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Abstract 

Background: Peroxisome proliferator-activated receptor gamma (PPARG) is a 

nuclear factor that may act on the early development of ovarian follicles and on 

follicular steroidogenesis. However, the exact mechanism of PPARG action remains 

unknown. We have previously found that androgen excess alters early ovarian function 

and the PPARG system. The aim of the present study was to evaluate whether PPARG 

activation (using the synthetic ligand pioglitazone (PGZ)) ameliorates the alterations in 

early ovarian function induced by androgen excess.  
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Methods: Female prepubertal rats were treated with equine chorionic 

gonadotropin (eCG) to induce folliculogenesis, together with dehydroepiandrosterone 

(DHEA) to induce hyperandrogenism and/or PGZ to evaluate PPARG activation. We 

assessed i) very early ovarian folliculogenesis, ii) PPARG activation, iii) ovarian 

steroidogenic enzymes, iv) the estradiol/testosterone ratio, v) the ovarian inflammatory 

status and vi) oxidative stress. 

Results: PGZ prevented the inactivation of ovarian PPARG induced by 

androgen excess by increasing PPARG itself and the gene expression of PPARG-

coactivator 1 alpha (PGC1A), and by decreasing the gene expression of nuclear co-

repressor (NCOR). PGZ also prevented the altered ovarian steroidogenesis, pro-

inflammatory status and oxidative stress induced by androgen excess.  

Conclusions: Our findings suggest that PPARG activation plays important 

roles in modulating early ovarian function, and highlight the importance of 

understanding the role(s) of PPARG activation in the ovary, and the possible 

involvement in the treatment of ovarian pathologies, and/or the impact in 

regulating/improving fertility.  

Key Words: PPARG, folliculogenesis, dehydroepiandrosterone, ovarian 

function, pioglitazone. 

Introduction 

Reproductive function is associated with energy balance [1, 2]. In the ovary, 

the nutritional status modulates ovarian function, [1] and several candidates have been 

involved as possible links between the nutritional status and the function of the different 

ovarian cells [3]. Some of these energy sensors are the peroxisome proliferator-activated 

receptors (PPARs), which are transcriptional factors belonging to the steroid receptor 

family. Currently, three different types of PPARs are recognized (PPARalpha, 
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PPARbeta/delta and PPARgamma) and described as key regulators of fatty acid and 

lipoprotein metabolism, glucose homeostasis, cellular proliferation/differentiation and 

the immune response [4, 5]. In the ovary, PPARgamma (PPARG) senses the nutritional 

status in the follicle [6] and may act in the development of follicles and their ability to 

support normal oocyte maturation (reviewed in [7]). The activation of PPARG by both 

endogenous and synthetic ligands modulates its transcriptional activity by increasing the 

recruitment of co-activators, such as PPARG co-activator 1 alpha (PGC1A) [8], and 

increasing the clearance of repressors such as the nuclear corepressor (NCOR), which 

down-regulates the transcriptional activity of PPARG [9]. In the ovary, upon activation, 

PPARG modulates ovarian steroidogenesis and cellular proliferation [6, 10], and its 

disruption leads to female subfertility [11]. However, the exact mechanism involved in 

PPARG activation remains unknown, particularly during early ovarian function.  

We have previously shown that the administration of a follicle stimulating 

hormone (FSH) analog promotes early follicular development in prepubertal rats [12]. 

In this window of development, exposure to androgen excess induces alterations in the 

ovarian function and related endocrine parameters [12, 13]. Androgen excess disturbs 

ovarian follicular development, leading to chronic anovulation, as observed in 

polycystic ovary syndrome (PCOS), a condition in which impaired follicular growth 

lead to menstrual disturbances and anovulatory infertility [14, 15]. Moreover, evidence 

indicates that prenatal or pre-pubertal androgen excess may be involved in the 

pathophysiology of PCOS [16, 17]. It has been reported PPARG activators, such as 

pioglitazone (PGZ) and rosiglitazone, improves the androgenic status and ovarian 

function [15]. However, the clinical use of these activators goes beyond the knowledge 

of their mechanism of action. 
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Our murine model consists in a very short-term treatment of immature female 

animals with two hormones: equine chorionic gonadotropin (eCG), an efficient 

interspecies inducer of follicular recruitment [18], and dehydroepiandrosterone 

(DHEA), which promotes a hyperandrogenic condition [12]. Our previous results 

showed that DHEA treatment induces alterations in the very early ovarian function, 

along with a down-regulation of the PPARG system [12, 19]. Based on these previous 

findings, in the present study, we aimed to investigate whether the activation of the 

