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Hot quark matter and (proto-) neutron stars
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In the first part of this paper, we use a nonlocal extension of the three-flavor Polyakov-Nambu-Jona-Lasinio
model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions
among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the
speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical
end point. In the second part of the paper, we investigate the quark-hadron composition of baryonic matter at
zero as well as nonzero temperature. This is of great topical interest for the analysis and interpretation of neutron
star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star
matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate
the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The
hot stellar models turn out to contain significant fractions of hyperons and � isobars but no deconfined quarks.
The latter are found to exist only in cold neutron stars.
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I. INTRODUCTION

Exploring the thermodynamic behavior of the quark-gluon
plasma and its associated equation of state (EoS) has become
one of the forefront areas of modern physics. The properties
of such matter are being probed with the Relativistic Heavy
Ion Collider (RHIC) at BNL and the Large Hadron Collider
(LHC) at CERN, and great advances in our understanding
of such matter are expected from the next generation of
high density experiments at the Facility for Antiproton and
Ion Research (FAIR at GSI) [1,2], the Nuclotron-bases Ion
Collider fAcility (NICA at JINR) [3,4], the Japan Proton
Accelerator Research Complex (J-PARC at Tokai campus of
JAEA) [5], the Super Proton Synchrotron (SPS at CERN) [6],
and the Beam Energy Scan (BES at BNL) [7].

Depending on temperature T and baryon chemical poten-
tial μ, the deconfined phase of quarks and gluons is believed to
exist at two extreme regions in the phase diagram of quantum
chromodynamics (QCD). The first regime corresponds to
T � μ, which was the case in the early Universe where the
temperature was hundreds of MeV but the net baryon number
density was very low. Second, it is theorized that quark
deconfinement occurs also at low temperatures but very high
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chemical potential, T � μ, that is, at conditions which exist
in the inner cores of (proto-) neutron stars [8,9]. Portions of
the phase diagram lying between these two extreme physical
regimes can be probed with relativistic collision experiments.

Effective field-theoretical models such as the Nambu-
Jona-Lasinio model and its extensions [10–14] as well as
lattice QCD (LQCD) calculations [15–17] predict a smooth
crossover of nuclear matter to quark matter in the low density
but high temperature regime of the phase diagram. On the
other hand, in the low temperature but high chemical potential
regime the hadron-quark phase transition is likely be of first
order [18]. Some recent works [19,20] have investigated the
occurrence of a first-order phase transition in neutron-star
mergers.

Spinodal instabilities are characteristic features in sys-
tems which exhibit first-order phase transitions. If present in
the quark gluon plasma, spinodal instabilities would lead to
density fluctuations that have a qualitative influence on the
dynamical evolution of the system density [21]. The fluctu-
ations that lead to a spinodal decomposition are long range
and differ from local fluctuations that give rise to nucleation,
which occurs in the metastable region of the phase diagram.
Hence, if there is a first-order phase transition, large density
fluctuations can arise as a result of spinodal instabilities. The
effects of spinodal instabilities in nuclear collision simulations
at NICA energy densities were studied in [22]. The spinodal
region has also been analyzed for two [23,24] and three [25]
flavor quark matter using the local Nambu-Jona-Lasinio (NJL)
model.
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In this work, we investigate the hadron-quark phase tran-
sition in superdense matter and the possible appearance of
deconfined quark matter in the cores of (proto-) neutron stars.
For the description of quark matter we use the nonlocal
SU(3) NJL model coupled to the Polyakov loop (hereafter
referred to a 3nPNJL model). Vector interactions among quark
are taken into account too. The use of nonlocal interactions
has been suggested as an improvement of the standard NJL
model. Nonlocality arises naturally from several successful
approaches to low-energy quark dynamics, such as one-gluon
exchange descriptions [12,13], the instanton liquid model
[26], and the Schwinger-Dyson resummation techniques [27].

We calculate the metastable regions of the phase diagram
and investigate the possible existence of quark-hybrid stars
assuming a sharp hadron-quark phase transition. Hadronic
matter is assumed to be made of neutrons, protons, hyperons,
and delta isobars. The field equations of these particles are
solved for an improved parametrization of the relativistic
mean-field model with density dependent coupling constants.
The density at which quark deconfinement may occur in the
cores of neutron stars is assumed to be several times greater
than the saturation density of ordinary nuclear matter. The
equations of state computed in this work fulfill the 2M� mass
constraints set by PSR J1614-2230 and PSR J0348 + 0432
[28–31] as well as the radius constraints derived from the
gravitational-wave event GW170817 and its electromagnetic
counterpart GRB 170817A [32–36].

The article is organized as follows. In Sec. II, we provide
a description of the 3nPNJL model and its parametrizations,
pointing out some of the reasons for using a nonlocal model
instead of the local one. We analyze the structure of the
phase diagram as predicted by the 3nPNJL model and explore
the occurrence of a spinodal region, which is determined
by the vanishing of the speed of sound. Section III is de-
voted to the description of hadronic matter. In Sec. IV, we
discuss the transition of hadronic matter to quark matter and
present the properties of neutron stars computed for the EoS of
this work. The study of several selected stages in the evolution
of proto-neutron stars to neutron stars is given in Sec. V.
Finally, Sec. VI provides a summary of the results and some
conclusions.

II. QUARK MATTER AT FINITE TEMPERATURE

A. Local vs nonlocal NJL model

The standard NJL model is based on an effective La-
grangian of relativistic fermions interacting through local
fermion-fermion couplings. Because of the local nature of the
interaction, the Schwinger-Dyson and Bethe-Salpeter equa-
tions become relatively simple. However, one of the draw-
backs of the model is that it is nonrenormalizable. The prob-
lems of ultraviolet divergences for this model can be fixed
by using nonlocal rather than local interactions. Furthermore,
the local NJL model works with an artificial momentum-
space cutoff of � ∼ 0.6–0.7 GeV, which is turned off at high
momenta. Thus, the applicability of this model is restricted
to energy and momentum scales (temperatures, chemical po-
tentials) that are small compared to �. Connections to the

running QCD coupling constant and the established high-
momentum, high-temperature behavior governed by perturba-
tive QCD are therefore ruled out right from the start.

In this work we will consider the 3nPNJL model, which
includes vector interactions among quarks. Nonlocal exten-
sions of the NJL model are designed to remove the defi-
ciencies of the local model, while, at the same time, the
nonlocal interactions regularize the model in such a way that
the basic features of a relativistic quark matter system, like
chiral symmetry breaking and the formation of bound stages
in the low-energy limit, can be properly described (see [13]
and references therein). In addition, the range (in momentum
space) of the nonlocality provides a natural cutoff that falls off
at high densities, which makes the model more appropriate for
the description of quark matter than the local NJL model, even
in the perturbative regime.

B. 3nPNJL model

To study the QCD phase diagram and the EoS with the
3nPNJL model, we start from the Lagrangian

L(x) = ψ̄ (x)(−i /D + m̂)ψ (x) + GV

2
jμa (x) jμa (x)

− GS

2

[
js
a(x) js

a(x) + j p
a (x) j p

a (x)
] + U [A(x)]

− H

4
Aabc

[
js
a(x) js

b(x) js
c(x) − 3 js

a(x) j p
b (x) j p

c (x)
]
, (1)

which accounts for scalar as well as vector interactions among
quarks. The quantity U is an effective potential which ac-
counts for Polyakov loop dynamics, and the last term denotes
the ’t Hooft term which is responsible for flavor mixing.
The quantities ψ denote the light quark fields, ψ ≡ (u d s)T ,
and m̂ = diag(mu, md , ms) stands for the current quark mass
matrix. For simplicity we consider the isospin symmetric limit
where mu = md .

