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Chaos in wavy-stratified fluid-fluid flow
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ABSTRACT

Weperform a nonlinear analysis of a �uid-�uid wavy-strati�ed �ow using a simpli�ed two-�uidmodel (TFM), i.e., the �xed-�uxmodel (FFM),
which is an adaptation of the shallowwater theory for the two-layer problem. Linear analysis using the perturbationmethod illustrates the short-
wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability
is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal �nite dif-
ference scheme is used in the current simulations. The solution methodology is veri�ed, and the results are compared with the measurements
from a laboratory-scale experiment. The �nite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than
the autocorrelation function decay rate, consistent with previous �ndings. Furthermore, the FTLE is observed to be a strong function of the
angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple
1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a
TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5055782

Multiphase �ows—the simultaneous motion of multiple
components which may be in di�erent states of matter and
are often characterized by an interface separating the compo-
nents—are frequently observed in nature and industrial applica-
tions. Multiphase �ows appear in a variety of geometrical con�g-
urations (�ow regimes) depending on the properties of the con-
stituents and the �ow conditions. Here, we study wavy-strati�ed
�ows of two immiscible liquids having a distinct interface, �owing
counter-currently in a circular pipe. At �ow rates beyond a critical
value, the Kelvin-Helmholtz instability leads to a nonlinear evo-
lution of the �uid-�uid interface. We present our �ndings from
the numerical analysis of a slightly inclined gasoline-water system
and compare the results with the bench-scale experiment. We use
a simpli�ed two-�uid model—Eulerian-Eulerian model in which
both phases are treated as inter-penetrating continuua—called
the �xed-�ux model and highlight the simple models’ ability to
predict the chaotic evolution of the interface.

I. INTRODUCTION

Applications involving �uid dynamics often exhibit nonlinear
behavior. Chaos in single phase �ows has been extensively studied
in the past and still remains an area of active research. Transition
to turbulence is a classic example where underlying strange attrac-
tors characterize the �ow.1 When an additional component or phase
is present, new interfacial phenomena occur. Multiphase �ows are
known to exhibit hydrodynamic instabilitieswhendi�erences in den-
sities or velocities between the constituents exceed a critical limit.
Chaos analysis of such systems is limited and includes the works
of Pence and Beasley2 and Fullmer and Hrenya.3 In this article, we
analyze the Kelvin-Helmholtz instability (KHI) which gives rise to
well-known features including formation of clouds, waves in oceans,
and Saturn’s magnetopause.4 It is also important in industrial appli-
cations such as transport of oil and gas5 and emergency core cooling
systems of nuclear power reactors.6
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One of the �rst known measurements on the �uid-�uid inter-
face dynamics was reported by Thorpe7 for a kerosene-water strat-
i�ed �ow in a rectangular channel. The experiments had a lim-
ited duration, su�cient to analyze the transition to the wavy-
strati�ed �owbut not adequate for the subsequent evolution ofwaves.
Recently, Duponcheel et al.6 replicated the experiments of Thorpe7

and used the same geometry to obtain high-quality data. In view of
extending the analysis well past the inception of KHI, Vaidheeswaran
et al.8 performed experiments using gasoline and water in a round
pipe. The post-processed data are presented here to further ana-
lyze the nonlinear evolution of waves. It is important to note that
the conditions chosen for the experiment are such that the individ-
ual phases remain in the laminar �ow regime. Hence, chaos arises
from a multiphase interfacial instability and not from shear-induced
turbulence.

Linear stability analysis (LSA) of the KHI is used to determine
the mathematical nature of the system of equations. LSA can also
help identify terms which stabilize the model and prevent immediate
numerical divergence, i.e., terms thatmake themodelwell-posed. For
instance, higher-order terms present in the TFM have been proven
to in�uence the stability of the system of equations9–14 without com-
pletely hyperbolizing the model, i.e., no growth at all wavelengths.
However, based on LSAof awell-posed TFM, there persists exponen-
tial growth at �nite wavelengths, which is bounded by the inherent
nonlinearity.15 The nonlinear interaction between material shock
waves and viscosity stabilizes the system by transferring growth at
long wavelengths to dissipative short wavelengths.