PPARG system, by the synthetic ligand PGZ, was able to prevent the alterations 

induced by androgen treatment. Specifically, we studied the role of PGZ in preventing 

the adverse effects of androgen excess on i) very early ovarian folliculogenesis, ii) 

PPARG activation, iii) ovarian steroidogenesis, iv) the estradiol2 (E2)/testosterone (T) 

ratio, v) Ovarian inflammatory status and vi) oxidative stress. 

Materials and Methods 

Animal model  

Sprague-Dawley prepubertal female rats (22-25 days of age) were housed 

under controlled temperature and illumination and allowed free access to food and 

water. All procedures were conducted in accordance with The National Institutes of 

Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, 

revised 1978). We used prepubertal rats to avoid previous estrous cycles that may 

interfere with the results, and our choice is supported by the fact that prepubertal rats are 

widely used to study the effect of androgen excess administration on ovarian function 

[20-22]. In this model, we have previously assayed the effect of a single dose of eCG on 

prepubertal rats and we found that eCG treatment yield the peak of progesterone at 8h, 

after this time serum hormone decreases [19]. This finding is in agreement with other 

authors whose reported an early effect of eCG on ovarian steroidogenesis [23]. In fact, 
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we have previously found an acute effect of both eCG and DHEA in early stage of 

follicular development, as previously reported [12, 19]. A group of 25 rats were injected 

intraperitoneally (ip) with 25 IU of eCG (Novormon, Syntex SA) in saline solution 

(eCG group). eCG+DHEA or DHEA group consisted of 25 rats injected with eCG plus 

a sc injection of 60 mg/kg body weight of DHEA (Sigma-Aldrich, USA) in sesame oil. 

A third group of 25 rats were injected with eCG together with DHEA and then orally 

administered with 1 mg/kg body weight of PGZ (ELEA, Buenos Aires, Argentina) in 

water (eCG+DHEA+PGZ). Although the current treatments with thiazoldineniones are 

prolonged, Cox et al showed that the bioavailability in plasma after a single dose is 

rapidly seen within 24 hours [24], therefore we decided to test the effect of PGZ at 8h. 

To assess any effect of PGZ per se, a fourth group of 25 rats were ip injected with eCG 

together with orally administration of PGZ (eCG+PGZ). After 8 h of treatments, rats 

were anesthetized with CO2 and killed by decapitation. Ovarian tissue was removed 

and; a) immediately fixed in 4% (w/v) paraformaldehyde for morphological studies, or 

b) stored at -80°C for subsequent ovarian assays. Also, trunk blood was collected and 

serum was separated by centrifugation, and stored at -80°C for subsequent oxidative 

stress and sexual hormones assays.  

Ovarian morphology  

Histological serial sections were obtained as described before [12]. Sections 

were analyzed independently by three of the authors, and ovarian follicles were 

classified and quantified as primordial (PF), primary (PrF), secondary (SF), and antral 

(AF). PF were classified as those formed by an oocyte surrounded by a flattened layer 

of pre-granulosa cells; PrF were those with at least one cuboidal layer of granulosa cells 

(GCs); SF were those with more than one layer of cuboidal GCs and an incipient layer 

of theca cells (TCs); and AFs were those with the antrum and the oocyte with the 

ACCEPTED M
ANUSCRIP

T



PPARG and ovarian function in DHEA-treated rats 

 

6 

surrounded zona pellucida, and a basal lamina between GCs and TCs. Follicular atresia 

was also quantified, and atretic follicles were defined as follicles with >5% of the GCs 

having pyknotic nuclei.  

qPCR analysis 

mRNA levels in ovarian tissue were measured by qPCR as described before 

[12].We evaluated PPARG, NCOR, PGC1A, steroidogenic acute regulatory protein 

(STAR), cytochrome P450-17A1 (CYP17), 3β-hydroxysteroid dehydrogenase 

(3BHSD), 17β-hydroxysteroid dehydrogenase (17BHSD), aromatase (CYP19), tumor 

necrosis factor alpha (TNFA) and cyclooxygenase 2 (COX2). The 2(-DeltaDelta CT) 

method was used to analyze the relative changes in gene expression. Results are 

expressed as arbitrary units, and the RPL32 gene was used as a reference. Primers are 

shown in Table 1. 

