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Abstract 

This study aimed to evaluate the role of prenatal hyperandrogenization in liver functions 

and the extent of metformin as treatment. Pregnant rats were hyperandrogenized with 

subcutaneous testosterone (1mg/rat) between 16 and 19 of pregnancy. Prenatally 

hyperandrogenized (PH) female offspring displayed, at the adult life, two phenotypes; a 

PH irregular ovulatory phenotype (PHiov) and a PH anovulatory (PHanov) phenotype. 

From day 70 to the moment of sacrifice (90 days of age), 50% of the animals of each 

group received a daily oral dose of 50 mg/kg of metformin. We found that both PH 

phenotypes displayed a hepatic disruptions of insulin and glucose pathway and that 

metformin treatment reversed some of these alterations in a specific-phenotype manner. 

Our findings show, for the first time, that androgen excess in utero promotes hepatic 

dysfunctions and that metformin treatment is able to specifically reverse those hepatic 

alterations and sheds light on the possible mechanisms of metformin action.  

Key words: Fetal programming; PCOS; liver; insulin pathway; metformin. 

1. Introduction 

The liver is the organ that controls body energy metabolism. It is responsible for 

glucose and insulin metabolism, energy storage and lipid availability (Paschos and 

Paletas, 2009). Thus, alterations in these pathways may lead to the development not 

only of liver diseases but also of metabolic disorders (Paschos and Paletas, 2009; 

Vassilatou, 2014). It is known that androgens contribute to hepatic dysfunctions; 

however the exact mechanism remains unknown. Some studies have reported a close 
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relationship between an increased androgen bioavailability and the development of 

hepatic alterations in patients with a hyperandrogenemic condition such as polycystic 

ovary syndrome (PCOS) (Vassilatou, 2014; Vassilatou et al., 2010).  

Increasing evidence suggests that the in utero exposure of fetuses to certain hormonal, 

nutritional, metabolic, and environmental factors is able to induce permanent health 

disorders in the offspring. It has been reported that maternal androgen excess in rats, 

alters placental steroidogenesis and leads to dysregulation of lipid metabolism in their 

adult female offspring (Sun et al., 2012). Likewise, prenatal androgen excess affects 

fetal liver function with increased triglyceride content and alters expression of enzymes 

and transcription factors involved in de novo lipogenesis and fat storage (Fornes et al., 

2017). In this context, we have previously demonstrated that prenatal hyperandrogenism 

induces liver alterations and impairs the balances of both lipid metabolism and systemic 

insulin and glucose metabolism (Abruzzese et al., 2016). We have also found deeper 

alterations in the anovulatory phenotype than in the ovulatory phenotype . These data 

led us to hypothesize that prenatal androgen excess could lead to alterations in glucose 

and insulin metabolism and thus, altering liver function during the adult life.  

The biguanide metformin is currently the most used insulin sensitizer in the treatment of 

insulin resistance in type 2 diabetes, gestational diabetes and PCOS,  but is also 

effective in the treatment of other pathologies such as different types of cancers and 

non-alcoholic liver disease . One of the most important properties of metformin is its 

pleiotropic actions on tissues affected by insulin resistance and/or hyperinsulinemia 

(Diamanti-Kandarakis et al., 2010; Legro et al., 1999). It is known that the effect of 

metformin on the inhibition of hepatic gluconeogenesis involves several cascades. The 

proposed mechanisms range from a direct inhibition of gluconeogenic enzymes and a 

reduced hepatic uptake of substrates of gluconeogenesis to mechanisms involving 

insulin signaling such as insulin receptor substrates (IRS)-1 and -2 (Corbould and 

Dunaif, 2007). It has also been demonstrated that metformin may reduce the supply of 

energy required for gluconeogenesis by inhibition of mitochondrial respiration (De Fea 

and Roth, 1997) and stimulate glucose entry into the liver and glycolysis (Book and 

Dunaif, 1999). However, the complete mechanism by which metformin is able to 

increase insulin sensitivity remains unknown. Based on the above observations, the aim 

of the present work was to study the long-term effects of prenatal androgen excess on 

the hepatic glucose and insulin pathways. We were also interested in revealing the 

possible role of metformin treatment in restoring these possible alterations caused by 
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fetal programming. 

2. Materials and methods 

2.1. Animals and experimental design 

Virgin female rats of the Sprague Dawley strain mated with fertile males of the same 

strain were used. Three females and one male were housed in each cage under 

controlled conditions of light (12 h light, 12 h dark) and temperature (23-25 ºC). 