In this work, we use a Fixed-Flux Model (FFM),16 which is
a simpli�ed two-equation form of the TFM. An advantage of the
FFM is that the pressure gradient terms are not present and hence
the numerical integration is straightforward. In Sec. II, the water-
gasoline experiments are described followed by the description of
the FFM for the strati�ed �uid-�uid �ow in Sec. III. Stability of
the hyperbolic-dispersive FFM is then discussed in the context of
LSA and numerical simulation in Secs. IV A and IV B. The work is
concluded with a brief summary and outlook in Sec. V.

II. EXPERIMENT

In this work, we compare numerical simulations and experi-
ments conducted previously by Vaidheeswaran et al.8 and de Berto-
dano et al.16 Additionally, a novel analysis of the experimental data is
provided herein. Thorpe7 had previously performed similar exper-
iments in a rectangular channel using water and kerosene. More
recently, Duponcheel et al.6 used an identical geometry to repro-
duce some of the results of the original Thrope7 experiment. Besides,
a second pair of working �uids, water and n-hexane, were used to
observe the e�ect of material properties on the KHI. Their inter-
est was in the initial development of unstable waves. Conversely,
the objective while designing the experiments used here was to fur-
ther explore the chaotic nature of the �uid-�uid interface. Hence,
the following modi�cations were made compared to the setup of
Thorpe7 and Duponcheel et al.:6 (i) increase the L/H ratio (L =
2.4m, H = D = 0.02m) to allow further development of waves and
obtain statistics for a longer duration and (ii) reduce D to ensure
that the �ow does not undergo transition to turbulence. The �u-
ids used were water (heavier phase) and gasoline (lighter phase)

FIG. 1. Evolution of the wavy-stratified flow in water-gasoline experiments at 3.1◦

inclination. Instantaneous snapshots correspond to (from top to bottom) t = 0 s,
0.08 s, 0.32 s, and 8 s, respectively.

having the following material properties: ρ1 = 1000 kg/m3, ρ2 =
720 kg/m3, µ1 = 0.001 Pa s, µ2 = 0.0005 Pa s, and σ = 0.04N/m.
Subscripts 1 and 2 refer to water and gasoline, respectively. The test
section was sealed at both the ends and was initially held at rest to
allow the mixture to settle. Once complete strati�cation occurs, the
apparatus was tilted by 3.1◦ which initiates a counter-current �ow
pattern. The interfacial pro�le was measured with a video camera.
The chosen setup and conditions increase the duration of the exper-
iments and isolate the chaotic behavior related to the interfacial KHI
from turbulence.

Figure 1 shows the evolution of the wavy-interface which indi-
cates initial growth phase and saturation. The initial growth is qual-
itatively similar to the rectangular channel experiments of Thorpe.7

In this work, we extend the original experimental dataset8,16 by com-
puting the autocorrelation function (ACF) of the wavy interface from
the high-speed visualization. The images were digitized and the liq-
uid level was detected using the Canny edge detector algorithm.17

The level signals at ten selected positions along the pipe were post-
processed to generate the best estimate for the ACF.

III. FIXED-FLUX TWO-FLUID MODEL

The TFM18–20 provides an Eulerian description of the mul-
tiphase �ow dynamics, where the constituent phases are treated
as inter-penetrating continua. Based on the dimensionality of the
problem, further simpli�cations can be made. The 1-D TFM is
derived from the 3-D Eulerian TFM by averaging across the cross-
sectional area. The 1-D TFM may be further reduced to an FFM
for wavy-strati�ed �ows, which is a variation of the shallow water
theory consisting of two coupled partial di�erential equations. It
is worth mentioning that such an FFM could be derived for dis-
persed bubbly �ows as well.21 As the term �xed-�ux suggests,
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FIG. 2. Geometrical representation of a pipe cross-section (diameter D) having
heavier fluid at the bottom and lighter fluid at the top.

the simpli�cation involves assuming a constant volumetric �ux,
j = α1u1 + (1 − α1)u2. Here, we apply the 1-D FFM for the
wavy-strati�ed pipe �ow, Fig. 2, developed by Bertodano et
al.16 The FFM continuity and momentum equations are given
by