Regarding the interaction terms, the scalar (s), pseu-
doscalar (p), and vector (μ) interaction currents are respec-
tively given by

js
a(x) =

∫
d4zR̃(z)ψ̄

(
x + z

2

)
λaψ

(
x − z

2

)
,

j p
a (x) =

∫
d4zR̃(z)ψ̄

(
x + z

2

)
iλaγ

5ψ
(

x − z

2

)
, (2)

jμa (x) =
∫

d4zR̃(z)ψ̄
(

x + z

2

)
λaγ

μψ
(

x − z

2

)
,

where R̃ is the Gaussian form factor whose Fourier transform
is given by R(p) = exp(−p2/�2), with � being a parameter
that sets the range of nonlocality in momentum space. The
matrices λa, with a = 0, . . . , 8, are the standard Gell-Mann
3 × 3 matrices [generators of SU(3)] and λ0 = √

2/3 13×3.
The constants Aabc in the ’t Hooft term are defined by

Aabc = 1

3!
εi jkεmnl (λa)im(λb) jn(λc)kl . (3)

The interaction between fermions and SU(3) color gauge
fields Ga

μ is described by the covariant derivative in the
fermion kinetic term, i.e., Dμ ≡ ∂μ − iAμ, where Aμ will be
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defined, as usual, assuming that the quarks move in a constant
background field A4 = iA0 = igδμ0 Gμ

a λa/2.
The partition function associated with the effective action

SE = ∫
d4xL(x) can be bosonized in the usual way introduc-

ing the scalar, pseudoscalar, and vector meson fields σa(x),
πa(x), and θa, respectively, together with auxiliary fields
Sa(x), Pa(x), and Va(x). To deal with these auxiliary fields
we follow the standard stationary phase approximation, which
provides a set of equations that relate them to the meson fields
(the procedure is similar to that described in Refs. [37,38]).
We consider the mean-field approximation (MFA), keeping
only the nonzero vacuum expectation values of the bosonic
fields σ̄a and θ̄a and assuming that pseudoscalar mean-field
values vanish, owing to parity conservation. Note that due
to color charge conservation only σ̄a=0,3,8 and θ̄a=0,3,8 can be
different from zero. In addition, σ̄3 also vanishes in the isospin
limit. It is therefore convenient to transform the neutral fields
σ̄a, θ̄a, S̄a, and V̄a to a flavor basis ( f = u, d, s) and to compute
σ̄ f , θ̄ f , S̄ f , and V̄f , as described in Ref. [39].

After bosonization of the effective action, the regularized
grand canonical potential in the mean-field approximation
(see Ref. [40] for details in the regularization procedure)
follows as

 = reg + free + 0 + U (�, T ), (4)

where 0 is defined by the condition that  vanishes at
T = μ = 0. The effective potential U (�, T ) can be fitted by
taking into account group theoretical constraints together with
lattice results, from which one can estimate the temperature
dependence. Following Ref. [41], we take

U (�, T ) = [− 1
2 a(T, T0) �2 + b(T, T0) ln(1 − 6 �2

+ 8 �3 − 3 �4)
]
T 4, (5)

with the definitions of a(T, T0) and b(T, T0) given in Ref. [41].
The parameter T0 = 195 MeV is fixed to reproduce LQCD
results for the critical temperature ( [14,38] and references
therein). Owing to the charge conjugation properties of the
QCD Lagrangian, the mean-field traced Polyakov loop field
�, which serves as an order parameter of confinement, is
expected to be a real quantity [13]. Assuming that φ3 and
φ8 are real-valued, this implies that φ8 = 0. Then, � ≡
1
3 Tr exp(iφc/T ) = [2 cos(φ3/T ) + 1]/3, where the trace is
to be taken with respect to the color indices. The color
background fields φc are φr = −φg = φ3 and φb = 0, thus
φc = cφ3 with c = {−1, 0, 1}.

To study hot and dense quark matter we extend the
bosonized effective action to finite temperature using the
Matsubara formalism. Thus, the quantities reg and free in
Eq. (4) are given by

reg = −2 T
∑
f ,c

∫
p d p3

(2 π )3

{
2

∞∑
n=0

ln

[
q2

f nc + M2
f

(
w2

f nc

)
w2

f nc + m2
f

]}

−1

2

⎡⎣∑
f

(
σ̄ f S̄ f + GS

2
S̄2

f + θ̄ f V̄f − GV

2
V̄ 2

f

)

+ H

2
S̄uS̄d S̄s

]
,

free = −2 T
∑
f ,c

∫
p d p3

(2 π )3
[ln(1 + e−(E f −μ f −iφc )/T )

+ ln(1 + e−(E f +μ f +iφc )/T )], (6)

where E f =
√


p 2 + m2
f , w2

f nc = (wn − iμ f + φc)2 + 
p 2, and
wn denote the Matsubara frequencies. The shifted momen-
tum becomes q2

f nc = q2
0 f nc + 
p 2 with the zero component

given by q2
0 f nc = {wn − i[μ f − θ̄ f R(w2

f nc)] + φc}2. The sums
over flavor and color indices run over f = (u, d, s) and c =
(r, g, b), respectively. The momentum dependent constituent
quark masses are given by M f (w2

f nc) = m f + σ̄ f R(w2
f nc).

Note that in the isospin limit σ̄u = σ̄d , thus we have Mu = Md .
The mean-field values of the auxiliary fields,

S̄ f = −16T
∑

c

∫
p d p3

(2 π )3

∞∑
n=0

M f
(
w2

f nc

)
R
(
w2

f nc

)
q2

f nc + M2
f

(
w2

f nc

) ,

V̄f = −16T
∑

c

∫
p d p3

(2 π )3

∞∑
n=0

i q0 f ncR
(
w2

f nc

)
q2

f nc + M2
f

(
w2

f nc

) , (7)

are obtained by minimizing the thermodynamic potential with
respect to the mean-field values σ̄ f and θ̄ f , respectively.
Minimizing  with respect to the mean-field values and the
Polyakov-loop color field φ3 leads to a system of coupled
nonlinear equations that can be solved numerically for the
mean-field values in Eqs. (4) and (7). From the grand canoni-
cal potential  the system’s energy density ε, pressure P, and
quark number density nq follow as

ε = −P + T S +
∑

f

μ f n f ,

P = −, nq =
∑

f

n f , (8)

with S = ∂P
∂T and n f = ∂P

∂μ f
.

To regulate the nonlocal interactions we use the Gaussian
form factor R(w2

f nc) = exp(−w2
f nc/�

2). The argument of the
form factor, w2

f nc, is not shifted by the vector interaction
because the regulator is inserted as a distribution function
in the Lagrangian before taking the mean values of the
fields. The up (mu) and down (md ) current quarks masses
and the coupling constants GS , H , and � are chosen so
as to reproduce the phenomenological values of the pion
decay constant, fπ = 92.4 MeV, and the meson masses mπ =
139.0 MeV, mK = 495 MeV, mη′ = 958 MeV [12,39,42],
leading to mu = md = 3.63 MeV, � = 1071.38 MeV,
Gs�

2 = 10.78, and H�5 = −353.29. The strange quark cur-
rent mass is set to an updated phenomenological value of
ms = 95.00 MeV, and ms/mu � 26 is in agreement with the
latest data provided by the Particle Data Group [43].

