of each bacterium is first
randomly initialised within a predefined length and filled with a string of non-negative
integers mapping to the feature candidates. In our case of feature selection, each integer
in the chromosome represents the index of an individual feature from the pooled sEMG
TDAR features of all channels. Features denoted by chromosomes will be examined on
their inter-day hand motion recognition for the performance evaluation in each evolutionary
memetic loop. The chromosome with the best evaluation result in the last loop is exported as
the optimal or quasi-optimal feature set. In our feature selection problem, the recognition
accuracy obtained from the retrieved features and the predefined LDA classifier is adopted as
the fitness. In our application the chromosome length is variable and extended or reduced
with a fixed probability Pbm in each loop of bacterial mutation and transfer operations to
explore a broader search space. Referring to the priori knowledge of the scenario, the size of
a constrained search space is controlled by lower and upper boundaries of the chromosome
length.

S =
nU

∑
i=nL

(
N
i

)
(4.1)

where N is the total number of candidate features, and nU and nL represent the upper boundary
and lower boundary of the chromosome length.

An alternative constraint is to combine the penalty function as a regulariser on the
chromosome length in the evaluation. To constraint the complexity of the model, the
regularised fitness function is adopted.
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σεi =
1
N ∑

(x,t)∈T
δ [ f (x)− t]+λ

lb
U

δ (x) =

1, x = 0

0, x ̸= 0

(4.2)

where σεi is the fitness of i-th bacterium chromosome εi, N is the size of testing data, f (x) is
the classification function which outputs the category, (x, t) is the sample from the testing
domain T , lb is the current chromosome length, U is the upper boundary of chromosome
length, λ is the regularisation parameter to tune the evaluation with different emphasis and
δ (x) is the Kronecker delta function.

Mutation

BMA searches for the global optimum through mutation in the chromosomes, which imports
new information in a randomly selected space. Similar to other evolutionary algorithms,
individuals from the population are mutated, evaluated and replaced or preserved.

The mutation operation is performed for all Nind chromosomes one by one in each loop.
The mutation starts with the duplication of the objective chromosome for NClone times.
Then a random length of lbm is generated to indicate the segments to be mutated in the
chromosome. Despite the mutation in the clones, the original chromosome remains the same
as the unaltered source chromosome in this stage. The evaluation operation is conducted on
each chromosome and the source one is replaced by the one with the best result whereas the
inferior ones are eliminated. In our application, the mutation epoch of one bacterium is set
adaptive to its length to guarantee that all the segments are mutated at least once and only
once in every loop. During the mutation process, the length of each chromosome varies by
a predefined length lcl or remains unchanged according to the predefined probability Pbm.
The mutation operation and length modification is illustrated in Fig. 4.5, where NClone = 3,
lbm = 2, lcl = 1, and Eva is the fitness function of accuracy and a larger Eva is to be achieved
in the selection.

Local Search

After the mutation, the local search operators will randomly function on the individuals
from mutated population with a probability of Pls. A predefined local search space is
explored to find the best neighbouring solution among one or grouped segments. Memetic
algorithms incorporate the local search operation to accelerate the whole searching process
with exploitation of the priori knowledge attained in the certain field. In our thesis, the local
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Fig. 4.5 Mutation operation in BMA

search space is defined in alignment with the consistent choice of channels, feature types and
additional attributes like window lengths for segmentation to narrow down the search range.
The local search space needs to be carefully determined to balance the acceleration of the
convergence rate and the avoidance of the local optimum.
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In our case, the priori knowledge is the physiological manifestation influencing the
exerted sEMG signals and the anatomical deformation of the forearm muscles for certain
hand motions. For each feature in the searching space, its index possesses the properties of
the sEMG acquisition site and the extraction strategy. As a result, the local search space
is naturally defined with either fixed channel or fixed extraction domain. Depending on
the design of signal acquisition system, which is either muscle targeted or untargeted, two
different views can be generalised in the local search protocol. For a fixed channel in
untargeted sEMG capturing system, only features extracted from the same signal source can
be viewed as the candidates for a certain operation of local search. It is intuitive that certain
hand gestures only involve the contraction of certain muscles, and it is more reasonable
to compare the information acquired from the corresponding detection sites. While the
muscle untargeted detection normally covers an overlapped area with muscle synergies, a
muscle targeted detection only gathers the sEMG signals from certain muscles with negligible
influence by others. In this situation, the candidate group of channels will be enlarged by
those who are related to the same motions. For a fixed domain only the features computed
in the same scheme like TD, AR or others are included for the selection because of their
own characteristics to facilitate different physiological conditions. As indicated in previous
research, spectral features are good indicators for muscle fatigue and the entropy based indices
perform robustly under circumstances where small contraction and noise are included [34].
Besides, additional attributes of the feature extraction are considered including segmentation
length and overlapping increment, which contribute to a more detailed exploitation of the
sub-segments. In the end of each local search, the chromosome is either preserved or replaced
by the alternative with the best evaluation performance in its predefined neighbourhood.

Transfer

Mutation and local search are followed by the operation of transfer, which allows the
exchange of information between two bacteria and contributes to incorporating new features
from a better chromosome for performance improvement. The goal of the mutation and
local search operations is to explore the unknown searching space and bring in unseen and
beneficial information while transfer operation aims to preserve the incorporated features
instead of introducing new ones by passing them to multiple bacteria within the existing
population.

First the population is divided into two sorted halves including a superior set and an
inferior set according to their evaluation results. Then one bacterium is randomly selected
from both superior and inferior halves as the transfer candidates. A group of segments with a
predefined length of lgt from the source bacterium are assigned to the targeting bacterium in
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a point-wise matching scheme. This process mimics the infection process of the bacteria and
will repeat Nin f times in each generation. During the transfer operation, the chromosome
length is also modified at a fixed probability, yet implemented in a different way from the
mutation operation. The difference between the two modifications lies on the concept that
transfer operation only preserves the existing information without incorporating unseen
features. To preserve the improvement of the target bacterium, the updated population will be
divided again according to another evaluation after each transfer. The transfer process with
the length change involved is shown in Fig. 4.6, where lgt = 1, lcl = 1 and the chromosome
length remains the same.

The BMA parameter settings are investigated with various combinations of lengths and
probabilities. Specifically, the simplified comparison of convergence rate and the recognition
accuracy for feature selection process of the the same subject with two different parameter
settings are depicted in Fig. 4.7. The conventional TDAR features from 16 channels are
considered as a pooled set of 128-dimensional candidates. It can be seen that the evaluation
has reached a quasi-optimal performance with around the 10 generations of evolution and
searching in both settings. No obvious differences in convergence rate or accuracy are
witnessed in the comparison, which indicates that the application of BMA in this specific
sEMG based feature selection is not sensitive to the parameter settings.

4.2.2 Computational Cost Reduction Targeted Feature Selection

In the test of computational cost reduction targeted feature selection, the aim is to find a subset
of features whose number is reduced by more than half of the original feature vector while
preserving a compromised yet acceptable inter-day hand motion recognition performance. In
the experiments the transient phase between two motions is excluded and the feature selection
of solely stationary signals during hand motion conduction is carried out. An overlapped
windowing strategy is adopted to segment the sEMG signal stream with a window length of
250 ms and an increment of 50 ms to meet the real-time requirement despite its nature as
an offline validation. The classic TDAR features with 4-th order AR from 16 low-density
distributed channels contribute to the total 128-dimensional feature candidates for selection
and are all tested under the classification approach of LDA. The results achieved by LDA in
combination with the original TDAR set and PCA for the dimensionality reduction are used
as the baseline for comparison.

A detailed enumeration of 5 candidate bacteria for a single subject who is experienced in
the myoelectric prosthetic control in a random trial after the entire evolutionary process is
shown in the Table 4.1. It should be noted that the average evaluation result for all bacteria
including the omitted ones is 97.09± 0.60% that almost every individual would perform
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Fig. 4.6 Transfer operation in BMA

comparable results to each other without a large variation. It can be inferred that redundancy
exists among the candidate features to be exploited. In other words, it is practical to extract a
small number of feature candidates instead of the fully pooled combination of all channels
and feature types to meet the real-time requirement without much compromise in recognition
accuracy in clinical application. Besides, a denser stream can be formed in combination
with the postprocessing techniques like majority vote to obtain an improved performance.
Specifically, the two selected subsets with a similar size of 25 features lead to different
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Fig. 4.7 Convergence sensitivity to parameters of the BMA

recognition accuracies of 97.52% and 96.28% respectively, which indicates that the same
computational cost leads to a difference of more than 1% on the recognition result. What’s
more, the feature subset with a total number of 25 achieves a higher recognition accuracy
than the one with 32 features included. The same fact is also validated by the comparison
between the 23 features and the 25 features. It can be concluded that the a larger number
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of features do not necessarily contribute to a better performance, which in turn provides
the significance of offline feature selection prior to the online feature extraction. It is worth
noting that the experiment is conducted within the selection of TDAR features with an
original dimensionality of 128. There are a plenty of feature extraction strategies in TD, FD
and TFD domains, whose diversity could be more than the 50 feature types examined in [34].
Thus the preliminary results in this section will be even more useful when applied in a larger
pooled feature set.

