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Abstract 

Understanding how the world’s flora and fauna will respond to bioenergy expansion is 

critical. This issue is particularly pronounced considering bioenergy’s potential role as a 

driver of land-use change, the variety of production crops being considered and currently 

used for biomass, and the diversity of ecosystems that can potentially supply land for 

bioenergy across the planet. We conducted a global meta-analysis to ask how eight of the 

most commonly used bioenergy crops may impact site-level biodiversity. Species diversity 

and abundance were generally lower in crops being considered for bioenergy when 

compared to the natural ecosystems they may replace. First-generation crops, derived from 

oils, sugars, and starches, tended to have greater effects than second-generation crops, 

derived from lignocellulose, woody crops, or residues. Crop yield had non-linear effects on 

abundance and, to a lesser extent overall biodiversity, with biodiversity effects being driven 

by negative yield effects for birds but not other taxa. Our results emphasize that replacing 

natural ecosystems with bioenergy crops across the planet will largely be detrimental for 

biodiversity, with first generation and high yielding crops having the strongest negative 

effects. We argue that meeting energy goals with bioenergy using existing marginal lands or 

via biomass extraction within existing production landscapes may provide more biodiversity 

friendly alternatives than via land conversion of natural ecosystems.   

Introduction 

Ever-increasing global demand for energy is associated with a diverse portfolio of 

sustainable energy options, and bioenergy has been championed as an especially promising 

choice (OECD-FAO 2017). Biofuels and bioenergy are thought to be sustainable energy 

options because they can reduce carbon emissions, provide habitat and ecosystem 

services, and decrease reliance on fossil fuels (Fargione et al. 2010; but see Searchinger et 
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al. 2008). As a consequence, bioenergy production is expected to increase significantly in 

many parts of the world in the coming years (OECD-FAO 2017).  

Increased bioenergy demand can be met, at least partially, with existing residual 

biomass sources, thereby avoiding potential harm to native ecosystems (Lal 2005). 

However, increased bioenergy production has led to conversion of natural ecosystems close 

to refineries and is expected to continue to drive direct and indirect land-use change (Havlik 

et al. 2011; Koh 2007; Koh & Wilcove 2008; Lambin & Meyfroidt 2011, Wright et al. 2017). 

Because bioenergy has the greatest footprint, in terms of land requirements per unit of 

energy of all energy sources (McDonald et al. 2009; Trainor et al. 2016), land-use change 

resulting from efforts to increase bioenergy production could impact ecosystems in a variety 

of ways (Groom et al. 2008; Bradshaw et al. 2009; Edwards et al. 2010; Dauber and Bolte 

2014; Immerzeel et al. 2014; Burton et al. 2017). In particular, there is increasing concern 

that biodiversity may be affected.  

Nonetheless, the effects of increased bioenergy production on biodiversity and 

ecosystems across the planet remain unclear. For example, when analyzing crop production 

scenarios, high-yield crops are often predicted to have greater impacts to biodiversity than 

low-yield crops (Green et al. 2005; Koh et al. 2009; Anderson-Teixeira et al. 2012; Law et al. 

2017; but see Klein et al. 2002), but there are few tests of this expectation. Similarly, first-

generation bioenergy crops (derived from oils, sugars, and starches; e.g., corn ethanol), 

which often compete for land with food production, are thought to have greater impacts to 

biodiversity than second-generation bioenergy crops (derived from lignocellulose, woody 

crops, or residues; e.g., Pinus sp.; Havlik et al. 2011, Immerzeel et al. 2014). Further, 

second-generation crops often come from otherwise unused sources of biomass such as 

residues from forestry operations or from prairies, from which biomass harvest is often 

compatible with wildlife conservation (Fargione et al. 2009, 2010; Fletcher et al. 2011). Local 
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studies along with regional and crop-specific meta-analyses have illustrated the potential 

impacts of bioenergy on biodiversity (e.g., Koh & Wilcove 2008; Fletcher et al. 2011; 

Verschuyl et al. 2011; Robertson et al. 2012; Werling et al. 2014; Gottlieb et al. 2017). 

However, currently there has been no attempt to quantitatively synthesize these problems 

related to bioenergy and impacts to biodiversity across the planet (but see Immerzeel et al. 

