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Abstract. In the search for new antimicrobial molecules, antimicrobial peptides 

(AMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt 

the bacterial membranes, leading to membrane disruption and eventually cell death. In 

particular, the group of linear α-helical cationic peptides has attracted increasing 

research and clinical interest. The AMP P5 has been previously designed as a cationic 

linear α-helical sequence, being its antimicrobial and hemolytic properties also 

evaluated. In this work, we analyzed the feasibility of using P5 against a carbapenem-

resistant clinical isolate of Pseudomonas aeruginosa, one of the most common and risky 

pathogens in clinical practice. After antimicrobial activity confirmation in in vitro 

studies, synergistic activity of P5 with meropenem was evaluated, showing that P5 

displayed significant synergistic activity in a time kill curve assay. The ability of P5 to 

permeabilize the outer membrane of P. aeruginosa can explain the obtained results. 

Finally, the antibiofilm activity was investigated by viability analysis (MTT assay), 

crystal violet and confocal imaging, with P5 displaying mild biofilm inhibition in the 

range of concentrations tested. Regarding biofilm disruption activity, P5 showed a 

higher efficacy, interfering with biofilm structure and promoting bacterial cell death. 

Atomic force microscope images further demonstrated the peptide potential in P. 

aeruginosa biofilm eradication, confirming the promising application of P5 in multi-

resistant infections therapeutics. 

 

Keywords: Biofilm; Pseudomonas aeruginosa; antimicrobial peptide; antibiofilm 

peptide; synergic activity; meropenem. 
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Introduction 

Antibiotic resistance is one of the main problems concerning public health and clinical 

practice [1]. Particularly, the development of antibiotic resistance by Pseudomonas 

aeruginosa is a major concern in the treatment of bacterial pneumonia [2]. Chronic P. 

aeruginosa infections are commonly associated with cystic fibrosis (CF) and chronic 

obstructive pulmonary disease (COPD), and effective treatment is difficult due to the 

development of multidrug resistance (MDR) in these bacteria [3]. Furthermore, the 

ability of P. aeruginosa to evolve into biofilm communities increases their resistance to 

most conventional treatments [4]. Additionally, biofilms of antibiotic-resistant P. 

aeruginosa occur with high frequency, both in vitro and in the lungs of CF patients [5], 

or directly on medical implant surfaces, such as catheters and artificial prosthesis [6]. 

Antimicrobial peptides (AMPs) are good candidates for the development of new 

therapeutic drugs [7], since they have shown antimicrobial activity against a wide range 

of bacterial species and since they can be de novo designed in order to meet the 

challenge of multiresistant bacteria but avoiding host side effects [8–10]. Compared 

with conventional antibiotics, killing of bacteria by these peptides is extremely rapid 

and can involve multiple bacterial cellular targets [11]. In addition, another alleged 

advantages of AMPs is that bacterial resistance would evolve much more slowly than 

against conventional antibiotics, a highly desirable property [12]. Indeed, peptides are 

not hindered by the resistance mechanisms that are placing currently used antibiotics in 

jeopardy, for example, against methicillin-resistant Staphylococcus aureus and 

multidrug-resistant P. aeruginosa [7]. 

The efficiency of AMPs is often attributed to their ability to disrupt cellular membranes 

of microorganisms [13]. Particularly for cationic linear α-helical peptides, 

amphipathicity and helicity play a crucial role in antimicrobial activity and possible 

hemolytic activity [9,14]. Although the potency of these AMPs against more susceptible 

pathogens is normally not as strong as certain conventional antibiotics, one of their 

major strengths is their ability to kill multidrug-resistant bacteria at similar 

concentrations. Besides, eradication can occur synergistically with other peptides and/or 

conventional antibiotics, which might help to overcome some of the barriers that 

resistant bacteria have against currently used antibiotics [15]. Synergistic activity of 

some AMPs with certain conventional antibiotics has been proposed [16] as a promising 

and increasingly used approach to overcome the problem of MDR bacteria [17]. 

AMPs are also increasingly being considered as novel agents against biofilms, by 

inhibiting their formation or eradicating established ones [18–20]. Bacterial biofilms are 

three-dimensional multi-cell structures, in which bacteria are embedded in an 

extracellular matrix composed of polysaccharides, DNA and proteins [21,22]. Biofilms 

are important for bacterial survival in their natural environments, and protects the 

bacteria from the immune system and antibiotics [23]. Bacterial susceptibility to AMPs 

in biofilm has been shown to be lower compared to the planktonic state [24]; however, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

3 

 

this resistance to AMPs has not been extensively studied compared to other 

antimicrobial agents [21]. 