∂α1

∂t
+

∂
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The forces on the right hand side (RHS) of Eq. (2) are due to the
surface tension,
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viscous di�usion,
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and wall and interfacial drag,

F = (1 − rρ)gx − 16
Pw1ν1

α1ADh1

u1 + 16
Pw2ν2

α2ADh2

rρu2

+
1

α1α2
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The phasic hydraulic diameters are de�ned as

Dhi = 4
αiA

Pwi + Pi

. (9)

The interfacial friction factor, fi, is adopted from the work of Andrit-
sos and Hanratty,22

fi = 1 + 15
√

α1

[

u2 − u1

(u2 − u1)c
− 1

]

. (10)

IV. RESULTS

A. Linear stability analysis

The growth characteristics of di�erent wave components are
determined using LSA. Equations (1) and (2) are recast into the
following vector form:

A
∂φ

∂t
+ B

∂φ

∂x
+ D

∂2φ

∂x2
+ E

∂3φ

∂x3
= 0, (11)

where φ = [α1 u1]
T . Note that the force terms given by Eq. (8) are

algebraic functions of the state variables and thus do not a�ect the
character of the linear dynamics past the KHI. They are, nevertheless,
essential for the kinematic instability that occurs before the KHI.16

Therefore, algebraic forces are neglected here for assessing the linear
stability of the coupled system of equations. These terms are, how-
ever, included while performing numerical simulations. Perturbing
the base state and linearizing Eq. (11) gives

Det[−iωA + ikλB + (ikλ)
2D + (ikλ)

3E] = 0. (12)

The solution to Eq. (12) is the dispersion relation between growth
rateω and wave number kλ. Figure 3 shows the plots of magnitude of
the imaginary component ofω as a function of wavelength λ = 2π/kλ

for conditions beyond the critical KHI.
When the phasic viscosity or surface tension is neglected, the

growth rate is unbounded as λ → 0. This constitutes the ill-posed
condition beyond the KHI limit. This is the same result obtained
using the 2-D Euler equations for a vortex sheet. Including kinematic
viscosity removes the unboundedness (ill-posedness);23 however, the
zero wavelength growth rate, ωi(λ = 0) = 100 s−1 remains critical
(most unstable). This appears quite similar to the ill-posed model
over amajority of the frequency spectrum.Numerically, such amodel
would behave like the ill-posed model manifesting in an extremely
grid-dependent instability (ill-behaved). On the other hand, the sur-
face tension renders the model well-posed and well-behaved with a
�nite valued cut-o� wavelength, λc, below which the model is either
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FIG. 3. Dispersion relation for the FFMs using Eq. (12). The curves correspond to
the basic ill-posed model (unbounded exponential growth for λ → 0), FFM with
kinematic viscosity (bounded exponential growth for λ → 0) and FFM with the
surface tension (well-posed).

neutrally stable (inviscid) or dissipative (viscous). The cut-o� wave-
length is approximately λ0 = 5 cm for the water-gasoline system.
The results obtained are consistent with the work of Ramshaw and
Trapp9 who were the �rst to demonstrate the well-posed behavior of
1-D TFM using surface tension. Although the model including sur-
face tension has been rendered well-posed, linear stability still indi-
cates that �nite wavelengths will grow at an exponential rate. In
Sec. IV B, we turn to nonlinear analysis of numerical simulations of
this linearly unstablemodel. The kinematic viscosity turns out to play
a key role in the Lyapunov stability of the model.

B. Numerical simulations

Equations (1) to (10) are solved using an in-house FFM solver
originally developed for the prototypic Kreiss-Yström equations.24

The SMART �ux-limiter scheme25 is used for spatial discretization,
and time marching is done by means of a strong stability preserving
three-step, third-order Runge-Kutta method.26 The chosen scheme
reduces numerical di�usion while preserving numerical stability.
This is essential to model the inception of material shocks and wave
cusps which could get damped through excess di�usion. Hence, the
use of a �rst-order discretization scheme or coarse grid has been
avoided. Furthermore, past the onset of KHI, the nonlinear wave
dynamics depend on the interaction between steep wave-fronts and
viscous di�usion. It is important that the system is not over-damped
through numerical artifacts.