Animals received food and water ad libitum. Day 1 of pregnancy was defined as the 

morning in which spermatozoa were observed in the vaginal fluid. Between days 16 and 

19 of pregnancy, rats were hyperandrogenized as described previously (Abruzzese et al., 

2016; Demissie et al., 2008). Briefly, a group of pregnant rats (N = 15) received daily 

subcutaneous (SC) injections of 1 mg of free testosterone (T-1500; Sigma) dissolved in 

100 µl of sesame oil (vehicle) between 16 and 19 of pregnancy. The dose of testosterone 

administered resulted in circulating testosterone levels similar to those of male rats 

(Wolf et al., 2002). A second group (N = 10) was SC injected with 100 µl of vehicle 

only. Under the conditions of our animal facilities, spontaneous term labor occurs on 

day 22 of gestation. Pups were culled from litters to equalize group sizes (10 pups per 

mother). Female offspring were separated from males at 21 days of age and randomly 

chosen. The offspring (N=60) from hyperandrogenized mothers formed the prenatally 

hyperandrogenized (PH) group and the offspring (N=30) from mothers that received 

vehicle only formed the control group. Animals were allowed free access to Purina rat 

chow (Cooperación, Argentina) and water. All the procedures involving animals were 

conducted in accordance with the Animal Care and Use Committee of Consejo Nacional 

de Investigaciones Científicas y Técnicas, Argentina, and the study was approved by the 

Ethics Committee of the School of Medicine of the University of Buenos Aires, 

Argentina. The estrous cycle was determined by vaginal smears taken daily from 45 to 

70 days of age. The PH group showed two phenotypes: i) Anovulatory phenotype 

(PHanov): animals whose smears showed metaestrus, diestrus, or a combination of both 

for four consecutive days, and were thus considered to be non-cycling; ii) Irregular 

ovulatory phenotype (PHiov): animals that showed some smears displaying the four 

stages of the estrous cycle: proestrus, estrus, metaestrus, and diestrus with cycles of 7 

days or longer (Abruzzese et al., 2016). Animals from the control, PHiov and PHanov 

groups showed no significant differences in body weight (231±15, 238±22 and 231±19 

g, respectively). Serum testosterone levels, determined by radioimmunoassay (RIA) 
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(Amalfi et al., 2012), were increased in both PH phenotypes, being higher in the 

PHanov group than in the PHiov and control groups (control= 67.76 ± 13.52; PHiov= 

115.84 ± 34.82; PHanov= 154.34 ± 32.00; control + Metformin= 101.27 ± 17.35; 

PHiov= 123.73 ± 35.90; PHanov= 129.34 ± 10.65). As it has been previously reported 

(Heber et al., 2019), metformin treatment did not modify the testosterone levels of the 

PHiov or PHanov groups, but tended to diminish those of the PHanov group.  

From day 70 to the moment of sacrifice, day 90 of age, 50% of the animals of each 

group received a daily oral, by a tip each one, dose of 50 mg/kg of metformin (Fig. 1). 

 The dose of metformin used for the study was the maximum dose daily used in the 

treatment of women with PCOS (Lashen, 2010).  

As the PHanov group remained in diestrus, to allow the comparison between the 

phenotypes, all animals were euthanized at this stage. Then, on the first diestrus at 90 

days of age, the female offspring from each group were weighed, anesthetized with 

carbon dioxide and killed by decapitation. Trunk blood was collected and serum was 

separated and kept at -80°C for further studies. The liver were separated and conserved 

at -80°C. All animals were randomly assigned to each assay considering the littermate. 

Thus, each assay was carried out with the same number of PHiov and PHanov animals 

from each randomly selected littermate.  

2.2 Serum glucose and insulin levels and HOMA-IR determination 

Fasting (for 8h) blood glucose was determined by using Accu-Chek test strips (Roche) 

for visual determination in the range of 20–800 mg/100 ml (1–44 mmol/l) (N=10 per 

group), the accuracy of the system is the 97% as comparing with the biochemical assay 

as informed by the manufacturer's instructions. Fasting (for 8h) insulin levels were 

measured by an ELISA kit, following the manufacturer’s instructions (Abcam Insulin 

Human ELISA Kit: Insulin human ELISA kit ab 100578 but that reacts with: mouse, 

rat, human and pig. The sensitity is < 4 µIU/ml and the range 4,69 µIU/ml  - 300 

µIU/ml). Serum glucose levels were expressed as mg/dl and insulin levels as µIU/ml. 

The homeostatic model assessment for insulin resistance (HOMA-IR) was calculated 

according to the formula: fasting insulin (µIU/ml) x fasting glucose (mg/dl)/405 

(Matthews et al., 1985).  

