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Abstract

We lay the ground for an Isabelle/ZF formalization of Cohen’s technique of forcing. We formalize the definition of forcing notions
as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using
it we prove the Rasiowa-Sikorski lemma on the existence of generic filters.
Given a transitive set M , we define its generic extension M [G], the canonical names for elements of M , and finally show that if
M satisfies the axiom of pairing, then M [G] also does. We also prove M [G] is transitive.
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1 Introduction

Set Theory plays a double role in Mathematics: It is one of its possible foundations and also an active
research area. As it is widely known, Georg Cantor introduced its main concepts and in particular showed the
fundamental result that the real line, R is not equipotent to the natural numbers. Soon after this, he posed
the most important question in the field, written as a conjecture:

The Continuum Hypothesis (CH ). Every uncountable subset of R is equipotent to R.

The current axiomatic foundation of Set Theory is through first-order logic and uses the axioms devised by
Zermelo and Fraenkel, including the Axiom of Choice (AC ) among them. This theory is known by the ZFC
acronym. Gödel [3] showed that CH cannot be refuted using ZFC , unless this theory itself is inconsistent (we
say that CH is relatively consistent with ZFC ). For a while, this result left the possibility that one might be
able to show ZFC |= CH , but in a groundbreaking work [2], Paul Cohen discovered the technique of forcing and
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proved that ¬CH is relatively consistent with ZFC . Forcing has been used since then for showing innumerable
independence results and to perform mathematical constructions.

A great part of Gödel’s work on this subject has been formalized in Isabelle [19] by Lawrence Paulson [10].
This paper formalizes a first part of the machinery of forcing, mostly by following the new edition of the classical
book on the subject by Kunen [6]. In the rest of the introduction we discuss some of the set-theoretical details
involved and explain briefly Paulson’s formalization.

1.1 Models of ZFC

By Gödel’s Second Incompleteness Theorem, we cannot prove that there exists a model of ZFC . More formally,
if we assume that mathematical proofs can be encoded as theorems of ZFC and that the latter do not lead to
contradictions (i.e., ZFC is consistent), then we cannot prove that there exists a set M and a binary relation
E such that 〈M,E〉 satisfies the ZFC axioms.

A relative consistency proof for an axiom A is then obtained by assuming that there exists a model of
ZFC, say 〈M,E〉, and constructing another model 〈M ′, E′〉 for ZFC +A. We single out a very special kind of
models:

Definition 1.1 (i) A set M (of sets) is transitive if for all x ∈ M and y ∈ x, we have y ∈ M (i.e., every
element of M is a subset of M).

(ii) 〈M,E〉 is a transitive model if M is transitive and E is the membership relation ∈ restricted to M . It is
countable if M is equipotent to a subset of N; we then say that the model M is a ctm.

As in the last sentence, one usually refers to a transitive model by the underlying set because the relation is
fixed.

In spite of Gödel’s Second Incompleteness Theorem, one can find transitive models for every finite fragment
of ZFC . More precisely,

Theorem 1.2 For each finite subset Φ ⊆ ZFC , the statement “there exists a countable transitive model of
Φ” is a theorem of ZFC .

This follows by a combination of the Reflection Principle, the Löwenheim-Skolem Theorem, and the Mostowksi
Collapse. The reader can consult the details in [6]. Consistency arguments that assume the existence of a
ctm M of ZFC can usually be replaced by a model as in Theorem 1.2, since a first-order proof (e.g. of a
contradiction) 5 involves only finitely many axioms.

It is instructive to sketch Gödel’s argument of the relative consistency of CH : Assuming that M is a ctm
of ZFC , Gödel showed that M contains a minimal submodel LM of the same “height” (i.e. having the same
ordinals) that satisfies ZFC + CH . The sets in LM are called constructible and are in a sense “definable.” In
fact, there is a first-order formula L such that LM = {x ∈ M : M |= L(x)}. To show that LM |= ZFC + CH ,
one uses the fact that ZFC holds in M .

It is therefore a primary need to have means to correlate (first-order) properties satisfied by a model M
and those of a submodel N ⊆ M . As a simple example on this, consider M := {a, b, c, {a, b}, {a, b, c}} and
N := {a, b, {a, b, c}}, and let

ϕ(x, y, z) := ∀w. (w ∈ z ←→ w = x ∨ w = y).

Then we have
M 6|= ϕ(a, b, {a, b, c}) but N |= ϕ(a, b, {a, b, c}).

