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Abstract  

The outstanding capacity of Geobacter sulfurreducens cells to directly connect 

their inner electron transport chain to a polarized electrode have prompted the 

application of a wide arrange of electrochemical techniques to explore their 

metabolism and current production possibilities. In this work we use very basic 

electrochemical assays as open circuit potential, voltammetric and 

chronopotentiometric measurements to obtain fundamental information on bacterial 

electrochemical characteristics of importance to interpret bacterial functioning. 

Specifically, we obtained information on G. sulfurreducens biofilm capacity to store 
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charge in three major molecular reservoirs bridging the gap between NADH and 

the electrode, demonstrating, at the same time, the value of OCP measurements 

as a reporter of internal redox state of cells.   

1. Introduction 

When grown using a polarized electrode as the sole electron acceptor, G. 

sulfurreducens can produce thick conductive biofilms electrically connected to the 

electrode[1] . This amazing phenomena is structurally supported at the cell level by 

an arrangement of conductive molecules, which expands from the inner membrane 

all over the periplasmic space and across the outer membrane for transporting 

electrons to the extracellular environment[2] . Different molecules have been shown 

to be involved in extracellular electron transport, including c-type cytochromes, 

multi-copper proteins and conductive pili[2–4] , but c-type cytochromes are known 

to play a central role, not only in electron conduction but also in the respiration of a 

variety of electron acceptors, including iron compounds and electrodes[5–9] . More 

than 100 different genes for c-type cytochromes have been found in G. 

sulfurreducens that are expressed and translated under different environmental 

conditions[10–12] . Cytochromes are distributed along the internal and external 

membranes, the periplasmic space and the cell exterior. Among the most relevant 

cytochromes associated to electron conduction identified so far, ImcH[13]  and 

CbcL[14]  multi heme cytochromes are thought to connect the inner membrane to 

the periplasmic environment; the PpcA family, including 5 members of tri-heme 

periplasmic cytochromes, are the main electron conduit across the periplasmic 
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space to the outer membrane[15]  and the periplasmic OmaB/OmaC and the outer 

membrane OmcB/OmcC cytochromes are a part of a porin complex involved in 

transferring electron from the periplasmic region to the cell exterior[16] , jointly with 

others recently informed redox active complexes that contain a periplasmic 

multiheme c-cytochrome, an integral outer membrane β-barrel and outer 

membrane redox lipoprotein[17] . Finally, external cytochromes as OmcS and 

OmcZ are most probably, the molecules responsible for making the electrical 

contact to solid external acceptors like metal oxides and electrodes[5,8,18,19] . 

Also cytochromes are thought to be involved in direct interspecies electron transfer 

(DIET)[20] , a process in which bacteria exchange electrons through conductive 

materials, redox molecules and conductive pili[20,21] .  

Besides their unarguable role in electron conduction, cytochromes participate in 

charge storage[22–27] . In the eventual lack of electron acceptors, Geobacter cells 

sustain basal energy-dependent activities by transferring respiratory electrons to 

exocytoplasmatic cytochromes[23] , that become progressively reduced while 

accumulating charge in their heme groups. Interestingly, this phenomenon has also 

been observed in electricity producing biofilms when polarization is interrupted[22] . 

In this latter case, as accumulated charge can be recovered upon repolarization, 

modeling transient (discharge) current has been useful in estimating both the 

distribution of charge within biofilm compartments and the rate constants for 

electron transfer steps involved in electron conduction[28,29] . 
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In this work we use chronopotentiometry and cyclic voltammetry measurements to 

further investigate the charge storing process in G. sulfurreducens biofilms. Our 

results indicate the occurrence of at least three electron storing pools with different 

redox potentials, electrically connected to the electrode. The potential at which 

electrons are stored indicate that the selection of molecules where charge is stored 

depends on the pathway used by cells to release electrons from the cell interior 

which is indeed determined by the potential of the electron acceptor and the 

metabolic state of cells. 