Table 4.1 Selected feature subset examples for feature reduction for a single subject in a
random trial

Indices of selected features Number Evaluation accuracy %
3 6 10 13 18 20 25 26 37

23 97.0444 53 58 59 63 71 72 83 91
92 96 110 112 122

5 10 13 18 20 22 25 33 41
25 97.5244 45 49 56 57 63 66 76 82

84 91 92 96 113 122 123
1 2 11 13 18 20 22 26 30

25 96.2837 44 53 58 63 71 76 83 92
96 99 110 118 122 123 128

5 6 8 11 13 15 16 17 18

32 97.10
19 20 22 24 26 27 29 43 44
53 56 58 76 82 84 91 92 97

101 105 119 121 123
5 6 10 11 13 16 17 19 20

41 97.90
22 25 27 29 31 33 34 35 41
44 45 49 52 55 58 63 65 76

82 84 87 88 91 92 103 104 111
113 122 123 124 128

The experiments for inter-day hand motion recognition are conducted in comparison with
PCA based dimensionality reduction, with the results shown in Fig. 4.8. In BMA based
feature selection, the first 2 days’ labelled data are utilised in the feature selection stage
to generate the feature subset. The LDA classifier is later trained by the labelled selected
features extracted from the sEMG signals solely on the first day and adopted for the inter-day
application on the rest days’ data in an offline scheme. The PCA based solution calculates
the projection matrix on the first two days’ data and tested on the same data with BMA based
ones. The test on the fatigue data captured from one of our subjects follows a similar routine
but in an inter-trial scheme instead of the inter-day way. Between adjacent trials, the subject
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exhausts his forearm strength with multiple rounds of muscle contraction as much as possible
to cause muscle fatigue, which would be another critical issue to impede the recognition
accuracy in long-term use. It can be seen that the BMA based method leads to an increase of
near 1% in the error rate for inter-day experiments, which is acceptable when compared to
the computational reduction in the number of extracted features shown in Table 4.2, which
would largely reduce the burden of online computation. A further reduction of feature
dimensionality is expected because only a limited set of 128 feature candidates are adopted
in the experiments. However, the results already reveal the efficiency of the feature selection
approaches. Taking into account the fatigue test, the reduced extracted features through BMA
even outperforms the whole feature set PCA based method in both computation cost and
average accuracy, shown as the last error bars in Fig. 4.8, despite the large degradation by
both methods in this scenario. A plausible explanation for the improvement of recognition
accuracy under fatigue test is that the occurrence of large variation in sEMG pattern by
exhausted voluntary muscle contraction leads to the failure of some certain feature types
in classifying the motions. As a result, the incorporation of the whole group of features
inevitably hinders the classifier training as a result of overfitting against the failed features.
And some selected features instead of the whole feature pool could be more robust to such
sEMG inconsistency caused by muscle fatigue. However, because that there is only a single
subject employed, it remains to be determined whether the assumption holds when a more
reasonable group of subjects are involved under a dedicated experimental protocol. It has
shown that the PCA based feature reduction outperforms the BMA based one with 1%,
which is because of the additional information despite the potential redundancy and increased
computational cost.

Table 4.2 Comparison of trade-off between feature dimensionality reduction and average
accuracy

Subject
No.

Number of extracted features Average accuracy %
BMA PCA BMA PCA

1 41 128 90.99 92.04
2 33 128 98.71 98.81
3 37 128 92.54 93.80

4 (fatigue) 30 128 63.87 62.97

Furthermore, the preliminary inter-subject test is conducted to investigate the feasibility
of the transfer of feature selection results between different subjects. The best subset of
candidate features from each subject is applied to the other two subjects in our experiment
following the same training and testing paradigm. A comparable and even improved perfor-
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Fig. 4.8 Comparison of features selection results on 4 subjects

mance of the inter-subject feature set transfer could be seen in Fig. 4.9 utilising the feature
subset selected from other subjects, which supports the incorporation of feature selection to
form the optimal or quasi-optimal subsets for unseen users without extra offline selection
burden on them.
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Fig. 4.9 Comparison of features selection results for inter-subject use

A further enumeration of corresponding channels of selected features is shown in Fig.
4.10. Here the statistics is based on the pooled subset selection of the whole population of
the 2 subjects, where each of the bacteria has reached an acceptable evaluation result at a
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largely reduced dimensionality. An approximately similar chance of selection for all the
channels is observed, which implies that there is no preference towards specific channels in
our scenarios. Apparently, the enumeration result confirms the necessity in adopting all the
16 detection sites, but with a limited features from each of them for achieving an acceptable
recognition performance at a lower online computational cost.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

N
u

m
b

e
r 

o
f 

s
e

le
c
te

d
 f

e
a

tu
re

s

Channel index

Enumeration of selected features from corresponding channels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

N
u

m
b

e
r 

o
f 

s
e

le
c
te

d
 f

e
a

tu
re

s

Channel index

Enumeration of selected features from corresponding channels

Fig. 4.10 Enumeration of selected channels after feature reduction
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4.2.3 Recognition Accuracy Improvement Targeted Multi-length Win-
dowed Feature Selection

Besides the computational cost reduction achieved by the offline feature selection, we further
look into the possibility of improving recognition accuracy with the same techniques in this
section. The importance of the data segmentation with various window lengths of sEMG
stream is addressed by [121]. A longer segment of sEMG signals naturally contributes to a
better recognition accuracy as illustrated in Section 2.2.2. However, the real-time constraint
only allows a window length of less than the perceivable delay of 300 ms, where the existing
research are solely conducted on the selection of a fixed segment lengths. And the research
in extracting more knowledge within the fixed window length is commonly ignored. Despite
proposing more feature extraction strategies, it is timely deriving deeper insights into the data
segmentation itself. An intuitive idea is to further utilise the shorter sub-segments within each
windowed sEMG segment. Within the current knowledge, no studies have yet investigated
the feature subset selection with fused multiple window lengths. The subset selection that
simultaneously concerns feature type, detecting site and window segmentation is still missing.
In this thesis, the feature selection algorithm BMA is adopted for the multi-length windowed
feature selection targeting at an improved sEMG based hand motion recognition in long-term
use.

In our settings, the filtered stationary sEMG stream is first segmented by the windows
of 250 ms with an overlap of 200 ms. Subsequently, all the segments of 250 ms are further
segmented with the sub-length/overlap combinations of 200 ms/190 ms, 150 ms/130 ms
and 100 ms/50 ms as multi-length candidate sub-windows. Based on the prior results, the
difference of window lengths at 50ms is selected. The sub-windows are then concatenated
and the feature extraction of TDAR is performed on every one of them. For each window and
sub-window, a total of 128 dimensional features of 16 channels are extracted which leads to
the final 2176 candidate features. Prior to the succeeding classification, the features extracted
on the same group of data are routinely normalised. To exploit the most of a segment, the 128
features of the 250 ms window are kept as the basis while the selection is conducted among
those sub-windows. The feature selection is carried out utilising BMA with the inter-day
recognition accuracy as the fitness following the same routine in Section 4.2.2. Finally the
features will be dimensionally reduced by PCA to collect the first 20 components as the
input to LDA for classification. The convergence of the recognition accuracy with multiple
subsets during the multi-length sub-windowed feature selection process is shown in Fig.
4.11. It can be seen that the ones with a quick convergence have an inferior performance
compared to the others. Yet it is still worth noting that the improvement could happen at
any iteration, which is formed on the nature of evolutionary algorithms in seeking for the
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global optimum. Besides, the intrinsic randomness of such methods contributes to diverse
recognition accuracies with a large variance of 2% at most, which confirms the necessity
of conducting multiple trials of feature selection to gain the quasi-optimal subsets with an
acceptable performance.
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Fig. 4.11 Convergence for 10 trials of the BMA based multi-length sub-windowed feature
selection process

