
An Application of Object-Functional
Programming to Defence Modelling

Gareth David Toomey

May 2019

This thesis is submitted in partial fulfilment of
the requirements for the award of the degree of

Doctor of Philosophy of the University of
Portsmouth.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/363921696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Release Conditions

Whilst registered as a candidate for the
above degree, I have not been registered for
any other research award. The results and
conclusions embodied in this thesis are the
work of the named candidate and have not
been submitted for any other academic
award.

Word Count: 37,202

Content includes material subject to © Crown
copyright (2019), Dstl. This material is
licensed under the terms of the Open
Government Licence except where otherwise
stated. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-
government-licence/version/3 or write to the
Information Policy Team, The National
Archives, Kew, London TW9 4DU, or email:
psi@nationalarchives.gsi.gov.uk

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3)
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3)
mailto:psi@nationalarchives.gsi.gov.uk

Acknowledgements

Firstly, I would like to thank my supervisor, Doctor Rich Boakes for his guidance

and support throughout this research.

I would like to thank Rick Ansell, Hannah Higgins, Tim Chapman and all those who

were part of the GAMOV team over the years. Without your efforts, GAMOV would

not have been possible.

I would like to thank Paul Glover, Jon Hardy and Doctor Simon Collander-Brown

for their support and review of this thesis within Dstl.

Lastly, I would like to thank my Mum: Elaine and Dad: Steve, for their unwavering

support throughout; and for pushing me really hard at the end to get this thesis

finished.

 1

Abstract

Analysis of military campaigns through the use of computational models and

simulations, is one of the fundamental methods used within defence Operational

Analysis at the Defence Science and Technology Laboratory. It helps to develop

understanding behind the value of investment so that an agile defence capability can

be built and maintained; in order to face the challenges of an ever-changing world.

However, many of these models have been used and adapted continuously over

decades, resulting in code-bases that have become unmaintainable in the face of

constrained budgets. To address this problem, a number of software modelling

framework, based upon the reuse of code and concepts have been developed.

However, many of these ultimately did not achieve their full potential, because they

merely iterated upon the same software patterns which had been used to produce

models to-date. The most recent attempt however, known as the Generic Aggregator

Model Valuator, was very different in this regard, due to its exploitation of the

emerging Object-Functional design paradigm.

As an emerging design paradigm, Object-Functional is still to be more formally

understood. There is currently a lack of widely accepted design patterns for the

paradigm and explicitly acknowledged examples of its use in projects. This thesis

examines the Object-Functional paradigm in greater detail, by performing a

qualitative evaluation of defence models built using the paradigm compared to extant

models that use other approaches such as Object-Orientation. The evaluation aims to

answer two key questions: what benefits does the exploitation of this paradigm bring

to defence modelling? But also, what challenges? The Generic Aggregator Model

Valuator framework’s implementation of the paradigm is also presented in detail,

illustrating the patterns it uses, standing as an example that can contribute to the

further refinement of this paradigm in the future.

2

2

Table of contents

Abstract 1

List of tables 4

List of figures 5

1 Introduction 1

1.1 Background .. 1

1.2 Statement of the Problem ... 2

1.3 What would solving this problem enable? .. 8

1.4 Enter GAMOV .. 9

1.5 Aims of this research .. 10

2 Literature Review 11

2.1 Chapter Introduction ... 11

2.2 Defence Modelling Framework Development ... 11

2.3 Object-Functional ... 17

3 Research Methodology 30

3.1 Chapter Introduction ... 30

3.2 Approach ... 30

3.3 Choice of Models ... 31

3.4 Evaluation Framework ... 33

3.5 Data Capture .. 37

4 The GAMOV Approach to Object-Functional 39

4.1 Chapter Introduction ... 39

4.2 The GAMOV Framework .. 39

4.3 The GAMOV Layers ... 42

4.4 GAMOV Approach to Model Construction .. 44

4.5 Other GAMOV Subsystems ... 52

4.6 Configuration Management System ... 56

4.7 Chapter Summary .. 58

5 Case Studies of Extant Models 59

5.1 Chapter Introduction ... 59

5.2 Model 1 - Wartime Planning Tool (WPT) .. 60

5.3 Model 2 - Strategic Balance of Investment (StratBOI) Linear Program 62

5.4 Model 3 - Diplomatic and Military Operations in a Non-war fighting Domain

(DIAMOND) ... 65

5.5 Model 4 - C3 Oriented Model of Air and Naval Domains (COMAND) 68

5.6 Model 5 - Aerial Delivery Model (ADM) .. 71

3

3

5.7 Model 6 - Mission Command Model (MCM) .. 74

6 Analysis 76

6.1 Chapter Overview ... 76

6.2 Analysis of the Wartime Planning Tool (WPT) .. 76

6.3 Analysis of the StratBOI Linear Program .. 79

6.4 Analysis of the DIAMOND Campaign Model ... 83

6.5 Analysis of the COMAND campaign model ... 87

6.6 Analysis of the ADM ... 91

6.7 Analysis of the MCM ... 94

6.8 Summary of findings regarding Object-Functional 96

6.9 Chapter Summary .. 100

7 Conclusions 101

7.1 Chapter Summary .. 101

7.2 Overall conclusions in support of the research questions 101

7.3 Other lessons learnt from development .. 104

7.4 Future Plans ... 108

Bibliography 117

List of publications originating from this research 124

List of abbreviations 125

APPENDIX A Ethics Documentation 126

4

4

List of tables

Chapter Number Figure Name Page Number

3 Table [1] – Model

Evaluation Criteria

36-37

5

5

List of figures

Chapter Number Figure Name Page Number

1 Figure [1] - Campaign

Analysis Activities

3

2 Figure [2] – Tank Class
under Object-
Orientation.

19

2 Figure [3] – Tank Class
under Object-
Functional.

22

4 Figure [4] – The
GAMOV Layers

43

4 Figure [5] – Entity
Structure

48

4 Figure [6] – GAMOV

Entity and Mediator

Interactions.

51

4 Figure [7] – GAMOV

Time Management

System

55

6 Figure [8] – ADM

Layout

92

7 Figure [9]: Descriptive

Framework of

Emergence.

112

7 Figure [10]: The

SWEEP Lifecycle

115

 1

1 Introduction

1.1 Background

One of the key objectives of defence Operational Analysis (OA) is the study of

investment. Should we invest resources into acquiring and maintaining this new piece

of equipment? Should we invest manpower into achieving this objective? What are

the implications of investing in this course of action over another one? These are just

some of the questions that are routinely considered by teams of analysts and

modellers working in U.K. defence Science and Technology (S&T). The answers to

these questions have the direct potential to inform the thinking of high-level decision

makers within the Ministry of Defence (MOD). Therefore, providing both timely and

valid advice is a crucial activity within defence science and technology (HM Treasury,

McPherson, 2013).

In the U.K. today, one of the main organisations generating advice from the OA

process is the Defence, Science and Technology Laboratory (Dstl), of which I as the

author am an employee, and who are ultimately the primary customers of this

research. Dstl are described as the “U.Ks. leading Government agency in applying

Science and Technology to the defence and security of the U.K” (Defence, Science &

Technology Laboratory, 2015). Dstl are part of the U.K. MOD and their programme of

work enables them to provide advice on a wide range of S&T fields. This includes

providing specialist advice on specific low-level military systems, all the way up to

high-level OA on defence policy and investment into capability (HM. Treasury,

McPherson, 2013), (HM. Treasury, 2015).

Dstl is broken down into a number of divisions, in order to deliver its S&T programme.

The Defence and Security Analysis (DSA) division, where this research is focussed,

is primarily concerned with High-Level OA (HLOA). Their work looks across all the

military domains and activities, in order to provide evidence to support decision

makers in MOD, so that they can invest in the most appropriate capabilities and

strategies to satisfy current and future defence requirements. As a result, DSA’s work

is both cross-cutting and extremely diverse, requiring the application of a wide variety

of analytical techniques in order to understand the implications of investing in one

approach over another.

 2

However, for all the methods, expertise and resources at its disposal, very often we

have found in our experience that it is the amount of available time that is possibly

the biggest constraint upon the breadth and depth of OA activities that can be

undertaken. OA has to take into consideration, a wide range of military domains1,

fields of research and perspectives when producing its evidence. That evidence is

generated using a variety of methods, ranging from soft analytical processes up to

more hard approaches, such as complex computer-driven simulations. These specific

methods in themselves require the support and expertise from Subject Matters

Experts (SME), such as computer science. Defence, as an enterprise, is also

extremely large, comprised of many associated bodies and flows of information

throughout. All these elements combine to produce a very complex environment to

methodologically engage with. It is an environment, particularly in these austere

times, that is under great pressure to achieve increasingly more with fewer resources.

Therefore, it is important that all those elements that make up the OA process itself

evolve, in order to meet these demands.

1.2 Statement of the Problem

One of the main analytical techniques used in the OA process is campaign analysis.

As part of this activity, representations of scenarios (military campaigns) are

produced within a model (commonly referred to as a campaign model) and analysed

using a combination of soft and hard analytical techniques, encompassing a wide

range of capability and policy perspectives. These scenarios are specifically designed

to provide those conditions that will sufficiently test different areas of investment.

These campaign models are often run in a simulation, which are typically very large

and complex pieces of software in terms of their code-bases, ranging in upwards of

tens of thousands of lines of code. However, current approaches to simulation are ill

suited to responding to the evolving defence landscape. As a result, use of these

models on analysis studies has become a significant time-sink in the overall

analytical process.

1 These domains include the three primary services that comprise the U.K. armed
forces (i.e. the Royal Navy the Army and the Royal Air Force) and all their related
military activities. These are typically referred to in short as Maritime, Land and Air
within the MOD.

 3

At a very high level, the usage of models within the campaign analysis activity can be

viewed as a three-stage process (see Figure 1).

Figure [1] - Campaign Analysis Activities

Modelling refers to the building of a representation of the scenario and the input of

data into the model; including key Verification and Validation activities of the

representation. This quite often involves adaption of the model in terms of either

adding new functionality, or adapting existing ones. Processing is in reference to the

actual length of time it takes to generate outputs from the models. This can vary

depending on the amount of computing power available to the model; however,

historically we have observed that the complexity of the analytical scheme requiring

processing often expands to fill the computing resources provided. Nonetheless, to

facilitate the processing of more complex analytical scheme, this runtime has been

reduced with research investment into High Performance Computing (HPC) and

parallel hardware architectures, although the full potential of such approaches is

currently not being fully utilised. One of our campaign models, known as the C3

Oriented Model of Air and Naval Domains (COMAND) has been enhanced through

lazy parallelism, as outlined by the work undertaking internally by Poulter (2011),

such that for each replication of the model, a separate instance of the model is

generated and assigned to a processing core. There is currently no parallelism

occurring at the individual process level for any of our campaign models, which

means that none of the algorithms are being individually optimised. Finally, the

analysis stage refers to the time remaining to develop understanding of the problem

space from the model, which as stated previously is highly constrained by the prior

activities.

Modelling Processing Analysis

 4

The current range of software-based campaign models available within Dstl are

typically very large in terms of their code-base (in the order of tens-of-thousands of

lines of code) and encompass a vast range of functions in order to build the

representations within the scenarios (Moffat, Campbell & Glover, 2004), (Taylor &

Lane, 2004). These campaign models are also very old, spanning as far back as 20

years of development history. As a result, much of the coding practice and the

understanding contained within the implementation of the functions is reflective of

those timeframes, and in many cases has not been enhanced (or cannot easily be

enhanced) to embrace new and evolving ideas in the field. This has resulted in a

number of significant problems with respect to the continued use of these models,

outlined in subsections 1.2.1 to 1.2.7 as follows:

1.2.1 Long setup times

Collectively as analysts we have observed that building a single representation within

one of these models takes up a significant proportion of the available analysis time.

As outlined within Glover and Toomey (2012), we have estimated internally that this

can be as much as 80% of the total project time over the course of a financial year,

based upon previous analytical studies. This can be as little as a few weeks for a

simple representation, up to many months or more for a large scenario. It should be

noted that this single representation is only a test of one Course of Action (CoA), or

military plan. Given that the purpose of the model is to test the validity of this plan,

any uncovered problems may require both a new plan and a new representation of

that plan to be produced. This may require significant modifications to the initial

representation, incurring additional setup time.

1.2.2 Long processing times

Due to the complexity of the representations that are being processed, the current

suite of campaign models can have a very long run-times, with some campaign

model being recorded as taking an entire weekend to produce one set of outputs.

Additionally, because the code-bases of these models are known to have

implementation problems, they cannot easily scale onto a parallel architecture without

significant re-engineering. As previously stated in Poulter (2011), Dstl has achieved

some success by running individual model replications in parallel, but this is no more

than a brute force effort.

 5

1.2.3 Difficult to adapt

Because the code-bases of these models are based on coding best-practice at the

time of their creation, the underlying code is not as modular compared to more

modern best-practice and contains a great degree of coupling, which is a common

issue for Object-Oriented software as outlined by Ottinger and Langr (2011). As a

result, making changes to the model in order to create new ideas, or change pre-

existing ones, carries a great deal of risk. In fact, some of our campaign models have

now reached a point where small changes would produce significant side-effects

across the model code-base, such that they can no longer be safely adapted.

1.2.4 Black Boxes

Due to the presence of coupling, it has become very difficult to track the interactions

and dependencies between the components of the model. As a result, there are

portions of these models that have become effectively black box functions, a key

issue also highlighted by Salt (2008) review of common issues affecting campaign

level modelling.

1.2.5 Retention of Knowledge

Because many of these software models are not able to exploit more modern

development approaches, and may be dependent on very historic underlying libraries

and frameworks, it has become very difficult to retain the knowledge internally in

order to recode those aspects of the software that can still be safely changed.

1.2.6 Forced Representations:

Most of these models were validated against understanding and assumptions that

held true at the time of their implementation. Compounding this aspect with how

difficult it is to adapt these models, the analyst is often forced to use functionality in

ways in which it was not originally designed, in order to produce the required

representation. To illustrate this with a simple example: if a model does not have the

representation of artillery, the analyst may have to simulate an explosion of the

correct magnitude by other means. This could involve queuing up an airstrike at that

location. However, the analyst may then also have to be mindful about additional

behaviours this workaround could induce into the representation. Whilst the airstrike

is merely substituting for the effect of artillery bombardment, the aircraft could be

 6

engaged by Ground Based Air Defence (GBAD) along the flightpath. Therefore, some

kind of fudge in the data may be required to ensure that this does not happen.

1.2.7 Steep learning curves

The time required in order to learn how to use one of these models can be very long.

For our COMAND model, it can take roughly 1 to 2 years to become a competent

user of the model, but this is heavily dependent on prior experience of the domain(s)

being represented in the model and the complexity of the model in question. This can

also a two-part problem:

1. Learning how to set up scenarios within the model in terms of data (the static

descriptions of the problem).

2. Learning how the model functions, in terms of its features and what it is capable

of representing.

a. Progressively, this has moved further towards learning how the model

does not do something correctly and how to work around those limitations

in order to produce a representation that is valid.

1.2.8 Problem Summary

The compounding effect from all of these problems is that the vast amount of

resources on an analytical study are currently being devoted to setting up the model,

leaving very little time to undertake the necessary analysis. Specifically, within Dstl, it

has been estimated that this equates to approximately 80% of the total study time

and resources (Glover & Toomey, 2012) based upon study leader experience. These

challenges limit the insightfulness of the analytical product that can be generated for

the customers.

Everything listed thus far represents the status quo with respect to the issues

encountered with our currently available suite of campaign models, which have

served us well in the past. However, the types of study that these models were built

for typically used to last for a long time, sometimes spanning multiple years. Studies

today are now much shorter; often lasting no longer than a year, requiring a much

faster turnaround from the analytical process. The landscape of defence is also

evolving, with new and emergent capabilities and threats (for example, Cyber) and a

 7

great deal of uncertainty, as outlined within Moffat, Scales, Taylor and Medhurst

(2011). Representing these new concepts in the current models is extremely difficult,

if not impossible, due to the difficulty in adapting them. Additionally, shrinking budgets

are making it progressively more difficult to continue to maintain these models. As a

result, the current suite of campaign models is progressively becoming more and

more difficult to use.

At present, there is a requirement for a new approach to modelling; one that provides

the necessary agility in order to keep pace with the current demands of the defence

customer base. The approach needs to move away from the status quo, whereby

scenarios are effectively being kludged into the models, towards a more bespoke

problems focussed development method (Pidd, 1996), (Sargent, 2005). Efforts have

been made to address this in the past internally, as outlined by Robinson and Glover

(2006), including the production of the Wargame Infrastructure and Simulation

Environment (WISE), and the Defence & Evaluation Research Agency (DERA),

Reusable Object Modelling and Simulation (DROMAS). However, these frameworks

did not reach their full potential, both in terms of providing the capability and the

underpinning computer science to enable them. As will be explored later in this

thesis, these frameworks iterated upon previous understanding of software

development, rather than overhaul it. This means that they still experienced issues

such as the coupling between components, which for the modellers and analysts

within Dstl, is the key issue to be managed in order to achieve the desired

adaptability. Any solution going forward needed to examine the cutting edge in terms

of software development, in order to improve upon many of the software limitations

listed above and to future proof the solution.

As a result, Dstl’s efforts began to move away from constructing models from the

ground up as it had been doing up to this point and move towards a solution that was

based upon the reusability of ideas (Ansell & Glover, 2008). This would take the form

of another framework, with a plug-and-play style approach to components, the

benefits of which have been examined in detail in works such as Fletcher, Lukman

and Hodson (2005). It was believed that using a framework approach would enable

models to be rapidly constructed for the purposes of the study in question, as

opposed to the status quo whereby representations are being forced into the models.

 8

1.3 What would solving this problem enable?

1.3.1 Improvements to existing methods

By using a framework approach based on the ideas of plug-and-play, from which all

models will be constructed, it was hoped that the following improvements would be

possible:

• Higher Modularity – By making the components of the framework much more

modular it would become easier to add new concepts to a model and adapt pre-

existing ones. The impact of the addition of functionality and changes to pre-

existing functionality will also be easier to verify and validate, provided there is

sufficient transparency of the interfacing between components.

• Model Reuse – Rather than constructing an entirely new model each time a

study makes a request for one; the ideal solution would be to quickly adapt a

pre-existing model for a new purpose, so long as the requirements of the study

are similar enough.

• Improved Maintenance – If all the campaign models are being derived from the

same framework with similar conceptual underpinnings and all of the

components are sufficiently modular, it would become easier to maintain the full

spectrum of models. All models would be written in the same programming

language and share a common architecture, which would ease training and

retention of the understanding behind how the models work. The current range

of campaign models are all fundamentally different in this regard, meaning that

the developer for one model cannot easily transition to supporting another

model without a significant reading in period.

1.3.2 New Opportunities.

In addition to improving the status quo, it was believed that a plug-and-play

framework approach would enable Dstl to further develop its capability and achieve

more from the analytical process, including:

• Providing more time for the analysis – By providing agility to the implementation

of models, it was hoped that the available time to conduct the important

analysis would grow. Currently the available time only allows us to examine a

 9

sub-set of cases, with a lack of confidence that this investment is being targeted

towards the correct areas of interest.

• Sharing of capability – It was believed that a framework approach could evolve

into an environment whereby modelling components can be shared internally

and externally to the organisation. Mechanisms to enable this sharing are

actively being developed, such as the High-Level Architecture (HLA), as

outlined by Dahmann (1997); however, without a consistent modelling

environment that promotes reuse and interoperability between capabilities,

these cannot be easily exploited (Fujimoto, n.d.).

1.4 Enter GAMOV

The resultant framework that was produced to address the issues listed previously

was the Generic Aggregator Model Valuator (GAMOV) (Ansell & Glover, 2008),

(Glover & Toomey, 2012). GAMOV was built to be a modelling framework, containing

within it a set of reusable components, with an associated Application Programming

Interface (API) to enable users to build models from those components. In that sense,

the capability of GAMOV is comparable to a programming framework, such as the

Microsoft .NET framework, albeit with a very defined context and purpose in mind.

The details of GAMOV will be discussed later in chapter 4, and models produced

from the framework shall be evaluated as part of a case study of this thesis.

The key enabler that made GAMOV more adaptable when compared to previous

attempts at building a framework was the approach it adopted for its software

architecture, which was an emerging software design paradigm known as Object-

Functional.

The goal behind GAMOV was to eliminate the coupling experienced in both our

previous models and attempts at developing a framework. As presented in Glover

and Toomey (2012), our proposed solution to this was to separate data from

functions as opposed to encapsulating data and functionality in the same object. We

realised this by having two different categories of object, those that contain data and

those that contain functions, which are characteristic of the Object-Functional

approach as described by Sousa and Ferreira (2012). The key idea was that

functionality within the model would become more service-driven and thus reusable

around the model by multiple object types.

 10

1.5 Aims of this research

The principles behind the Object-Functional paradigm as outlined by Sousa and

Ferreira (2012) is to blend the Object-Oriented and Functional paradigms together in

order produce new families of patterns for organising code, which they hypothesised

to be less prone to the issues that can arise from misusing Object-Orientation

patterns. This thesis shall explore the Object-Functional paradigm in greater detail in

order to illustrate how its exploitation enabled GAMOV to succeed in its aims,

compared to previous models using Object-Orientation alone.

Within this thesis the current state of the art with respect to defence modelling

approaches shall be examined in order to illustrate key characteristics of their

implementation. The state of the art surrounding both the conceptual understanding

of Object-Functional and its implementation shall be examined in order further

illustrate the gaps that this research can contribute to.

The concept of GAMOV and how it implements Object-Functional shall also be

presented, identifying the key patterns used in its structures and how these allow it to

conform to the aims of the wider paradigm. This case-study shall serve as example to

contribute to the very much evolving body of knowledge surrounding this paradigm

and what combinations of software patterns could be used in conjunction with it.

Finally, this research shall evaluate some models produced using the Object-

Functional approach via GAMOV, compared to extant models in Dstl that adopted

more historic approaches such as Object-Orientation. Each model shall be presented

as a case-study and analysed in order to understand how their implementation

choices affect their capability and where Object-Functional has or could contribute

further.

The purpose of this evaluation shall be to answer two key research questions:

• What benefits does the Object-Functional paradigm bring to the development of

defence models?

• What challenges does the Object-Functional paradigm pose for the

development of defence models?

 11

2 Literature Review

2.1 Chapter Introduction

In the introduction to this thesis, the concept of defence modelling and the purpose it

serves in the wider context of delivering analytical products to defence customers

was overviewed. Some of the classical problems empirically observed at Dstl with our

extant bespoke capabilities were also presented and how this has led to the desire to

move towards a framework approach to building our future models. This section shall

now examine key contributions from the literature with respect to the development of

defence model frameworks, in order to establish what the key characteristics of these

are, how their implementation impacts what they deliver and how GAMOV under the

Object-Functional approach may add new insight to this body of knowledge.

Following this the field of Object-Functional shall also be examined in further detail;

specifically, how is it currently characterised? What work has been undertaken to

understand more about it? And what the implementation of such an approach looks

like?

2.2 Defence Modelling Framework Development

In order to improve the agility of the analytical process and to increase the reusability

of both the implementation of models and their conceptual underpinnings, both the

MOD and other defence bodies around the world have been developing solutions in

the form of software modelling frameworks. This section shall review some key

examples of these. For defence, these can range from single defence domains and

research areas, all the way up to campaign level, which pulls together many of these

single domains into one representation. The latter tends to be much more

challenging, because many different domain specifications are being pulled together

within a single representation. This is confirmed by Teo and Szabo (2008, p.103) who

stated that “Component-oriented frameworks exist for particular application domains

but cross-domain component integration or semantic composability remains an open

issue”. To illustrate an example that would be seen in a campaign level model, it may

be common to blend land-based combat modelling supported by air assets, which

may include some air-to-air based engagements. Quite often in the models at Dstl,

the conceptual frameworks for these domains differ enough to make composition

difficult. For example, the land-based combat may be easily abstracted to occur on a

node and arc environment; however, the air assets could be operating in a positional

 12

based, longitude/latitude system. This may then require the incorporation of a

command and control system for each of the two domains, which is planning on the

assumptions of two different environments. This makes analysis of these models very

difficult as outlined by works such Hoffman, Palli and Mihelcic (2011) through the use

of applied semantics. Because the conceptual foundations of each of these domains

have different specifications, the software foundations are forced into operating at

cross-purposes.