The vector interaction coupling constant GV is usually
expressed in terms of the scalar coupling constant GS . In what
follows, we introduce the quantity ζv ≡ GV /GS to denote
the vector-to-scalar interaction strength. As it is customary,
we treat GV as a free parameter, due the uncertainty in its
theoretical predictions [44]. Different values for ζv will be
chosen in the next sections to show the effect of the vector
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FIG. 1. Dependence of the dynamical masses of light (u and d)
quarks on momentum p for the parametrization used in this work
(solid line). The diamond shaped symbols show the results of LQCD
calculations for Nf = 2 + 1 quark flavors extracted from [45].

interaction on the properties of quark matter. The form factor
R(p), defined in Eq. (3) and the given parameters, guarantees
a rapid ultraviolet convergence of the loop integrals. As can
be seen in Fig. 1, the functional form of the form factor is
chosen such that the momentum dependence of the dynamical
quark mass is reproduced by the light quarks masses obtained
in LQCD calculations [45].

C. Spinodal decomposition and the QCD phase diagram

As indicated by extensions of LQCD to finite chemical
potentials for finite quark masses [15–17], there should be a
crossover phase transition in the QCD phase diagram at low
chemical potential. In addition, the study of some extrapola-
tions to the continuum limit for 2 + 1 quark flavors [46–48]
give a critical temperature of around Tc(0) � 155 MeV.

At large chemical potentials but low temperatures, on the
other hand, a first-order phase transition is expected based on
phenomenological studies of quark matter (see, for example,
[18], and references therein). This suggests that there should
be a second-order phase transition critical end point (CEP)
at some critical temperature and critical chemical potential,
where the different phase transitions meet. The location of
the CEP and the signatures of the first-order phase transition
are being investigated in the new experimental facilities such
as NICA, FAIR, and J-PARC, while the intermediate density
(crossover) region is the target of the renewed facilities BES
and SPS at RHIC and CERN, respectively. These regions are
shown in Fig. 2.

It is worth noting that according to LQCD simulations at fi-
nite temperature and zero chemical potential, chiral symmetry
restoration occurs approximately simultaneously with quark
deconfinement.

The restoration of such symmetry and the consequent
melting of the chiral condensate, defined in our model as
〈ψ̄ f ψ f 〉 = ∂m f , takes place already in the hadronic phase

FIG. 2. Temperature T vs baryon chemical potential μ for three-
flavor quark matter without (a) and with (b) vector interactions.
LQCD results [46–48] are marked. The crossover phase transition
is shown by the dot-dashed blue line. The dashed red line shows the
spinodals, the solid black lines mark the first-order phase transition.
The location of the critical end point (CEP) is shown by the solid dot.

by parity doubling [49], which is signaled by a mass degener-
acy of hadronic chiral partner states. A model that restores
chiral symmetry in the hadronic phase by lifting the mass
splitting between chiral partner states before quark deconfine-
ment sets in has recently been studied in Ref. [50].

In Figs. 2 and 3 we show the phase diagram of quark matter
computed with the 3nPNJL model introduced in Sec. II. The
baryon chemical potential is given by μ = ∑

f μ f . In the
crossover region (blue dot-dashed line) of Fig. 2, the critical
temperatures obtained from LQCD results [46–48] are marked
by green triangles. In addition, we have indicated the regions
explored by the Beam Energy Scan (BES) of the STAR
collaboration at RHIC and by the ALICE Collaboration at
the LHC. The first-order phase transition is shown by a black
solid line, and the critical endpoint (CEP) is marked with a
solid black dot. Finally, the spinodal lines, marked by red
dashed lines, show the limit of the metastable regions which
will be explained later. It is important to note that the phase
diagram shown in Fig. 2 is for quark matter only. This figure,
therefore, should not be confused with the full QCD phase
diagram. A recent discussion of the QCD phase diagram based
on a hadronic model and a chiral quark model (which is
simpler than the 3nPNJL model of this work) can be found
in Ref. [51].
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FIG. 3. Temperature T vs quark number density nq for three-
flavor quark matter without (a) and with (b) vector interactions.
The crossover and the first-order phase transitions are shown by the
dot-dashed blue and solid black lines, respectively. The critical end
point (CEP) is marked with a solid black dot. Unstable (c2

s < 0) and
metastable (c2

s > 0) regions are highlighted.

In order to show the effects of vector interaction we have
chosen the values ζv = 0.0 and ζv = 0.5, the latter being the
standard value that follows from the Fierz transformation of
the interaction between quark color currents induced by gluon
exchange [52]. Using the SU(3) version of the local PNJL
model, it has been shown [53] that the inclusion of repul-
sive vector interactions among quarks shrinks the first-order
transition region by moving the CEP to lower temperatures
but higher densities, eventually causing the CEP to vanish
at high enough values of the vector coupling constant ζv.
However, the value chosen for ζv in this work allows for
the existence of a CEP, in agreement with the results of
LQCD extrapolation techniques [54]. By comparing Figs. 2(a)
and 2(b), it can be seen that for the 3nPNJL model used in
our work, the inclusion of vector interactions shifts the first-
order phase transition to higher chemical potentials and lower
temperatures. Finally, the results displayed in Figs. 3(a) and
3(b) show that vector interactions tend to shrink the regions
(gray areas) where metastable quark matter exists.

The crossover phase transition is determined by the peaks
of the chiral susceptibility, as in [12,13]. The method of
construction of the phase diagram in the (T, nq) plane for the
first-order phase transition follows from Fig. 4. The dotted

FIG. 4. (a) Quark number density nq and (b) pressure P as a
function of baryon chemical potential μ at T = 50 MeV. The dotted,
solid, and dot-dashed lines show unstable, stable, and metastable
equilibrium, respectively.

lines show unstable equilibrium, solid and dot-dashed lines
show stable and metastable equilibria, respectively. The crit-
ical first-order values (Tcrit , μcrit) used to construct the phase
coexistence line in Figs. 2(a) and 2(b) are defined by the point
where the zigzag shaped branches of the pressure P cross each
other.

The region where density fluctuations associated with the
spinodals occurs can be analyzed in terms of the isothermal
speed of sound cs given by [55,56]

c2
s = nq

ε + P

(
∂P

∂nq

)
T

. (9)

The gray-shaded regions in Fig. 3 show unstable regions
in the phase diagram where c2

s < 0. These regions are sur-
rounded by metastable regions shown in orange where c2

s > 0.
The dashed red curves show the spinodal lines determined
by c2

s = 0, while the blue dot-dashed and the solid black
curves show the crossover and first-order phase transitions,
respectively. In the region where c2

s < 0, the “compressibil-
ity” κ ∝ nq( ∂P

∂nq
)T [57] is negative and the system responds
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to an increase in density by enlarging any small density
fluctuations. Since this region is not stable, all the density
fluctuations that normally occur in the zone bounded by the
isothermal spinodals will separate the system into regions of
low density and high density. The spinodal curves separate
unstable regions from metastable regions in Fig. 3. The right
branch of the spinodal curve shows the regions where an
increase in density in the denser phase does not cause any
change in pressure. The left branch of the spinodal shows
the equivalent to this, but for the less dense phase. The
metastable region is bounded by the coexistence region and
the isothermal spinodal curve. It is in this region where density
fluctuations either grow through the aggregation of quark
condensates (left branch) or shrink because of the evaporation
of these condensates (right branch). It is worth noticing that
if one wants to construct an equation of state for deconfined
quark matter, it is necessary to work with chemical potentials
that lie on the right-hand side of the spinodal lines so that
perturbations do not lead to the formation of mesons.

The behavior of c2
s (in units of the speed of light) as a

function of quark number density is shown in Fig. 5 for
different temperatures. Note that for the cases without vector
interactions c2

s is less than 1/3, as suggested for weakly in-
teracting quark matter [58]. Nonvanishing vector interactions
among quarks stiffen the EoS and the speed of sound increases
to values greater than 1/3. (The region where c2

s < 0, which
corresponds to the unstable region of the first-order phase
transitions, has been omitted in Fig. 5.)

