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Abstract 

The corrosion behavior of a β CuAlBe shape memory alloy containing stress-induced 

martensite was analyzed after 60 days of immersion in a 3.5 % NaCl solution. The 

stress-induced martensite was retained in the sample after a load-unload compression 

cycle up to a pseudoelastic deformation of 4.5 %. The corrosion of the alloy occurs by 

dealuminization, where β phase located in the areas between the needles of martensite is 

dissolved due to the preferential loss of aluminum, and the posterior redeposition of 

copper takes place.  

 

Keywords: Dealloying; retained martensite; Cu-based alloys; microstructure; shape 

memory alloys. 

 

1. Introduction 

The Cu-11.4Al (wt.%) system with small additions of beryllium exhibits shape memory 

properties due to the martensitic transformation (MT). At high temperatures, β phase is 

stable with a disordered structure, however, it can be retained at low temperatures by 

rapid cooling [1-2]. The disordered β phase orders to a DO3 structure during cooling [3]. 

Under slow cooling from high temperature, the metastable β phase decomposes into the 

phases γ2 and α’, with high and low aluminum content respectively [1, 4].  

The martensitic transformation from β phase to 18R martensite can be induced by 

cooling, spontaneous transformation, or under mechanical stress. The spontaneous 

transformation occurs with the formation of 24 self-accommodates variants of 18R 

martensite without macroscopic change of shape. It begins at a martensite-start 

temperature (Ms). The martensite variants have identical crystal lattice but they can 

appear in different orientations. By the application of mechanical stress, on tension or 

compression, β phase transforms to 18R martensite with a macroscopical change of 

shape [5]. When the material in β phase is subjected to stress, it first elastically deforms 

and for higher stresses the martensitic transformation of β to 18R martensite is carried 

out. The stress corresponding to the end of the linear elastic regime is usually referred as 

the martensite-start stress (σs).  The sample in β phase is loaded up to a maximum stress 

(σmax) and then the load is removed. Under appropriate conditions, a hysteretic loop is 

obtained after unloading with almost complete strain recovery, leading to a 

pseudoelastic cycle. The pseudoelastic strain (εps) can be define as the total applied 

strain discounting the elastic contribution [5]. There is a limit for the complete recovery 

of the applied deformation, which depends among other factors on the microstructural 

characteristics of the sample, the experimental conditions and the composition of the 

alloy. From therein more, strain is increasingly retained on unloading, due to the 

presence of martensite needles that could not retransform to β phase and remain retained 



  

in the sample. When the material does not fully recover the deformation, a retained 

strain (εret) is observed on unloading. The CuAlBe alloy can exhibit the pseudoelastic 

behavior at room temperature [5-9]. The hysteretic loop is associated to the dissipation 

of mechanical energy into heat. Because of these characteristics, the use of CuAlBe 

alloys as passive dampers of seismic energy is highly promising [6-7, 10-12]. 

Copper alloys present low corrosion susceptibility, so, they are widely used in marine 

environments. The aluminum addition improves their corrosion resistance in chloride 

media, because it makes the corrosion product film to become more protective [13-16]. 

Previous studies in CuAlBe alloy in chloride containing environments have shown that 

the corrosion process occurs by dealuminization, where aluminum is preferentially 

removed from the alloy [17-19]. This process has been also reported in CuAl and 

CuAlX alloys in chloride media [13]. The corrosion behavior of CuAlBe alloys has 

been studied when they were immersed in a 3.5 % NaCl for different times up to 40 

days, and by electrochemical tests [17-19]. The influence of the microstructure, 

specifically the presence of precipitates with different composition to the β matrix was 

investigated in detail. In samples with γ2 phase, the preferential dissolution of the 

precipitates occurs, protecting the matrix from dealloying [17]. On the other hand, the 

copper-rich precipitates, α’, exhibit a high corrosion stability [19]. 