In this context, we analyzed the possible synergistic activity of a novel antimicrobial 

peptide, P5, with meropenem (member of the carbapenem class of β-lactam antibiotics) 

and its potential as antibiofilm agent. The cationic AMP P5 was previously designed by 

some of us and evaluated in vitro to determine its antimicrobial and hemolytic activity, 

together with its physicochemical properties [14,25]. The tests presented here were 

performed against a clinical isolate of P. aeruginosa resistant to carbapenems (due to 

the expression of the carbapenemase NDM-1). P5 showed an IC50 of 19.1 µg/ml and 

demonstrated a pronounced synergistic activity with meropenem. Biofilm inhibition, 

eradication and bacterial viability after P5 treatment were evaluated using different 

methodologies (MTT, crystal violet and confocal fluorescence). Atomic force 

microscopy (AFM) was also applied; showing surface perturbation of P5 treated 

biofilms. The peptide was shown to promote biofilm disruption and bacteria-killing 

properties, with small effects in biofilm growth inhibition. Promising results in biofilm 

eradication by P5 may lead to a future use of this peptide or its derivatives against 

hospital-related infections. 
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Materials and methods 

Peptide synthesis  

The peptide P5 (RIVQRIKKWLLKWKKLGY) was synthesized with C terminus 

amidation and obtained at a purity grade of >95% by HPLC (GenScript Co., 

Piscataway, NJ 08854, USA). The peptide design and physicochemical properties have 

been previously described [25][14] 

 

Bacterial strain and growth conditions 

Pseudomonas aeruginosa M13513 is a clinical isolate harboring the carbapenemase 

NDM-1 (blaKPC-2). It was kindly provided by Dr. Diego Faccone, from Servicio 

Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. 

Carlos G. Malbran”, Buenos Aires, Argentina. Bacterial cultures were grown in Cation 

Adjusted Muller Hinton Broth (CAMHB) as recommended by the CLSI for 

antimicrobial testing. 

 

Growth kinetics 

Growth kinetics were performed to evaluate the effect of different concentrations of P5 

against P. aeruginosa M13513. P5 at concentrations ranging from 8 to 1024 µg/ml was 

incubated in CAMHB, with 5x106 UFC/ml as the starting inoculum, in 96-wells 

polystyrene plates, with 100 µl of final volume. Bacteria without peptides and CAMHB 

alone were used as positive and negative controls, respectively. Plates were incubated at 

37°C for 20 h in the Cell Imaging Multi-Mode Reader Cytation TM5, and 

measurements at 600 nm were taken every 2 hours and a half, with a previous shaking. 

Optical density was plotted against time, showing mean of two measures ± SD for each 

point. IC50 values were determined calculating the concentration required to eliminate 

50% of CFU/ml from cultures. IC50 values were calculated as the concentration at which 

the best-fit trend lines crossed 50% of surviving CFU/ml from control cultures [26]. 

Non-linear fitting was performed using GraphPad Prism5 software. 

 

Synergy by killing kinetics 

The potential synergistic effect of P5 in combination with meropenem was evaluated by 

time-kill kinetic studies. Experiments were performed in 50 ml tubes (final volume 10 

ml). P. aeruginosa M13513 log-phase culture was reached and diluted in CAMH to a 

final cell concentration of 5×106 CFU/ml. Peptide and meropenem were evaluated at 

0.5×MIC (minimal inhibitory concentration), alone and/or combined. Bacteria without 

treatment were used as a control. Samples were incubated at 37°C, with constant 

shaking, for 24 h. Aliquots were taken at 0, 1, 2, 3, 4, 8 and 20 h, serially diluted in 
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saline solution and three drops of 50 µl per dilution were plated on LB agar. Plates were 

incubated at 37°C for 24h, for CFU counting. Results were plotted as Log CFU/ml vs. 

time. Reduction in two or more logarithmic units between the combined and the most 

active agent alone after 24h was considered as synergistic. Reduction of the starting 

inoculum in three or more logarithmic units was considered as bactericidal. 

