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Abstract. Thermal ratchets achieve net particle transport through rectification of thermal
fluctuations, which arise from one or more heat baths in the system. We propose a new
formulation of heat dissipation from the ratchet to the thermal baths, using a rocking Büttiker-
Landauer ratchet model. We found that heat transport between the ratchet and the heat baths
is related to the effective temperature through the generalization of the fluctuation-dissipation
theorem for systems far from equilibrium. We showed that the net heat transport between the
ratchet and the heat baths is different from Fourier’s law and is the sum of two terms which are
proportional to the nth power of the difference between the effective temperature of ratchet and
the temperature of the baths. The power n depends only on the temperature of the bath, while
the thermal conductivity also depends on the ratchet potential. These findings suggest that
anomalous heat dissipation can be a non-equilibrium measure for systems far from equilibrium.

1. Introduction
Fluctuations-induced transport has been extensively studied both experimentally and
theoretically [1, 2, 3]. This process appears in simple stochastic models, such as thermal
ratchets in which some of the energy in a nonequilibrium bath is transformed into work or
into a current of particles at the expense of increased entropy [4, 5]. Ratchets or Brownian
motors are kept away from equilibrium by external fluctuations or temperature gradients, which
make them completely different from Carnot engines. Studies on the thermodynamics of these
ratchet transport have been mainly focused on efficiency [6, 7, 8]. In this study, we focus on heat
dissipation between the ratchet and the heat baths, because high efficiency may be achieved with
considerable heat dissipation losses. Another reason for our focus on heat dissipation is that the
entropy plays such an important role in fluctuations-induced transport processes that they have
been associated with Maxwell’s demon performance [9]. Heat transport is usually associated to
the empirical Fourier’s law, which states that the time rate of heat transfer through a material
is proportional to the negative gradient in the temperature and to the area, at right angles
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to that gradient, through which the heat flows. The Fourier’s law has been experimentally
examined in virtually all 3D thermal conductors. Nevertheless, anomalous heat conduction was
found in one dimensional (1D) momentum-conserving model systems, such as Fermi-Pasta-Ulam
(FPU)- lattices [10] and the 1D diatomic Toda lattices [11]. Similar anomalous heat conduction
behavior has also been predicted in momentum-conserving physical materials, such as in carbon
nanotubes [12], silicon nanowires [13] and in polymer chains [14]. Experimental evidence of the
violation of Fourier’s law in nanotube thermal conductors has been obtained in [15]. On the other
hand, normal heat conduction obeying Fourier’s law has been obtained for 1D nonlinear lattice
systems where the total momentum is not conserved, such as 1D nonlinear Frenkel-Kontorova
[16] lattices and φ4 lattices [17].

We propose in this work to relate the process of heat transport to the effective temperature
through the generalization of the fluctuation-dissipation theorem on far from equilibrium
systems. The effective temperature is defined by the comparison between induced and
spontaneous fluctuations. Recently Harada [18] has investigated the energetic efficiency of a
rocking ratchet at a nonequilibrium steady state as a function of the effective temperature. In
that work, a rise of the effective temperature with respect to the bath temperature has been
found that causes a decrease in the efficiency of the ratchet through irreversible heat dissipation
to the bath. The effective temperature of these systems gives us relevant information about the
distribution of the input energy and how much work can be extracted from the free energy.

We study the heat transfer on a thermal Büttiker-Landauer (BL) [19, 20] ratchet, with a
rocking driving force and transport reversal. To calculate the effective temperature [21], we
focus on the spontaneous dynamic fluctuations and the response (induced) fluctuations to a
weak constant force on the ratchet. The current reversal is due to the presence of two heat
reservoirs in the B-L ratchet model [22]. The rest of the paper is organized as follows. We
describe the model in section 2 in detail. In section 3, the results are divided into two parts:
the analysis of the mean current, power and effective temperature (subsection 3.1) and the
heat conduction of the ratchet to the reservoirs (subsection 3.2). Finally, section 4 consists of
concluding remarks.

