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This work analyzes the effect of the anhydride excess on the nonisothermal curing kinetics and on the final properties of synthetic
and biobased epoxy resins. Diglycidyl ether of bisphenol A (DGEBA) and epoxidized soybean oil (ESO) were crosslinked using
methyltetrahydrophthalic anhydride (MTHPA) as a curing agent and 1-methylimidazole (1MI) as an initiator. It was shown
that the ESO/MTHPA/1MI system reacts slower than the DGEBA/MTHPA/1MI system, giving place to a more significant
evaporation of the curing agent during the reaction. As a result, an excess of anhydride improves the final thermal properties of
the ESO/MTHPA/1MI network, contrary to the behavior observed for DGEBA/MTHPA/1MI. The knowledge of the kinetics of
the curing process and the optimal amount of the curing agent for each system is of critical importance for a more efficient
processing of these materials.

1. Introduction

The production of polymeric materials has evidenced a very
fast and continuous growth since the mid-20th century
aimed at satisfying an increasing demand [1, 2]. This trend
is still going on in the present day and does not seem that it
will be disrupted in the near future. Over the last two decades,
however, the environmental problems posed by polymer
production were brought into light and were approached by
both academic and nongovernmental associations as well as
by industrial and commercial partners, with the purpose of
finding proper solutions [2]. One of the most important
issues currently under discussion is the depletion of oil
resources that constitute the main feedstock for the plastic
industry. A feasible alternative to replace the petroleum-
based chemicals in the polymer manufacture is the use of

raw materials derived from the biomass that promise a
reduction in the CO2 fingerprint and an alleviation of the
dependence on fossil resources [3–5].

Vegetable oils, which are produced worldwide in large
amounts, constitute an economic and readily available mate-
rial that can be converted into more useful chemical reagents
through chemical modification. There are many available
modifications for vegetable oils that have been studied and
developed so far, including epoxidation, hydroxylation,
acrylation, and maleinization among others [6]. These
modified oils can be used to obtain different kinds of poly-
meric materials like epoxy thermosets, [7, 8] polyurethanes
[9–11], or polyacrylates, [12] as well as other products such
as adhesives and lubricant greases [13, 14]. Epoxidation of
fatty acids and vegetable oils can be performed through reac-
tion with a peroxyacid [15] or following a more sustainable

Hindawi
International Journal of Polymer Science
Volume 2019, Article ID 5029153, 8 pages
https://doi.org/10.1155/2019/5029153

http://orcid.org/0000-0001-7652-786X
http://orcid.org/0000-0002-7409-5546
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5029153


route like enzymatic epoxidation [16, 17]. Epoxidized vege-
table oils (EVOs) are nowadays produced at an industrial
scale and used mainly as a plasticizer for polyvinyl chloride
(PVC) [16]. Presently, there are numerous research groups
devoted to the development of thermosetting epoxy poly-
mers using EVOs as a green alternative to—or at least as
a partial replacement or a modifier for—synthetic epoxy
resins, which is generating a growing body of literature
describing the curing kinetics [18–20] and the properties
of such materials [7, 8, 21, 22].

We already studied the curing process of stoichiometric
DGEBA/MTHPA/1MI and ESO/MTHPA/1MI systems [7]
and performed a thorough characterization of the resulting
networks [7, 23]. The nonisothermal curing kinetics of the
stoichiometric systems was also studied, and a phenome-
nological model was used to fit the experimental results
and to explain the behavior of DGEBA-ESO mixtures during
curing [18].

Nevertheless, the effect of an excess of anhydride on both
the curing kinetics and the final properties has been some-
what overlooked in spite of their importance when the end-
use of the material is considered. It is known that anhydride
evaporation can take place during the polymerization reac-
tion, leading to an undesired change in the stoichiometric
relation and yielding a final material with a lower curing
agent/epoxy resin ratio. This change in the proportion of
the curing agent with respect to the epoxy precursor must
be accounted in order to properly explain the material behav-
ior. Moreover, a prediction of the evaporation amount, when
possible, can be proved useful to improve the performance of

the material and lead to important savings in energy and raw
materials [24]. Indeed, it is a common practice in the
industry to use an excess of anhydride in order to compen-
sate the evaporation [25].