 

Outer-membrane permeability 

Outer-membrane permeabilization activity of P5 was determined by using the NPN (1-

N-phenylnaphthylamine) fluorescent assay, as previously described [27]. Measurements 

were carried on a Varian Cary Eclipse fluorescence spectrophotometer (Mulgrave, 

Australia), with excitation at 350 nm and emission at 420 nm. Briefly, an overnight 

culture of P. aeruginosa M13513 cells was inoculated in fresh Mueller-Hinton broth 

(MHB) media and incubated at 37°C under agitation until reaching an OD600nm of 0.1. 

Cells were harvested by centrifugation at 1,000×g for 5min, washed twice in PBS. One 

ml of cell suspension was mixed with an aliquot of NPN to a final probe concentration 

of 12 M. Subsequently, 1ml of cell suspension was added to a 0.5 cm quartz cuvette 

and mixed with different final concentrations of P5. Fluorescence was recorded over 

time until no further increase was detectable. 

 

Inhibition of biofilm formation 

Inhibition of biofilm development was assayed in 96-well flat-bottom polystyrene 

plates. Antimicrobials were two-fold serially diluted in Mueller Hinton broth and then 

an ON culture of bacterial inoculum was added to reach a final concentration of 5x105 

CFU/ml, with a final volume of 100 µl per well. Plates were incubated at 37°C for 24 h. 

A control was defined as bacteria in the absence of peptide. To determine the amount of 

biofilm after peptide incubation, the supernatant was gently removed and the formed 

biofilms were washed twice with 100µl of saline solution to withdraw planktonic cells. 

The remaining biofilm was fixed with 100µl of methanol, for 15 min, and then stained 

with 100µl of crystal violet (CV) 1% (v/v), for 5 min. The dye was removed, wells were 

washed twice with 200µl of distilled water and the plate was dried at 37°C for 30 min. 

Finally, 100µl of acetic acid 33% were added, samples were homogenized by gentle 

agitation and absorbance was measured in a microplate reader (RT2100, Rayto Life and 

Analytical Sciences Co., Ltd), at 595nm. 

 

Eradication of pre-formed biofilm and cell viability  

P. aeruginosa M13513 biofilms were developed in 96-well flat-bottom polystyrene 

plates with CAMHB, for 24 h. After biofilm formation, supernatant was removed and 

100 µl of CAMHB with two-fold serial dilutions of antimicrobials were added to each 
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well. Plates were then incubated for another 24 h, at 37°C. Two plates were prepared for 

each experiment: one was used for biofilm quantification, using the CV staining method 

described above; the other was used to analyze bacteria cell viability within biofilm by 

the formazan dye-based MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay. For this purpose, media was gently removed and biofilms were washed 

three times with 200µl of saline solution. Then, 100µl of MTT 0.05% (w/v) were added 

to each well and plates were incubated at 37°C, in the dark, for 3 h. After incubation, 

the supernatant was withdrawn and formazan crystals were dissolved with 100µl of 

DMSO, being homogenized by orbital agitation for 10 min. Absorbance was measured 

at 570 nm, with a microplate reader (RT2100, Rayto Life and Analytical Sciences 

Co.,Ltd), at 595nm. 

 

Confocal laser scanning microscopy 

For confocal laser scanning microscopy (CLSM) analysis, biofilms were grown in -

dish35mm, lowibiTreat (80136, Ibidi, Fitchburg,WI, USA), using the same conditions of 

biofilm inhibition and eradication assays, with a final volume of 300µl. After P5 

incubation, biofilms were stained using the live/dead staining BacLight bacterial 

viability kit (L7007, Molecular Probes, Thermo Fisher Scientific, Waltham,MA, USA). 

Samples were imaged with a point scanning confocal microscope Zeiss LSM 710 

(Oberkochen,Germany), equipped with a Plan-Apochromat 63×/1.40 oil objective. 

Lasers used include an argon (exc = 458, 488 and 514 nm, 25 mW maximum power) 

and a DPSS 561-10 (exc =561 nm, 15 mW maximum power). For the three-

dimensional representations, images of the same sample field were obtained at different 

z values (z-stack), using the same distance from the center image (± 20 m). The 

adjustment of the pinhole to one airy unit was performed and images were acquired 

using the Zen Black edition software. The proportion of live and dead cells was 

determined by counting three representative images taken from each biofilm imaged, 

using the image analysis software Icy (http://icy.bioimageanalysis.org, [28]) 

 

Atomic force microscopy 

Atomic force microscopy (AFM) imaging was conducted as described elsewhere [29]. 