The feasibility of multi-length sub-segmented feature selection is illustrated by the inter-
day recognition performance respectively, on both testing and validating data from all three
subjects in Fig. 4.12, and on the testing data only captured from the two subjects shown in
terms of training on 1 day and testing on the rest days in Fig. 4.13. Specifically, 3 different
optimised feature subsets are first selected from the 3 subjects respectively and then applied
in the testing on each subject, in comparison with the same 128-dimensional TDAR features
as shown from left to right in Fig. 4.12. It can be deducted that the selected feature subset can
be utilised among distinct subjects, which in turn reduces the time consumption for potential
inter-subject applications. A special case of using both training and validation is conducted on
Subject 3 due to the subject’s fully experienced capability of consistent sEMG signal exertion.
The trend can be seen that the average errors decrease by adopting the selected features in
comparison with solely using the single-length windowed ones. However, a discrepant case
occurs for subject 2 when the data captured on day 2 is adopted for training and tested on the
remaining days. It is also obvious that the inter-day hand motion recognition heavily depends
on the selection of training data. For example, the data of day 2, 3, 6 from subject 1 and day
3 from subject 2 significantly outperform the rest when adopted for training the classifier
in the same data acquisition scheme. Thus a further validation on an enlarged dataset of
more recruited subjects and more fused trials in multiple days is needed to investigate the
generalisation capability of the sEMG signals in future research.
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Fig. 4.12 Comparison of average recognition results on both testing and validating data
with/without feature selection
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Fig. 4.13 Comparison of average recognition results with/without feature selection for inter-
day use
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The general enumeration of the selected channels, window lengths and feature types
for the 3 subjects is demonstrated in Fig. 4.14 respectively and summarised in Table 4.3.
An intuitive selection preference can be deducted by the results that windows with a longer
segment length are more likely to be selected. The TD features especially the WL and SSC
features and the first 2 components of the AR features are more favoured in the selection.
The last 2 AR components are least preferred during the selection. The preference towards a
larger segmentation is seen when using accuracy as the evaluation criteria, which coincides
with the previous research [2] that an increased window length will provide features with
less statistical variance and a better recognition accuracy. However, due to the restriction
of processing time, a trade-off has to be considered between the time consumption and
the classification accuracy. No explicit preference in the channel selection coincides with
the findings in previous section, and is possibly attributed to the preconditions of keeping
all features extracted from all channels with 250 ms, where the baseline of an acceptable
recognition accuracy can be achieved.

Table 4.3 Enumeration of window lengths and feature types

Category Subject A Subject B Subject C
Window length 200 ms 47 49 45
Window length 150 ms 26 46 38
Window length 100 ms 20 27 29

Feature WL 12 28 20
Feature MAV 9 12 14
Feature ZC 11 11 9

Feature SSC 18 19 28
Feature AR1 19 26 19
Feature AR2 13 13 13
Feature AR3 7 6 6
Feature AR4 4 7 3

A further detailed enumeration for each attribute of all the selected subsets for a single
subject is depicted in Fig. 4.15, 4.16, and 4.17 as follows. Features of all the 16 channels are
employed at a comparable chance without a significant preference towards a single channel.
But it can be seen that there exists an observable difference between the two halves of the
detecting sites. A possible explanation to this result is that the split of the two halves of
electrodes addresses different coverage of grouped muscles to monitor the muscle contraction
of the anterior and posterior forearms respectively. In other words, more sensing data from
the posterior compartments of forearm muscles is essential to an improved recognition of
the 9 hand motions involved in the proposed evaluation. The enumeration of sub-window
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Fig. 4.14 Enumeration of the selected channels, window lengths and feature types for 3
subjects with the best performance

lengths favours the adoption of all sizes of sub-windowed segments and those with longer
segments are more selected than the others, which is in alignment with the optimal subsets of
the 3 subjects. All the 8 feature types are necessary for the inter-day hand motion recognition
as depicted by the enumeration despite the slight more adoption of WL and SSC out of TD
features, and the first 2-order coefficients out of AR features. In summary, the attributes
comprising but not limited to window length, feature type and detection site are all essential
to be taken into consideration for the sEMG based inter-day hand motion recognition instead
of utilising the pooled features without a pre-selection.

4.3 Summary

In this chapter, sEMG features are investigated from both perspectives of extraction and
selection. Better exploitation of existing feature candidates is achieved through merging the
features and taking advantages of both the consistency of non-handcrafted feature distribution
across multiple days and the priori knowledge driven distinguishability of handcrafted
features. Specifically, in this chapter, the human knowledge based handcrafted feature
extraction is utilising the famous Hudgins’ TDAR features while the non-handcrafted features
are shaped by the automatically learned features in the feature layer of the CNN prior to
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Fig. 4.17 Enumeration of selected feature types for a single subject from 10 subsets

the output layer. And a simple concatenation is performed to combine the TDAR and CNN
features into single feature vectors and then the dimensional reduction is conducted on the
resulted vectors. The combination of TDAR features and CNN features contributes to an
improved inter-day hand motion recognition accuracy with either CNN or conventional
classifiers like LDA and SVM. A novel multi-threshold based feature extraction strategy
funcionting on the current TD features is also proposed to enrich the feature candidates,
whose feasibility has been verified in inter-day experiments. The BMA is adopted for feature
selection for its capability of simultaneous global and local search. In the case of sEMG based
hand motion recognition, the region for local search is constrained by channel and feature
relation. Thus the optimisation will be guided by implicit physiological information instead
of a fully random exhaustion. The proposed feature selection is targeting at computational
cost reduction and recognition accuracy improvement respectively. A comparable recognition
accuracy is achieved with various TDAR feature subsets of which the feature vector length is
less than a quarter of the original full set. The idea of combining TDAR features extracted
with multi-length windowed sub-segments leads to an improved inter-day hand motion
recognition by acquiring more information from the same segment. It is worth noting that
a limited number of sEMG feature attributes like channel, feature type and window length
are concerned in this thesis, yet to be enriched in later applications. Both proposed feature
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selection and extraction methods can be applied to further enhance the existing approaches
in long-term use.





Chapter 5

EMG Driven Multimodal Fusion Based
Sensing and Analysis

Given the fact that sEMG hardly detects the deep muscle activity, related dexterous finger
movements can not be properly distinguished by solely myoelectric sensing based solutions.
Ultrasound imaging naturally allows the detection of deep muscle activity at a low level
of voluntary contraction [182]. There have been attempts to utilise ultrasound [71] as an
alternative modality for muscle activity sensing in assistive device control. The superior local
information of targeted muscles permits an intuitive, simultaneous and proportional control
of the involved DoFs, as reviewed in Section 2.1. And because of the inherent immunity
to electrical crosstalk and interference, ultrasonic sensing forms a suitable fusion modality
for the integration with current myoelectric sensing. With an emphasis on portability and
the merits of ultrasound sensing, a wearable A-mode ultrasound acquisition device has been
developed in [63]. Despite its significance as a cornerstone work for the wearable ultrasonic
sensing based hand motion recognition, only naive template matching based recognition
algorithms have been applied in the pattern analysis without an explicit feature extraction
strategy. Further development of the recognition algorithms is required together with a proper
sensory fusion scheme for sEMG and ultrasound. This chapter evaluates the feasibility
of ultrasonic sensing based hand motion recognition and fused myoelectric and ultrasonic
sensing based hand motion recognition for an amputee subject as a case study.

5.1 Ultrasonic Sensing Based Hand Motion Recognition

Ultrasound imaging allows the detection of morphological changes caused by muscle and
tendon movement, which are directly related to corresponding motions. The evaluation of
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multimodal sensing fusion relies on the success of the dexterous finger motion recognition
of the incorporated ultrasound sensing. In this thesis, the evaluation of ultrasound sensing
based hand motion recognition is first conducted on the conventional non-portable ultrasound
sensing, and then on the 1-dimensional ultrasound signal captured by the A-mode ultrasound
probes shown in Fig. 5.1 with a frequency at 20 MHz for sampling within each frame
of the spatial resolution penetrating into muscle tissue at 3.86×10−3 cm. A flowchart of
the 1-dimensional ultrasound signal processing adopted in our work is shown in Fig. 5.2.
The ultrasonic echo signals are first preprocessed by multiple steps including time gain
compensation, Gaussian filtering, Hilbert transform and log compression. The preprocessing
aims to remove the noise and provide the analytic representation of the morphological
changes during muscle contraction based on ultrasonic sensing. The preprocessed ultrasound
signals are subsequently segmented with disjoint windows at a length of 15 samples. The
features are then extracted by concatenating the two linear fitting coefficients (LFC) of the
waveform within each segment. Thus for each frame, a total of 392 features are extracted
from the 4 channels with 49 pairs of LFC1 and LFC2 coefficients for each channel. The LFC
features reflect the approximation of the ultrasonic waveform and morphological changes
during muscle contraction, which is solely determined by the hand motions and exerted
forces. A more intuitive understanding of an A-model ultrasound sample frame and the
corresponding signal processing is illustrated in Fig. 5.3. And the feature vectors are finally
fed to the classifiers for hand motion recognition.

