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Abstract 
 

Powders of ZnO and ZnO:M (M = Al3+ and Sr2+) with 1 and 4% of M nominal 

content were synthetized by a hydrothermal method in a diethanolamine (DEA) 

medium. The samples were studied by scanning electron microscopy (SEM), X-ray 

diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), micro-Raman and 

photoluminescence (PL). The powder particles were spherical with average radius 

decreasing from 1 µm down to 70 nm with increasing Al3+ nominal content but nearly 

independent on the Sr2+ nominal content. The XRD and micro-Raman results indicate 

that both Al3+ and Sr2+ mostly incorporated substitutionally into the ZnO lattice, giving 

rise to compressive and tensile strain, respectively, as a result of ionic radii differences.  

The PL spectra for ZnO:Al exhibit a dopant-induced contribution at ∼3.1  eV, which is 

not observed for ZnO:Sr, due to radiative transitions involving trapping of photocarriers 

at theoretically expected substitutional Al3+ donor states or at Zn interstitial defects.  
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1. Introduction  
 
ZnO has been one of the most studied semiconductors during the last decade 

[1,2]. This continuing interest resides on the potential technological applications based 

on its unique properties, including direct wide-band gap in the UV range (3.37 eV), 

large exciton binding energy (60 meV), piezoelectricity, high surface reactivity, low 

toxicity, and many more. Some of its several applications are in gas sensing [3], 

biosensing [4], photocatalysis [5], optoelectronics [6], electronics [7], spintronics [8] 

and photonics [9]. Many of the proposed devices rely on the fact that ZnO can be easily 

and cost effectively nanostructured, giving rise to one of the richest families of 

semiconductor nanostructures known [10].  

As with any semiconductor, many specific physical properties of ZnO thin films 

or nanostructures can be controlled and tailored according to the desired application 

through doping. In particular, various metal elements have been introduced into ZnO 

thin films and nanowires to increase magnetic moments [11], photocatalytical activities 

[12], electrical conductivity [13,14] or improve their biotechnological applications 

including human health treatments [15]. However, for any doping to be successful, the 

relation between the specific ZnO fabrication parameters and resulting physical 

properties must be known in as much detail as possible. This is because the properties 

of pure ZnO are themselves very sensitive to the crystal growth conditions and post-

growth processing. For example, annealing treatments in oxygen rich atmospheres can 

change the photoluminescence of ZnO samples synthesized by sol-gel [16]; by using the 

vapor transport technique it is possible to control the morphology of  ZnO 

nanostructures by changing the type of substrate and the ratio between oxygen pressure 

and local Zn partial pressure during growth [17]. A different way to improve physical 
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properties of ZnO is the formation of nanocomposites between ZnO and different 

materials, including compounds derived from carbon or mesoporous silica [18,19]. 

There have been many reports of doping of ZnO [14–16].  ZnO:Al (also known 

as AZO) is probably the most studied case mainly due to its convenient combination of 

high electrical conductivity and high optical transparency [24].  Recently, AZO was 

shown to be an interesting plasmonic material [25]. Regarding its luminescence 

properties, a blueshift of the ZnO UV emission band with Al doping has been observed 

and attributed to a bandgap increase related to the Burstein–Moss effect [26,27]. In 

addition, both Al-induced increment [28,29] and decrement [30,31] of the ZnO 

characteristic UV photoluminescence intensity  have been reported. However, the 

mechanisms behind these behaviors and the reasons for the discrepancies have not been 

yet unveiled. In contrast to ZnO:Al, the ZnO:Sr system has been scarcely studied; 

nevertheless, due to the growing interest on the incorporation of alkaline earth metals 

onto the ZnO lattice, mainly for the improvement of ZnO nanostructures for 

photocatalysis and antibacterial applications [32,33],  few reports on Sr incorporation 

effects on physical properties of ZnO have been published recently [34–36].   