Comparatively, frameworks for single domains tend to be much more successful in

producing reusability of their components because they have similar conceptual

foundations. As described by King, Hodson and Peterson (2017, p.4156) “If software

is written to implement a specific conceptual model, there is usually good alignment

between the model being created and the envisioned one”. For example, the

Chemical, Biological and Radiological (CBR), Virtual Battlespace (CBR-VB)

presented by Lloyd, Newton and Perkins (2014) from Dstl, showcases a successful

reuse case of components and models within a single domain, through the use of a

synthetic environment. Their work demonstrated that reusing models within the CBR

domain was easily achievable due to the similarities in requirement and conceptual

underpinnings. However, they did encounter issues when trying to cooperate with

models from the domains of acquisition and advice because of the subtle differences

in their conceptual underpinnings. Whilst they were able to overcome these issues

through code refactoring, this highlights an example of the implementation issue that

can arise when different domains interoperate with one another. Frameworks such as

this have also seen success in collaboration and cooperation with other institutes via

the HLA, as described by Dahmann (1997). The HLA is a “common architecture for

reuse and interoperation of simulations” allowing for components in a model or

simulation to share their data and insights. As per Lloyd, Newton and Perkins (2014),

frameworks such as CBR-VB can plug into the HLA and cooperate with other CBR

based models and simulations, because of the similarities in the conceptual

underpinnings. However, the campaign models representing multitudes of different

domains that are produced in Dstl DSA division, struggle to exploit initiatives such as

the HLA. Depending on the configuration or framework by which these domains are

organised within the software can produce descriptions that are different enough so

as not to be compatible with those in other organisations. However, compounding this

issue further is the overall architecture and code organisations of these models (as

 13

overviewed in chapter 1), making it difficult or near impossible to modify the

conceptual underpinnings to become more compatible. This is where a framework

such as GAMOV, which will be explained in detail in chapter 4 is attempting to

address this. King, Hodson and Peterson (2017) highlight that in many of the

frameworks being developed, not enough consideration is being made to the overall

software architecture of these solutions. GAMOV is an attempt to go to the software

level to leverage the adaptability of both its components and the framework for their

organisation. Exploitation of Object-Functional (as will be examined later), is believed

to provide a loose but explicit coupling between components, which would allow all

functional descriptions of the resultant model to be changed. As a result, it is hoped

that GAMOV models will have a better chance of cross-domain cooperation and

exchange across an architecture such as the HLA, because the conceptual

underpinnings can be leveraged at the algorithmic level and changed. Whereas for

many of our extant campaign models, the conceptual framework is fixed, because the

coupling between model components is preventing significant changes.

At Dstl there have been efforts made by predecessors to the DSA division to develop

modelling frameworks for building campaign level models covering multiple domains.

Examples of these come in the form of WISE and DROMAS (Robinson & Glover,

2006). However, the full potential of these solutions for the development of campaign

level models has not been achieved due to the lack of advances made in computer

science at the time (Glover & Toomey, 2012). Within DROMAS for example,

considerable effort has been made to provide a framework that produces models with

a consistent look-and-feel as well as a comprehensive suite of functionality for

specific problem types (Nesfield, 1998), which in the case of DROMAS is the

representation of peace-support operations. However, this considerably constrains

the range of solutions that can be developed using the framework components. If the

idea of a reusable component framework were analogous to Lego blocks, DROMAS

would be an example of a very specific Lego set, such as car kit. Whilst it may be

possible to change the position of blocks that represent the lights, the direction of

spoiler and the position of the doors, the resultant product is always going to

unmistakably represent a car. DROMAS is an example where the architecture has

been focussed on addressing the non-functional requirements of the resultant model

and not enough focus has been given to understanding the computer science that

enables the underlying interaction of the components. As a result, problems at that

 14

level may have permeated through the rest of the capability and cannot be easily

addressed within practical budgets.

Externally to the U.K MOD, organisations such as the U.S Department of Defence

have developed approaches such as the Advanced Framework for Simulation and

Modelling (AFSIM) as outlined by Clive, Johnson, Moss et al. (2015). AFSIM is a

component-oriented framework that provides reusable model services that are

common across all models, both in terms of construction of the model’s foundational

services (e.g. time management, random number generators etc.) and the entities

that operate within the resultant simulation. The idea here appears to be that a

modeller can reuse many off the shelf components built around well understood

concepts in order to construct a model. Entities within AFSIM appear to be broken

down into component hierarchies, such as the Entity itself (e.g. tank, plane) and the

combination of sensors, weapons and platforms that it is made up of (Clive et al.

2015, p.74). However, whilst the components in a framework such as AFSIM from

their descriptions appear to be malleable through data and the model framework can

be configured by their organisation, there is no indication as to whether the

“functional architecture” (Clive et al. 2015, p.74) allows for the leverage of the

algorithms for replacement or adaptation. In Dstl this has often made the exploitation

of component frameworks difficult for the campaign level problems. As a purely

speculative example, with AFSIM being a U.S endeavour, if it were to have U.S

military doctrinal assumptions built into the components, it would make it difficult for

representing U.K approaches unless these can be changed. This is where

exploitation of a GAMOV approach becomes desirable from Dstl’s perspective,

because these concepts can be changed if they are fundamentally different and can

be further changed as defence policy and doctrine evolves over time. However, this

would come at a cost of training overhead for different communities of user. By

providing an approach that is customisable at the algorithmic level, the modeller, who

will likely be an analyst by trade, may be required to write more code; whereas in a

framework like AFSIM, this appears to be more abstracted from them. Using a

GAMOV type approach based on Object-Functional thus may mean analytical studies

need more diversification in their skill-sets to leverage its full potential.

Another example of a component style framework developed for defence is the Simkit

framework, outlined by Buss (2002). This work makes a similar claim as with Object-

Functional, that the resultant framework has high reuse potential and a loosely

 15

coupled architecture. Simkit achieves this through the use of what is described by

Buss (2002, p.243) as “Listener Event Graph Objects” or the “LEGO component

framework”. The simple description of the methodology behind this is that event

listeners will trigger certain sequences of events or functions when the preconditions

defined by the listener have been met. Compared to GAMOV (described in chapter

4), this appears to be a more event triggered approach, whereas GAMOV is more

scripted in this regard. GAMOV schedules a check to be performed for certain events

on a user defined interval. For example, it will check for instances where a location

has two or more entities of opposing sides within it on a time-step and then trigger the

defined combat algorithm for the simulation. The descriptions of how Simkit works are

framed around nomenclature for discrete event simulations, where there is state and

a state transition, but the notion of what they are trying to achieve is similar to the

characteristics of Object-Functional (as will be described in section 2.3) where there

are components with state and events (functions) are triggered to perform a state

transition. There is evidence here to suggest that there may be some implementation

patterns in the code used in Simkit that could also contribute to Object-Functional that

are not explicitly described in its literature and documentation. However, the

approach to triggering and scheduling calls to functions or methods is different to

GAMOV, which could serve a useful future comparator to the GAMOV pattern for

triggering events in an Object-Functional environment.

Finally, an example of a component framework that is attempting to address the multi

domain problem is the Composable Discrete-Event scalable Simulation (CODES)

presented by Teo and Szabo (2008). CODES is focussed on delivering composability

of its components through the use of semantics Teo and Szabo (2008) cite Petty and

Weisel (2003) two categories of model composition as being either “syntactically” or

“semantically” composable. CODES is focussed on the latter by providing an

ontology and a semantic language to allow components to be described, and for

other components that can exchange under the same semantic structures to be

discovered. This is different to GAMOV, which under this definition would be a

syntactical based approach, where the underlying structures are interfaced with code

for composability rather than semantics. A semantic based approach for GAMOV

could be future stepping stone, however, none of our extant models have any form of

semantic encodings. It would also be difficult to apply semantics to these given the

 16

difficulties in breaking down the underlying code structures, which could limit the

discoverability side of things.

2.2.1 Summary

Upon review of the frameworks examined in this section, there is clear intent by all

the solutions to promote reuse, but the approaches vary in the implementation. Key

characteristics from this survey that make up and differentiate these solutions,

including GAMOV appear to be the how the concepts of entities (actors), components

(the building blocks) and frameworks (the protocols) are applied in the various

solutions.

DROMAS (Robinson & Glover, 2006), (Nesfield, 1998) for example is very much

oriented by its framework, defining very rigidly how its components are composited in

order to produce the resultant model. As a result, there is very little flexibility in how

the resultant actors behave and can be adapted.

AFSIM (Clive et al., 2015) focuses more on components where new entities can be

built from off-the-shelf components. However, the functionality of the entities still very

much appears to encapsulated. However, what appears to separate these from

GAMOV at least in terms of their concepts are the underpinning frameworks of

components versus entities. Taking AFSIM for example (Clive et al., 2015) frames its

simulation around components, and what would be the actors in the simulation (or

entities) are made up of some composition of these components drawn from object

hierarchies. Therefore, a component to form a vehicle for example is some kind of

fusion (or referential linking) to other components that make up the capabilities for

that vehicle, in the form of sensors, weapons etc. Additionally, a component may be

the fusion of one or more algorithms in order to realise an overall capability. GAMOV

(as will be examined in chapter 4) takes a subtly different approach, because the

algorithms are the highest form of component in its entity framework. Thus, the

entities are a fusion of attributes plus various algorithms they can exploit. This then

defines what the entity is in the context of the simulation, by what is it able to do,

rather than what it is called. An analogy to this would be the concept of duck-typing

found in interpreted language, where objects are classified by the language’s typing

system by how they behave rather than what they are.

 17

The CODES framework presents an example of the distinction that can be made

between frameworks being syntactical versus semantic composable. CODES is

focussed on the angle of composition through components that can natively

exchange data through shared semantics, which is how it is targeting its reuse case.

By this definition, GAMOV as a defence modelling framework would be seeking to

achieve the syntactical approach to describing its components in order

Finally, the Simkit framework presented by Buss (2002), demonstrated a very similar

solution that is characteristic of what GAMOV is trying to achieve under Object-

Functional; though Simkit is described in terms of discrete event simulation

nomenclature. Presenting GAMOV as an explicit example of the Object-Functional

paradigm and its organisation could contribute to other frameworks with similar

approaches being able to acknowledge their underpinning software organisation in

similar terms, which could enable more patterns to be contributed alongside GAMOV

to further shape the paradigm.

2.3 Object-Functional

2.3.1 What is Object-Functional Conceptually?

At the conceptual level, the Object-Functional paradigm as currently understood is a

hybrid paradigm combining the Object-Oriented and Functional programming

paradigms (Sousa & Ferreria, 2012). For the longest time both of these paradigms

have evolved in relative isolation, due the difference in the goals behind each

(Odersky, 2014), but in practical terms there is little reason for them to be mutually

exclusive. The benefits and limitations of each are often compared against one

another (Harrison, Samaraweera, Dobie & Lewis, 1996) in terms of code quality and

performance; and sometimes the two have been combined through layering, not

necessarily blending (Kristensen, Hansen & Rischel, 2001). Object-Functional

attempts to unify the two paradigms in order to yield the benefits of both whilst

eliminating their shortcomings (Lau, 2015). In other words, it is seeking to harness

the structure and descriptive power of Object-Orientation and the stateless

characteristics of Functional. The perceived benefits of combining these two

paradigms, as hypothesised by (Sousa & Ferreira, 2012), is that Object-Functional

would produce leaner and better-quality code, and more importantly the elimination of

what is referred to as anti-patterns. This is the key characteristic for tackling the

problems with software maintenance in a domain like defence modelling head-on.

 18

Anti-patterns as described by Abbes, Khomh and Gueheneuc (2011, p.181), are

“poor solutions to recurring design problems; they stem from experienced software

developers’ expertise and describe common pitfalls in object-oriented programming”.

They also state that “Anti-patterns are generally introduced in systems by developers

not having sufficient knowledge and-or experience in solving a particular problem or

having misapplied some design patterns”. Many of the classic anti-patterns that can

occur within object-orientation specifically are listed in the works of Webster (1995).

One of these patterns, described as “spaghetti”, is where dependencies exist

between the components of the software, which is characteristically similar to how

models in Dstl have coupling between their components. Code with the spaghetti

pattern makes traversing the code base more complicated due the lack of interfacing

between the coupled elements, which can make adaptation difficult, because a

change in one component may require changes in another, and overall makes the

process of finding the root cause of bugs more time consuming. This is an aspect

empirically observed by modellers and developers in Dstl with respect to our

campaign models. Other anti-patterns include “Blob”, as described by Abbes, Khomh

and Gueheneuc (2011, p.181), as a “large and complex class that centralises the

behaviour of a portion of a system”. Abbes, Khomh and Gueheneuc’s (2011)

research into anti-patterns examines how these patterns affect software

maintenance, by running experiments on software containing single or multiple anti-

patterns. They concluded that software with one anti-pattern such as spaghetti only

compound software maintenance but it’s when there are multiple patterns present

that actual breakages begin to occur; for example, spaghetti mixed with a blob

pattern. However, their research is purely framed around object-orientation being the

source of anti-patterns. If the source of anti-patterns is through mis-applying design

patterns, then the Functional paradigm and indeed the Object-Functional paradigms

could also have their patterns applied incorrectly to produce unintentional behaviours

in the software. However, before the Object-Functional paradigm and its patterns can

be misapplied, they need to be understood and defined, which as highlighted by

Sousa and Ferreria (2012) are limited at best and still evolving.

The fundamental idea behind Object-Functional at present seems to be about

splitting entities within programs that hold state, from those entities that transform

state (Sousa & Ferreria, 2012), (Lau, 2015). In Object-Orientation terms this would

mean breaking (but not discarding) the classical approach to encapsulation down into

 19

two object categories. The first category of object is used to represent the data

elements of the program (i.e. the attributes that hold state). The second object

category is used to hold the transformative functions of the program, which is where

at the fundamental level the Functional paradigm meets the Object-Oriented

paradigm.

To illustrate this, consider a very simple Object-Oriented example expressed in

Uniform Modelling Language (UML) with a defence centric entity, such as a tank. In

Object-Orientated design, an approach to implementing a tank would be to declare a

class in some way that may take the following form:

Figure [2] – Tank Class under Object-Orientation.

Object-Orientated languages are built upon the fundamental idea of using a construct

known as an Object. The roots of this concept can be traced back to the development

of the Simula language (Dhal, 2002). In a true Object-Orientated language, absolutely

everything that is created, manipulated and destroyed within a computer program is

an object. Object-Orientation is a reasonably well-understood paradigm, with many

design patterns in existence to communicate its concepts to other software

developers (Sousa & Ferreira, 2012). Following this notion, the resultant tank object

has attributes that describes what its relative speed is, what its firing capabilities are,

how much armour it has etc. It also has methods that could be used to transform

these attributes. For example, as the tank takes damage, its overall combat

effectiveness will decrease in some way, therefore the method would modify this

attribute to the new value. The derivation of this object may have occurred as a single

class purely through encapsulation, or it may be a subclass of another grouping, such

as vehicle, and inherited its attributes and methods. Either way, the resultant class as

far as the describing the concepts here are sufficient as illustrated in the above

 20

diagram. The class also defines the access control model for the object, indicating

whether attributes or functions are private to the object itself, or publicly accessible by

other objects at various levels.

Whilst encapsulation is a powerful and easy concept to grasp in terms of

implementation within object-orientation, it requires a certain degree of discipline and

good design skills from the programmer to be effective (Kester, 1993). In particular,

careful consideration of the types of objects that the programmer is creating and how

the attributes and methods are reused around the overall system. Failure to do so is

what can lead towards the emergence of anti-patterns in the code. Taking the

example of the tank, it has methods that enable it to move and to fire. However, at a

conceptual level, the movement of the vehicle and firing of a weapon are not that

complicated in terms of the overall effect they produce, particularly in a campaign

model, which tend to be highly aggregated representations that do not include the

physics of how these systems work. At this level of aggregation, the movement of a

tank is no different to how any other entity could move through their environment. The

resultant speed, distance moved etc. are merely a product of the terrain they are

moving though. The developer could solve this problem a number of different ways.

They could declare these methods as part of a superclass such as ‘vehicle’, which

would allow tanks, planes, boats etc. to all use the same generic methods through

inheritance. However, there are other sub-optimal ways, such as having one object

class such as the tank becoming the owner of the movement and fire methods and

other objects simply calling upon these methods. Not all issues with Object-

Orientation may be down to misunderstandings of the pattern, but down to external

pressures. A developer may have to compromise some technical debt within the

implementation of their objects in order to meet a more immediate deadline however

the reasons for choosing to accept this debt and not repair it upon occurrence is very

much dependant on the methodological environment (Soares de Jesus & Vieira de

Melo, 2017). Whilst this very much a basic example, when coupled with external

pressures such as time and cost, quick wins of this nature can occur and have been

empirically observed in models at Dstl. This is what produces the coupling described

by Ottinger and Langr (2011) or the spaghetti code anti-pattern (Webster, 1995).

Staying again with the example of the tank, the concepts of Object-Orientation have

been communicated using real world concepts, which is a common approach found

within a lot of teaching material. In this author’s experience with respect to modelling

 21

within Dstl, the potential problem this can lead to is that it can influence the thinking of

the developer in unhelpful ways. In other words, a developer may develop practices

whereby they use objects only to describe real world concepts, forgetting the

fundamental notion that everything within an Object-Oriented language is an object.

This can lead to situation where programs have explicit descriptors for the nouns

(what the object represents) but not always the verbs (what the object does or the

actions that influence the object i.e. the methods). The concept of nouns and verbs is

a common analogy within Object-Orientation (Drobi, 2007), but not always the best

and most comprehensive. Also Object-Oriented design is primarily focussed around

the notion of nouns. Object descriptions via classes are nouns, and only the methods

are verbs, which are owned by the nouns (Yegge, 2006). This is why some have

questioned whether Object-Orientation by itself is sufficient in order to fully describe

the world (Mansfield, 2005) or even failed in its goals entirely. Verbs should be their

own objects, not a dependency of some larger construct and should be able to be

passed as arguments around a program in the same way as their noun counterparts.

This has resulted in realisation of the ‘First-class object’ construct appearing within

modern Object-Oriented languages (Van Rossum, 2009). This particular limitation of

the object-oriented paradigm has been raised in works as far back as Jalote (1989)

highlighting a need for more flexibility in the object-oriented paradigm through a set of

extensions in order to accommodate these complex real-world concepts. Jalote

(1989) proposed two extensions to the object-oriented paradigm. Firstly, the process

of “functional refinement” which includes identifying and breaking these transactional

(highly generic methods) away from data sources; in other words, breaking the

encapsulation. This would allow for methods to become reusable functions as per the

Functional paradigm. The second was identifying the need for objects to be nested in

some way, because the real world is also formed of complex hierarchies of

subordinates, as opposed to the model of inheritance. Whilst Jalote (1989) does not

explicitly refer to a new paradigm, opting to characterise these as extensions to the

Object-Oriented paradigm, the objective of “functional refinement” is strikingly similar

to the fundamental idea of Object-Functional. However, this notion of functional

refinement is more focussed on the process of identifying those functions that could

be broken down more generically, with still a large emphasis on complex objects

hierarchies holding and sharing functionality. Works such as Qian, Fernandez and

Wu (1995), who attempted to build upon the work of Jolote (1989) found this to be the

case when they applied these processes to a component framework for the medical

 22

domain. Additionally, Jalote (1989)’s highlighting for the need for nested objects also

falls in-line with both defence hierarchies and how these are implemented in GAMOV,

which shall be examined in chapter 4.

Therefore, if we take these concepts of Object-Functional as described (Sousa &

Ferreira, 2012), (Lau, 2015) and apply them to the example of the tank. The resultant

object organisation would look like the following UML diagram:

Figure [3] – Tank Class under Object-Functional.

In the Object-Functional approach to object creation, the ‘tank’ object is now merely

an owner of state and does not have any methods. Each of the methods that would

normally be encapsulated within pure object-orientation are now broken out into their

own object’s classes. This leads to a much more decoupled code organisation,

because now these methods can be exploited by anything that needs to move, or fire

a weapon etc. These methods, as they would be called under object-orientation are

now functions under the nomenclature of the Functional paradigm. In other words,

discrete services that merely changes the values of data holders.

Through this organisation of the program elements, the state becomes de-coupled

from the functions that are used to transform them. This appears to remove the

majority of the common problems of coupling in Object-Orientation at the point at

which the program elements are first organised. In other words, it helps to eliminate

or reduce common anti-patterns hypothesised by Sousa and Ferreira (2012). Whilst

the elements of the program and their interactions are still coupled, it is explicit and

loose, which was identified in works such as Ottinger and Langr (2011) as being the

key to removing the tight coupling found in traditional Object-Orientation. This means

that elements of the program can be changed limiting the side effects on the rest of

 23

the system (or the generation of said side effects and their spread becomes explicit).

It also makes the nouns and verbs of the program equal in terms of how they are

used, albeit the implementation mechanism within the languages is slightly different.

Nouns are still classes with respect to traditional Object-Orientation, whilst verbs are

a special case of class with respect to Functional.

2.3.2 Object-Functional Implementation

The implementation approaches available to achieving Object-Functional design are

not necessarily new ideas, as outlined by Kontio, Mäyrä and RÖnkkÖ (2007); and

have progressively been included in programming languages for many years in the

form of “functional classes”. This is where an object as per the object-oriented

paradigm is used to house an independent function commonly found in the functional

paradigm. This resultant functional class can then be called in order to “mediate”

Kontio, Mäyrä and RÖnkkÖ (2007, p.) a data transformation. This could be a change

to one entity or a change to multiple entities that are interacting with one another. The

notion of a functional class also exists in other languages, such as Python, under

different nomenclature through the use of the first-class object pattern. There is also

another informal description for this construct referred to as the “Functor object

design pattern” (or function objects) (Van-Rossum, 2009), which originally stems from

the Functional paradigm. Regardless of the nomenclature used: functional classes,

first class objects and functor objects are a single but key design pattern recognised

as being part of the Object-Functional paradigm. However, there is very little more

beyond this in the paradigm as currently described. The Object-Functional approach

as described in literature like Sousa & Ferreira (2012) provides merely a conceptual

notion of data and functionality being split into their own objects using functional

classes, but not any further detail about the implementation of these functional

classes. For example, Kontio, Mäyrä and RÖnkkÖ (2007), describe other patterns

such as the “memento” pattern as being fundamental to any mediation by a functional

class. This is where a copy of the object being transformed is made before its

attributes are changed, enabling a rollback process if required. However, the work

presented by Kontio, Mäyrä and RÖnkkÖ (2007) is focussed around databases,

where storing the prior state would be important if you are making changes to

underlying data that lots of services are reliant upon; therefore, the context of applied

patterns is also important. The usage of these patterns is not currently explicit in the

 24

wider context of Object-Functional. The absence of these patterns and the

permissible combinations are a key gap

2.3.3 Object Functional and Service Oriented Architectures.

By accepting the notion of clearly separating the elements of your program into

objects that are state and objects that are transformative functions through Object-

Functional; an interesting comparison can be made to some of characteristics of the

Representation State Transfer (REST) network architectural model presented by

Fielding (2000).

The concept of REST is focussed around the separation of clients and services over

a distributed architecture, whereas Object-Functional is for the most part concerned

with the separation of code found within the same application namespace. As a

result, there are some fundamental differences in terms of scale and REST has

unique considerations associated with network architectures to contend with.

However, upon a more detailed analysis of the two paradigms, their core

characteristics have strong similarities. By considering the following characteristics of

REST in Fielding (2000), this is how Object-Functional compares:

• Client-Sever - Whilst this is meant to be framed against the idea of a network of

client machines communicating with a server; in Object-Functional, the data

objects become the clients and the functional classes become the servers.

• Stateless - Due to the stateless nature of the core internet protocols, REST

frames the design of services to be agnostic to the clients they are providing

their services to. Additionally, the communication between clients and servers is

fundamentally stateless; in other words, the servers have no idea what they are

speaking to, they are merely providing their services to a data request. Within

Object-Functional this is the same. Objects containing state make a request to

functional classes, who then process and return the result to the state object.

These functional classes are unaware as to what they are speaking to

conceptually, they are merely servicing a request.

• Cache - Within REST, this specific criterion pertains to the ability for clients to

cache the response from the server for further use. This is to accommodate for

the fact that as Fielding (2000) describes that network efficiency would be

 25

degraded if the client was retrieving the same information multiple times from

the server. For Object-Functional, on the surface this seems like a non-

applicable criterion, however, there are modelling concepts where caching the

result within the state objects would be useful. For example, route finding

algorithms used to derive options for moving around the environment often

produce matrices of possible routes. If this output were cached with the entity

that is moving, the functional class responsible for movement could consult this

rather than having to call a route finder function every time a new decision point

along the route is reached.

• Uniform Interface - In order for remote services to be reusable, a common

interface is needed to ensure that the output of services can be used by all

clients. This is also be important for Object-Functional systems, because the

input and output interfaces for functional classes need to be consistent in order

to promote their reuse.

• Layered System - Fundamentally this is the notion of laying services to control

the side-effects produced by different groups of services. This is not explicit

within the Object-Functional paradigm, but would be a very important

conceptual control mechanism. For example, there may be functional classes

that are not permissible to be used on certain problem specifications and thus

should be layered away. The importance of this will be drawn out later in the

evaluation of Object Functional models produced using GAMOV in chapter 6.