2. Experimental  

2.1. Culture of microorganisms 

Geobacter sulfurreducens strain DSM 12127 was anaerobically cultured at 30 ºC 

on a culture medium from that described elsewhere[30] and containing 30mM KCl, 

100 mM NaHCO3, 20 mM NaAc, 9.3 mM NH4Cl, 2.5 mM NaH2PO4 anhydride, plus 

vitamins and trace minerals dissolved in distilled water. Sodium acetate 20 mM 

was used as the carbon source and the electron donor, while fumaric acid 40 mM 

was the electron acceptor[30].  

2.2. Cell setup and biofilm generation.  

All the experiments were performed in a custom made three electrode 

electrochemical cell using 0.4 cm in diameter graphite rods (XTG-15, Carbograf, 

Argentina) as the working electrode, a platinum wire as a counter electrode and an 

Ag/AgCl – 3 M NaCl (BASi RE-6) reference electrode. Working electrode surface 
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was treated as described in[22]. The exposed area of the working electrode was 

2.76 cm2. All potentials are here reported relative to SHE (i.e. 0.2V vs. Ag/AgCl). 

All system components (i.e. electrochemical reactor, medium reservoir, tubing, 

working and counter electrodes, magnetic bar, etc) were assembled prior 

autoclaving, in order to avoid steps of possible contamination. Just the reference 

electrode was added after autoclaving in a laminar flux after sterilization with 

alcohol at 70%. For biofilm growth 10 ml of an early stationary phase batch culture 

were inoculated into a biofilm reactor containing about 90 ml of deoxygenated 

culture medium lacking the electron acceptor and prepared as elsewhere[1]. When 

current generation reached 0.05 Am-2 a peristaltic pump was connected to 

continuously supply medium at a dilution rate of 0.02 h-1. The reactor and all the 

liquid reservoirs in the continuous culture system were permanently flushed with a 

filtered gas mix of N2:CO2 to adjust the pH of the medium at 7.4 and to prevent the 

oxygen leakage to the system. The flush of gas on the liquid media also prevented 

possible interferences on the electrochemical measures due to the H2 that may be 

produced on the counter electrode. Biofilms growth was followed by measuring the 

current output at a potential of 0.4 V (SHE). All the experiments were performed 

under permanent magnetic stirring and gas flushing into the reactors. At least three 

independent replicates were grown to obtain the reported results, n will be 

highlighted in the text when needed.  

2.3. Electrochemical Assays.  

All the experiments were performed using an Autolab PGSTAT101 potentiostat 

controlled by the Nova 1.6 dedicated software. For cyclic voltammetry the potential 
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was scanned between 0.6 and -0.5 V from an initial potential of 0.4 V scanning 

anodically. The scan rate was 0.01 V.s-1 unless otherwise stated. 

Chronoamperometries during biofilms development and maintenance phases were 

performed at 0.4 V (SHE). OCP determination was performed acquiring potential 

values at 10 points per second. Chronopotentiometries were performed applying 

the selected current and collecting potential values at 10 points per second. In 

order to avoid biofilm damage, a final -0.45 V potential limit was settled. Between 

chronopotentiometries assays, the biofilms were polarized at 0.4 V in order to 

discharge the accumulated charge and set up a common starting point. Non-

turnover electrochemical assays were performed after changing the cell electrolyte 

(i.e. growth media) for one lacking acetate under sterile and anoxic conditions.  

3. Results and Discussion 

3.1. Biofilm growth and charge accumulation 

It has been previously shown that the open circuit potential (OCP) of an electrode 

functionalized with an active biofilm of G. sulfurreducens rapidly shifts toward 

negative values, due to the progressive reduction of bacterial electro-active 

molecules (e.g. c-type cytochromes) at the biofilm/electrode interface[22,28,31]. As 

the current that promotes that potential change is produced by the metabolic 

activity of the bacterial cells, we hypothesized that the measurement of the OCP 

has the potentiality to inform about the electrochemical potentials of involved 

electron storage sites. To further explore this phenomenon, in this work we 
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performed a series of OCP measurements, by opening the circuit at increasing 

times along biofilm development. Results obtained are presented in Fig.1 and Fig. 