The solution-based syntheses are a good alternative to obtain ZnO and doped 

ZnO because they allow high control on the composition of synthesized materials, in 

addition to other advantages [37,38]. Among these techniques, the hydrothermal 

synthesis appears as an excellent and versatile option since, in addition to the good 

composition control, it is low cost, environmentally friendly, easily scalable and 

operates at relatively low temperatures [39,40]. Futhermore, the hydrothermal synthesis 

of ZnO nano and microstructured powders is a one-step and high yield process that 

offers good control of morphology [41–43].  
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In this work, we report the hydrothermal synthesis of ZnO, ZnO:Al and ZnO:Sr 

nano and microstructured powders at low temperature (125ºC) and focus mainly on 

their morphological, vibrational, structural and light emission properties. The powder 

particles are spherical with radii that are strongly reduced from ∼1 µm down to 70 nm 

for Al additions but remain nearly unchanged for Sr additions. The Al is also seen to 

lead to a new emission component at ∼3.1 eV, attributed to Zn interstitials. Both metal 

dopants incorporate mostly substitutionally into the ZnO lattice, leading to strains that 

affect the lattice parameter, phonon frequencies and UV emission spectra. These results 

should be valuable in the quest for new ZnO-based micro and nanostructures with new 

properties obtained by low-temperature fabrication routes. 

 

2. Experimental section 
 

The ZnO and ZnO:M (M = Al3+ and Sr2+) samples were synthesized using 

distilled water, DEA, zinc nitrate dihydrate (0.5 M, aqueous solutions), strontium 

chloride hexahydrate and aluminum chloride hexahydrate (0.05 M, aqueous solutions) 

with Zn+2, Sr+2 and Al+3 as precursors, respectively (Sigma-Aldrich, 99.99% purity, 

without further purification). Reactions were carried out in a 25 mL stainless steel 

autoclave with PTFE vessels. For this purpose, 1.5 mL of Zn+2 precursor solution, 3 mL 

of DEA, 0.15 mL or 0.6 mL of metal dopant solution (to obtain samples with 1% or 4% 

nominal dopant content, respectively), and distilled water (until completing 12.5 mL, 

i.e. 50% of autoclaves capacity) were added; then the autoclaves were closed and heated 

at 125 °C during 4 h. Finally, the autoclaves were cooled to room temperature. The 

powders obtained were isolated by centrifugation and washed with distilled water 

several times and dispersed in ethanol.  
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To obtain a sufficient amount of material for characterization, the powder 

dispersions were drop casted on square silicon substrates and dried at 125 °C. This 

procedure was repeated seven times. The morphology and particle size of the obtained 

solid samples were studied using scanning electron microscopy (SEM) (Carl-Zeiss 

model Supra 55-VP). The elemental composition was determined by energy-dispersive 

X-ray spectroscopy (EDX). The crystalline structure was studied with X-ray diffraction 

(XRD) [SIEMENS D5000 diffractometer with Cu Kα radiation source (1.54056 Å)]; 

patterns were recorded in the 30-60° range. Micro-Raman measurements were carried 

out using a 532 nm wavelength, 10 mW power laser (DXR Smart Raman Spectrometer, 

Thermo Scientific). PL spectra were obtained using backscattering geometry, with a 15 

mW He-Cd laser set at a wavelength of 325 nm as excitation source; light emitted from 

the samples was focalized on a CCD spectrometer with two biconvex lenses. A filter 

was placed at the entrance of the spectrometer to eliminate scattered laser radiation.  