In the present manuscript, we study the effect of dif-
ferent amounts of anhydride excess on the properties of
thermosetting polymers obtained using synthetic and
bio-based epoxy precursors (diglycidyl ether of bisphenol
A and epoxidized soybean oil, respectively). We discuss
how the different reaction kinetics lead to different anhydride
evaporation rates and ultimately affect the network stoichi-
ometry and performance.

2. Experimental

2.1. Materials. The diglycidyl ether of a bisphenol A-based
epoxy prepolymer (DGEBA; Araldite GY250; epoxide equiv-
alent weight EEW = 185 g/eq) and the hardener methylte-
trahydrophthalic anhydride (MTHPA; >99%; anhydride
equivalent weight AEW = 166 g/eq) were obtained from
Distraltec (Buenos Aires, Argentina). Epoxidized soybean
oil (ESO; iodine value = 2 4; EEW = 242 g/eq; average
molar mass = 929 g/mol; and average functionality = 3 8)
was kindly provided by Unipox S.A. (Buenos Aires,
Argentina). Both chemicals, DGEBA and ESO, were vacuum
dried overnight before use. 1-Methylimidazole (1MI; >99%;
molar mass = 82 1 g/mol) was purchased from Huntsman
(Buenos Aires, Argentina) and was used as received. The
chemical structures of DGEBA, ESO, MTHPA, and 1MI are
shown in Figure 1.
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Figure 1: Representative chemical structures of (a) DGEBA (n = 0 109) and (b) ESO and chemical structures of (c) MTHPA and (d) 1MI.
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2.2. Sample Preparation. DGEBA/MTHPA and ESO/
MTHPA reactive systems were prepared with different stoi-
chiometric ratios (R = anhydride equivalents/epoxy equiva-
lents) of 1.0, 1.2, and 1.4. For every system, 0.06mol of 1MI
per epoxy equivalent was added, and the mechanical mixing
was performed by hand.

2.3. Characterization

2.3.1. Differential Scanning Calorimetry (DSC). The curing
kinetics was evaluated from data obtained by differential
scanning calorimetry (DSC). Tests were carried out on a
DSC Shimadzu 50 in dynamic mode at different heating
rates (q = 2, 5, 10, and 20°C/min) under a nitrogen atmo-
sphere (20ml/min). From these tests, the heat of reaction
(ΔHr , expressed in kJ per epoxy equivalent) and the tem-
perature for the maximum value of the reaction exother-
mic peaks (Tp) were measured.

2.3.2. Conversion and Reaction Rate Measurement. Conver-
sion values (α) and reaction rate (dα/dt) were obtained from
DSC tests according to the procedure previously reported
[18]. Briefly, by considering that at any given moment the
partial heat released is proportional to the conversion (α),
the following equation can be written:

α t = ΔH t
ΔHT

, 1

where ΔH t is the partial heat released until the time t and
ΔHT is the total heat of reaction, calculated by integrating
ΔH t for the whole curing reaction.

Analogously, the reaction rate dα/dt can be calculated
from DSC data as

dα t
dt

= 1
ΔHT

dH t
dt

, 2

where dH t /dt is the instantaneous heat released, directly
measured by the DSC.

2.3.3. Reaction Kinetics Fitting. The reaction kinetics was
adjusted to the autocatalytic model proposed by Kamal and
Sourour [26].

dα t
dt

= k1 + k2 α
n 1 − α m, 3

with the rate constants k1 and k2 displaying Arrhenius-type
dependence with temperature:

ki = Ai exp −
Eai
R T

, 4

where Eai are the activation energies and Ai are the preex-
ponential factors.

Though this phenomenological model does not provide
information about the reaction mechanism, it can be very
useful to predict the conversion profile of the reactive

systems under different conditions when the temperature-
time relation is known or when it is coupled with the
heat balance equation, especially when a number of
species involved in the reaction make difficult to use a
mechanistic model.