2.3 Gene expression of insulin receptor (IR), IRS1, IRS2, Pepck-1, glucose transporter 

Glut2, Chrebp, Srebp and Pparg   

The mRNA levels of IR, IRS1, IRS2, Pepck, Glut 2, Chrebp, Srebp and Pparg were 

measured by Real-Time polymerase chain reaction (Real-Time PCR) analysis. Total 
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mRNA from hepatic tissue (6 samples per group, per tissue) was extracted by using 

RNAzol RT (MRC gene, Molecular Research Center, OH, USA), following the 

manufacturer's instructions. cDNA was synthesized from 500 ng mRNA by using 

random primers. Real-Time PCR analysis was performed from this cDNA by means of 

the real mix B124-100 (Biodynamics SRL, USA). The amplified products were 

quantified by fluorescence, using the Rotor Gene 6000 Corbette. Results are expressed 

as arbitrary units. The 60s Ribosomal protein L32 (RPL32) and Proteasome subunit beta 

type-2 (PSMB2) were used as reference genes. 

Gene expression was quantified using the comparative CT method (also known as the 2 
-ᐃᐃCT method) (Swillens et al., 2008). Primers are shown in Table 1. Results are 

expressed as arbitrary expression of mRNA referred to L32 and PSMB2.  

2.4 Energy storage and hepatic alterations  

2.4.1 Hepatic glycogen content 

Hepatic glycogen content was measured by the method of Seifter and Dayton (Seifter 

and Dayton, 1950). Briefly, hepatic tissue was digested in boiling KOH and then 

glycogen was precipitated in ethylic alcohol and dissolved in water, and heated together 

with anthrone reagent. This procedure converts glycogen into glucose. The developed 

green product was read at 620nm. The amount of glycogen obtained was expressed as 

mg glycogen/100 mg hepatic tissue. 

2.4.2 Hepatic triglyceride content 

To evaluate the triglyceride (TG) content in the liver, 10 frozen samples of each group 

were saponified and the TG content quantified by comparing with a glycerol standard 

curve by using a commercial kit (Wiener Lab, Argentina), as described previously 

(Chow et al., 2011). Results are expressed as mg/g tissue.  

2.4.3 Hepatic enzymes 

Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and 

gamma-glutamyl transferase (GGT) were quantified by colorimetric enzymatic methods 

(Wiener Lab, Argentina) as previously reported (Abruzzese et al., 2016) and following 

the manufacturer´s instructions. The chromophoric products were measured at 340 nm 

for ALT and AST and at 405 nm for GGT, all at 25 °C. The values of the intra- and 

interassay coefficients of variation were 3.02 and 5.63% for ALT, 4.4 and 4.9% for 

AST and 1.62 and 5.0% for GGT. Results are expressed as IU/l.  

Liver oxidant/antioxidant balance 
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The oxidant-antioxidant balance in liver tissue was evaluated as the lipid peroxidation 

index and the content of the antioxidant glutathione (GSH) in 10 samples from each 

group. The results are expressed as TBARs nM/g tissue for the lipid peroxidation index 

and as µM/g tissue for GSH.  

Circulating lipid profile 

To determine the systemic lipid profile, total cholesterol, high density lipoprotein 

(HDL), and triglycerides were quantified by colorimetric-enzymatic methods (Weiner 

Lab). The chromophoric product was measured at 505 nm for cholesterol, at 600 nm for 

HDL, and at 490 nm for triglycerides. Low density protein (LDL) cholesterol was 

estimated indirectly by the following formula: LDL= Total cholesterol - HDL + 

Triglycerides/5 (Friedewald et al., 1972).  

Mechanism of metformin action 

It is known that metformin acts through the activation of AMPK. In order to determine 

its activation, we evaluated the protein expression of the substrate of activated AMPK, 

the phosphorylated acetyl CoA carboxylase (pACC) (Lee et al., 2018). By Western Blot 

analysis we evaluated the hepatic protein expression of pACC in control and PH 

phenotypes. Briefly, Western blotting was performed as previously described (Amalfi et 

al., 2012). Liver tissue (n= 7 per group) was lysed for 20 min at 4 ºC in lysis buffer (20 

mM Tris-HCl, pH= 8.0, 137 mM NaCl, 1% Nonidet P-40 and 10% glycerol) 

supplemented with protease inhibitors (Protease Inhibitor Cocktail P8340, Sigma 

Aldrich, St. Louis MO, USA). The lysate was centrifuged at 4 ºC for 10 min at 10,000g 

and the pellet discarded. Protein concentrations in the supernatant were measured by the 

Bradford assay (Bio-Rad) (Bradford, 1976). Total proteins (50 µg) were denatured and 

separated on a SDS-polyacrylamide gel (10%) and transferred onto nitrocellulose 

membranes (GE Healthcare, Life Sciences). Membranes were blocked for 1.5 h in TBS 