2. The model
We consider an overdamped Brownian particle in a sawtooth potential subjected to an unbiased
external force that pushes it left and right periodically (rocking ratchet). This model has been
first proposed by Büttiker [19] and Landauer [20] to describe a molecular motor in biological
systems [23]. The stochastic differential equation (Langevin equation) for such a particle is given
by

γ
dx

dt
= −dV (x)

dx
+
√
2γkBT (x)ξ(t) + F (t), (1)

where the left-hand side describes a frictional force experienced by the particle when it is moving
relative to its environment, with γ being the drag coefficient. The first term of the right-hand
side is the force due to the sawtooth potential V (x), with period L such that V (x) = V (x+ L)
described by

V (x) =

⎧⎪⎨
⎪⎩

V0
L1

x, 0 < x < L1

V0
L2

(L− x) , L1 < x < L
(2)

where V0 is the barrier height and L1 and L2 are the projections over the x-axis of both sides of
the sawtooth as shown in Fig. 1(a). The second term of the right-hand side of Eq. (1) describes
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the fluctuations of the ratchet with the surrounding through ξ(t), a zero-mean, delta-correlated,
Gaussian white noise i.e., 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ (t− t′). Here, 〈...〉 denotes an ensemble
average over the distribution of the fluctuating force ξ(t). These fluctuations are imposed onto
the particle by the interaction with two heat baths at different temperatures, one for each side
of the potential given by

T (x) =

{
T + δ, 0 < x < L1

T , L1 < x < L
(3)

where T (x) has the same period as the potential V (x), that is T (x) = T (x+ L).

Figure 1. (a) Asymmetric potential V (x) with period length L = L1 + L2 (V (x+ L) = V (x))
amplitude V0 and asymmetry Δ = L1 − L2; T + δ and T indicate the temperature profiles. (b)
Driving force F (t) that pushes the particle left and right periodically, with temporal period τ
and amplitude F0.

Ultimately, F (t) in Eq. (1) is an external driving force with a temporal period τ and amplitude
F0, that satisfies the condition

∫ τ
0 F (t)dt = 0 (see Fig. 1(b)).

For simplicity and without loss of generality, we assume the drag coefficient γ = 1 and
measure the energy in units of kB (kB = 1) and length in units of L (L = 1), respectively.

3. Results
3.1. Current, input power and effective temperature for the rocking B-L ratchet
According to the Einstein relation the ratio between independent measurements of fluctuations
and the response to a weak external force on a particle such as, the diffusivity D and the mobility
μ is equal to the thermal temperature T when the system is kept close to thermal equilibrium
(D/μ = T ). The mobility and the fluctuations must be related, because both come from the
same origin, the interaction of the particle with its surroundings.

The Einstein relation is a form of the fluctuation-dissipation theorem, strictly valid for an
equilibrium thermal system or close to it. However, many out-of-equilibrium systems have shown
that this relation gives rise to a well-defined effective temperature which is different from the bath
temperature and governs the heat flow [24, 25, 26]. Indeed, in [21] have introduced the notion of
effective temperature Teff for glassy systems from a modification of the fluctuation-dissipation
theorem (FDT) as

χ

MSD
=

1

2Teff
, (4)

where MSD and χ are the mean-squared displacement of the particle and the response function,
respectively. The response function is the average displacement of the particle due to an weak
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constant force divided by the amplitude of this force. Thus, the expressions for MSD and χ are
given by

MSD =
〈
|x(t)− 〈x(t)〉|2

〉
χ = 〈|xh(t)− xh=0(t)|〉 /h

(5)

where h is the amplitude of the force.
Modified and ordinary FDT are equivalent, for systems in equilibrium (see Eq. (4)). Indeed,

MSD = 2Dt for a Brownian particle at a temperature T . On the other hand, if we pull gently
on the particle with a constant force, its surrounding responds with a viscous, dissipative force
and its average displacement divided by the force after a large time is χ = μt. Then, the
ratio χ/MSD = μ/2D. From the Einstein relation and Eq. (4), we arrive at Teff = T , in
thermal equilibrium. In general, for an out-of- equilibrium system in contact with a thermal
bath, Teff ≥ T , when the system reaches a steady state [27]. However, for a very confined
system, Teff < T . In this model, confinement means that the particle cannot get out from the
two nearest barriers of the ratchet potential. We will only focus on the case where the Brownian
particle is not confined, that is when the particle goes through different barriers.