There is a discrepancy between M and N about {a, b, c} being “the (unordered) pair of a and b.” We say that
ϕ holds for a, b, {a, b, c} relative to N . It is immediate to see that ϕ holds for x, y, z relative to N if and only if

ϕN (x, y, z) := ∀w. w ∈ N −→ (w ∈ z ←→ w = x ∨ w = y)

holds. ϕN is called the relativization of ϕ to N . One can generalize this operation of relativization to the class
of all sets satisfying a first-order predicate C in a straightforward way:

ϕC(x, y, z) := ∀w. C(w) −→ (w ∈ z ←→ w = x ∨ w = y)

5 It is relevant to this point that both the approaches by Gödel and Cohen for showing relative consistency of an axiom A can be
used to obtain an algorithm transforming a proof concluding a contradiction from ZFC + A to one from ZFC .
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It can be shown elementarily that if M and N are transitive, ϕN holds if and only if ϕM holds, for
x, y, z ∈ N . We say then that ϕ is absolute between N and M . The concepts of relativization and absoluteness
are central to the task of transferring truth of axioms in M to LM , and constitute the hardest part of Paulson’s
development.

1.2 Forcing

Forcing is a technique to extend countable transitive models of ZFC . This process is guaranteed to preserve
the ZFC axioms while allowing to fine-tune what other first-order properties the extension will have. Given a
ctm M of ZFC and a set G, one constructs a new ctm M [G] that includes M and contains G, and proves that
under some hypotheses (G being “generic”), M [G] satisfies ZFC .

The easiest way to define genericity is by using a preorder with top 〈P,≤,1〉 in M . In Section 3 we formalize
the definitions of dense subset and filter of P, and we say that G is an M -generic filter if it intersects every
dense subset of P that lies in M .

The Rasiowa-Sikorski lemma (RSL) states that for any preorder P and any countable family {Dn : n ∈ N}
of dense subsets of P there is a filter intersecting every Di. Thus, there are generic filters G for countable
transitive models. In general, no such G belongs to M and therefore the extension M [G] is proper. We
formalize the proof of RSL in Section 3.2. A requisite result on a version of the Axiom of Choice is formalized
in Section 3.1. We then apply RSL to prove the existence of generic filters in Section 4.1.

Every y ∈ M [G] is obtained from an element ẏ of M , thus elements of M are construed as names or
codes for elements of M [G]. The decoding is given by the function val , which takes the generic filter G as a
parameter. To prove that M is contained in M [G] it suffices to give a name for each element of M ; we define
the function check which assigns a name for each x ∈ M . Showing that check(x) ∈ M when x ∈ M involves
some technical issues that will be addressed in a further work. We explain names, val , and check in Section 4.2.

A central part of this formalization project involves showing that ZFC holds in the generic extension. This
is most relevant since forcing is essentially the only known way to extend models of ZFC (while preserving
ordinals). The most difficult step to achieve this goal is to define the forcing relation, that allows to connect
satisfaction in M to that of M [G]; this is needed to show that the Powerset axiom and the axiom schemes of
Separation and Replacement hold in M [G]. In Section 5 we tackle the Pairing Axiom. This does not require
the forcing relation, but provides an illustration of the use of names. The development can be downloaded
from https://cs.famaf.unc.edu.ar/~mpagano/forcing/.

1.3 Related work

Formalization of mathematics serves many purposes [16]. The most obvious one is to increase reliability in a
result and/or its proof. This has been the original motivation that lead Voevodsky to gather many researchers
around homotopy type theory and its formalization in Coq [17]; the same applies to the four color theorem
(checked by Gonthier [4]) and the formidable Flyspeck project [5] by the team conducted by Hales.

In our particular case, forcing and the set theoretic techniques that are being formalized can be regarded
as a mature technology and thus the main goal is not to increase confidence. Nevertheless, the level of detail
in a formalization of this sort always provide additional information about the inner workings of the theory:
It is expected, for instance, to have a detailed account of which axioms are necessary to define and use forcing.
Finally, we support the vision that a growing corpus of formalized mathematics can be a useful library for the
future generations. The question of how to systematize this corpus is an ongoing project by Paulson [11].

We will now discuss very succinctly recent formalizations of set theory and forcing. The closest formal-
izations are those based on Isabelle. Let us remark that Isabelle allows for different logical foundations; in
particular, Paulson carried out his formalizations on top of Isabelle/FOL which is based on first-order logic.

There is another major framework in Isabelle based on higher order logic, Isabelle/HOL. This framework is
very active, and as a consequence more automated tools are available. Isabelle/HOL has basic chapters on set
theory. One of those, by Steven Obua, proceeds up to well founded relations and provides translations between
types in HOL (for instance nat) to sets (elements of type ZF). Another one, by A. Popescu and D. Traytel,
reaches cardinal arithmetic. This is fairly limited for our purposes.

Concerning automation, B. Zhan has developed a new tool called auto2 and applied it to untyped set
theory [20]. He has redeveloped essentially the basic results in Isabelle/ZF, but goes in a different direction.
Nevertheless, a majority of results in Isabelle/ZF are not yet implemented using this tool, and another downside
is that proofs using it do not follow the standard Isar language (see Section 2).