• Code on demand - This characteristic of REST is the least applicable, because

the original notion of this requirement was focussed around code in the form of

applets, which is now less common in a post HTML5 and JavaScript world.

However, the notion of passing functionality to a client to extend its capability

may be a spin on the Object-Functional notion of client-server separation. So

far, the literature frames the paradigm on services being remotely called, but

there may be an implementation pattern where copies of functions are passed

to clients. This would also be described by Fielding (2000) as an “oxymoron”

approach, but the impact of the pattern is an avenue that could be explored.

In fact, much of my earliest exposure to Object-Functional originally came through

applying the notion of REST to Object-Orientation with respect to the Dstl models

 26

(Boakes & Toomey, 2012) and ultimately GAMOV before the realisation that Object-

Functional exists. Whilst there is no explicit link to indicate that the two paradigms

have influenced one another, the comparison between REST and Object-Functional

at least indicates that both the world of web technologies and the more traditional

approaches to programming are becoming more unified in terms of component

organisation.

2.3.4 Object-Functional Languages

In terms of languages to express the Object-Functional paradigm, these are also still

very much evolving. The most prominent language in support of Object-Functional

programming is the Scala language, pioneered by Odersky et al. (2006) at the Swiss

Federal Institute of Technology in Lausanne (EPFL). Scala is described as a hybrid

language seeking to unify the capabilities found within functional languages with

those in Object-Oriented. Whilst Scala is the prime example of an Object-Functional

language and is gaining significant prevalence within the industry; other smaller

language projects are also being undertaken, such as the case of SARD, which

seeks to implement non-Java virtual machine implementations of a Scala style

language (Svallfors, 2011).

The Scala language, as per its name: Scalable language also highlights another area

of benefit brought about by Object-Functional, which is its scalability onto multicore

architectures. The capability of this was demonstrated by Pankratius, Schmidt and

Garreton (2012) showing that the capabilities of Scala combined with the Object-

Functional nature of the programs made writing code for these architectures easier

when compared to more strict Object-Oriented languages like Java. This is due to the

fact that first-class objects can be assigned to processes and thus hardware

resources trivially. This is also comparative to the ideas of tuple space languages,

such as Linda, where the organisation of code is similar to Object-Functional in terms

of separating those things that are data, from those things that use data, to enable

effective message passing (Ahuja, Gelernter & Carriero, 1986). Scala applies these

ideas with the use of frameworks such as Akka (Lightbend Inc, 2011), which enables

effective message passing across components arranged in the Object-Functional

organisation to achieve high scalability.

 27

However, as highlighted by Kontio, Mäyrä and RÖnkkÖ (2007), many of the

mechanisms for implementing functional classes have existed for quite some time in

other languages. Python, Ruby, C# to name a few have the concept of the first-class

object, or the functor pattern, which enables them to package a function inside an

object, thus enabling the basic implementation of the Object-Functional paradigm.

However, because these languages are primarily Object-Oriented in nature, the

range of functional capabilities on offer may seem deficient when compared to a

language like Scala. However, the basic notion of how much Object-Oriented

capability versus Functional capability should be used in an Object-Functional

solution is not explicit, due to the lack of information surrounding pattern usage within

this paradigm. The goal of Object-Functional currently is to unite the paradigms, but

how much of their constituent functionality is required will ultimately depend upon

what the developer is trying to achieve with it.

2.3.5 Why use Object-Functional for defence modelling?

Principally, Object-Functional ended up being the choice for the GAMOV approach

due to one fundamental criterion, which was the desire to eliminate the coupling (or

anti-patterns) inherent with code-bases of our models. As stated previously, REST

was the original approach that was applied to GAMOV because the notion of client-

server separation and stateless communication seemed to deliver what was required

in this regard. It was not until the Object-Functional paradigm was identified and

associated with REST that the importance of other characteristics of the REST

protocol began to become prominent. Sticking with the notions of anti-patterns it may

have been possible to realise a similar solution with just a purely Object-Oriented

approach provided careful application of its patterns are applied; however, Object-

Functional seems to eliminate many of the common anti-patterns at first principles.

Due to the lack of explicitness in the patterns that make up Object-Functional and the

difference in nomenclature being used, it is possible that other frameworks in defence

are exploiting the paradigm but not explicitly acknowledging the fact. For example,

Clive et al. (2015), describe that the AFSIM framework is built with “modern

programming paradigms in mind”, but the majority of their work is framed solely in

both the conceptual ideas and nomenclature of Object-Orientation. However, the

implementation mechanism by which they have enabled their functional reuse and

the patterns they have used is unclear. As the framework is pitched very much

 28

around providing components, rather than algorithms, it could be that these functions

are just reusable objects containing both attributes and methods as per Object-

Orientation; or there is a lot more generality in their make-up conforming more to the

Object-Functional paradigm. The former is more probable due to the hierarchical

nature of the component descriptions. However as per Sousa and Ferreira’s (2012)

observation that there is a significant lack of explicit acknowledgement of Object-

Functional usage, frameworks such as AFSIM may not have a baseline to compare

their implementation against. The application of Object-Functional to a framework

such as GAMOV could serve as a key contribution in this case in order to compare

implementations and potentially refine those in other frameworks. This would also

apply to the example of Simkit (Buss, 2002), which as stated earlier is

characteristically similar to Object-Functional but uses different nomenclature and

framing.

2.3.6 Object-Functional Summary

Overall the literature relating to Object-Functional is very much in a state of evolution,

due to the continuing emergence of this paradigm. It is clear that the aspirations and

some of the key characteristics of what comprises an Object-Functional program are

beginning to be understood, but as highlighted by the thesis proposal from Sousa and

Ferreira (2012), there is a lack of software design patterns in order to communicate

specific implementations of the paradigm to other developers. It is believed that

Object-Functional provides a solution to removing the coupling experienced within

Dstl models and thus is why it was chosen as the basis for GAMOV.

The organisation of the resultant code as highlighted previously separates

transformative functions away from the state they are manipulating. This results in a

code-base where the linkages are explicit but the coupling is extremely loose. As a

result, it appears that it will become easier to track and control changes made to

functions, reducing the production of unwanted side effects across the rest of the

system. Additionally, the scalability claims associated with the paradigm have the

potential to help us solve some of the challenges with respect to model performance.

The key benefits of the paradigm have been hypothesised by Sousa and Ferreira

(2012), which stands as a key paper in summarising the current state of the art of this

paradigm. However, there is very little evidence to suggest that these hypothesised

 29

benefits have been explored further. In particular the capability for Object-Functional

to eliminate the anti-patterns associated with object-orientation, which is a key issue

for the MODs extant campaign model range. An evaluation of the Object-Functional

approach applied to defence models would provide an indication as to whether this is

the case. However, whilst the goal of this research should be to understand further

the potential benefits and challenges of exploiting Object-Functional, for the purposes

of developing an OA model; the application of this paradigm via the GAMOV

framework, including any key lessons learnt would also contribute to the growing

body of knowledge in terms of formulating sets of software design patterns for the

paradigm.

 30

3 Research Methodology

3.1 Chapter Introduction

So far, this thesis has examined the overall challenges facing defence with respect to

the development of their software models and has examined the literature concerning

the state of the art of Object-Functional software development. This next chapter

describes how the research questions of this thesis shall be answered by outlining

the research methodology and the methods that were employed to understand more

about Object-Functional model development and how it can potentially benefit over

other approaches, such as Object-Orientation that were used in extant capabilities.

3.2 Approach

As per the research questions, the goal of this thesis is to understand more about the

application of Object-Functional programming to the development of defence OA

software models, specifically the benefits and challenges it may offer; and what such

an approach could look like, which shall be presented in chapter 4 in the outline of

the GAMOV framework.

In order to demonstrate potential benefits and challenges of the Object-Functional

approach, it is important to compare and contrast extant models produced using

purely Object-Oriented and/or other techniques with those produced using Object-

Functional. The remainder of this thesis shall therefore evaluate a set of models

produced using a range of these approaches and attempt to understand more about

the underpinning structures offered and what they potentially allow analysts and

model developers to do.

The majority of the data capture and analysis was qualitative rather than quantitative.

This is because the research is examining patterns of development and coding

practices being undertaken within Dstl, which are fundamentally qualitative

processes. Whilst quantitative analysis of software can reveal interesting insights into

specific design approaches, this research is looking at the overall impact of

implementation practices upon a model’s ability to deliver analytical quality.

Additionally, a quantitative approach for this particular piece of research would not

have been viable for a number of reasons:

 31

• Software Metrics: As Dstl’s long standing focus has been on delivering

analytical quality, rather than software performance, there is a lack of key

performance indicators or metrics logged for things such as model runtime,

algorithmic performance etc. Such information is only available through

discussion with expert users of the model by noting their experiences and

statements recorded within documentation.

• Model Variation: As the models cover different areas of analytical interest

and vary greatly in terms of complexity of representation, it is not possible to

design a single quantitative experiment that all evaluated selected models in

the set could process.

• Training: Given the complexity of these models and the required read-in to

become proficient at setting up a scenario, the level of work to set up a

quantitative experiment outweighed the benefit. Whilst the process of setting

up a scenario in the model may have personally exposed some of the

underlying problems with the code, it was more effective to collate this

experience from an expert who has been through the process themselves

and analysing what they have empirically observed. Additionally, the experts

view would be more comprehensive as they will have used the model for

many different purposes over many years.

3.3 Choice of Models

In order to choose the models used in this evaluation exercise, identification of the

selection criteria was important for their selection and any constraints.

3.3.1 Model Coverage

The Aqua book (HM Treasury, 2015), which is the U.K governments primary

guidance on delivering analytical quality, recognises eight categories of model used

in the creation of analytical products. These are listed on page 15 as follows, with

defence examples given below for clarity:

• Policy Simulation: Understanding the implications of current defence policy on

our ability to prosecute various operations around the world.

 32

• Forecasting: Some defence models are typically used to forecast outcomes of

employing certain tactics or strategies and to assess the potential of using

different military capabilities within a scenario.

• Financial Evaluation: Some defence models are produced in order to

understand the impact of investing in various defence capabilities and military

tasks.

• Procurement and Commercial Evaluation: Based upon analysis conducted in

a multitude of areas, defence models provide advice in the decision making of

what military capabilities to procure.

• Planning: Defence models are often used to understand the impact of

employing different courses of action in order to achieve a scenario outcome.

• Science Based: In defence OA, these are typically modelling of physical

systems, which are often subsystems of a larger campaign model when used

in DSA analysis activities.

• Allocation of Funds: Whilst there are models and business units within Dstl

that undertake these activities; defences models within DSA do not typically

provide direct input to this capability. However, the outputs from other

capability assessments may support some decision making in this area

indirectly.

• Conceptual: As per the Aqua Book (HM Treasury, 2015, p.15) - “to help

understand the key influences that are important to a system being modelled.”

This is an important analysis activity in order to understand more about the

defence environment and uncover new insight worthy of further analysis.

Going by these criteria, the models picked for this evaluation aimed to cover as much

of this spectrum as possible, so that all categories of model are included in the

analysis. However, in defence, whilst there are examples of specific models covering

a single category in this list; in actuality many of the larger models cover multiple

categories. For example, a campaign level model is capable of being used for

simulating policy, forecasting demand, planning of operations, understanding science

behind various systems and aspects of conceptual modelling, all within one

 33

simulation system. However, campaign models rarely evaluate aspects of finance;

therefore, another model specifically designed for this purpose had to be included.

3.3.2 Implementation Type

It was decided that the choice of models should cover as many types of development

commonly undertaken within Dstl, in order to get a flavour of all development

activities. This typically includes spreadsheet models, models based entirely or

partially on commercial products, models based upon frameworks and bespoke

solutions.

3.3.3 Final Choice of Models

Taking the two criteria of model coverage and implementation into account, the

following models were picked for further evaluation:

• Wartime Planning Tool (WPT): A spreadsheet model used for representing

individual combat engagements.

• Strategic Balance of Investment (StratBOI): A model partially based upon

commercial software used for analysing financial investment in military

capabilities.

• Diplomatic and Military Operations in a Non-war fighting Domain (DIAMOND): A

framework derived, high-level campaign model, built using Object-Orientation.

• COMAND: A bespoke, high-level campaign model, built using Object-

Orientation (as described previously in chapter 1).

• Aerial Delivery Model (ADM): An Object-Functional model built using the

GAMOV approach.

• Mission Command Model (MCM): An Object-Functional model built using the

GAMOV approach.

3.4 Evaluation Framework

Research into the range of models and frameworks that can be applied to the

evaluation of software quality has been undertaken as far back as software has been

developed. Research conducted by Miguel, Mauricio and Rodriguez (2014)

 34

summarises many of these dating back to the 1970’s until present day and the criteria

commonly used throughout. Many of these criteria have now become standardised

under ISO25010:2011 by the International Organisation for Standardisation (ISO).

(2011); however, Miguel, Mauricio and Rodriguez (2014) notes that some important

methodological criteria such as communication and open source community practices

are not explicitly covered by this standard.

With respect to modelling undertaken within government departments, including

defence, the Aqua book (HM Treasury, 2015) is the principle piece of guidance in

terms of encouraging best practice and delivering for analytical quality. The core

theme of the Aqua book with respect to models is based primarily on how the model

conforms to the principles of RIGOUR (Repeatable, Independent, Grounded-in-

reality, Objective, management of Uncertainty and Robust). This research is

examining how the implementation of various models impacts their ability to deliver

analytical products under the analytical process, therefore evaluating them should be

in the light of those criteria the Aqua book considers to be fundamental. However, as

these models are software products, criteria for ISO25010:2011 shall be used as

inspiration for compiling an assessment framework for this research.

ISO25010:2011, divides evaluation criteria to be considered for the evaluation of

software down into eight categories, which includes “Functional Suitability”,

“Performance Efficiency”, “Compatibility”, “Usability”, “Reliability”, “Security”,

“Maintainability” and “Portability”. Not all of these categories are relevant for the

evaluation being undertaken within this research. The relevance of each category

was assessed as follows:

• Functional Suitability – This encompasses criteria with respect to

completeness, correctness and appropriateness of the software for the purpose

for which it was designed. This is relevant to the research in terms of framing

how the issues with the implementation of the software impact its functional

suitability, which is also what the Aqua Book (HM Treasury, 2015) is concerned

with preserving. However, this research is not answering the overall question of

whether the model is fit-for-purpose, to which the answer is already predefined

by the model being in usage or not on studies.

 35

• Performance Efficiency – This encompasses criteria with respect to underlying

performance of the individual systems. This has some relevance to the overall

assessment, because scalability and the improvement of algorithmic

performance via parallel processing techniques is a key goal for Dstl.

Therefore, assessing how the model’s implementation allows and restricts its

capability to exploit these is of importance. However, lower level performance

metrics do not exist for these models; and even if they did, they would likely be

rough orders of magnitude based upon the expert user’s experiences.

• Compatibility – This an assessment of how the software is able to interact with

other products within its operating environment. This is not relevant to this

assessment, because of the bespoke nature of these models and other external

methodological factors associated within the organisation.

• Usability – This category covers a range of criteria from training and operability,

user interface considerations and accessibility. Some of these will be relevant

to this research, particularly operability and the user-interface; because issues

identified here may have some relationship to the implementation. Training with

respect to defence models is less focussed on understanding the software and

more concerned with training of producing a valid representation within the

model. Accessibility, whilst important in a wider sense of the user experience, is

not important for this research.

• Reliability – Much of the criteria with respect to reliability is externally managed

through Dstl’s commitment to achieving ISO27001 via its accreditation.

Therefore, criteria under this category with respect to maturity, availability and

recoverability, whilst possible side-effects of the software are typically a product

of wider methodological and environmental factors that are neither relevant nor

suitable for comment within this research. However, an overall question with

respect to the reliability of the models could be asked to uncover issues with

respect to fault tolerance and how the models handle things such as error

trapping.

• Security – This category overall is not relevant to this research. Whilst arguably

software implementation could present issues for this category, the overall

fitness-for-purpose regarding security is not relevant.

 36

• Maintainability – This is a very key category of criteria for this assessment,

because it includes aspects such as how much modularity exists within the

software, how reusable are the components and to what degree of testing is

present.

• Portability – Criteria here covers aspects of installation and adaptability to new

operating environments. Much of this is not relevant to the research because

this would likely arise from things such as the programming language choice.

In addition to these criteria, it was key to record explicit details with respect to the

overall implementation, for example, what paradigm is the code-base following, what

is the overall size in terms of lines of code etc.

Taking all of these criteria into account, the following evaluation framework was

developed in order to assess the models within this research:

Category of Criteria or Question Questions to be asked.

Functional Suitability What is the purpose of the model? –

What types of study and analytical work

is the model employed on

What categories of analysis capability

does this model cover? – As per the

Aqua Book (HM Treasury, 2015, p.15).

Is the model currently in use? - If not, for

what reason(s) was it retired or replaced

by another capability? Were any of

these due to the implementation?

Overall Design Questions What language and/or coding

environment is the model written in?

What coding paradigm is the model

stated to follow (or appears to follow

upon inspection)? – Object Oriented,

Object-Functional etc.

How large is the code-base? – Lines of

code.

 37

Are there any observable anti-patterns?

– From looking at the code-base, or

from expert’s view.

Performance Efficiency Is the model scalable?

What scalability approaches does the

model currently employ (if any)?

Usability What options does the user have in

order to interface with the model? –

Graphical User Interface, data files etc.

Typically, what options do users use? –

Do user(s) use the provided approach

or have they developed their own

method?

Reliability Are there any observed or documented

reliability issues of note associated with

this model?

Maintainability What level of modularity does the

software employ? – By function, by

functionality area, by system etc.

What approaches to testing does the

model employ? – Unit, Integration etc.

How reusable are the components

within the system – Based upon the

expert’s experience.

Table [1] – Model Evaluation Criteria

3.5 Data Capture

In order to populate these questions, a number of qualitative techniques shall be

used. As stated previously, most of this information shall come from discussion with

the expert users of the model, which in Dstl are known as ‘custodians’ of the model;

and recording a summary of their expert viewpoint and empirical observations. It

 38

should be noted that not all custodians are necessarily software developers and may

not have hands-on experience of using the underlying code. However, the custodian

is the primary point of contact and thus would be aware of issues surrounding the

implementation through collation of lessons learnt from development activities.

Another source of information that shall be drawn upon shall be the model’s

documentation, in particular, the model logbooks which are non-publishable, internal

documents held at Dstl that track aspects such as development history and

outcomes.

Lastly, where applicable, the code-base of the models shall be analysed by manual

inspection to see if observations with respect to its structure yield any insights in

support of the questions. This is the process known as ‘code-smell’ which is

summarised in works such as Fontana, Zanoni, Mariona, and Mantyla (2013). The

principle behind code-smell is that a developer can identify potential issues and anti-

patterns from the code-base by observing aspects such as structure and modularity.

Whilst automated code-smelling techniques are actively being developed as per

Fontana et al. (2013), because this technique is prone to subjectivisms, the

techniques shall give a sense of what may be occurring within the models combined

with the model expert’s observations.

 39

4 The GAMOV Approach to Object-Functional

4.1 Chapter Introduction

In order to further inform the analysis from the evaluation, this chapter shall outline

the design of the GAMOV framework used to produce the ADM replacement and

MCM models; defining its purpose in the context of what it is trying to deliver and the

layers of capability that are contained within it. The design of the lower level aspects

of the framework shall then be covered, outlining the individual subsystems that make

up the framework’s architecture and the interactions between these subsystems. This

shall help in developing the understanding of how GAMOVs interpretation of the

Object-Functional approach enables it to produce a much more flexible modelling

solution and shall contribute as a possible approach for Object-Functional application

in the field.

4.2 The GAMOV Framework

In Chapter 1, a number of key issues with respect to Dstl’s campaign modelling

capability were highlighted. In an attempt to address these identified issues, the

concept of the GAMOV modelling framework was developed (Glover & Toomey,

2012). It was developed iteratively over 9 years spanning late 2008 to early 2017 by a

team that varied between 3 - 4 developers, including the author of this thesis who

was a leading member, particularly with respect to owning the conceptual design.

GAMOV was envisioned to be a modelling framework, containing within it a set of

reusable components, with an associated API, to enable modellers to build models

from its libraries of components. In that sense, the capability of GAMOV would be

comparable to a programming framework, such as the Microsoft .NET framework,

albeit with a much more defined context and purpose in mind.

The final architecture and organisation of the GAMOV software was framed around

the characteristics brought about by the Object-Functional paradigm, which we

believe helps to promote the reuse of new and existing ideas and provide future

resilience for modelling within Dstl. However, the formal acknowledgement of Object-

Functional did not occur till much later in the actual development cycle. As stated in

the literature review, because REST is believed to share many of the characteristics

of Object-Functional as it is currently understood, it was in fact that protocol that

 40

initially drove the design of GAMOV, at least in the early stages between 2008 and

2012. Further details of this observation were presented in (Boakes & Toomey,

2012). As further development of the framework intersected with this research, it was

identified that Object-Functional, rather than REST, was the more appropriate

conceptual basis for the framework. However, due to the strong similarities between

REST and the interpretation this research had made of Object-Functional, the

GAMOV code-base did not require any modification to its design to become

compliant with the concepts of Object-Functional.

The name ‘GAMOV’ is in acknowledgement of the works by the Russian theoretical

physicist George Gamow2 (“George Gamow Biography”, n.d.), who amongst his

many accomplishments was renowned for simplifying the description of very complex

scientific concepts into terminology that children could understand. This, in a way,

was comparable to the ambition for GAMOV: to simplify the approach to the

implementation of models, so that the modeller is empowered with a flexible system

to explore their ideas.

The goals of the GAMOV framework were thus:

1. Increase the agility of campaign model implementation, by providing highly

reusable, ‘off-the-shelf’ modelling components:

a. It is believed that the exploitation of the Object-Functional paradigm

eventually became a fundamental enabler of this goal. The separation of

data from functionality using highly reusable interfaces enables an

approach akin to ‘plug-and-play’. Caution was taken not to describe this

approach as true plug-and-play for a number of reasons:

(1) Firstly, the plug-and-play descriptor risks implying a more simplified

approach than in actuality to a non-modeller, or potential customers

of GAMOV. This may risk trivialising the approach and positioning

GAMOV into providing support to projects in unrealistic timeframes.

(2) Secondly, it is important not want to mislead modellers using

GAMOV into thinking that they did not need to concern themselves

2 ‘Gamov’ is the Russian pronunciation of Gamow

 41

with the wider implications of the components they are plugging

together. Whilst the increased flexibility of this approach would aid

aspects such as validation; it risks at the same time in aiding in the

production of an equally invalid representation without a sufficient

level of diligence from the modeller. This was felt to be important

aspect of this approach for the modeller to have some explicit

engagement with the interfaces between components so that they

are aware of the implications of their decisions with respect to the

validation of their representation.

2. Provide an environment that will enable bespoke models to be built for the

purposes of the intended study. The hope was that this would move the

resultant models away from the current state of the art, whereby

representations of scenarios are being shoehorned into a pre-existing model.

3. Enable an iterative approach to model development, where model verification

and validation become an intrinsic part of the process of the production of a

model, rather than a task that is performed post-production and help manage

aspects like uncertainty better as per the ambitions of the Aqua book (HM

Treasury, 2015):

a. This is colloquially referred to as ‘model-test-model’ by the development

team, whereby components can be added to a model (or removed from a

model) iteratively. The impact of that addition (or removal) can then be

tested and evaluated, resulting in stronger direction of how to achieve

overall validity of the model.

b. Exploitation of modern software development approaches was therefore

key, so that testing and documentation are part of the code-base in order

to make these activities as agile and repeatable as possible. As stated

previously, this was through adoption of REST (Fielding, 2000) and then

Object-Functional.

Given the outcomes of the ‘McPherson’ review (McPherson, 2013), a greater

emphasis is rightly expected, in order to ensure effective quality assurance with

respect to the modelling that is undertaken and recordable at all stages of a

 42

model’s development cycle. GAMOV aids in this regard by making the process

of V&V intrinsic to the core GAMOV philosophy of building a model.

Through realising these goals, it was intended for the GAMOV framework to provide

benefit to the overall analytical process in terms of savings to both time and cost

incurred on studies. This was very much a long-term ambition from using the GAMOV

approach and could only be realised through mass adoption and continued usage of

the framework on studies. As the number of available components and models

produced using the GAMOV framework grows, the potential to build new models

through adaptation and repurposing of pre-existing models and their components

would become more commonplace, as opposed to building every new model from

scratch.

It is important to make the distinction that GAMOV was not an attempt to repeat the

production of the DROMAS approach. Whilst there are undoubtedly strong similarities

in the overall goals of the approach, there is a distinct difference. GAMOV is not

focussed on providing models that are consistent in terms of their framework. Whilst

this idea of DROMAS was to simplify the construction of models and provide a

familiar operating environment, it constrained the solution space by constraining the

model’s overall framework. Thus, resultant models became slight variations on a

theme. GAMOV sought to empower modellers to rapidly define both their model

framework and the component organisation within that framework.