S.1. A first OCP determination was performed shortly after current started to 

increase, marking the start of the exponential growth phase of the biofilm. As 

previously shown[22], at this stage biofilms producing a current of about 0.01 A.m-2 

drove the OCP of the working electrode to values of -0.197±0.01 V (n=2) (SHE) in 

about 120 min (Fig. 1, curve 1). Upon biofilm growth, OCP gradually achieved 

lower values and its evolution profile changed from the previously reported 

exponential decay, to a more complex response that included steps during which 

the electrode potential remained virtually constant. After about 60 hours of biofilm 

growth, when the biofilm was producing 0.025 A.m-2 a first step on the OCP that 

expanded over 80 min was detected (Fig. 1, curve 2). During this time the potential 

remained at about -0.197±0.01 V (n=2) to latterly shift to more negative values. 

When the biofilm was producing 0.06 A.m-2, the first step -0.207±0.005 V (n=4) 

was found to be much shorter (30 min) and was followed by a shift to a second 

stabilization potential of about -0.255±0.007 V (n=4) (Fig. 1, curve 3). Beyond 80 

hours of biofilm growth, when current production was at 0.98 A.m-2, that 

stabilization potential transformed into a new potential step that expanded over 

about 50 min and with a new stabilization value of -0.283+0.004 V (n=4) (Fig. 1, 

curve 4). At even higher currents (more than 2 A.m-2), OCP curves did not show 

any step but a sharp drop to -0.318±0.018 V  (n=4) within the first 10-20 min 

followed by the stabilization of the electrochemical potential at a final value of 

about -0.295 ±0.006 V (n=4) (Fig. 1, curves 5 and 6). It is important to highlight that 

polarization interruption did not produce any change in current development, which 
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evolved as in typical growth of a G. sulfurreducens biofilm (Fig. 1, inset), indicating 

that the experimental protocol did not disturb biofilm formation.  

Steps shown in Fig. 1 are thought to be the result of the sequential reduction of 

different electro-active species (e.g. heme-groups) in electric contact to the 

electrode, by metabolic activity of biofilm cells. They can be interpreted as a typical 

constant current chronopotentiometry assay[32], in which the application of a 

negative current promotes the reduction of electro-active species at the electrode 

interface.  In this assay, as redox molecules are reduced, the potential of the 

electrode equals that of the working redox couple and varies in time with the ratio 

of oxidized and reduced molecule forms. When all the molecules of the redox 

couple are reduced, the potential shifts towards more negative values, until another 

reduction process is reached, producing a step on the electrochemical potential. 

In the case of the OCP measurement on biofilms, the electrons are not externally 

provided but produced by bacterial cells that continue transferring electrons to the 

external matrix even after interrupting electrode polarization. Electrons are stored 

in the reduced form of involved redox group(s)[23,31] and during each step the 

potential of the electrode equilibrates to the reduction potential of the working 

redox centers, until the oxidized form is exhausted. It is important to note that each 

step may not necessarily correspond to a single cytochrome type, as charge 

storage can occur in different redox molecules at the same potential, provided that 

they bear redox centers (i.e. hemes) with overlapping reduction potential windows 

and that they are electrically connected to each other and to the electrode.  

While interpreting these results it is necessary to take into account that interruption 

of polarization causes a regulatory feedback on cells metabolism and respiration in 
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response to the sudden lack of the electron acceptor, thus influencing OCP 

changes presented above. A key element in this feedback is the NADH/NAD+ 

redox couple which, acting as cofactor for regulatory enzymes, is reduced during 

catabolic reactions, to be latterly re-oxidized against complex I in the respiratory 

electron transport chain[33]. While the demand of NAD+ during active metabolism 

is high, cytoplasmic concentration of the couple component is known to be 

relatively low and their redox turnover is in consequence very high[34]. 