(4 mM Tris-HCl, pH= 7.5, 100 mM NaCl) containing bovine serum albumin (5%) at 

room temperature, and, subsequently, the membranes were washed three times for 7 

min each in TBST (4 mM Tris-HCl, pH= 7.5, 100 mM NaCl, 0.1% Tween 20) and then 

incubated at 4°C with rocking overnight with the primary antibody; Phopho-Acetyl-

CoA Carboxylase (Ser79) Antibody (#3661 Cell Signalling), in a 1:2000 dilution. Then, 

the membranes were washed three times for 7 min each in TBST and incubated at room 

temperature for 1 h with peroxidase-conjugated species-specific antirabbit and 

antimouse IgG while being rocked. Then, after three washings of 7 min each with 

TBST, the bound antibodies were detected with an enhanced chemiluminescence 
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system, ImageQuant LAS 500 (GE Healthcare, Life Sciences). Band intensities were 

quantified by scanning densitometry by using Image J 1.44p software (Wayne Rasband, 

NIH, USA) and normalized relative to B-tubulin and expressed as arbitrary units (AU). 

3. Statistical analysis 

Statistical analyses were carried out using the program GraphPad Instat® (GraphPad 

software, San Diego, CA, USA). Two-way ANOVA with post-hoc Bonferroni test was 

used to compare the six groups (Control, PHiov and PHanov without metformin 

treatment and Control, PHiov and PHanov with metformin treatment). Statistical 

significance was considered as p< 0.05.  

4. Results 

4.1 Effects of prenatal hyperandrogenization on circulating insulin resistance 

Regarding the effect of prenatal hyperandrogenization on circulating insulin resistance, 

we evaluated serum glucose and insulin levels and the HOMA-IR index.  

Prenatal hyperandrogenization led to an increase in the basal glucose serum levels of 

both the PHiov and PHanov phenotypes (Fig. 2A). Metformin treatment was able to 

reverse this adverse effect in both PH phenotypes (Fig. 2A; a vs. b p<0.01).   

Prenatal hyperandrogenization also led to an increase in the basal insulin serum levels 

of both phenotypes (Fig. 2B). Metformin treatment partially reversed this effect in the 

PHanov phenotype. The PHiov showed a tendency to be normalized to control values 

but this tendency was not statistically significant (Fig. 2B; a vs. b, p<0.01).   

Prenatal hyperandrogenization also led to an increase in HOMA-IR (p<0.01) in both PH 

phenotypes (Fig. 2C). Metformin was able to reverse this adverse effect in both 

phenotypes (Fig. 2C).  

4.2 Effect of prenatal hyperandrogenization on disrupting of hepatic insulin signaling  

To establish the impact of prenatal hyperandrogenization on hepatic insulin signaling 

disruption we evaluated the gene expression of the first molecules involved in the 

insulin receptor pathway: IR, IRS1 and IRS2. Prenatal hyperandrogenization decreased 

(p<0.01) the gene expression of IR from liver tissue from both PH phenotypes and 

metformin treatment was not able to reverse this effect (Fig. 3A). Prenatal 

hyperandrogenization also decreased (p<0.01) the gene expression of IRS1 from liver 

tissue from both phenotypes, and metformin reversed this  decrease leading the gene 

expression of IRS1 to control values (Fig. 3B, p<0.01). 

Prenatal hyperandrogenization also decreased (p<0.01) the gene expression of IRS2 

from both phenotypes and metformin was not able to reverse this effect (Fig. 3C). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

4.3 Effect of prenatal hyperandrogenization on hepatic glucose metabolism 

In order to analyze hepatic glucose metabolism, we analyze whether prenatal 

hyperandrogenization alters the gene expression of the main enzyme that catalyzes an 

irreversible step of gluconeogenesis; pepck and that of the glucose transporter glut2. We 

found that the gene expression of hepatic pepck is decreased in PHiov phenotype with a 

tendency to decrease in the PHanov phenotype (Fig. 4A, p<0.001) while metformin was 

able to reverse those alterations in both PH phenotypes. We also found that prenatal 

hyperandrogenization decreased (p<0.01) the gene expression of hepatic Glut2 from 

both PH phenotypes and that metformin reversed this effect in the PHanov phenotype 

(Fig. 4B, p<0.05). 

4.4 Effect of prenatal hyperandrogenization on liver energetic mediators  

Regarding the transcription factors that are mediators of glycolysis, gluconeogenesis,  

glycogenolysis and lipogenesis, we found that the gene expression of Chrebp was lower 

in both PH phenotypes (PHiov, p<0.05, PHanov p<0.01) than in controls (Fig. 5A). 