In a previous work [18], it was found that the exponents n
and m are close to 1 for stoichiometric systems (R = 1);
hence, this value was used for all the formulations. Activation
energies Ea1 and Ea2 are assumed to be independent of R for
each system, since the reactions involved the same species
regardless of the stoichiometric ratio, and therefore, the
values obtained previously were used.

The values for the activation energy for the DGE-
BA/MTHPA/1MI systems are Ea1 = 65 1 kJ/mol and Ea2 =
69 6 kJ/mol, and those for ESO/MTHPA/1MI systems are
Ea1 = 65 7 kJ/mol and Ea2 = 86 9 kJ/mol.

A multiparametric fitting was used to obtain the preexpo-
nential factors (Ai) by minimizing the difference between the
calculated conversions and the experimental measurements
[27]. The evaporation of the curing agent during the poly-
merization reaction was neglected in the first approach to
obtain the kinetic parameters. As it will be discussed later,
this hypothesis was not correct for all the formulations ana-
lyzed, though the changes introduced in the reaction kinetics
can be regarded as nonsignificant.

2.3.4. Dynamic Mechanical Analysis (DMA). Dynamic
mechanical analysis (DMA) was carried out on samples
cured following a nonisothermal program in a convection
oven. The program consisted in heating from 25°C to
240°C, at a heating rate of 2°C/min. Cured samples were
cut to suitable dimensions (1 × 4 × 25mm3) and tested
on an AntonPaar Physica MCR 301 rheometer in a tor-
sion mode, with a span of 15mm. DMA tests were carried
out at a heating rate of 2°C/min, from 0°C to 180°C for
ESO/MTHPA/1MI and from 0°C to 200°C for DGEBA/
MTHPA/1MI.

3. Results and Discussion

Figure 2 shows the DSC thermograms for DGEBA/
MTHPA/1MI and ESO/MTHPA/1MI systems with different
R values and q = 10°C/min. Thermograms for the rest of the q
values are shown in the Supplementary Information File
(available here) and show essentially the same shape as those
shown here. Each curve displayed a clear and single exother-
mic peak, owed to the copolymerization reaction, as the only
event in the examined temperature range. Qualitatively, it is
possible to observe in the thermograms that the reaction peak
(and its area) become lower with the increase in the stoichio-
metric ratio R. This was expected since, as it will be discussed
later, the additional anhydride (20 or 40% over the stoichio-
metric amount) was prevented to react due to the consump-
tion of the epoxy groups, thus lowering the total heat of
reaction on the basis of the sample weight.

The temperatures of the exothermic reaction peak (Tp)
for the different heating rates are summarized in Table 1.
For the same q and R values, the ESO/MTHPA/1MI systems
exhibit higher Tp values than the DGEBA/MTHPA/1MI
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mixtures, due to its lower reactivity, attributed to the
increased steric hindrance and electronic effects of the
internal oxiranes of ESO [7, 29]. For any given q, Tp values
increase with R for both systems, probably due to a dilution
effect of the initiator (1MI) and epoxy groups, as a conse-
quence of the higher concentration of MTHPA. The reaction
mechanism [24, 30–33] is shown in Figure 3 for terminal
epoxides (though it also applies for internal ones) and
involves an initiation step whose kinetics strongly depends
on the concentration of the initiator and epoxy groups.
Hence, the higher Tp values can be associated to the lower
concentrations of both 1MI and DGEBA.

Figure 4 shows experimental conversion-temperature
curves for DGEBA/MTHPA/1MI and ESO/MTHPA/1MI
systems with R = 1 and R = 1 4, at a heating rate of q =
10°C/min (calculated with equation (1)) and the fitting to
the proposed model (equations (3) and (4)). Curves corre-
sponding to systems with R = 1 2 are placed between those
for R = 1 and R = 1 4 and are not shown here for the sake of
clarity. The fitting shows an excellent agreement between
the experimental data and the Kamal model. Unsurprisingly,

the general trends mentioned for DSC thermograms are
repeated here: a decrease in reactivity (curves shifting to
higher temperatures) with the increase of R due to a dilution
effect and a higher reaction rate for DGEBA/MTHPA
systems compared with that ESO/MTHPA, owed to the
different reactivity of the epoxide groups.