2014 for qualitative global review). A global view is needed because it provides a means to 

interpret the wide variety of scenarios being considered, which vary greatly in the types and 

potential yields of crops, local biodiversity, and how different types of bioenergy production 

strategies (e.g., first versus second generation) may impact biodiversity. A quantitative meta-

analytic framework provides an objective means to test for the generality of potential effects 

of bioenergy on biodiversity, which has proven difficult with non-quantitative methods 

(Immerzeel et al. 2014).   

We provide the first global meta-analysis on the potential impacts of bioenergy crops 

on biodiversity. To do so, we conducted two global literature searches: one directed at 

finding data on biodiversity in different production land uses, and another aimed at extracting 

energy yield estimates of potential bioenergy crops. We then tested whether effects on 

biodiversity varied with different individual bioenergy crop species (henceforth, crop type), 

estimated energy yield, first or second-generation crops, the type of reference ecosystem 

considered (i.e., forest, shrub, or grassland ecosystems), and magnitude of vertical change 

in habitat structure between any given crop and the reference ecosystem (see section on 

hypothesis rationale). We expected that effects may increase with energy yield (Anderson-

Teixeira et al. 2012), effects would be greater for first generation rather than second 

generation crops (Havlik et al. 2011, Immerzeel et al. 2014), and effects would be greater as 

the structural differences of bioenergy crops and reference ecosystems increased (Fletcher 

et al. 2011).  
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Methods 

Building a global dataset for biodiversity and bioenergy crops 

We searched for articles that quantified components of biodiversity in landuses relevant to 

bioenergy production, and in natural habitats such landuses may replace. Using a 

combination of keywords biodiversity and biofuels along with each crop using the operator 

word “AND” (e.g., biodiversity AND eucalyptus, biofuels AND eucalyptus, biodiversity AND 

jatropha, biofuels AND jatropha, etc.), we searched in June of 2019 for published articles 

that studied biodiversity and the main bioenergy feedstocks being considered in the future or 

currently used throughout the world. These were corn (Zea mays), eucalyptus (Eucalyptus 

oblique), jatropha (Jatropha curcas), oil palm (Elaeis guineensis), pine (Pinus spp.), poplar 

(Populus spp.), soybean (Glycine max), sugarcane (Saccharum officinarum), and 

switchgrass (Panicum virgatum) (Fargione et al. 2010; OECD-FAO 2017). We also searched 

for 'rowcrops' and included studies that pooled results from more than one type of row crop 

(primarily corn and soybean, which are frequently rotated; West and Post 2002). Of the 2334 

articles considered, we identified 147 articles that compared components of biodiversity in at 

least one candidate bioenergy crop with a reference land use, which entailed a natural (e.g., 

forest ecosystem) or low-intensity (e.g., pasture) land use (Figures 1, 2), and had results 

written in English, Spanish, Portuguese, Italian, or French (Figure 1, Table S1 and S2). It is 

possible that these search terms may have not captured all relevant papers on the topic. 

However, based on the total number of studies included in our study, we assume our search 

returned a representative sample of relevant papers. 

Because of the newly emerging bioenergy economy, there are very limited data that 

provide time series regarding land-use change from bioenergy and resulting changes in 

biodiversity. Here we use space-for-time substitution to interpret potential bioenergy effects 

by contrasting biodiversity in crops that have been proposed or currently used for bioenergy 
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paired with data from natural ecosystems that may be vulnerable to conversion to bioenergy 

crops, such as grasslands being converted to bioenergy crops (e.g., switchgrass or corn; 

Wright & Wimberly 2013). This approach has been used previously for interpreting effects of 

bioenergy alternatives (Fletcher et al. 2011; Meehan et al. 2010; Riffell et al. 2011). Note 

here that we pooled variation within crops (e.g., pine plantation ages), which can potentially 

mediate bioenergy impacts on biodiversity (see, e.g., Riffell et al. 2011; Gottlieb et al. 2017). 

Furthermore, some investigations were not contrasting lands currently used for bioenergy 

production, but rather studying biodiversity in the major crops being considered for bioenergy 

that were producing other products at that time (e.g., timber, food; Fletcher et al. 2011). 