WB analysis  

Protein levels were measured by WB as described before [12]. Diluted primary 

antibodies of (1/100) PPARG (H-100, sc-7196), (1/200) STAR (FL-285, sc-25806) and 

(1/100) COX2 (H-62, sc-7951) (Santa Cruz Biotechnology, Inc., USA) were used. Data 

of protein loading was normalized by applying the protein βActin (1/500) (Sigma Co.). 

The experiment was independently repeated three times. Results are expressed as 

arbitrary units.  

Estradiol and testosterone radioimmunoassays.  

E2 and T levels were determined by specific RIAs as described before [25]. E2 

sensitivity was 5–10 pg/tube andT sensitivity was 25–1600 pg/tube. The intra-assay and 

inter-assay variations of T were 7.5 and 15.1% respectively, and the cross-reaction 

between T and DHEA was <0.01 pg. Results are expressed as pg/ml serum. 

PGE radioimmunoassay  
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PGE content was determined by RIA as previously reported [26]. Sensitivities 

of these assays were 10 pg/tube for PGE. The cross-reactivity of PGE2α was 100% with 

PGE1 and <0.1% with other prostaglandins. Results are expressed as pg/μg protein. 

Protein concentration was determined by the Bradford assay (Bio-Rad). 

Determination of lipid peroxidation  

The method used in the present study, as described before [26], quantifies 

serum MDA as the product of lipid peroxidation that reacts with trichloroacetic acid–

thiobarbituric acid–HCl (TCA-TBA-HCL) (Sigma), yielding a red compound that 

absorbs at 535 nm. Results are expressed as content of MDA (nanomoles MDA 

formed/ml serum). 

Determination of glutathione content in serum 

Glutathione (GSH) was quantified in serum as previously described [27]. The 

reduced form of GSH comprises the bulk of cellular protein sulfhydryl groups. Results 

are expressed as μM GSH. 

Statistical analysis 

Statistical analyses were carried out with the GraphPad Prism 5.0 (GraphPad 

software, San Diego, USA). Data were analyzed by 2-way ANOVA to assess the effects 

and interactions of 2 independent variables, and multiple comparisons were achieved 

using the Bonferroni post-hoc test. Statistical significance was defined at p<0.05 

Results 

PGZ prevented the down-regulation of the ovarian PPARG system induced by 

DHEA 

PGZ (eCG+DHEA+PGZ) partially prevented the decrease in both mRNA and 

protein levels of PPARG induced by DHEA treatment (Fig. 1 A-B). Note: we quantified 

the two observed bands of the corresponding WB, corresponding to PPARG1 and 
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PPARG2 isoforms, according to the supplier. PGZ also prevented the decrease in the 

mRNA levels of PCG1A and partially prevented the increase in the mRNA levels of 

NCOR, induced by DHEA treatment (Fig. 1C-D). No significant effects of PGZ per se 

(eCG+PGZ) were found on PPARG, PGC1A or NCOR levels, when comparing to the 

eCG group (Fig. 1 A-D). 

PGZ treatment and ovarian morphology  

No preovulatory follicles or corpora lutea were observed in any of the 

treatment groups, an expected result considering the short age of the prepubertal rats. 

No differences in total ovarian weight were found between groups (data not shown). 

The percentage of PF was higher whereas that of PrF was lower in the DHEA 

treatment group than in the eCG group (Fig. 2A). PGZ partially prevented the 

alterations caused by the DHEA treatment, since the percentages of PF and PrF were 

similar to those in the DHEA treatment and eCG groups (Fig. 2A). In the PGZ per se 

group, we found no differences in the percentages of SF and AF in any of the treatment 

groups (Fig. 2A), or in any follicle class, comparing to the eCG group (Fig. 2A). The 

percentage of atresia was similar in all the treatment groups (Fig. 2B). 