The feasibility study of intra-session recognition on wearable ultrasonic sensing based
hand motion recognition has been first conducted in our preliminary work in comparison
with the sEMG sensing based solutions. The comparison is carried out among 8 able-bodied
subjects with 14 different finger motions using ultrasound and sEMG respectively. The
results in Fig. 5.4 indicate that the ultrasonic sensing provides a better consistency of hand
motion patterns in intra-session scenarios than the myoelectric sensing among all the involved
subjects. It reflects that the pattern of ultrasound signal within a trial under no probe shift is
consistent, which is attributed to the consistent muscular deformation. On the contrary, intrin-
sic randomness resides in sEMG signals, and the feature extraction with priori knowledge is
normally considered as a practical tool to alleviate the interference of randomness. Besides,
the force variation exists to a large extent when subjects try to maintain the same motion in
the signal capturing process. The morphological changes of muscles viewed by ultrasonic
sensing is more related to the posture of each joint rather than the isometric contraction force.
As a result, ultrasound sensing contributes to a promising recognition result under various
force exertion, which intuitively complies with the recognition under varying finger force in
[92].
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Fig. 5.1 Distribution of adopted A-mode ultrasound detection probes over forearm muscles

However, it is worth noting that the shift of ultrasound detection probe is not considered
in the comparison while the shift between the ultrasound probe and the targeted skin surface
significantly degrades the performance of the hand motion recognition. The degradation
is mainly attributed to the nature of A-mode ultrasound that the detection is limited to a
single dot of the muscle. A slight shift of the probe would lead to the extraction of muscular
deformation of a totally different set of muscle fibres. Though electrode shift remains a
hindrance for myoelectric sensing as well, it suffers less as shown in the comparison depicted
in Fig. 5.5. The intra-session test is conducted on the data captured within a session where no
donning/doffing of the wearable sensing device occurs and only inappreciable limb movement
happens. In the intra-session test, the ultrasound based solution achieves approximately fully
accurate recognition of the hand motions while a significantly inferior performance is seen
for the sEMG based solution. The inter-session tests incorporate the factor of donning/doffing
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Fig. 5.2 Flowchart of preprocessing and feature extraction of the A-mode ultrasound signal

between two groups of trials including the training and testing sets. An opposite result is seen
that the performance of ultrasound based solution deteriorates by a large extent of more than
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60%, worse than the sEMG based one. This phenomenon is mainly because of the intrinsic
property of sEMG as the electrical manifestation comprising the weighted contributions
mainly from a group of superficial muscles covering a large area, which is less affected by
the shift of detection sites in comparison with the single dot targeted A-mode ultrasound. A
specific case that can explain the mentioned phenomenon is the motion of hand rest. During
hand rest, sEMG signals captured from all channels remain approximately zero magnitude
regardless of the electrode shift. On the contrary, the difference of morphological changes is
less obvious when compared to the myoelectric patterns.
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Fig. 5.5 Comparison of intra-session and inter-session recognition reflecting the performance
under shift of detection sites

Besides the solely recognition accuracy based offline evaluation, the online performance
is also investigated with 4 commonly adopted metrics in EMG sensing based online per-
formance evaluation including motion selection time, motion completion time, motion
completion rate and real-time accuracy as referred to in Table 5.1. Motion selection time is
the description of recognition system responsiveness reflected by time interval between the
motion onset and the first right prediction of the target motion. The selection time of 6 out of
8 subjects remains lower than 300 ms while that for the other 2 subjects merely exceeds 300
ms indicating that the delay caused by motion recognition is not perceivable to users, which
is crucial in an intuitive prosthetic control. Completion time is the descriptor of recognition
system stability reflected by the total time consumption for 10 times correct recognition of
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Table 5.1 Online performance evaluation of ultrasound based hand motion recognition

Metrics S1 S2 S3 S4 S5 S6 S7 S8
Selection Time (s) 0.246 0.170 0.214 0.317 0.245 0.273 0.165 0.31

Completion Time (s) 1.233 1.087 1.286 1.407 1.243 1.240 1.097 1.256
Completion Rate 0.933 0.983 0.933 0.867 1 0.983 1 0.933

Accuracy 0.899 0.984 0.900 0.856 0.894 0.927 0.987 0.926

the current motion type. A completion rate measures the usability of the recognition system
and is defined as the rate of completed motions within 5 seconds, where a completion is
regarded as 10 correct predictions of the same motion in 5 seconds. The real-time recognition
accuracy is defined as the average classification accuracy from the first correct prediction
to the end of the motion conduction. It can be seen that the online performance evaluation
results are promising and consistent across the subjects involved, which in turn supports the
clinical usability of the ultrasonic sensing based hand motion recognition.

5.2 Multimodal Sensing Based Hand Motion Recognition

As stated in the Section 2.1.2, the fusion of sensing modalities is generally categorised
into two approaches. One is the hierarchical approach utilising a dual-stage or multi-stage
scheme, which first identifies the predefined hierarchy or indices using one single modality,
and then recognises targeted hand motions through analysis of the rest modalities. The other
approach simply extends the feature vectors of the original modality with additional features
of the fused ones. Regarding our application of myoelectric and ultrasonic fusion, the pattern
recognition based approach with merged features is utilised to exploit both the consistent
patterns of ultrasound based morphological deformation from a unique dot of muscles and
the robust detection of EMG over a covered area of muscle groups. The simplified fusion
scheme that concatenate the features of both myoelectric and ultrasonic signals together is
proved successful.

A customised multimodal detection site of 3 sEMG electrodes and 1 ultrasound probe
shown in Fig. 5.6 is adopted in the proposed research. A case study of an amputated
subject is specifically given here with 4 detection sites equipped to verify the feasibility of
myoelectric and ultrasonic sensing fusion based hand motion recognition. Both myoelectric
and ultrasonic features including TDAR and LFC features are extracted and concatenated
to form the feature vector for classification for the multimodal fusion test while the single
modality test is conducted under the LDA + TDAR and LDA + LFC respectively. Two
different training strategies are followed to examine the suitable scenarios for fused sensing
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based hand motion recognition. One of them is the leave-one-trial-out test, where all but one
unseen trials are used for the training of the classifier while the unseen trial is left for testing.
The leave-one-trial-out test is to examine the feasibility of the fusion scheme in application of
totally unseen data caused by observable shift of detection sites. The recognition of unseen
trials is a compromised evaluation of the inter-day recognition performance because of the
limited involvement of the amputated subject in 1 day. The other one is the cross-validation
based pooled training test, where samples of all the trials are grouped together and a randomly
selected fold of the samples are used for training while the rest are for testing. A 10-fold
validation and a 5-fold validation are both adopted with 10% and 20% of the data for testing
respectively, and each of them is repeated for 10 times.

The recognition results of the multimodal sensing based and unimodal sensing based
hand motion recognition on the amputee subject are shown in Fig. 5.7. It can be seen
that the ultrasound based sensing exerts an inferior performance to EMG based sensing for
recognition of the unseen data with shifted detection placement. When the shift of detection
sites can be ignored, the ultrasound based sensing significantly improves the recognition
accuracy in both unimodal and fused sensing schemes. A steady improvement is observed for
the fusion based sensing than the unimodal ultrasound sensing, which suggests that the TDAR
features of EMG signals could always provide complementary information to the ultrasonic
manifestation. In other words, it is suggested that the ultrasound is used in combination with
the EMG. Though we see that the fusion based sensing shows a slightly lower recognition
accuracy than the unimodal EMG sensing for unseen scenarios, the deviation of the fused
sensing based recognition accuracy indicates that the degradation varies among different
trials. Thus it is essential to further enlarge the dataset to reach a more concrete conclusion.
Above all, the myoelectric and ultrasonic fusion based sensing is strongly favoured by the
pooled training strategy, which in turn forms the requirement of either the adequate user
re-training or a better fixation of the detection sites.