Focusing solely on lands used exclusively to produce bioenergy would be useful because 

biomass extraction for bioenergy could lead to subtle differences in land use relative to the 

same crops being used for other purposes. However, given that many of these crops are just 

beginning to be commercially produced for bioenergy, it was not possible to restrict our 

search in this manner. 

We then searched for articles that quantified energy produced from different 

bioenergy crops. We searched on July 21st, 2015 using a combination of keywords biofuels 

and biomass along with each crop using the operator word “AND”: eucalyptus, jatropha, oil 

palm, pine, poplar, soybean, sugarcane, row crop, and switchgrass. Some crops (e.g., corn 

and sugarcane) can potentially be used as a biomass source for second-generation 

bioenergy as well. To account for uncertainty of yields, changes in expected yield over time, 

and literature search date, we also considered maximum yield reported for each crop. To 

delineate each crop as a first or second-generation bioenergy crop, we followed Fargione et 

al. (2010) and crop use predictions from FAO-OECD (2015). We found 3074 studies that 

were published between 1987 and 2015. From those studies we extracted 280 values for 

either biomass or energy values of the selected crops. Selected studies were either 

individual field trials or studies that synthesized data from previous trials. To provide a useful 
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basis for comparison and analysis, out of the 280 selected yield values, 41 were converted 

from biomass units (e.g., Mg/Ha/Yr) to bioenergy units (GJ/Ha/Yr) and 16 were converted 

from amount of liquid biofuel (e.g., L/Ha/Yr) to bioenergy units (see Supplementary Materials 

for details).  

How bioenergy crops may impact biodiversity: rationale and testing 

We tested two sets of predictions to address how bioenergy crops may impact biodiversity. 

The first set contained predictions related to attributes of bioenergy crops and the second set 

tested predictions related to attributes of natural ecosystems.  

To test possible effects of different attributes of bioenergy crops on biodiversity, we 

tested three main predictions. First, the yield hypothesis states yields drives biodiversity 

effects, predicting an inverse relationship between the two (Green et al. 2005; Phalan et al. 

2011; Phalan et al. 2016). In some cases, yield is implicitly assumed to be a proxy for land-

use intensity to represent the amount of output (e.g., food) that an area can produce (Green 

et al. 2005; Phalan et al. 2011). Therefore, crops with different land-use intensity and yield 

can alter habitat differently, affecting biodiversity by increasing the strength of these effects 

as yield of crops increases (i.e., land-use intensity increases). Moreover, given the breadth 

of global biodiversity and how different species might react differently to changes in land use 

(Devictor et al. 2008), we assessed if this relationship was linear or non-linear (i.e., quadratic 

or logarithmic). We also considered a logarithmic relationship because of potentially greater 

effects on biodiversity per unit change in yield occurring at low yields than at high yields 

(Green et al. 2005; Phalan et al. 2011). This could be because at higher yields the 

landscape may have already affected biodiversity (e.g., by reducing or fragmenting critical 

habitat) and therefore, a unit increase in yield might affect biodiversity only marginally. To 

test this prediction, for each bioenergy crop we included the average energy yield value, 

which we derived from the literature search on energy yield. Also, we considered two other 
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approaches to interpreting yield effects by considering maximum reported yield and a 

bootstrap approach. We made these choices because crop yields increased over the last 50 

years, they are expected to continue to increase (Pretty et al. 2006; Aizen et al. 2008; 

OECD-FAO 2017), and there is uncertainty in yield estimates. Both of these approaches 

provided similar conclusions (See Supporting Information).  

Second, the biofuel-generation hypothesis states that crop generation drives 

biodiversity impacts, with second-generation crops influencing biodiversity less than first-

generation crops (Immerzeel et al. 2014). Some second-generation crops can offer similar 

ecosystem attributes to natural environments (e.g., the use of switchgrass in the mid-

western U.S., a native grass in the region; Fargione et al. 2010; Fletcher et al. 2011). Finally, 

the crop-type hypothesis states that crop type drives biodiversity impacts. In this scenario, 

each crop affects biodiversity independently of yield and generation, because of specific 

crop characteristics (e.g., rotation cycles, water or fertilizer requirements; Kremen 2015).  