Downstream, and by virtue of the molecular electric connection provided by the 

respiratory chain, the potential of the NADH/NAD+ couple and that of the electron 

acceptor tend to equilibrate[22,34,35], but may differ depending on the balance 

between electron producing and consuming reactions kinetics. In the extreme 

situation of total lack of respiratory electron acceptors, as in the case of 

polarization interruption, electrons are no longer drained from the cells and 

progressively accumulate in electron carriers, ultimately causing a shift of the 

potential of the NADH/NAD+ couple as NADH is accumulated[36]. Finally, the lack 

of NAD+ determines the down regulation of electron producing catabolic 

reactions[33]. In this context, OCP values presented in Fig. 1 would, also, report 

the state of the cell internal redox balance and its change as a consequence of 

polarization interruption. Outside the cells, the redox gradient found in the 

extracellular matrix of biofilms as the distance to the electrode increases is known 

to limit respiration[37,38] and produce physiological stratification[1]. Recent 

measurements reported by Song et. al.[35] on the other hand demonstrate the 

dependence of the [NADH]/[NAD+] ratio on the electrode potential in G. 

sulfurreducens cells, with cells exhibiting a higher ratio of reduced to oxidized NAD 
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as the potential decreases. According to this we propose that at every position 

within the biofilm the [NADH]/[NAD+] ratio should equilibrate with the reduction 

state of the extracellular matrix, resulting in the observed physiological states[1].  

Thereby, for using the partially reduced extracellular conductive matrix as electron 

acceptor cells located further away from the electrode should present a more 

negative internal potential.  This gains importance when considering the influence 

of the electron acceptor potential on the pathway used by Geobacter bacteria to 

deliver electrons outside the cell[13,14,17,39,40]. Cells located in an oxidative 

environment in close contact to the electrode can produce electrons at high 

potential that, according to previous data[13], would reach the cell exterior through 

a high potential electron pathway initiated at the inner cell membrane by ImcH 

molecules. On the other hand, those cells located at the mostly reduced upper 

layers, may only release electrons at low potential and use a low potential pathway 

composed by CbcL molecules at the inner membrane[14].  

It is important to note that due to respiratory constrains, as the biofilm grows and 

the redox gradient develops, the biofilm produces progressively more electrons, 

but the average potential at which those electrons are produced will decrease, 

resulting in an accelerated shift of the OCP value to the negative end as clearly 

observed in Fig. 1. 

According to steps in Figure 1, S1 and the above discussion, at least two pools of 

heme groups are identified acting as electron storage sinks. They present 

increasing negative potentials of -0.207±0.005 V and -0.255±0.007 V vs. SHE and 

become evident at different stages of biofilm development, as the reducing power 

(i.e. the negative potential at with electrons are delivered) increases. Notably the 
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final OCP value of -0.295±0.006 V, is very close to the formal reduction potential of 

NADH (-0.32 V vs. SHE), the electron donor for the electron transport chain, 

supporting the idea of the OCP informing the redox state of the cell interior.  

It is worth mentioning that when OCP determinations expanded for four hours, no 

further changes on the OCP patter were observed (Fig. S2), indicating that 

equilibrium on charge accumulation is reached after about two hours of polarization 

interruption.  

Finally, it is interesting to highlight the occurrence of a minimum in the OCP curves 

on the mature biofilms, reaching potential values as low as -0.318±0.018 V (Fig. 1, 

S1, 2, S2 and S3) before stabilizing at a higher potential. We found two plausible 

explanations for this result. First, this behavior may indicate that hemes of 

cytochromes located near the electrode are reduced and to be latterly re-oxidized. 

