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Abstract

A novel biscarbazol-triphenylamine end-capped dendrimeric zinc(II) porphyrin (DP 5) was 

synthesized by click chemistry. This compound is a cruciform dendrimer, which bears a nucleus of 

zinc(II) tetrapyrrolic macrocycle substituted at the meso positions by four identical substituents. These 

are formed by a tetrafluorophenyl group that possess in the para position a triazole unit. This nitrogenous 

heterocyclic is connected to a 4,4'-di(N-carbazolyl)triphenylamine group by means of a 

phenylenevinylene bridge, which allows the conjugation between the nucleus and this external 

electropolimerizable carbazoyl group. In this structure, dendrimeric arms act as light-harvesting 

antennas, increasing the absorption of blue light and as electroactive moieties. The electrochemical 

oxidation of the carbazole groups contained in the terminal arms of the DP 5 was used to obtain novel 

stable and reproducible fully π-conjugate photoactive polymeric films (FDP 5). First, the spectroscopic 

characteristics and photodynamic properties of DP 5 were compared with its constitutional components 

derived of porphyrin P 6 and carbazole D 7 moieties in solution. The fluorescence emission of the 

dendrimeric units in DP 5 were strongly quenched by the tetrapyrrolic macrocycle, indicating 

photoinduced energy transfer. In addition, FDP 5 film showed the Soret and Q absorption bands and red 

fluorescence emission of the corresponding zinc(II) porphyrin. Also, FDP 5 film was highly stable to 

photobleaching and it was able to produce singlet molecular oxygen in both N,N-dimethylformamide and 

water. Therefore, the porphyrin units embedded in the polymeric matrix of FDP 5 film mainly retain the 

photochemical properties. Photodynamic inactivation mediated by FDP 5 film was investigated in 

Staphylococcus aureus and Escherichia coli. When a cell suspension was deposited on the surface, 

complete eradication of S. aureus and a 99% reduction in E. coli survival were found after 15 min and 

30 min irradiation, respectively. Also, FDP 5 film was highly effective to eliminate individual bacteria 

attached to the surface. In addition, PDI sensitized by FDP 5 film produced more than 99.99% bacterial 

killing in biofilms formed on the surface after 60 min irradiation. The results indicate that FDP 5 film 
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represents an interesting and versatile photodynamic active material to eradicate bacteria as planktonic 

cells, individual attached microbes or biofilms.

Keywords: polymeric films; click chemistry; porphyrin; carbazole; photodynamic inactivation; 

antibacterial surface.
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Introduction

Nosocomial infections are one of the main causes of avoidable harm in hospital patients and a 

substantial and unnecessary loss of health resources.1 Treatments for these diseases can cause prolonged 

hospitalization, additional studies and antimicrobial medication, which leads to a considerable increase 

in the costs of medical care.2 Although, diseases can be caused by a wide variety of microorganisms, a 

few of them are mainly responsible for infections acquired in the hospital.3 In particular, Staphylococcus 

aureus is considered one of the most important pathogens responsible for nosocomial infections.4 In 

addition, Escherichia coli is an emerging nosocomial pathogen producing problems in health care 

settings. Therefore, the control of the microorganisms responsible for hospital-acquired infections is very 

necessary since they cause an important economic and production loss. Therefore, it is essential to 

propose new methodologies for prophylaxis in areas of high risk for the contagion of nosocomial 

infections.5 For this purpose, photodynamic inactivation (PDI) of microorganisms has been planned as 

an alternative methodology to eliminate bacterial diseases. This therapy uses a photosensitizer, visible 

light and oxygen to produce highly reactive oxygen species (ROS), which can react with several cell 

components. These molecular modifications induce a loss of biological functionality that cause cell 

death. In this method, two mechanisms can take place after activation of the photosensitizer.6 Thus, the 

interaction of the excited photosensitizer with different substrates can form radicals, which can react with 

oxygen producing ROS, known as type I photoprocess. On the other hand, in a type II pathway the 

photosensitizer can transfer energy from its triplet excited state to produce singlet molecular oxygen, 

O2(1g).

In most PDI studies, photosensitizers are added to a microbial suspension from a homogeneous 

solution. In this methodology, after PDI treatment the photosensitizer remains in the place of action, 

producing an undesired photodynamic effect and contaminating the medium. In addition, under these 

conditions the photodynamic agent is difficult to recover for its reuse in subsequent applications. This 

drawback can be avoided by using photosensitizers chemically bound to a support.7 Thus, 
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photosensitizers immobilized on a surface have been proposed for the inactivation of microorganisms, 

considering economic and ecological subjects.8 In hospital environments, surfaces are one of the main 

components of possible reservoirs of bacteria, which cause a notable incidence in nosocomial infections.1 

In this way, the coating of surfaces with photosensitizers, which are immobilized in a film and can be 

activated by visible light, are of great interest to maintain aseptic surfaces in the public health.9

Porphyrin-based photosensitizers have been used to eradicated pathogenic microorganisms by 

irradiation with visible light.Error! Bookmark not defined.,10 These compounds have demonstrated to be effective 

to photokilling E. coli and S. aureus in cell suspensions.11,12 In particular, tetrapyrrolic macrocycles 

bearing directly attached electroactive groups, such as diphenylaminophenyl or carbazoyl substituents, 

are able to form polymeric films by electrodeposition.13-15 However, interaction between porphyrins was 

found in the hyperbranched film structures, which negatively affects the spectroscopic and photodynamic 

properties of the surfaces. Therefore, in the present study a novel peripherally carbazole functionalized 

dendrimeric cruciform porphyrin (DP 5, Scheme 1) was designed and synthesized by click chemistry. 

The click reaction, designed to azide-alkyne 1,3-dipolar cycloaddition catalyzed by copper (CuAAC), is 

a well-established approach that lets to obtain complex molecular structures.16 CuAAC is a powerfull 

tool to connect two molecules in an efficient and straightforward manner and have been applied in the 

last years in several functionalization and synthesis of dendrimers.17-20 CuAAC reaction fulfills the 

requirements for porphyrin chemistry of being an available simple, efficient and versatile synthetic 

strategy for functionalizing porphyrin units.21 The formation of a 1,2,3-triazole ring can be accomplished 

in mild reaction conditions, in a variety of solvents and affording the expected product in very good 

yields, besides the stereoelectronic properties of the starting materials.22-24 Therefore, porphyrin linked 

by a 1,2,3-triazole unit with -conjugated aromatic dendrons are very interesting synthetic designs and a 

challenging task for the development of organic materials based on the nitrogenated aromatic 

macrocycle. Also, constitutional components of DP 5, porphyrin P 6 and carbazole C 7, were synthesized 

(Scheme 2). The electroactive carbazoyl groups in DP 5 were used to obtain electrogenerated polymeric 
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film (FDP 5). The spectroscopic characteristics and photodynamic properties of FDP 5 were compared 

with those of DP 5 and its constitutional components, P 6 and C 7. Photodynamic action sensitized by 

the modified surface was studied in vitro to eradicate Staphylococcus aureus and Escherichia coli. The 

development of new strategies was investigated to combat planktonic, individual and biofilm-embedded 

microorganisms. Thus, these studies allow determinate the efficiency of FDP 5 as self-sterilizing agents 

activated by visible light.