Metformin treatment was able to reverse this decrease only in the PHanov phenotype 

(p<0.05) leading the Chrebp expression to control values (Fig. 5A).  

Prenatal hyperandrogenization also decreased (p<0.01) the gene expression of Srebp in 

both phenotypes and metformin was not able to reverse this effect (Fig. 5B).  

Prenatal hyperandrogenization also decreased the gene expression of hepatic PPARg 

(p<0.05) in both phenotypes (Fig. 5C), metformin was able to reverse this effect (Fig. 

4C). 

4.5 Effect of prenatal hyperandrogenization on energy storage and hepatic metabolism 

To establish whether prenatal hyperandrogenization was able to alter hepatic energy 

storage, we evaluated hepatic reserves such as glycogen and TG, and found that neither 

of them was altered (Fig. 6A and 6B, respectively, p>0.05). 

We also evaluated the serum levels of enzyme markers of hepatic function as: ALT, 

AST and GGT, and found that none of them were altered in either phenotype, and that 

metformin treatment was not able to reverse these alterations (Fig. 6C, 6D and 6E 

respectively, p>0.05). 

The oxidant-antioxidant balance in liver tissue was evaluated by measuring lipid 

peroxidation index (LPO) and the content of the antioxidant glutathione (GSH). We 

found that prenatal hyperandrogenization increased LPO only in the PHanov phenotype 

(Fig. 7A, p<0.05) and that metformin reversed this effect (Fig 7A, p<0.05). GSH was 
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higher in the PHanov phenotype than in the control group (Fig 7B, p<0.05) and 

metformin reversed this effect (Fig 7B, p<0.05). 

4.6 Effect of prenatal hyperandrogenization on circulating lipid profile 

In order to determine the effect of prenatal hyperandrogenization on circulating lipid 

profile, we determined circulating levels of total cholesterol (Fig. 8A), HDL-cholesterol 

(Fig. 8B), LDL-cholesterol (Fig. 8C), and triglycerides (Fig. 8D). We found that 

prenatal hyperandrogenization increased LDL-cholesterol (Fig. 8C, p<0.05), and 

triglycerides (Fig. 8D, p<0. 05), from both PH phenotypes. Metformin treatment only 

was able to reverse the adverse effect of prenatal hyperandrogenization on LDL-

cholesterol. (Fig 8C).  

4.7 Mechanism of metformin in the treatment of prenatal hyperandrogenization 

It is known that metformin's primary mechanism of action is through AMPK activation, 

then, in order to determine its activation, we evaluated the protein expression of the 

substrate of activated AMPK, the phosphorylated acetyl CoA carboxylase (pACC). 

Figure 9 shows a representative Western Blot analysis of hepatic pACC protein 

expression. We found that metformin increased (p<0.05) the protein expression of 

pACC in both PH phenotypes.  

5. Discussion 

The present work aimed to study whether fetal programming by in utero androgen 

excess exposure is able to alter hepatic functions and whether metformin is able to 

reverse those possible alterations.   

The position of a fetus, in relation to the sexes of its neighboring intrauterine 

littermates, can influence its exposure to gonadal hormones and, therefore, its 

development (Zielinski et al., 1991). This complex network of mechanisms involves not 

only plasticity phenomena (Bateson et al., 2014) but also differential placental 

dysfunctions. Moreover, a plastic phenotype has also been described in PCOS patients 

and their relatives (Jahanfar et al., 1995). Here, by means of an in utero programming 

rat model, we showed two well- differentiated phenotypes from the same mother: the 

PHiov and PHanov phenotypes.  
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It has been reported that prenatal androgen excess, and not the accumulation of adipose 

tissue, is the one that induces a state of insulin resistance (Dunaif et al., 1989; Jeanes 

and Reeves, 2017; Kahn and Flier, 2000; Saltiel and Kahn, 2001; Tewari et al., 2015). 

In agreement with this, we found an insulin resistance state without the presence of 

overweight or obesity. 

Since metformin increases insulin sensitivity, it decreases insulin resistance and plasma 

fasting insulin levels (Diamanti-Kandarakis et al., 2010; Viollet et al., 2012). In this 

study, we found that metformin reversed the circulating insulin resistance state 

evaluated by HOMA-IR in both PH phenotypes, but partially reversed serum insulin 

levels, thus showing persistent hyperinsulinemia, which might in turn impair insulin 

signaling in peripheral tissues.  