Briefly, the same samples used for CLSM analysis were washed five times with 

distilled water and allowed to air dry at room temperature. Bacterial biofilms in the 

absence and presence of P5 were then scanned with a JPK NanoWizard IV (Berlin, 

Germany) mounted on a Zeiss Axiovert 200 inverted microscope. Measurements were 

carried out in intermittent contact mode (air) using ACL silicon cantilevers (AppNano, 

Huntingdon, UK) with a tip radius of 6nm, a resonant frequency of approximately 190 

kHz and a spring constant of 58 N.m−1. The scan rate was set between 0.3 and 0.6 Hz 

and the setpoint was close to 0.3 V. Height and error signals were collected and images 

were analyzed with Gwyddion software. 
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Statistical analysis 

Statistical evaluation was determined using GraphPad Prism 5 software (GraphPad 

Software Inc., San Diego, CA, USA). When applicable, one-way ANOVA followed by 

Dunnett post-test was performed, considering differences statistically significant for p< 

0.05. All data presented as mean ± standard error of the mean. 
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Results 

Antimicrobial activity 

Bacterial growth kinetics 

P. aeruginosa growth curves were studied for 24 h in the presence of a range of P5 sub-

inhibitory to inhibitory concentrations (Figure 1A). In these studies we could see that 

the peptide was active at concentrations below 64µg/ml, showing that there was no 

sharp threshold concentration (under which the peptide had no activity) like other 

AMPs, instead the antimicrobial activity was dependent on its concentration.  

After 20h of peptide incubation (maximum measured), bacterial growth was evaluated 

for the different P5 concentrations, yielding an IC50 (peptide concentration necessary to 

reduce to 50% the bacterial cell count) of 19.1 µg/ml (Figure 1B). This data is important 

because it give us information regarding the activity of the antimicrobial agent at 

concentrations below the MIC.  

Figure 1A shows that until 10h of culture, even 16 µg/ml of P5 can completely inhibit 

bacterial growth, Afterwards, and in order to have more accurate MIC values for 

synergy assays, the MIC value for P5 was adjusted to 50 µg/ml testing different 

concentrations ranging from 32 to 64 µg/ml (data not shown). A similar procedure was 

performed for meropenem obtaining a MIC value of 800 µg/ml. 

Outer membrane permeabilization 

The ability of P5 to permeabilize the outer membrane of P. aeruginosa was determined 

by the NPN uptake assay. NPN is a small hydrophobic molecule that is excluded by 

intact bacterial outer membranes, but exhibits increased fluorescence after partitioning 

into disrupted outer membranes. Thus, an increase in fluorescence intensity in the 

presence of any agent indicates a disrupted or permeabilized bacterial outer membrane. 

As shown in Figure 2, the addition of P5 promoted NPN uptake across the outer 

membrane of P. aeruginosa, confirming its ability to disrupt the outer bacterial 

membrane. Moreover, its ability to be incorporated reaches a stagnation at 14.18 µg/ml 

(Figure 2B), indicating that this concentration is sufficient to obtain maximum peptide 

permeabilization effect. 

 

Synergistic activity 

The possible synergy between P5 and meropenem was evaluated in a time-kill kinetic 

assay. This procedure, although it is laborious and time-consuming, is more accurate 

than the checkerboard method, because this latter method is particularly prone to 

reproducibility problems because of the intrinsic error of the method (+/- one dilution) 

[30]. In spite of the lack of consensus, the time-kill method may be considered the gold 

standard for synergism evaluation, as it allows a dynamic evaluation and higher 
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sensitivity [29]. Figure 3 shows a complete inhibition of P. aeruginosa M13513 growth 

using the combination of P5 and meropenem at 0.5xMIC each, indicating synergy 

between both compounds. Besides, the synergistic combination showed bactericidal 

activity due to the reduction of more than 2 logarithmic units compared to the initial 

inoculums. 

 

Antibiofilm activity 

Inhibition of biofilm formation 

Firstly, P. aeruginosa biofilm was allowed to develop in the presence of P5 at sub-

inhibitory concentrations, ranging from 0.25×MIC to 0.5×MIC, being the total biomass 

presents after 24h quantified (Figure 4). Data show that P5 inhibits biofilm formation 

(approximately 20%) only at 0.5×MIC (Figure 4A). Even being a small reduction, it 

should be noticed that none of the conventional antibiotics tested (gentamycin and 

tobramycin) were able to inhibit biofilm formation at the concentrations tested (Figure 

4B). 