The activation of the PPARG system prevented the alterations induced by 

DHEA in the levels of ovarian steroidogenic enzymes 

PGZ prevented the DHEA-induced increase in both the mRNA and protein 

levels of STAR (Fig. 3A-B), and the DHEA-induced increase in the mRNA levels of 

CYP17 (Fig. 3C), 3BHSD (Fig. 3D) and 17BHSD (Fig. 3E). To evaluate the balance in 

the synthesis of E2 and T, we assessed the mRNA levels of the aromatase CYP19. We 

found that PGZ prevented the DHEA-induced decrease in the mRNA levels of CYP19. 

The PGZ per se group showed a decrease in CYP17 mRNA levels, with no differences 
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in the levels of STAR, 3β-HSD, 17β-HSD or CYP19, comparing to the eCG group (Fig. 

3C-F). 

The activation of the PPARG system prevented the alterations caused by 

DHEA in the E2/T ratio  

PGZ increased the serum levels of E2 and decreased those of T (Fig. 4A and B) 

as compared with the DHEA treatment group, thus leading the E2/T ratio to levels 

similar to those of the eCG group (Fig. 4C). PGZ per se did not alter systemic E2, T or 

E2/T ratio as compared with the eCG group (Fig. 4A-B).  

The activation of the PPARG system prevented the ovarian pro-inflammatory 

status induced by DHEA 

PGZ prevented the DHEA-induced increase in mRNA levels of TNFA, an 

early inflammatory marker (Fig. 5A), and both the mRNA and protein levels of COX2 

(Fig. 5B-C). Moreover, PGZ decreased the levels of PGE, comparing to the DHEA 

treatment, to values even lower than those observed in the eCG group (Fig. 5B-D). In 

addition, PGZ per se did not alter the protein or mRNA levels of COX2, mRNA levels 

of TNFA, or PGE content, comparing with the eCG group (Fig. 5C). 

The activation of the PPARG system exerted a protective effect against DHEA-

induced oxidative stress 

PGZ prevented the DHEA-induced alterations in the systemic 

oxidant/antioxidant balance evaluated by MDA and GSH (Fig. 6A-B). We found no 

effect per se of PGZ on serum MDA or GSH levels, as compared with those of the eCG 

group (Fig. 6A and B). 

Discussion 

In previous studies, we found that androgens alter early ovarian function, 

impair follicular steroidogenesis, establish an ovarian pro-inflammatory and pro-oxidant 
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status, and decrease the activation of PPARG in the ovary [12, 19]. In agreement with 

these results, it has been shown an association between PPARG and androgen excess 

disorders like PCOS [28-30].  

Here, we showed that PGZ activated PPARG through the modulation of 

PPARG itself and the gene expression of co-regulators PGC1A and NCOR. These data 

are in agreement with previous findings showing that PGZ increases the gene 

expression of the co-activator PGC1A [31] and promotes the clearance of NCOR [9]. 

Despite the complexity of the transcriptional mechanism of PPARG [7], this is the first 

time that PGZ has been shown to activate PPARG through its own expression and the 

gene expression of PGC1A and NCOR, during early ovarian function. 

It has been found that gonadotropins, together with intraovarian regulators, 

have a stimulatory effect on early folliculogenesis [32]. Thus, we induced early ovarian 

development in prepubertal rats by means of an eCG injection. In that context, when 

follicular stimulation was induced in the presence of androgen excess, the percentage of 

PF increased while that of PrF decreased. These data are in agreement with the evidence 

that androgens are involved in early follicular recruitment [32, 33]. Furthermore, we did 

not find an altered percentage of atretic follicles in the presence of androgen excess, in 

agreement with Vendola et al [33], and we suggest that, at least in the short term, 

androgens are not atretogenic. These findings are consistent with that observed in  

women with PCOS [34], who show prolonged survival of preantral follicles with 

respect to normal-cycling women, in which preantral follicles either grow rapidly to 

become dominant follicles or collapse in atresia. However, if the exposure to androgen 

excess continued, follicles with abnormal growth would eventually collapse back into 

the ovarian stroma, leading to the stromal hypertrophy typical of PCOS and chronic 

testosterone treatment [35]. Here, we found, for the first time, that PPARG activation 
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prevented the alterations induced by the excess of androgens, since PGZ restored the 

percentages of both PF and PrF to gonadotropin-induced values. These findings support 

the notion that PPARG plays a role in the early stages of follicular development [6, 7].  