IR, IRS-1 and 2 are key mediators of many responses in insulin-sensitive tissues (White, 

2002). Besides, hepatic IRS2 gene expression is essential for insulin action (Valverde et 

al., 2003) and the failure of IRS2 signaling can lead to the eventual loss of the 

compensatory hyperinsulinemia during prolonged periods of insulin resistance (White, 

2002). In addition, prenatal hyperandrogenism is one of the most important effects of 

fetal programming in inducing insulin resistance (Linden et al., 2018). In that context, 

we found that both PH phenotypes displayed hepatic insulin signaling disruption, as 

characterized by a decreased mRNA expression of IR, IRS1 and IRS2, and that 

metformin reversed only the decrease in mRNA expression of IRS1 in both phenotypes 

but not that of IR or IRS2. In agreement with these findings, the persistent 

hyperinsulinemia found after metformin treatment in both PH phenotypes could be 

explained by the failure of metformin to restore IRS2 levels.   

The enzyme PEPCK has been extensively studied for its importance in gluconeogenesis 

(Chakravarty et al., 2005; Hanson and Patel, 2006). The deletion of the gene for PEPCK 
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in the mouse liver alters gluconeogenesis (Hakimi et al., 2005; She et al., 2003) and 

results in profound hypoglycemia and death. However, other authors have found that 

increased expression of hepatic PEPCK is not associated with fasting hyperglycemia 

(Samuel et al., 2009). Testosterone down-regulates liver PEPCK, causing repression of 

the gluconeogenic pathway, which is impaired in a type 2 diabetes murine model (Pal 

and Gupta, 2016). Our data show that prenatal hyperandrogenization decreased the 

hepatic gene expression of PEPCK in both PH phenotypes and that metformin reversed 

the adverse effect of prenatal hyperandrogenization, increasing the hepatic gene 

expression of PEPCK to control values. This finding is not apparently in agreement 

with those of authors, who found that metformin inhibits PEPCK expression and hepatic 

gluconeogenesis (Foretz et al., 2010; Kim et al., 2008). However, we must consider that 

these authors reported enhanced expression of PEPCK before metformin treatment, 

whereas we found that the gene expression of PEPCK was decreased and that 

metformin led these decreased levels to control values. Further experiments are being 

designed to elucidate this point.  

In the liver, glucose transport is carried out by GLUT2 (Nordlie et al., 1999) and hepatic 

Glut2 gene expression is regulated by glucose metabolism (Rencurel et al., 1996). 

Therefore, IRS2 knockout mice display alterations in liver glucose uptake (White, 

2002). In agreement with these data, here we found a decrease in the gene expression of 

IRS2 and Glut2 in both PH phenotypes. Surprisingly, metformin was able to reverse the 

decrease in Glut2 gene expression only in the PHanov phenotype. However, other 

glucose transporters less indispensable in the liver tissue, which may also be modulated 

by metformin, (Kinaan et al., 2015; Sokolovska et al., 2010) should be studied.  

Hepatic SREBP and ChREBP, which are differentially regulated by insulin and glucose 

respectively (Iizuka and Horikawa, 2008; Wang et al., 2015), regulate genes that encode 
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enzymes for glucose metabolism or lipogenesis. Then, we suggest that the down-

expression of both Srebp and Chrebp found in this study is a consequence of hepatic 

insulin signaling disruption. Metformin was able to reverse the decrease in Chrebp 

mRNA levels only in the PHanov phenotype, which is consistent with the up-regulation 

of Glut2 by metformin. Moreover, given the established role of ChREBP in regulating 

glycolysis, we suggest that this may be a pathway of metformin action in regulating the 

bioavailability of glucose. Although metformin regulates Chrebp gene expression in 

other systems (Al-Oanzi et al., 2017; Berger et al., 2015; Iizuka, 2017; Kim et al., 

2017), our data indicate, for the first time, that metformin is able to reverse the decrease 

in Chrebp gene expression induced by in utero androgen excess.  

The other transcription factor studied was PPARG, which plays an important role in 

improving glucose homeostasis (Kallwitz et al., 2008), promoting lipid storage (Ables, 

2012), and modulating SREBP (Kim and Spiegelman, 1996). In agreement with these 

data, we found that mRNA levels of Pparg were decreased in both PH phenotypes. This 

result is associated with the impaired glucose metabolism and decreased Srebp gene 

expression also found. Metformin was able to reverse these abnormalities, leading 

Pparg gene expression to control values, thus confirming that, as in other systems (El-

Gharabawy et al., 2017; Mansour et al., 2017), metformin modulates hepatic glucose 

metabolism via the PPARG pathway.  