-0.75 0 0.75
Δ

-0.2

-0.1

0

0.1

0.2

J

0 3 6
MSD

0

2

3

χ

Δ=0

T=1, δ=0

F0=3, τ=4

V0=5, L=1

1/2Teff

Figure 2. Current J as a function of the
asymmetry parameter Δ of the potential
for a single heat bath at both sides of it.
The inset shows χ versus C, using the
same parameter values as in the main plot
and for Δ = 0. All results in this paper
are obtained for τ = 4, chosen under the
criterion described in the text above Eq. 6.
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.
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T
eff1/2Teff

δ=2
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Figure 3. Current J , input power
Ėin and effective temperature Teff versus
temperature difference δ between the sides of
a symmetric potential Δ = 0, for T = 1,
F0 = 3 and V0 = 5. (The left (right) scale
corresponds to J and Ėin (Teff )). Error
bars are approximately the same size as the
symbols except for Teff , which they increase
with the absolute value of δ (two error bars
are shown as references). The inset shows χ
versus C, using the same parameter values as
in the main plot and for δ = 2, 4 and 9.

In order to gain some insight on the fluctuations-induced transport of the model, in addition
to effective temperature, we also compute the average current J and the input mean energy per
unit of time Ėin, as functions of the different parameters of the model. The current J and the
input mean power Ėin have been obtained in [22, 28]. The average current over a fluctuation
period τ of F (t) is J = 1

τ

∫ τ
0 J(t)dt. If the period τ of the external force is longer than any other
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time scales of the system, there exists a quasi-steady state which leads to

J =
1

τ

(∫ τ/2

0
J(t)dt+

∫ τ

τ/2
J(t)dt

)

=
1

2
(J+ + J−) (6)

where J+ (J−) is the current induced by the force F (t) when it is equal to F0 (−F0) (see
Fig.1(b)).

The input mean energy per unit of time or power Ėin comes from the fluctuations generated
by the external driving force F (t) to the ratchet and is given by [8]:

Ėin =
1

τ

∫ τ

0
J(t)F (t)dt =

F0

2
(J+ − J−) . (7)

Figure 2 shows the current J in the quasi-steady state as a function of the asymmetry
parameter Δ of the potential, for a single heat reservoir (δ = 0). J is an anti-symmetric
function as expected, negative for Δ < 0 and positive for Δ > 0. When Δ = 0, the current
J = 0 however, the input mean energy per unit of time Ėin �= 0. Moreover, we found constant
Ėin for every value of the asymmetry parameter Δ. Therefore, the energy consumption per unit
of time is independent of the current.

The inset of Fig. 2 shows the response function χ versus the mean-squared displacement
MSD, using the same parameter values as in the main plot and for Δ = 0. χ and MSD
are calculated from Eq. (5). To compute χ, we simulate two replicas of the system, with the
perturbative force h = 10−3 applied to one of them. The replicas evolve using the same random
numbers. Then, the results are obtained averaging over 1.5 − 3 × 105 replicas. According to
Eq. (4), the slope of χ vs. MSD in the inset of Fig. 2 is equal to 1/2Teff , when the ratchet
reaches the steady state. Thus, we obtain Teff = 1.12 ± 0.01, for Δ = 0, T = 1, δ = 0, V0 = 5
and F0 = 3. Moreover, we find that Teff is independent of the asymmetry parameter Δ of the
potential, with one bath. We will return to this result in the next section.

Figure 3 shows the current J , the input power Ėin and the effective temperature Teff versus
the temperature difference δ between the sides of a symmetric potential Δ = 0, for T = 1, F0 = 3
and V0 = 5. The temperature difference δ controls the magnitude of these three variables and
the direction in the case of the current (Ėin and Teff are by definition always positives). When
δ = 0, there is no current and both the input power and effective temperature are non-zero.
Then, as δ increases, the three variables increase indefinitely, as shown in Fig. 3. Note that,
Teff appears to converge to an asymptotic value; however, it keeps increasing as δ increases.

The inset of Fig. 3 shows the response function χ versus the mean-squared displacement
MSD, using the same parameter values as in the main plot and for three positive values of
δ = 2, 4 and 9. As δ increases, the straight line slopes in the inset decrease, revealing the
increase of Teff (see Eq. (4)).