 

3. Results and discussion  

Fig. 1(a-g) show SEM micrographs of the synthesized ZnO, ZnO:Al, ZnO:Sr  

powders. As it can be seen, all samples are composed of particles with a spherical 

morphology, independently of the metal constituent (Zn2+, Al3+ or Sr2+). This 

morphology seems to be a consequence of particle agglomeration in the solution during 

hydrothermal growth. Indeed, this result is in agreement with previous reports where the 

hydrothermal synthesis of ZnO using DEA was observed to lead to powders composed 

of spheres with similar characteristics [41,44]. This particular morphology is 

consequence of the addition of DEA in the hydrothermal synthesis, which causes, in a 

first stage, the formation of ZnO nanoparticles and, in a final stage, their agglomeration 

[41]. However, although the spherical shape is not very affected by the addition of Al3+ 
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or Sr2+ cations, the average size (and size dispersion) of the spheres, especially for Al3+ 

additions, are significantly changed. The average microsphere sizes were determined 

from SEM images using ImageJ open source software processing. For this purpose, the 

grains were identified and their size measured from the SEM images; average sizes 

were calculated and their values were rounded up in consistency with the expected 

accuracy of the SEM instrument. According to the above, the average particle sizes 

were 1.1 µm, 1 µm and 1.5 µm for ZnO,  ZnO:Sr 1% and ZnO:Sr 4 % respectively, 

while for ZnO:Al they were drastically reduced (150 nm and 70 nm for ZnO:Al 1% and 

4%, respectively). Since the synthesis was performed with the same experimental 

parameters (temperature, volume, solvents and precursors concentrations), it is evident 

that the size of the particles is strongly affected by the addition of Al3+ cations.  

 The EDX elemental composition analysis for all samples is presented in Fig. 

2(a-e). The presence of both Al and Sr in the corresponding samples is confirmed and, 

as will be discussed later, both metals are effectively incorporated to the ZnO lattice. In 

all EDX spectra, a Si peak from the Si substrate is also detected. 

The XRD patterns from the samples acquired between 30º and 60º 2θ are 

presented in Fig. 3. As noted, all the samples have a polycrystalline structure; patterns 

show the (100), (002), (101), (102) and (110) peaks corresponding to the wurtzite 

crystalline structure of ZnO according to the JCPDS 036-1451 card. In addition, no 

secondary phases of strontium oxides or aluminum oxides are detected.   

Lattice parameters were found by using the FullProf software in the pattern 

matching mode (Le Bail refinement) [45] and the results are summarized in Table  1. As 

observed, for the pure ZnO sample, the c and a parameters found have values of 5.2041 

and 3.2491 nm, respectively. Furthermore, both parameters decrease with increasing 

Al 3+ nominal content in ZnO:Al and increase with increasing Sr2+ nominal content in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

ZnO:Sr. The lattice parameter changes can be explained by differences in ionic radii 

between the cations involved: Al3+ (0.053 nm) < Zn2+ (0.074 nm) < Sr2+ (0.118 nm) 

[46]. Given that the ionic radius of Zn2+ is greater than that of Al3+ and lower than that 

of Sr2+, the values of the lattice parameters found suggest that the dopant metals are 

substitutionally incorporated into the ZnO lattice.      

 Crystallite sizes, stress and strain were estimated through the Williamson-Hall 

(WH) analysis, using the Uniform Stress Deformation Model (USDM), taking into 

account the following assumptions: (i) crystals have a homogeneous isotropic nature, so 

that the lattice deformation is uniform and (ii) the stress in the spheres is sufficiently 

low, so that the linear proportionality relation between stress (σ) and strain (ε) given by  

� = ��, where E is Young’s modulus [47,48], holds. Combining the Scherrer equation 

� = �� (	
��
���)⁄  with the strain-induced broadening arising from crystal 

imperfections and distortion 	� ≈ 		
�� ����⁄  and � [47,48], the following USDM 

equation is deduced: 

 

	
��
��� = ��
� +	���� !"#$%      (1); 

 

where βhkl is the peak FWHM, θ is the peak position, K is a constant with a value of 

0.94, λ is the X-ray wavelength (0.15406 nm), D is the crystallite size and Ehkl is the 

Young’s modulus in the direction normal to the (hkl) planes. For a hexagonal crystal, 

Young′s modulus is given by the following relation: 

�
�� = &
'((#)'$)'* (+,%- .
'/
'

�001
'((#)'$)'* 2'(�**+,%- .
3((4�0*(�33)1
'((#)'$)'* 2+,%- .