To corroborate the effect on biofilm inhibition, confocal images of P. aeruginosa 

biofilms incubated with P5 at 0.5×MIC were acquired (Figure 5). The 3D representation 

of the z-stack imaging (Figure 5A and B) shows that, for both biofilms, there was a high 

percentage of living cells, maintaining the live-dead proportion (Figure 5C) despite the 

exposure to the peptide. However, in the control group, a homogeneous biofilm 

structure is observed, whereas in the P5-treated sample a less dense biofilm structure 

can be noticed. 

 

Eradication of pre-formed biofilms 

After 24h of biofilm formation, the different antimicrobial compounds (P5, tobramycin 

or gentamycin) were added and incubated for another 24h (Figure 6). The 

concentrations chosen for each compound ranged from the MIC to 8×MIC. In the CV 

assays, we could observe that P5 is active in reducing pre-formed biofilm mass, 

reaching a 50% reduction at higher concentrations tested (Figure 6A). It is worth to 

notice that neither of the conventional antibiotics tested showed biofilm disruptive 

activity at equivalent concentrations (Figure 6B). This ability of P5 to disrupt a pre-

formed biofilm should correlates with the low number of viable bacterial cells present in 

the biofilm. For this reason, we determined the cell viability for each concentration 

tested after peptide or conventional antibiotics incubation (Figure 7). The results 

obtained show that P5 is able to diminish cell viability for concentrations above the 

MIC (Figure 7A), with a reduction of 80% of viable bacteria at 2 to 8 × MIC. Therefore, 

P5 exhibit sigh killing capacity for the bacteria present inside the biofilm. Tobramycin 

and gentamycin also showed antimicrobial activity on the concentration range tested, 

despite being less effective than P5 (Figure 7B). Tobramycin yielded a 20% reduction 
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in bacterial viability (80% of viable cells) for all concentrations tested. As for 

gentamycin, its maximum effect in reducing bacterial cell viability was 50% at 8×MIC, 

the highest concentration tested. 

The P5 effects on the biofilm architecture were also addressed by confocal microscopy, 

using a z-stack 3D reconstruction. The biofilm was allowed to develop for 24h, and 

afterwards was treated with P5, in concentrations ranging from 4 to 8×MIC (Figure 8). 

The biofilm was then stained to label live and dead bacterial cells, as previously 

described in materials and methods. The pre-formed biofilm was completely disrupted 

by P5 at 8×MIC (Figure 8B), with a loss of homogeneity relative to the control biofilm 

(Figure 8A). Additionally, the number of dead cells present in the biofilm substantially 

increased, as evidenced by the live/dead relation (Figure 8C), with live cells 

representing ~90% of total counts in the control biofilm, but droping to ~5 % in the P5-

treated biofilm, in a good agreement with MTT data. 

Finally, in order to better visualize the effects of P5 in pre-formed biofilms, the 

evaluation of their surface was also performed by AFM (Figure 9). Conditions were 

maintained between confocal and AFM imaging, using the same samples for both 

assays. Looking at the results obtained for the control biofilm (Figure 9A), we could 

conclude that biofilm was fully formed, with a complex 3D structure, evidenced by 

bacterial cell density. As for the P5-treated biofilm (Figure 9B), loss of complexity and 

structure can be easily noticed, corroborating the results obtained by confocal imaging 

(Figure 8). The center and right images of Figure 9B also depict bacterial cell damage, 

with loss of integrity, probably due to P5 activity towards P. aeruginosa. 
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Discussion 

AMPs have gained increasing attention as potential novel antimicrobial drug 

alternatives for combating infections caused by conventional antibiotic-resistant bacteria 

and/or associated to biofilms [31]. Thus, the design or identification of novel AMPs 

with such potential is an important goal, creating advances and overcoming the current 

antibiotic resistance worldwide problem [20]. In this work, we analyzed the possible 

synergistic and antibiofilm activity of the designed antimicrobial peptide P5, which has 

been previously the subject of biophysical studies, confirming its preference to interact 

with bacterial cells, contrary to eukaryotic membranes [14]. 