In the present study the corrosion behavior of a β CuAlBe shape memory alloy 

containing stress induced martensite in a 3.5 % NaCl solution adjusted to pH 8 was 

analyzed, in view of its application as seismic dampers in bridges. This condition is 

intended to be a simple approximation for a sea water environment. 

 

 

2. Experimental procedure 

A commercial Cu-11.40Al-0.55Be (wt.%) polycrystalline alloy, provided by 

Trefimetaux S.A. as 15 mm diameter extruded bars, was used in the present work. The 

chemical composition was determined by atomic absorption spectrophotometry. 

Samples of square section of around 5×5 mm
2
 and 15.9 mm length were cut using an 

Isomet Low Speed Saw with a diamond disc. To make sure that the samples are in β 

phase at room temperature, they were kept during 10 min in a resistance furnace at 1073 

K, and water quenched at room temperature. A mean grain size of 0.8 mm was obtained, 

and a temperature Ms around 259 K was determined by calorimetric measurements.   

Compression tests were carried out at room temperature with a Shimadzu Autograph-

DSS-10T universal testing machine with deformation control and using a load cell of 10 

ton. A constant cross-head speed of 1 mm/min was used. To reduce the friction between 

the specimen faces and the compression module, the end faces were covered with a thin 

Teflon film and lubricated with grease. After the mechanical tests, samples were 

characterized by optical microscopy, using a Reichert MeF2 microscope. In order to 

reveal the microstructural details, the specimens were electropolished at 4 V in a 

saturated solution of chromium trioxide in phosphoric acid, and immersed for 5 seconds 

in a solution of ferric chloride.  

Before the immersion, samples were smoothed with 1000 grit emery paper. Specimens 

were immersed for 60 days in a 3.5 % NaCl solution adjusted to pH 8 with borate-boric 

acid buffer. The solution was maintained at room temperature, and air was bubbled 

through it. After the immersion, the surface of the samples was rinsed softly with 

distilled water, sprayed with ethanol and dried with warm air. The surface morphology 

of the specimens was examined using an Olympus BX60 microscope (OM), and a 

JEOL JSM-6460LV scanning electron microscope (SEM). To estimate the surface 

composition of different zones of the samples, energy dispersive X-ray spectroscopy 



  

(EDX) analysis under SEM was employed. To identify the phase structure of the 

corrosion products film formed during the immersion, X-ray diffraction (XRD) 

measurements were carried out using a PANanalytical X’Pert Pro PW3373 and a 

PANanalytical X’Pert MPD X-ray diffractometers with normal and low incident angle.  

 

TOF-SIMS and EBSD Analysis 

In the TOF-SIMS analysis C-TOF (TofWerk, Thun, Switzerland) integrated on 

FIB-SEM Tescan LYRA3 (Tescan Orsay Holding., Brno, Czech Republic) was used. 

For investigation of crystallographic nature, EBSD camera NordlysMax
3
 (Oxford 

instruments, Abingdon, United Kingdom) was employed. Prior to both analyses, a cube 

with dimensions 20×20×20 µm
3
 from a specific position on sample was prepared 

(Figure 1(a)). Subsequently, the prepared cube was lifted out from the base material to 

get optimal conditions of signal for both types of analysis without shielding effects. For 

preparation of the cube, trenches were milled around with stairs trench milling strategy 

(as defined in TESCAN Drawbeam tool) with a 25 nA ion beam current at accelerating 

voltage 30 kV (Figure 1(a)). A SmarAct nano-manipulator was used for lift out the cube 

and it was attached to a TEM grid (Figure 1(b)). Then, the area of interest was polished 

using an ion beam current of 100 pA at accelerating voltage 30 kV in order to enhance 

the diffraction pattern contrast, necessary for subsequent EBSD analysis.  

On such surface (Figure 1(c)) grain orientation and phases present were 

investigated and evaluated with Aztec EBSD software (Oxford instruments, Abingdon, 

United Kingdom). During the analysis current of the electron beam was 8 nA at 

accelerating voltage 30 kV (measured as absorbed current with Faraday cup in SEMs 

stage). 