4.3 The GAMOV Layers

As GAMOV is a framework, there are a number of layers of capability present in

order to provision the overall software. Some of these layers are not part of what

constitutes ‘GAMOV’ with respect to the modelling software itself. These are enablers

in terms of the underpinning hardware and software to support its operation.

However, it is important to conceptualise these as part of the overall GAMOV

capability, in order to understand the relationships and dependencies upon the

development and usage framework.

GAMOV can be conceptualised using the following diagram (See Figure 4).

 43

Figure [4] – The GAMOV Layers

Starting from the bottom-up, the function of each of these layers shall now be outlined

in the next few subsections.

4.3.1 Dstl Enterprise

This incorporates the unmodified hardware and software that is provisioned by Dstl

Information Communication Technology (ICT) infrastructure in order to run GAMOV.

At a high level this includes the machine specifications (be it physical or virtual), the

operating systems, networking configurations, programming languages and

supporting tools, such as configuration management.

4.3.2 GAMOV Enterprise

This layer is composed of the additions or modifications that have been made to the

Dstl Enterprise by the GAMOV development team in order to run GAMOV. Examples

of this include additional libraries for programming languages, Integrated

Development Environment’s (IDE), web server configurations etc. In other words, this

layer is composed of those elements that can be controlled and defined by GAMOV

developers.

 44

4.3.3 GAMOV Layer

This is the GAMOV software itself, and all of those components of GAMOV that are

common across all models. For example, the critical subsystems that runs a GAMOV

model.

4.3.4 Model Layer

This layer is the organisation of model components that is specific to a particular

model implementation via the Object-Functional organisation. Every component

within this layer varies in reusability between independent functions that can be

reused by all models ever built using GAMOV, to specific configurations of

components that can only be reused between families of model. For example, a

routine for moving entities around the environment could potentially be reused by all

entities in any model, whereas a system for processing logistics is more specialised

to logistics-based models.

4.3.5 Model Structure

This is a wrapper as opposed to a layer, but the conceptualisation here is to signify

that there will be some element required in order to package each version of a model

for release into usage by analysts (i.e. a model specification). In terms of

implementation, there is typically a base class for the model that outlines this.

4.4 GAMOV Approach to Model Construction

4.4.1 Data and Functionality Separation

The core idea within GAMOV is that the actors and the functions were to be separate

objects, and were conceptualised using two data structures as per Object-Functional.

One of these contains the data elements and the other contains the functionality

required of the model representations. The first is the ‘Entity’, which is used to

represent every actor within the simulation. The second is the ‘Mediator’, which is

interface for the transformative functions that shall be used upon the entities and

similar to the naming convention used by Kontio, Mäyrä and RÖnkkÖ (2007). This

was initially designed around the notion of ‘client’ and ‘server’ as outlined within the

REST protocol (Fielding, 2000), whereby clients are serviced by remotely-called

functions. As the existence of the Object-Functional paradigm became acknowledged

 45

in the later stages of development, the key concepts remained the same, but merely

the nomenclature would change from ‘clients’ and ‘servers’ to data objects and

function objects (or functional classes).

4.4.2 Entities

4.4.2.1 Entity Conceptual Design

The Entity structure in GAMOV can be used to represent every actor within a model.

An actor in GAMOV terms is anything used to build the representation of a scenario

in terms of data. This would therefore include, at a high level, all of the actual force

elements (the troops, tanks, planes, ships etc.) and elements of the environment

such as locations. The GAMOV entities were also designed to inherit the same data

structure. This means that every entity within a GAMOV model is fundamentally the

same in terms of structure, even though they are representing completely different

ideas.

This approach to genericising the data structure is not characteristic of the Object-

Functional paradigm and is a specific characteristic of GAMOV. The main driver for

this approach was to have the ability to rapidly realise new military concepts using

one data structure rather than creating an entirely new object class every time in

order to mitigate the issues we had experienced with respect to highly coupled code.

Additionally, this design for entities allows for entity descriptors to be reused or

adapted quickly rather than producing a new one through the data.

A historic problem that the team were cognisant of from our collective experiences

from maintaining older modelling capabilities is that when a new military concept had

been devised, there seemed to be a tendency by previous model developer(s) to add

these to the model in the form of its own object class. The problem with this is

twofold:

1. In many cases the modeller is simply adding a subtle variation of a pre-existing

capability that is already present within the model. This produces extra

overhead in terms of managing the interactions associated with this new object

class, but also there is a duplication of conceptual representation occurring. For

example, there is no need to produce completely different objects in order to

represent a frigate vs. a destroyer. In principal whilst these two vessels operate

in fundamentally different roles in the maritime domain, they possess many of

 46

the same data attributes such that a single class of object could describe both

of them. Their capability within their role can then be defined through changes

to these data attributes.

2. Because these entities are so similar, coupling is produced because they are

exploiting one another’s functionality as explained earlier by Ottinger and Langr

(2011).

Using the same data structure for every actor means that new data attributes can be

added simply by inserting a new entry into the entity data structure. This enables new

concepts to be realised rapidly, or enable pre-existing ones to be modified with very

few changes to the code. For example, if the requirement for a pre-existing land

vehicle to become amphibious emerged, this could be achieved by setting the entity’s

ability to move through water to a non-null state, rather than declaring an entirely

separate entity class for this subtle change.

A key characteristic of the GAMOV entity design is that entities can hold other

entities, which is similar to the proposal brought forward by Jalote (1989) in his

proposed extensions to the object-oriented paradigm. This is what enables the

representation of military force hierarchies, but also the representation of complex

systems. For example, an entity representing a physical location will hold all of the

entities representing the military or civilian units that are stationed there. These unit

entities may hold other systems such as weapons that may also be represented as

entities. This is also similar to the ideas of entity composition as presented by

Odersky (2014) in terms of the Scala language, however, the entities are not being

fused via a composition method; simply the entity reference is held in an attribute

container.

However, for all the flexibility afforded by this structure, the transparency of what an

entity is in the context of the code is lost through this approach. In Object-Orientation,

the class structure of attributes and methods can help to illustrate what the real-world

context of the entity is representing. Under the GAMOV entity approach, every entity

is the same, with its capability defined by what attributes have values and those that

are set to a null state. In this way, an entity in GAMOV terms is characterised by what

functionality it can make use rather than what functionality it owns.

 47

4.4.2.2 Entity Implementation

In terms of implementation detail, the entity uses a variation of Python’s built-in

dictionary structure, known as the ‘Mutable-Mapping’ class to give the entities a

hierarchical organisation. The Mutable-Mapping class is then inherited by a bespoke

class know as a Fixed-Structure dictionary (known as a ‘FSDict’ for short). The

purpose of this class is to provide the requisite control mechanisms for the data

structure and to ensure that the modeller cannot change the base structure of base

GAMOV entity, either directly or indirectly.

As stated earlier in section [4.4.2.1], whilst generic entities in this fashion are not an

explicit characteristic of the Object-Functional paradigm conceptually speaking; by

having a generic interface between these data items and transformative functions

was found to be key in terms of implementation in order to preserve the interfaces in

the overall system. Having multiple entities with fundamentally different base classes

could limit the reuse of transformative functions, or said transformative functions

would require the capability to operate through multiple interfaces. Therefore,

ensuring that all entities are truly identical in terms of their underlying structure for all

models was key, which is why these constraints exist. This also a key characteristic

of the REST protocol (Fielding, 2000).

In cooperation with Fixed Structure dictionaries, the ability to freeze a dictionary’s

contents via the FrzDict.py class is also available. This was added to provide an

optional feature for those times where the modeller may wish to ensure that the data

of an entity cannot be modified, which may be useful to preserve baseline

assumptions when sharing the model with other analysts on a wider study.

So far, everything described about the GAMOV entity implementation has been

concerned with structure. The attributes for GAMOV entities are then defined within

this structure using the Entity.py class. These are the generic attributes that are

common across all GAMOV entities within any model produced in the framework. For

example, all entities will have some form of movement score, an attack capability and

a damage score to name but a few. This structure is then inherited and extended by

the individual model, using a specific entity class for each model, in order to add

those attributes that are only common to a particular model or family of models.

 48

Finally, with respect to Entities, the concept of a Force Element container exists,

represented using the FrcEle.py class. This is used to logically group entities together

into force structures, which are required for certain mediators that work at a higher

level of aggregation. For example, if the model is representing entities in one

hierarchical unit (i.e. a company or a division etc.) but needs to group them together

to represent a more complex structure (i.e. a battle-group), this structure aids in this

regard. This grouping is different to that of how entities can hold other entities and

does not affect that relationship in any way.

Figure [5] – Entity Structure

As flexible as this structure is, there is risk of defining attributes at the wrong level of

this entity hierarchy. For example, generic attributes that should belong in the generic

entity used by all GAMOV model could be defined in model specific entities. This has

to be controlled and assessed on a per-model basis as a matter of course, in order to

determine whether attributes are generic enough in nature to warrant their relocation

higher up the hierarchy. This presents a potential configuration overhead that users

need to be aware of when using the framework. With this current structure, changes

made to the values in generic entity level have the potential to affect the model

specific entities derived from this class. However, at the same time, by keeping

generic functionality encapsulated too far down the structure could lead to duplication

of concepts through data.

 49

4.4.2.3 Entities for Representing Environment

As stated previously in section [4.4.2.1], all actors within the model are represented

using the entity data structure, which conceptually included nodes in the environment,

but not arcs. Typically arcs would be no more than a logical linkage between two

node entities within the data, in order to allow the movement of entities across the

battle-space. However, there are defence models in existence that conceptualise

arcs as something that can be attacked. Not only that, there are also models that

breaks the arc concept down into positioning along an arc, whereby certain portions

along an arc can be degraded. This is to allow for the representation of bridges being

destroyed or the production of impassable terrain as a result of an explosions or the

presence of a threat. Therefore, arcs also had to be conceptualised and implemented

as groups of entities within the GAMOV framework in order for the transformative

functions to have an impact upon them. Making this change provided more

consistency for the conceptualisation of a model in terms of Object-Functional,

because now everything that is data within the representation is now truly an entity.

Arcs are not actors in the classic sense of a model, but in terms of how GAMOV

conceptualises actors in light of Object-Functional design, they are data elements of

the representation, thus permissible as Entities. The risk here is that this is a non-

classical approach in terms of other modelling domains where arcs are merely logical

linkages. This will have to be managed in terms of learning and transparency of the

code. Other modellers will likely assume no more of an arc than a logical link, and

would not expect it to be an entity in its own right.

4.4.2.4 How Entities deviate from Object-Functional

So far, everything described about the implementation follows the characteristics of

Object-Functional as understood. However, the GAMOV entity does contain one

minor and necessary deviation, which is the requirement to hold a single piece of

transformative functionality within the entities themselves.

Not all of the functionality that entities would be interfacing with would necessarily be

using a consistent scoring system for an entity’s attributes. For example, in defence

modelling there is more than one scoring system used to represent damage that

would be inflicted upon an entity. This meant that there needed an attribute for each

of those scoring systems in the entity hierarchy and a method of ensuring that when

 50

one of these attributes was modified, the equivalent scoring systems were also

modified to maintain equality.

The entity was therefore given what is colloquially known as a ‘book keeping’

methods, which will be routinely called after an entity transformation to ensure that

other scoring systems are updated to their equivalent value. On the surface, this

could be argued as a break in the design of conceptual structure of Object-

Functional, at least in the purest sense of the application of the paradigm, because

now there are methods being held by entities themselves. Whilst this is true in terms

of component organisation, it was not a break in the paradigm in terms of the

production of side effects. Given that this book keeping functionality was only

modifying the state of the entity that calls the function, it is not going to produce side

effects upon any other entities within the system. This could be argued as a

permissible deviation from Object-Functional; because whilst the book keeping

methods are transformative they are only transformative to the specific data entity

that called them and no others in the simulation.

4.4.3 GAMOV Mediators (Transformative Functions)

The mediator is the container and the interface for the transformative functions used

in models. Mediators are stateless as per the principals of both REST (Fielding,

2000) and Object-Functional design; meaning that they are agnostic to the specific

entities that they are performing their operations upon. Function calls to specific

mediators shall be scheduled as events to occur either at prescribed times or as a

result of another event in the model. Depending on its purpose, the mediator will

perform its function upon any entity that is in the correct state. For example, if a

combat mediator is running, it will in the case of two-sided combat look for all

instances where a Blue (friendly) entity and a Red (enemy) entity that are deemed as

being in combat, and then perform a combat calculation on all of these entities. This

is similar in concept to the Simkit approach (Buss, 2002) that uses event listeners to

trigger the correct sequencing of events; however, the GAMOV implementation is

much simpler in that it performs a scan across the environment locations for

instances of combat.

 51

Figure [6] – GAMOV Entity and Mediator Interactions.

The conceptual structure of a mediator uses a three-stage process in order to

transform an entity’s attributes:

1. Accessor Function - This is the stage where an entity’s data is fed into the

mediator and pre-processed. In terms of pre-processing, this only concerns the

logical order and assigning of values to the parameters expected by the

mediator. This is not a transformative stage in any way.

2. Transformation Function - This would be the transformative function contained

within the mediator itself; in other words, the mediator’s namesake.

3. Mutate Function - This stage takes the outputs of the transformative function

and reflects the result back onto the entity structure. This will also schedule

calls to those book keeping routine mentioned in section [4.4.2.4] in order to

keep entity attributes in sync.

4.4.3.1 Mediator Implementation

Whilst this three-stage concept of the mediator looks complex in terms of the design,

the implementation in terms of code is actually very simple, provided the interface to

the entity is consistent for all mediators, further emphasising the requirement for all

entities to have a consistent base structure. However, it is also very easy to break

this three-stage process. For example, it could be easy for an inexperienced

developer to couple the behaviour of the accessor function within the transformation

 52

function, whereas this needs to be kept separate to preserve the clarity of the

interface. As a result, there is a lot more requirement for conceptual control that

cannot be enforced by coding constraints.

At least in terms of GAMOV, this is an important consideration for preserving its

Object-Functional design. Frequent review and control of the implementation of

mediators would need to become a regular task by anyone who is building a model.

4.5 Other GAMOV Subsystems

So far, the high-level structure of the GAMOV framework has been described in

terms of layers and the organisation of data and transformative functions via the

entity and mediator concepts. However, the GAMOV layer (illustrated within figure

[4]) is broken down into a number of other subsystems.

4.5.1 The GAMOV Engine

The GAMOV Engine is effectively the kernel of a GAMOV model that drives all of the

processing and schedule all of the interactions between components. The GAMOV

engine contains those components that define the architecture of all models

produced using the framework.

The engine contains the following subsystems:

• Event Scheduling – The mechanism by which events are scheduled and kept in

sync during a model’s operation;

• Entity – The base data structure that shall be used to describe all actors within

the model;

• Run Object – This is the main thread of execution in order to run a GAMOV

model. This aspect is also part of what defines the ‘model structure’ as shown

in figure [4]. Each model has a Run Object that instantiates all of the

components required for a particular model; hence it defines the structure.

However, as a construct as part of the implementation, the Run Object is

actually an engine component.

 53

4.5.2 Event and Time Management

At the core of the event management system is the GAMOV clock, which is used to

granulise time values and ensure that events are dispatched at the correct time and

in the correct sequence. Fundamentally, all models produced from GAMOV are event

driven, but the clock implements mechanisms designed to allow for time-step

intervals, for the scheduling of events that are characteristic of time-stepped models.

The GAMOV clock automatically granulises all time values into the same time units

that are defined by the base time-step. This enables model designers to be flexible in

how they define their time values within their inputs, whilst having the assurance that

a conflict will not arise during execution as a result of inconsistent units. Additionally,

this spares the end-user the requirement to pre-process existing data that may not be

in the standard time units that the model is designed to use. Typically, many of DSAs

campaign models runs in seconds, but finer granulation of time may be required if for

example a mechanical system was being represented. Therefore, the clock was

implemented in such a way as to allow the submission of these time units whilst

ensuring their automatic management in order to provide a consistent view of time

across the model.

The clock monitors all of the events stored within the event scheduler, which is

composed of a variety of queue types. The ‘event scheduler’ is a colloquially known

concept within the GAMOV, but in actuality the queues are attributes of the Clock

itself. The GAMOV Clock has the following queue types in order to satisfy the whole

range of modelling event types:

• Immediate Queue – This is the highest priority queue within the event

scheduler, which is designed to contain events that must be processed before

all other events in the model. In OA terms this would typically include events to

synchronise model activity and ensure that certain routines have completed

before proceeding with further events. An example of this would be the book

keeping routines as described in section [4.4.2.4], as the model should not

process any other action until all scoring values for the entities are consistent

with one another;

 54

• Cyclic Queues – Allow for the scheduling of events to occur on a pre-defined

cycle (for example, every 12 hours). This queue is used for the scheduling of

the planning routines and update cycles that commonly occur within the

Command, Control, Communication and Computer (C4) Intelligence,

Surveillance and Recognition (ISR) systems (or C4ISR as it is known), because

in reality commanders typically plan and update operations on a defined cycle;

• Time-Step Queue – Used for the scheduling of jobs to occur on the defined

time-step of the model. This queue handles all model events that are naturally

modelled on a time-step;

• Main Event Queue – Used for scheduling one-off events that occur at a specific

timestamp in the model.

It is permissible for GAMOV queues to contain other queues of events, if the user

requires a separate sequence of events to occur at a specific time. It is also possible

to create more than one clock if required, however, typically this is not something that

was envisaged to be commonplace.

Lastly, the GAMOV clock is currently designed around the concept of an end-to-end

simulation, not a war game with a human-in-the-loop. If in the future, human-in-the-

loop decision-making was required, then it may be necessary to create a new queue

type in order to interrupt the model when the user wishes, in order to change the

state of entities and orders as part of a war game.

4.5.3 GAMOV Engine Implementation

In order to have queues that are event-driven, queues are distinguished by priority. At

the time this part of GAMOV was implemented, which was early 2009, the Python

language only provided the capability to define the priority of the events on a single

queue. It did not allow for the queues themselves to be assigned a priority. Therefore,

a new class was created, known as ‘Priority’, whereby the standard Python ‘Queue’

object could have an associated priority. This enables the concept of an immediate

queue, which has a priority of 0. As to the function calls to the mediators themselves,

these would have to be represented as first-class objects in Python, which is the

functional class equivalent for Object-Functional, so that they can be stored within the

queues.

 55

To ensure that time is granulised across all events stored on the Clock, the ‘GTime’

class was created. Typically, there shall only ever be one GTime object produced per

GAMOV model, but it is the object’s responsibility to ensure that all values of time are

granulised against the pre-defined base time step interval that is being used by the

model.

As events are brought to the front of their respective queue, they are dispatched

using the ‘Dispatcher’ Object. This object does nothing of significant note, other than

to execute the function calls to associated mediators or other routine that would be

scheduled on one of the numerous queues. The final implementation of the GAMOV

time and event management subsystem can be summarised by Figure [7].

Figure [7] – GAMOV Time Management System

4.5.4 GAMOV Engine and Object-Functional Design

Overall the design and implementation of the GAMOV engine, on the surface, is not

integral to Object-Functional, but key features are believed to provide enablers to at

least the ‘Functional’ side of the paradigm. For example, the ability to schedule

mediator calls as ‘first class’ objects on the queues enables functions to be scheduled

when they are supposed to happen and the system allows for the correct sequencing

of mediators to be explicitly defined rather than leaving it implicit within the structure

of the code.

 56

There is however, one aspect of this design that risks breaking the Object-Functional

paradigm. In order to track the total number of clocks being used within a model, a

global variable is produced. This global state is required to ensure that new clocks

are produced with different names in order to prevent conflicts. This state is not used

by the operations of any other subsystem, only the clock, in order to restrict the

spread of state across the framework. Avoiding global is key to many paradigms, not

just Object-Functional, but this is very much a controlled exception viewed through

the lens of not producing unintended side-effects.

4.6 Configuration Management System

The intention of the GAMOV configuration management system is to provide all the

components required in order to setup a GAMOV model in terms of data input,

including the run-set configuration; and process the output of the model into useful

log files.

4.6.1 Input

Inputs to a GAMOV model are comprised of the following:

• Entity setup – The user is able to define the data values of the Entity template,

but also customise the template with different fields for the purposes of the

model.

• Replications - The user is able to define the number of replications that they

would like to perform as part of the run-set and the associated configuration

data for each of those replications e.g. what random number seeds they will be

using.

• Order set – In the instances where scripted command and control is required,

there is a mechanism by which the scripted actions can be submitted that will

drive the representation of decision making within the model.

There are two important features that were designed into the GAMOV input system in

order to provide improvements over older campaign level models:

1. First is the ability to merge data files. This allows the modeller to be able to

separate input data into as many (or as little) files as needed. This is designed

 57

to aid the modeller in logically structuring their data towards the requirements of

the study (and arguably their personal preferences), but also to provide extra

transparency to future modellers, who may be reusing a model, so that they can

quickly identify how the data is organised.

2. Secondly, the ability for a modeller to declare changes to the baseline data

through a ‘change file’. In practice, when using a model on a study, there is

often the requirement to explore variations to the baseline scenario (the ‘what if’

questions) where small changes to the data are made. This can be as small as

increasing or decreasing the number of available assets or modifying the

performance of capability; or as large as changing the entire script of events.

4.6.2 Output

Traditionally in other OA models within DSA, the format of the outputs has been

predefined within the code. In other words, the model produces very specific log files

for common areas of analytical interest. For example, a casualty log is commonplace

among campaign models, where the number of casualties over time is recorded with

a reference to the engagement where the casualty was incurred. However, in many

cases the specific details about that engagement have to be looked up in another log

file, usually called something like the ‘engagements’ log. This presents a number of

problems for the analyst:

1. The data required in order to answer one question is strewn across multiple file

locations;

2. Duplication is occurring because the context of the casualty data is

meaningless without references to data stored in other log files. However, in

order to cross-reference between the log-files, a certain amount of duplication is

necessary, thereby wasting storage space.

3. The analyst is constrained to the data provided in these log files. If a new

circumstance arises whereby additional data is required, this cannot be easily

obtained without modifying the code of the model.

Taking these points into account, it was designed such that log files for output to

become a highly customisable component of the GAMOV framework. Instead of

attempting to conceive of all the possible use-cases for the output, the log file formats

 58

are now an input that can be declared as part of the model instantiation process. This

is achieved by effectively having the model record everything to a single log file, with

the bespoke log files being produced by compositing themselves from collated data.

4.7 Chapter Summary

Within this chapter, the concept of the GAMOV framework has been presented as a

solution to address many of the issues encountered with model development in DSA.

This framework has been presented at both a high-level in terms of its organisation

and composition of layers, and at a low-level in terms of sub-system design. Where

applicable, the impact that Object-Functional programming would have upon this

retrospective design has also been identified, including where it is believed that

deviations have occurred.

The next chapter shall now evaluate a range of models developed in Dstl using both

Object-Functional via the GAMOV approach and prior methods such as pure Object-

Orientation.

 59

5 Case Studies of Extant Models

5.1 Chapter Introduction

Within this chapter, the models identified in chapter 3 shall be evaluated using the

proposed evaluation framework and presented as a set of case-studies. These

chosen models provide examples that cover both the breadth and depth of the

complexity of representation and also the range of implementation approaches that

are currently employed, including Object-Functional via the outlined GAMOV

approach in chapter 4.

Each of these models, although they proved to be useful in the roles they were

designed for, provides useful insights into the improvements needed in terms of

model design and implementation; and where an approach such as Object-Functional

as understood can potentially lend benefits.

The purpose of this evaluation is to frame the overall models in terms of how they are

designed and implemented in order to then analyse what issues this causes to the

overall modelling capability.

 60

5.2 Model 1 - Wartime Planning Tool (WPT)

What is the purpose of the model?

The Wartime Planning Tool (WPT) is designed to represent the outcome of a day’s

worth of combat between two forces.

It represents primarily land-focussed units, complemented by air power.

What categories of analysis capability does this model cover?

Policy Simulation & Planning.

Is the model currently in-use?

Yes (but with caveats). There are multiple versions of the model currently in

existence. The base version in Excel and a re-implemented version in Python that is

due to be incorporated into the GAMOV framework. The re-implementation of the

model revealed some errors that were fixed in the Python version. However, neither

version is in active use as a standalone system; although the conceptual ideas of the

model are still present as the basis for combat calculations in other campaign

models.

What language and/or coding environment is the model written in?

Microsoft Excel Spreadsheet, using cell formulae and underlying VBA.

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

Primarily procedural, with some supporting modules.

How large is the code-base?

Most functionality is driven via the spreadsheet using in built-in formulae within the

cells. There is less than 100 lines of code supporting the model in VBA modules.

Are there any observable anti-patterns?

The model is procedural and does not produce any anti-patterns.