Experimental Section

Synthesis

5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin (1). Pentafluorobenzaldehyde (637 mg, 3.24 

mmol) and pyrrole (234 L, 3.37 mmol) were dissolved in dichloromethane (DCM) (135 mL) and purged 

with argon for 15 min. Then, BF3.OEt2 (50 µL, 0,40 mmol) was added and the reaction mixture was 

stirred a room temperature for 40 h under argon atmosphere. After addition of 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (DDQ) (585 mg, 2.58 mmol), the stirring at room temperature was continued for 2 h. 

The solvent was evaporated under reduced pressure. The black crude product was purified by 

chromatography (cyclohexane/DCM, 1:1) to give porphyrin 1 (593 mg, 0.61 mmol, 19%). The 

spectroscopic data of 1 agree with those previously reported.25

5,10,15,20-Tetrakis(2,3,5,6-tetrafluoro-4-azidophenyl)porphyrin (2). Sodium azide (29 mg, 0.44 

mmol) was added to a solution of porphyrin 1 (100 mg, 0.1 mmol) in DMF (3 mL). The reaction mixture 

was heated at 60 ºC for 1.5 h under an argon atmosphere. After that, 40 mL of DCM was added and the 

organic layer was washed with three aliquots of 25 ml of water and then dried over MgSO4. The solvent 

was evaporated in vacuum to yield 2 as a purple solid (91 mg, 85 µmol, 83%). Porphyrin 2 was used 

without more purification in the next step. The spectroscopic data of 2 match with those previously 

reported.26
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Zinc(II) 5,10,15,20-tetrakis(2,3,5,6-tetrafluoro-4-azidophenyl)porphyrin (3). A solution of 

porphyrin 2 (100 mg, 93 µmol) in 8 ml of DCM was stirred with 4 mL of a saturated solution of zinc(II) 

acetate (Zn(AcO)2) in methanol. The reaction mixture was kept for 12 h under argon atmosphere at room 

temperature. Then, DCM (40 mL) was added and the organic phase was washed with water (30 mL x 3). 

The solvent was removed under reduced pressure affording porphyrin 3 (95 mg, 84 µmol, 90%). 1HNMR 

(CDCl3, TMS)  [ppm] 9.03 (s, 8H, -H). 19FNMR (CDCl3, TMS)  [ppm] -137.34 (dd, J = 22.5, 10.0 

Hz, 8 F, Ar-Fortho), -151.86 (dd, J = 22.5, 10.0 Hz, 8 F, Ar-Fmeta). ESI-MS [m/z] 1129.0240 [M+H]+ 

(1128.0154 calculated for C44H8F16N16Zn).

Dendron 4 was synthesized according as previously published procedure.27

Dendrimeric porphyrin DP 5. Dendron 4 (38.0 mg, 0.054 mmol) and porphyrin 3 (15.0 mg, 0.011 mmol) 

were dissolved in a mixture of anhydrous tetrahydrofuran (THF, 5 mL) and anhydrous acetonitrile (1 

mL) under argon atmosphere. CuI (5.0 mg, 0.5 equiv. per position) and N,N-diisopropylethylamine 

(DiPEA, 15 drops) were added and the reaction mixture was purged with argon. Then the reaction was 

heated to 60 °C and stirred for 16 h. Solvents were concentrated under vacuum and the crude product 

was purified by flash chromatography (hexane:DCM) yielding dendrimer DP 5 as bright purple solid 

(41.8 mg, 0.013 mmol, 82%). 1HNMR (CDCl3, TMS)  [ppm] 9.14 (d, J = 8.5 Hz, 8H), 8.39 (s, 4H), 

8.16 (d, J = 7.7 Hz, 16H), 7.88 (s, 8H), 7.70-7.35 (m, 72H), 7.38-7.25 (m, 32H), 7.22 (d, J = 15.9 Hz, 

4H), 7.12 (d, J = 15.9 Hz, 4H). 13CNMR (CDCl3, TMS)  [ppm] 109.80, 119.92, 120.35, 121.88, 123.33, 

124.65, 125.17, 125.93, 126.41, 127.07, 127.92, 128.13, 128.83, 132.59, 138.27, 140.70, 140.98, 146.36, 

146.97, 149.99. MALDI-TOF-MS [m/z] 3934.2 [M+H]+ (3933.1478 calculated for C252H148F16N28Zn).

Porphyrin P 6. Commercial phenylacetylene (40 l, 0.36 mmol) and porphyrin 3 (20.6 mg, 0.018 

mmol) were dissolved in a mixture of anhydrous THF (2.5 mL) and anhydrous acetonitrile (0.5 mL) 

under inert atmosphere. Then, the mixture was purged with Ar for 3 min at room temperature. Then, 

DiPEA (3 drops) and CuI (2.7 mg, 0.014 mmol) were added and the resulting mixture was purged with 
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Ar. Reaction was heated at 60 °C for 16 h. Solvents were concentrated under reduced pressure and crude 

product was purified by flash chromatography (hexane: dichloromethane: acetonitrile) affording P 6 as 

red solid (16.7 mg, 0.011 mmol, 60%). 1HNMR (CDCl3, TMS)  [ppm] 9.15 (s, 8H), 8.40 (s, 4H), 7.87 

(d, J = 7.5, 8H), 7.47 (m, 12H). 13CNMR (CDCl3, TMS)  [ppm] 122.13, 126.26, 129.26, 132.43, 140.00, 

141.57, 143.43, 145.21, 148.56, 150.13, 151.73, 153.62. MALDI-TOF-MS [m/z] 1537.2 [M+H]+ 

(1536.2032 calculated for C76H32F16N16Zn).