The second set of predictions relate to natural ecosystems that may be replaced 

under bioenergy production. The ecosystem-type hypothesis suggests that biodiversity 

impacts are driven by the type of original ecosystem replaced on the landscape. Under this 

hypothesis, when forested ecosystems are replaced for bioenergy, the impacts to 

biodiversity may be different in comparison to when shrubland or grassland ecosystems are 

replaced. This difference is expected based on average differences in species richness 

among these ecosystem types (Ricklefs & Schluter 1993; Tilman & Pacala 1993). The 

dissimilar land-use hypothesis suggests that similarity of biofuel crop type to the native 

landscape drives biodiversity impacts. If correct, then replacing a natural ecosystem with a 

bioenergy crop that provides similar vegetation structure impacts biodiversity differently than 

when natural ecosystems are replaced with crop of dissimilar vegetation structure. This 

prediction states that land-use changes from bioenergy crops with greater differences in 
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structure to reference ecosystems would lead to greater negative effects (Foley et al. 2005; 

Laliberte et al. 2010).  

To test these predictions, we used two approaches. First, we classified each 

reference ecosystem in a study into forest and shrubland or grassland sites (i.e., “reference 

structure”). Second, we qualitatively assessed the magnitude of vertical change in vegetation 

structure between any given crop and a natural ecosystem (as a proxy for dissimilar land-

use) into three categories of relative contrast: lower, moderate, and higher. Lower magnitude 

of change included (reference-crop) forest-woody crop, grassland-pasture, shrubland-

pasture comparisons. Moderate magnitude of change included grassland-row crop, 

shrubland-woody crop, and shrubland-row crop. Higher magnitude of change included 

forest-pasture, forest-row crop, and grassland-woody crop comparisons. It is possible that 

factors related to bioenergy crops together with attributes of natural ecosystems that are 

being replaced for bioenergy production might be driving biodiversity impacts. To test this 

relationship, we built models with additive effect of main predictions related to crops and 

natural ecosystems.  

Analyzing the global dataset 

We contrasted estimates of species abundance (either abundance or density) or diversity 

(species richness or diversity metrics, e.g., Shannon's index) between potential bioenergy 

crops and reference sites (Fletcher et al. 2011). We excluded crops in cases where we only 

found ≤ 3 studies (e.g., jatropha, diversity metrics for switchgrass). These studies yielded 

5191 pair-wise comparisons for abundance and 313 for diversity. Our effect size was the log 

response ratio (i.e., ln[(Xbioenergy+1)/(Xreference+1)]; Hedges et al. 1999; Fletcher et al. 2011; 

Lajeunesse 2015). We built generalized linear mixed models (GLMM) using effect sizes as 

response variables. Lajeunesse (2015) suggests a way to adjust for inter-study variability 

based on the study’s reported standard error. However, many studies failed to report 
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measures of uncertainty (e.g., SEs, CIs), which prevented us from following the method 

proposed by Lajeunesse (2015). To control for potential sources of variability emanating 

from different studies, we adjusted relative contribution of each study by weighting the effect 

size with the number of replicates in potential bioenergy stands and reference ecosystems 

([(N(bioenergy crop) × N(Reference habitat))/( (N(bioenergy crop) + N(Reference habitat))]; Adams et al. 1997; 

Mosqueira et al. 2000; de Graaff et al. 2006, Hammon et al. 2018), and included each study 

as a random effect in all models (i.e., we "blocked" all observations that emanated from each 

study; Bender et al. 1998; Bates et al. 2015). To control and test for potential differences 

arising from each taxon, we built two sets of GLMMs. In the first set, we pooled data from all 

taxa and added a random intercept effect for each taxon (results in Table S4). In the second 

set, we modeled each taxon separately (results in Table S5-S9).  

Using model selection, we then tested how effect sizes varied with different individual 

bioenergy crop type, estimated energy yield, first or second-generation crops, the type of 

reference ecosystem considered (i.e., forest, shrub, or grassland ecosystems), and 

magnitude of vertical change in habitat structure between any given crop and the reference 

ecosystem. We tested for these effects pooled across all taxa and separately for different 

taxonomic groups (birds, mammals, invertebrates, reptiles and amphibians, and plants) and 

built a total of 151 models to include all taxa and predictions tested. We did not consider 

some tests for specific taxon when data precluded it; for example, when testing for yield 

effects, we only fit models when effect sizes were measured for at least 4 different yields. 