Finally, we study the current J , the input power Ėin and the effective temperature Teff

as a function of temperature T , for a combination of Δ and δ. As we mentioned previously,
the current J for this model has been extensively studied in [22, 28]. Positive current, single
or double reversals have been obtained for different combinations of Δ and δ. Two particular
cases, Δ = 0.1,−0.8, and fixed δ = 0.1 with direct and single reversal current, respectively
are shown in Fig 4(a). For Δ = 0.1, J > 0, the motor always moves to the right (see Fig.
1(a)) following the regular behavior of a rocking ratchet, while for Δ = −0.8, J may reverse
its direction. Despite the differences between their currents, the input power Ėin is the same
for both cases as shown in Fig 4(a). Ėin increases with T , up to a limit value in which the
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Figure 4. J , Ėin and (b) (Teff − T ) as functions of T , for δ = 0.1, F0 = 3, V0 = 5, and

two values of the asymmetry parameter Δ. The left (right) scale in (a) corresponds to J (Ėin).
F 2
0 denotes the maximum asymptotic of Ėin. When Δ = 0.1, J > 0, the ratchet behaves as a

refrigerator, while when Δ = −0.8, the ratchet behaves as heat machine (see section 3.2.2 for
further details). The bottom (up) dashed line in (b) represents the cold (hot ) bath at T (T +δ).
Error bars are approximately the same size as the symbols in (a) and increase with the value of
T in (b) (two error bars are shown as references for Δ = 0.1 and −0.8, respectively).

motor moves as an overdamped Brownian particle periodically pushed to the left and right by
the force F0 (see Fig. 1(b)). Certainly, when the sawtooth potential does not offer resistance to
the ratchet movement, J = 0 and Ėin = F 2

0 .
Plots of the difference (Teff − T ) versus T , for the two case studies, Δ = 0.1,−0.8, and fixed

δ = 0.1 are shown in Fig. 4(b). In general, Teff can be between the bath temperatures or can
be greater than both of them (see (Teff − T ) data between the dashed lines or above them in
Fig. 4(b), where the bottom and upper dashed lines represent the cold and hot baths at T and
T + δ, respectively). As we have mentioned before, the motor always transfers a net heat in a
steady state. The heat conduction of a system far from equilibrium mostly does not obey a linear
transfer law with the temperature gradient. In the next section we will study the heat conduction
starting with the simplest case in which there is only one thermal reservoir exchanging heat with
the motor and continuing on the more general case of two thermal reservoirs. We will show that
the Brownian particle can absorb heat from the cold reservoir and transfer heat to the hot one
o vice versa, even when the effective temperature of the Brownian particle is greater than both
reservoir temperatures, working as refrigerator or heat engine, respectively. In fact, the system
is far from equilibrium continuously excited by the external agent F (t), which may result in a
heat flux against the temperature gradient concerned.

Note that, Ėin is the same function of T for both Δ values, while Teff is always greater for
Δ = 0.1 than for Δ = −0.8 (see Figs. 4(a) and (b)). This last result is due to the difference
of the relative contact time between the motor and the reservoirs. Indeed, in a steady state,
the motor spends a longer time on the long side of the potential. Thus, for Δ = 0.1, the motor
spends more time in contact with the hot bath than the cold one and vice versa, for Δ = −0.8,
reaching a higher effective temperature in the first case.

3.2. Heat conduction for the rocking B-L ratchet
In general, a Brownian motor exchanges energy with three types of systems: the thermal baths,
a load that transports, and the potential or external agent that is the source of nonequilibrium
[7, 8, 29]. The flow of energy is presented in Fig. 5. The first law of thermodynamics leads to
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Ėin = Ẇ + Q̇T + Q̇T+δ, (8)

where Ėin is the input power, Ẇ is the work done by the ratchet against the load per unit
of time and Q̇T and Q̇T+δ are the transfers of energy per unit of time from the motor to the
thermal baths at the temperature T and T + δ, respectively. All these magnitudes are taken
averaging over a fluctuation period τ (see previous section). In the stationary regime, Ėin is
given by the Eq. (7) and Q̇T and Q̇T+δ can be positives or negatives, depending on the heat
transferred to or from the bath, respectively.

Figure 5. Energy flows in the motor
(circle) subjected to a load and an
external agent (square wave) in contact
with two thermal baths at temperatures
T and T + δ.