The obtained values for preexponential factors A1 and A2
for both systems, used to fit the experimental data in Figure 4,
are listed in Table 2. For both the DGEBA/MTHPA/1MI and
ESO/MTHPA/1MI systems, the decrease in the reactivity
with increasing R values is reflected in a decrease in A1 and
A2, being the decrease more prominent when R is raised from
1 to 1.2. The general reduction in the preexponential factors
is the result of a lower reaction rate for both the initiation and
the propagation steps, which involves two alternating
reactions (see Figure 3): an epoxy-carboxylate reaction is
followed by an anhydride-alkoxide reaction, which produces
a new carboxylate that starts the cycle again by reacting with
another epoxy group. As the carboxylate is more stable than
the alkoxide, the carboxylate-epoxy reaction is the slower
one, and thus, it determines the overall reaction rate [28].
Considering this reaction mechanism, the lower concentra-
tion of epoxy rings as R is increased accounts for the decrease
of the preexponential values. Moreover, it can be noted that a
similar decrease in both A1 (20% decrease for R = 1 2 with
respect to R = 1 and 22% for R = 1 4) and A2 (26% and
33%, respectively) was observed for the DGEBA curing
reaction with increasing MTHPA excess. On the other hand,
the effect of MTHPA excess for ESO/MTHPA/1MI systems
is much more important in A2 (46% for R = 1 2 and 52%
for R = 1 4) than in A1 (less than 1% and 4%, respec-
tively). Assuming that the A2 constant is more related with
the propagation step, one could infer that since it involves
the attack of a bulky anion to a hindered internal (in the
case of ESO) epoxy group, it is more sensitive to the
oxirane concentration than A1, more related with the
initiation step.

A remarkable aspect found in the DSC analysis is the
increase of the reaction heat with the increase of MTHPA
concentration (Table 3). The higher reaction heat per
epoxy equivalent indicates a larger amount of reacted
epoxy groups as the anhydride concentration increases.
This finding reveals that a significant amount of oxirane
moieties remained unreacted in stoichiometric mixtures,
leading to the formation of pendent chains that contribute
in reducing the thermal and mechanical properties of the
formed networks. This behavior can be attributed to the
anhydride evaporation taking place during the curing
cycle, which leads to obtaining a final material with an
R value different to that of the initial mixture. To evalu-
ate this fact, the mass loss during dynamic DSC tests was
measured, and dynamic mechanical tests were performed
on the polymers cured in a convection oven in a noni-
sothermal mode at 2°C/min.

The average mass loss for each system is shown in
Table 4. It can be assumed, due to the low volatility of the
DGEBA and ESO and the low concentration of1MI (which
is in a high proportion bonded to DGEBA, ESO, or heavier
oligomers), that all the mass losses correspond to evaporated

Table 1: Peak reaction temperatures (Tp), measured in °C, for
DGEBA/MTHPA/1MI and ESO/MTHPA/1MI with different
stoichiometric ratios R.

q (°C/min)
DGEBA/MTHPA/1MI ESO/MTHPA/1MI
R = 1 R = 1 2 R = 1 4 R = 1 R = 1 2 R = 1 4

2 113 116 117 153 158 158

5 129 133 134 173 177 176

10 142 146 147 187 190 190

20 157 162 163 203 207 208
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Figure 2: DSC thermograms for the curing of DGEBA and ESO
with MTHPA and 1MI with different stoichiometric ratios R, at a
heating rate q = 10°C/min.
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MTHPA. The effective anhydride equivalents/epoxy equiva-
lents relation (Reff ) was calculated for the cured polymers.

Mass loss, as expected, increases with the initial excess
of MTHPA, and for a given R value, it is greater for
ESO/MTHPA systems, since DGEBA/MTHPA systems

react faster, leaving less time for free MTHPA to be
released through evaporation.