As far as we know, there is little progress on formalizations of forcing in type theory. Most relevant is
the work by K. Quirin [14], where a sheaf-theoretic initial approach to forcing is implemented in Coq. This
language is extremely different to the standard approach of constructing models of ZFC , and it might be
difficult (once the forcing machinery is set) to translate results in the literature using ctms to this one. In
any case, the translation to set theory of what Quirin accomplishes is to define a generic extension (where CH
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should fail) and to construct a set K (a candidate counterexample) and injections N ↪→ K and K ↪→ R. But
the most important part, that is, that there are no surjections N� K and K � R, is left for a future work.

2 Isabelle/ZF

Let us introduce briefly Paulson’s formalization of ZF [12] in Isabelle and the main aspects of his formal proof
for the relative consistency of the Axiom of Choice [10]; we will only focus on those aspects that are essential
to keep this paper self-contained, and refer the interested reader to Paulson’s articles. Isabelle/ZF includes a
development of classical first-order logic, FOL. Both of them are built upon the core library Pure.

In Isabelle/ZF sets are individuals, i.e. terms of type i and formulas have type o (akin to a Bool type, but at
the object level). The axiomatization of ZFC in Isabelle/ZF proceeds by postulating a binary predicate ∈ and
several set constructors (terms and functions with values in i) corresponding to the empty set (the constant 0),
powersets, and one further constant inf for an infinite set. The axioms, being formulas, are terms of type o; the
foundation axiom, for example, is formalized as (the universal closure of) "A = 0 ∨ (∃ x∈A. ∀ y∈x. y /∈A)".
Besides the axioms, Isabelle/ZF also introduces several definitions (for example, pairs and sets defined by
comprehension using separation) and syntactic abbreviations to keep the formalization close to the customary
manner of doing mathematics. Working with the library and extending it is quite straightforward. As an
example, we introduce a new term-former (which is a combination of instances of replacement and separation)
denoting the image of a function over a set defined by comprehension, namely {b(x) : x ∈ A and Q(x)}:
definition SepReplace :: "[i, i⇒i, i⇒ o] ⇒i" where

"SepReplace(A,b,Q) == {y . x∈A, y=b(x) ∧ Q(x)}"

We are then able to add the abbreviation {b .. x∈A, Q} as a notation for SepReplace(A,b,Q). The charac-
terization of our new constructor is given by

lemma Sep_and_Replace: "{b(x) .. x∈A, Q(x) } = {b(x) . x∈{y∈A. Q(y)}}"

We now discuss relativization in Isabelle/ZF. Relativized versions of the axioms can be found in the for-
malization of constructibility [10]. For example, the relativized Axiom of Foundation is

definition foundation_ax :: "(i=>o) => o" where
"foundation_ax(M) ==

∀ x[M]. (∃ y[M]. y∈x) −→ (∃ y[M]. y∈x & ~(∃ z[M]. z∈x & z ∈ y))"

The relativized quantifier ∀ x[M]. P(x) is a shorthand for ∀ x. M(x) −→ P(x). In order to express that
a (set) model satisfies this axiom we use the “coercion” ## :: i => (i => o) (that maps a set A to the
predicate λx.(x ∈ A)) provided by Isabelle/ZF. As a trivial example we can show that the empty set satisfies
Foundation:

lemma emp_foundation : "foundation_ax(##0)"

Mathematical texts usually start by fixing a context that defines parameters and assumptions needed to
develop theorems and results. In Isabelle the way of defining contexts is through locales [1]. Locales can be
combined and extended by adding more parameters and assuming more facts, leading to a new locale. For
example a context describing lattices can be extended to distributive lattices. The way to instantiate a locale is
by interpreting it, which consists of giving concrete values to parameters and proving the assumptions. In our
work, we use locales to organize the formalization and to make explicit the assumptions of the most important
results.

Let us close this section with a brief comment about the facilities provided by the Isabelle framework. The
edition is done in an IDE called jEdit, which is bundled with the standard Isabelle distribution; it offers the
user a fair amount of tools in order to manage theory files, searching for theorems and concepts spread through
the source files, and includes tracing utilities for the automatic tools. A main feature is a window showing the
proof state, where the active (sub)goals are shown, along with the already obtained results and possibly errors.

Isabelle proofs can be written in two dialects. The older one, and also more basic, follows a procedural
approach, where one applies several tactics in order to decompose the goal into simpler ones and then solving
them (with the aid of automation); the original work by Paulson used this method. Under this approach proofs
are constructed top-down resulting in proof-scripts that conceal the mathematical reasoning behind the proof,
since the intermediate steps are only shown in the proof state. For this reason, the proof language Isar was
developed, starting with Wenzel’s work [18]. Isar is mostly declarative, and its main purpose is to construct
proof documents that (in principle) can be read and understood without the need of running the code.