Dendron D 7. Phenylazide (20 L, 0,20 mmole) and dendron 4 (48.5 mg, 0.07 mmole) were 

dissolved in a mixture of anhydrous THF (5 mL) and anhydrous acetonitrile (1 mL) and the solution was 

purged with Ar for 3 min. Then, DiPEA (10 drops) and CuI (6.2 mg, 0.032 mmol) were added and the 

resulting reaction mixture was purged again. Reaction was heated at 60 °C for 16 h. Solvents were 

concentrated under reduced pressure and crude product was purified by flash chromatography (hexane: 

dichloromethane) affording D 7 as yellow solid (53.2 mg, 0.065 mmol, 93%). 1HNMR (CDCl3, TMS)  

[ppm] 8.21 (s, 1H), 8.16 (d, J = 7.7 Hz, 2H), 7.93 (d, J = 8.1 Hz, 2H), 7.85-7.78 (m, 2H), 7.68-7.40 (m, 

24H), 7.31 (td, J = 7.4, 6.9, 1.6 Hz, 6H), 7.20 (d, J = 16.2 Hz, 1H), 7.11 (d, J = 16.2 Hz, 1H). 13CNMR 

(CDCl3, TMS)  [ppm] 109.97, 117.64, 120.05, 120.50, 120.72, 123.47, 124.91, 125.25, 126.08, 126.30, 

127.11, 127.46, 128.01, 128.28, 128.48, 128.98, 129.98, 132.67, 132.92, 137.75, 141.15, 146.57, 148.33. 

ESI-MS [m/z] 821.3405 [M+H]+ (820.3314 calculated for C58H40N6).

Film electrodeposition

Electrochemical studies were conducted in a three-electrode glass cell, using an indium tin oxide 

(ITO, 7x50x0.9 mm, Delta Technologies, Stillwater, MN) working electrode (Figure S1). In this 

configuration, the pseudo-reference electrode was a silver wire, while a Pt coil was used as counter 

electrode. Cyclic voltammetry (CV) measurements were done in DCM containing 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. The FDP 5 films were 
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9

deposited over the mentioned ITO electrodes by CV, cycling the working electrode in a solution 

containing 0.5 mM DP 5 in the -0.2 to 1.4 V range, for ten cycles at 100 mV/s.

Spectroscopic studies

UV-visible absorption and fluorescence emission measurements in N,N-dimethylformamide 

(DMF) were achieved as previously described.11 The polymeric films formed on the ITO electrode were 

directly measured by placing the surface in the spectrometer cell holder. Fluorescence emission spectra 

were recorder by exciting the samples at exc=550 nm. The energy of the singlet-state (Es) was determined 

from the intersection of the normalized absorption and fluorescence bands. The fluorescence quantum 

yield (F) of each porphyrin was calculated using zinc(II) 5,10,15,20-tetrakis(4-

methoxyphenyl)porphyrin (ZnTMP) as a reference (F=0.049) in DMF.28

Steady state photolysis

9,10-Dimethylanthracene (DMA, 35 M) and the photosensitizer in DMF (2 mL) were irradiated 

with monochromatic light at 555 nm. A photosensitizer absorption of 0.1 was used at the irradiation 

wavelength. Similarly, FDP 5 film was irradiated with a wavelength range between 455 and 800 nm. 

The kinetic of DMA photooxidation was analyzed by the decrease in the absorption band at max=378 

nm. The observed rate constants kobs
DMA of DMA oxidation and quantum yields of O2(1g) production 

() of porphyrins were obtained as previously reported.11 ZnTMP was used as a reference ( = 0.73).28 

Also, FDP 5 film was irradiated at 410 nm in 2 mL water containing 9,10-anthracenediyl-

bis(methylene)dimalonic acid (AMDA, 50 M). The AMDA photooxidation was monitoring by 

decreasing the fluorescence emission in real-time at 430 nm.

Photobleaching measurements
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10

FDP 5 film was irradiated in PBS or cell suspensions in PBS (~106 colony forming units per 

milliliter, CFU/mL) with visible white light as described below for PDI. The kinetics of photobleaching 

were investigated by decreasing of the porphyrin absorption at Soret band (430 nm). The observed rate 

constants (kobs
P) of photobleaching were calculated from the semilogarithmic plot of ln A0/A vs. 

irradiation time. The photodegradation lifetime (τP) was calculated from ln 2/kobs
P.

Strains and culture conditions

Escherichia coli ATCC 25922 and a methicillin-resistant Staphylococcus aureus ATCC 43300 

(MRSA) were employed for PDI studies. Stock cultures were preserved in tryptic soy broth (TSB) 

supplemented with glycerol 10 % V/V at -80ºC. Strains were grown aerobically in tryptic soy agar (TSA) 

for 18 h at 37 ºC. Then, a single pure colony was collected and transfer to fresh TSB to achieve fresh 

cultures.

PDI of planktonic cells

Strains were grown to exponential phase in TSB at 37 ºC until the absorbance reached a value of 

0.5 at 660 nm. Afterward, samples were diluted in phosphate-buffered saline (PBS, pH=7.0) solution to 

have a ~106 CFU/mL, following the McFarland standard. Next, the planktonic suspension (250 µL) was 

placed over FDP 5 film or ITO electrode surface. Later, S. aureus and E. coli samples were irradiated 

with visible light for 15 and 30 min, respectively. Bacterial viability counts were assayed by plating 10 

µL of 10-fold serial dilutions on TSA and incubated for 18 h at 37 ºC.

PDI of cells attached to the surface

Photokilling of S. aureus and E. coli was observed by propidium iodine (PI) emission. Bacterial 

suspension (200 µL) was transferred to the sample chamber constituted by a 5x5 mm2 coverslip coated 

with a thin layer of ITO followed by electrodeposition of DP 5. Finally, 0.4 mm diameter cylinder was 
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11

glue to the surface. After 20 min, the bacterial excess was removed by rinsing the chamber with PBS. 

Then, 1 µM of the cell death marker PI in 200 µL PBS solution was added to the cells. After 15 min, 

photoinactivation assays started upon irradiation with white light 0.9 mW/cm2 measured out of the 

objective. The images of cells were obtained as reported in literature.29

PDI of assembled biofilms

Biofilms of S. aureus and E. coli were induced over FDP 5 film or ITO electrode surface in TSB 

supplemented with glucose 0.5 % P/V under continuous shaking (150 rpm) for 24 h at 37 ºC. The surface 

was rinsed three times with PBS to remove non-attached bacteria. The back of the surface without 

covering was cleaned mechanically with a sterile cotton swab embedded with alcohol 70% v/v. After 

that, the surfaces and the mature biofilms were irradiated with visible light for 60 min. The dark controls 

were wrapped with aluminum foil during this period. Finally, the surface was sonicated for 1 min to 

unpin viable cells in 5 mL PBS (~108 CFU/mL) and serial dilutions were performed in PBS, as described 

above.30 Control tests and statistical analysis were performed in all biological experiments.29

Results and Discussion

Synthesis of porphyrin

A novel dendrimeric porphyrin DP 5 was synthesized as shown in Scheme 1. The synthetic 

procedure started with the preparation of the free-base porphyrin 1. The most efficient conditions to obtain 