III. HADRONIC MATTER AT FINITE TEMPERATURE

In the most primitive conception, the matter in the
core of a neutron star is constituted from neutrons. At a
slightly more accurate representation, the cores consist of
neutrons and protons whose electric charge is balanced by
leptons (L = {e−, μ−}). Other particles, like hyperons (B =
{n, p,�,�,�}) and the � isobar, may be present if the
Fermi energies of these particles become large enough so
that the existing baryon populations can be rearranged and a
lower energy state be reached. To model this hadronic phase,
we make use of the density-dependent relativistic mean-field
(DDRMF) theory, in which the interactions between baryons
are described by the exchange of scalar (σ ), vector (ω),
and isovector (ρ) mesons. The Lagrangian of this model is
given by

L =
∑

B

ψ̄B[γμ[i∂μ − gωB(n)ωμ − gρB(n)τ · ρμ]

− [mB − gσB(n)σ ]]ψB + 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

3
b̃σ mN [gσN (n)σ ]3 − 1

4
c̃σ [gσN (n)σ ]4 − 1

4
ωμνω

μν

+ 1

2
m2

ωωμωμ + 1

2
m2

ρρ μ · ρ μ − 1

4
ρ μν · ρ μν , (10)

where gσB(n), gωB(n), and gρB(n) are density dependent
meson-baryon coupling constants and n = ∑

B nB is the to-
tal baryon number density. The density dependent coupling

FIG. 5. Isotherms of the square of the speed of sound c2
s as a

function of quark number density nq without (a) and with (b) vector
interactions among quarks. The solid dots indicate the location of the
critical end points (CEPs).

constants are given by [59]

giB(n) = giB(n0) ai

1 + bi
(

n
n0

+ di
)2

1 + ci
(

n
n0

+ di
)2 , (11)

for i = σ, ω and

gρB(n) = gρB(n0) exp

[
−aρ

(
n

n0
− 1

) ]
. (12)

This choice of parametrization accounts for nuclear medium
effects [60]. The parameters ai, bi, ci, and di are fixed by
the binding energies, charge, and diffraction radii, spin-orbit
splittings, and the neutron skin thickness of finite nuclei. Note
that the density dependence of the meson-baryon couplings
in the DD2 parametrization eliminates the need for nonlinear
self-interactions of the σ meson. Therefore, the nonlinear
terms in the Lagrangian given in Eq. (11) are considered only
for the GM1L parametrization.

015803-6



HOT QUARK MATTER AND (PROTO-) NEUTRON STARS PHYSICAL REVIEW C 100, 015803 (2019)

TABLE I. Parameters of the DDRMF parametrizations that lead
to the properties of symmetric nuclear matter at saturation density
given in Table II.

Parameters GM1L DD2

mσ (GeV) 0.5500 0.5462
mω (GeV) 0.7830 0.7830
mρ (GeV) 0.7700 0.7630
gσN 9.5722 10.6870
gωN 10.6180 13.3420
gρN 8.9830 3.6269
b̃σ 0.0029 0
c̃σ −0.0011 0
aσ 0 1.3576
bσ 0 0.6344
cσ 0 1.0054
dσ 0 0.5758
aω 0 1.3697
bω 0 0.4965
cω 0 0.8177
dω 0 0.6384
aρ 0.3898 0.5189

The meson-hyperon coupling constants have been deter-
mined following the Nijmegen extended soft core (ESC08)
model [61]. The relative isovector meson-hyperon coupling
constants were scaled with the hyperon isospin and for the �

isobar xσ� = xω� = 1.1 and xρ� = 1.0, where xiH = giH/giN

was used (see [62] for details).
In Table I we list the parameters of the DDRMF models

used in this work. Table II shows the saturation properties
of the models, which are the nuclear saturation density n0,
energy per nucleon E0, nuclear incompressibility K0, effective
nucleon mass m∗/mN , asymmetry energy J , slope of the
asymmetry energy L0, and the nucleon potential UN .

The meson mean-field equations following from Eq. (11)
are given by

m2
σ σ̄ =

∑
B

gσB(n)ns
B − b̃σ mN gσN (n)(gσN (n)σ̄ )2

−c̃σ gσN (n) (gσN (n)σ̄ )3,

m2
ωω̄ =

∑
B

gωB(n)nB, (13)

m2
ρρ̄ =

∑
B

gρB(n)I3BnB,

TABLE II. Properties of nuclear matter at saturation density
computed for the DDRMF parametrizations GM1L [62,63] and DD2
[64].

Saturation properties GM1L DD2

n0 (fm−3) 0.153 0.149
E0 (MeV) −16.30 −16.02
K0 (MeV) 300.0 242.7
m∗/mN 0.70 0.56
J (MeV) 32.5 32.8
L0 (MeV) 55.0 55.3
−UN (MeV) 65.5 75.2

where I3B is the three-component of isospin and ns
B and nB are

the scalar and particle number densities for each baryon B,
which are given by

ns
B = γB

∫
d3 p

(2π )3
[ fB−(p) − fB+(p)]

m∗
B

E∗
B

, (14)

nB = γB

∫
d3 p

(2π )3
[ fB−(p) − fB+(p)]. (15)

Here fB∓ denotes the Fermi-Dirac distribution function and
E∗

B stands for the effective baryon energy given by

fB∓(p) = 1

exp
[E∗

B (p)∓μ∗
B

T

] + 1
, E∗

B (p) =
√

p2 + m∗2
B ,

where γB = 2JB + 1 is the spin degeneration factor and m∗
B =

mB − gσB(n)σ̄ is the effective baryon mass. We shall note at
this point that this model does not distinguish from parity in
mass eigenstates. Because of that, the neutron mass is set to
mN = 939.6 MeV and that is the value that it takes when the
background σ field goes to zero. For a detailed explanation of
a model that distinguishes hadronic chiral partner states see
[65]. The effective chemical potential, μ∗

B, is given by

μ∗
B = μB − gωB(n)ω̄ − gρB(n)ρ̄I3B − R̃, (16)

where R̃ is the rearrangement term given by

R̃ =
∑

B

(
∂gωB(n)

∂n
nBω̄ + ∂gρB(n)

∂n
I3BnBρ̄ (17)

− ∂gσB(n)

∂n
ns

Bσ̄

)
,

which is important for achieving thermodynamical consis-
tency [66]. This term also contributes to the total baryonic
pressure of the matter,

P =
∑

B

γB

3

∫
d3 p

(2π )3

p2

E∗
B

[ fB−(p) + fB+(p)]

− 1

2
m2

σ σ̄ 2 + 1

2
m2

ωω̄2 + 1

2
m2

ρρ̄
2 (18)

− 1

3
b̃σ mN (gσN (n)σ̄ )3 − 1

4
c̃σ (gσN (n)σ̄ )4 + nR̃.

The expression for the energy density ε is determined by
the Gibbs relation given in Eq. (27).

IV. NEUTRON STAR MATTER AND NEUTRON STARS

For the description of the matter inside of (proto-) neu-
tron stars, leptons must be also taken into account in both
the hadronic and the quark matter models. They can be
treated as free Fermi gases with the grand canonical potential
given by

L = −
∑

L

γL

3

∫
d3 p

(2π )3

p2

EL
[ fL−(p) + fL+(p)], (19)

with the lepton distribution function given by

fL∓(p) = 1

exp
[EL (p)∓μL

T

] + 1
, EL(p) =

√
p2 + m2

L.
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The lepton degeneracy factor is given by γL = 2. The sum
over L in Eq. (19) runs over e− and μ− with masses mL and,
when they correspond (see Sec. V C), massless neutrinos νe.