Regarding the main enzymes involved in liver function, i.e., ALT, AST, and GGT, none 

of them was altered by the in utero androgen excess. Considering that these 

transaminases have been reported as markers of liver damage (Abruzzese et al., 2016; 

Vassilatou, 2014; Vassilatou et al., 2010), our findings suggest no signs of hepatic 

injury.  
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Triglycerides represent the main form of storage and transport of fatty acids in both 

hepatocytes and plasma (Alves-Bezerra and Cohen, 2017). Fatty acids accumulate in the 

liver by hepatocellular uptakes from the plasma and by de novo synthesis (Alves-

Bezerra and Cohen, 2017). Triglycerides are frequently synthesized in states of energy 

excess, such as overnutrition and obesity (Choi and Diehl, 2008). In agreement with 

these findings, here we found no increase in body weight and consequently no 

alterations in hepatic glycogen or triglyceride content after in utero androgen excess. 

These data might explain the lower gene expression of the transcription factors involved 

in lipogenesis such as Chrebp, Srebp, and Pparg in both PH phenotypes.   

One of the causes of insulin resistance is oxidative stress (ITO et al., 2006) and the state 

of non-compensated oxidative stress is involved in the hepatic damage (Abruzzese et 

al., 2016; Pan et al., 2004). Besides, insulin resistance increases fatty acid β-oxidation, 

leading to hepatic oxidative stress (Sanyal et al., 2001). In this sense, the administration 

of GSH, which is the most important low-molecular-weight antioxidant synthesized in 

cells, seems to be a promising strategy to treat oxidative stress-induced liver damage 

(Sacco et al., 2016). In this study, we found a pro-oxidant state characterized by 

increased lipid peroxidation and, as a compensatory mechanism, by an increase in the 

anti-oxidant GSH in the PHanov phenotype. These data suggest that prolonged 

oxidative stress may contribute to insulin resistance in the PHanov phenotype. 

Because of its anti-hyperglycemic properties, metformin is a well-known therapy for 

type 2 diabetes. This drug acts on the AMPK pathway, which is a central metabolic 

regulator; however, there is increasing evidence that metformin also acts via AMPK-

independent mechanisms (Pernicova and Korbonits, 2014). Studies have demonstrated 

that one of the primary effects of metformin is the decreased production of free radicals 

and reactive oxygen species through inhibition of mitochondrial complex I (Diniz Vilela 
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et al., 2016; Pernicova and Korbonits, 2014). In the present study, metformin treatment 

reversed the pro-oxidant state in the PHanov phenotype, thus suggesting that metformin 

action as an antioxidant may have contributed to ameliorating the derangements 

observed in the glucose and insulin pathways in the PHanov phenotype. 

Hyperinsulinemia and hyperandrogenism lead to an altered lipid profile in both obese 

(Gholinezhad et al., 2018) and lean (Daghestani et al., 2018) women with PCOS. Here, 

we demonstrated that prenatal hyperandrogenization alters the circulating lipid profile, 

as previously reported in PCOS patients (Solymár et al., 2018; Xu et al., 2015), and that 

metformin activates AMPK and consequently reduces LDL-cholesterol. Metformin acts 

by inhibiting complex I in the electron transport chain (El-Mir et al., 2000; Owen et al., 

2000) and mitochondrial suppression by metformin activates the AMPK cascade 

(Hawley et al., 2002; Zhou et al., 2001). In agreement with these findings, we found that 

metformin acts by increasing the protein expression of the  acetyl CoA carboxylase 

(pACC), which is the substrate of activated AMPK. 

Finally, our results showed that metformin treatment preferentially ameliorated the 

negative effect of the in utero androgen excess in the liver of the PHanov phenotype. 

Reproductive functions demand high energetic cost and good energy storage (Torre et 

al., 2014). Thus, the preferential action of metformin in the PHanov phenotype could 

account for the need to guarantee a good metabolic state to support the cost of 

reproduction. However, several studies are being carried out in our lab to clarify this 

point. In summary, the present work shows that metformin is able to reverse, in a 

phenotype precise manner, specific hepatic functions induced by in utero androgen 

excess exposure.    
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Legends of figures 
Figure 1. Schematic diagram of murine model and metformin treatment. 
The diagram displays the murine model of prenatal hyperandrogenization. PH= 
prenatally hyperandrogenized group, PHiov= irregular ovulatory prenatally 
hyperandrogenized group, PHanov= anovulatory prenatally hyperandrogenized group, 
met = metformin. 
 
Figure 2. Effect of prenatal hyperandrogenism on circulating insulin resistance. 
Metabolic features evaluated in female offspring of control and prenatally 
hyperandrogenized (PH) groups with and without metformin treatment. (A) Basal 
glucose levels, (B) Basal insulin levels, (C) HOMA-IR index. Each column represent 
the mean ± SD (N= 10 replicates per group), a vs b p < 0.05 by Two-way ANOVA test. 
 