1 were those reported by Dommaschk et al..25 Thus, condensation of pyrrole and pentafluorobenzaldehyde 

catalyzed by BF3.OEt2 in DCM was used to obtain porphyrinogen. The oxidation with DDQ at room 

temperature produced 1 in 19% yield after one-flask two consecutive steps. This porphyrin is a suitable 

and versatile building block for the construction of meso-substituted tetrapyrrolic macrocycles through 

the nucleophilic aromatic substitution reaction (SNAr).31 The second step was a regioselective SNAr 

between 1 and of sodium azide in DMF,26 which afforded 2 in 83% yield. After that, to finish the synthesis 
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12

of porphyrin core, a metalation reaction with Zn(AcO)2 in DCM/MeOH was carried out, giving metal 

complex 3 in 90% yield. The progress of the reaction was observed by UV-visible absorbance 

spectroscopy, following the decrease of lower energy Q band in 2 (free-base porphyrin), in favor of the 

rise of the band at 550 nm. These spectroscopic features was correlated with the zinc(II) porphyrin 

formation.32 The introduction of heavy metals in porphyrin core induce a strong spin-orbit coupling and 

favor the intersystem crossing from the S1 to long-lived triplet state T1.33 The high triplet quantum yield 

is advantageous for the ROS generation.

Subsequently, porphyrin-based dendrimer DP 5 was obtained by click reaction between 3 and 4, 

which was prepared according to literature protocol.27 This synthetic approach for Cu(I)-catalyzed azide-

alkyne cycloadditions is a versatile procedure for applications in porphyrin chemistry.34 According to 

our experience,35 first click reaction assay to couple core DP 5 and dendron D 4 was a homogeneous 

condition, using the stable compound Cu(PPh3)3Br as source of Cu(I) and DiPEA as base in anhydrous 

THF. However, the product isolated by flash chromatography and analyzed by NMR spectrometry was 

not the expected dendrimer. Based on previous reports for triazole porphyrin dimers,34,36 we used CuI as 

Cu(I) source, DiPEA and a mixture of THF and acetonitrile. These reaction conditions were appropriated, 

affording the expected cruciform porphyrin-core dendrimer DP 5 in 82% yield. These three reactions are 

robust, straightforward and with high yields. By the introduction of 4,4'-di(N-carbazolyl)triphenylamine 

units, the resulting structure has four arms, which end with two carbazole groups. Thus, these eight 

groups in the periphery of the tetrapyrrolic macrocycle are able to form electrogenerated polymer by the 

dimerization of carbazole units.13,14

Molecular structure of this dendrimer containing a porphyrin core was determined by NMR and 

MS spectra. In the aromatic region of 1HNMR spectrum of DP 5, as a consequence of the symmetric 

substitution on the tetrapyrrolic ring, eight β-pyrrolic protons give rise to a singlet at 9.14 ppm. 

Furthermore, the aromatic protons of carbazole, triphenylamine and phenyl-vinylene moieties are 

overlapped in the region between 7.00 to 8.30 ppm of the 1HNMR spectrum. In this region, a doublet at 
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8.16 ppm (J = 7.7 Hz) was observed, which belongs to carbazole ring and integrated for 16 protons 

according to the cruciform architecture of the porphyrin-core dendrimer DP 5. Other signals found were 

doublets at 7.12 ppm and 7.22 ppm corresponding to vinylic protons, which showed a coupling constant 

value of 15.9 Hz due to trans geometry of the alkene. A broad singlet signal at 8.39 ppm corresponding 

to a total of four protons demonstrated the completed formation of four triazole groups around the 

macrocycle. Furthermore, in the upfield region, the signal corresponding to inner pyrrolic H is absent, 

which confirmed that zinc(II) complexation was retained after the click reaction. In 13CNMR, triazole 

CH carbon signal at 121.9 ppm, pyrrolic carbon at 132.9 ppm and characteristic carbazole CH carbons 

at 120.1, 120.5 and 110.2 ppm were observed. In addition, vinylic carbons belonging to trans-alkene 

bond at 127.2 and 129.0 ppm were also found. The para tetra-functionalization was confirmed by 

19FRMN, which showed two signals at -134 and -146 ppm that were assigned to orto and meta fluor 

atoms.

On the other hand, the two constitutional moieties of DP 5 were synthesized (Scheme 2) via click 

chemistry in order to study and compare their properties. One of them is the porphyrin-triazole core P 6 

without the electropolymerizable units and the second is the dendron-triazole D 7. Both molecules were 

prepared using the same synthetic protocol applied to DP 5. Thus, porphyrin core 3 was submitted to a 

CuAAC reaction with excess of commercial phenylacetylene, affording P 6 in 60% yield. Characterization 

by NMR and MS spectroscopies confirmed the expected structure. 1HNMR spectrum of P 6 showed a 

singlet at 9.15 ppm corresponding to eight -pyrrolic protons and a singlet at 8.40 ppm belongs to four 

vinylic protons of the triazole ring. Phenyl ring are responsible for the doublet at 7.87 ppm and for the 

multiplete centered at 7.47 ppm, both signals integrated for 20 protons. Two characteristic signals of 

carbon were found in 13CNMR spectrum: pyrrolic CH at 132.4 ppm and triazolic CH at 122.1 ppm. Also, 

19FNMR spectrum showed two signals at -134.8 and -146.4 ppm corresponding to C-F of the aromatic 

ring. Moreover, CuAAC reaction of dendron 4 with three equivalents of freshly synthesized phenyl azide 

yielded the expected dendron-triazole D 7 (93%). Molecular structure was confirmed by NMR and MS 
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spectroscopies and the data collected were in agreement with the expected compound. 1HNMR spectrum 

for D 7 showed a singlet at 8.21 ppm corresponding to triazolic CH, a doublet at 8.16 ppm (J = 7.7 Hz) 

belongs to carbazole ring and two doublets at 7.20 and 7.11 ppm for the vinylic protons with a coupling 

constant of 16.2 Hz, in agreement with trans geometry of the double bond. In 13CNMR spectrum was 

observed the triazolic CH at 117.6 ppm, characteristic carbazole CH at 110.0, 120.5 ppm and vinylic CH 

at 128.1 and 128.3 ppm, respectively.