'     (2); 
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Where s11, s13, s33, s44 are the elastic compliances of ZnO, whose values are 7.858 x 10-

12, -2.206 x 10-12, 6.940 x 10-12, 23.57 x 10-12  m2 N-1, respectively [49]. The USDM 

plots are presented in Fig. 4; the corresponding crystallite size, stress and strain values 

are summarized in Table 1. As can be seen, Al doping reduces the lattice parameters 

and produces compressive stress, while Sr doping increases the lattice parameters and 

produces tensile stress.   

Considering the crystallite size estimated by the WH analysis and recalling the 

discussion about the particles size determined by SEM, it is clear that incorporation of 

Al 3+ in ZnO has a stronger effect on particle size than on crystallite size (note that each 

particle contains several crystallites and this is why particle sizes as determined from 

SEM are always larger than crystallite sizes as determined by XRD). This suggests that 

the origin of particle size reduction induced by Al3+ incorporation is not related to 

factors pertaining crystal growth (e.g. nucleation growth rate), which would primarily 

affect the crystallite size. The DEA is involved in multiples stages in the hydrothermal 

synthesis of ZnO, including (i) chelating the  Zn2+ (Mn+) cations by the formation of 

DEA – Zn – O – Zn – DEA chains (forming a stable colloidal phase), (ii) providing a 

growth medium at basic pH, (iii) controlling the morphology by the coordination to 

specific crystal faces and (iv) promoting nanoparticle agglomeration [41]. Although the 

microscopic chelation mechanism is still poorly understood, it is clear that addition of 

Al 3+ modifies the DEA – Zn – O –  Zn  –  DEA chain formation process and interferes 

with nanoparticle aggregation, inhibiting the formation of large spheres.  
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Table 1 Crystalline data obtained from diffraction pattern.  
 

Sample a (Å) c (Å) D (nm) σ (MPa) 
ZnO 3.2491 5.2041 28 60.1 

ZnO:Al 1% 3.2433 5.1965 29 -28.5 
ZnO:Al 4% 3.2399 5.1871 27 -12.6 
ZnO:Sr 1% 3.2492 5.2044 40 75.1 
ZnO:Sr 4% 3.2565 5.2198 48 140.6 

 
 In addition, the lattice parameter changes suggest that there are differences in the 

nature of strain for the different incorporated cations into the ZnO lattice: Since both the 

c and a parameters become shorter with increasing Al3+ nominal content, the ZnO 

lattice is under compressive strain; in contrast, inclusion of Sr2+ causes tensile strain 

[50]. This result is confirmed by the WH analysis, since the positive slope in the Fig. 

4(a, c, d) indicates effectively that there is tensile strain for the ZnO and ZnO:Sr 

samples, while the negative slope for ZnO:Al samples indicates that strain is 

compressive [51]. 

In order to study the effects of Al3+ and Sr2+ incorporation on the vibrational 

properties of ZnO, we measured the micro-Raman spectra for all samples at room 

temperature in the 70 to 500 cm-1 frequency range; results are presented in Fig. 5. As it 

is well known, group theory predicts the following Raman active modes for ZnO: A1 + 

2E2 + E1, where A1 and E1 are polar modes exhibiting two different frequencies for 

transverse optical (TO) and longitudinal optical (LO) phonons: A1(TO), A1(LO), E1(TO) 

and E1(LO), at about 379, 574, 410 and 591 cm-1, respectively. The E2 modes, in turn, 

are nonpolar, appearing at about 102 cm-1 (E2
low) and 439 cm-1 (E2

high), being associated 

with vibration of zinc and oxygen sublattices, respectively [52,53]. As it is observed, 

our spectra are dominated by both E2 modes, which are the most prominent peaks for 

the wurtzite structure [54]. The A1(TO) and E1(TO) modes can  also be identified in the 

spectra. In addition, a second order peak associated to E2
high - E2

low appears close to 330 

cm-1 [53].   
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Both E2 modes observed in Fig. 5 were fitted with the Breit-Wigner (BW) function: 