In addition, the composition of the matter in a neutron star
is constrained by charge neutrality and β equilibrium. Electric
charge and baryon number are conserved. The conditions of
electric charge neutrality and of baryon number conservation
lead to ∑

B

qB nB +
∑

L

qL nL = 0, (20)

and ∑
B

nB − n = 0, (21)

where the subscripts B and L stand for baryons and leptons
respectively, qi is the electric charge of these particles.

The condition of chemical equilibrium reads

μB = μn − qB
(
μe − μνe

)
, (22)

where μn, μe, and μνe are the neutron, electron, and neutrino
chemical potentials, respectively. For the quark matter phase,
this condition is given by

μ f = μ̃ − q f
(
μe − μνe

)
, (23)

where μn is replaced by an average quark chemical potential
μ̃ = (μu + μd + μs)/3, which facilitates the numerical cal-
culations, and q f represents the electric charge of each quark
flavor.

The lepton chemical potential follows from the equilibrium
reaction

e− ↔ μ− + νe + ν̄μ, (24)

which leads to

μe = μμ + μνe + μν̄μ
. (25)

Neutrinos are trapped in the very early stages of the life of a
proto-neutron star, during which it is assumed that the lepton
fraction is kept constant. This can be expressed mathemati-
cally as

YLe = ne + nνe

n
= ξ,

YLμ = nμ + nνμ

n
= 0. (26)

During this phase, the stellar matter is opaque to neutrinos
and its composition is characterized by three independent
chemical potentials, which are μn, μe, and μνe . The condition
YLμ = 0 accounts for the fact that no muons are present in
the matter when neutrinos are trapped. The value of ξ � 0.4
depends on the efficiency of electron capture reactions during
the initial state of the formation of proto-neutron stars [67].

When the star cools down, the stellar matter becomes
transparent to neutrinos so that μνe = μν̄μ

= 0. In this case the
number of independent chemical potentials is reduced from 3
to 2, μn and μe.

A. Dense matter phase transition and hybrid EoS

To model the phase equilibrium between hadronic matter
and quark matter, we shall assume that this equilibrium is of
first order and Maxwell-like, that is, the pressure in the mixed
quark-hadron phase is constant. Theoretically the transitions
could be Gibbs-like as well, depending on the surface ten-
sion at the hadron-quark interface. The value of the surface
tension is only poorly known. Lattice gauge calculations,
for instance, predict surface tension values in the range of
0–100 MeV fm−2 [68]. According to theoretical studies, sur-
face tensions above around 70 MeV fm−2 favor the occurrence
of a sharp (Maxwell-like) quark-hadron phase transition rather
than a softer Gibbs-like transition [69,70]. In this paper, we
consider a sharp Maxwell-like transition.

Given the theoretical models for quark matter and hadronic
matter discussed in Secs. II and III, we now proceed to
construct models for the hybrid EoS of compact stars. The
EoS for both the hadronic phase and the quark phase is given
by the Gibbs relation

ε = −P + T S +
∑

i

μi ni, (27)

where P = −, S = ∂P
∂T and ni = ∂P

∂μi
(i stands for all the

particles of each phase, including leptons). The lepton con-
tributions to P and S follow from L given by Eq. (19).

To construct the hadron-quark phase transition we adopt
the Gibbs condition, i.e., the phase transition between both
phases occurs when

GH (P, T ) = GQ(P, T ), (28)

where GH , respectively GQ, are the Gibbs free energy per
baryon for the hadronic (H) and quark (Q) phases at a given
pressure and transition temperature. The Gibbs energy of each
phase (i = H, Q) is given by

Gi(P, T ) =
∑

j

n j

n
μ j, (29)

where the sum over j is over all the particles present in each
phase. It is important to remark that this is the correct treat-
ment to calculate a phase transition when different particle
species are present in both phases. In the case of Fig. 4, one is
allowed to use both the Gibbs free energy or the chemical po-
tential to model the phase transition, since there are quarks in
both phases. In contrast, for the hadron-quark phase transition,
the particle chemical potentials in each phase are different so
that is becomes necessary to calculate the Gibbs free energy
as a function of pressure to construct the phase transition
[71], as done in Figs. 6 and 7 for the GM1L and DD2
parametrizations, respectively. In these figures, two transitions
are visible, the first one from quark to hadronic matter at
pressures P ∼ 100–150 MeV/fm3, and the second one from
hadronic to quark matter at P ∼ 350–400 MeV/fm3. The
hadronic and the quark matter EoS are very similar and this
makes it difficult to distinguish between the two phases in the
range of the relevant pressures, P ∼ 100–400 MeV/fm3. This
can be interpreted as a masquerade behavior of dense matter,
different from pure deconfined quark matter [72]. It can be
seen from Fig. 8 that a first-order phase transition occurs at
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FIG. 6. Panel (a) shows the construction of the EoS (at T = 0)
from the Gibbs free energy (per particle) G for the hybrid GM1L-
3nPNJL parametrization. The solid black line represents the hadronic
(GM1L) EoS and the red dashed and blue dotted lines are the EoSs
of the quark (3nPNJL) phase for two values of the vector coupling
constant ζv. Panel (b) shows the energy density ε as function of
pressure P for the two values of ζv, discussed in the text.

a baryonic chemical potential of μB ∼ 940 MeV, indicated
by the discontinuities in the particle number densities and
the dynamic quark masses. For baryon chemical potentials
between 940 and 1300 MeV we have a phase where the
chiral quark condensate of the up and down quarks, 〈ū u〉 =
〈d̄ d〉 ∼ 0, while 〈s̄ s〉 �= 0. Such a phase exhibits a structure
similar to hadronic matter and the first quark phase-to-hadron
transition is unphysical with condensed strange quasiparticle
states (the first crossing of hadronic and quarks matter curves
in Figs. 6 and 7). This behavior could indicate the existence
of a phase which has both aspects of nuclear and quark matter
(see [73,74], and references therein). Beyond μB ∼1300 MeV
and P ∼ 135 MeV/fm3, the strange quarks suffer a crossover
transition and then deconfine, becoming part of the deconfined
quark phase used to construct the hybrid EoS. In this regime
up and down quarks could form diquarks and condense in a
color superconducting state, provided the value of the diquark
coupling is sufficiently large [75].

The crossing of the Gibbs energy of the two phases
in the G-P plane defines the phase transition point for a
given transition temperature Ttrans. The 2M� constraint of

FIG. 7. Panel (a) shows the construction of the EoS (at T = 0)
from the Gibbs free energy (per baryon) G for hybrid DD2-3nPNJL
parametrization. The solid black line represents the hadronic (DD2)
EoS and the red dashed and blue dotted lines are the EoSs for the
quark (3nPNJL) phase for two values of the vector coupling constant
ζv. Panel (b) shows the energy density ε as function of pressure P for
the two values of ζv, discussed in the text.

FIG. 8. Dynamical masses Mi and number densities ni of up,
down, and strange quarks as a function of baryon chemical potential.
ne denotes the number density of electrons.
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FIG. 9. Comparison of the zero-temperature quark-hybrid EoSs
of this work (GM1L, DD2) with models (HLPS, Neutron EoS I,
EoS II, EoS III) from the literature [76–78]. The solid dots mark
the beginning and the end of the quark-hadron phase for our EoSs.
The symbol ζv denotes the vector interaction strengths.