We started this development using the procedural approach, but soon after we realized that for our purposes
the Isar language was far more appropriate.
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3 Forcing notions

In this section we present a proof of the Rasiowa-Sikorski lemma which uses the principle of dependent choices.
We start by introducing the necessary definitions about preorders; then, we explain and prove the principle of
dependent choice most suitable for our purpose.

It is to be noted that the order of presentation of the material deviates a bit from the dependency of the
source files. The file containing the most basic results and definitions that follow imports that containing the
results of Subsection 3.1.

Definition 3.1 A preorder on a set P is a binary relation 6 which is reflexive and transitive.

The preorder relation will be represented as a set of pairs, and hence it is a term of type i.

Definition 3.2 Given a preorder (P,6) we say that two elements p, q are compatible if they have a lower
bound in P . Notice that the elements of P are also sets, therefore they have type i.

definition compat_in :: "i⇒i⇒i⇒i⇒o" where
"compat_in(P,leq,p,q) == ∃ d∈P . 〈d,p〉∈leq ∧ 〈d,q〉∈leq"

Definition 3.3 A forcing notion is a preorder (P,6) with a maximal element 1 ∈ P .

locale forcing_notion =
fixes P leq one
assumes one_in_P: "one ∈ P"

and leq_preord: "preorder_on(P,leq)"
and one_max: "∀ p∈P. 〈p,one〉∈leq"

The locale forcing_notion introduces a mathematical context where we work assuming the forcing notion
(P,6,1). In the following definitions we are in the locale forcing_notion.

A set D is dense if every element p ∈ P has a lower bound in D and there is also a weaker definition which
asks for a lower bound in D only for the elements below some fixed element q.

definition dense :: "i⇒o" where
"dense(D) == ∀ p∈P. ∃ d∈D . 〈d,p〉∈leq"

definition dense_below :: "i⇒i⇒o" where
"dense_below(D,q) == ∀ p∈P. 〈p,q〉∈leq −→ (∃ d∈D . 〈d,p〉∈leq)"

Since the relation 6 is reflexive, it is obvious that P is dense. Actually, this follows automatically once the
appropriate definitions are unfolded:

lemma P_dense: "dense(P)"
using leq_preord
unfolding preorder_on_def refl_def dense_def
by blast

Here, the automatic tactic blast solves the goal. In the procedural approach, goals are refined with the
command apply tactic, and proofs are finished using done. Then by . . . is an idiom for apply . . . done.

We say that F ⊆ P is increasing (or upward closed) if every extension of any element in F is also in F .

definition increasing :: "i⇒o" where
"increasing(F) == ∀ x∈F. ∀ p∈P . 〈x,p〉∈leq −→ p∈F"

A filter is an increasing set G with all its elements being compatible in G.

definition filter :: "i⇒o" where
"filter(G) == G⊆P ∧ increasing(G) ∧ (∀ p∈G. ∀ q∈G. compat_in(G,leq,p,q))"

We finally introduce the upward closure of a set and prove that the closure of A is a filter if its elements
are compatible in A.

definition upclosure :: "i⇒i" where
"upclosure(A) == {p∈P.∃ a∈A.〈a,p〉∈leq}"

lemma closure_compat_filter: "A⊆P =⇒ (∀ p∈A.∀ q∈A. compat_in(A,leq,p,q)) =⇒
filter(upclosure(A))"

As usual with procedural proofs, the refinement process goes “backwards,” from the main goal to simpler ones.
The proof of this last lemma takes 21 lines and 34 proof commands and is one of the longest procedural proofs
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in the development. It was at the moment of its implementation that we realized that a declarative approach
was best because, apart from being more readable, the reasoning flows mostly in a forward fashion.

3.1 A sequence version of Dependent Choices

The Rasiowa-Sikorski lemma follows naturally from a “pointed” version of the Principle of Dependent Choices
(DC ) which, in turn, is a consequence of the Axiom of Choice (AC ). It is therefore natural to take as a starting
point the theory AC which adds the latter axiom to the toolkit of Isabelle/ZF.

The statement we are interested in is the following:

(Pointed DC ) Let R be a binary relation on A, and a ∈ A. If ∀x ∈ A.∃y ∈ A. x R y, then there exists
f : ω → A such that f(0) = a and f(n) R f(n+ 1) for all n ∈ ω.