Detailed confusion matrices regarding individual motion types for the unimodal myoelec-
tric sensing, the unimodal ultrasonic sensing and the multimodal myoelectric and ultrasonic
sensing based hand motion recognition results are given in Fig. 5.8, 5.9 and 5.10. It can
be seen that the sEMG based recognition of M4 (Index Finger Point, seen in Fig. 3.2) is
significantly worse than other motions. Pointing the index finger is naturally related to the
extensor indicis that lies in the deep layer of forearm muscles. Due to the insufficient detec-
tion of deep muscle activity by sEMG, the unimodal recognition fails to reach comparable
results as other motions. Another finding is that the combined sEMG and ultrasound steadily
contributes to an improved recognition of all the individual motion types, which means the
two modalities adopted are mutually complementary. Thus the fusion based sensing scheme
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Fig. 5.6 Distribution of fused myoelectric and ultrasonic sensors over the residual limb
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Fig. 5.7 Comparison of multimodal sensing based and unimodal sensing based hand motion
recognition on an amputee subject

is favourably supported by the case study on our targeted limb-impaired group of users.
Despite the promising overall recognition accuracy of unimodal ultrasonic sensing and fusion
based sensing, it is worth noting that an obvious misclassification between M3 and M6 (Hand
Closed and Wrist Flexion in Fig. 3.2) can be seen in both their confusion matrices. The two
motions are quite different in the force exertion yet similar in a moving direction and the
observable morphology. And the subject who has lost his own hand motor function for years
will find the two motions similar in performing the imaginary movement of his phantom
limb. It is intuitive that the finger gripping remains the medium for both motions following
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the visual hint in Fig. 3.2. The amputee subject suffers from the loss of both wrist and hand,
which in turn prevents his proprioception to continuously make an explicitly different control
of muscles when a similar avenue of muscle contraction should be reached.

Pooled training confusion matrix of EMG based motion recognition
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Fig. 5.8 Confusion matrix of EMG based hand motion recognition for an amputee subject
using pooled training

5.3 Summary

In this chapter, the feasibility of wearable ultrasonic sensing based hand motion recognition as
both single modality and part of multimodal fusion is explored respectively with a customised
A-mode ultrasound capturing device. The ultrasonic sensing system is first introduced with
corresponding signal preprocessing and feature extraction strategies. Both offline recognition
accuracy and online performance metrics like motion selection time are used for its usability
evaluation. The offline recognition accuracy describes the distinguishability of the adopted
method on segmented stationary sEMG signals, which reflects the accurate recognition of
individual action. The online metrics illustrate the accurate execution of activities instead of a
single action and emphasise the time consumption of completion of certain tasks. The offline
and online metrics demonstrate the effectiveness of the proposed sensing method in different
scales. The significant improvement of intra-session motion recognition accuracy by using
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Pooled training confusion matrix of US based motion recognition
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Fig. 5.9 Confusion matrix of ultrasound based hand motion recognition for an amputee
subject using pooled training

ultrasound instead of sEMG is verified under the constraint without donning/doffing induced
probe shift. And the drawback of wearable ultrasound is identified as the extreme sensitivity
to probe shift in comparison with the sEMG based solutions. Following the verification of
ultrasound’s capability in dexterous hand motion recognition across able-bodied subjects,
the ultrasonic sensing modality is further incorporated into the current singly myoelectric
modality based muscle activity sensing and hand motion recognition. A pattern recognition
framework is proposed to facilitate the multimodal sensing based solution. And the merits of
myoelectric and ultrasonic fusion based hand motion recognition are validated with a case
study on an amputated subject. The utilisation of both ultrasonic and myoelectric strengths
including the detection of deep muscle activity, muscular morphological pattern consistency,
robust electrical manifestation baseline under various changes contributes to the promising
feasibility of sEMG driven hand motion recognition with only 4 incorporated electrode
detection sites.
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Pooled training confusion matrix of FUSION based motion recognition
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Fig. 5.10 Confusion matrix of myoelectric and ultrasonic fusion based hand motion recogni-
tion for an amputee subject using pooled training



Chapter 6

Long-term sEMG Database Building and
Benchmark Evaluation

The research community of sEMG based hand motion recognition has seen a trending interest
in benchmark building in recent years. Some well accepted dataset including Ninapro [155],
CSL-HDEMG [156] and CapgMyo [149] have been published and made publicly available.
However, despite the fact that Ninapro remains the most successful public dataset, it is not
suitable for inter-day hand motion recognition in long-term use due to its inherent drawback
that the database only consists of data captured in 1 single day for all the subjects involved.
Similarly, the data are captured for only 5 days and 2 days respectively in CSL-HDEMG and
CapgMyo, which reflect limited inter-day variation of sEMG signals in long-term use and
lack the flexibility in the division of training and testing sets. Besides, the two datasets are
solely made up of high-density sEMG signals while most commercial prosthetic devices are
equipped with a low-density sEMG sensing module. Thus, it is timely and essential to build
a suitable low-density sEMG database targeted for the evaluation of inter-day hand motion
recognition algorithms in long-term use.

Irrespective of the long-term property within the adopted local data for verification of our
proposed approaches in previous chapters, a publicly available self-contained benchmark
requires the improvement in several aspects. The size of recruited subjects, the days accounted
for a prolonged usage and the sufficiency of inexperienced user training protocol are potential
for further improvement. This chapter aims to build a benchmark with the locally captured
low-density sEMG data of hand motions across multiple days. The benchmark is proposed
for the evaluation of sEMG based hand motion recognition algorithms in long-term use.
In this chapter, the data acquisition paradigm is first described in details to provide an
insight into the long-term settings. Specifically, the 16-channel sEMG data are captured
from 10 subjects performing 13 hand motions in consecutive 10 days. Then the classic
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pattern recognition and deep learning methods are applied for the preliminary analysis of
the database, which form the potential baselines in terms of the hand motion recognition
accuracy. The existing problems for long-term hand motion recognition are reflected by the
benchmark and identified in alignment with priori knowledge in related publications.

6.1 Database Description

6.1.1 Acquisition Setup

A customised 16-channel sEMG capturing system as seen in Fig. 6.1 [22] is adopted for
the forearm sEMG acquisition, with its detailed configuration given in Table 6.1. The 16
bi-polar electrodes are formed by sharing each electrode with two neighbouring channels,
and embedded in a stretchable sleeve to cover both the anterior and posterior compartments
of forearm muscles with an optimised zig layout. The acquisition system is equipped with
a sampling frequency of 1000 Hz, a gain of 3000 and an ADC resolution of 12 bits. The
captured sEMG signals are bandpass filtered between 20 Hz and 500 Hz by a Butterworth
filter and separated from the power line noise with a notch filter. Another empty sleeve is
used to cover the electrode sleeve to ensure a firm contact between the electrodes and the
skin surface to alleviate movement artefacts. The digitalised sEMG signals are transmitted
to a personal computer via USB connection for data recording and processing. A graphical
user interface is designed to display the motion hints and corresponding 16-channel filtered
sEMG signals.

Table 6.1 Configuration of sEMG acquisition setup

Property Configuration
Channel 16 bi-polar electrodes

Electrode layout Zig layout
Lower cutoff frequency 20 Hz
Upper cutoff frequency 500 Hz

Sampling rate 1000 Hz
Amplification gain 3000



6.1 Database Description 109

(e) Electrode sleeve (d) Data acquisition scenario (c) sEMG device 

(b) 13 Hand gestures (a) Software GUI 

HR HO HC

WF WE WP WS UF RF

FP KP SG CG

Fig. 6.1 The sEMG capturing system for database building

6.1.2 Experimental Protocol

Hand Motion Candidates

A total of 13 hand motion candidates are included in this database, comprising 3 basic palm
movements of hand rest (HR), hand open (HO) and hand close (HC), 4 wrist movements
of wrist flexion (WF), wrist extension (WE), ulnar flexion (UF) and radial flexion (RF), 2
forearm movements of pronation (PR) and supination (SU), and 4 basic grasp types of fine
pinch (FP), key pinch (KP), spherical grasp (SG) and cylindrical grasp (CG), as depicted in
Fig. 6.1. In comparison with the 9 motions in local data adopted in Fig. 3.2, 2 novel grasps
of CG and SG and 2 wrist movements of UF and RF are incorporated.

Participants

A total of 10 able-bodied subjects (2 females and 8 males, ranging in age from 22 to 35 years)
are recruited in the database building. The subjects are all with intact limb motor function
and do no suffer from any neurological or muscular disorders. The subjects are all unfamiliar
with the prosthetic control and sEMG based hand motion recognition. The data acquisition is
approved by the ethics committee of University of Portsmouth with written informed consent
obtained from all subjects.
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User Training

The user training protocol proposed in our previous work is adopted to improve the consis-
tency of sEMG patterns from users’ voluntary hand motions prior to their participation in
the on-site database building. It has been proved that the clustering-feedback user training
interface shown in Fig. 6.2 contributes to a consistent online performance. The user training
protocol encourages the subjects to adjust their muscle contraction and force control in each
intra-day trial, which removes the adverse artefacts of voluntary contraction and confines the
variation of sEMG signals to inter-day physiological changes.