Formation of antimicrobial surfaces

Electropolymerization depositions were carried out to form antimicrobial surfaces. CV scans of 

DP 5 in DCM using TBAPF6 as supporting electrolyte and an ITO working electrode are shown in Figure 

1. The first anodic scan of the monomer DP 5 presents three oxidation peaks at 0.90, 1.05, and 1.35 V. 

These peaks were assigned to the oxidation of the porphyrin macrocycle, triphenylamine and carbazoyl 

groups, respectively.13,14 In the second anodic scan, oxidation-reduction currents began to increase and 

these continue to grow in subsequent cycles (Figure 1). These results indicate the formation of a film on 

the electrode surface. It is known that oxidation of carbazoyl groups generate unstable radical cation, 

which react forming dicarbazole units. DP 5 has attached eight N-substituted carbazoyl groups, which 

possess two positions available for dimerization. Subsequent electrochemical cycling of molecules 

bearing carbazoyl groups produce polymers over the conductive substrates.14,27 Therefore, during 

continuous anodic cycling of DP 5 monomer a polymeric film FDP 5 is deposited over the ITO electrode. 

This polymer is formed by porphyrin centers that are connected one to the other by dicarbazole units, 

leading to the formation of a complex three-dimensional network in which the tetrapyrrolic macrocycles 

are embedded.13 An idealized polymer structure is shown in Figure S2. The formation of the FDP 5 film 

on an ITO electrode are shown in Figure 2A. The optical microscope image shows the homogeneous 

distribution of the film (Figure 2C). In addition, the morphological characterization of the FDP 5 film was 

performed by SEM. As can be observed in Figure 2E, the entire surface of ITO is covered with FDP 5 
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film, without pinholes and with some polymeric dendrites that leave the surface. The dark background 

shows the FDP 5 film that cover the ITO surface, while the gray structures represent the FDP 5 polymer 

formed above the film layer with a dendron-shaped structure. Thus, the electropolymerization process 

leads to the formation of a stable film irreversibly adhered to the surface. A further advantage to this 

strategy is that polymers can act as light-harvesting units and efficiently transfer the energy to the 

porphyrin core, which enhance the antibacterial performance.37-39 In addition, FDP 5 film could be 

obtained using flexible plastic ITO electrodes. For large area applications of the antimicrobial surface, 

another lower cost base electrode material can be adopted for this propose, such as stainless steel and 

graphited aluminum bare electrodes.40 Moreover, if back illumination is needed, low cost transparent 

carbon-based nanomaterials can be also used.41

Absorption and fluorescence spectroscopic properties

The UV-visible absorption spectra of DP 5 and its constitutional models P 6 and D 7 in DMF are 

shown in Figure 3. These spectra were also compared with that for FDP 5. The main optical 

characteristics of these compounds are summarized in Table 1. The spectra of DP 5 and P 6 show the 

typical Soret around 420 nm and Q-bands in the 500-600 nm range, characteristic of the corresponding 

zinc(II) substituted porphyrins.32 The sharp absorption of Soret bands indicated that porphyrins are 

dissolved as monomer in this medium. The absorption of DP 5 below 400 nm is higher than that of P 6 

due to the incidence of dendrimeric structures, whereas in the visible region the spectrum of the DP 5 is 

quite similar to porphyrin P 6. Therefore, DP 5 spectrum is approximately the superposition of the 

absorption bands corresponding to P 6 and D 7, which indicates the absence of interaction between these 

two units in the ground state. In addition, the absorption spectra of DP 5 and D 7 show two main bands 

in the UV region of the electromagnetic spectrum, one of them around 330 nm can be attributed to the 

triphenylamine and carbazole units,27 whereas the lower energy band, centered around of 380, can be 

attributed to a π-π* transition of the triphenylamine-vinylene segments.42-44 Furthermore, the polymer 
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surface FDP 5 essentially retained the spectroscopic properties of the porphyrin-based chromophore 

despite to be an extensively aggregated system. The UV-visible absorption observations also confirm the 

electropolymerization of the DP 5 on the ITO electrodes. The Soret and Q bands of FDP 5 exhibit a 

small red-shifted of around 7 nm in comparison with those of DP 5 in DMF, together with a small 

broadening of both bands. These results indicate only slight interaction between the porphyrin units in 

the film structure.14

Fluorescence emission properties of DP 5 and P 6 were analyzed in DMF (Figure 4). The spectra 

show two bands around 595 and 647 nm, which are typical for similar meso-substituted zinc(II) porphyrin 

derivatives.32,33 These emission bands have been assigned to Qx(0-0) and Qx(0-1) transitions. This is 

characteristic of porphyrins with D2h symmetry, indicating that the vibronic structure of the tetrapyrrolic 

macrocycle remains practically unchanged upon excitation.45 These electronic transitions have been 

assigned to the decays from the first singlet excited state to the first two vibrational levels of the ground 

state. It can be note that Q(0-0) band is a smaller transition than Q(0-1), which is distinctive of 

pentafluorophenyl porphyrin derivatives.45-47 Moreover, the energy levels values of the singlet excited 

state (Es) were estimated for both photosensitizers (Table 1). Es values are comparable to those previously 

reported for zinc(II) porphyrins.33 The fluorescence quantum yields (F) of the porphyrins were 

determined using ZnTMP as a reference (Table 1). The values of F for DP 5 and P 6 agree with those 

previously reported for similar structures.45 Even though these values are smaller than free-base 

porphyrins, they can be used for quantification of porphyrin by fluorescence emission procedures.

On the other hand, compound D 7 exhibited fluorescence emission with a band centered at 490 

nm, when it was excited at the maximum wavelength of its low energy absorption bands (380 nm) in 

DMF (Figure S3). However, DP 5 showed only very weak emission from the dendrimeric moiety, 

indicating strong quenching of the dendrimer excited singlet state by the attached zinc(II) porphyrin core. 

The quenching efficiency was estimated to be ηq ≥ 0.96 in DMF. Therefore, in this solvent there is a 
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relaxation pathway that takes place from the excited singlet state of the dendrimer units to zinc(II) 

porphyrin.

Fluorescence excitation spectra of DP 5 and P 6 were obtained at em = 648 nm in DMF. As can 

be shown in Figure 5, both excitation spectra were similar to the absorption spectra, which indicated that 

DP 5 and P 6 are mainly dissolved as monomers in this organic solvent. Also, excitation spectrum of DP 

5 showed an important contribution of the bands due to the absorption of dendrimer arms, indicating that 

energy transfer take places from the surrounding groups units to the tetrapyrrolic macrocycle.