An explanation to this phenomenon may be on possible differences in the electron 

transport rates inside the bacteria and through the extracellular matrix. Probably, 

upon polarization interruption, the electrons accumulated in the exocellular matrix 

would reach the electrode surface faster than those located inside the cells [28]  

due to a low rate of transport from the cell interior to the exocellular space. The 

accumulation of charge close to the electrode surface may yield a lower redox 

potential outside than inside the cells in that portion of the biofilm, producing the 

transport of a fraction of the exocellular charge to the cell interior. An alternative 

explanation may be the occurrence of pH gradients inside the biofilm during current 

production, with high acidification on the layers close to the electrode [41]. When 

electrode polarization is interrupted the production of protons by cell metabolism is 

suddenly ceased and then the pH in the biofilm slowly stabilizes with that of the 
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liquid media, producing changes in the pH on the biofilm layers close to the 

electrode and affecting the values of the OCP.  This effect would be more evident 

for biofilms producing higher current densities due to existence of more 

pronounced pH gradients and higher biofilm thickness that lower the transport of 

protons out of the biofilm.  

 

3.2. The role of physiology in the evolution of OCP curves 

 

Further support to the previous interpretation comes from experiments done in the 

lack of electron donor (acetate). When the electron donor was removed from the 

system, the current density produced by G. sulfurreducens dropped down to a 

small fraction of its original value, in about 16 hours. OCP measurements were 

performed along this process on fully developed biofilms at increasing times after 

electron donor removal. As it can be seen in Fig. 2, (replicates shown in S3) the 

final OCP value in these measurements varied from -0.3±0.017 V (n= 3) before 

acetate depletion to about -0.27±0.015 V (n=3) after 24 hours of acetate removal. 

Notably the OCP curve profile at this time became very similar to that of early 

stage biofilms shown in Fig. 1, with a well-defined step at around -0.228±0.007 

(n=3) V accompanied by a less evident one at about -0.123±0.02 (n=3) V vs. SHE. 

After 40 hours of starvation, OCP steps were more evident at all the three 

potentials (-0.246±0.015, -0.21±0.01 and -0.123+0.02 V, n=3). The fact that results 

obtained under non-turnover conditions where little current is produced are 

consistent with those obtained under turnover conditions indicates that H2 that may 
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have been produced in the counter electrode during current production did not 

affect the OCP assays.  

In the absence of the electron donor the metabolic capacity of cells to reduce NAD+ 

sharply decreases, and they are no longer able to lower the internal redox 

potential. The electrical current is then remitted to the basal respiratory activity and, 

due to the small flow of electrons in the extracellular matrix, the extracellular redox 

potential equilibrates through all the biofilm as formerly shown[27,42]. Therefore, 

not only the number of electrons generated by the biofilm will decrease as the 

starvation extends in time, but also the cells capacity to deliver those electrons at 

more negative potentials. This combination progressively produces less negative 

OCP values and a prolongation on the time required to “fill” a charge reservoir, as 

seen on Fig. 2.  

Interestingly, when acetate was provided again after two days of electron donor 

removal, OCP curves rapidly recovered previous patterns (Fig. S4), showing that 

biofilms remained viable. Changes like those presented in Fig. S4, produced in a 

relatively short period of time (30 minutes), can hardly be explained by changes in 

the composition of the molecular charge storing network. In place, these results 

further suggest that the OCP response is most likely related to the kinetics of 

electron production and the potentials at which biofilms can produce those 

electrons, which are in turn determined by the internal redox balance of cells.  It is 

worth mentioning that after 60 hours without electron donor the OCP reached 

values of about -0.065±0.05 V (n=2), indicating that prolonged starvation led to a 

lack of cell-internal reducing power that impeded the reduction of heme groups with 

redox potentials below this limit.  
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3.3. Charge balance at electron reservoirs 

 

In order to dig further in the charge storage process, we modified charge 

accumulation by imposing an electrical current to biofilms lacking an electron 

donor. During a classical chronopotentiometric assay, current is imposed to the 

electrode and the electrode potential is measured. In the present case, despite the 

lack of electron donor a small electrical current is produced by biofilm cells due to 

the remaining metabolic activity (Fig. 3 and S5). This internally produced current 

has to be also considered in order to correctly analyze the potential response on 

the chronopotenciometry assay.  