Fig. 6.2 Clustering-feedback user training interface

On-site Data Capturing

Prior to the on-site data capturing, the subjects are informed of a detailed participant infor-
mation sheet and a demonstration to familiarise themselves with the experiment steps. The
forearm skin of the subjects is cleansed before they wear the electrodes, following the routine
in related studies [183]. Then the subjects are asked to wear the electrode embedded sleeve
with a rough reference that the two ground electrodes are placed on the ventral side of the
forearm and the sleeve is pulled right above the elbow. During the signal capturing stage, the
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subjects are seated in a relaxed position with their forearms rest on the desk. The subjects are
asked to follow the visual hints displayed on the monitor to conduct the hand motions out of
the 13 candidates in a random order. For each day, 4 sessions are conducted to represent the
intra-day scenario. Within each session, every motion candidate is conducted and maintained
for 10 seconds with a relatively steady muscle contraction. A transition period of 5 seconds
between two adjacent motions and a rest of 10 minutes between two adjacent sessions are
arranged. The everyday donning/doffing, which leads to electrode shift, is considered not
only in the inter-day sessions but also the intra-day sessions, where a donning/doffing of the
sleeve is arranged each day between the two halves of all sessions. The sEMG capturing are
repeated with the same steps in consecutive 10 days.

6.2 Benchmark Evaluation

As reflected in previous chapters, the long-term hand motion recognition accuracy heavily
depends on the choice of combined classifiers and features. Both LDA + TDAR and
CNN are adopted to produce the baseline of inter-day recognition in long-term use for
future research. And the inter-subject performance baseline is achieved by utilising both
CNN and CNN + TDAR despite the further improved performance shown by CNN +
TDAR because of the diverse handcrafted features which are not incorporated yet. The
evaluation is based on the training of 7 days’ data while the rest days are left for testing.
An average recognition accuracy of 13 hand motions across subjects and trials are seen
in Table 6.2. The comparison is conducted on the handcrafted feature and conventional
pattern recognition based classification, singly non-handcrafted feature and deep learning
approach based classification and the merged handcrafted and non-handcrafted features and
deep learning based classification. Here only the recognition accuracy is considered for
comparison without the focus on computational cost. It is because that the offline training
burden for classifiers and computers is less critical when compared to the user training
burden or the high-precision performance. The results coincide with our conclusion reached
in previous chapters indicating a favourable support towards the utilisation of CNN classifiers
and combined handcrafted TDAR and non-handcrafted CNN features. And the results of
a further evaluation based on CNN and CNN + TDAR are shown in Table 6.4 and 6.5. It
is noticeable that individual differences exist and are reflected by the average recognition
accuracy. A varying accuracy from 60% to 90% is seen on different subjects while most of
them exert a similar recognition accuracy around 85%. It is worth noting that the subjects are
inexperienced with the prosthetic control though provided with a quick user training phase to
improve their consistency of muscle contraction as introduced in the previous section. Thus
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the physiological difference such as the muscle contraction control plays another important
role in the diversity of performance besides the development of pattern recognition schemes,
which in turn validates the significance of a user training protocol allowing a more consistent
sEMG pattern exertion.

Table 6.2 Average recognition accuracy of the benchmark across subjects and trials

Classification Approaches LDA+TDAR CNN CNN+TDAR
Accuracy % 77.84 81.43 82.80

Table 6.3 Benchmark evaluation with LDA+TDAR

No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Accuracy 79.78 79.66 80.70 82.65 85.38 63.38 60.15 81.07 85.73 79.93

Table 6.4 Benchmark evaluation with CNN

No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

R1 85.75 82.86 83.81 85.19 87.57 68.86 64.00 78.43 91.43 86.06
R2 83.72 84.40 84.29 87.30 87.19 69.38 64.71 76.69 92.72 86.80
R3 84.50 84.26 83.91 84.02 87.56 70.35 64.11 77.18 92.08 84.55
R4 84.95 83.24 85.45 84.15 86.86 69.33 64.26 79.90 91.33 88.28
R5 84.10 83.04 85.33 83.87 86.32 70.46 62.88 76.63 90.16 86.68
R6 84.61 83.10 84.77 86.91 87.11 69.83 67.73 77.74 88.86 84.88
R7 83.77 84.08 83.52 84.45 87.51 68.72 63.76 78.34 91.75 87.02
R8 84.75 83.50 84.62 83.74 87.79 68.71 65.13 79.21 91.68 85.66
R9 85.70 83.44 83.42 83.29 87.07 66.27 65.65 78.08 91.30 86.57

R10 84.04 83.75 85.07 85.38 87.28 70.21 64.34 78.04 92.31 87.19

Mean 84.59 83.57 84.42 84.83 87.23 69.21 64.66 78.02 91.36 86.37
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Table 6.5 Benchmark evaluation with CNN+TDAR

No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

R1 86.08 83.83 85.00 85.41 87.81 69.90 67.29 81.23 91.14 87.44
R2 86.17 84.46 86.36 86.34 86.83 71.24 68.04 79.35 91.48 87.26
R3 86.29 84.14 85.72 85.28 86.71 70.07 66.64 81.05 90.37 88.23
R4 86.61 85.10 85.69 85.39 86.82 71.80 67.28 81.68 92.01 87.53
R5 85.85 83.93 85.59 87.84 87.01 71.82 66.28 80.23 91.91 87.92
R6 87.14 85.00 85.87 85.57 87.15 70.78 68.46 81.28 93.14 87.14
R7 86.35 84.46 84.77 87.04 87.35 71.35 65.68 81.68 91.17 86.94
R8 86.77 83.73 85.71 85.49 86.95 71.30 67.83 81.05 91.32 86.99
R9 86.02 84.07 85.35 87.54 87.54 70.00 67.41 80.52 91.92 88.09

R10 86.60 83.50 84.99 88.20 87.18 70.50 67.43 82.14 92.14 87.47

Mean 86.39 84.22 85.51 86.41 87.14 70.88 67.23 81.02 91.66 87.50





Chapter 7

Conclusions and Future Work

7.1 Summary and Contributions

This thesis focuses on the research of sEMG driven hand motion recognition in long-term
use with an emphasis on the pattern recognition based solutions. Existing challenges that
reside in the pattern recognition approaches lacking robustness to inter-day changes and
the inherent limitations of noninvasive unimodal myoelectric sensing are addressed by the
development of long-term hand motion recognition targeted pattern recognition methods,
multimodal fusion sensing and the benchmark building for evaluation.

First, both conventional pattern recognition and deep learning approaches are developed
to accommodate the long-term use. Here the conventional pattern recognition algorithms
are categorised as the classification methods where classifier training and feature extraction
are conducted separately while the deep learning methods perform both simultaneously.
Specifically, the discriminant analysis in combination with TDAR feature extraction and
the convolutional neural networks with concatenated raw EMG input are adopted. Subclass
division based discriminant analysis methods including KNN-LDA and SDA and a simple
yet efficient deep learning architecture of CNN fitting our low-density sEMG acquisition
are proposed and adopted respectively in our research, with an improved long-term hand
motion recognition performance facilitating various inter-day and inter-subject constraints.
Specifically, the discriminant analysis models are proposed to accommodate the training
with inadequate data while the CNN based approach deals with the scenario where adequate
training of multiple days across subjects is available.

And the importance of features is reflected in our development of feature extraction
and selection. The feasibility of merging handcrafted TDAR features and non-handcrafted
CNN features is validated in the long-term recognition where each evaluation is conducted
on distinct inter-day scenarios out of 10 days’ data capturing. A multiple threshold based
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feature extraction induced TDARM features are further proposed as the incorporation of finer
categorisation of EMG changes to existing TDAR features. Specifically, the TD features
of zero crossings and slope sign changes are determined by the threshold where different
thresholds provide multiple reflections of the sEMG changes. The BMA based feature
selection achieves respectively a compromised yet comparable recognition at a reduced
computational cost and an improved recognition accuracy by selection of sub-segments of
multiple lengths within each segment. More concretely, the drop of recognition accuracy is
within 1% when compared to the reduction of 3/4 of the total feature dimension, which leads
to a quarter of the original time consumption of feature extraction.

And the multimodal sensing scheme is adopted by merging the myoelectric and ultrasonic
signals to overcome the limitations of unimodal sEMG based sensing such as the lack of deep
muscle activity sensing for certain finger movement recognition, and the misclassification
between certain motions due to its inherent randomness. Besides, the sensitivity of wearable
ultrasound to probe shift is mitigated by the sEMG signals at the same time. The mutual
complement between myoelectric and ultrasonic signals favours the integration of both
modalities in forming an sEMG driven solution reflected by an improved recognition accuracy
using both morphological and bio-electrical information during muscle contraction.