Figure 3. Effect of prenatal hyperandrogenization on disrupting of hepatic insulin 
signaling  
The graphs correspond to the mRNA abundance of the gene of interest relative to L32 
mRNA levels of control and prenatally hyperandrogenized (PH) groups with and 
without metformin treatment. (A) Insulin receptor (IR), (B) Insulin receptor substrate 1 
(IRS1), (C) Insulin receptor substrate 2 (IRS2). Each column represent the mean ± SD 
(N= 6 replicates per group), a vs b p < 0.05  by Two-way ANOVA test. 
 
Figure 4. Effect of prenatal hyperandrogenization on the hepatic glucose 
metabolism. The graphs correspond to the mRNA abundance of the gene of interest 
relative to L32 mRNA levels of control and prenatally hyperandrogenized (PH) groups 
with and without metformin treatment of (A) pepck-1 and (B) glut2. Each column 
represent the mean ± SD (N= 6 replicates per group), a vs b p < 0.05   by Two-way 
ANOVA test. 
 
Figure 5. Effect of prenatal hyperandrogenization on liver energetic mediators. 
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The graphs correspond to the mRNA abundance of the gene of interest relative to L32 
mRNA levels of control and prenatally hyperandrogenized (PH) groups with and 
without metformin treatment. (A) Chrebp, (B) Shrebp, (C) Pparg. Each column 
represent the mean ± SD (N= 6 replicates per group), a vs b p < 0.05   by Two-way 
ANOVA test. 
 
Figure 6. Effect of prenatal hyperandrogenization on energy storage and hepatic 
metabolism. (A) Glycogen content, (B) Tygliceride content, (C) liver transaminase 
ALT, (D) liver transaminase AST, (E) liver transaminase GGT corresponding to control 
and prenatally hyperandrogenized (PH) groups with and without metformin treatment. 
Each column represent the mean ± SD (N= 10 replicates per group) by Two-way 
ANOVA test. 
 
Figure 7. Effect of prenatal hyperandrogenization on hepatic oxidative stress. The 
oxidant/antioxidant balance in liver tissue was evaluated by measuring the lipid 
peroxidation LPO (A) and the content of the antioxidant glutathione (B) corresponding 
to control and prenatally hyperandrogenized (PH) groups with and without metformin 
treatment. Each column represent the mean ± SD (N= 10 replicates per group), a vs b p 
< 0.05   by Two-way ANOVA test. 
 
Figure 8. Effect of prenatal hyperandrogenization on circulating lipid profile. 
Serum levels of (A) total cholesterol, (B) high-density lipoprotein (HDL) cholesterol, 
(C) low-density lipoprotein (LDL) cholesterol, and (D) triglycerides (TG) 
corresponding to control and prenatally hyperandrogenized (PH) groups with and 
without metformin treatment. Each column represent the mean ± SD (N= 7 replicates 
per group), a vs b p < 0.05   by Two-way ANOVA test. 
 
 
Figure 9. Mechanism of metformin in the treatment of prenatal 
hyperandrogenization 
A representative Western Blot analysis of phosphorylated acetyl CoA carboxylase 
(pACC) corresponding to control and prenatally hyperandrogenized (PH) groups with 
and without metformin treatment. Each column represent the mean ± SD (N= 7 
replicates per group) by Two-way ANOVA test.  
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Table 1 List of primers used in real-time PCR.  

Gene  Forward primer (5´-3´) Reverse primer (5´-3´) 

   

IR ATG GGA CCA CTG TAC GCT TC TCG ATC CGT TCT CGA AGA CT 

IRS-1 TGT GCC AAG CAA CAA GAA AG ACG GTT TCA GAG CAG AGG AA 

IRS-2 GGA AGT CTG TTC GGG TGT GT ACA TCT GCT TCA GTG TGC TG 

GLUT2 GTT TTG GGT GTT CCT CTG GA TGA TCC TTC CGA GTT TGT CC 

PPARG TTT TCA AGG GTG CCA GTT TC GAG GCC AGC ATG GTG TAG AT 

SREBP TAACCTGGCTGAGTGTGCAG ATCCACGAAGAAACGGTGAC 

CHREBP GGTTGTCCCCAAAGCAGAGA TTGTTGTCTACACGACCCCG 

PEPCK GGAGACCACAGGATGAGGAA TTCGTAGACAAGGGGGACAC 

PSMB2 TCG GAG TCG GAC CCC TTA TC TGT AGT AAA GTG CTG GCC CC 

RPL32  TGG TCC ACA ATG TCA AGG CAA AAC AGG CAC ACA AGC  
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