After the EBSD analysis was made, the same area was analyzed with TOF-SIMS. 

In TOF-SIMS analysis, the area of interest with dimensions 12×12 µm
2
 was scanned. 

While Ga
+
 primary focused ion beam was scanning over the area with the beam current 

of 200 pA at accelerating voltage 30 kV, secondary ions were simultaneously analyzed 

with C-TOF in positive mode. The results were represented as elemental distribution 

maps derived from 70 scans of the area of interest. 

 

FIGURE 1 

 

3. Results and discussion 

The samples in β phase were subjected to compression tests at a maximum stress σmax ≈ 

300 MPa to induce martensite phase. The obtained stress-strain (σ-ε) curve is shown in 

Figure 2(a). The first linear part in the loading curve is the elastic region of the β phase, 

and the deviation of the linearity is associated with the beginning of the transformation 

of β to martensite. Then, the martensitic transformation continues up to σmax. On 

removing the load, the retransformation of martensite to β phase occurs, and a hysteretic 

loop is formed. An almost complete strain recovery is expected up to εps around 3 % 

[20]. As σmax increases, the induced martensite cannot completely retransform to β 

phase. In our case a retained strain (εret) of 0.8 % was obtained for εps=4.5 %. That level 

of deformation was chosen considering that for an optimal use of the material as passive 

damping devices, it is required that it would be subjected to sufficiently high 

deformations to achieve the damping of the greatest amount of energy, but not so high 

to retain so much martensite needles after the unloading. A micrograph of the sample 

after the compression cycle is presented in Figure 2(b). The presence of retained stress-

induced martensite as a crosslinked network of fine needles in the β matrix is observed. 

The martensite needles exhibit widths between about 0.5 and 10 μm. The volume 



  

fraction of retained martensite was estimated from the strain retained data as 6 ± 2 %, 

using the relationship between both parameters reported in reference [5]. The fraction of 

martensite was also obtained from optical micrographs as 11 ± 3 %. This procedure is 

that commonly used for determination of volume fractions of individual phases [21]. 

 

FIGURE 2 

 
After the immersion, the surface of the samples was examined by optical microscopy 

and SEM with EDX (Figure 3). Preferential dissolution of the β phase located in the 

areas between the needles of martensite is observed (Figure 3(a)). This fact is more 

evident in the micrographs obtained from a cross-section (Figure 3(b)), especially in 

that obtained by SEM in the inset, where a representative corrosion depth of around 10 

μm is observed. The EDX analysis results of different zones are given in Table 1. 

According to EDX results, the martensite needles remain uncorroded. On the sample 

surface, some corrosion products based on O were detected, and copper particles with 

sizes up to around 50 μm were found (with ≈ 98 wt.% Cu). They can be observed on top 

of the uncorroded martensite needles (Figure 3(b)). The copper crystals would be 

formed by a dissolution-redeposition mechanism as has been previously reported [16-17, 

22]. EBSD map of the redeposited crystals shows they correspond to copper cubic 

phase consisting of grains with different crystallographic orientations (Figure 4). 

 

Table 1. EDX analysis of different zones in Figure 3. 

Element 
Mass concentration (wt.%) 

Cu particles Matrix (Zone 1) 

Cu 98.18 77.03 

Al 0.36 13.24 

O 1.47 9.73 

 

 

FIGURE 3 

 

FIGURE 4 

 

The diffraction patterns of the sample after immersion are presented in Figure 5. The 

presence of Cu particles on the surface of the sample is confirmed, and they are also 

detected in the pattern obtained from the cross-section. The existence of corrosion 

products based on Al, O and Cl on the surface of the samples is confirmed: Al2O3, 

CuO∙Cu2O, CuO, and CuCl2. A TOF-SIMS analysis of the cross-section of the sample 

after immersion was carried out. The element distribution maps of Al, Be and O are 

presented in Figure 6. It can be observed the presence of Al and O on the surface of the 

corroded sample, which is in agreement with the presence of some oxides of copper and 

Al2O3. Some quantities of Beryllium, greater than those present in the original alloy, 

could be also detected by TOF-SIMS analysis on the surface of the sample, which 

indicates the formation of some Be compounds as corrosion product. It is important to 

note that the presence of Be had not been detected by any other technique, due to 

technical difficulties on its determination. However, more work is needed in order to 

determine the beryllium compounds that are formed. 