Finally, the limitations in both public benchmarks and our existing dataset are addressed
by building a dataset captured under a standard protocol with low-density electrode distribu-
tion in comparison to the publicly available ones comprising the long-term sEMG signals
captured from 10 subjects of 13 hand motions in consecutive 10 days. Detailed data ac-
quisition protocols and the recognition baseline based on both LDA + TDAR and CNN is
provided to form a self-contained benchmark to the research community.

7.2 Future Work

The directions for future work are pointed in this section.
Evaluation benchmark for sEMG based long-term hand motion recognition has been

established in this thesis and will be publicly available. However, due to the nature of pros-
thetic control as a clinical application, the controlled experiments in a lab environment do not
effectively reflect the real-life scenarios, where dynamic change of sEMG signal is excluded.
And currently the subjects are seated at a comfortable position without moving their forearms
freely, and arranged purposely with the rest period to avoid muscle fatigue. The future work
of building the benchmark for both training and evaluation will start with including amputees
and real-scenario usability despite the individual difference of amputation degree. Thus all
the subsequent data acquisition will be conducted under varying conditions such as allowing



7.2 Future Work 117

free moves of the residual limb, experiencing diverse physiological factors, and physical
artefacts interference. First a large amount of able-bodied subjects will be recruited for the
generalisation of the common knowledge of sEMG signals. And to further progress the
clinical robustness of prosthetic hand control, amputee subjects will be employed to address
the variant degree of amputation with corresponding sensing configurations. Meanwhile, the
standardisation of the data acquisition and experiment setup will be collaboratively proposed
to build a transferable paradigm for the research community.

Pattern recognition frameworks for hand motion recognition have been developed with
an emphasis on the long-term use in this thesis. The promising results achieved by the CNN
based hand motion recognition allow us to reveal the hidden and consistent patterns of sEMG
signals exerted from forearm muscle contraction. Particularly, the full exploitation of the
deep learning approaches heavily depends on the adequate or even redundant training data.
It is anticipated that more data will be captured under a standardised protocol with the same
configuration, similar to the ImageNet in the computer vision community. In that case, more
sophisticated architectures could be utilised instead of the simple one used in this thesis.
Training a more complex neural network tends to be computationally expensive and requires
large amount of data for training. Thus the application of further developed deep learning
architectures on hand motion recognition and the establishment of a standarised protocol for
sEMG sample acquisition of predefined motion template will shape a major research task for
in the future.

Handcrafted features extraction and selection have been investigated, and the combined
TDAR and CNN features contribute to an improved hand motion recognition result. Re-
gardless of the improvement, the incorporated handcrafted features are confined within the
8-dimensional TDAR extraction, compared to the large pool of feature candidates proposed
so far [34]. We will focus on the utilisation of selected feature subset to enhance the combi-
nation of both handcrafted and non-handcrafted features. A more efficient feature selection
algorithm will be looked into and applied in the enlarged set of features, concerning the
scenarios under variant arm positions, exerted forces and various levels of muscle fatigue
simultaneously. A novel dataset including such variation under well thought out constraints
is essential in our future work, which also aligns with the aforementioned need of dataset
establishment.

Multimodal sensing based hand motion recognition by addressing both myoelectric and
ultrasonic modalities has been proposed in this thesis. Despite the plausible dexterous hand
and finer motion recognition accuracy, it remains a critical problem to enhance the robustness
of signal capturing with the development of numerous sensing techniques. First, our future
work will aim at the configuration optimisation of the myoelectric and ultrasonic sensing
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fusion in terms of the detection site distribution, which leads to the acquisition of more
informative physiological signals. Then the inevitable shift of detecting electrodes or probes
should be remedied with the well designed fixation of sensors or compensation schemes.
What’s more, other noninvasive and non-electric modalities such as NIRS [62], IMU [80]
and FSR [66] will be further examined, to exploit the unique capability of each modality. For
example, sEMG signals are susceptible to muscle fatigue which can be detected by NIRS,
sensitive to limb positions which can be recognised by IMU, unstable under large voluntary
contraction which can be measure by FSR. In other words, the selection of an optimal sensing
modality combination is another prior concern in the future work.

Implementation in real control system is not addressed in this thesis yet. It is still
a must task to transfer a trained models especially the deep learning one from personal
computers to a mobile or embedded system for real-time myoelectric control. Recent
advancement of system-on-chip solutions for deep learning, such as Jetson [184] and CEVA
[185], has opened the way for an embedded algorithm implementation. What’s more, the
most recent lightweight deep learning architectures of MobileNet [186] and YOLO [187]
would allow the real-time performance with limited computational resources. The future task
is to utilise the development of both hardware and software in deep learning and ascertain
their practicality in a prosthetic control system.

Online adaptation has been proven feasible with the instances of transfer learning [40]
domain adaptation [149] or self-calibration [152] in hand motion recognition, where the
sudden changes of physiological condition and the severe electrode shift are excluded. The
application of adaptive techniques relies on the basic assumption that the sEMG pattern
variation is within an acceptable extent. As a result, an adaptive system suffers most from
sudden and large variation of sEMG signals due to the abrupt changes in internal physiological
mechanisms and external physical conditions. Therefore, it is our future work to incorporate
the sudden changes in an adaptive system to deal with the real scenarios in daily life where
abrupt interferences becomes one of the critical challenges for sEMG based hand motion
recognition.

Closed-loop control has not been successfully realised in the sEMG based prosthetic
control systems so far. It is necessary to bring in a proper sensory feedback module and make
the prosthetic control a closed loop [188], which is not considered in this thesis but remains
to be investigated in the future work. Current sEMG based recognition is an open control
or a pseudo closed-loop control that relies solely on the visual feedback. Though vision is
a natural feedback path, the perception of tactile, pressure, stiffness and temperature over
the residual limbs is more beneficial for a quick response to external variation. Therefore,
it is necessary to incorporate sensory feedbacks to prosthetic hand control and make the
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control process more intuitive for the restoration of motor function. One of the potential way
is to transfer feedback information into the stimulus over skin surface of the residual limbs
by vibrotactile, mechanotactile and electrotactile stimulation as reviewed in [189]. Besides
the sensory development, a further enhancement of the proprioception and engagement is
equally necessary following our previous work of user training in [165].

With the fruition of a reliable sEMG driven hand motion recognition system for long-term
rehabilitation use, the accurate motion intention recognition can also be applied in other fields
of remote robot control, human-computer interaction, physiological condition evaluation and
compliant inspection of labour work.
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[175] Mislav Jordanić, Mónica Rojas-Martínez, Miguel Angel Mañanas, Joan Francesc
Alonso, and Hamid Reza Marateb. A novel spatial feature for the identification of
motor tasks using high-density electromyography. Sensors, 17(7):1597, 2017.

[176] Angkoon Phinyomark, Pornchai Phukpattaranont, and Chusak Limsakul. Feature
reduction and selection for emg signal classification. Expert Systems with Applications,
39(8):7420–7431, 2012.

[177] Ernest Nlandu Kamavuako, Erik Justin Scheme, and Kevin Brian Englehart. Deter-
mination of optimum threshold values for emg time domain features; a multi-dataset
investigation. Journal of neural engineering, 13(4):046011, 2016.

[178] Ali H Al-Timemy, Guido Bugmann, Javier Escudero, and Nicholas Outram. Classi-
fication of finger movements for the dexterous hand prosthesis control with surface
electromyography. IEEE Journal of Biomedical and Health Informatics, 17(3):608–
618, 2013.

[179] Adenike A Adewuyi, Levi J Hargrove, and Todd A Kuiken. Evaluating emg feature
and classifier selection for application to partial-hand prosthesis control. Frontiers in
neurorobotics, 10:15, 2016.

[180] Angkoon Phinyomark, Rami N Khushaba, and Erik Scheme. Feature extraction and
selection for myoelectric control based on wearable emg sensors. Sensors, 18(5):1615,
2018.

[181] János Botzheim, Cristiano Cabrita, László T Kóczy, and AE Ruano. Fuzzy rule
extraction by bacterial memetic algorithms. International Journal of Intelligent
Systems, 24(3):312–339, 2009.

[182] PW Hodges, LHM Pengel, RD Herbert, and SC Gandevia. Measurement of muscle
contraction with ultrasound imaging. Muscle & nerve, 27(6):682–692, 2003.

[183] Heather Daley, Kevin Englehart, Levi Hargrove, and Usha Kuruganti. High den-
sity electromyography data of normally limbed and transradial amputee subjects
for multifunction prosthetic control. Journal of Electromyography and Kinesiology,
22(3):478–484, 2012.

[184] Nvdia. A little genius goes a long way. http://www.nvidia.com/object/
embedded-systems-dev-kits-modules.html, 2017.