5(6)∝ 78(49(:;:<)/>?'
8(74(:;:<)/>?'        (3); 

where I(ω) is the Raman intensity, ω0 is the Raman shift, Γ is the FWHM, and β is an 

asymmetry parameter (β = 0 for a symmetrical peak) [55,56]. Although, the BW 

function has been usually used to analyze Raman spectra of carbon-based materials, it 

has been also applied for the analysis of Raman spectra from ZnxMg1-xO, yttria-

stabilized zirconia and CuAlO2 nanoparticles [55–57]. The fits of the experimental data 

for both E2
low and E2

high modes are shown in Figures 6 and 7.  It is clear that the BW 

function fits the experimental data satisfactorily. 

The set of ω0, Γ and β  values determined from the fits are summarized in Table 

2. As can be observed in the Table, the lineshape parameters Γ and β do not change 

systematically with the Al or Sr nominal content. Linewidth broadening of Raman 

peaks in ZnO upon doping has been observed  and attributed to disorder effects 

resulting in translational symmetry disruption of the wurtzite lattice due to dopant 

incorporation [55,58]. In our case, the observed linewidth changes induced by Al3+ or 

Sr2+ are relatively small, indicating relatively small disorder introduced by these metal 

ions for the nominal concentrations used (1 and 4%).   

The ω0 values for both E2
low and E2

high modes are depicted in Fig. 6(f) and Fig. 

7(f) against the nominal Al and Sr contents. As can be noted, ω0 for both the E2
low and 

E2
high modes increase with Al3+ nominal content and both decrease with Sr2+ nominal 

content. Since the shifts of ω0 occur in the same direction for both E2
low and E2

high 

modes for each dopant, we believe these shifts must have a common origin. Indeed, 

both modes result from atomic vibrations perpendicular to the c axis of wurtzite. 

Furthermore, the force constants associated with both modes are both related to some 

component of the Zn – O bonds connecting the Zn and O sublattices. Hence, it may be 
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expected that force constant changes induced by a certain metal dopant should affect 

both the E2
low and E2

high modes frequencies in a similar fashion. However, considering 

the well-known relation for the oscillator frequency:  

6@ =	 84AB�
C      (4); 

where  k is the force constant and µ is the reduced mass, it is clear that doping-induced 

changes in µ must also be considered. It is well known that the E2
low mode in ZnO, 

which involves primarily (i.e. 85%) displacement of the cation (Zn2+) sublattice, is 

therefore sensitive to changes in the cation effective mass due to doping as Zn2+ are 

replaced by the dopant  ions. In contrast, the E2
high mode, which involves primarily 

displacement of the anion (O2-) sublattice, does not change much in response to 

modifications in the effective cationic mass. Hence, other origins have been invoked to 

explain doping induced changes in the E2
high frequency, such as lattice parameter and 

associated  force constant changes [55,59].   

In our case, however, it is clear that the replacement of Zn2+ by Al3+ leads to a 

reduction of the lattice parameters due to the lower ionic radius of Al3+. This in general 

leads to an increase of k and therefore should contribute to increases of both, the E2
low 

and E2
high modes frequencies with increasing Al nominal content in ZnO:Al. Indeed, 

this is the case from the experimental side [see left hand side of Fig. 6(f) and 7(f)]. The 

opposite should occur when replacing Zn2+ by Sr2+ due to the larger Sr2+ radius, and 

hence both the E2
low and E2

high frequencies should decrease with increasing Sr nominal 

content in ZnO:Sr, as observed in the Raman measurement [see right hand side of Fig. 

6(f) and 7(f)].  