In many experimental systems the heat transport responds to a linear expression with the
temperature gradient, known as Fourier’s law. We propose here, that the heat transport is a
power-law of the temperature difference between the motor and the thermal bath,

Q̇T = c|Teff − T |nT , (9)

with c the thermal conduction coefficient and nT an exponent that only depends on T .
Next, we will test this expression operating with one heat bath and between two different

heat baths and also its valid range.

3.2.1. Operating with one heat bath In order to determinate the behavior of the heat transport
with the temperature gradient, we begin with the simplest case: a particle without load moving
in a symmetric potential, with only one heat reservoir (i. e. Ẇ = 0, Δ = 0 and δ = 0). In this
case, the particle transfers heat to the reservoir and taking into account Eqs. (7) and (8), the heat
flux is given by Q̇T = F0

2 (J+ − J−). Fig. 6 (a) shows Q̇T as a function of (Teff − T ), in log-log
scales, for three different temperatures. The heat flux from the particle to the reservoir follows
a power-law as predicts Eq. (9) with an exponent nT decreasing with the bath temperature T
(nT is provided in the inset of Fig. 6(a), for different T ). This exponent is independent of the
barrier height, while the coefficient c in Eq. (9) depends on T and V0 as shown in Fig. 6(b).
The Eq. (9) is valid for low T and F0 ≤ 2V0, that is when the B-L ratchet is working (i.e.
F0 ≤ |dV/dx|, for all x). The range of T within which the Eq. (9) is valid is limited by the
condition that the B-L ratchet is working.

3.2.2. Operating between two different heat baths When the system is working with two different
heat baths the net heat transferred from a Brownian particle to two reservoirs at T and T + δ is(

Q̇T + Q̇T+δ

)
= c1 |Teff − T |nT+δ + Q̇V

+ c2 |Teff − T |nT − Q̇V , (10)



XXX IUPAP Conference on Computational Physics

IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019) 012022

IOP Publishing

doi:10.1088/1742-6596/1290/1/012022

8

0.1
Teff-T

0.1

1

10

100

Q
T

T=1.4
T=1
T=0.6

.

1.4    1.5 ± 0.15
1       1.9 ± 0.10
0.6    2.7 ± 0.05

0.5

(a)

T        nT

0.1 1
Teff-T

0.1

1

10

100

Q
T

V0=3
V0=5
V0=10

.

(b)

Figure 6. Q̇T against (Teff − T ), in log-log scales, for a ratchet operating with one heat bath,
δ = 0, Δ = 0 and different values of V0 and T : V0 = 5 (a) and T = 1 (b). The inset in panel (a)
shows the exponents nT obtained from the slopes of straight lines. The vertical error bars are
approximately the same size as the symbols while the horizontal ones increase with the value
of T in (a) and decease with the value of V0 in (b) (three error bars are shown as references in
each panel).

where c1 and c2 depend on the bath temperatures and the sawtooth potential parameters, Q̇V

is the heat flux due to the ratchet force at the T + δ side and −Q̇V is the heat flux due to
the ratchet force at the T side. These two heat fluxes cancel each other to obtain the net heat
transfer [29].

Fig. 7 shows the net heat flux
(
Q̇T + Q̇T+δ

)
from a motor without load to two thermal

reservoirs versus (Teff − T ), in log-log scales, for T = 0.9 and T + δ = 1. The solid line
corresponds to the best fit of the data using Eq. (10), with the exponents n0.9 = 2.5 and
n1 = 1.9. A good agreement between simulated data and Eq. (10) is achieved. It must be
pointed out that these same exponents are obtained for a ratchet operating with one heat bath
at the temperatures T = 0.9 and 1, respectively (for the sake of space, only the exponent n1 is
shown in Fig. 6(a)).
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10

Q
T
+Q

T
+δ

QT+QT+δ
Eq. (11)
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Figure 7. Q̇T + Q̇T+δ against (Teff − T ),
in log-log scales, for a ratchet operating
between two different heat baths, T =
0.9, δ = 0.1, Δ = −0.8 and V0 = 5.
Symbols correspond to model results and
solid line corresponds to the best fit of
the results using Eq. (10) and subject
to the exponents n0.9 = 2.5 and n1 =
1.9. The inset shows |Q̇in

T ′ | versus (Teff −
T ′), in log-log scales, for T ′ = 0.9 and
T ′ = 1. Symbols are obtained using
the currents induced in each side of the
sawtooth potential (see text). The slope
of the blue (red) straight line is equal to
n0.9 (n1).