[185] CEVA. Ceva-xm6: Fifth-generation computer vision and deep learning embedded
platform. https://www.ceva-dsp.com/product/ceva-xm6/, 2017.

[186] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Inverted residuals and linear bottlenecks: Mobile networks for classification,
detection and segmentation. arXiv preprint arXiv:1801.04381, 2018.

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.ceva-dsp.com/product/ceva-xm6/


References 137

[187] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[188] Claudio Castellini and Patrick van der Smagt. Surface emg in advanced hand prosthet-
ics. Biological cybernetics, 100(1):35–47, 2009.

[189] Kairu Li, Yinfeng Fang, Yu Zhou, and Honghai Liu. Non-invasive stimulation-based
tactile sensation for upper-extremity prosthesis: a review. IEEE Sensors Journal,
17(9):2625–2635, 2017.





Appendix A

Dissemination

Relevant publications for the award of the degree include:
Journal articles:
Fang Y, Hettiarachchi N, Zhou D, Liu H. Multi-modal sensing techniques for interfacing

hand prostheses: a review. IEEE Sensors Journal. 2015 Nov;15(11):6065-76.
Fang Y, Zhou D, Li K, Liu H. Interface prostheses with classifier-feedback based user

training. IEEE Transactions on Biomedical Engineering. 2017 Nov;64(11):2575-83.
Yang X, Sun X, Zhou D, Li Y, Liu H. Towards wearable A-mode ultrasound sensing for

real-time finger motion recognition. IEEE Transactions on Neural Systems and Rehabilitation
Engineering. 2018 Jun;26(6):1199-208.

Huang Y, Yang X, Li Y, Zhou D, Liu H, He K. Ultrasound-based sensing models for
finger motion classification. IEEE Journal of Biomedical and Health Informatics. 2018
Sep;22(5):1395-405.

Book chapters:
Zhou D, Fang Y, Ju Z, Liu H. Multi-length windowed feature selection for surface EMG

based hand motion recognition. InInternational Conference on Intelligent Robotics and
Applications 2018 Aug 9 (pp. 264-274). Springer, Cham.

Conference papers:
Huang W, Chan PP, Zhou D, Fang Y, Liu H, Yeung DS. Multiple classifier system

with sensitivity based dynamic weighting fusion for hand gesture recognition. In Wavelet
Analysis and Pattern Recognition (ICWAPR), 2016 International Conference on 2016 Jul 10
(pp. 31-36). IEEE.

Zhou D, Fang Y, Botzheim J, Kubota N, Liu H. Bacterial memetic algorithm based
feature selection for surface EMG based hand motion recognition in long-term use. In
Computational Intelligence (SSCI), 2016 IEEE Symposium Series on 2016 Dec 6 (pp. 1-7).
IEEE.



140 Dissemination

Li QX, Chan PP, Zhou D, Fang Y, Liu H. Improving robustness against electrode shift
of sEMG based hand gesture recognition using online semi-supervised learning. In 15th
International Conference on Machine Learning and Cybernetics: ICMLC 2016 Jul 10 (Vol.
1, pp. 344-349). IEEE.

Fang Y, Zhou D, Li K, Ju Z, Liu H. A force-driven granular model for EMG based grasp
recognition. InSystems, Man, and Cybernetics (SMC), 2017 IEEE International Conference
on 2017 Oct 5 (pp. 2939-2944). IEEE.



UPR16 – August 2015                                                                      

 
FORM UPR16 
Research Ethics Review Checklist 
 

Please include this completed form as an appendix to your thesis (see the 
Postgraduate Research Student Handbook for more information 
 

 

 

Postgraduate Research Student (PGRS) Information 
 

 

Student ID: 
 

753778 
 

PGRS Name: 
 

 

Dalin Zhou 
 

Department: 
 

 

School of Computing 
 

First Supervisor: 
 

Honghai Liu 
 

Start Date:  
(or progression date for Prof Doc students) 
 

 

1 October 2014 

 

Study Mode and Route: 
 

Part-time 
 

Full-time   

 

 
 

 

 

MPhil  
 

PhD 
 

 

 
 

 
 

 

MD 
 

Professional Doctorate 

 

 
 

 
 

 
 

Title of Thesis: 
 

 

Vision-based Human Activity Analysis  
 
 

 

Thesis Word Count:  
(excluding ancillary data) 
 

 

33571 
 

 
 

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee 
for advice.  Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University, 
academic or professional guidelines in the conduct of your study 

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical 
conduct of this work lies with the researcher(s). 
 

 
 

UKRIO Finished Research Checklist: 
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online 
version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/) 
 
 

a) Have all of your research and findings been reported accurately, honestly and 
within a reasonable time frame? 

 

 

YES 
NO    

 

 
 

 
 

b) Have all contributions to knowledge been acknowledged? 
 

 

YES 
NO    

 

 
 

 
 

c) Have you complied with all agreements relating to intellectual property, publication 
and authorship? 

 

YES 
NO    

 

 
 

 
 

d) Has your research data been retained in a secure and accessible form and will it 
remain so for the required duration?  

 

YES 
NO    

 

 
 

 
 

e) Does your research comply with all legal, ethical, and contractual requirements? 

 

 

YES 
NO    

 

 
 

 

      
 

Candidate Statement: 
 
 

I have considered the ethical dimensions of the above named research project, and have successfully 
obtained the necessary ethical approval(s) 
 
 

Ethical review number(s) from Faculty Ethics Committee (or from 
NRES/SCREC): 
 

 

TECH 2018 - B.L- 03  

 

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of 
questions a) to e), please explain below why this is so: 
 
 

     

 
 
 
 

Signed (PGRS): 
 

 

 
 

 

Date: 31/08/2018 
 


	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Background and Motivation
	1.2 Problems and Challenges
	1.2.1 Pattern Recognition Approaches Lacking Robustness to Inter-day Changes
	1.2.2 Inherent Limitations of Noninvasive Unimodal Myoelectric Sensing

	1.3 Overview of Approaches and Contributions
	1.3.1 Subclass Division Based Discriminant Analysis for Hand Motion Recognition
	1.3.2 Convolutional Neural Network for Low-density sEMG Based Hand Motion Recognition
	1.3.3 Feature Extraction and Selection for Hand Motion
	1.3.4 Myoelectric and Ultrasonic Fusion Based Hand Motion Recognition
	1.3.5 Benchmark for sEMG Based Long-term Hand Motion Recognition

	1.4 Thesis Organisation

	2 Literature Review
	2.1 Muscle Activity Sensing
	2.1.1 Myoelectric Sensing
	2.1.2 Multimodal Sensing

	2.2 Myoelectric Hand Motion Recognition
	2.2.1 Direct Recognition
	2.2.2 Conventional Machine Learning Based Recognition
	2.2.3 Deep Learning Based Recognition
	2.2.4 Evaluation Criteria and Benchmarks
	2.2.5 Limitations

	2.3 Summary

	3 Conventional Pattern Recognition and Deep Learning Based Classification
	3.1 Discriminant Analysis Frameworks for sEMG Based Hand Motion Recognition with Inadequate Training Data
	3.1.1 Unconstrained Subclass Division Based Discriminant Analysis
	3.1.2 Constrained Subclass Division Based Discriminant Analysis
	3.1.3 Implicit Subclass Division Based Discriminant Analysis

	3.2 Convolutional Neural Network for sEMG Based Hand Motion Recognition with Adequate Training Data
	3.2.1 Convolutional Neural Network Architecture
	3.2.2 Low-density sEMG Based Hand Motion Recognition

	3.3 Summary

	4 EMG Feature Extraction and Selection
	4.1 Feature Extraction
	4.1.1 Merging Handcrafted and Non-handcrafted Features
	4.1.2 Multi-threshold Based Time Domain Feature Extraction

	4.2 Feature Selection
	4.2.1 Bacterial Memetic Algorithm for Feature Selection
	4.2.2 Computational Cost Reduction Targeted Feature Selection
	4.2.3 Recognition Accuracy Improvement Targeted Multi-length Windowed Feature Selection

	4.3 Summary

	5 EMG Driven Multimodal Fusion Based Sensing and Analysis
	5.1 Ultrasonic Sensing Based Hand Motion Recognition
	5.2 Multimodal Sensing Based Hand Motion Recognition
	5.3 Summary

	6 Long-term sEMG Database Building and Benchmark Evaluation
	6.1 Database Description
	6.1.1 Acquisition Setup
	6.1.2 Experimental Protocol

	6.2 Benchmark Evaluation

	7 Conclusions and Future Work
	7.1 Summary and Contributions
	7.2 Future Work

	References
	Appendix A Dissemination