For the E2
low mode, however, taking into account the differences in atomic mass 

between Zn2+ (65.38 u), Al3+ (26.98 u) and Sr2+ (87.62 u), the incorporation of Al3+ at 

the expense of Zn2+ should also contribute to an increase in the phonon frequency as 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

consequence of an effective cationic mass reduction [55,60]. This in principle should 

also apply to the Sr2+ case, but contributing to an increase of the effective mass and a 

lowering in the phonon frequency. These results are compatible with Figures 6(f) and 

7(f) and support the hypothesis that both Al3+ and Sr2+ are being incorporated 

substitutionally into the ZnO lattice (specifically, into the Zn2+ sublattice), as previously 

suggested by the XRD analysis.  

Other contributions, especially to the E2
high mode frequency, could come from 

the presence of internal strains [61–63], which seem to be unimportant here. In addition, 

it has been reported for interstitial dopants in ZnO that the E2
high mode intensity is 

strongly reduced due to the breakdown of translational crystal symmetry [64]. As 

observed in Fig. 7(a-d), the intensity of this mode does not have important changes with 

the additions of Al3+ or Sr2+ in our samples. This, again, indicates that the incorporation 

of these metals into the ZnO lattice occurs mainly substitutionally and hence does not 

result in strong crystal distortions, as previously suggested by the relatively small 

Raman peak linewidth changes observed.  

 
Table 2. Parameters obtained from the fit of Eq. 3 to the Raman E2

low and E2
high peaks observed from the 

synthesized samples. 
 

Sample E2
low Γ (E2

low) β (E2
low) E2

high - E2
low E2

high Γ (E2
high) β (E2

high) 
ZnO 98.6 3.57 -6.35 331.4 438.6 6.61 -5.45 

ZnO:Al 1% 98.8 3.75 -5.34 331.9 438.7 6.53 -5.93 
ZnO:Al 4% 99.1 3.68 -2.53 331.9 438.9 6.58 -5.53 
ZnO:Sr 1% 98.3 3.42 -7.26 330.9 438.2 6.19 -4.69 
ZnO:Sr 4% 97.9 3.54 -7.62 331.9 438.1 6.83 -5.08 

 
 

In Fig. 8(a,b), the PL spectra for the ZnO:Al and ZnO:Sr samples are shown (in 

both figures, they are compared to the PL spectrum for the ZnO sample). For pristine 

ZnO, a peak due to excitonic radiative recombinations in the UV at 385 nm (3.221 eV) 

and a band in the visible peaked at ∼570 nm (2.175 eV) due to deep defect states, are 

observed. As noted in Fig. 8(a), the incorporation of Al3+ into the ZnO lattice leads to a 
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quenching of both UV and visible emissions, while incorporation of Sr2+ does not lead 

to a clear tendency, as seen in Fig. 8(b). The PL intensity reduction for ZnO:Al samples 

[Fig. 8(a)] may suggest that Al3+ behaves as a non-radiative recombination center, 

competing with radiative recombination processes and leading to the PL quenching in 

function of Al3+ nominal content. In Fig. 8(c,d), the normalized emission bands in the 

UV and visible regions of the spectrum are shown. As depicted in Fig. 8(d), the shape of 

the visible emission band peaked at ∼570 nm, which has been attributed to oxygen 

vacancies (VO) [16,41], does not change with Al3+ and Sr2+ incorporation. Hence it can 

be concluded that additions of both Al3+ and Sr2+ to the ZnO lattice do not induce 

additional luminescent defect centers.  