Imposing an oxidative current of about 60% of the turnover current of the biofilm 

(i.e. restricting biofilm to respire the electrode at a higher rate) (Fig. 3, cyan curve), 

produced longer potential steps as compared to those observed at open circuit 

(Fig. 3, black line). This is interpreted as a consequence of electron drainage to the 

electrode, which increased the time required to fill electron reservoirs due to the 

lower net current flowing through the system. When reductive (negative) currents 

were applied, potential steps were shorter than those found in measurements at 

the OCP (Fig. 3, red and blue curves), indicating that the redox network was 

reduced faster due to the combined action of biological and electrochemical 

charging. The potential at which each step was observed did not vary with the 

imposed current, in clear agreement with the dependence of these values on the 

structure of involved molecules.  
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3.4.  Comparison between OCP and cyclic voltammetry and localization of charge 

inside the biofilm 

 

When a CV is performed under turnover conditions (with electron donor) on an 

electro-active biofilm, the redox process involved in the production of current 

cannot be identified; in place a typical sinusoidal signal is obtained in the response 

[43,44]. When the electron donor is removed from the media, oxidation and 

reduction of different redox elements in the biofilm can be observed. Voltammetric 

analysis of G. sulfurreducens in the absence of electron donor typically exhibit 

three main redox processes, with midpoint redox potentials of -0.28±0.008,              

-0.19±0.005 and -0.12±0.01 V vs. SHE (n = 4) (Fig. 4a) [27,45–47]. Interestingly, 

the midpoint potential of the processes observed on the CVs are very close to the 

values of the steps obtained in the OCP curves performed under the same 

conditions (Fig. 4a). Slight differences exist between the values of the CVs and 

those obtained on the OCP curves, because the determination of the redox 

potentials of cytochromes through CV depends on the reversibility of involved 

processes. Indeed, the overlap between the different oxidation-reduction 

processes and the interference of the small turnover current sometimes makes the 

identification of the peak’s potential difficult, as in the case of the reductive 

counterpart of the process with the most negative redox potential (Fig. 4a).  

By applying OCP to electro-active biofilms, redox potentials of involved species 

can be more accurately determined than by cyclic voltammetry. As mentioned 

before, if the OCP measurement is interpreted as a chronopotentiometry, the redox 

potential of the redox species connected with the electrode can be directly 
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determined by observing the values of the potential steps. Interestingly, this can be 

done on biofilms under turnover conditions, without the need of removing the 

electron donor from the media as in the case of the non-turnover CV.  

When superposing OCP steps detected in measurements performed on acetate 

deprived biofilm with the redox active windows of Geobacter cytochromes and the 

reported reduction potential of their hemes (Fig. 4b, red curve) information about 

the possible charge storing cites can be obtained.  

The three steps observed on the OCP measurement fall inside the redox window 

of periplasmic and extracellular cytochromes with each step expanding over the 

redox potential of groups of hemes present in different cytochromes (Fig. 4b). 

Moreover, the lower potential observed at -0.295±0.006 V in presence of electron 

donor (Fig 4b, black curve) falls on the lower bound of the redox window of the 

periplasmic cytochromes, that sets the lower limit for the potential at which charge 

can be accumulated inside and outside the cell. Interestingly, as shown in Fig 4b, 

the lower potential at which electrons are stored leaves a fraction of the redox 

range on exocellular cytochromes redox window that cannot be metabolically 

reduced. 