The fluorescence spectrum of the FDP 5 film is shown in Figure 4. The emission spectrum is 

characterized by a broad emission band centered at 650 nm with a shoulder at 605 nm. Both bands are 

red-shifted respect to the monomer in solution, in agreement with the fact that the Q bands in the film 

are also red-shifted. In addition, FDP 5 presented good emission proprieties, which is no common in 

electrodeposited films.13,14 Moreover, the red fluorescence emission of FDP 5 was observed irradiating 

the film with UV light or by fluorescence microscopy as shown in Figure 2B and D, respectively. These 

results indicate that the spectroscopic properties of the porphyrin unit remain unalterable when the 

porphyrin is incorporated in the film and this porphyrin can be embedded in the polymer without 

significant aggregation. These minor spectral changes in absorbance spectrum and the fluoresce 

properties of the film suggest that the π-π stacking between the porphyrin cores is impede and only takes 

place a weak coupling interaction. This fact can be explained as result of the repulsive interactions 

between the polymer chains.48 In addition, axial ligand coordination can occurs between triazole unit and 

the metal center on the porphyrin. Triazole group is a stable heterocycle, where the nitrogen at the 3-

position has a pair of non-covalent electrons that can coordinate as axial ligand with the zinc center of a 

second zinc(II) porphyrin molecule.49 This assemble between 1,2,3-triazoles and zinc(II) porphyrins 

tends to form a cofacial dimer both in the solid and solution states,49 without affect the photoexcited-

state processes of the porphyrin.50,51 To summarize, the tetrapyrrolic macrocycle in FDP 5 film retains 

Page 17 of 49

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

the spectroscopic properties of the porphyrin-based chromophore despite to be an extensively polymeric 

system.

Surface photostability

The photostability of the film is one of the most important requirements for antimicrobial films 

in order to the reusability and practical applications. Consequently, a photobleaching investigation of the 

electrodeposited FDP 5 film was conducted by irradiation with visible light, under the same conditions 

used for the photoinactivation of microorganisms. The photodegradation was studied in PBS and S. 

aureus cell suspension, observing the decrease in absorption of the Soret band (Figure S4). Moreover, 

formation of new bands was not detected in the visible region. The photobleaching processes followed a 

first-order kinetic, as shown in Figure 6. The values of kobs
P are (1.14±0.05) x 10-3 min-1 and (0.40±0.02) 

x 10-3 min-1 in PBS and S. aureus cell suspension, respectively. Under these conditions, the 

photodegradation lifetimes of FDP 5 film were estimated in 10.1 h and 28.9 h in PBS and cell suspension, 

respectively. The photosensitizing efficiency exhibited a little decrease with the fluence of light, which 

is an advantage since can be reuse for several treatments. This photostability can be explained considering 

several features of the synthetic design of DP 5. It is well-know that tetraphenyl porphyrin and their 

metal complexes can undergo a ring opening upon irradiation in aqueous solutions.52,53 However, Silva 

et al. demonstrated that the photooxidation reactions of several 2,6-disubstituted meso-tetraphenyl 

porphyrins have the chemical stability towards O2(1Δg).54 If positions 2 and 6 on the phenyl rings are 

blocked, the photooxidations do not take place. This excellent stability is consequence of steric effects, 

which protected the porphyrin ring. In addition, photosensitizers with higher redox oxidation potentials 

are more difficult to undergo the photooxidative process of photobleaching.52,55 In particular, DP 5 has 

in its structure four electronwithdrawing perfluorated groups, which increase its oxidation potential and 

give oxidative stability towards photodegradation of the macrocycle. In addition, the encapsulation of 

tetrapyrrolic macrocycle in a dendritic environment in FDP 5 offers suitable steric hindrances to avoid 
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its photobleaching. Thus, polymeric structure protects the porphyrin chromophore core against ROS 

increasing the photostability.

Photosensitized generation of O2(1g)

Photooxidation of DMA induced by DP 5 and P 6 was determined in DMF. The reaction was 

followed by the decay of the DMA band at 379 nm due to the formation of 9,10-endoperoxide product.28 

Figure S5 shows representative results using DP 5 as photosensitizer. The absorption bands of DMA 

decreased gradually under illumination in the presence of DP 5, P 6 and ZnTMP; which means that 

O2(1Δg) was generated by all molecules. In addition, the porphyrin spectrum remains unchanged, while 

the absorbance of the DMA decreases with the irradiation time indicating that the macrocycle was 

photostable during these experiments. Since DMA quenches O2(1g) by chemical reaction, it was used 

as an approach to determinate the ability of the photosensitizers to produce O2(1g).56 The values of 

kobs
DMA were calculated from first-order kinetic plots of the DMA absorption with time (Figure 7). Also, 

the results were compared with those using ZnTMP as a reference. Table 1 summarized the values of 

kobs
DMA calculated from the first order kinetic plots. As shown in Figure 7, the O2(1Δg) production was 

achieved at different rates depending on the porphyrins. DP 5 is two times smaller compared to ZnTMP 

photosensitizer. Meanwhile, P 6 exhibits a value of kobs
DMA between DP 5 and the reference. In addition, 

the values of  were determined comparing the kinetic data with that of the reference (Table 1). The 

 value obtained for P 6 was the expected for a zinc(II) porphyrin derivative.28,32 The dendrimeric 

structures in the periphery of the macrocycle in DP 5 reduced the production of O2(1Δg). However, DP 

5 could act as light-activated antimicrobial when this porphyrin is deposited on a surface forming 

polymeric films.

To determine the O2(1Δg) generation sensitized by FDP 5 film, the surface was transferred to a 

quartz cuvette with a solution of DMA in DMF. The decrease of the absorption band of DMA was 
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monitored after illumination with a wavelength range between 455 and 800 nm (Figure S6). This 

experiment confirms the photosensitization efficiency of these surfaces to produce O2(1Δg) under light 

illumination. ITO electrode without polymer was used in parallel as a control and no change were 

observed in absorption spectra. Also, photodecomposition of DMA sensitized by FDP 5 was compared 

with that produced by ZnTMP, as a reference. As shown in Figure 8, the photodecomposition of DMA 

showed first-order kinetics with respect to substrate concentrations. The values of kobs
DMA are 

summarized in Table 1. Photooxidation induced by FDP 5 can be considered appropriate since O2(1Δg) 

generation occurs in the interface between the polymer surface and the solution. These results confirm 

that not only DP 5 but also FDP 5 film were able to produce O2(1Δg). Therefore, a contribution of a type 

II pathway takes place when the FDP 5 film was exposed to visible light.

In addition, a second experience was carried out in order to demonstrate the capacity of this thin 

polymeric film to generate O2(1Δg) in water, using AMDA as molecular probe. Although, the lifetime of 

O2(1g) in water is about 4 s, it was established that AMDA is an efficient acceptor of O2(1g) because 

to its high water-solubility.57 Thus, decomposition of AMDA induced by FDP 5 film was studied under 

aerobic conditions. Decrease in fluorescence emission was observed after irradiation, indicating the 

photodecomposition of AMDA (Figure S7). Therefore, FDP 5 film was also able to generate O2(1g) in 

water. Thus, the photodynamic studies presented make evident that the DP 5 moieties retained their 

photochemical properties after the polymerization and deposition process on ITO surface. Taking into 

account that the illumination with visible light of these surfaces revealed the suitability for the effective 

production of O2(1Δg), this FDP 5 film was evaluated as antimicrobial surface to inactivate bacteria under 

different cell culture conditions.