Regarding the mechanisms behind the UV emission (related to band-to-band 

recombination and recombination processes involving near band edge states), the effects 

of Al3+ incorporation are noticeable: the UV band is blue-shifted and broadened with 

respect that of ZnO sample [Fig. 8(c)]. These blue-shifts could be due to the Burstein–

Moss effect [26,27] or related to bandgap widening associated with the compressive 

strains deduced from the XRD and Raman measurements. The effects of the 

Sr2+incorporation, in contrast, are less noticeable. In order to study the nature of the UV 

emission, we decompose the PL spectra in the UV region to its assumed Gaussian 

components. The results are shown in Fig. 9 and summarized in Table 3. As it can be 

noted, the spectra from ZnO and ZnO:Sr [Figures 9(a), (d) and (e)] could be 

satisfactorily fit with 2 components only. From inspection of Table 3, it is deduced that 

both components in ZnO:Sr are slightly red-shifted with respect to those in ZnO and 

that the redshift increases as function of the Sr2+ nominal content. The red-shifts could 

be related to small bandgap narrowing associated with the tensile strains deduced from 

XRD and Raman. In addition, the energy differences between the two UV components 
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are 61, 70 and 71 meV for ZnO, ZnO:Sr 1% and ZnO:Sr 4%, respectively, which are 

close to the ZnO LO phonon energy (ℏ6EF ≈ 71	IJK) [23]. Hence, it is reasonable to 

assume that these components correspond to the first (FX-1LO) and the second (FX-

2LO) exciton phonon replicas, which usually dominate the UV emission band from 

ZnO at room temperature [65]. 

In contrast, a third component, centered at about 400 nm (∼3.1 eV), appears for 

ZnO:Al. Furthermore, as mentioned above (Table 3), the first two components are blue-

shifted with respect to those for the undoped ZnO sample. Since the energy differences 

between the two first components are 67 and 77 eV for ZnO:Al 1% and ZnO:Al 4%, 

respectively, their origin can also be related to the FX-1LO and FX-2LO phonon 

replicas. Regarding the third component at ∼3.1 eV, the energy differences with respect 

the FX-2LO component (105 and 116 eV for 1% and 4% of Al3+ nominal content, 

respectively) are significantly larger than the ZnO phonon energy, indicating that it is 

not an additional phonon replica. Indeed, we notice that a component at ∼3.1 eV has 

been observed before in Al-doped ZnO and attributed to near-edge states associated 

with Al substitution of Zn [66]. Shallow donor states due to due to Al 3s electrons from 

substitutional Al in ZnO are predicted by density functional theory based calculations 

[67]. As a matter of fact, for sufficiently large Al concentration, some of these states are 

responsible for the well-known semi-metallic character of electrical transport  in 

ZnO:Al. It is possible that the shoulders observed at 400 nm (i.e. 3.1 eV) in the PL 

spectra for both Al-doped ZnO samples in Fig. 8(c) are due to radiative transitions 

involving Al-induced donor states. However, we note that a PL contribution at about 3.1 

eV has been also reported for undoped ZnO and attributed to Zn interstitials (Zni) [68]. 

It is not clear at this stage why formation of Zni would be favored in ZnO:Al samples 

grown by hydrothermal synthesis. It is interesting to note that Zni is a relatively unstable 
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point defect due to a low diffusion barrier [69, 70] that can be stabilized by the 

interaction with VO [71]. Hence, we speculate that at some growth stage, the 

incorporation of Al3+ in substitutional way could help to stabilize the Zni. Note, 

however, that this effect is not observed for ZnO:Sr.  

 
Table 3. Parameters extracted from Gaussian function fits to the UV emissions  
 
Sample FX-1LO 

(eV) 
FX-2LO (eV) ∼3.1eV 

peak (eV) 
(FX-1LO) – 
(FX-2LO) 
(meV) 

(FX-2LO) – 
∼3.1eV peak  
(meV) 

ZnO 3.236 3.175 - 61 - 
ZnO:Al 1% 3.271 3.204 3.099 67 105 
ZnO:Al 4% 3.297 3.220 3.104 77 116 
ZnO:Sr 1% 3.235 3.165 - 70 - 
ZnO:Sr 4% 3.222 3.151 - 71 - 
 
 
 