A spectral convergence test is used to ensure numerical stability,
i.e., that the discretization scheme has not resulted in an ill-behaved
numerical model. Three grid levels below λ0 are used: 1x = 1, 0.5,
and 0.25mm. The corresponding time step sizes are 1t = 0.2, 0.1,
and 0.05ms, respectively. The domain length is the same as the pipe
length used for the experiments, but periodic boundary conditions
are used to approximate the behavior in an in�nite channel. This
enabled us to perform numerical experiments over long periods of
time in order to collect adequate statistics. The domainwas initialized
using a slightly perturbed liquid volume fraction �eld given by

α1(x, 0) = α1,0 + δ

[

exp

(

x − x01

λ01

)2

− exp

(

x − x02

λ02

)2
]

, (13)

where δ = 0.02, α1,0 = 0.542, λ01 = λ02 = 0.02m, x01 = 0.45m, and
x02 = 0.55m. The use of a relatively large amplitude disturbance was
previously found27 to help moderate the transition from an initial
condition to a fully-developed (unstable) state. Other perturbations
also lead to same results in a statistical sense, as long as they are con-
tained in the basin of attraction of the dynamic invariant. A constant

FIG. 4. Fourier spectra from α1 time series based on successive grid refinements in (a) log-linear plot and (b) log-log plot.
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FIG. 5. Instantaneous α1 and u1 distributions from FFM simulation at 2 s, 4 s, 8 s, and 15 s (top to bottom), respectively.

velocity �eld is speci�ed, u1 = −0.1m/s, calculated from the kine-
matic (quasi-static) condition, i.e., by solving F = 0 in Eq. (8). The
resulting FFT spectra in Fig. 4 shows that the long-wavelength (low
frequency) energy generated from the linear KHI is transferred to
higher frequencies through nonlinear dissipation, resulting in a con-
tinuous distribution of Fourier modes. The spectra corresponding
to 1x = 0.5mm and 1x = 0.25mm indicate remarkable statistical
convergence. Therefore, we use the more computationally a�ordable
1x = 0.5mm for further analysis.

Typical waveforms produced in the simulations are shown
in Fig. 5 for an inclination of 2.4◦ along with u1 pro�les. Qualita-
tively, the waves are very similar to those observed in the experi-
ments (see Fig. 1). Quantitatively, however, the dominant wavelength
observed in the simulation is approximately twice as large com-
pared to the experimental results. The discrepancy is likely due to
the fact that this is not a direct (“apples-to-apples”) comparison. The
following are some of the notable di�erences between the experi-
ment and the present simulations. First, the experiments have a �nite
boundary and duration while the simulations are performed using
periodic boundaries. In the experiment, the channel is suddenly
tilted, the �ow accelerates from rest, and the channel ends �ll up with
single-phase �uids. Because the FFM is singular in the single-phase
limit, the �nite-time experiment has been compared to an essentially

in�nite-time, periodic geometry. Second, the onset of transition to
the wavy-strati�ed �ow is very sensitive to the constitutive relation
for interfacial force. The associated uncertainties make it challenging
to accurately predict the short-termbehavior of the experimental sys-
tem. However, our objective is to analyze the nonlinear mechanism
that bounds the systemwell-past the inception of theKHI. Finally, the
1-D assumption is a signi�cant simpli�cation of the wavy-strati�ed
�ow in a pipe and does not consider multi-dimensional e�ects such
as boundary layer development or its interactions with the interface
dynamics.

The �nite-time Lyapunov exponent (FTLE) is approximated
using nearby initial states.16,24 For a given angle of inclination, the
initial condition [Eq. (13)] is perturbed by a small number, 10−8,
approximately the square root of the double precision accuracy of
the digital implementation. The L2-norm of deviation in the trajecto-
ries relative to the base (unperturbed) state is calculated as a function
of time and best-�t with an exponential curve to estimate the FTLE.
This procedure is repeated at multiple angles of inclination. Figure 6
shows that the FTLE has a strong dependence on θ beyond the onset
of KHI.With an increase in the angle of inclination, the relative veloc-
ity between the components increases making the �uid-�uid system
more unstable. This occurs in conjunction with an increase in the
magnitude of the FTLE. Also shown in Fig. 6 is the root mean square
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FIG. 6. Finite time Lyapunov exponent and root mean square evaluated using
α1 time series. The dashed curve represents the dependence proportional to
(θ − θc)

0.5.