 

FIGURE 5 

 



  

FIGURE 6 
 

When a β sample is subjected to mechanical stress, the martensitic transformation is 

induced, and needles are formed in the most favored directions in each grain. It is 

important to note that during a uniaxial test on a polycrystalline specimen, stresses in 

many directions are induced. After the unloading, some needles of martensite can be 

retained. Their presence can deteriorate the pseudoelastic behavior of the material, 

leading to a decrease in the stress for the beginning of the martensitic transformation, 

and an increase in the strain retained on unloading [5]. However, there is no knowledge 

about the possible influence of the martensite on the corrosion behavior, especially in 

marine environments. In this work, we found that the martensite needles remain 

practically uncorroded while the β matrix suffers dealloying and higher corrosion rates.  

The β matrix corresponds to a long range ordered DO3 structure [3]. The β to 18R 

martensite transformation is induced by stress, and the formed martensite phase has a 

long-range order inherited from the β matrix. It is important to note that no 

compositional change takes place during the martensitic transformation, and both 

phases, β and martensite have the same composition but different crystalline structure. 

The structure of the 18R martensite is an ordered orthorhombic lattice consisting of 18 

close-packed layers in each period. This structure is generated by introducing stacking 

faults on each third plane, with a stacking sequence 

AB’CB’CA’CA’BA’BC’BC’AC’AB’ [1, 23-24]. The better corrosion resistance of 

martensite needles than the β matrix could be due to the difference in the concentration 

of defects in both phases. Due to the nature of the martensitic transformation, a high 

density of stacking faults are formed in the 18R martensite to adjust the interface with 

the β phase to a plane of invariant habit [25].  

In a previous work it was found that the corrosion of CuAlBe alloys in 3.5 % NaCl 

occurs by dealuminization [17-19]. After 60 days of immersion, β phase located in the 

areas between the needles of martensite is dissolved due to the preferential loss of 

aluminum, and the posterior dissolution-redeposition of copper takes place. This 

process is evidenced by the presence of copper crystals on the surface of the sample, 

corresponding to polycrystalline particles. Based on the XRD and TOF-SIMS results, 

the aluminum dissolution leads to the formation of Al2O3, and the corrosion products 

Cu2O/CuO and CuO are also present on the surface. These results are in agreement with 

the fact that the main anodic reaction would be the formation of oxides of copper and 

aluminum oxides/hydroxides and the oxygen reduction would be the main cathodic 

reactions. Al2O3 would be formed by the complexation of aluminum by chloride and a 

subsequent hydrolysis [26]. Previous studies of copper in chloride media have found 

that the first corrosion product of copper is cuprous chloride, CuCl, which produces 

cuprous oxide, Cu2O, and it oxides to CuO at higher potential [17, 19, 27]. It was also 

found the presence of CuCl2, which has been also reported by other authors, especially 

on cyclic voltammetric time-scales [19, 28-29].  

In the XRD measurements obtained from the cross-section of the sample (Figure 5(b)), 

the presence of Cu, β phase and Al2O3 is detected. β phase corresponds to the non-

corroded matrix, far from the surface of the sample. The Cu signal would correspond to 

the crystals on the surface of the sample, and some severely corroded grains inside the 

specimen. Those grains suffer dealuminization, obtaining a porous matrix rich in 

copper. The Al2O3 detected would correspond to a corrosion product located in the 

zones where the β phase was dissolved. The presence of some Be compounds on the 

surface of the samples was also detected by TOF-SIMS analysis. 