Being one of the AMPs features their rapid activity and targeting, it is important to 

follow peptide action over time [32]. MIC is commonly determined 24h post-

inoculation, which may mask any differences in susceptibility. If the AMP acts in the 

first hours, bacterial resistance can occur even at small percentages of the total 

population, but this small number of bacteria may be enough to promote cell growth 

after a few hours. Due to this, growth kinetic experiments with different P5 

concentrations were performed, showing a direct relationship between concentration 

and growth inhibition (Figure 1). This indicates that the peptide apparently does not 

display a “threshold” concentration over which it has activity and below which is 

inactive. From the same data, we could determine the IC50 of P5 for P. aeruginosa 

M13513 being 19.1 µg/ml. This value was considered for all further experiments. 

Keeping in mind that the biophysical characterization of P5 activity toward negatively 

charged membranes was already performed [14], outer-membrane permeabilization of 

planktonic bacteria cells was also evaluated. We could observe that a stagnation in the 

promoted permeabilization is reached at 14.18g/ml of P5 (Figure 2B), in a good 

agreement with IC50 and MIC determinations, confirming its ability to target P. 

aeruginosa cells. This property is not exclusive of this AMP, with several peptides 

showing the ability to permeabilize the outer-membrane of Gram-negative bacteria 

[33,34]. Considering that we were testing P5 antibiofilm activity, it is important to have 

data where bacteria permeabilization is demonstrated, supporting further studies. 

A plausible and accepted strategy to treat drug-resistant-associated infections is using a 

combination of antimicrobial agents, particularly with different mechanisms of action, 

which would hamper the emergence of resistance. P5 in combination with meropenem 

showed not only synergistic activity but also a bactericidal activity for the combination. 

As pointed above, our outer membrane permeabilization experiments showed that P5 in 

a concentration below 0.5xMIC (i.e. 25 g/ml) can easily permeabilize the membrane of 

the cell. This membrane permeabilization activity could explain the synergistic effect 

observed with meropenem, which requires entry into the cytoplasmic space to acetylate 

the PBPs in order to interfere with the formation of peptidoglycan in the cell wall. The 

synergistic activity found for these two compounds highlights the promising possible 

combination of these two molecules in P. aeruginosa infections. Further work should be 
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performed in order to analyze different combinations of P5 and carbapenems in vitro 

and in vivo, together with pharmacokinetic experiments, to determine the possible 

clinical dose. 

Synergy between AMPs and carbapenems has been suggested for other peptides [8] and 

was hypothesized for colistin (a cyclic polypeptide used in clinical practice also known 

as polymixin E), whose synergistic activity with meropenem it is believed to rely on its 

capacity to change the permeability of the outer membrane of the cell wall, which in 

turn allows meropenem to act inside the bacteria [35].  

The cyclolipopeptide analog of polymyxin AMP38, also display synergy with the 

carbapenem imipenem, but it did not show anti-biofilm activity, except when 

administered in combination with imipenem at 62 ug/ml [36]. Other AMPs, like the α-

helical AMP PL-5  [37] or the synthetic protegrin IB-367  have been shown to display 

synergy with imipenem in P. aeruginosa, evaluated with the checkerboard method,  

although no antibiofilm activity has been reported in this bacteria to date.  

Biofilms are social communities of bacteria that involve several interactions. Generally, 

biofilm-associated bacteria, such as P. aeruginosa, cause chronic infections that may 

persist for decades. Consequently, biofilm-associated infections treatment has become 

an important part of antimicrobial chemotherapy, as they are not affected by 

conventional antibiotic therapeutic concentration [38]. In the last decade, growing 

interest has been devoted to the possible use of AMPs as antibiofilm agents [31,39–41]. 

In this context, some AMPs have been reported to prevent biofilm formation and/or to 

eradicate established ones, and in some cases mechanisms beyond these antibiofilm 

effects have been hypothesized [31,42]. 

In order to explore P5 antibiofilm activity, inhibition of biofilm formation was tested. 

Inhibition activity of P5 at 0.5×MIC was modest (20% inhibition), without a significant 

difference at 0.25×MIC (Figure 4). These data correlate with the confocal microscopy 

images obtained for the biofilm, depicting slight differences in biofilm height, relative 

to the control (Figure 5).  