Two different versions of DC (called DC 0 and DC (κ)) have already been formalized by Krzysztof
Grabczewski [13], as part of a study of equivalents of AC (following Rubin and Rubin [15]). Nevertheless,
those are not convenient for our purposes. In fact, the axiom DC 0 corresponds essentially to our Pointed DC
but without the constraint f(0) = a; it is a nice exercise to show that DC 0 implies Pointed DC , but a formal-
ization would have a moderate length. On the other hand, DC (κ) is rather different in nature and it is tailored
to obtain another proposition equivalent to the axiom of choice (actually, AC ←→ (∀κ. Card(κ) −→ DC (κ))).
Finally, the shortest path from AC to DC 0 using already formalized material involves a complicated de-
tour (130+ proof commands spanning various files of the ZF-AC theory and going through the Well Ordering
Theorem and DC (ω)), compared to the mere 11 commands from AC to AC_func_Pow. This last one is the
choice principle that we use in our formalization of Pointed DC , and states the existence of choice functions
(“selectors”) on P(A) \ {∅}):

∃(s : P(A) \ {∅} → A).∀X ⊆ A. X 6= ∅ −→ s(X) ∈ X.

Another advantage of taking AC_func_Pow as a starting point is that it does not involve proper classes: The
version of AC in Isabelle/ZF corresponds to an axiom scheme of first-order logic and as such is not a standard
formulation.

The strategy to prove Pointed DC (following a proof in Moschovakis [7]) is to define the function f discussed
above by primitive recursion on the naturals, which can be done easily thanks to the package of Isabelle/ZF
[8,9] for definitions by recursion on inductively defined sets. 6

consts dc_witness :: "i ⇒ i ⇒ i ⇒ i ⇒ i ⇒ i"
primrec
wit0 : "dc_witness(0,A,a,s,R) = a"
witrec : "dc_witness(succ(n),A,a,s,R) = s‘{x∈A. 〈dc_witness(n,A,a,s,R),x〉∈R }"

Besides the natural argument and the parameters A, a, and R, the function dc_witness has a function s
as a parameter. If this function is a selector for P(A) \ {∅}, the function f(n) := dc_witness(n,A, a, s, R)
will satify DC . Notice that s is a term of type i (a function construed as a set of pairs) and an expression s‘b
is notation for apply(s,b), where apply :: "i ⇒ i ⇒ i" is the operation of function application.

The proof is mostly routine; after a few lemmas (26 proof commands in total) we obtain the following
theorem:

theorem pointed_DC : "(∀ x∈A. ∃ y∈A. 〈x,y〉∈ R) =⇒
∀ a∈A. (∃ f ∈ nat→A. f‘0 = a ∧ (∀ n ∈ nat. 〈f‘n,f‘succ(n)〉∈R))"

We need a further, “diagonal” version of DC to prove Rasiowa-Sikorski. That is, if the assumption holds
for a sequence of relations Sn, then f(n) Sn+1 f(n+ 1) for all n.

We first obtain a corollary of DC changing A for A× nat, whose procedural proof takes 16 lines:

corollary DC_on_A_x_nat :
"(∀ x∈A×nat. ∃ y∈A. 〈x,〈y,succ(snd(x))〉〉 ∈ R) =⇒
∀ a∈A. (∃ f ∈ nat→A. f‘0 = a ∧ (∀ n ∈ nat. 〈〈f‘n,n〉,〈f‘succ(n),succ(n)〉〉∈R))"

The following lemma is then proved automatically:

lemma aux_sequence_DC : "∀ x∈A. ∀ n∈nat. ∃ y∈A. 〈x,y〉 ∈ S‘n =⇒
∀ x∈A×nat. ∃ y∈A. 〈x,〈y,succ(snd(x))〉〉 ∈ {〈〈w,n〉,〈y,m〉〉∈(A×nat)×(A×nat). 〈w,y〉∈S‘m }"
by auto

6 The package figures out the inductive set at hand and checks that the recursive definition makes sense; for example, it rejects
definitions with a missing case.

6



Gunther, Pagano, Sánchez Terraf

And after a short proof we arrive to DC for a sequence of relations:

lemma sequence_DC: "∀ x∈A. ∀ n∈nat. ∃ y∈A. 〈x,y〉 ∈ S‘n =⇒
∀ a∈A. (∃ f ∈ nat→A. f‘0 = a ∧ (∀ n ∈ nat. 〈f‘n,f‘succ(n)〉∈S‘succ(n)))"

apply (drule aux_sequence_DC)
apply (drule DC_on_A_x_nat, auto)
done

3.2 The Rasiowa-Sikorski lemma

In order to state this Lemma, we gather the relevant hypotheses into a locale:

locale countable_generic = forcing_notion +
fixes D
assumes countable_subs_of_P: "D ∈ nat→Pow(P)"
and seq_of_denses: "∀ n ∈ nat. dense(D‘n)"

That is, D is a sequence of dense subsets of the poset P . A filter is D-generic if it intersects every dense set
in the sequence.

definition D_generic :: "i⇒o" where
"D_generic(G) == filter(G) ∧ (∀ n∈nat.(D‘n)∩G 6=0)"

We can now state the Rasiowa-Sikorski Lemma.