PDI of bacteria
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The photodynamic activity sensitized by FDP 5 film was investigated in vitro to inactivate 

S. aureus and E. coli cells. These bacteria were chosen as representative of Gram-positive and Gram-

negative strains of great interest due to their ability to produce nosocomial infections.1,2 Thus, it is 

required to find different alternatives to prevent and eradicate infections caused by these bacteria.

First, photokilling of bacteria was studied by depositing a drop containing the cells on the 

polymeric FDP 5 film. This approach based in antibiotic drop-tests can be used to evaluate the capacity 

of the film to inactivate bacteria that contaminate different surfaces in hospitals. In this approach, 250 

L of cell suspension (~106 CFU/mL) was located on polymeric film and the plate was irradiated with 

visible light. Figure 9 shows the survival of S. aureus and E. coli after 15 and 30 min irradiation, 

respectively. Control experiments indicated that the viability of bacteria was unaffected by kept the cells 

on the ITO (Figure 9, lines 1 and 5) or FDP 5 film (Figure 9, lines 2 and 6) surfaces in the dark. After 15 

min irradiation on ITO surface (Figure 9, lines 3), 1 log decrease was found for S. aureus, while a slight 

inactivation (<0.5 log) was detected in E. coli irradiated for 30 min (Figure 9, lines 7). Therefore, the 

increase in the killing of bacteria observed after irradiation was produced by the photosensitization effect 

of the polymeric FDP 5 film. In S. aureus, no colony formation was detected using polymeric FDP 5 

film after 15 min irradiation (Figure 9, lines 4). This photoinactivation represents a reduction >99.9998% 

cell viability. This result indicates that the combination of polymeric FDP 5 film and visible light were 

appropriated to photoinactivate S. aureus. A lower photoinactivation activity was observed in E. coli on 

polymeric FDP 5 film, which produced 2.2 log decrease (in cell survival after 30 min irradiation (Figure 

9, lines 8). This value represents a photoinactivation greater than 99.4% cell death. E. coli cells were 

more difficult to inactivate than S. aureus due to the nature of the envelope of Gram-negative bacteria.6 

A permeability barrier between the cell and the surrounding medium is produced by the outer membrane 

of Gram-negative bacteria, which restricts the penetration of ROS. On the ITO electrode without the 

FDP 5 film, some inactivation occurs due to the photodynamic action of the semiconductor surface and 

in fact S. aureus was the most affected bacterium. In the presence of the FDP 5 film, there was a complete 
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eradication of this Gram-positive bacterium, while this was not the case for E. coli. Therefore, when 

compared to a control without photodynamic activity, S. aureus was more susceptible than E. coli to the 

presence of ROS.Comparison between other surfaces containing immobilized photosensitizers is 

difficult mainly due to different experimental conditions. In a similar approach, it was previously 

determined the photoinactivation of bacteria sensitized by an electrogenerated porphyrin-fullerene C60 

polymeric film. Even though the experiments were performed with a lower number of cells, it was 

necessary 30 min irradiation to produce a complete eradication of S. aureus.58 Also, unlike FDP 5 film, 

the porphyrin-fullerene C60 was not effective to photoinactivate E. coli, which points the FDP 5 film as 

an improved surface to inactivate microbes.

Furthermore, photoinactivation of bacteria was evaluated in bacterial cells attached to the surface 

that contains the FDP 5 film. Thus, cell death induced by FDP 5 film was investigated in S. aureus and 

E. coli stained with PI. This compound passes through disordered areas of the dead cell membrane and 

binds to DNA, where it begins to emit red fluorescence.59 In these experiments, bacterial inactivation 

was monitored in real-time by images of the fluorescence microscope. This approach represents an 

incipient contamination of bacteria on a surface. As can be seen in Figure 10, the FDP 5 film induced a 

rapid cellular inactivation, which was detected by the appearance of dead cells as shown by the red 

emission of PI. Complete eradication of S. aureus and E. coli cells was found after 7.5 and 30 min 

irradiation, respectively. Thus, under these conditions the FDP 5 film was an effective photosensitizer to 

inactivate S. aureus and E. coli, even using white light of low fluence rate (0.9 mW/cm2). Therefore, the 

photoinactivation induced by FDP 5 film remained elevated to killing bacteria attached to surfaces.

On the other hand, the inactivation capacity photosensitized by FDP 5 film was evaluated against 

S. aureus and E. coli biofilms. Clinically important microorganisms that grow in medical devices are 

prone to form biofilms. These structures give them greater resistance and tolerance to antibiotics 

compared to their planktonic forms.60 Therefore, biofilms represent a major health problem that 

contribute greatly to recalcitrant hospital infections. In this procedure, the FDP 5 film was immersed in 
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a cell suspension (106 CFU/mL) in PBS for 18 h to produce the biofilm formation on the surface 

(1.0x0.7=0.7 cm2). The biofilm on the opposite side of the polymeric FDP 5 film was removed and the 

surface was irradiated with visible light for 60 min. The survival of bacteria is shown in Figure 11. No 

toxicity was observed in biofilms grown on ITO or FDP 5 film kept in the dark (Figure 11, lines 1, 2 and 

5, 6). After 60 min irradiation, the biofilms on ITO showed 1 log decrease of S. aureus survival, while it 

was about 0.5 log reduction of E. coli viability. As can be observed in Figure 11, the microorganisms 

were photoinactivated when the biofilms on the polymeric film FDP 5 were exposed to visible light. 

Polymeric film exhibited a photosensitizing activity causing a 4.8 log decrease of S. aureus survival 

(Figure 11, lines 4). Similar result was obtained with E. coli biofilms (Figure 11, lines 8), which was 

reduced in 4.5 log. These decreases in bacterial survival represent more than 99.99% of cell 

photoinactivation. In contrast, a bactericidal effect was not obtained using the ITO electrode without the 

FDP 5 film and the survival cells can grow rapidly regenerating a high microbial load. Therefore, these 

experiments show that the light in combination with polymeric film FDP 5 was the main source of 

bacterial photokilling that was essential to produce a high antimicrobial action.

In all experiments, polymeric FDP 5 film was stable and it was not detached from the ITO surface 

under biological experimental conditions. Also, it was reused at least three times keeping comparable 

photoinactivation capacities (Figure S8). After each treatment, the absorption spectroscopic analysis of 

the cell suspensions did not show the Soret band, characteristic of the porphyrin, indicating that the 

cultures were not contaminated with DP 5 that was used to form the film. Therefore, the surfaces bearing 

polymeric FDP 5 film could be used to obtain effective antibacterial surfaces that are activated by visible 

light.