PSR J1614-2230 and PSR J0348 + 0432 [28–31] and the as-
sumption that quark matter exists in the cores of neutron stars
has been used to determine the range of the vector coupling
constant ζv in the quark matter. This leads to 0.331 < ζv <

0.371 for GM1L, and 0.328 < ζv < 0.385 for DD2, where
the lower bounds are determined by the 2M� constraint and
the upper bounds by the existence of quark matter in the cores
of neutron stars. It is worth noticing that the density range
covered by the 3nPNJL model is such that the spinodal region
(and hence the possible hadronization of deconfined quark
matter) is not encountered.

The quark-hybrid EoSs GM1L-3nPNJL and DD2-3nPNJL
computed at zero temperature are compared in Fig. 9 with
nuclear EoSs suggested in the literature. The curves labeled
EoS I, EoS II, and EoS III are the EoSs determined by Kurkela
et al. [78], which are based on an interpolation between the
regimes of low-energy chiral effective field theory and high-
density perturbative QCD. The region labeled HLPS has been
established by Hebeler, Lattimer, Pethick, and Schwenk, and
the area labeled “Neutron matter” shows the equation of state
of low-density neutron matter [76,77]. It can be seen that the
superdense portions of the hybrid EoSs obtained in our work
are well within these limits.

In Fig. 10, we show the quark-hadron compositions of
cold neutron stars computed for GM1L-3nPNJL and DD2-
3nPNJL. As expected, the diversity of particles is signifi-
cantly reduced at T = 0, even though the �− isobar still
plays an important role in our calculations as it reduces the
lepton population notably. As can also be seen, the only
strangeness-carrying hyperons that contribute to the compo-
sition are the �’s and the �−’s, in sharp contrast to the
finite T case (Figs. 14 and 15). A comparison of the GM1L
and DD2 populations shows that the particle abundances are
qualitatively similar to each other, and the threshold densities
of the individual particle species are only shifted modestly.

FIG. 10. Particle population of stellar quark-hybrid matter at
zero temperature as a function of baryonic number density. The
populations are computed for GM1L-3nPNJL and DD2-3nPNJL (see
text). ζv denotes the strength of the vector repulsion among quarks.

B. Properties of static equilibrium configurations

To determine the mass-radius relationship for
(proto-) neutron stars we solve the Tolman-Oppenheimer-
Volkoff (TOV) equation [79] given by

dP

dr
= −m(r)ε(r)

r2

[1 + P(r)/ε(r)][1 + 4πr3P(r)/m(r)]

1 − 2m(r)/r
,

(30)
where P(r) and ε(r) are the pressure and energy density at a
radial distance r from the star’s center. The gravitational mass
follows from integrating

dm

dr
= 4πr2 ε(r) (31)

from r = 0 to the star’s radius R. The latter is defined by
P(R) = 0. The star’s total gravitational mass is thus given by

MG ≡ 4 π

∫ R

0
r2ε(r)dr. (32)

In Sec. V C we will discuss stages in the evolution of proto-
neutron stars to neutron stars in the gravitational-mass versus
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FIG. 11. (a) Gravitational mass as a function of central energy
density, and (b) gravitational mass as a function of stellar radius, for
T = 0 MeV. The vertical bars show the onset of the transition of
hadronic matter to quark matter. The vertical dash-dotted lines mark
the location of the maximum-mass star for each EoS. The dashed
horizontal line shows the estimate of a 1.40M� neutron-star radius
derived from GW170817 [32–36].

baryon-mass diagram. The latter is given by

MB = mn

∫ R

0

4πr2n(r)

[1 − 2Gm(r)/r]1/2
dr, (33)

where mn = 939 MeV is the nucleon mass.
We first perform the calculations at zero temperature.

The results will be compared with the finite temperature
and neutrino trapped results in Sec. V. Figure 11 shows the
gravitational mass as a function of central energy density as
well as a function of stellar radius for the minimum vector in-
teraction coupling constants of each hadronic parametrization.
The properties of the maximum-mass stars are summarized in
Table III. As can be seen, both the pure hadronic EoS as well
as the hybrid Eos lead to maximum-mass neutron stars which
fulfill the 2M� mass constraint. We also note that the DD2
neutron stars contain a wider branch of quark-hybrid stars than
the GM1L stars, since the DD2 EoS is stiffer in terms of the
Gibbs free energy so that the hadron-quark phase transition
occurs at a lower pressure.

Color superconductivity (CSC) has not been taken into
account in this work since a number of problems (such as the
diagonalization of the Polyakov loop in color space) need to
be overcome first. However, based on the works carried out in
Ref. [80] for a local three-flavor model and in Ref. [81] for
a nonlocal two flavor model, one could expect that incorpo-
rating CSC into our model will shift the onset of the hadron-
quark phase transition to lower densities, provided, of course,
the results of [80,81] have their quantitative correspondence
in the theoretical model studied in this paper. If so, this would

TABLE III. Gravitational mass MG and baryon mass MB of
the maximum-mass neutron stars (zero temperature) computed for
GM1L and DD2. The quantity εc denotes the stars’ cental density.

GM1L

MG (M�) MB (M�) εc (MeV/fm3)

Pure hadronic 2.04 2.42 1194.82
ζv = 0.331 2.00 2.36 1077.02
ζv = 0.371 2.04 2.42 1295.79

DD2

MG (M�) MB (M�) εc (MeV/fm3)

Pure hadronic 2.11 2.53 1110.68
ζv = 0.328 2.04 2.43 992.88
ζv = 0.385 2.11 2.54 1194.82

somewhat increase the amount of quark matter in the cold
neutron stars of our paper. Their maximum masses, however,
will not be impacted much since they are almost exclusively
determined by the hadronic parts of the equations of state. The
situation is much harder to assess for CSC quark matter at
finite temperature (entropy) for conditions prevailing in the
cores of proto-neutron stars. Chiefly among the open issues
is the actual size of the gap(s) in the CSC phase which, for a
given condensation pattern, depend on the density and the crit-
ical temperature of the CSC phase. Any in-depth calculation
attempting to address this issue is hampered by the fact that
the gap(s) is (are) to be computed for quark matter constrained
by the conditions of color neutrality, electric charge neutrality,
and chemical equilibrium [82].

In Fig. 12 we present energy density profiles for the
maximum-mass stars shown in Fig. 11. As can be seen, these
stars contain quark matter cores that are several kilometers

FIG. 12. Energy density as a function of radius for the
maximum-mass neutron stars shown in Fig. 11. The density disconti-
nuities at around 2 and 3.5 km (dash-dotted vertical lines) are caused
by the quark-hadron phase transition in these stars.
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in size, i.e., Rcore ∼ 3.5 km for the DD2 parameter set and
Rcore ∼ 2 km for the GM1L.

V. APPLICATION TO PROTO-NEUTRON STARS

A. Finite temperatures and mass-radius relationship

To study proto-neutron stars we need to extend the EoSs of
this work to finite temperatures. It is known from previous
works (see, for example, [83]) that proto-neutron stars are
nearly isentropic and not isothermal. To obtain an isentropic
hybrid EoS for the Maxwell construction, we first compute the
hadronic and the quark EoS for a given transition temperature
(i.e., 15 and 30 MeV). Upon determining the crossing point of
these EoSs in the G-P plane, we then determine the isentropic
hybrid EoS for that transition temperature.

As already mentioned, neutrinos play an important role
for the composition of newly formed, hot proto-neutron stars.
For example, it has been shown in Ref. [83] that during the
deleptonization phase, the stellar core of a proto-neutron star
is heated by neutrino transport (Joule heating), and that the
maximum heating occurs just before the neutrinos escape
from the star. The maximum temperature reached at this
evolutionary stage is around T � 40–45 MeV. As a result,
different lepton and neutrino fractions at given entropy values
are to be considered when studying different stages in the
evolution of proto-neutron stars to neutron stars. This will be
done in Sec. V C below.