We propose that the reduction of hemes of Ppc family, GSU1996 and MacA 

cytochromes, localized in the periplasm of Geobacter cells [11,12,15] and a 

fraction of the extracellular cytochromes, might be the origin of steps observed in 

the OCP curves.  
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4. Conclusions 

OCP measurements may be a valuable tool for obtaining relevant information 

about the internal redox state of cells and improve the characterization of electro-

active biofilms. We have applied this basic electrochemical technique for obtaining 

relevant information about charge accumulation in G. sulfurreducens biofilms. We 

were able to demonstrate that charge storage occurs in three main reservoirs, with 

average potentials close to those found in voltammetric signals that have been 

proposed to control electricity production. According to previously published data 

our results indicate that charge storing sites may be localized at both the 

periplasmic and extracellular space and that a fraction of the redox window of 

external cytochromes cannot be reduced by the cells.  

OCP is a simple technique that can give important information about the process of 

charge storage in electro-active biofilms. For instance, OCP measurement on 

mutants lacking the genes coding for the inner membrane proteins that were 

proposed to set the redox potential of the extracellular electron transport process 

(ImcH and CbcL)[13,14], may produce valuable information on the way that these 

electron pathways operate.  
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Fig. 1. Open circuit potential measurement on growi ng G. sulfurreducens 

biofilms. Geobacter biofilms were grown in 3-electrodes electrochemical cells, 

using AcNa 20mM as electron donor and carbon source and a polarized (0.4 V vs. 

SHE) graphite rod electrode as unique electron acceptor. At different times along 

biofilm development, polarization was interrupted and the OCP was measured. 

Inset: example of current density curve along biofilm development interrupted to 

perform OCP determinations. Numbers indicate the times at which OCP 

measurements were performed. Independent biofilms replicates are provided in 

Fig. S1. 

 

 

Fig. 2. OCP measurement in the lack of electron don or. The figure shows 

typical behavior of OCP measurement performed on mature G. sulfurreducens 

biofilms at increasing times since electron donor deprivation (i.e. growth media was 

replaced by one lacking acetate in sterile and anaerobic conditions). When the 

medium was changed, a little medium with acetate was left in the electrochemical 

cell in order to leave minimum electron donor availability and allow it to decay. 

Independent biofilms replicates are provided in Fig. S3. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

23 
 

 

Fig. 3: Potentiostatically control biofilm charging . A mature G. sulfurreducens 

biofilm without electron donor on the medium was left at open circuit and the 

potential was measured (black line). Later, chronopotentiometry assays with fixed 

current were performed. Cyan : oxidative current density of 0.038 Am-2 was applied 

to the electrode and the potential registered. Red and Blue : reductive current 

densities of -0.051 and -0.026 Am-2 were applied, respectively. Between each 

chronopotentiometry assay, the biofilm was polarized at 0.4 V (SHE) for 30 

minutes, to discharge the cytochromes and set a standard starting point. 

Independent biofilms replicates are provided in Fig. S5.   

 

 

 

Fig. 4: Relationship between non-turn over cyclic v oltammetry and OCP 

determination. A) Midpoint potentials (red discontinue lines, n=4) of the three 

redox process observed in non-turnover voltammetry (inset) are superimposed to 

OCP curves. Black and blue curves correspond to typical OCP behavior for acetate 

lacking biofilm at increasing times since acetate removal, respectively. Grey line 

corresponds to OCP measurement of a fully developed biofilm in presence of 

electron donor. B) Schematic of electron storage process. NADH dehydrogenase 

transfer electrons to the menaquinone (MQ) pool, ImcH and CbcL quinone oxidase 

complex transfer electrons to periplasmatic cytochromes. Upon polarization 

interruption electrons travel to exocellular cytochromes, where charge start to 

accumulate on higher potentials hemes. Then, electrons reduce up stream hemes, 
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following a potential gradient. Rectangular boxes represent known redox active 

windows of internal and exocellular cytochromes at pH 7. Horizontal blue lines 

correspond to the reduction potential of the hemes for which data is available 

(taken from Santos et. al. 2015) [15]. Horizontal doted black lines represent the 

midpoint potential steps found the OCP assays. Red curve: OCP measurement of 

a fully developed biofilm under acetate depletion conditions. Black curve: OCP 

measurement of the same biofilm under turnover conditions.  
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