 61

Is the model scalable?

No, due to its implementation within Excel.

What scalability approaches does the model employ (if any)?

N/A

What options does the user have in order to interface with the model?

As the model is Excel based, the users can only input their data through direct input

into the spreadsheet itself. The model expert noted that a great deal of care should

be taken when inputting data this way. Some of the underlying equations are

encoded directly into the same cells as the input data. This means that every

calculation of WPT overwrites the input values with the new output values. The

analyst has to remember to take a copy of the spreadsheet before processing it, in

order to preserve the integrity of the original input.

Typically, what options do users use?

Directly use the spreadsheet as the interface to the model.

Are there any observed or documented reliability issues of note associated

with this model?

Because WPT is a spreadsheet model, it is as reliable as the Microsoft Excel

installation is on the target machine.

What level of modularity does the software employ?

The WPT, in itself, is a module in the grand scheme of things.

What approaches to testing does the model employ?

Scenario based testing using a dataset that has been externally validated.

How reusable are the components within the system?

Internal modules are not reusable outside of the model. The conceptual ideas of the

model are reusable and have been re-implemented in GAMOV.

 62

5.3 Model 2 - Strategic Balance of Investment (StratBOI) Linear Program

What is the purpose of the model?

The StratBOI Linear Program is focussed around understanding the balance of

available military capabilities to support anticipated military scenarios/tasks and the

associated cost implications. Each military scenario has what is known as an ‘Order

of Battle’ (ORBAT), which outlines the anticipated composition of military capabilities

that are required in order to achieve the objectives of the scenario.

The StratBOI study focuses on understanding what balance of investment needs to

be made by assessing what can achieved with the available capabilities and

assessing whether any shortfalls exist.

The model also takes concurrent obligations into account, whereby the U.K. may be

potentially operating in more than one theatre. These obligations may be other

military activities, which could be another full military campaign, or supporting the

activities of other international bodies e.g. NATO, United Nations etc.

What categories of analysis capability does this model cover?

Policy Simulation, Financial Evaluation, Procurement & Planning

Is the model currently in-use?

Yes

What language and/or coding environment is the model written in?

StratBOI is written in a variety of different technologies in order to deliver the

capability of the linear program. This includes the optimiser that is a closed

application (essentially a black box), XPressMP, SQL queries and spreadsheet data

files.

 63

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

The model is effectively an end-to-end procedural process of different technologies,

where the model is populated via data files, pre-processed to run across the

optimiser and then queried in post-process to produce the outputs.

How large is the code-base?

< 1000 lines across the technologies

Are there any observable anti-patterns?

None in terms of the code.

Is the model scalable?

Yes

What scalability approaches does the model employ (if any)?

Uses lazy parallelism to run multiple cases in parallel on HPC.

What options does the user have in order to interface with the model?

Model input is primarily through the data files.

Typically, what options do users use?

Data files.

Are there any observed or documented reliability issues of note associated

with this model?

None.

What level of modularity does the software employ?

The model is an end-to-end procedural process of different technologies. Therefore

the ‘model’ is procedural outside of some modularity in the individual stages.

 64

What approaches to testing does the model employ?

Primarily uses scenario and externally validated data.

How reusable are the components within the system?

With the exception of the optimiser, which is a commercial product, the other

components that make up the StratBOI LP capability are tailored to the model.

 65

5.4 Model 3 - Diplomatic and Military Operations in a Non-war fighting Domain

(DIAMOND)

What is the purpose of the model?

DIAMOND is a is high-level, campaign model, intended for the representation of

peace-support operations.

The model is primarily focused on the representation of land forces, supported by air

assets. Maritime assets can be modelled, but their representations are simplified in

order to reflect their supporting role in such campaigns; such as sources of logistics

or platforms to deploy land or air assets from or into theatre.

What categories of analysis capability does this model cover?

Policy Simulation, Forecasting (Outcomes of Courses of Action) Planning &

Conceptual.

Is the model currently in-use?

No, the model custodian has retired the model due to a number of documented

reasons. Principally this is due to the fact that the pre-existing functionality within the

model cannot be repurposed quickly to represent new and emerging ideas. Even

when the model is able to be reconfigured, the cost benefit is low. A great deal of

knowledge within the staff has also been lost about both setting the model up and

developing the underlying code-base. The model is also noted as being very difficult

to fully understand due to the amount of residual DROMAS functionality that is

inherited by all models produced by DROMAS, but not all is used in DIAMOND. This

means there is not a clear boundary between the two.

What language and/or coding environment is the model written in?

Visual C++ using Microsoft Foundation Classes. Could is derived from the DROMAS

framework, which has also been used to produce other models in Dstl, such as

SIMBAT.

 66

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

Object-Orientation.

How large is the code-base?

Overall, the code-base is estimated to be somewhere in the region of 25,000 lines or

more. However, it is not completely clear from inspecting the structure as to how

much of this code is DIAMOND and how much of it is DROMAS. From examining a

few samples of modules that identify themselves as DIAMOND modules, these are

merely less than half a dozen lines in each that are specific to the model.

Are there any observable anti-patterns?

There is believed to be strong coupling in the model (spaghetti code), due to the

difficulty in reconfiguring the model to other situations. However, there are no current

developers to attest as to whether this is a product of DROMAS or DIAMOND

specifically.

Is the model scalable?

The model currently does not scale, but it would be possible to employ a technique

such as lazy parallelism to run multiple versions of the model in parallel. Beyond that

there is not enough understanding of the model’s code structure to draw upon in

order to employ anything more sophisticated within cost benefit.

What scalability approaches does the model employ (if any)?

None

What options does the user have in order to interface with the model?

The model is configurable through a GUI and a scenario file.

Typically, what options do users use?

The GUI exclusively. There is no record of setting up the model via the scenario file

approach outside of the test scenario that is used to validate the model. The scenario

file is flat-file with very specific formatting and contains special wildcard characters.

 67

Whilst the GUI is usable, the custodian does not consider it to be intuitive. This is due

to two main reasons. Firstly, data to configure one piece of functionality in the model

has to be configured in multiple interfaces; and it is not obvious that all of these

interfaces are inherently linked. Secondly, because DIAMOND inherits all of the

interface options offered by DROMAS, there are a lot of redundant elements in the

GUI. For example, entities within the model are able to fight each other, irrespective

of whether you give them any logistics to do so. This compounds the confusion as to

how the model works overall.

Are there any observed or documented reliability issues of note associated

with this model?

The model is noted to have two major reliability issues. Firstly, the model has a

memory leak, which has never been traced down because its source has not proven

to be identifiable within in the code-base. Secondly, it is believed that parts of the

DROMAS framework are reliant on the operating system for aspects of its

configuration. For example, the model can produce different results when ran on

different machine configurations, because it is believed that DROMAS is seeding

from the system clock. Again, this cannot be confirmed in the code-base as it is not

readily apparent where this activity is occurring.

What level of modularity does the software employ?

The code-base is extremely modular to the point that it is over specific. However, as

stated earlier, the distinction between DROMAS and DIAMOND makes it difficult to

know at what level classes are being derived.

What approaches to testing does the model employ?

Testing is primarily conducted via the test scenario. There are no unit-tests in the

DIAMOND code-base or test runner.

How reusable are the components within the system?

Due to the level of inheritance from DROMAS classes, DIAMOND classes are not

easily reusable outside of DROMAS based models.

 68

5.5 Model 4 - C3 Oriented Model of Air and Naval Domains (COMAND)

What is the purpose of the model?

COMAND is a high-level campaign model that provides a comprehensive

representation of both the maritime and air military domains.

A key characteristic of the model is its representation of the Command, Control and

Communications (C3) layer, whereby orders and information updates can be issued

to the forces. This gives both a scripted representation of the command and control

decision-making that typically occurs within military campaigns and the

representation of the interactions of information exchange and dissemination among

the units.

The model has a limited representation of ground forces, only including those

elements that are either targets for air or maritime assets; or threats to the operation

and survivability of the air and maritime assets. This includes elements such as key

installations and ground-based weapons platforms. If a more detailed representation

of the ground component is required, the data of COMAND is often fed into another

model that represents land forces and their operations at a greater resolution.

What categories of analysis capability does this model cover?

Policy Simulation, Forecasting (Outcomes of Courses of Action), Planning &

Conceptual.

Is the model currently in-use?

Yes, but with expert oversight.

What language and/or coding environment is the model written in?

Visual C++ using Microsoft Foundation Classes.

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

Object-Orientation.

 69

How large is the code-base?

Somewhere in the region of 25,000 – 50,000 lines.

Are there any observable anti-patterns?

The model custodian confirmed that the model has a high degree of coupling present

(spaghetti code); however, from his experience of the code base, whilst very time-

consuming, the code-base is at least concise enough that it is possible to follow the

thread of execution to root out bugs.

Is the model scalable?

Yes, at the executable level.

What scalability approaches does the model employ (if any)?

The model is currently configured to run multiple instances in parallel via lazy

parallelism. Some small experiments were performed at the time the model was

configured to run in parallel, to see whether process or thread level scalability was

possible. However, the cost benefit was deemed to be low due to the overhead of

understanding the coupling in the code-base.

What options does the user have in order to interface with the model?

COMAND offers a set of GUI forms for data input.

Typically, what options do users use?

In the custodian’s experience, once a user becomes familiar with the model, they

bypass the GUI forms completely and opt to configure the model using the underlying

databases. COMAND uses a combination of a master database and a scenario

database for configuration. The master database is applicable to all scenario and the

scenario database is specific to the scenario. If users are modifying these, then

changes to the master database have to be centrally managed and reviewed.

 70

Are there any observed or documented reliability issues of note associated

with this model?

In the custodian’s experience, most issues are a result of data input. However, the

model is not easily interruptible nor can it be started from a specific point-in time.

Therefore, if a crash occurs due to data input many hours into the runtime, it makes it

time consuming to replicate and resolve issues.

What level of modularity does the software employ?

COMAND’s underlying structures uses a very detailed Object-Oriented hierarchy in

order to structure its code components. Whilst the organisation is not overly specific

where an object can only represent an instance of capability (e.g. a type-45 destroyer

vs. a type-23 frigate) the objects are still specific enough that they can only be used

to represent a group of capabilities (e.g. surface vessels). Functionality is both

encapsulated within these capabilities, but also a range of generic model capabilities

are available as their own object services.

What approaches to testing does the model employ?

Testing is primarily conducted via the test scenarios. There are no unit-tests or test

runners present.

How reusable are the components within the system?

In the custodian’s experience, it would be faster to reimplement functionality rather

than trying to port it, due to the age and coupling of the code, and the reliance on

foundation classes. However, the conceptual underpinnings of COMAND are strong

and could still be used in such efforts.

 71

5.6 Model 5 - Aerial Delivery Model (ADM)

What is the purpose of the model?

The Aerial Delivery Model (ADM) is a model used for analysis logistics demand

across a node and arc network environment.

The ADM examines lift options at the operational level, which focuses on

understanding the requirements and challenges of moving logistics or personnel to

and through theatre using what is referred to as a ‘lift asset’. This would include

aircraft such as Helicopters, Chinooks and large carrier planes to name but a few

examples.

What categories of analysis capability does this model cover?

Policy, Forecasting (Demand of logistics) & Planning.

Is the model currently in-use?

Model is available, but not being currently used.

What language and/or coding environment is the model written in?

Python

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

Object-Functional (via the GAMOV framework approach).

How large is the code-base?

~500 lines of code unique to ADM (not including code provided by GAMOV)

Are there any observable anti-patterns?

Not in terms of the model’s functionality. As the model follows the approach of the

GAMOV framework, it uses the entity hierarchy for representing environment and

units and independent mediators for each piece of functionality. However, the ADM is

using an outdated version of the GAMOV entity base class. If the model were to be

 72

further developed, this would need to be updated to remove technical debt. Upon

reflection of this model, the entity structure in GAMOV, whilst providing a flexible

approach to the representation of units can easily fall out of sync with other models if

it does not keep pace with changes in the GAMOV framework.

Is the model scalable?

Yes, all functions in the model are first class objects and could be scaled onto HPC.

None of the functions are currently programmed to individually scale using parallel

processes or threads.

What scalability approaches does the model employ (if any)?

None currently

What options does the user have in order to interface with the model?

Data files only.

Typically, what options do users use?

Data files.

Are there any observed or documented reliability issues of note associated

with this model?

None.

What level of modularity does the software employ?

All functionality in the model is its own class.

What approaches to testing does the model employ?

All modules in the model are capable of being tested in isolation through unit-tests

and subsystems via integration tests at a desired level.

How reusable are the components within the system?

The ADM is focussed on logistics-based studies, therefore the model as a whole can

be reused as the basis for other logistics-based work, because the conceptual ideas

 73

associated with moving logistics across a network could be repurposed from aerial to

other ground-based methods. Components such as the route-finding routines to

deliver logistics to points of demand could also be reused across other models that

are not logistics based.

 74

5.7 Model 6 - Mission Command Model (MCM)

What is the purpose of the model?

The MCM is an experimental model designed to provide an automated command and

control core for campaign modelling. The model uses automated mission planning,

based upon the mission planner research to produce sets of missions that achieve

the overall objective of specific military actions, or courses of action. This would

classically be a manual process for the modeller requiring these missions and overall

campaign plan to be scripted, which is typically a very time intensive process.

What categories of analysis capability does this model cover?

Policy and Planning (Military Actions and Courses of Action)

Is the model currently in-use?

Model is available, but not being currently used.

What language and/or coding environment is the model written in?

Python

What coding paradigm is the model stated to follow (or appears to follow upon

inspection)?

Object-Functional (via the GAMOV framework approach).

How large is the code-base?

~2000 lines of code unique to ADM (not including code provided by GAMOV)

Are there any observable anti-patterns?

Not in terms of the model’s functionality.

Is the model scalable?

Yes, all functions in the model are first class objects and could be scaled onto HPC.

None of the functions are currently programmed to individually scale using parallel

processes or threads.

 75

What scalability approaches does the model employ (if any)?

None currently

What options does the user have in order to interface with the model?

Data files only.

Typically, what options do users use?

Data Files

Are there any observed or documented reliability issues of note associated

with this model?

None in terms of stability; however, the model has experienced issues with respect to

memory management associated primarily with the entity structure. Due to the

optimiser testing many different outcomes of plan, nested entity structures are being

copied lots of times and not being destroyed consistently when a plan is no longer in

scope.

What level of modularity does the software employ?

The model follows the approach of the GAMOV framework; thus, all functionality is

within its own functional classes.

What approaches to testing does the model employ?

All modules in the model are capable of being tested in isolation through unit-tests

and subsystems via integration tests at a desired level.

How reusable are the components within the system?

The MCM is focussed on delivering a core component that could be used for the

automation of command and control in other models. From that perspective, the

MCM is reusable in any model with a command and control requirement. However,

the MCM is currently tailored towards planning missions that occur on a node-arc

environment. Thus, the component would have to be extended if it were to be reused

in other modelling environments that operate on free movement or grid-squares.

 76

6 Analysis

6.1 Chapter Overview

Within this chapter the information collated from evaluating the models shall now be

analysed in order to further understand the implications of their individual

implementations.

6.2 Analysis of the Wartime Planning Tool (WPT)

The WPT is an example of what historically made up a large portion of the model

development activities within Dstl, which is using spreadsheet packages (principally

Microsoft Excel) supported with built in formulae, macros and Visual Basic for

Applications (VBA) code. In experience, the main driving force behind using this

approach (and more importantly, continuing to use it) is with respect to deployment of

the software. The majority of the customers that Dstl are supplying modelling

software to are running basic computing setups with strict security models. Therefore,

it is unlikely that these setups will have access to a programming language such as

Python or Java, unless it is bundled as part of the system setup. Even then, being

able to customise the setup of these languages to a specific model is also unlikely.

As a result, for a long time there has been an inherent convenience, in terms of

deployment of models to customers through using VBA with Microsoft Excel.

However, with the advent of languages such as JavaScript, which is effectively

available to anyone running a web browser, there are now alternatives to this

approach. The continued usage of this approach for modelling actively presents a

number of problems, which shall be highlighted in the next few subsections.

6.2.1 Poor Implementation

With VBA being readily available, with only Microsoft Excel being a pre-requisite, the

developer base for VBA in Dstl is extremely broad but technically shallow in terms of

software design experience. In experience, this has produced models displaying a

variety of issues, which can be observed in the WPT implementation. For example,

some of the underlying equations of WPT are encoded directly into the same cells as

the input data. This means that every calculation of WPT overwrites the input values

with the new output values. The analyst is then responsible in remembering to take a

 77

copy of the spreadsheet before processing it, in order to preserve the integrity of the

original input.

In light of the problems faced with spreadsheet modelling quality, considerable effort

has been made within Dstl in order to provide additional training and support for

these developers, including the development of dedicated software expertise in-

house to provide advice and support. Wider government has also supplemented

these efforts with the production of guidance, most notably the Aqua Book (HM

Treasury, 2015) for quality assurance in the production of models and products from

the analytical process.

6.2.2 Multiple pass process

WPT is an example of a spreadsheet model that operates with a feedback loop,

where the outputs of the one calculation are required as input to the next. Depending

on the model in question, this requires a lot of manual data input and pre-processing

activities to be undertaken for each calculation in the loop.

6.2.3 Reduced capability to test code

Whilst there are a number of open-source projects such as Rubber-Duck (Rubber-

Duck, 2014) that allows for approaches such as unit-testing and configuration change

control of VBA code; VBA on the whole is very difficult to test, as it does not easily

allow for modern development tool integration. As a result, verification can be difficult

and there are a number of instances where verification errors have persisted,

unnoticed within models for quite some time. This falls in line with the findings

presented by Roy, Hermans and Van Deursen (2017), which showed that most users

of spreadsheets in their studies tested them with scenarios rather than automated

methods and thus did not catch severe instances of errors in their implementation.

The WPT case study also illustrated an example of this through the re-

implementation of the model from its extant spreadsheet version into a Python

function in the GAMOV framework. The re-implementation of the model uncovered a

number of logical errors in the code that had persisted for many years, which would

never have been uncovered otherwise.

 78

6.2.4 Performance

Many of these spreadsheet models have been progressively adapted over many

years and are pushed beyond the means that Excel was designed to handle. As a

result, the performance of such tools can become very poor. The ADM case study

illustrated an example this. The re-implementation of the original ADM spreadsheet

into the GAMOV framework produced a model that overall performed better and was

more in line with reality. When the code was examined further, the GAMOV team

deduced that the when lots of frequent logistics drops were being made, the random

number generator in Excel was effectively breaking down and was unable to cope

with so many frequent call-backs. Analysis undertaken by McCullough & Wilson

(2005) concluded that older versions of Excel prior to 2010 displayed many issues

with RNG in terms of accuracy and performance that made it unsuitable for this kind

of work, which would have been the timeframe that the original ADM was conceived.

The GAMOV version of the model did not experience any of these problems, due in

part to being ran in a language suited for the purpose. Whilst it is possible that

innovations in later versions of Excel may not encounter these problems, by being

part of the GAMOV framework, the modeller now has the option of using different

distributions and their testing accuracy and performance; rather than being

constrained to what is shipped with Excel.

6.2.5 How could Object-Functional help WPT?

For the most part, spreadsheet models within Dstl represent what would be

considered either single functions or a sub-system that would be found within a larger

campaign model. In fact, there are many cases where spreadsheet models provide

direct inputs to the campaign level models. Therefore, by incorporating these

spreadsheets into any campaign model irrespective of implementation would bring

benefit in this regard. Firstly, they could feed directly into the model they are

supporting and secondly, they could be queued up to be re-ran multiple times

removing the mandraulic process of copying output from one spreadsheet run to be

input for the next. However, Object-Functional would provide the benefit of making

this a de-coupled component of a wider model, meaning that conceptual ideas like

WPT and ADM are a service of the wider system rather than being encapsulated as a

method of one of the model’s entities.

 79

However, Object-Functional would provide benefit with respect to testing these

spreadsheets, because each spreadsheet would become a functional class, or a

mediator under the GAMOV approach. This means that they become callable

(RESTful) services with a defined interface that can be tested independently with

unit-test and as part of the wider system of systems with integration tests.

Additionally, services that these spreadsheet models depend upon, such as random

number generators, would also be functional classes or mediators. This means that

different distributions and implementations of random number generation can be

plugged and unplugged from these models depending on either the changing

requirements of the model or the evolution of the science behind pseudo random

number generation.

6.3 Analysis of the StratBOI Linear Program

The StratBOI toolset is composed of a number of tools in order to answer the

questions of the overall programme. The tool that specifically optimises the balance

of forces to objectives is the StratBOI Linear Program (StratBOI LP), which is what

was examined via the case study.

6.3.1 Using proprietary software for models

Whilst the StratBOI LP is not a campaign model, it provides an example of a common

implementation method that is sometimes adopted for the development of campaign

models within the organisation. That is the incorporation of licensed, third party (off-

the-shelf) software tools working in cooperation with bespoke code developed in-

house. In in the case of StratBOI LP, this is an optimisation routine, but in others it

may be the underpinning software components of a larger modelling representation.

This presents a number of key benefits:

• Reduced Maintenance - Using proprietary tools can reduce the amount of

internal maintenance of the overall software. Whilst the software will still need

to be validated for our purposes, we are not wholly responsible for verification in

terms of how the product functions.

• Professional Support - There is the assurance that problems in the software will

be patched and critical updates will be received promptly for licence holders. A

common problem with internal software development is the incurring of

 80

technical debt, which is where a problem in the software has to be left

unrepaired or worked around in the interests of time and money. Having

external professional support helps to reduce that technical debt with respect to

the proprietary components.

However, there are a number of challenges with using licenced software for the

purposes of our modelling. These shall now be outlined in the next few subsections.

6.3.1.1 Black Boxes

Given that these software products are proprietary, there have been instances where

some of the underlying code is deliberately obfuscated due to the terms of the

licensing agreement. Whilst the software may have an API that will explain the inputs

and outputs to functions and the overall tolerances of the software, in practice, it is

often very useful for our purposes to see and understand the algorithms in order to

validate the representation. This goes back to the common issues associated with

models raised by Salt (2008), where black boxes impede our ability to provide

comprehensive assurance, because there are aspects of the system, we are relying

upon that we do not understand.

6.3.1.2 Complication to inputs

In some cases, the input data for a scenario has to be modified in order to account for

the behaviour of the software, either because it cannot be changed or it is intrinsic to

the functioning of the software. For example, in the case of StratBOI, there are

aspects of the problem that are inherently non-linear that have to be modified so that

they can be processed by the linear optimisation routines used within the proprietary

component. This could be solved by migrating to a non-linear optimisation approach

such as beam search or genetic algorithms, however, the culture of data preparation,

input and output of StratBOI would also have to evolve as they are somewhat slaved

to the dependencies of the original implementation.

6.3.1.3 Cost

Using these tools often requires payment for use of a license. Given the overarching

need to reduce costs, the usage of these products has to be balanced against a

study factors in order to at least justify the investment.

 81

6.3.1.4 Implementation Specificity

The use of proprietary software can drive the design of any bespoke elements that

are interacting with it. Therefore, if the proprietary software became unavailable

through business closure or suspension of support etc. there are potential

implications to the bespoke code written in-house. This is also true for software that

relies upon the workings of the operating system in any way. For example, built-in

random number generators, which could change as part of an operating system

upgrade. This also came out in the DIAMOND case study, where it at least appears

the DROMAS framework is dependent on such configuration in order to function.

6.3.2 Using proprietary software for campaign models

It is not unheard of within Dstl for third-party licensed modelling software to be used

to enable the entire implementation of a campaign model, using software such a

Simul8. However, the majority of the work that uses proprietary products in this

fashion is usually looking at subsets of the campaign in more detail, such as logistical

problems, casualty evacuation etc. where the outcome is an optimisation of a system;

as in the case of the StratBOI LP.

Campaign models are by their very nature far larger than many of these proprietary

products were designed to handle. They also possess unique characteristics with

respect to their representations that are not necessarily going to be ‘out of the box’

functions for many products. This comes down to a few key characteristics, which

shall be outlined in the next few subsections.

Compared to the majority of other fields that are using modelling and simulation,

defence campaign models represent an antagonist (i.e. the enemy forces) that are

actively working to undermine the system in order for their plans to succeed. In our

experience, whilst most third-party modelling software can represent disruptions to a

system; it is difficult to represent an adversary force that is actively planning in

response to the actions being made by its opposition. This fundamentally comes

down to the maturity of ideas in representing command and control within models as

presented by Moffat (2011). However, this is one of the reasons why we opt to build

models that represent these networks of decision-making using bespoke tools, so

that we can tailor the representation more towards our needs rather than effectively

kludging an idea using a pre-built tool.

 82

Coupled with having multiple sides being represented; those sides are not

necessarily representing just one force. Quite often a single side can be made up of

multiple forces from either different nations or sub-factions of a single nation. This

creates a great degree of interplay within a single side, which can be difficult to

represent outside of bespoke code due to inbuilt assumptions about how groups of

actors work within a simulation.