We begin this section by studying the effects of tempera-
ture on the properties of hot stars. For this purpose we have
constructed isentropic EoSs for the parametrizations of this
work, choosing representative proto-neutron star temperatures
of T = 15 and 30 MeV. Depending on the star’s evolutionary
stage, the presence of neutrinos is taken into account too
(i.e., Yνe �= 0), and the lepton fractions that we consider are
YL = Ye + Yνe = 0.2 or 0.4. The mass radius relationships of
stars made up of such matter are shown in Fig. 13.

For the maximum values of the vector interaction for
each hadronic parametrization (ζv = 0.371 and ζv = 0.385)
we found that an increase in temperature (with and without
neutrinos) opposes the formation of quark matter in the cores
of stars. The only stars found to contain quark matter (for
these ζv values) are the zero-temperature neutron stars. For
the minimum values of the vector interaction the results are
qualitatively similar to the maximum-value case. Differences
concern primarily the trapping of neutrinos. For the DD2
parametrization, for instance, a hybrid EoS with trapped neu-
trinos can be constructed up to Ttrans = 30 MeV (labeled as T30

in Fig. 13). For the GM1L parametrization, however, neutri-
nos are only present in the matter up to Ttrans = 15 MeV (T15,
for higher transition temperatures the stars become unstable
before the phase transition occurs).

As expected, in Fig. 13 it can be observed that the influence
of neutrino trapping in the maximum mass stars is greater than
those originated from a fixed entropy per baryon. As shown
for example in Ref. [67], such influence depends sensibly
on the matter composition, in particular, if heavy hadrons
(like hyperons and � isobars) and quarks are taken into
account. This behavior is in sharp contrast to the idealized EoS

FIG. 13. Gravitational mass MG as a function of radius R for
quark-hybrid stars at different transition temperatures Ttrans of the
quark-hadron phase transition. YL denotes the lepton fraction and
Yνe the neutrino fraction. The vertical bars mark the onset of quark
deconfinement. With the exception of the neutrinoless (Yνe = 0) stars
with Ttrans = 0 (T0) and Ttrans = 15 MeV (T15), this transition happens
at the maximum-mass peak.

containing only nucleons and leptons and no additional soft-
ening components, where neutrino trapping generally reduces
the maximum mass.

B. Dense proto-neutron star matter

Figures 14 and 15 show the particle populations of proto-
neutron star matter computed for the hadronic parametriza-
tions used in this work. It can be seen that the particle
populations depend sensitively on entropy per baryon, s =
S/n, and lepton number YL. This is particularly the case for
the � isobar. The negatively charged state of this particle is
populated first, replacing some of the high-energy electrons.
The other three stages of the � isobar (i.e., �0, �+, and �++)
are successively populated at densities that are just a few times
greater than the nuclear saturation density. All these stages
therefore exist in the cores of proto-neutron stars, according
to our model. Another striking difference concerns the high
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FIG. 14. Particle populations of proto-neutron star matter for
the GM1L parametrization. The compositions correspond to matter
in the cores of proto-neutron stars at different evolutionary stages
characterized by entropy per baryon s and lepton number YL .

abundance of electrons in matter where the lepton fraction
is nonzero and neutrinos are present [top (a) and middle (b)
panels of Figs. 14 and 15]. Because of that, one may speculate
that the electric conductivity of such matter is considerably
different from the electric conductivity of neutrino-free stellar
matter [bottom (c) panels of Figs. 14 and 15], where the
presence of muons leads to fewer electrons in the system,
and the increasing �−, �−, and �− populations cause a
further reduction of the number of leptons. Regarding the
strangeness-carrying hyperons, their main contributions come
from the �’s and �’s, whose populations grow monotonically
with density, dominating the stellar matter composition at very
high densities. Other hyperons species are also present, but to
a lesser degree.

FIG. 15. Same as Fig. 14, but for the DD2 parametrization.

C. Stages in the evolution of proto-neutron stars to neutron stars

In this section, we use the EoSs of this paper to study sev-
eral stages in the evolution of proto-neutron stars to neutron
stars [67]. Shortly after core bounce a proto-neutron star is hot
and lepton rich. The entropy per baryon and lepton fraction of
the matter in the core of such an object change quickly from
around s = 1 and YL = 0.4 to s = 2 and YL = 0.2. Subsequent
core heating and deleptonization change these values to s = 2
and Yνe = 0, leading to a hot lepton-poor neutron star in less
than a minute after the star’s birth [83]. After several minutes
this hot neutron star has cooled down to temperatures less than
1 MeV, that is, the star has become cold. From then on, the
star continues to slowly cool via neutrino and photon emission
until the thermal radiation becomes too weak to be detectable
with x-ray telescopes.

In Fig. 16, we show the gravitational-mass versus baryon-
mass relationship of stars with entropies and lepton numbers
that correspond to the different stages in the evolution of
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FIG. 16. Gravitational mass vs baryonic mass of selected stages
(characterized by entropy and lepton number) in the evolution of
proto-neutron stars to neutron stars, computed for the EOSs of this
paper. Each line terminates at the maximum-mass star of each stage.
The small vertical bars close to the maximum-masses mark the onset
of the hadron-quark phase transition. Only the most massive mem-
bers of the cold neutron-star sequence are found to have pure quark
matter in their cores. Stars in the shaded region are gravitationally
unstable.

proto-neutron stars to neutron stars described just above.
Assuming we are working with isolated stars, the baryonic
mass should be a conserved quantity along the different
stages of stellar evolution. As an example, this condition is
represented by a vertical dashed line passing through the
maximum mass cold star in Fig. 16. The short vertical bars
in this figure mark the onset of quark deconfinement in the
cores of these stars. Proto-neutron stars in their earliest stages
of evolution (i.e., s = 1, YL = 0.4, and s = 2, YL = 0.2) are
found to be made of pure hadronic matter, no matter how
massive. Once these stars have deleptonized (Yνe = 0) and
their core entropies have dropped to entropies of s = 1.5 and
0.8, the density at quark deconfinement sets in is reached. But
this turns out, for our sample stars, to happen only in stars
that are in the gravitationally unstable region (shaded areas in
Fig. 16), where the proto-neutron stars have greater baryonic
mass than the corresponding maximum mass cold star. The
situation is different once the temperature has dropped to
just a few MeV, that is, when these stars have turned into
cold (s = 0, Yνe = 0) neutron stars, which possess pure quark
matter in their cores. In Tables IV and V we show the changing
core compositions of proto-neutron stars as they evolve to the
associated maximum-mass cold stars.

It has been proposed [67,84] that the unstable proto-
neutron stars mentioned above will collapse to black holes.
Moreover, it has been shown in Refs. [67,85] that the collapse
to a black hole could also be related to the presence of
hyperons, � isobars, and/or quarks in the stellar matter, since
the hot neutrino-trapped matter is capable of supporting more
massive objects than cold stellar matter.

TABLE IV. Masses, radii, and core compositions of the
(proto-) neutron stars with conserved baryonic mass MB = 2.36M�,
obtained for the GM1L parametrization.