theorem rasiowa_sikorski:
"p∈P =⇒ ∃ G. p∈G ∧ D_generic(G)"

The intuitive argument for the result is simple: Once p0 = p ∈ P is fixed, we can recursively choose pn+1

such that pn ≥ pn+1 ∈ Dn, since Dn is dense in P . Then the filter generated by {pn : n ∈ ω} intersects each
set in the sequence {Dn}n. This argument appeals to the sequence version of DC ; we have to prove first that
the relevant relation satisfies its hypothesis:

lemma RS_relation:
assumes

1: "x∈P"
and

2: "n∈nat"
shows

"∃ y∈P. 〈x,y〉 ∈ (λm∈nat. {〈x,y〉∈P*P. 〈y,x〉∈leq ∧ y∈D‘(pred(m))})‘n"
These two proofs have been implemented using the Isar proof language.

4 The generic extension

Cohen’s technique of forcing consists of constructing new models of ZFC by adding a generic subset G of the
forcing notion P (a preorder with top). Given a model M of ZFC , the extension with the generic subset G
is called the generic extension of M , denoted M [G]. In this section we introduce all the necessary concepts
and results for defining M [G]; namely, we show, using Rasiowa-Sikorski, that every preorder in a ctm admits
a generic filter and also develop the machinery of names. As an application of the latter, we prove some basic
results about the generic extension.

4.1 The generic filter

The following locale gathers the data needed to ensure the existence of an M -generic filter for a poset P.

locale forcing_data = forcing_notion +
fixes M enum
assumes M_countable: "enum∈bij(nat,M)"

and P_in_M: "P ∈ M"
and leq_in_M: "leq ∈ M"
and trans_M: "Transset(M)"

An immediate consequence of the Rasiowa-Sikorski Lemma is the existence of an M -generic filter for a
poset P.

lemma generic_filter_existence:
"p∈P =⇒ ∃ G. p∈G ∧ M_generic(G)"

7
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By defining an appropriate countable sequence of dense subsets of P,

let
?D="λn∈nat. (if (enum‘n⊆P ∧ dense(enum‘n)) then enum‘n else P)"

we can instantiate the locale countable_generic

have
Eq2: "∀ n∈nat. ?D‘n ∈ Pow(P)"

by auto
then have

Eq3: "?D:nat→Pow(P)"
by (rule lam_codomain)

have
Eq4: "∀ n∈nat. dense(?D‘n)"

. . .

from Eq3 and Eq4 interpret
cg: countable_generic P leq one ?D

by (unfold_locales, auto)

and then a D-generic filter given by Rasiowa-Sikorski will be M -generic by construction.

from cg.rasiowa_sikorski and Eq1 obtain G where
Eq6: "p∈G ∧ filter(G) ∧ (∀ n∈nat.(?D‘n)∩G 6=0)"

unfolding cg.D_generic_def by blast
then have

Eq7: "(∀ D∈M. D⊆P ∧ dense(D)−→D∩G 6=0)"

We omit the rest of this Isar proof.

4.2 Names

We formalize the function val that allows to construct the elements of the generic extension M [G] from elements
of the ctm M and the generic filter G. The definition of val can be written succinctly as a recursive equation

val(G, τ) := {val(G, σ) : ∃p ∈ P. (〈σ, p〉 ∈ τ ∧ p ∈ G)}. (1)

The justification that val is well-defined comes from a general result (transfinite recursion on well-founded
relations [6, p. 48]). Given a well-founded relation R ⊆ A × A and a functional H : A × (A → A) → A, the
principle asserts the existence of a function F : A→ A satisfying F (a) = H(a, F ↑ (R−1(a))). This principle is
formalized in Isabelle/ZF and one can use the operator wfrec 7 to define functions using transfinite recursion.
To be precise, wfrec :: [i, i, [i,i]=>i] => i is a slight variation, where the first argument is the relation,
the third is the functional, and the second corresponds to the argument of F . Notice that the relation and the
function argument of the functional are internalized as terms of type i.

In our case the functional is called Hv and takes an additional argument for the parameter G:

Hv(G, y, f) = {f(x) : x ∈ dom(y) ∧ ∃p ∈ P. (〈x, p〉 ∈ y ∧ p ∈ G)}

while the relation is given by:
x ed y ⇐⇒ ∃p.〈x, p〉 ∈ y.

Recall that in ZFC , an ordered pair 〈x, y〉 is the set {{x}, {x, y}}. It is trivial to deduce the well-foundedness
of ed from the fact that ∈ is well-founded, which follows from the Foundation Axiom.

In our formalization of this recursion, the first argument of wfrec is the term of type i obtained by
restricting the relation ed to a set:

definition
edrel :: "i ⇒ i" where
"edrel(A) == {<x,y> ∈ A*A . x ∈ domain(y)}"

Since edrel(A) is a subset of a well-founded relation (the transitive closure of the membership relation re-
stricted to A), then it is well-founded as well.