We ranked each model that tested a hypothesis based on Akaike’s information criterion, 

adjusted for small sample sizes (AICc) and interpreted models within <2 AICc from the top 

model. We considered models with lowest AICc the most parsimonious. All modeling was 

done in program R (R Development Core Team 2008) using the package “lmer” for building 

GLMMs (Bates et al. 2015), and package “MuMIn” for model selection (Bartoń 2009). We 

infer significant effects based on the 95% CIs for parameters from models.  
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Results 

Overall, biodiversity tended to be lower in bioenergy crops relative to reference natural 

ecosystems: metrics of diversity (e.g., species richness) were significantly lower, whereas 

abundance on average was lower but confidence intervals overlapped zero (Figure 2 and 

S2). Sixty-four percent of abundance and 72% of diversity effect sizes found negative 

impacts on biodiversity. Every taxon considered showed negative effects of bioenergy on 

diversity; for abundance, insects and birds showed significant negative effects, plants and 

amphibians and reptiles showed negative, but not statistically strong effects, while mammals 

showed positive effects of bioenergy on abundance (Figure 2). The positive effects on 

mammal abundance was largely driven by data on non-native mammals, mostly invasive 

species, in pine plantations in Argentina. When considering biomass crops, we found 

significant negative effects of oil palm, Eucalyptus, row crops, and pine on diversity metrics, 

whereas, oil palm had negative effects on abundance metrics (Figure 3).  

Effects on biodiversity metrics were best explained by whether crops were first-

generation or second-generation feedstocks and the reference land-use considered (Figure 

4 and Table S4). First-generation crops tended to show greater negative effects on 

biodiversity than second-generation crops generation crops. These effects were largely 

observed in birds and plants in comparison with mammals, reptiles, amphibians, and 

invertebrates (Figure S2). When considering reference ecosystems, impacts on biodiversity 

were greater when comparing forested to grassland ecosystems (Figure 4 and S2). Yield of 

crops was relevant for diversity responses only for some taxa. Our results show that 

bioenergy crops with high biomass yield hold less bird diversity than low-yielding bioenergy 

crops (β = -0.29, 95% CI: -0.29  -0.28; Figure 5; see Table S5 for parameter estimates for 

top performing models). The strongest negative effect on birds was recorded from oil palm. 

However, we did not find strong statistical evidence to support a relationship between energy 
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yield of bioenergy crops and diversity of plants or invertebrates (Figure 5). For mammals, 

and the group composed of reptiles and amphibians, yield was among the top performing 

models together with the null model (Table S6) 

Effects on abundance metrics were best explained by the yield of crops, but a model 

considering whether crops were first-generation or second-generation feedstocks and the 

reference land-use considered was also supported (Table S4, Figure 4 and 5). Impacts on 

species’ abundance was greater as crop yield increased, (β = -0.15, 95% CI: -0.15  -0.16; 

Figure 5; for parameter estimates for top performing models see Table S4). This effect was 

more evident for birds in comparison to other taxa (Figure 5 and S2). As with diversity, 

impacts on abundance of species were strongest when comparing bioenergy crops to 

forested ecosystems and for first generation crops (Figure 4).  

Discussion 

Bioenergy is often considered a potential sustainable energy alternative and an increase in 

bioenergy production across the planet is expected in the coming years (Fargione et al. 

2010, OECD-FAO 2017). Our results showed that in most cases, abundance and diversity 

may be negatively impacted from land conversion of natural habitats. Importantly, we also 

show that impacts may be more severe with first generation (e.g., corn) than second 

generation crops, high yielding crops, and when forest is converted to crops. These results 

can provide guidance to inform policy and land management strategies that aim to minimize 

impacts to biodiversity. 