PPARG system modulates the expression of genes involved in follicular 

development, ovulation, oocyte maturation, and corpus luteum development [6, 10]; 

however, this is the first time that it is shown that PPARG activation prevents the 

deregulation of steroidogenic pathway enzymes induced by androgen excess. In fact, 

PPARG activation prevented the alteration in the estrogens/androgens ratio, by means 

of modulating the gene expression of steroidogenic enzymes, especially by increasing 

the gene expression of aromatase CYP19, the enzyme that synthesizes E2 from T. The 

consequence of this action is the restoration of the E2/T ratio to gonadotropin-induced 

values. An abnormal E2/T ratio contributes to the poor oocyte quality observed in 

prenatally hyperandrogenized female rhesus monkeys, sheep and rats [17] and also in 

women with PCOS [36]. A balanced E2/T ratio is essential during follicular 

development to promote the dominant follicle [37] and this could explain why women 

with PCOS are unable to produce an ovulatory follicle. Moreover, the re-establishment 

of the E2/T ratio by PPARG activation could also explain the prevention of the 

alterations in PF and PrF described above.   

In normal conditions, a pro-inflammatory status is established just before 

ovulation occurs, which correlates with a down-regulation of the PPARG system [7]. In 

addition, the gene expression of COX2, the rate limiting enzyme of PG synthesis, is low 

in the early stages of folliculogenesis and is high prior to ovulation [38]. Here we 

showed that activation of PPARG decreased the pro-inflammatory status induced by 

androgen excess (by the decrease in the gene and protein expression of COX2, PGE 

synthesis and the gene expression of TNFA). These findings suggest that activation of 
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PPARG exerts an anti-inflammatory effect, as shown by other authors [39, 40]. 

Moreover, an anti-inflammatory status results favorable during the early stages of 

ovarian folliculogenesis [41]. In summary, the modulation of the inflammatory process 

by PGZ induces a favorable early ovarian environment necessary for the establishment 

of the future dominant follicle.  

Systemic oxidative stress may be related to the ovarian pro-inflammatory status 

found in this study in the presence of androgen excess, since an increase of TNFA, 

COX2 and PGE is involved in the generation of systemic free radicals and subsequent 

oxidative stress [42]. Here, we demonstrated that PPARG activation was able to prevent 

the circulating oxidative stress, in agreement with other authors, who have indicated 

that PPARG can exert a protective effect against oxidative stress [40], decreasing the 

generation of free radicals [43]  and increasing the antioxidant metabolite GSH [44]. 

One question that remains to be answered is the effect of PGZ per se treatment. 

It has been described thiazoldineniones effects in the ovary independent of PPARG 

activation [7]. In the present study, we found activation of ovarian PPARG by PGZ only 

in the presence of androgen excess, and not in the PGZ per se treatment. The only PGZ 

per se effect was the down-regulation of the gene expression of steroidogenic enzyme 

CYP17. The same effect of PGZ independent of PPARG activation has been observed 

in a human model of adrenal steroidogenesis, where PGZ, and not rosiglitazone, 

downregulated CYP17 expression [45]. Further studies are necessary to discern the 

mechanism of action of PGZ dependent and independent of PPARG activation in the 

early ovarian function. In addition, it is important to point out that  the PPARs have 

been shown to coordinately regulate the expression of genes including those that control 

fatty acid and lipoprotein metabolism, glucose homeostasis, cellular proliferation/ 

differentiation and the immune response [4, 5]. Consequently, PPARs play important 
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roles in the treatment of endocrine disorders: PPARG ligands are effective in treating 

insulin resistance and T2DM patients, PPARalpha agonists provides anti-dyslipidemic 

and anti-atherosclerotic outcomes, and recent findings indicate that PPARdelta ligands 

have beneficial effects on circulating lipids and obesity (reviewed in [46-48]). 

Taken together, our results demonstrate that the activation of PPARG by PGZ 

prevents the alterations caused by androgen excess in the early ovarian function. 