The net flux (Q̇T + Q̇T+δ) is obtained using the induced currents in each side of the sawtooth
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potential. According to Eq. (8), the input power due to the external agent Ėin is directly the
sum of the heat fluxes from the motor without load to the thermal reservoirs. On the other hand,
the integral of Eq. (7) can be splitted into two parts related to the external driving force on each

side of the sawtooth potential and thus arrive to the expression Q̇in
T ′ = F0

τ

(
τT

′
+ JT ′

+ − τT
′

− JT ′
−
)
,

where T ′ = T, T+δ, JT ′
+ (JT ′

− ) is the current in the side of the sawtooth potential at temperature

T ′ induced by the external agent F (t) when it is equal to F0 (−F0) and τT
′

+ (τT
′

− ) is the time it
takes for the particle to travel on the side of the sawtooth potential at T ′ while F (t) = F0 (−F0).

Note that, the currents J± are recovered through the weighted means J± =
τT±
τ JT± +

τT+δ
±
τ JT+δ

± .

The inset of Fig. 7 shows |Q̇in
T ′ | calculated from the induced currents versus (Teff − T ′),

in log-log scales, for the ratchet operating between two different heat baths at T ′ = 0.9 and
T ′ = 1 (see previous paragraph). This figure confirms that, indeed, the heat fluxes related to
the external driving force follow a power-law to each side of the sawtooth potential namely,

Q̇in
T ′ = F0

τ

(
τT

′
+ JT ′

+ − τT
′

− JT ′
−
)
= c′|Teff − T ′|nT ′ , with T ′ = T, T + δ and the sum

(
Q̇T + Q̇T+δ

)
is given by Eq. (10). This expression is valid for two reservoirs at temperatures close to each
other and under the conditions of Eq. (9).

Note that, Q̇in
T=0.9 < 0 while Q̇in

T+δ=1 > 0. Nevertheless, when the heat transfer related to
the ratchet force is considered, the ratchet absorbs heat from the reservoir at T + δ = 1 and
transfers heat to the other one at T = 0.9, working as a heat engine. The ratchet can also work
as a refrigerator or transferring heat to both reservoirs. In Fig. 4(b) the different behaviors of
the ratchet depend on the asymmetry parameter Δ of the ratchet: Heat engine for Δ = −0.8
and refrigerator for Δ = 0.1.

4. Conclusions
In this work, we study numerically the heat transfer from a Büttiker-Landauer rocking ratchet
to the heat reservoirs, and find that the net heat transfer to both heat sources depends on
the difference of the effective temperature Teff and each reservoir temperature T . We examine
different setting of the parameters that govern the ratchet transport. The B-L ratchet in an
asymmetric potential with an external driving force with two thermal baths can reach a Teff that
is between the bath temperatures or greater than both of them. This higher effective temperature
is possible because of the external agent that sustains the system far from equilibrium. Moreover,
the ratchet motor at Teff can absorb heat from a reservoir at temperature T < Teff or transfer
heat to a reservoir at T > Teff . Interestingly, the directions of the heat fluxes between the ratchet
and the two reservoirs depend on the asymmetry parameter of the potential, independent of the
value of Teff . The net heat transfer to the heat reservoirs is the sum of the heat fluxes related

to the external force for both sources Q̇in
T and Q̇in

T+δ. The directions of these heat fluxes are
independent of Teff , which only regulates their magnitudes. We found that the magnitudes of
these heat transports from the motor to the reservoirs are proportional to the nT power of the
difference between Teff of the motor and the temperature of the bath concerned. The power
nT depends only on the temperature of the bath, while the thermal conductivity coefficient also
depends on the ratchet potential (the barrier height of the potential and its asymmetry for the
case of two reservoirs). The exponent nT of this power-law increases as the bath temperature
decreases, reaching values much greater than one. Thus, the net heat conduction, far from
being linear with the temperature gradient as is the phenomenological Fourier’s law is a non-
equilibrium measure provided by the value of the exponent. Finally, this expression for the net
heat conduction of the ratchet still holds true when the temperatures of the thermal baths are
low enough and close to each other, and when amplitudes of external energy input are lower
than or in the same order of magnitude as the barrier height of the potential.
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