Bioenergy, land-use tradeoffs and biodiversity  

Tradeoffs between agricultural production yields and impact to biodiversity are often 

emphasized in agro-ecology, conservation biology, and sustainability science (e.g., land 

sparing vs land sharing; Green et al. 2005; Phalan et al. 2011; Fischer et al. 2014; Kremen 
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2015; Phalan et al. 2016). For bioenergy production, there has been emphasis on 

developing high-yielding biomass crops that may require less land for a target energy goal 

(Heaton et al. 2008). Yet, empirical data on such relationships remain limited (but see, e.g., 

Kleijn et al. 2009; Phalan et al. 2011) and potential tradeoffs have not been tested for the 

problem of bioenergy and biodiversity. We found evidence for negative effects of crop yield 

on bird biodiversity. However, unlike in some other studies focused on food production 

(Kleijn et al. 2009; Phalan et al. 2011), we did not find strong evidence for consistent effects 

of crop energy yield on biodiversity across all taxa (Figure 2 and Table S4). Given that our 

analysis focuses on some crops also used for food production, these results have broad 

relevance to understanding land-use biodiversity tradeoffs in a context of increased food and 

energy demand.   

Despite general negative effects of bioenergy crops on biodiversity (Figure 2), we 

detected relatively weak effects based on yield, first generation versus second generation 

feedstocks, and reference land-use. At least three reasons might explain this lack of strong 

effects. First, site-specific conditions can moderate the effects of potential bioenergy crops. 

For instance, favorable environmental conditions in pine plantations could have driven higher 

abundance and richness, especially for invasive species (Liu et al. 2012) and in well-

managed plantations (e.g., Gottlieb et al. 2017). Heterogeneous landscapes with hedgerows 

or forest patches and ecological traits that allow some species to thrive in agriculture can 

explain high diversity and abundance in sugarcane, soybean, and corn (Minor and Cianciolo 

2007; Mulwa et al. 2012; Nunes et al. 2006; Nuñez-Regueiro et al. 2015). Studies showed 

that higher abundance and diversity in poplar and oil palm plantations relative to native 

forest can be explained by the presence of generalist species (Edwards et al. 2013; Martin-

Garcia et al. 2013). Second, life-history strategies and management schemes for different 

crops may play a larger role on biodiversity effects than yield alone. Yield has been often 

used as a proxy of land-use intensity across the land-sharing vs land-sparing spectrum 
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(Green et al. 2005; Phalan et al. 2011, 2016) and arguably measures other than crop yield 

could be more useful to understand ecological tradeoffs (Klein et al. 2002). Bioenergy crops 

differ greatly in energy balances and production schemes, such as rotation, agrochemical 

inputs, and socio-economic contexts (Farrel et al. 2006; Koh et al. 2008; Kremen 2015; Zhu 

et al. 2017). Third, the sample size of studies across crop types varied considerably, which 

impacts the power of interpreting effects for some crops. Sixty-nine percent of the literature 

focused on forested biomass sources. Conversely, only 16% included row crops that may 

have a greater impact on biodiversity due to intensive crop management strategies and 

structural simplicity, such as soybean and corn (Tables S2 and S3, Fletcher et al. 2011; 

Robertson et al. 2012; Gottlieb et al. 2017). Similarly, because of low number of studies 

published for some crops, our data set included only eight bioenergy crops. This focus on a 

small number of crops may have reduced our statistical power and potentially hid yield-

biodiversity relationships. Yield-biodiversity tradeoffs may become more apparent as data 

from more crop systems and taxa increase (Kremen 2015). 

 While these results provide a much-needed quantitative comparison among 

bioenergy crops being considered and used throughout the world, our search also revealed 

major data gaps for understanding the impacts of bioenergy. We found very limited (or no) 

information on some key bioenergy crops (e.g., jatropha, switchgrass), and some taxa were 

poorly represented. Furthermore, there was apparent geographic bias in the articles we 

found, with limited work in the southern cone of South America (Argentina, Bolivia, Chile, 

Paraguay and Uruguay), north east Asia (northern China, Mongolia, and Russia), and in 

most countries in Africa (with the exception of southern Africa) (Fig. 1). 