  

Only a few studies have compared the corrosion behavior of β and martensite phases in 

CuAl shape memory alloys. Raheem et al. [30] studied the corrosion behavior of 

CuAlNi shape memory alloys immersed in a NaOH solution, and they also found a 

higher resistance of the alloy in martensitic phase respect to the β alloy. The alloy in 

martensitic phase was obtained by specific heat treatments. The alloy in martensitic 

phase was obtained by specific heat treatments. The present study includes the results 

obtained in a first insight on the influence of stress-induced martensite on the corrosion 

behavior in chloride environment of a β CuAlBe shape memory alloy. More work is 

needed in order to understand the specific role of the stacking faults on the corrosion 

protection of the martensite phase.  

 
4. Conclusions 

The influence of the stress-induced martensite on the corrosion behavior of a β CuAlBe 

shape memory alloy after 60 days of immersion in a 3.5 % NaCl solution was analyzed, 

in view of its application as seismic dampers in bridges due to the pseudoelastic 

behavior. After a pseudoelastic cycle, some of the stress-induced martensite needles 

could not retransform to β phase and remain retained in the sample. From there arises 

the importance of the study of β CuAlBe alloys containing stress-induced martensite. 

The martensite needles were retained in the sample after a load-unload compression 

cycle up to a pseudoelastic deformation of 4.5 %.  

The surface morphology of the specimens after immersion was examined in detail using 

different surface characterization techniques. The corrosion of the alloy occurs by 

dealuminization, where β phase located in the areas between the needles of martensite is 

dissolved, and the posterior redeposition of copper takes place. This process is 

evidenced by the presence of copper crystals on the surface of the sample, 

corresponding to polycrystalline particles. The aluminum forms Al2O3, and the 

corrosion products Cu2O/CuO and CuO are also present on the surface. The existence of 

some Be compounds on the surface of the samples was also detected by TOF-SIMS 

analysis. 

This study includes the first results obtained on this subject, where the martensite 

needles remain practically uncorroded while the β matrix suffers dealloying and higher 

corrosion rates. The better corrosion resistance of martensite needles than the matrix 

could be due to the difference in the concentration of defects in both phases. More work 

is needed in order to understand the origin of the corrosion resistance of the martensite 

phase. 
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Figure Captions 

 
Figure 1. Cube prepared for lift out (a), cube before polishing attached to a TEM grid 

(b), polished surface of an area of interest (c). 

 

Figure 2. (a) Stress-strain curve for the sample in β phase subjected to a single cycle of 

compression. (b) Optical micrograph of the sample after the compression cycle. 

 

Figure 3. Micrographs of a CuAlBe sample subjected to a compression cycle and 

immersed in a NaCl solution for 60 days. (a) SEM image, (b) micrograph obtained by 

OM from the cross section of the sample. The inset in Figure (b) corresponds to an 

image obtained by SEM. 

 

Figure 4. (a) EBSD band map from the cross section of the sample showing the 

redeposited copper crystals, and (b) EBSD crystal map showing the different 

crystallographic orientation. 

 

Figure 5. XRD patterns of the sample after 60 days of immersion in 3.5 % NaCl. (b) 

was obtained from the cross-section. 

 

Figure 6. Element distribution maps obtained by TOF-SIMS analysis of the cross-

section of the sample after 60 days of immersion in 3.5 % NaCl. The micrograph at the 

bottom corresponds to the SEM image captured before TOF-SIMS analysis. 
 

 

(a) 



  

Research highlights 

The corrosion behavior of a β CuAlBe with stress-induced martensite was 

analyzed  

The corrosion of the alloy occurs by dealuminization and redeposition of Cu 

β phase located in the areas between the needles of martensite is dissolved  

Corrosion products are present in the surface: Cu crystals, Cu-oxides and Al2O3 

 

 

 