Quite often the forces at play within the models (even if they are represented as

being on the same side) are driven by other personal objectives that will impact their

behaviour within the simulation. These may be policy decisions or social factors to

name but a few; however, these are often difficult to represent outside of bespoke

tools again due to pre-built assumptions.

6.3.3 How can Object-Functional help StratBOI?

Whilst StratBOI does not suffer from many of the issues encountered by models such

as WPT, DIMAOND and COMAND as will be discussed later; the model is heavily

dependent on a black box component with respect to its optimisation routine. Due to

the proprietary nature of this component, the separation of data and functionality

brought about by Object-Functional would not provide any additional benefit to

StratBOI because it already exists in that regard. However, the StratBOI optimisation

routine could become a mediator in the GAMOV framework in order to increase its

utilisation across other problem spaces outside of StratBOI. Additionally, as with

WPT, this would allow additional testing harnesses to be attached to the optimiser to

better understand its functional behaviour. Whilst the optimiser would still be a black-

box conceptually, the ability to test at the point of contact rather than relying on

scenario level testing could provide additional assurance.

An observation from the evaluation that was recorded, but did not have an explicit

question in order to capture it, was that StratBOI is an example of a model, whose

outputs are a result of what could be considered emergence. The implications of

emergent phenomena shall be discussed later in more detail within section [7.4.2]

when the future research work is outlined. However, at this stage it is important to

understand that the presence of emergent phenomena presents an opportunity to

learn more about what is being modelled through the simulation (Georgiou 2007).

They offer significant insight into the functioning of the systems, such as what

 83

circumstances are required to produce certain events (or not produce an event).

Campaign models such as DIAMOND and COMAND will also produce this kind of

emergence due to the heavy interplay between the many systems represented in a

campaign model.

Whilst the solution produced by StratBOI can be validated by SME’s to ensure that it

is sensible, the ability to study the interplay between the variables of the model could

offer greater insight into why one solution was favoured over another during the

optimisation process. However, there is no automated tool or method in existence

that allows an analyst to engage with emergent behaviours. This highlights a

significant challenge associated with emergence in general that has yet to be

addressed (Sterman, 2000): Provision of an automated means by which to engage

with emergence within a constructive simulation. Whilst this is not the focus of this

thesis, the implications of emergence are an important consideration and it is

believed that Object-Functional could potentially aid in grappling with this complexity.

By having all functional elements of the system existing as functional classes and the

data modified through interfaces; the organisation of components inherent with

Object-Functional is believed to provide significant granularity to test flows of

information within the system. As emergence is concerned with understanding when

and why something has occurred, having the granularity in the system to pinpoint this

down would be key.

6.4 Analysis of the DIAMOND Campaign Model

The DIAMOND case-study unfortunately paints a much bleaker picture, as this is a

model that has been retired due to the fact that its implementation had become so

restrictive that it was no longer fit-for-purpose. Building representations within

DIAMOND are no longer cost effective because of this, but also the conceptual

underpinnings of the model have greatly evolved and could not be changed. The

modeller is not only forced to repurpose functionality that is deficient in terms of its

implementation but also in terms of what it is conceptually representing.

6.4.1 Usage of DROMAS

Examining the model from an implementation perspective, DIAMOND is one of a

number of models that is based upon a framework known as DROMAS, which was a

precursor attempt to realise a reusable component framework similar to the GAMOV.

 84

However, DROMAS was rooted in realising this through Object-Orientation and did

not at explicitly consider it in the terms of the Functional paradigm, albeit it was

striving for reusability in pure Object-Orientation.

DROMAS intended to provide a component architecture whereby models and their

GUI could be quickly implemented, but as a result constrained the range of potential

solutions. However, DROMAS lacks the flexibility that would be expected of a

reusable framework, because the policy for how the components should be

assembled is overly restrictive. The examination undertaken of the code-base, whilst

very high level did suggest this might be the case. Firstly, it was very difficult to

identify where the boundary between DROMAS and DIAMOND existed. Secondly

those classes that identified themselves as being DIMAOND by name, merely

contained code that were parametrisations of DROMAS functionality. This means that

DIAMOND in reality is just parameterisation of DROMAS and does not have the

option to add capability to the framework when compared to something like GAMOV.

As a result, all models produced from DROMAS are merely slight variations on a

theme with extremely similar looking GUI’s and performance. To compound this issue

further, the API for DROMAS is extremely difficult to interpret for new developers, due

to documentation quality and a lack of knowledge retention. Therefore, DIAMOND

and other models produced from the DROMAS framework have been difficult to

maintain and adapt, with instances of these models, including DIAMOND been retired

from service.

6.4.2 Code and Concept are coupled

The DIAMOND model was originally implemented and validated against the MODs

understanding of the requirements for conducting a peace support operation, based

upon the events surrounding Bosnia. However, with the advent of conflicts such as

the Iraq and the Afghanistan wars in the 2000’s, our understanding and policy

regarding peace support operations has fundamentally changed. Afghanistan and

Iraq are examples where peace support has evolved into a more long-term and

enduring military task, with more involved activities, such as repairing the

infrastructure of the nation and building trust with the populace. Enemy tactics have

also changed, with more focus on terrorism and insurgent based tactics, which

requires a different set of representations within the models. In the case of

DIAMOND, the original representations are believed to be hardwired into the code as

 85

functionality, rather than through data. As a result, inputting a new scenario into the

DIAMOND model is extremely time-consuming. This is because the modeller is

forcing the representation of the scenario into the pre-existing functionality defined by

DROMAS for another purpose. Thus, the modeller is working towards realising

something that is close enough to being considered reality rather than grappling with

the reality itself.

6.4.3 Coupled GUI

DIAMOND is also an example of a model that was heavily coupled to its GUI. The

GUI component of the DROMAS framework underpins the construction of models

from the framework. As a result, nearly all input and output from the model occurs

through the GUI, with a heavy reliance on forms. This makes data input to the model

quite long-winded because of the number of visual elements that needed to be

interacted with to simply add something small, such as a new unit. Additionally, the

underpinning data files of models based on DROMAS were not easily human-

readable. As a result, the GUI becomes the only viable option for model interaction.

However, outside of the usability issues this causes, the fact that every DROMAS

model GUI is the same creates an operational issue for the modellers. Because every

GUI option provided by DROMAS is inherited and represented in the final product

there is redundant functionality in the DIAMOND model GUI. As illustrated in the

case-study, DIAMOND has the GUI option to give entities the ammunition to fight, but

they will fight and inflict damage upon one another whether they have ammunition or

not. As knowledge retention for the model has already proven difficult, these

compounds the understanding for new modellers, as the scope of the model

capability is very unclear.

 86

6.4.4 How can Object-Functional help DIAMOND?

Unfortunately, as DIAMOND appears to be a parametrisation of DROMAS it is not a

model that can stand to benefit from an Object-Functional approach directly, because

it is by its very nature a reconfiguration of a framework, rather than a model being a

product of a framework. DROMAS itself would have to be changed to conform to

Object-Functional.

The Object-Functional approach does however discourage the practices brought

about the design of DROMAS style framework. One could even go as far to say that

Object-Functional is the anthesis of this approach. Because Object-Functional strives

to make all methods functionally independent via functional classes, they become off-

the-shelf services, with their configuration left to the modeller to define. DROMAS

unfortunately defines this configuration for the modeller, thus reuse is diminished

unless the component is being used in a context that is the same or very similar. In

this way Object-Functional not only allows you to define the model, it also allows you

to define the framework of that model.

The GAMOV approach to Object-Functional does provide some constraint on the

model framework, but only with respect to how the data and functionality interface

works. This is a necessary constraint to preserve this interaction and ensure

consistent behaviour, but does not preclude the user from plugging components

together in whatever fashion they desire, in order to build a model. This could

potentially allow modellers to build something that is invalid or not fit-for-purpose, but

that is not the responsibility of GAMOV; the onus is on the modeller to validate their

GAMOV solution. However, the flexibility afforded by this setup would allow the user

to rectify this. DROMAS seems to have taken the approach, explicitly or implicitly of

not allowing the modeller to make any mistakes in most areas, but that has come at

great expense to its flexibility and ultimately led to the DIAMOND model being

discontinued.

 87

6.5 Analysis of the COMAND campaign model

The COMAND campaign model paints a much brighter picture when compared to the

DIAMOND campaign model, because it is still experiencing continued use. All

elements of the COMAND model are written in Visual C++, using Microsoft

Foundation Classes (MFC). This includes the business logic, which consists of highly

specified Object hierarchies and the GUI. This gives the tool a familiar look and feel

to the overall Windows environment that it runs on. However, COMAND stands as a

prime example of the issues and anti-patterns brought about by the various

interpretations one can make of the Object-Orientation paradigm, which shall be

explained in the next subsection.

6.5.1 Anti-Patterns present in COMAND

Upon examination of the code, COMAND’s underlying structures uses a very detailed

Object-Oriented hierarchy in order to structure its code components. Whilst the

organisation is not overly specific where an object can only represent an instance of

capability (e.g. a type-45 destroyer vs. a type-23 frigate) the objects are still specific

enough that they can only be used to represent a group of capabilities (e.g. surface

vessels). COMAND’s implementation highlights the problem associated with tight

code coupling commonly associated with Object-Orientation. Functionality in the

COMAND model is owned by the entities themselves as the per the concept of

encapsulation.

The lack of both interdependence and interfacing between the model’s code

elements means that the functionality is potentially sensitive to small changes and the

model custodian confirmed that this often produces significant side-effects in other

areas of the code. COMAND has now in fact reached a point where it cannot be

further adapted due to the production of these side effects at practical cost. As a

result, COMAND is becoming progressively more limited in its ability to represent

scenarios, without incurring significant overhead in the model setup time.

COMANDs code has elements of the ‘spaghetti’ anti-pattern due to the tight coupling

between some of these components. However, there is no obvious ‘blob’ pattern in

the code to further compound the maintenance. As discussed in the literature by

Abbes, Khomh and Gueheneuc (2011), the existence of spaghetti code alone can be

managed provided it is not compounded by a blob. This falls in line with the

 88

experiences of the model custodian who has experienced and observed that most

COMAND developers can navigate the code to root out problems, albeit to greater

time and cost if the code were not organised this way. However, as the COMAND

code is now so sensitive to change, this also suggests the presence of a ‘lava flow’

anti-pattern (Webster, 1995) in potentially multiple places. This means that the

coupling has produced functional dependencies that if changed would stop other

parts of the model working entirely.

COMAND also suffers from the fact that data, representing behaviours has been

encoded into the functionality of the model, which cannot be easily modified through

other forms of data entry. The custodian suggested that this likely occurred as a

result of time pressures in the development history of the model, however, this is now

technical debt that cannot be easily addressed. The presence of this data can put

significant limitations on the representation of certain elements (in some cases,

prohibiting a representation of entire aspects of a scenario) and extends the model

setup time. Often, the analyst is required to script additional tasks to force the

components to behave in the correct manner. For example, certain elements of

military policy (that were correct back when the model was originally constructed)

have been encoded into the model, which may force units to commit or retreat from

certain tasks due to the emergence of certain conditions. The analyst may either

have to script a task multiple times, or manually remove the conditions that force a

unit to commit or retreat in order to ensure that a scripted task is completed in

expected timeframes of the scenario.

Given the progressive limitations upon the adaptability of COMAND’s code modules,

the model is often unable to represent novel elements that are starting to emerge in

the military domain; for example, Cyber. Whilst it may be possible to script the effects

of something such as a Cyber-attack, representing point of origin and transmission of

the attack through a network of capabilities is not possible. Whilst information can be

passed between the forces, the resultant effect on their behaviour is very limited. For

example, it is possible to interpret from the model what an individual unit knows about

its current surroundings and the knowledge it possesses about where other units are

positioned. However, units for the most part cannot react to this information to either

change its course of action or influence other units’ behaviours. To a certain extent

this comes down to a lack of understanding of ‘perception’ to which significant

research effort is being devoted across the lab. However, the main limitation for the

 89

model as a piece of software is the inability to represent the impact of dynamic

command and control network.

6.5.2 Data Management

Data is primarily fed into the model using a Microsoft SQL Server database; however,

some data can be directly fed into the model via its GUI. COMAND data is typically

structured into two databases:

• Authorised Database – Contains scenario-independent data that is used by all

scenarios represented within COMAND. This primarily includes performance

data of the military capabilities, such as movement speeds, firing rates, fuel

capacities etc. Changes made to the authorised database have the potential to

affect all pre-existing representations made in the model; therefore, changes

are strictly controlled.

• Scenario Database – This database contains the data values pertaining to the

specific scenario being represented. Every military scenario that is represented

within COMAND has one of these databases. Common data elements that can

be found within this database include the forces structures, key locations, target

and other elements such as weather.

On average the model custodian estimated that it takes, at a minimum, 2-3 months

for a new scenario to be built and tested from scratch. However, this is a rough

estimate, because this is heavily dependent on the size of the representation and or

the presence of a similar scenario that could be adapted into a new one. The

separation of data using the approach of two databases is effective in terms of control

changes in the model and the individual scenarios; and reflects the approach that

GAMOV takes in how it manages its entities. The authorised database in GAMOV

would be the GAMOV entity template and the scenario database would be the

specific model entity. However, the configuration management of these files can be

an overhead. This situation has greatly improved with the decision to adopt a

Microsoft SQL database solution in the models later life, but previously COMAND

used to use Microsoft Access databases to store its data. The problem under Access

is that the combination of the authorised and scenario databases only produced one

representation of the scenario. If another variation of the scenario was required, a

new copy of the scenario database including these changes had to be produced. This

 90

could make the tracking of changes difficult because if a fundamental change is

required to the scenario, then this has to be replicated and kept in sync across all

scenario files.

Compared to DIAMOND, COMAND’s data is much easier to access and is presented

in a human-readable format; therefore, the analyst has the option to use either a

database GUI or the data files directly. COMAND therefore has much less coupling

compared to DIAMOND with respect to its GUIs; however, some coupling between

individual data elements and the model GUI still exist. This means that changes to

the underlying business logic of the model have to be reflected through on the model

GUI. COMAND also has a visual representation of the scenario, including the

geography, the location and status of the assets. Additionally, data can be input into

the databases through this representation is and through a number of forms for data

entry. However, in practice, it has been observed that the analysts seldom use this

approach, preferring direct manipulation of the databases themselves.

Lastly, in order to visualize the scenario on the GUI, COMAND requires information

on the geography. This is supplied to the model in the form of a map file, which

consists of a sequence of 0’s, 1’s and 2’s values (0 representing water, 1

representing land and 2 representing coastal divide). This means that for the most

part, an analyst is required to draw the terrain by hand, with the assistance of some

input tools. This in particular can be a cumbersome and time-consuming aspect of

creating a new COMAND scenario. Not only is the analyst required to interpret

geographical data by hand and eye, they also need to consider aspects such as the

curvature of the earth implicitly within their representation.

6.5.3 How can Object-Functional help COMAND?

The key benefit that Object-Functional could bring to a model such as COMAND is

the elimination of the anti-patterns present within the code-base. Given the coupling

present, the conceptual ideas within COMAND would need to be re-implemented into

an Object-Functional structure, rather than reorganising the current code-base.

Because all functionality is broken into functional classes in Object-Functional, as

opposed to encapsulation as they are currently in COMAND, then the coupling would

become much looser but explicit as per the goal outlined by Ottinger and Langr

(2011).

 91

The analysis of the ADM and MCM models will help to illustrate this further later in

the analysis. This would allow COMAND like functionality to exist as off-the-shelf

(RESTful) and be reused across many different entity types, as opposed to

functionality being shared by the owning entity or potentially duplicated for a subtly

different purpose.

6.6 Analysis of the ADM

The original development of the ADM was designed as a test in order to demonstrate

that GAMOV could rapidly realise small-scale simulation that would normally be

produced using either a VBA spreadsheet model, or a COTS based solution such as

Simul8. The objective of the test was to re-implement the pre-existing version of ADM

that was written in VBA, using the GAMOV framework.

The ADM examines lift options at the operational level, which focuses on

understanding the requirements and challenges of moving logistics or personnel to

and through theatre using what is referred to as a ‘lift asset’. A lift asset would be

described as some form of aircraft with both a capacity to carry logistics, but also the

mechanisms required to deploy them through some form of an air-based drop. This

would include aircraft such as Helicopters, Chinooks and large carrier planes to name

but a few examples.

Specifically, for this model, it is representing the movement of logistics from a main

distribution point to delivery points where a demand for logistics has been made. The

output of the model is the understanding of how effective the lift assets available

within theatre can provision logistics to those points of demand. The ADM was in the

process of being re-implemented from its VBA implementation into Simul8. The

purpose of GAMOV representation of the model was to demonstrate that we could

achieve the same task potentially reducing our reliance on licenced software.

The ADM implementation in GAMOV uses all of the core subsystems of the GAMOV

model and made extensive use of the entity and mediator structures. For the

representation, we used a central pod and a number of delivery points, all of which

were represented by an entity structure. The transport vehicles were also

represented using entities, as well as the logistic deployment systems and the air

dropped options.

 92

Figure [8] – ADM Layout

6.6.1 What does Object-Functional bring to the ADM

6.6.1.1 Detailed Entity Structures

The original ADM design only took into consideration the movement and deployment

of logistics to points at a very high-level. It did not take into account some of the wider

issues associated with logistics, such as:

• Deployment mechanism - In other words, the mechanism that is fixed within the

logistics carrier used to deploy the logistics.

• Pallets - The containers holding the specific type of logistic. Pallets are typically

reused but may sustain damage.

• Implicit with this is the pallet recovery and repair feedback loop, where

some pallets may be taken out of action for a short duration for servicing

and thus would not be able to provision logistics during this time.

 93

The GAMOV entity structure is used to incorporate some of these wider issues within

the representation. This was achievable due to the fact that entities can hold other

entities, which resulted in the following structure for ADM:

• Carrier Entity - The Entity, which moves logistics to and from the APOD to a

delivery point. These entities hold:

• Deployment mechanism Entity - The specific system within the Carrier that

holds the logistic pallets in place and deploys them upon arrival to the delivery

point.

• Pallet Entity - These are the actual pallets that hold logistics of a particular type.

These Pallet entities are then held by an instance of a Deployment Mechanism

Entity, which in turn are held by an instance of the Carrier Entity. As pallets are

deployed, they are transferred from being held by the deployment mechanism

to being held by the entity that represents the delivery point.

This provides a richer and more comprehensive picture of the different systems

involved at the entity level in terms of what occurs within an ADM type problem. Also,

each of the entities has the potential to be offloaded to other entities, which could

provide a more flexible system where entities are passed to other entities physically

rather than just their data.

Lastly, by putting the ADM into the GAMOV framework, there is now the potential to

incorporate it as part of a wider constructive simulation (as was the case with the

WPT model). The ADM view makes up only part of what is considered to be the wider

intra-theatre logistics problem to be analysed.

6.6.2 What does Object-Functional take away from ADM?

Nothing with respect to Object-Functional itself added overhead to this model.

However, the GAMOV implementation via the entity structure showed some

conceptual overhead. Upon examining the codebase, the ADM was discovered to be

a using a significantly outdated version of the base template for GAMOV entities. The

means that ADM is now out of sync and its entities are now suitably different to other

models. This presents a conceptual overhead that will need to be managed in order

to make the entity solution in GAMOV effective.

 94

6.7 Analysis of the MCM

The development of MCM was intended to realise the aspiration of a dynamic

command and control system within a campaign model (Moffat, 2011). The GAMOV

approach was used to produce this model so that it could be reusable command and

control core for the basis of future models (Glover, Collander-Brown & Taylor, 2017).

The MCM model was built upon the Mission Planner research, (Lucek & Collander-

Brown, 2014) which aims to alleviate what has been up to this point mandraulic

process, by automating the generation of courses of actions. In other words, it

generates the sets of missions needed in order to complete the individual military

activities of the campaign plan. This is normally something that would have to be

manually scripted by the analyst, with subject matter expertise from the military.

However due to the various implementation issues in models such as DIAMOND and

COMAND, the process of scripting these missions are cumbersome and time

consuming. This is co

The mission planner is a genetic program combined with simulated annealing that is

designed to optimise a sensible plan that will achieve the outcomes of the campaign.

Like all optimisation algorithms of this nature, the mission planner is susceptible to

the limitations in human knowledge about the situation being modelled. If the correct

balance of what is permissible and not permissible is not correctly communicated to

the planner, it will optimise a solution that is not representative of real-life. However,

the capabilities for the planner to automate the generation of plans and the savings in

time it will potentially provide makes it a key piece of research.

The Mission Planner would effectively complete a trio of previously developed

algorithms that solved other aspects of campaign planning. These are the rapid

planner, which was already incorporated into GAMOV framework. Alongside that is

the Deliberate Planner, which is seeking to replicate what is referred to as the

deliberate, planning process. In real life this would be where a commander(s), prior to

the start of a campaign, would plan missions and assign forces in order to meet the

overall objectives of said campaign. However, the deliberate planner only worked in

terms of assigning the correct force mixes to pre-scripted objectives supplied by the

analyst. The sequence of missions still required a lot of heavy scripting in order to be

represented within the model. This is traditionally a very time and resource intensive

 95

process as part of the model setup. It’s also important to remember that this level of

effort only results in one course of action for the campaign. If the model reveals that

there are faults in the course of action, or the course of action is changed through

military or SME input, then a whole new representation may need to be scripted

again in the model.

6.7.1 What does Object-Functional bring to the MCM

6.7.1.1 Rapid incorporation of a new idea

Exploitation of the GAMOV approach to Object-Functional was arguably the only

viable route (outside of an entirely new model development project) to exploit the

mission planner research. Models such as COMAND and DIAMOND would have

been prime candidates to exploit the benefit brought about by mission planner, due to

the length of setup time required in order to script their plans. However, due to the

amount of coupling found within these models, incorporation of the mission planner

code into the existing code-bases was completely impractical, if not impossible within

practical cost. The modular nature afforded by functional classes in the Object-

Functional paradigm was believed to provide the means to realise the mission

planner algorithms as a mediator that can be reused by other models.

The implementation of MCM model is still very much a work in progress and

culminates the largest and most complex model built using the GAMOV approach to

date (Glover, Collander-Brown & Taylor, 2017).

6.7.2 What does Object-Functional complicate in MCM?

6.7.2.1 Layered Reuse

 Assessing the reusability potential of the MCM, highlights a need to differentiate

between mediators more than just their functional independence. Throughout the

development of MCM, it was acknowledged that there needed to be more of a

distinction between mediators in terms of the GAMOV layer diagram. Up to this point,

GAMOV mediators had only been conceptualised and described as independent

components. Whilst this is true terms of looking at them as software, this did not hold

true in terms of the model. MCM highlights that there are going to be special cases

where only certain types of mediator can be used in certain types of model and thus,

they should be classed differently to those mediators that are truly independent. This

typically falls in line with Fielding’s (2000) requirement to have a layered system

 96

within REST, where at least conceptually certain components should not interact. The

mission planner mediator is actually made up of a number of subsystems in order to

form what would be described as a mediator; however, it could not necessarily be

used in every type of model being built from GAMOV. The same can also be said for

the mediators that handle movement across node and arc networks. If a model uses

another form of environmental representation, which for example may be coordinate

based, then it will have to use a different type of mediator to handle movement. Even

though both ADM and MCM have been using node and arcs to-date, this requirement

had not been apparent until MCM development, because we had only been building

node and arc-based models. This is more of a distinction in terms of aiding in

communicating the concepts to people outside of the team rather than in aid of the

developers understanding. However, this distinction is important, so that if someone

less experienced is designing a model that there is some clarity to mitigate instances

where they try to combine mediators that would not work for their class of model.

6.8 Summary of findings regarding Object-Functional

Following the qualitative analysis of the models used in this study, this section shall

now collate all of knowledge gained with respect to Object-Functional. The purpose of

this is to frame all the findings in preparation for the conclusions that shall be

presented within Chapter 7. Many of these insights were discussed earlier within this

thesis; however, this section shall pull all of that learning together into one place.

6.8.1 Status of the Object-Functional Paradigm

The Object-Functional paradigm appears both modern and powerful. This was

confirmed by the literature by Lau 2015 and Erikson 2012 and an external

assessment of the GAMOV concept undertaken by Boakes and Hanley (2017).

However, the understanding of this paradigm is still very much evolving. The amount

of academic literature explicitly referencing the term Object-Functional is still low, with

most of the understanding currently existing within sources such as blogs, with Lau

(2015). The paradigm also appears to have other definitions in common use within

the literature, such as ‘functional classes’ as expressed within Kontio, Mäyrä and

RÖnkkÖ (2007) and It is possible that there are other works that are following the

paradigm, but have not necessarily acknowledged the fact or are using a bespoke

descriptor (as in the case with GAMOV acknowledging the paradigm late on in its

 97

development). More formal publication is needed under the name of this paradigm to

help bridge this gap in nomenclature and understanding.