7 Notice that this form of recursive definitions is more general than the one used in the previous section to define dc_witness.
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lemma wf_edrel : "wf(edrel(A))"
apply (rule wf_subset [of "trancl(Memrel(eclose(A)))"])
apply (auto simp add:edrel_sub_memrel wf_trancl wf_Memrel)
done

All but one lemma used in the above proof (wf_subset, wf_trancl, and wf_Memrel) are already present in
Isabelle/ZF. The remaining technical result has been proved using the Isar language:

lemma edrel_sub_memrel: "edrel(A) ⊆ trancl(Memrel(eclose(A)))"

The formalization of the functional Hv is straightforward and val is defined using wfrec :

definition
Hv :: "i⇒i⇒i⇒i" where
"Hv(G,y,f) == { f‘x .. x∈ domain(y), ∃ p∈P. <x,p> ∈ y ∧ p ∈ G }"

definition
val :: "i⇒i⇒i" where
"val(G,τ) == wfrec(edrel(eclose(M)), τ, Hv(G))"

Then we can recover the recursive expression (1) thanks to the following lemma:

lemma def_val:
"x∈M =⇒ val(G,x) = {val(G,t) .. t∈domain(x) , ∃ p∈P . 〈t, p〉∈x ∧ p ∈ G }"

We can finally define the generic extension of M by G, also setting up the notation M [G] for it:

definition
GenExt :: "i⇒i" ("M[_]") where
"GenExt(G)== {val(G,τ). τ ∈ M}"

It is conventional in Isabelle/ZF to define introduction and destruction rules for definitions like GenExt ; in our
case, it is enough to know x ∈M in order to know val(G, x) ∈M [G]:

lemma GenExtI: "x ∈ M =⇒ val(G,x) ∈ M[G]"

The destruction rule corresponding to the generic extension says that any x ∈M [G] comes from some τ ∈M
via val .

lemma GenExtD: "x ∈ M[G] =⇒ ∃ τ∈M. x = val(G,τ)"

We now provide names for elements in M . That is, for each x ∈ M , we define check(x) (usually denoted
by x̌ in the literature) such that val(G, check(x)) = x. This will show that M ⊆M [G], with a caveat we make
explicit in the end of this section. As explained in the introduction, the fact that M [G] extends M is crucial
to show that ZFC holds in the former. The definition of check(x) is a straightforward ∈-recursion:

check(x) := {〈check(y),1〉 : y ∈ x} (2)

Now the set-relation argument for wfrec is the membership relation restricted to a set A, Memrel(A).

definition
Hcheck :: "[i,i] ⇒ i" where
"Hcheck(z,f) == { <f‘y,one> . y ∈ z}"

definition
check :: "i ⇒ i" where
"check(x) == wfrec(Memrel(eclose({x})), x , Hcheck)"

Here, eclose returns the (downward) ∈-closure of its argument. The main lemmas about val and check require
some instances of replacement for M ; we set up a locale to assemble these assumptions:

locale M_extra_assms = forcing_data +
assumes check_in_M : "

∧
x. x ∈ M =⇒ check(x) ∈ M"

and sats_upair_ax: "upair_ax(##M)"
and repl_check_pair : "strong_replacement(##M,λp y. y =<check(p),p>)"

The first assumption asserts that all the relevant names are indeed in M (i.e., check(x) ∈M if x ∈M) and
it is needed to prove that val(G, check(x)) = x. It will take a serious effort to fulfill this assumption: One of
the hardest parts of Paulson’s formalization of constructibility involves showing that models are closed under
recursive construction. We will eventually formalize that if M |= ZFC and the arguments of wfrec are in M ,

9
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then its value also is. This will require to adapt to ctm models several locales defined in [10] that were intended
to be used for the class of constructible sets. Notice that the only requirement on the set G is that it contains
the top element of the poset P.

lemma valcheck :
assumes "one ∈ G"
shows "y ∈ M =⇒ val(G,check(y)) = y"

4.3 Basic results about the generic extension

We turn now to prove that M [G] is transitive and G ∈ M [G]. Showing that M [G] is transitive amounts to
prove y ∈M [G] for any x ∈M [G] and y ∈ x.

lemma trans_Gen_Ext’ :
assumes "x ∈ M[G]" and "y ∈ x"
shows "y ∈ M[G]"

The proof of this lemma is straightforward because from x ∈M [G] we can obtain τ ∈M such that x = val(G, τ).
Notice also that using the characterization of val given by def_val we can extract some θ ∈ dom(τ) such that
y = val(G, θ); to conclude val(G, θ) ∈ M [G] it is enough to prove θ ∈ M , which follows from the transitivity
of M .