 It is worth to notice that for tobramycin and gentamycin, the biofilm biomass increases 

at 0.25×MIC and 0.5×MIC. A possible explanation could be that the cells that remain 

able to grow must face a very hostile environment and synthesize a larger amount of 

exoproducts than usual, probably in the attempt to protect themselves. P. aeruginosa 

produces alginate exopolysaccharide (naturally anionic), so the presence of this matrix 

may explain the slow penetration of fluoroquinolones and aminoglycosides. It has been 

reported that sub-MIC concentrations of β-lactam antibiotics induce increased alginate 

synthesis in P. aeruginosa biofilms [43,44]. In this work, we observed that sub MIC 

concentrations of two aminoglycosides (tobramycin and gentamycin) also induced this 

phenomenon (figure 4B). 

A different situation occurs for established biofilms, which tend to be disrupted upon P5 

incubation. In this case, the peptide promoted a significant disruption in pre-formed 
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biofilms, decreasing their biomass in approximately 50% (Figure 6). Although the 

crystal violet staining enables a good estimate of biofilm mass, it is not informative on 

bacteria viability, being impossible to demonstrate bactericidal or directed activity of 

the peptide towards the biofilm [45]. For that reason, bacterial metabolism viability was 

also evaluated by the MTT assay. Data revealed a significant decrease in bacterial 

metabolism of biofilm-associated cells after P5 treatment, demonstrating that the 

peptide extensively affects these bacteria (Figure 7). It is generally accepted that 

metabolic activity reduction analyzed by the MTT assay may be due to cell death. 

Nevertheless, in the case of biofilms, that correlation may not be so straightforward, 

since biofilm-associated bacteria can enter a reversible dormant status, in which cells 

are metabolically inactive [46]. Therefore, confocal imaging of live/dead cell staining 

was used to determine P5 effect on biofilm viability. Loss of bacterial cell viability was 

confirmed (Figure 8C), with the number of dead cells increasing to ~90% when 

incubated with P5 (8xMIC).  By observing the 3D biofilm architecture (Figure 8), it was 

also possible to visualize a loss of structure and homogeneity in the biofilms treated 

with P5. To further confirm this, AFM imaging was also performed. As previously 

indicated, P5 promoted biofilm disruption (Figure 9B), with severe damage to biofilm 

architecture and bacterial cells. 

Other synthetic cationic AMPs, derived from natural peptides such as the human 

cathelicidin LL-37 and the bovine peptide indolicidin [47], have been identified as 

biofilm inhibitory compounds [48]. Unlike P5, LL-37 at subinhibitory concentrations 

displayed a strong biofilm inhibition (approx. 80%), but a mild biofilm eradication in a 

P. aeruginosa culture (50% after 4 days treatment) [47], just the reverse of P5. The 

AMP obtained from frog´s skin ocellatin-PT3 was also reported to inhibit the 

proliferation of 48-h mature MDR P. aeruginosa biofilms in concentrations up to 10× 

MIC, although no biofilm rupture was observed [18].  

The immunomodulatory peptide IDR (innate defense regulator)-1018 prevented P. 

aeruginosa biofilm development at subinhibitory concentrations and eradicated or 

reduced existing biofilms at 10 µg/ml [49], evaluated using a flow cell apparatus and 

then monitoring biofilm formation for 3 days (different experimental conditions from 

those used in this work) 

In conclusion, this study shows that P5, a de novo designed antimicrobial peptide, 

displays interesting synergistic activity with meropenem, biofilm disruptive activity and 

biofilm-associated bacteria-killing properties. This AMP displays relatively low toxicity 

evaluated in vitro in a human erythrocytes hemolytic assay [14] and also in vivo, when 

administered by instillation to Balb/c mice at 10 mg/kg (data not shown, manuscript 

under review). 

Besides further experiments will be required, these results suggest that this molecule 

might be an interesting candidate for future drug development strategies, alone or in 

combination with carbapenems, with a particular interest in chronic P. aeruginosa 

infections, commonly associated with biofilm formation. 
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Figures legends 

 

 

Figure 1. Growth kinetics of P. aeruginosa M13513 incubated with different P5 

concentrations. (A) Growth kinetics upon incubation of P5 at sub-MIC (8-32 µg/ml) 

and above MIC (64 µg/ml) concentrations, monitored for a total time of 20h. Control 

(ctrl+) was defined as the growth kinetics of P. aeruginosa in the absence of any 

antimicrobial molecule. (B) Logarithmic growth curve at 20h of incubation with 

different P5 concentrations. Non-linear fitting was performed using GraphPad Prism 

software, obtaining an IC
50

 of 19.1 µg/ml. MIC value for P5 was previously determined 

as 50 µg/ml, after testing concentrations ranging from 32 to 64 µg/ml (data not shown). 