As highlighted by Sousa and Ferreira (2012), there is a lack of formal design patterns

for the Object-Functional paradigm. This research presents the makings of a pattern,

from a high-level perspective, in terms of code organisation through the GAMOV

framework. This can be seen chapter 4, which highlights the Entity-Mediator

interactions, which explains how functions are scheduled and processed. However, a

low-level implementation pattern would still be required in order to effectively

communicate the approach to developers who are using it in order to protect the

underlying architecture of software projects. For example, the GAMOV entity-

mediator interaction, in terms of passing functions and state between the two, could

be achieved in more than one way through code. The associated implications of

using each approach needs to be further understood and documented in the context

of other projects as they present their findings.

Whilst there is a lack of formal design patterns for Object-Functional, the

understanding of the intent behind the organisation of the code can be seen by

extrapolating ideas from pre-existing protocols, such REST, which was

communicated by Boakes and Toomey (2012) and tuple space message passing

models (Ahuja, Gelernter & Carriero, 1986). Whilst there is no evidence presented in

this thesis to suggest that Object-Functional, REST and tuple space languages are

directly influencing one another, there is at least appears to be an association of

ideas between the fields that these paradigms are concerned with. This was also an

implication of the conclusion of Sousa and Ferreira (2012), where extant patterns can

easily be extended, extrapolated or combined to produce new patterns such as

Object-Functional.

6.8.2 Benefits of Object Functional

From the examination of the literature and the application to defence models thus far,

the benefits of Object-Functional appear to be:

• Reduced Coupling – The Object-Functional organisation of code provides a

loose but explicit coupling, which is the goal to removing the tight coupling

associated with Object-Orientation as highlighted by Ottinger and Langr (2011).

This helps in controlling the spread of side effects as a result of changes to the

 98

code base. This can also be expressed as the removal of anti-patterns as

hypothesised by Sousa and Ferreira (2012) to which both ADM and MCM do

not have any present.

o Object-Functional is not about discarding any of the concepts found within

its constituent paradigms. I would argue that all of the Object-Oriented and

functional constructs that were critiqued are still useful and serve a purpose

within Object-Functional. It is simply a case of finding what is the best

application for these constructs to yield their benefits for a particular

problem. However, from the experiences on developing the GAMOV

framework and building models from the framework, I would commend

Object-Functional as a powerful framework for organising code. In the

models that were produced, the qualitative assessment showed that there

were no obvious anti-patterns with respect to the functionality and classical

coupling problems found in Object-Oriented are managed before they have

a chance to take hold. In a way this is similar to a framework like Akka

(Lightbend Inc, 2011), which removes many of the conditions that would

produce race-conditions from occurring within parallel code.

• Inherent Scalability – The organisation of the code is believed to enable the

ability to scale the functions onto parallel hardware as highlighted by Odersky

(2014), but this has not been tested on GAMOV models thus far.

• Increased potential for reusability – Both the ADM and MCM models produced

from the GAMOV framework have varying degrees of reuse. In the case of

ADM, the model provides a basis from which to construct other logistics models

and some of its mediators proved to be more independent that they could be

applied to wider problems. For MCM this was less so, because the mediator

combinations produced a framework of model that could only be reused on

problems that are similar to MCM type optimisations. However, this is in stark

contrast to older models where either no reuse was possible in the case of

DIAMOND, or very limited to conceptual reuse of the ideas in COMAND.

With respect to the GAMOV implementation of Object-Functional, the following points

should be noted:

 99

• Interfacing – The organisation of code by splitting transformative functions away

from the state that they manipulate allows for new ideas to be added and for

pre-existing ideas to be amended or removed with a clear understanding of how

the change will affect the other components in the code-base. This allows for an

audit trail of changes to the model with respect to the validation of the

representations. This will also enable discretised development practices and

code-sharing strategies that could potentially be exploited on wider modelling

frameworks such as the HLA.

• Single Methodological Ontology – It is believed that having all entities

expressed with the same data structure helps to simplify the modelling. Whilst

this is not a pre-requisite of Object-Functional, it could serve as a

complimentary or extension pattern to Object-Functional for the organisation of

state in software of this nature.

• Entity functions – Whilst the separation of functionality is at the heart of the

paradigm, there are instances where it is permissible to still retain functionality

within the state objects. This was highlighted with respect to bookkeeping

functionality in the GAMOV entities within section [4.4.2.4]. In terms of GAMOV

this is colloquial rule for the team, whereby functions can exist in the state

objects provided they are private to the object (i.e. they don’t manipulate state

in other entity objects). This is an element of good practice that may wish

consideration when framed in an Object-Functional design pattern, because at

least in the defence context there are scenarios where state manipulation in this

way is unavoidable.

6.8.3 Challenges of using Object-Functional

In addition to the benefits and observations made in the previous subsection, there

are some points that are worth considering when using Object-Functional in order to

mitigate potential problems.

• Component Levels – There needs to be some distinction between component

levels in order to make it clear what is permissible in terms of interfacing. This

was noted in the analysis of MCM, where it became clear that only certain types

of mediators would be permissible within certain types of model. However,

there is nothing in terms of code constraints to preclude a developer from

 100

plugging those components together all the same, which could affect overall

validation of their solution. Management of entity layers is something that would

have to be managed externally with care.

• Protecting the Integrity of the paradigm – As noted in the overview of GAMOV,

specifically, protection of the Object-Functional organisation is important. It is

very easy for a subtle misinterpretation by a developer to violate the approach

or incur technical debt if there is no formal and explicit guidance on how the

paradigm is applied to the software. This should also apply higher up in terms

of communicating the approach to other developers who may not be within the

sphere of influence of the owning development team.

6.9 Chapter Summary

Within this chapter the overall learning with respect to Object-Functional has been

collated and analysed from case studies of extant models and models built using the

GAMOV approach. The next chapter shall present the conclusions to this research

based upon this learning.

 101

7 Conclusions

7.1 Chapter Summary

Within this chapter, the conclusions based upon all of the learning uncovered

throughout this thesis shall be presented in support of the research questions. This

shall include the insights gained from the evaluation of models built using other

methods and paradigms versus those using Object-Functional under the GAMOV

framework approach.

In addition to the formal evidence uncovered from evaluating the models, a number of

lessons learnt shall also be covered as part of evaluating the overall experiences of

developing GAMOV. Whilst these are empirical observations from a bespoke

development and not a formal experiment, it is believed these insights are worth

highlighting due to the evolving nature of the paradigm and the lack of formal

declaration of its use in the literature. Even though these issues may not be

experienced or even refuted later by similar developments, they serve as points worth

considering for those venturing into this territory.

Finally, some of the future plans for GAMOV development shall be presented, as well

as other related research avenues that I briefly explored as part of this research, but

remain unaddressed.

7.2 Overall conclusions in support of the research questions

7.2.1 What benefits does the Object-Functional paradigm bring to defence
modelling?

It is believed that there are a number of demonstrated benefits brought about by

exploiting the Object-Functional paradigm, compared to previous development

examples. The benefits that were demonstrated in support of this research question

include:

• The ability to easily add new functionality to a model through the use of the

mediator interface. The mediator provides a de-coupled mechanism with a

defined interface that allows functionality to be added and used by any entities

that have the requisite data values. This provides an iterative approach to

model development, where functionality can be added, adapted or even

 102

removed. This also strengthens the ability to perform verification and validation,

because the impact can be measured from making these iterative changes to

the model.

• For both the ADM and MCM models that was constructed using the GAMOV

object-functional approach, some benefit of the reuse potential of the

framework exists. Because there already exists a reusable time management

system, configuration management system and the structures required for the

entities and mediators within the GAMOV framework, the modeller is not

required to re-invent the wheel each time a model was built. Compared to the

old suite of campaign models, where these components are not inherently

modular, these were constructed from scratch each time. Whilst the full

potential of this aspect will only emerge with more model developments, the

fact that we could effectively launch straight into designing and implementing

model functionality and focus on building a representation through entities is

believed to be a much more agile environment. It could be argued from a high-

level perspective that the DROMAS framework provided similar capability;

however, DROMAS was far harder to adapt due to the level of coupling

between the framework components and the resultant model merely being a

parametrisation of DROMAS. There was also significantly more overhead at the

beginning of each model development due to the heavy focus on visualisation

in that framework.

• All of the components within the GAMOV approach to Object-Functional do not

have to be used solely for the purposes of GAMOV models. Each of the

components are free of context with respect to the overall framework they sit in

and only form something that is reflective of a GAMOV model when used

together. Due to the decoupling brought about by using functional classes, each

component can be used in isolation to support other model developments within

Dstl. For example, the random number generator within GAMOV is an off-the-

shelf component that could underpin any model requiring stochastic elements.

Another example would be the configuration management system for creating

parametric variations. This is a common task for most analysis studies requiring

a model and is an element that is continuously re-built for each development.

 103

• This suggests that GAMOV may need to branch out beyond its original

remit in order to be more akin to a warehouse type approach, whereby

modellers can access functionality in a more off-the-shelf manner.

There are also some potential benefits that the Object-Functional approach enables;

however, these have not necessarily been demonstrated in practice with the model

developments to date. These include:

• Only a limited amount of model re-use has been achieved so far with the

approach. A goal of creating the GAMOV framework and exploiting Object-

Functional was to reduce the amount of new development effort each time a

model was required, by repurposing pre-existing models for a new study. The

full potential of this ambition can only be demonstrated in time and continued

usage; however, the potential for this is believed to exist. Going forward the

amount of component reuse being experienced with the GAMOV framework

should be monitored, in order to claim that benefit is being gained in terms of

time and associated cost compared to historic model developments.

• As a result of using a single data structure approach for the representation of

entities, the amount of code in the GAMOV code-base is believed to be lean,

when compared to our previous models. The separation of functionality also

aids in our ability to diagnose problems and bugs in the framework quickly.

However, it would difficult to prove claim with any certainty at present because

our extant models, also suffer from significant problems inherent from their

development histories that are not necessarily a product of the paradigm that

they were using. All the same, this would be an interesting benefit to explore

and further assess in particular whether the Object-Functional paradigm does

in-fact produce better code (and in what sense) comparatively to Object-

Orientation.

7.2.2 What challenges does the Object-Functional paradigm bring to defence
modelling?

Whilst appreciating all of the benefits listed above and, in the analysis, there are

some potential challenges Object-Functional poses:

• As stated in the literature by Sousa & Ferreira (2012), there is a significant lack

of design patterns in existence for the Object-Functional paradigm. The

 104

GAMOV framework presents a high-level example of a design pattern with

respect to the entity and mediator structures. However, because there lacks an

explicit representation of this approach within the literature, it can make it

difficult for new software developers to understand the entity-mediator

relationship simply from the code-base alone, because they have nothing to

compare it to. This could place the integrity of paradigm at risk within the

software unless it is tightly controlled. For example, as stated in the overview of

GAMOV there are no hard limitations in the mediator concept to stop a

developer from breaching it and produce a subtle variation that could produce

internal coupling within the models.

• As shown in the analysis of ADM; that model was shown to be using an

outdated version of the core entity template used to build GAMOV models.

Comparatively to MCM, this could mean that ADM is operating on outdated

characterisations of entities or is not making use of more generic functionality

that had been refactored into the entity with later model developments. Not only

does this produce technical debt, it provides an overhead that needs to be

managed across all models produced from the framework. This is an overhead

of GAMOV more so than Object-Functional itself.

• Whilst Object-Functional is believed to provide increased flexibility, there is an

onus on the developer to manage that flexibility so that it is not misused.

Object-Functional allows new ideas to be added and extant ideas to reused, but

there are very little rules about what can and cannot be used in conjunction with

one another. In other words, Object-Functional provides a good framework for

experimenting and progressively realising a valid model, but does provide any

built-in guarantees. Going forward, there is a requirement to manage mediators

in layers (similar to REST) so that there are at least implicit rules of what can

interoperate.

7.3 Other lessons learnt from development

7.3.1 Protecting the integrity of the Object-Functional paradigm

Throughout the development of GAMOV, the team progressively acknowledged the

importance of protecting and maintaining the integrity of the Object-Functional

architecture of the GAMOV framework. However, when either introducing new

 105

developers to the GAMOV team, or when interacting with potential customers

representatives for the first time, we sometimes encountered scenarios where the

Object-Functional structure of GAMOV could have been compromised without careful

control and education by the development team. A key example of this occurred

during the design of the MCM model. It was assumed by all parties that the customer

representative for the MCM model understood the implementation of the Object-

Functional approach. However, it was evident from the first pass at generating the

user requirements for MCM that whilst there was clear understanding of the essence

what the approach is trying to achieve, there was a lack of transparency regarding

the concept of instantiating new entity capabilities as functional classes. Thus, the

requirements for new functionality within the user requirements documentation was

framed purely in terms of changes that were required to the entity structures (both in

terms of additional attributes and functionality). There is a danger for non-developers,

who are used to thinking in terms of how the old models are developed, not

appreciating the subtle differences in the Object-Functional approach versus Object-

Orientation. Small misunderstandings of this nature could have drastic consequences

for the integrity of the framework, requiring diligence from the developers maintaining

frameworks that use this paradigm.

7.3.2 Model design time

One aspect that frankly surprised the GAMOV development team was the amount of

design time inherent with either adding a new component to the framework or in the

construction of a model. Whilst it is believed that GAMOV has increased agility of

modelling in terms of implementation effort, it does not (and arguably should not)

decrease the amount of conceptual effort involved in designing a model. In fact, we

found particularly in the development of MCM that the potential savings gained from

providing agility to the implementation have now been taken up by putting more effort

into designing components and understanding the implications of plugging

components together. More usage and the application of metrics on studies would be

required in order to substantiate this claim.

This raises an interesting question about whether agility in the implementation has

provided any savings that can be exploited for the later analysis from models, if it is

now being consumed in the design process. However, extra time spent during the

design to ensure that components are fit for purpose, free of technical debt etc. may

 106

in fact provide that extra confidence in the final product and give the analysts

flexibility to look at and assess more cases. This can only truly be answered by

extended use of the approach and monitoring with metrics.

Hypothetically speaking, even if the GAMOV framework contained every possible

capability and mediator required to build any model; a good amount of time still needs

to be spent considering the validation implications of combining those elements.

Adapting a pre-existing model will reduce this to a certain extent, as the modeller

would have a validation record from which to measure the impact of their changes.

However, this is not the same for models being built from scratch. Additionally, the

subject matter knowledge required to understand the impact is not always explicit

within the model. Aspects such as conflicts arising from levels of data aggregation

can be inferred from the entity descriptions, but the implications upon the high-level

analysis cannot.

The application of semantics using a tool such as SWEEP (which shall be outlined

within section [7.4.2] later), could help in this regard, as this would provide a

mechanism for this information to be recorded within the model files. This would

enable an analyst who does not possess all of the subject matter knowledge to at

least be prompted as to the potential meaning of the results they are seeing.

7.3.3 Articulating Object-Functional to other developers and non-developers

A continuous problem we experienced throughout the development of GAMOV was

communication of the concept to people outside of the team. This was not just in

terms of articulating the benefits of the capability, but explaining what the capability is

(and more importantly, what it is not) at a fundamental level to non-technical people.

It was found that the existence of a working model was required in order to teach new

developers how to use the approach, because through observing a model in

execution provided the clarity necessary to understand the entity-mediator

relationship. Within a classical OO approach, it may be possible for a new developer

to infer more from the static code-base because the context of use is arguably

clearer. Objects have names, attributes and services that can define their purpose in

the context of the overall program. In an Object-Functional program the functions are

independent and stateless, meaning that whilst a developer can see what they do,

they can potentially lack context in relation to the rest of the program. The entity

 107

structure, whilst extremely flexible and preferable for our purposes in comparison to

previous campaign models, also compounds this problem with understanding further,

because the entity structure within the code-base communicates no meaning to the

developer unless you can observe what it is doing in the context of the model and

what functionality it is using. In the absence of formal software design patterns, a

working model is crucial in order to communicate these concepts to new developers.

It was found that by directing new developers towards the REST architecture (prior to

the acknowledgement of Object-Functional) significantly helped in bridging the gap in

understanding that functions are stateless with uniformed interfaces and they serve

the requirements of the clients, which in GAMOV’s case are the entities.

7.3.4 Implementation Tools

Upon reflection the application of Python to developing an Object-Functional

approach is believed to be a good decision. The language provided enough

functional programming capabilities in order to practice the Object-Functional design,

whilst making the final product elegant and explicit enough for new developers to

understand. This was experienced numerous times when developers were circulated

into the team, each of which were able to get up and running with development in

less than a week. For a capability such as COMAND, from past experiences by the

custodian this would typically take a number of weeks to become competent.

However, it would be useful to question whether a pure Python3 implementation was

appropriate for all aspects of code-base. During the development of MCM it was

noted that the implementation of mission planner optimisers might have been better

in a language that was more scalable. This could have been in either another

implementation of Python, such as Jython4 or another language entirely such as

3 Not to be confused with the colloquially known ‘Pure Python’ phrase used by the

Python community, which means building capabilities that can be executed solely by

the Python interpreter.

4 Jython is a Java Virtual Machine implementation of the Python language. The

language is not constrained by a Global Interpreter Lock found within classic Python,

making it more suited for parallel processing.

 108

Scala (Odersky, 2014). However, the status quo of our infrastructure precluded us

from addressing this during the development.

Going forward, expanding the pool of languages used for the development of

mediators should be explored, so that the most appropriate tool for the job is being

used as opposed to a single tool for all jobs. This could be achieved using a Remote

Procedure Call (RPC) framework, such as Apache Thrift (Slee, Agarwal &

Kwiatkowski, 2007). The Object-Functional nature of GAMOV makes the exploitation

of this approach a quick win, because the mediators would form the ‘servers’

expected under RPC architectures and the GAMOV engine would form the ‘client’

calling those servers. Also given the cross-language support of Apache Thrift, this

would enable mediators to be written in languages most suited to their requirements,

whilst retaining the ability to seamlessly integrate with the components specific to the

GAMOV approach.

Whilst this approach would increase the number of languages being utilised within

the GAMOV capability, it would enable us to better integrate pre-existing algorithms

into the framework, without needing to re-implement the code into Python. However,

it is believed that in practice this would be a rare occurrence, given that the sources

to draw upon would highly-coupled models, such as COMAND. However, on

occasion, models written in other languages have been identified, where the

functions are suitably interfaced that they could simply slot into the Object-Functional

organisation of GAMOV using an RPC approach without significant re-

implementation effort.

7.4 Future Plans

So far, this chapter has outlined the conclusions and lessons learnt from the

experiences of developing GAMOV and applying the Object-Functional paradigm.

This last section shall outline some of the future plans currently being considered,

including one research avenue to improve the analysis of GAMOV models, which

was briefly considered during the course of this research, but not pursued further.

7.4.1 HPC Resources

An important aspect that the team was always mindful of when constructing GAMOV

was that in the future we would need to access HPC or super computing resources to

 109

both speed up the run-time and improve the computational efficiency of some of the

algorithms. Whilst this was not the main focus during the early stage of development,

we ensured that the structure of GAMOV did not preclude us from exploiting these

resources. It is believed that entity-mediator implementation of the Object-Functional

approach natively allows GAMOV models to scale very easily to parallel based

architectures, which is also the conclusion of Odersky (2014) with the application of

Scala. Given that the functions are their own objects, this will enable us to relate the

functions to their own processes and thus assign them to their own hardware

resources very easily. Additionally, because mediators operate either independently,

or structurally as a bounded subsystem, we can potentially assign them to processes

knowing that there is very little to no dependence on the outputs of other processes,

which could limit the potential for producing race conditions or deadlocks at the

process level. This would at the very least give us a brute force speed up in terms of

the runtime for various components.

The question then is whether threading the individual mediators in order to gain any

potential efficiency from the inner workings of the algorithms themselves is of benefit.

On the surface it is believed that this is something we may want to do on a case-by-

case basis; however, the team would want to explore quicker-wins first to see if can

improve the runtime of an algorithm before taking this route. An example of this would

be the implementation of the mission planner optimisers in the MCM model. Our

initial verification tests of the mission planner indicated to us that whilst there would

be potential benefit to thread the optimiser used for generating the plans, much of the

runtime was actually being caused by memory usage. In the case of the mission

planner, we had actually generated a scenario where it was not clear to the automatic

garbage collector within the Python language as to when a planning entity within the

mission planner was no longer needed. As a result, the mission planner was using

vastly more memory than was required and the subsequent read/write actions on that

memory were actually causing a more significant delay than the genetic program

used to optimise the solution. Once the team had identified this, we were able to

bring the runtime of the mission planner down by a factor of 8, by writing new routines

to aid in the releasing of that memory. Whilst there may be worth in threading the

solver, this example illustrated to the team that threading should not be done as a

matter of course or in the first instance in the case of runtime problems associated

with GAMOV models. It is worth taking the time to profile and discover if there are

 110

quicker, higher impact, wins to bring the runtime down into acceptable time frames,

rather than taking the already constrained development time in order to squeeze out

efficiencies at the thread level, unless the algorithm is naturally scalable.

7.4.2 Providing Agility to Analysis

For the entirety of this document, the focus has been on improving the agility of the

modelling process in terms of implementation with a view to allowing more time and

resources to undertake analysis. The roots of this research originally began in

attempting to understand the associated challenges with respect to the agility of

analysing the outputs from a model. The understanding and the importance behind

the Object-Functional paradigm were drawn out as an associated enabler for this

particular problem area and were subsequently worked up in more detail for this

thesis through the development of GAMOV when they were identified during the late

stages.

However, a good deal of thinking was also put into conceptualising a potential

solution for analysis of outputs, in the form of the Semantic Web Examiner of

Emergent Phenomena (SWEEP) (Toomey, 2016). The SWEEP tool was envisaged

to be a companion tool to work in cooperation with (or as part of) the GAMOV

framework. Where the GAMOV framework would speed up the implementation of

models, SWEEP was envisaged to assist the analyst in processing the outputs of

those models. The long-term goal of SWEEP (as per its namesake) was to capture

and interpret emergent phenomena produced within the models. The fundamental

problem with respect to emergence within our modelling is that there is no simple

mechanism that can enable analysts to engage with it. This has been highlighted as

key challenge for the fields of both operational research and OA (Sterman, 2000).

The key reason for this is that the nature of emergence is a product of more than the

sum of its parts. In other words, an emergent effect is usually produced by either

more than the variables being monitored or the unique circumstances by which they

interact with one another (Georgiou, 2007). These may either be sufficient or

insufficient to produce a state-change within the model, which shapes the flow of

subsequent state changes within a simulation. Such emergent phenomena can

impact a simulation many times, producing either positive or negative feedback loops

that can lead to the collapse of the system (Johnson, 2006). It is the transitory but

 111

pivotal nature of emergence that shapes our understanding of the possibilities within

the outcome space of a simulation (Georgiou, 2007). A lack of emergence within a

simulation implies that all aspects of representation are understood, and thus no

further learning can be drawn from the simulation. Therefore, emergence is a

fundamental requirement in order to draw new insights from a constructive

simulation, but there is no clear means to engage with it. This means that key

potential insight of significant use to the MOD from models is not at present being

exploited. For the analysis component of OA, this means that the level of

understanding, which is drawn from modelling, is much less than it could be. This is

simultaneously a value for money issue, and a quality requirement, which leads to

lost opportunities to better shape and inform the requirements of MOD.

A common conceptual model for emergence, used often in the field of ecology is the

idea of scalar hierarchies built upon experimental frames (O’Neill, DeAngelis,

Waide, & Allen, 1986). There are effectively three levels (A, B and C) providing a

descriptive framework and the context for which emergent behaviours can arise.

Frame A is considered the lowest level, with frame C being the lowest; with higher-

level frames containing the lower level frames. Emergent properties are seen as:

“Representing something new at a given level that is not seen at the level below”

(Aumman, 2007).

In OA terms, Frame A is where our Measures of Performance (MoP) reside and is

where the constituent parts of the higher-level entities or constructs are described

(i.e. attributes in Object-Orientation or Object-Functional). Frame B is where the

Measures of Effectiveness (MoE) are defined.

The behaviours observed within Frame B are “new qualities that appear on higher

integration levels… represent more than the sum of the low-level components”

(Reuter et al., 2005). These behaviours observed within Frame B are referred to as

‘emergent’.

Taking an example from Ecology (Aumman, 2007), if you want to measure the growth

rate of a crab, you cannot interpret all of its behaviours from the MoP’s, such as the

rate at which it is capable of feeding and its energy usage. An additional factor not

captured within Frame A in determining the growth rate is the availability of food

along the crab’s movement path. This is a factor that cannot be subject to a priori

 112

measurement since the movement path depends upon the crab’s response to wider

environmental factors that can only be understood through running a simulation.