In contrast, the proof that G ∈ M [G] is more demanding. In fact, we set Ġ = {〈p̌, p〉 | p ∈ P} as a

putative name for G. Proving that Ġ is in fact a name for G requires to prove that Ġ ∈ M , using an
instance of replacement for M (namely that given by the assumption repl_check_pair), and then proving

that val(G, Ġ) = G.

definition
G_dot :: "i" where
"G_dot == {<check(p),p> . p∈P}"

lemma G_dot_in_M : "G_dot ∈ M"

lemma val_G_dot :
assumes "G ⊆ P" and "one ∈ G"
shows "val(G,G_dot) = G"

5 Pairing in the generic extension

In this section we show that the generic extension satisfies the pairing axiom; the purpose of this section is
to show how to prove that M [G] models one of the axioms of ZFC , assuming that M satisfies ZFC . 8 In the
locale M_extra_assms we stated the assumption sats_upair_ax which captures that M satisfies pairing. We
use relativized versions of the axioms in order to express satisfaction.

As we have already mentioned, in Paulson’s library, the relativized versions of the ZFC axioms are defined
for classes (which are defined as predicates over sets). The definition upair_ax corresponds to the Pairing
Axiom:

definition
upair :: "[i⇒o,i,i,i] ⇒ o" where
"upair(C,a,b,z) == a ∈ z ∧ b ∈ z ∧ (∀ x[C]. x∈z −→ x = a ∨ x = b)"

definition
upair_ax :: "(i⇒o) ⇒ o" where
"upair_ax(C) == ∀ x[C]. ∀ y[C]. ∃ z[C]. upair(C,x,y,z)"

We state the main result of this section in the context M_extra_assms.

lemma pairing_axiom :
"one ∈ G =⇒ upair_ax(##M[G])"

Let x and y be elements in M [G]. By definition of the generic extension, there exist elements τ and ρ in
M such that x = val(G, τ) and y = val(G, ρ). We need to find an element in M [G] that contains exactly these
elements; for that we should construct a name σ ∈M such that val(G, σ) = {val(G, τ), val(G, ρ)}.

The candidate, motivated by the definition of check , is σ = {〈τ, one〉, 〈ρ, one〉}. Our remaining tasks are to
show

8 The proof that M [G] satisfies pairing only needs that M satisfies pairing.
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(i) σ ∈M , and

(ii) val(G, σ) = {val(G, τ), val(G, ρ)}
By the implementation of pairs in ZFC , showing (i) involves using that the pairing axiom holds in M and

the absoluteness of pairing thanks to M being transitive.

lemma pairs_in_M :
" [[ a ∈ M ; b ∈ M ; c ∈ M ; d ∈ M ]] =⇒ {〈a,c〉,〈b,d〉} ∈ M"

Item (i) then follows because τ , % and one belong to M (the last fact holds because one∈P, P∈M and M is
transitive).

lemma sigma_in_M :
" one ∈ G =⇒ τ ∈ M =⇒ % ∈ M =⇒ {〈τ,one〉,〈%,one〉} ∈ M"

by (rule pairs_in_M,simp_all add: upair_ax_def one_in_M)

Under the assumption that one belongs to the set G, (ii) follows from def val almost automatically:

lemma valsigma :
"one ∈ G =⇒ {〈τ,one〉,〈%,one〉} ∈ M =⇒
val(G,{〈τ,one〉,〈%,one〉}) = {val(G,τ),val(G,%)}"

6 Conclusions and future work

There are several technical milestones that have to be reached in the course of a formalization of the theory
of forcing. The first one, and most obvious, is the bulk of set- and meta-theoretical concepts needed to work
with. This pushed us, in a sense, into building on top of Isabelle/ZF, since we know of no other development in
set theory of such depth (and breadth). In this paper we worked on setting the stage for the work with generic
extensions; in particular, this involves some purely mathematical results, as the Rasiowa-Sikorski lemma.

Other milestones in this formalization project involve

(i) the definition of the forcing relation,

(ii) proving the Fundamental Theorem of forcing (that relates truth in M to that in M [G]), and

(iii) using it to show that M [G] |= ZFC .

The theory is very modular and this is witnessed by the fact that the last goal does not depend on the proof
of the Fundamental Theorem nor on the definition of the forcing relation. Our next task will be to obtain the
last goal in that enumeration.

To this end, we will develop an interface between Paulson’s relativization results and countable models of
ZFC . This will show that every ctm M is closed under well-founded recursion and, in particular, that contains
names for each of its elements. Consequently, the proof of M ⊆M [G] will be complete. A landmark will be to
prove the Axiom Scheme of Separation (the first that needs to use the machinery of forcing nontrivially). As
a part of the new formalization, we will provide Isar versions of the longer applicative proofs presented in this
work.
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