Figure 5 shows the storage torsion modulus (G′;
Figure 5(a)) and the damping factor (tan δ; Figure 5(b))
as a function of temperature for nonisothermally cured
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5International Journal of Polymer Science



DGEBA/MTHPA and ESO/MTHPA polymers. For DGEBA/
MTHPA systems, increasing R values produce a significant
decrease in glass transition temperature (Tg), measured as
the maximum of the tan δ curve. In these systems, MTHPA
evaporation is not as important as in ESO/MTHPA, and
although a higher conversion of epoxy groups is achieved

by increasing R, there is a large amount of unreacted or
partially reacted MTHPA, exerting a plasticizing effect and
forming pendent chains.

For ESO/MTHPA, the opposite behavior was found. In
these systems, a significant amount of MTHPA evaporates
due to a slower polymerization reaction. Hence, a higher
final conversion of epoxy groups is obtained with the
increase of R, leading to an increase in Tg value. The
Reff values show that an excess of MTHPA between 20%
and 40% is needed to attain the stoichiometric condition
for the cured networks.

It must be also taken into account that for DGE-
BA/MTHPA systems, an increase in the proportion of
MTHPA decreases the concentration of phenyl groups, pro-
viding the network with an enhanced mobility at molecular
level and decreasing its Tg, [7] which has not occurred with
the ESO/MTHPA systems, since no aromatic groups are
present in the ESO chemical structure.

4. Conclusions

Kinetic parameters, useful to predict conversion values for a
given temperature profile, were obtained from the study of
the curing kinetics for the DGEBA/MTHPA/1MI and
ESO/MTHPA/1MI systems with different anhydride/epoxy
equivalent ratios. The obtained kinetic parameters reflect
the lower reactivity of the ESO with respect to DGEBA as
well as a delay of the reaction as the content of MTHPA is
increased, probably due to a dilution effect on both the epoxy
groups and the 1MI.

The final properties of the DGEBA/MTHPA networks
vary significantly with R, showing a decrease in the Tg value.
Instead, a moderate increase of Tg was observed for
ESO/MTHPA systems when the MTHPA amount increased.
The results showed that in the stoichiometric ESO/MTHPA
polymers, a significant fraction of epoxy functionalities
remains unreacted. This occurs in part not due to steric
hindrance but mainly because of the evaporation of the
curing agent that leads to Reff values significantly lower than
expected. In this case, when the processing of ESO-based sys-
tems is evaluated for different applications, it is desirable to
use an anhydride excess in order to obtain a cured material
with better mechanical and thermal properties.
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Figure 4: x-T curves for the curing of DGEBA and ESO with
MTHPA and 1MI, with stoichiometric ratios R = 1 0 and R = 1 4,
corresponding to q = 10°C/min. Solid lines show the obtained
fittings to equations (3) and (4).

Table 2: Kinetics parameters of the DGEBA/MTHPA/1MI and
ESO/MTHPA/1MI systems with different stoichiometric ratios R.

System R A1 · 10−5(s-1) A2 · 10−6(s-1)

DGEBA/MTHPA/1MI

1.0 7.11 8.35

1.2 5.69 6.18

1.4 5.55 5.63

ESO/MTHPA/1MI

1.0 1.30 51.6

1.2 1.29 27.8

1.4 1.25 25.0

Table 3: Total heat of reaction (ΔHr), measured on the basis
of epoxy equivalents for the DGEBA/MTHPA/1MI and ESO/
MTHPA/1MI systems with different stoichiometric ratios R.

System R ΔHr (kJ/epoxy eq) Variation

DGEBA/MTHPA/1MI

1.0 132

1.2 140 +6.1%

1.4 144 +9.1%

ESO/MTHPA/1MI

1.0 108

1.2 120 +11.1%

1.4 130 +20.4%

Table 4: Mass percentage evaporated during the dynamic curing for
the DGEBA/MTHPA/1MI and ESO/MTHPA/1MI systems with
different stoichiometric ratios R.

System R Δm (%) Reff

DGEBA/MTHPA/1MI

1.0 1.5 0.97

1.2 3.5 1.12

1.4 7.9 1.20

ESO/MTHPA/1MI

1.0 7.6 0.81

1.2 7.9 0.99

1.4 11.9 1.06
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