(RMS) of the liquid volume fraction∼ (θ − θc)
0.5, which is ameasure

of the amplitude of sustained oscillations. θc = 1.72◦ is the critical
angle when the system becomes chaotic. The second derivative of the
RMS is negative, which suggests that a supercritical type of bifurca-
tion occurs at θc. Beyond approximately 2.4◦, the waves become so
chaotic that the interface reaches the top or bottom of the channel,
leading to singularity in FFM.

Beyond sensitivity to initial conditions (quanti�ed by the posi-
tive values of FTLE), the decay of correlations is another characteris-
tic feature of chaos. Unlike FTLE, ACF is more easily obtained from
physical experiments. Here, we compare the ACF using discrete α1

FIG. 7. Comparison of ACF from experiments and numerical simulations. The
dashed curve represents the exponential decay based on FTLE.

signal from numerical simulations and experiments given by

ACF(k1t) =
E

[

α1,j,α1,j+k

]

√

Var
[

α1,j

]

Var
[

α1,j+k

]

, (14)

whereVar
[

α1,j

]

andVar
[

α1,j+k

]

represent the variance of liquid vol-
ume fraction at two instants having a lag k1t. Chaotic systems exhibit
an exponential decay of the ACF characterized by a time scale related
to the loss of predictability. Figure 7 shows the ACF measurements
from the experiments and numerical simulations. While the rate of
decay of ACF is not the same as the FTLE, they are related for cer-
tain mathematical functions.28,29 More speci�cally, the rate of decay
of correlation is bounded by the Largest Lyapunov Exponent in such
cases. The exponential curve (indicated by a dashed line) in the �gure
represents this bound and is plotted using FTLE calculated at 2.4◦.
The relation28,29 holds true for this case of the wavy-strati�ed �ow
as well.

V. CONCLUSIONS

This study highlights the ability of a 1-D FFM to capture the
chaotic behavior of the interface in a wavy-strati�ed �uid-�uid �ow.
FFM simulations have been used to extend the stability analysis past
the linear theory. The numerical implementation of the hyperbolic-
dispersive FFM is veri�ed using a spectral convergence test, which
is not commonly done for multiphase �ows. Qualitatively similar
dynamics are reproduced relative to a �nite length and time experi-
ment. Quantitative comparison is limited due to di�erences between
the experimental and simulated systems. However, averaged statisti-
cal measures are compared including the dominant wavelength and,
for the �rst time, the interfacial ACF. Numerical analysis has revealed
at least three oft-cited markers for identifying chaotic systems: (i)
in�nitesimally close states diverge exponentially quanti�ed by pos-
itive Lyapunov exponent(s), i.e., sensitive dependence on the initial
condition, (ii) the ACF decays exponentially and, further, is of the
same order of magnitude as the FTLE, and (iii) a continuous wave
amplitude spectrum in the Fourier space. It should also be noted that
the divergence of nearby states saturates, i.e., trajectories are bounded
by an attractor (likely strange). The results substantiate a strong rela-
tionship between chaos in the �uid-�uid system and the degree of
the KHI. Finally, although quantitative comparisons with the experi-
mental data were limited, the decay rate of the ACF is in a fairly good
agreement.

NOMENCLATURE

A Area
D Diameter of the pipe
L Length of the pipe
gx Gravitational Constant
H Height of the channel
h Height of the interface
kλ Wave number
Pi Interfacial perimeter
Pwi Wetted perimeter
rρ Density ratio
ui Velocity of ith phase
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Greek
αi Volume fraction of ith phase
θ Angle of inclination
λ Wavelength
µi Dynamic viscosity of ith phase
νi Kinematic viscosity of ith phase
ρi Density of ith phase
σ Surface tension
ω Growth rate

Subscripts
1 Heavier phase
2 Lighter phase
i Interfacial
w Wall
c Critical
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