Conclusions

The hospital environment may be contaminated with potential pathogens, which represent a high 

risk of disease transmission for patients. Mainly, S. aureus can develop resistance to antibiotics for 
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clinical use and survive for long periods in different media and on surfaces. Moreover, E. coli can cause 

severe and often deadly infections. In addition to the contaminated places, it can be transmitted to patients 

through health professionals. Therefore, new strategies are required to maintain aseptic conditions, 

mainly in areas of high risk of nosocomial infections. In this way, a novel triazole-porphyrin DP 5 

connected to a 4,4'-di(N-carbazolyl) triphenylamine group by means of a phenylenevinylene bridge was 

synthesized. In this structure, dendrimeric groups act as light-harvesting antennas, which allow 

improving the absorption of blue light and as electroactive moieties. The electrochemical oxidation of 

the terminal carbazolyl groups produced electrogenerated photoactive polymeric films. The procedure 

combines a relatively straightforward synthetic sequence of DP 5 with good yields and a simple 

electrodeposition method that allowed obtaining FDP 5 film. Also, dendrimeric units in DP 5 can act as 

a visible light-harvesting antenna and singlet energy donor to zinc(II) porphyrin core enhances ROS 

production. The spectral features of DP 5 were essentially preserved in FDP 5 surface. In addition, it 

was demonstrated that the photodynamic properties of DP 5 were retained in FDP 5. This procedure 

represents a versatile method to development photosensitized antimicrobial surfaces. FDP 5 film showed 

high antibacterial activity to photoinactivate S. aureus and E. coli cells in different conditions, such as 

planktonic culture, attached cells to a surface and biofilms of bacteria. This antimicrobial polymer 

activated by visible light can allow controlling the microbial proliferation, preserving sterile 

environments on surfaces. Another advantage of FDP 5 was that avoid the loss of photosensitizer by 

leaching. Therefore, FDP 5 film can be recovered and reused from the irradiated medium, producing 

negligible environmental pollution. Therefore, coatings with highly stable polymeric FDP 5 film present 

potential applications in healthcare environments for preventing and treating nosocomial infections.

Associated content

Supporting Information
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Additional data including experimental procedures, idealized polymer chemical structure, 

fluorescence emission spectra, absorption spectra changes for the photobleaching, absorption spectra 

changes for the photooxidation of substrates, NMR and MS spectra for compounds 5-7.
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Table 1. Spectroscopic and photodynamic properties of porphyrins in DMF and FDP 5 film.

Compound max
Abs (nm) max

Em (nm) Es (eV) a F b kobs
DMA (s-1) c  f

DP 5 423/552 596/648 2.16 0.017±0.002 (2.160.02) x 10-4 d 0.270.02

P 6 422/552 594/645 2.16 0.026±0.002 (6.100.05) x 10-4 d 0.760.03

FDP 5 430/560 605/650 2.13 - (4.240.04) x 10-4 e

a energy levels of the singlet excited stated; b fluorescence quantum yield; c observed rate constants for 

DMA photooxidation; d irr = 555 nm, reference ZnTMP, kobs
DMA = (5.800.04) x 10-4 s-1; e irr = 455-

800 nm, reference ZnTMP, kobs
DMA = (3.250.03) x 10-3 s-1; f O2(1g) quantum yield, reference ZnTMP 

 = 0.73.28
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Figures and Schemes captions
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Figure 1. CV scans of DP 5 recorded in DCM containing 0.1 M TBAPF6 using an ITO working 

electrode. Red lines after deposition of the first layer. All the CVs were obtained at a scan rate of 100 

mV/s.
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Figure 2. Photograph of the film FDP 5 (A) irradiated with visible light and (B) exposed to UV light 

(exc = 254 nm); and microscope images (40x microscope objective) (C) film under bright field and (D) 

fluorescence emission; (E) SEM image of FDP 5 film (scale bar 10 μm).
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Figure 3. Absorption spectra of DP 5 (solid line) P 6 (dashed line) and D 7 (dotted line) in DMF and 

FDP 5 film (red line).
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Figure 4. Fluorescence emission spectra of DP 5 (solid line) and P 6 (dashed line) in DMF and FDP 5 

film (red line), exc = 550 nm.
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Figure 5. Fluorescence excitation spectra of DP 5 (solid line) and P 6 (dashed line) in DMF, em = 648 

nm.
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Figure 6. First-order plots for the photobleaching of FDP 5 film irradiated with visible light in PBS () 

and S. aureus cell suspension ().
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Figure 7. First-order plots for the photooxidation of DMA (20 µM) photosensitized by DP 5 (), P 6 () 

and ZnTMP () in DMF, λirr = 555 nm.
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Figure 8. First-order plots for the photooxidation of DMA (20 µM) photosensitized by DP 5 () and 

FDP 5 film () in DMF, λirr = 455-800 nm.
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Figure 9. Survival of bacteria (~106 CFU/mL) depositing a drop (250 L) with the cells on the polymeric 

film 5; 1) S. aureus on ITO in dark; 2) S. aureus on FDP 5 film in dark; 3) irradiated S. aureus on ITO; 

4) irradiated S. aureus on FDP 5 film; 5) E. coli on ITO in dark; 6) E. coli on FDP 5 film in dark; 7) 

irradiated E. coli on ITO; 8) irradiated E. coli on FDP 5 film. S. aureus and E. coli were exposed to 

visible light for 15 and 30 min irradiation, respectively (*p < 0.05, compared with control).
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Figure 10. Microscopic images of E. coli and S. aureus incubated with 1 μM PI for 15 min in the dark 

on the FDP 5 film; (A) cells under bright field at t = 0 min, (B) fluorescence emission of PI after different 

irradiation times. E. coli t = 0, 10, 20 and 30 min; S. aureus t = 0, 2.5, 5, 7.5 min (100×microscope 

objective).
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Figure 11. Survival of bacteria biofilms formed on the polymeric FDP 5 film; 1) S. aureus on ITO in 

dark; 2) S. aureus on FDP 5 film in dark; 3) irradiated S. aureus on ITO; 4) irradiated S. aureus on FDP 

5 film; 5) E. coli on ITO in dark; 6) E. coli on FDP 5 film in dark; 7) irradiated E. coli on ITO; 8) 

irradiated E. coli on FDP 5 film. S. aureus and E. coli were exposed to visible light for 60 min (*p < 

0.05, compared with control).
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Scheme 1. Synthesis of 1-DP 5.
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Scheme 2. Synthesis of P 6 and D 7.
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