GM1L and ζv = 0.331

Stages MG (M�) R (km) Core compositions

s = 1.0 , YL = 0.4 2.05 12.75 pure hadronic
s = 2.0 , YL = 0.2 2.04 12.84 pure hadronic
s = 1.5 , Yνe = 0 2.02 11.94 pure hadronic
s = 0.8 , Yνe = 0 2.01 11.97 pure hadronic
s = 0.0 , Yνe = 0 2.00 11.90 quark-hybrid

D. Tidal deformability of neutron stars

The tidal deformability of neutron stars is an important
parameter for gravitational-wave (GW) astronomy as it deter-
mines the pre-merger GW signal in NS-NS merger events. To
linear order, the tidal deformability λ is given by

λ = − Eab

Qab
,

where Eab is the applied external field and Qab the induced
mass-quadrupole moment. λ is related to the dimensionless
tidal Love number k2, associated with � = 2 perturbations,

λ = 2

3
k2R5,

where R denotes the stellar radius. The dimensionless tidal
deformability � can then be calculated as

� = λ/M5, (34)

where M denotes the star’s gravitational mass. The tidal Love
number can be written in terms of the stellar compactness,
β = M/R, as

k2 = {
8
5β5(1 − 2β )2[2 + 2β(η − 1) − η]

}
× {2β[6 − 3η + 3β(5η − 8)]

+ 4β3[13 − 11η + β(3η − 2) + 2β2(η + 1)]

+ 3(1 − 2β )2[2 − η + 2β(η − 1)] ln(1 − 2β )}−1,

(35)

TABLE V. Same as Table IV, but for the DD2 parametrization
and a conserved baryonic mass of MB = 2.43M�.

DD2 and ζv = 0.328

Stages MG (M�) R (km) Core compositions

s = 1.0 , YL = 0.4 2.10 13.09 pure hadronic
s = 2.0 , YL = 0.2 2.09 13.15 pure hadronic
s = 1.5 , Yνe = 0 2.07 12.37 pure hadronic
s = 0.8 , Yνe = 0 2.05 12.49 pure hadronic
s = 0.0 , Yνe = 0 2.04 12.27 quark-hybrid
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FIG. 17. Tidal deformability vs gravitational mass of pure
hadronic stars (solid lines). Hybrid branches are indicated by dashed
lines. The small vertical bars on each curve mark the onset of the
phase transition from hadronic to quark matter. Each line terminates
at the maximum-mass star. The red arrow shows the constraint on �

imposed by the analysis of the data of GW170817.

with η = η(r = R). η(r) is the solution of

r
dη

dr
+ η(r)2 + η(r)eλ(r){1 + 4πr2[P(r) + ε(r)]}

+ r2�(r) = 0, (36)

where

�(r) = 4πeλ(r)

[
5ε(r) + 9P(r) + ε(r) + P(r)

dP/dε

]
− 6

eλ(r)

r2
−

(
dν(r)

dr

)2

.

Equation (36) is to be solved simultaneously with the TOV
equation for the boundary condition η(0) = 2.

When an EoS with a sharp discontinuity at a radius r =
rd is used to describe the matter in the interior of a compact
object, the additional junction condition

η(r+
d ) − η(r−

d ) = 4πr3
d [ε(r+

d ) − ε(r−
d )]

m(rd )

is to be imposed [86].
The data analysis of GW170817 puts constrains on the di-

mensionless tidal deformability of a 1.4M� star which is given
by �1.4 � 800 (see [34,35,42,87] and references therein).

In Fig. 17 we present the dimensionless tidal deformability
as a function of gravitational mass for the cold hybrid stars
studied in this work. We also present, for completeness, the
results of purely hadronic neutron stars. Due to the high
value of the transition pressure, the discrepancies are only
noticeable for the high mass objects, being ∼10% for the
GM1L case and ∼20% for the hadronic EoS DD2. The red
arrow shows the limit imposed on � by the analysis of the data

from GW170817. As can be seen, our results are in agreement
with the observational constraint.

VI. SUMMARY AND CONCLUSIONS

This paper had two main objectives. The first objective
was to investigate the phase diagram of quark matter using
the nonlocal three-flavor NJL model coupled to the Polyakov
loop. In particular, we studied the possible existence of a
spinodal region in the QCD phase diagram and determined the
temperature and chemical potential of the critical end point
(CEP).

The peaks of the chiral susceptibility of light quarks were
used to determine the crossover phase transition (critical
points) in the phase diagram. For the first-order transition,
the spinodal lines have been determined from the vanishing
of the speed of sound. As shown in [11,44], the location of the
CEP along the phase transition line depends on the vector-to-
scalar interaction strength ζv. We found that considering the
vector interactions shrinks the metastable region in the phase
diagram, renders quark matter less compressible, and shifts
the first-order phase transition to higher chemical potentials.

The second main objective of this paper was to inves-
tigate the quark-hadron composition of baryonic matter at
zero as well as nonzero temperature. This is of great topical
interest for the analysis and interpretation of neutron star
merger events such as GW170817. With this in mind, we
determined the composition of proto-neutron star matter for
entropies and lepton fractions that are typical of such matter.
These compositions were used to delineate the evolution of
proto-neutron stars to neutron stars in the baryon-mass versus
gravitational-mass diagram.

For the treatment of hadronic matter, we used the DDRMF
model which takes into account density-dependent meson-
baryon coupling constants. Vector meson-hyperon coupling
constants were chosen according to the SU(3) ESC08 model,
while the scalar meson-hyperon coupling constants were fitted
to empirical hypernuclear potentials. This coupling scheme
leads to hadronic EoSs (labeled GM1L and DD2) which
satisfy the 2M� constraint as well as the constraint on
neutron star radii derived from the gravitational-wave event
GW170817.

The hadron-quark phase transition was treated as a
Maxwell construction, which leads to a sharp hadron-quark
interface. The 2M� constraint of PSR J1614-2230 and PSR
J0348 + 0432 and the assumption that quark matter exists
in the cores of (cold) neutron stars were used to determine
the range of the vector coupling constant ζv in quark matter.
This led to 0.331 < ζv < 0.371 for GM1L, and 0.328 < ζv <

0.385 for DD2, where the lower bounds follow from the 2 M�
constraint and the upper bounds from the existence of quark
matter in the cores of neutron stars.

The compositions and EoSs of hybrid stars were computed
at zero as well as finite temperature, entropies 0 � s � 2,
lepton numbers 0 � YL � 0.4, with and without neutrinos.
The EoSs were then used to delineate the evolution of proto-
neutron stars to neutron stars in the baryon-mass versus
gravitational-mass diagram. We found that the hybrid-DD2
EoS with ζv = 0.328 allows for the existence of hybrid stars
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up to Ttrans = 30 MeV while the hybrid-GM1L EoS with ζv =
0.328 leads to hybrid configurations with critical temperatures
less than Ttrans = 15 MeV. Based on the dense matter models
of this work, quark matter existing (by construction) in cold
neutron stars would neither be present in hot neutron stars
nor in proto-neutron stars. The situation is drastically different
for hyperons and � isobars, which are found to exist very
abundantly in proto-neutron star matter.

In closing, we mention that the data provided by
gravitational-wave detectors such as LIGO and VIRGO have
the potential to shed light on whether or not hybridization
and/or quark deconfinement occurs in the cores of neutron
stars. Of particular interest in this context is the tidal deforma-
bility of neutron stars which depends strongly on the nuclear
EoS. As discussed in [42,87] (and references therein), the
tidal deformability determined for the colliding neutron stars
that leads to the gravitational-wave event GW170817 could
provide stringent limits on the existence of quark matter in the
interiors of neutron stars. The tidal deformability expresses by
how much neutron stars are deformed by tidal forces shortly
before they collide. This deformation induces a change in the
gravitational potential, which, in turn, leads to characteristic
changes in the gravitational-wave signal emitted during the

collision. The determination of the tidal deformability, there-
fore, opens up a new and exciting window into the inner
workings of neutron stars. The hope is that the upcoming data
collecting runs with Advanced LIGO and Advanced Virgo
will provide exciting new insight into the deformability of
neutron stars and thus the EoS of superdense matter itself.
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