Implications for Conservation 

Our results point to the accumulating evidence that land conversion of natural ecosystems 

for bioenergy production will likely have negative impacts (Fletcher et al. 2011, Imerzeel et 
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al. 2014). While some crops showed greater changes than others (Fig. 3), the general 

pattern of lower diversity and abundance was clear. These results emphasize that policy and 

management strategies that aim for sustainable bioenergy production should provide 

mechanisms to avoid land conversion in native ecosystems. While some existing policy has 

such directives (US-EPA 2010), land-use change near bioenergy refineries has been 

documented (Wright et al. 2017), suggesting that policy mechanisms may not be sufficient to 

minimize wholesale land change. 

 Our results and other recent findings suggest at least three ways to reduce impacts. 

First, crop type can minimize or exacerbate effects, depending on crop yield and whether 

crops are first or second generation. Second, some potential impacts can be mitigated 

based on the ways in which biomass is extracted from existing land uses (e.g., Vershuel et 

al. 2011, Gottlieb et al. 2017). For instance, bioenergy can be produced from residue 

biomass or from biomass grown on degraded and abandoned lands without converting 

natural ecosystems (Fargione et al. 2008). Third, land-use change that may arise from 

bioenergy production wherein more intensive agriculture is replaced by bioenergy crops, 

which could have net benefits to biodiversity (e.g., converting row crops to second-

generation bioenergy land-uses). For example, replacing annual row-crops with perennial 

bioenergy crops like switchgrass could benefit local biodiversity (Werling et al. 2011; 

Meehan et al. 2012), assuming no indirect land-use change due to decreased food 

production. Fourth, landscape composition and configuration of surrounding farms also can 

affect biodiversity (Robertson et al. 2011; Karp et al. 2018; Miljanic et al. 2019) and can 

moderate potential effects of bioenergy.  

Conclusions 

One of humanity’s greatest challenges is balancing food production, energy production, and 

protection of the environment (Tilman et al. 2001). Bioenergy crops that do not compete with 
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food production and require smaller footprints (i.e., have high energy yields) have been 

championed as a way to help meet this goal (e.g., Heaton et al. 2008). However, there 

remain ongoing concerns regarding potentially greater environmental impacts with higher 

yield crops (Anderson-Teixeira et al. 2012). Nonetheless, in the next 20 years bioenergy will 

likely still be largely produced from sources like corn or soybeans (OECD-FAO 2017). This 

expectation is mainly because of slow development of technologies to achieve large 

production scales of high-yielding crops at competitive prices (OECD-FAO 2017). Our 

results highlight the consequence to biodiversity when attempting to meet production goals 

using first-generation crops (see also Immerzeel et al. 2014). We show that, even when 

including characteristics of natural environments, yield is an important factor driving impacts 

to biodiversity, although its effect varies across taxa. Furthermore, our results suggest that 

replacing natural ecosystems to produce bioenergy will largely harm biodiversity. Bioenergy 

and land-use policies that protect remaining natural habitat from conversion to energy crops 

will be critical to achieve biodiversity conservation goals in conjunction with renewable 

transportation fuel goals. 
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Figure Captions 

Figure 1. Country-level summary of studies included in our meta-analysis (pie charts 

represent the proportion of bioenergy crop studies per country and number of studies in 

each country is shown on top of each pie chart) and bioenergy production increase by 2024 

(% increase in production) for the expected top 10 largest bioenergy-producing countries 

(data from OECD-FAO 2016). Panels (a) through (g) show land cover examples for each 

potential bioenergy crop 

Figure 2. Estimated impacts of replacing reference ecosystems with potential bioenergy 

crops on the world’s flora and fauna. Impacts are calculated as the amount of biodiversity 

(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 

response ratio). Data points left of the zero vertical line signal less biodiversity in bioenergy 

crops than in reference ecosystems and thus represent an impact on biodiversity. For 

example, a value of -0.5 on the x axis signals that approximately for every 3 species or 

individuals detected in bioenergy crops, 5 species or individuals are detected in reference 

ecosystems. Error bars represent 95% confidence intervals.  

Figure 3. Estimated global impacts of replacing reference ecosystems with potential 

bioenergy crops. Impacts are calculated as the amount of biodiversity (diversity and 

abundance) in bioenergy croplands relative to reference ecosystems (log response ratio). 