One representative experiment of n=3. 

Figure 2. Outer-membrane permeabilization of P. aeruginosa M13513 cells. 

Bacterial cells were incubated with NPN in the presence of different P5 concentrations. 

(A) NPN uptake by P. aeruginosa incubated with different concentration of P5, 

measured by an increase in fluorescence intensity after probe partition into the 

hydrophobic core of the outer membrane. Data presented as mean ±SD. Statistical 

comparison using one-way ANOVA followed by a Dunnett’s post-test for multiple 

comparisons vs. control (absence of peptide); *p<0.05, ***p<0.001,N=3. (B) 

Representation of NPN uptake kinetics after the addition of 14.18mg/ml of P5 (dashed 

line in panel A). 

Figure 3. Synergistic activity of P5 and meropenemagainstP. 

aeruginosaM13513. Bacteria were grown for 24 h with 0.5×MIC of P5, 0.5×MIC of 

meropenem, or both at 0.5×MIC each. GC: growth control. The decrease in 2 

logarithmic units for the combined formulation (P5 + Mer), comparing it to the most 

active agent (Mer), indicates a synergistic effect. One representative experiment of n=3 

Figure 4. Inhibition of P. aeruginosa M13513 biofilm formation.(A) Bacteria 

were incubated with P5 at 0.25×MIC, 0.5×MIC, or (B) with the control conventional 

antibiotics tobramycin (T) or gentamycin (G). After 24h of biofilm growth, dishes were 

washed, and total biomass was quantified using crystal violet. One-way ANOVA 

followed by Dunnett’s multiple comparison test; *p<0.05. N=3 independent 

experiments 

Figure 5. Confocal microscopy evaluation of the inhibition of P. aeruginosa 

M13513 biofilm formation. Bacteria cells were incubated for 24 h with P5 at 

0.5×MIC. Staining was obtained with SYTO9 (green fluorescence, live) and propidium 

iodide (red fluorescence, dead). (A) and (B) present 3D biofilm representations (200X) 

of the control and P5-treated, respectively. (C) Evaluation of viable and dead cells 

obtained through image analysis is represented in bars, depicting mean ± SD. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

21 

 

Figure 6. Eradication of pre-formed P. aeruginosa M13513 biofilms. After 24h 

of bacteria growth and biofilm formation, P5 (A) or conventional antibiotics (B) were 

added at supra-MIC concentrations for another 24h. Concentrations tested ranged from 

the MIC to 8×MIC. The biofilm after peptide or conventional antibiotic (T, tobramycin; 

G, gentamycin) treatment was measured using crystal violet. One-way ANOVA 

followed by Dunnett’s multiple comparison test; *p<0.05, ***p<0.0001. N=3 

independent experiments 

Figure 7. P. aeruginosa M13513 cell viability in pre-formed biofilms.P5 (A) or 

conventional antibiotics (B) treatment after 24h of pre-formed bacterial 

biofilms.Concentration tested ranged from 2 to 8×MIC. Cell viability (metabolic 

activity) was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. One-way ANOVA followed by Dunnett’s multiple comparison 

test; *p<0.05,**p<0.001, ***p<0.0001.T, tobramycin; G, gentamycin. N=3 independent 

experiments 

Figure 8. Confocal microscopy evaluation of pre-formed P. aeruginosa M13513 

biofilms eradication. Biofilms were grown for 24h and then treated with P5 at 8×MIC. 

Live/dead staining was performed by SYTO9 and PI (live/green and dead/red 

fluorescence, respectively). 3D biofilm representation (200X) of untreated control cells 

(A) and cells treated with P5 (B). Evaluation of viable and dead cells (C) is represented 

in bars, depicting mean ± SD. 

Figure 9. Atomic force microscopy evaluation of pre-formed P. aeruginosa 

M13513 biofilms eradication. Biofilms were grown for 24 h and then treated with P5 

at 8 × MIC. AFM height images of untreated control cells (A) and cells treated with P5 

(B). Representative images of bacteria are shown for each treatment. 
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Highlights 

 

 The antimicrobial peptide P5 displays synergistic activity with meropenem in a 

carbapenem-resistant strain of P. aeruginosa 

 P5 permeablizes the membrane of P. aeruginosa 

 P5 eradicates P.aeruginosa biofilms and displays bactericidal activity against biofilm 

associated bacteria 
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