Moreover, this is the first study showing evidence of this very early molecular 

mechanism of PPARG activation and reveals the importance of its activation during the 

early stages of follicular development. However, the precise role of PPARG in the 

ovary in both physiological and pathological conditions remains to be fully elucidated. 
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Legends and tables 

Figure 1: Expression PPARG, PGC1 and NCOR. Relative levels of: mRNA 

(A) and proteins (B) for PPARG. A representative WB of PPARG is shown in (B).  
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Relative levels of: mRNA for PGC1A (C) and NCOR (D). The columns represent the 

mean values ± SEM. (N=5 replicates per group). *p<0.05 **p<0.01 compared with the 

eCG group. #p< 0.05 comparing eCG+DHEA vs. eCG+DHEA+PGZ groups. NS: not 

significant. 

Figure 2: Ovarian morphology. A) Percentages of the different types of 

ovarian follicles present in the ovaries. Statistical differences were assessed between 

treatments within each class of follicle (C) Percentage of atretic follicles present in 

ovaries. The columns represent the mean values ± SEM. (N= 5 replicates per group). 

*p< 0.05 compared with the eCG group. NS: not significant. 

Figure 3: Expression of ovarian steroidogenic enzymes. Relative levels of: 

mRNA (A) and proteins (B) of STAR. A representative WB of STAR is shown in (B). 

Relative levels of mRNA for CYP17 (C), 3BHSD (D), 17BHSD (E) and CYP19 (F). 

The columns represent the mean values ± SEM. (N=5 replicates per group). *p< 0.05 

**p<0.01 and ***p<0.001, compared with the eCG group. #p<0.05, ##p<0.01 and 

###p<0.001, comparing eCG+DHEA vs. eCG+DHEA+PGZ groups. NS: not significant. 

Figure 4: T, E2 and E2/T ratio. Serum levels of T (A) and E2 (B). E2/T ratio is 

shown in (C). Each column represents the mean values ± SE.M. (N=5 replicates per 

group) *p<0.05 and **p<0.01, compared with the eCG group. #p<0.05, ##p<0.01 and 

###p<0.001, comparing eCG+DHEA vs. eCG+DHEA+PGZ groups. NS: not significant. 

Figure 5: Expression of ovarian inflammatory markers. (A) Relative levels of 

mRNA of cyclooxygenase 2 (COX2). (B) A representative WB of COX2 (D) Relative 

levels of COX2 protein (E) Ovarian content of prostaglandin E (PGE). Each column 

represents the mean values ± SEM (N=5 replicates per group) *p<0.05 compared with 

the eCG group. ##p<0.01 and ###p<0.001, comparing eCG+DHEA vs. 

eCG+DHEA+PGZ groups. NS: not significant. 
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Figure 6: Oxidative stress in serum. Levels of MDA (A) and GSH (B). Each 

column represents the mean values ± SEM. (N=5 replicates per group) *p<0.05 and 

**p<0.01, compared with the eCG group. #p<0.05 comparing eCG+DHEA vs. 

eCG+DHEA+PGZ groups. NS: not significant. 
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Table 1: List of primers used in qPCR 

 

 

Gene Primer Forward (5’ – 3’) Primer Reverse (5’ – 3’) 

Pparg TTTTCAAGGGTGCCAGTTTC GAGGCCAGCATGGTGTAGAT 

Ncor TATCGGAGCCATCTTCCCAC ACTTGGGTATCCTGGGGTTG 

Pgc1a AATGCAGCGGTCTTAGCACT GTGTGAGGAGGGTCATCGTT 

Star GCAGGGGGATTTCTGAATTT GTCTCCGTCTCTGTGGCTTC 

Cyp17a TCTCATTACACCCACGCAGA CGGGGCAGTTGTTTATCATC 

3bhsd GACACCCCTCACCAAAGCTA TTGTAAAATGGACGCAGCAG 

17bhsd TCTCATTACACCCACGCAGA CGGGGCAGTTGTTTATCATC 

Cyp19a CCTGGCAAGCACTCCTTATC CCACGTCTCTCAGCGAAAAT 

Tnfa TCCCAGAAAAGCAAGCAACC TAGACAGAAGAGCGTGGTGG 

Cox2 ATGAGTACCGCAAACGCTTC CCCCAAAGATAGCATCTGGA 

Rpl32 TGGTCCACAATGTCAAGG CAAAACAGGCACACAAGC 
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