Therefore, the growth rate of the crab is considered an emergent behaviour

consisting of components more than those that are defined within Frame A. Frame C

is where the Measures of Outcome (MoO) are generated as a result of more detailed

interactions occurring within Frames A and B, which together describe the crabs

within their environment.

Figure [9]: Descriptive Framework of Emergence.

The general concepts of this method can usefully be read across to the defence

context and campaign models, specifically GAMOV. Frame A would constitute the

attributes of the entities and other forms of data including orders and missions within

plans. The contents of Frame B are the constituent entities themselves, the flow of

information across the simulation and elements such as command and control

hierarchies. Frame C, the measure of outcome would be whether the parts that make

up frames A and B achieve the outcome of the campaign. The key differences

between ecological and defence modelling can be simply explained through the

 113

consideration of Perrow’s quadrants (Czerwinski, 1998). In the case of ecology there

is a strong inter-linkage between the production of properties in a lower frame and the

resultant changes in the higher frame, since even though irreducible to the sum of the

parts the emergent characteristics are nonetheless part of a story of on-going

adaption with broad periods of stability. Perrow would describe such a system as

being tightly coupled5 due to the tight inter-linkage between production of properties

and resultant change. In contrast Perrow would describe defence as being loosely

coupled, since the modelling actively examines competing systems, where each

system has the potential to dominate the situation. Defence modelling contains

antagonistic interactions, whereas many other fields operate on the notion of

synergistic interactions. This is what makes analysing defence situations

fundamentally difficult.

Prior to an emergent circumstance being realised there are indicators that can be

measured in the lower frames. This has long been understood within the defence

intelligence communities, whereby identifying these key indicators allows for the

construction of unfolding situations, which will allow security forces to understand

how, and when something is going to occur. The big idea here is being able to

characterise and apply the essence of these processes to the analysis of simulations.

Consider for example an observable event, such as the destruction of a military

vehicle or the failure of a mission. From an analysis perspective it would be desirable

to recognise and describe the competing processes that surround such events,

especially if they are very much game-changing moments within a campaign

outcome. Having an automated means to identify not only those things that

happened, but also those things that almost happened but did not, would be a game-

changer for the overall capability of defence modelling.

Another example of emergent behaviour within defence modelling is the concept of

‘breakthrough’, which results from the combination of the momentum of an attacking

unit and the lack of ability on the part of the defensive unit to organise adequate

resources to oppose the attack. Representing all of the components of breakthrough

phenomena within a model enables a valid representation of the effect to be

represented explicitly. By contrast, a simple model of breakthrough derived from an

5 Not to be confused directly with the notion of coupling as already outlined within this
document. The notion here is the coupling of ideas in terms of data and interactions.

 114

empirical basis would include the effect of the complexity but not the means by which

to engage with the complexity (Chialvo, 2008). In summary the key to generating

emergence also comes by having the right resolution within the representation,

otherwise you will lack the ability to extract even with access to an automated means.

The journey towards such a solution is believed to exist in the exploitation of

Semantic Web technologies, built upon some of the key ideas presented by Boakes

(2007). The Semantic Web technology stack provide the mechanisms by which the

data and functionality of our models could be encoded in order to record the flows of

information throughout the models and the key state changes that lead to the

production of emergent phenomena. It is believed that the GAMOV framework will

provide both effective platforms to allow for continued research into this area and that

the Object-Functional architecture of the code is key to providing the explicit inter-

linkages between the state and the functions that are changing that state. From the

literature concerning emergence as outlined in this section, combined with the

understanding within this thesis, it is believed that Object-Functional provides a best

of both worlds’ solution. The separation of state and transformative functions aids in

reducing the coupling that causes such significant implementation and maintenance

issues for the models, whilst leaving the explicit linkages that are key to grappling

with generation of emergent phenomena. Having these explicit linkages is key, which

is why a solution has been found with respect to system dynamics (Mojtahedzadeh,

1997). For a computer-driven simulation, the automated means of achieving this is

the concept of SWEEP, which shall be a future research direction building on top of

GAMOV. It is hoped that SWEEP shall be an iterative process (akin to model-test-

model) whereby the modeller can encode their perspectives within the model, test the

outcome and progressively develop their ontological view of the world in order to

extract understanding from the model.

 115

Figure [10]: The SWEEP Lifecycle

The application of semantic web-based approaches has previously been attempted

within modelling, as outlined by Hoffman, Palli and Mihelcic (2011). This work

emphasises the importance of having a consistent ontological view of the world

across the model, as well as representing the situation in as much detail as possible.

It is believed that the GAMOV entity structure will help in this regard as all entities are

described using a single methodological ontology.

It is envisaged that through extensive research and development over a number of

years in conjunction with the developed usage of GAMOV, a SWEEP type capability

could aid in a number of key areas, such as:

• Helping an analyst to quickly distinguish between errors of validity vs. areas of

analytical interest. Both of these are capable of providing fundamental insights

for different reasons; however, the current methods require manual processing

by the analyst, which is extremely time consuming. As a result, only a handful

of potential problems can be processed within the timeframes of a typical study

and there is not necessarily any guarantee that the effort is being targeted in

the right areas to begin with. Having the ability for an analyst to identify where

best to focus their efforts with their limited analysis time would enable better

allocation of resources.

•Results from
queries

•Causation
Chains

•Replications

•Resultant
Semantic graph
data and logs

•Model and
Replications

•Data Queries

Prepare Process

VisualiseInterpret

 116

• Errors in validity can reveal understanding in how the model is being used

(either correctly or incorrectly6) or potential problems with the representation.

• These are the areas where potentially new insights can be derived about the

representation (i.e. the presence of emergence). Many of these are potentially

lost through a lack of their discovery due to the available time, which limits our

ability to provide key insights to MOD.

• Providing more comprehensive outputs to our customers. In the majority of

cases we can only explain what has happened. We cannot necessarily identify

the circumstances that were present (at a point in time) to produce the

observable outcome; if we can even pinpoint the exact time when the

production of the effect took place, we can begin to build a picture of the

circumstances that led to its production.

6 The model can be used correctly but in doing so reveals a feature or implementation
error. The inverse can be true indicating a poor approach to usage by the modeller.

 117

Bibliography

Abbes, M., Khomh, F., Gueheneuc, Y-G. (2011). An Empirical Study of the
Impact of Two Anitpatterns, Blob and Spaghetti Code, on Program
Comprehension. Proceedings to the 2011 15th European Conference on
Software Maintenance and Reengineering. 181 – 190.
https://doi.org/10.1109/CSMR.2011.24

Ahuja, S., Gelernter, D. & Carriero, N. (1986). Linda and Friends. Computer,
19(8). https://doi.org/10.1109/MC.1986.1663305

Ansell, R., & Glover, P. (2008). The Software approach to be used for
GAMOV. Unpublished internal document. Defence, Science & Technology
Laboratory (Dstl).

Aumman, C. (2007). A Methodology for developing simulation models of
complex systems. Ecological Modelling. 202(3-4), 385-396.
https://doi.org/10.1016/j.ecolmodel.2006.11.005

Boakes, R. J. & Hanley, N. (2017). GAMOV Technical Deep-dive assessment
notes. Unpublished Dstl Internal Report.

Boakes, R. J., & Toomey, G. (2012). Developing Parallelised Modelling
Environments using GAMOV [Abstract]. Proceedings of the 54th Annual
Conference on Operational Research (OR54).

Boakes, R. J. (2007). Semantic Web-Based Log analysis for distributed
systems and application. Ph.D. Thesis. University of Portsmouth.

Brooks Jr., F. P. (1995). The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. (2nd Edition). Boston U.S.: Addison-Wesley.

Buss, A (2002). Component based simulation modelling with Simkit.
Proceedings of the 2002 winter simulation conference. 243-249.
https://doi.org/10.1109/WSC.2002.1172891

Chialvo, D. (2008). Emergent Complexity: What uphill or downhill invention
cannot do. New Ideas in Psychology. 26(2), 158-173.
https://doi.org/10.1016/j.newideapsych.2007.07.013

Clive, P. D., Johnson, J. A., Moss, M. J., Zeh, J. M., Birkmire, B. M., &
Hodson, D. D. (2015) Advanced Framework for Simulation Integration and
Modelling (AFSIM). International Conference Scientific Computing CSC’15.
73-77.

Czerwinski, T. (1998). Coping with Bounds, A Neo-Clausewitzean Primer.
CCRP

 118

Defence, Science & Technology Laboratory. (2015). Defence, Science and
Technology Laboratory Overview. Retrieved from:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
641731/Generic_factsheet_v2.pdf

Dhal, O. J. (2002). The Roots of Object Orientation: The Simula Language. In
Broy, M., & Denert, E. (Eds.), Software Pioneers. (pp. 78-90). Berlin-
Heidelberg: Springer-Verlag.

Dahmann, J. S. (1997) High Level Architecture for Simulation. Proceedings
First International Workshop on Distributed Interactive Simulation and Real
Time Applications. 9-14. https://doi.org/10.1109/IDSRTA.1997.568652

Drobi, S. (2007). OOP: Thinking beyond verb/noun metaphor to yield a better
design. Retrieved from: https://www.infoq.com/news/2007/11/oop-beyond-
verb-noun

Editors of the Encyclopedia Britannica. (n.d.). George Gamow Biography.
Retrieved from: https://www.britannica.com/biography/George-Gamow

Erikson, M. (2012). Effective Scala. [Online GIT repository] Retrieved from:
https://twitter.github.io/scala_school/

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. (PhD Dissertation). University of California, Irvine.
Retrieved from: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Fletcher, D. J., Lukman, N. B., & Hodson, M. J. (2005). Principals of
simulation architecture-independent model development [Abstract] SimTecT
Conference Sydney, -12 May 2005.

Fontana, F. A., Zanoni, M., Marino, A., & Mäntylä, M. V. (2013) Code Smell
Detection: Towards a Machine Learning-Based Approach. 2013 IEEE
International Conference on Software Maintenance. 396-399.
https://doi.org/10.1109/ISCM.2013.56

Fujimoto, R. M. (n.d.) The High-Level Architecture Introduction. Retrieved
from: https://www.acm-sigsim-
mskr.org/Courseware/Fujimoto/Slides/FujimotoSlides-20-
HighLevelArchitectureIntro.pdf

Glover, P., Collander-Brown, S., & Taylor, S. J. E. (2017) Using A Genetic
Programming Approach to Mission Planning to Deliver More agile Campaign
Level modelling for Military Operational Research. Proceedings of the 2017
Winter Simulation Conference, 4465 – 4467.
https://doi.org/10.1109/WSC.2017.8248165

 119

Glover, P., & Toomey, G. (2012). GAMOV: An Agile Generic Simulation Tool
for Military Joint Forces Modelling. Proceedings of the Operational Research
Society Simulation Workshop 2012 (SW12), 275-279. Retrieved from:
http://www.theorsociety.com/Pages/ImagesAndDocuments/documents/Confer
ences/SW12/Papers/GloverToomey.pdf

Georgiou, I. (2007). Thinking through System Thinking. Abingdon, Oxon:
Routledge

Harrison, R., Samaraweera, L. G., Dobie, M. R., & Lewis, P. H. (1996).
Comparing programming paradigms: an evaluation of functional and object-
oriented programs. Software Engineering Journal, 11(4), 247-254.
http://doi.org/10.1049/sej.1996.0030

Hoffman, M., Palii., J & Mihelcic., G. (2011). Epistemic and normative aspects
of ontologies in modelling and simulation. Journal of Simulation 5(3), 135-146.
http://doi.org/10.1057/jos.2011.13.

HM Treasury. (2015). The Aqua Book: guidance on producing quality analysis
for government. Retrieved from:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
416478/aqua_book_final_web.pdf

HM Treasury. McPherson, N. (2013). Review of Quality Assurance of
Government Analytical Models: Final Report. Retrieved from:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
206946/review_of_qa_of_govt_analytical_models_final_report_040313.pdf

IEEE Standards Association. (2010). 1516-2010 - IEEE Standard for
Modelling and Simulation (M&S) High Level Architecture (HLA)-- Framework
and Rules. Retrieved from: https://standards.ieee.org/findstds/standard/1516-
2010.html

International Organisation for Standardisation (ISO). (2011). Systems and
software engineering -- Systems and software Quality Requirements and
Evaluation (SQuaRE) -- System and software quality models. Retrieved from:
https://www.iso.org/standard/35733.html

Jalote, P. (1989) Functional refinement and nested objects for object-oriented
design. IEEE Transactions on Software Engineering. 15(3). 264-270.
https://doi.org/10.1109/32.21754

Johnson, C. W. (2006). What are emergent properties and how do they affect
the engineering of complex systems. Reliability Engineering and System
Safety. 91. 1475-1481. https://doi.org/10.1016/j.ress.2006.01.008

Kester, J. E. (1993). Some Limitations of Object-Oriented Design. IEEE
Aerospace and Electronic Systems Magazine. 8(9), 14-16. https://doi.org/
10.1109/62.257112

 120

King, D. W., Hodson, D. D., & Peterson, G. L. (2017) The role of simulation
frameworks in relation to experiments. Proceedings of the 2017 Winter
Simulation Conference. 4153-4161.
https://doi.org/10.1109/WSC.2017.8248123

Kontio, M., Mäyrä, H., & RÖnkkÖ, M. (2007) Functional Classes Guide Use of
Design Patterns in Implementing Mediators. Proceedings of the First
International Conference on Complex, Intelligent and Software Intensive
Systems. https://doi.org/10.1109/CISIS.2007.29

Kristensen, J. T., Hansen, M. R., & Rischel, H. (2001). Teaching object-
oriented programming on top of functional programming. 31st Annual
Frontiers in Education Conference, 2001.
https://doi.org/10.1109/FIE.2001.963848

Lau, M. (2015, August, 31). The Essence of Object-Functional Programming
and the Practical Potential of Scala. Retrieved from:
https://blog.codecentric.de/en/2015/08/essence-of-object-functional-
programming-practical-potential-of-scala/

Lightbend Inc. (2011). Akka. Retrieved from: http://akka.io/

Lloyd, J., Newton, N., & Perkins, R. (2014) A Chemical, Biological and
Radiological Modelling Capability to Support Acquisition Advice and Re-use
as a Common Cross-Domain Capability. North Atlantic Treaty Organization
(NATO) Science and Technology Organization (STO) Meeting Proceedings.
https://doi.org/10.14339/STO-MP-MSG-126-09-pdf

Lucek, S., G., & Collander-Brown, S. (2014) Artificial intelligence algorithms
and new approaches to wargame simulation. Proceedings of the 31st
International Symposium on Military OR.

Mansfield, R. (2005). Has OOP Failed? Retrieved from:
http://4js.com/files/documents/products/genero/WhitePaperHasOOPFailed.pdf

Matsumoto, M. (2007). Mersenne Twister Home Page: A very fast random
number generator of period 219937-1. Retrieved from:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

McCullough, B, D. & Wilson, B (2005) On the accuracy of statistical
procedures in Microsoft Excel 2003. Computational Statistics and Data
Analysis. 49(4), 1244 – 1252. https://doi.org/10.1016/j.csda.2004.06.016

McManus, J., & Wood-Harper, T. (2008). A Study in Project Failure. Retrieved
from: http://www.bcs.org/content/ConWebDoc/19584

 121

Miguel, J, P., Mauricio, D. & Rodriguez, G. (2014) A Review of Software
Quality Models for the Evaluation of Software Products. International Journal
of Software Engineering & Applications. 5(6), 31 – 53.
https://doi.org/10.5121/ijsea.2014.5603

Moffat, J. (2011). Adapting modelling & simulation for Networked Enabled
Operations. CCRP

Moffat, J., Scales, T., Taylor, S., & Medhurst, J. (2011). Quantifying the need
for force agility. The International C2 Journal 5(1), 1-23. Retrieved from:
http://dodccrp.org/html4/journal_v5n1.html

Moffat, J., Campbell, I., & Glover, P. (2004). Validation of the mission-based
approach to representing command and control in simulation models of
conflict. Journal of the Operational Research Society 55(4), 340-349.
https://doi.org/10.1057/palgrave.jors.2601662

Mojtahedzadeh, M. (1997). A Path taken: Computer-Assisted heuristics for
understanding dynamic systems. (Unpublished Ph.D. Thesis). Rockefeller
College of Public Affairs. University of Albany

Naval Postgraduate School. Buss, A. (2004). Simkit Analysis Workbench for
Rapid Construction of Modelling and Simulation Components. Retrieved from:
http://calhoun.nps.edu/handle/10945/37865

Nesfield, A. E. S. (1998). DROMAS System Description. Unpublished internal
document. Defence, Science & Technology Laboratory (Dstl).

O’Neill, R.V., DeAngelis, D.L., Waide, J.B., & Allen, T.F.H. (1986). A
hierarchical concept of ecosystems. New Jersey, USA: Princeton University
Press.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S.,
Mihaylov, N., Schinz, M., Stenman, E., & Zenger, M. (2006). An Overview of
the Scala Programming Language. 2nd Edition. Retrieved from: http://scala-
lang.org/docu/files/ScalaOverview.pdf

Odersky, M. (2014). Unifying Functional and Object-Oriented Programming
with Scala. Retrieved from: https://cacm.acm.org/magazines/2014/4/173220-
unifying-functional-and-object-oriented-programming-with-scala/fulltext

Ottinger, T., & Langr, J. (2011). Code Coupling: Reducing Dependency in your
Code. The Pragmatic Bookshelf. Retrieved from:
https://pragprog.com/magazines/2011-01/code-coupling

 122

Pankratius, V., Schmidt, F., Garreton, G. (2012). Combining Functional and
Imperative Programming for Multicore Software: An Empirical Study
Evaluating Scala and Java. 34th International Conference on Software
Engineering (ICSE), 2012. 2-9 June 2012.
https://doi.org/10.1109/ICSE.2012.6227200

Peters, T. (2004). PEP20 – The Zen of Python. Retrieved from:
https://www.python.org/dev/peps/pep-0020/

Petty, M., & Weisel, E. (2003) A formal basis for a theory of semantic
composability. Proceedings of the Spring Simulation Interoperability
Workshop.

Pidd, M. (1996). Tools for thinking: Modelling in Management Science.
Chichester: Wiley.

Poulter., A. J. (2011). The implications for the use of high performance and
parallel computing techniques in OA modelling. Proceedings of the
Operational Research Society Simulation Workshop 2012 (SW12) The
Operational Research Society: Birmingham, UK.

Qian, H., Fernandez, E. B., & Wu, J. (1995) A combined functional and object-
oriented approach to software design. Proceedings of First IEEE International
Conference on Engineering of Complex Computer Systems. ICECCS'95.
https://doi.org/ 10.1109/ICECCS.1995.479323

Reuter, H., Holker, F., Middelhoff, U., Jopp, F., Eschenbach, C., & Breckling,
B. (2005). The Concepts of Emegent and Collective Properties in Individual
Based Models – Summary and Outlook of the Bornhoved case studies.
Ecological Modelling. 186(4), 489-501.
https://doi.org/10.1016/j.ecolmodel.2005.02.014

Robinson, A. P., & Glover, P. E. (2006). Recent developments in high level
defence operational research. OR48 Defence Stream Keynote. The
Operational Research Society: Birmingham.

Roy, S., Hermans, F., & Van Deursen, A. (2017) Spreadsheet testing in
practice. 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 20-24 Feb. 2017.

10.1109/SANER.2017.7884634

Rubberduck VBA. Guindon, M., & McClellan, C. (2014). Rubberduck.
Retrieved from: http://rubberduckvba.com/

Salt, J. D. (2008). The seven habits of highly defective simulation projects.
Journal of Simulation. 2(3), 155-161. https://doi.org/10.1057/jos.2008.7

 123

Sargent, R. J. (2005). Verification and validation of simulation models. 37th
Winter Simulation Conference: 130-143 ACM
https://doi.org/10.1109/WSC.2005.1574246

Slee, M., Agarwal, A., & Kwiatkowski, M. (2007). Thrift: Scalable Cross-
Language Services Implementation. Retrieved from:
https://thrift.apache.org/static/files/thrift-20070401.pdf

Soares de Jesus, J. & Vieira de Melo, A. C. (2017). Technical Debt and the
Software Project Characteristics. A Repository-Based Exploratory Analysis.
Proceedings of the IEEE 2017 19th Conference on Business Informatics (CBI).
https://doi.org/10.1109/CBI.2017.62

Sousa, T. B., & Ferreira, H. S. (2012). Object-Functional Patterns: Re-
Thinking Development in a Post-Functional World. 2012 Eighth International
Conference on the Quality of Information and Communications Technology,
348-352. http://doi.org/10.1109/QUATIC.2012.43

Sterman., J. (2000). Business Dynamics: Systems thinking and modelling for
a complex world. Irwin McGrawHill: London.

Svallfors, H. (2011). Sard: An Object-Functional Programming Language.
(Ph.D Thesis) Ume˚a University. https://doi.org/ 10.1.1.220.9799

Taylor, B., & Lane, A. (2004). Development of a novel family of military
campaign simulation models. Journal of the Operational Research Society
55(4), 333-339. https://10.1057/palgrave.jors.2601714

Teo, Y. M., Szabo, C. (2008) CODES: An Integrated Approach to Composable
Modelling and Simulation. Proceedings of the 41st Annual Simulation
Symposium. 103-110. https://doi.org/10.1109/ANSS-41.2008.24

Toomey, G. (2016) An Object-Functional Modelling Platform to Enable
Semantic Web Analysis of Campaign Models. Proceedings of the Operational
Research Society Simulation Workshop 2016 (SW16). 175-180.

Van Rossum, G. (2009, February 27). First-Class Everything. Retrieved from:
http://python-history.blogspot.co.uk/2009/02/first-class-everything.html

Wampler, D., & Payne, A. (2014) Programming Scala: Scalability = Functional
Programming + Objects (2nd Ed). O’Reilly.

Webster, B. F. (1995) Pitfalls of Object-Oriented Development. M&T Books.

Yegge, S. (2006, March 30). Execution in the Kingdom of Nouns. Retrieved
from: https://steve-yegge.blogspot.co.uk/2006/03/execution-in-kingdom-of-
nouns.html

 124

List of publications originating from this research

Boakes, R. J., & Toomey, G. (2012). Developing Parallelised Modelling
Environments using GAMOV [Abstract]. Proceedings of the 54th Annual
Conference on Operational Research (OR54).

Collander-Brown, S., Byrne, M., Toomey, G., Glover, P. (2013). A U.K.
Perspective on Campaign Level Constructive Simulation. Proceedings of the
30th International Symposium on Military Operational Research. Retrieved
from: http://ismor.cds.cranfield.ac.uk/30th-symposium-2013

Glover, P., & Toomey, G. (2012). GAMOV: An Agile Generic Simulation Tool
for Military Joint Forces Modelling. Proceedings of the Operational Research
Society Simulation Workshop 2012 (SW12), 275-279. Retrieved from:
http://www.theorsociety.com/Pages/ImagesAndDocuments/documents/Confer
ences/SW12/Papers/GloverToomey.pdf

Toomey, G. (2016). An Object-Functional Modelling Platform to Enable
Semantic Web Analysis of Campaign Models. Proceedings of the Operational
Research Society Simulation Workshop 2016 (SW16). 175-180.

 125

List of abbreviations

ADM Aerial Delivery Model

API Application Programming Interface

CBR Chemical, Biological & Radiological

CIO Chief Information Officer

COMAND C3 Oriented Model of Air and Naval Domains

CSS Cascading Style Sheet

C3 Command, Control and Communications

C4 Command, Control, Communications and Computers

DERA Defence & Evaluation Research Agency

DIAMOND Diplomatic and Military Operations in a Non-war fighting Domain

DROMAS DERA Reusable Object Modelling and Simulation

DSA Defence & Security Analysis

DSTL Defence, Science and Technology Laboratory

EPFL Swiss Federal Institute of Technology in Lausanne

GAMOV Generic Aggregator Model Valuator

GIL Global Interpreter Lock

GUI Graphical User Interface

HLA High-Level Architecture

HLOA High-Level Operational Analysis

HPC High Performance Computing

ICT Information Communication Technology

IDE Integrated Development Environment

ISR Intelligence, Surveillance and Recognition

JSON JavaScript Object Notation

MCM Mission Command Model

MFC Microsoft Foundation Classes

MOE Measure of Effectiveness

MOO Measure of Outcome

MOP Measure of Performance

LP Linear Program

OA Operation Analysis

ORBAT Order of Battle

MOD Ministry of Defence

REST Representational State Transfer

RPC Remote Procedure Call

S&T Science and Technology

SLAM Simple Land Air Model

SME Subject Matter Expert

StratBOI Strategic Balance of Investment

SWEEP Semantic Web Examiner of Emergent Phenomena

VBA Visual Basic for Applications

WPT Wartime Planning Tool

 126

APPENDIX A Ethics Documentation

Please see overleaf for captures of the original documentation.

 127

 128

 129