Data points left of the zero vertical line signal less biodiversity in bioenergy crops than in 

reference ecosystems and thus represent an impact on biodiversity. For example, a value of 

-0.5 on the x axis signals that approximately for every 3 species or individuals detected in 

bioenergy crops, 5 species or individuals are detected in reference ecosystems. Error bars 

represent 95% confidence intervals. 

Figure 4. Estimated global impacts of replacing grassland or forest ecosystems with first or 

second generation bioenergy crops. Impacts are calculated as the amount of biodiversity 
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(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 

response ratio). Data points left of the zero vertical line signal less biodiversity in bioenergy 

crops than in reference ecosystems and thus represent an impact on biodiversity. For 

example, a value of -0.5 on the x axis signals that approximately for every 3 species or 

individuals detected in bioenergy crops, 5 species or individuals are detected in reference 

ecosystems.  Error bars represent 95% confidence intervals.  

Figure 5. Estimated global impacts of replacing reference ecosystems with potential 

bioenergy crops of varying energy. Impacts are calculated as the amount of biodiversity 

(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 

response ratio). Data points below the zero horizontal line signal less biodiversity in 

bioenergy crops than in reference ecosystems and thus represent an impact on biodiversity. 

(a) and (b) show results pooled for each taxa for abundance and diversity data, respectively 

across all bioenergy crops. Below the horizontal line at zero (0), biodiversity in bioenergy 

crops is less than in reference ecosystem. For example, a value of -0.5 on the x axis signals 

that approximately for every 3 species or individuals detected in bioenergy crops, 5 species 

or individuals are detected in reference ecosystems. Error bars and colored areas represent 

95% confidence intervals. 
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Figure 2. Estimated impacts of replacing reference ecosystems with potential bioenergy 

crops on the world’s flora and fauna. Impacts are calculated as the amount of biodiversity 

(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 

response ratio). Data points left of the zero vertical line signal less biodiversity in bioenergy 

crops than in reference ecosystems and thus represent an impact on biodiversity. For 

example, a value of -0.5 on the x axis signals that approximately for every 3 species or 

individuals detected in bioenergy crops, 5 species or individuals are detected in reference 

ecosystems. Error bars represent 95% confidence intervals.  
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Fig. 3 

 

Figure 3. Estimated global impacts of replacing reference ecosystems with potential 

bioenergy crops. Impacts are calculated as the amount of biodiversity (diversity and 

abundance) in bioenergy croplands relative to reference ecosystems (log response ratio). 

Data points left of the zero vertical line signal less biodiversity in bioenergy crops than in 

reference ecosystems and thus represent an impact on biodiversity. For example, a value of 

-0.5 on the x axis signals that approximately for every 3 species or individuals detected in 

bioenergy crops, 5 species or individuals are detected in reference ecosystems. Error bars 

represent 95% confidence intervals. 
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Figure 4. Estimated global impacts of replacing grassland or forest ecosystems with first or 
second generation bioenergy crops. Impacts are calculated as the amount of biodiversity 
(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 
response ratio). Data points left of the zero vertical line signal less biodiversity in bioenergy 
crops than in reference ecosystems and thus represent an impact on biodiversity. For 
example, a value of -0.5 on the x axis signals that approximately for every 3 species or 
individuals detected in bioenergy crops, 5 species or individuals are detected in reference 
ecosystems.  Error bars represent 95% confidence intervals.  
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Figure 5. Estimated global impacts of replacing reference ecosystems with potential 

bioenergy crops of varying energy. Impacts are calculated as the amount of biodiversity 

(diversity and abundance) in bioenergy croplands relative to reference ecosystems (log 

response ratio). Data points below the zero horizontal line signal less biodiversity in 

bioenergy crops than in reference ecosystems and thus represent an impact on biodiversity. 

(a) and (b) show results pooled for each taxa for abundance and diversity data, respectively 

across all bioenergy crops. Below the horizontal line at zero (0), biodiversity in bioenergy 

crops is less than in reference ecosystem. For example, a value of -0.5 on the x axis signals 

that approximately for every 3 species or individuals detected in bioenergy crops, 5 species 

or individuals are detected in reference ecosystems. Error bars and colored areas represent 

95% confidence intervals. 

 