 
4. Conclusions 
 

Powders composed by nano and microspheres of ZnO and ZnO:M with M = Al3+ 

and Sr2+ were obtained through hydrothermal route using diethanolamine. XRD and 

micro-Raman results indicate that both Al3+ and Sr2+ are mainly incorporated into ZnO 

substitutionally. All samples exhibit wurtzite structure and spherical morphology. A 

large reduction on the average sphere size with increasing Al3+ nominal content was 

observed, indicating that the Al3+ interacts with diethanolamine in a way to inhibit its 

function as an aggregation agent, preventing the formation of large spheres. From the 

crystallite sizes and strains estimated by means of Williamson-Hall analysis of the 

observed XRD patterns using the Uniform Stress Deformation Model (USDM), it was 

found that incorporation of Al3+ into the ZnO lattice induces compressive strain while 

Sr2+ induces tensile strain. These effects are consistent with the phonon frequency shifts 

observed by Raman spectroscopy [Figures 6 and 7(f)] and are expected from differences 

between the ionic radii of substitutional cations (0.053 nm for Al3+ and 0.118 nm for 

Sr2+) and that of the host Zn2+ (0.074 nm). The effects of Al3+ and Sr2+ additions on the 
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PL spectra were also studied. The most remarkable observation was a new component 

to the UV band at ∼3.1 eV for ZnO:Al, not observed for ZnO:Sr, attributed to 

substitutional Al3+ donor states or to the Zn interstitial defect. The exact nature of this 

component for Al3+ incorporation in ZnO should be matter of further research.  
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Figure Captions 
 
Figure No. 1. Fig. 1 SEM micrographs of synthesized powders. (a) ZnO; (b,c) ZnO:Al; 
(d,e) ZnO:Sr and (f,g) a close view of ZnO:Al 1% and ZnO:Sr 4% respectively. 
 
Figure No. 2. Fig 2. EDX spectra from synthesized powders. (a) ZnO; (b) ZnO:Al 1%; 
(c) ZnO:Al 4%; (d) ZnO:Sr 1% and (e) ZnO:Sr 4%.  
 
Figure No. 3. Fig. 3. XRD patterns from ZnO (bottom) and from ZnO:M (M=Al and Sr) 
with 1 and 4 % of M nominal content. 
 
Figure No. 4. The Williamson-Hall plot using the Uniform Stress Deformation Model 
(USDM) for ZnO, ZnO:Al and ZnO:Sr. The red line corresponding to the linear fit; the 
crystallite size D is estimated from the line intersection with the axis and the strain σ is 
estimated from the slope.  
 
Figure No. 5. Fig. 5. Micro-Raman spectra for ZnO, ZnO:Al and ZnO:Sr. 
 
Figure No. 6. (a-e). The E2

low mode of studied samples and its corresponding fit with 
Breit-Wigner function. (f) ω0 of E2

low mode extracted from the fits as function of the Al 
and Sr nominal contents.  
 
Figure No. 7. (a-e). The E2

high mode of studied samples and its corresponding fit with 
Breit-Wigner function. (f) ω0 of E2

high mode extracted from the fits as function of the Al 
and Sr nominal contents.  
 
Figure No. 8 (a-b). Photoluminescence spectra of the ZnO, ZnO:Al and ZnO:Sr 
samples. (c) Normalized UV emission. (d) Normalized visible emission for all the 
samples.  
 
Figure No. 9. Gaussian fit of UV emission from ZnO, ZnO:Al and ZnO:Sr samples. For 
ZnO:Al samples, it was necessary to fit with three Gaussian components, while for ZnO 
and ZnO:Sr, the best fits were achieved with two Gaussian components.  
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Highligths 
 

• ZnO and ZnO:M (M = Al3+ and Sr2+) powders were synthetized by a 
hydrothermal method 

• The particles radius decreased from 1 µm down to 70 nm with Al dopant 
incorporation  

• Both Al3+ and Sr2+ are mainly incorporated substitutionally 
• Al3+ and Sr2+ additions to ZnO induce compressive and tensile strain 

respectively 
• Al3+ incorporation induced a PL component at ~3.1 eV related with Zn 

interstitial 
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