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Highlights 

 

 Male adult zinc-deficient rats show hyperglycemia and hypertriglyceridemia 

 An increase in hepatic lipid peroxidation was observed in zinc deficient males  

 Zinc-deficient male rats show adipocyte hyperthrophy and increased oxidative 

stress  

 Female rats were less sensitive to the metabolic effects of zinc restriction 

 Adequate zinc diet after weaning prevent most of the metabolic alterations 
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Abstract  

Objective: Intrauterine and postnatal micronutrient malnutrition may program metabolic 

diseases in adulthood. We examined whether moderate zinc restriction in male and female 

rats throughout fetal life, lactation and/or post-weaning growth induces alterations in liver, 

adipose tissue and intermediate metabolism.  

Methods: Female Wistar rats were fed low or control zinc diets from pregnancy to offspring 

weaning. After weaning, male and female offspring were fed either a low or a control zinc 

diet. At 74 days of life, oral glucose tolerance tests were performed and serum metabolic 

profiles were evaluated. Systolic blood pressure as well as oxidative stress and 

morphology of liver and retroperitoneal adipose tissue were evaluated in 81 day-old 

offspring.  
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Results: Zinc restriction during prenatal and postnatal life induced an increase in systolic 

blood pressure, hyperglycemia, hypertriglyceridemia, higher serum glucose levels at 180 

minutes after glucose overload, and greater insulin resistance indexes in males. Hepatic 

histological studies revealed no morphological alterations, but an increase in lipid 

peroxidation and catalase activity were observed in zinc deficient males. Adipose tissue 

from zinc-deficient male rats showed adipocytes hypertrophy, an increase in lipid 

peroxidation and a reduction in catalase and glutathione peroxidase activity. Adequate 

dietary zinc content during post-weaning growth reversed basal hyperglycemia, 

hypertriglyceridemia, insulin resistance indexes, hepatic oxidative stress and adipocyte 

hypertrophy. Female rats were less sensitive to the metabolic effects of zinc restriction.  

Conclusions: This study strengthens the importance of a balanced intake of zinc during 

growth to ensure adequate lipid and carbohydrate metabolism in adult life. 

 

Keywords: Zinc deficiency; Metabolism; Oxidative stress; Adipose tissue; Liver  

 

Abbreviations 

AT: adipose tissue, BW: body weight, CAT: catalase, GLUT: glutathione, GPx: glutathione 

peroxidase, IR: insulin resistance, OGTT: oral glucose tolerance test, RPAT: 

retroperitoneal adipose tissue, SBP: systolic blood pressure, SOD: superoxide dismutase, 

TBARS: 2-thiobarbituric acid reactive substances, TG: triglycerides, TL: tibia length  

Introduction 

Numerous epidemiological and experimental studies demonstrate a correlation 

between an adverse intrauterine environment and increased risk of cardiovascular and 

metabolic diseases in adulthood [1]. People exposed to famine in utero show a more 

atherogenic lipid profile, impaired glucose tolerance and higher prevalence of hypertension 

and diabetes [2,3]. In addition, animal models have shown that maternal suboptimal 

nutrition programs metabolic alterations that promote liver steatosis and obesity [4]. 

Moreover, it has been reported that there would be sex differences in the metabolic 

alterations programmed by prenatal nutritional injuries [5]. 

Micronutrient malnutrition affects over 2 billion people worldwide and it is now 

estimated that 17.3% of the world's population does not reach the recommended dietary 

requirements of zinc [6]. Moderate zinc restriction during pregnancy could be a nutritional 

injury for fetal and postnatal development since it is an essential micronutrient for cell 

growth, development and differentiation [7,8]. Zinc has anti-oxidant, anti-apoptotic and 
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anti-inflammatory properties [9]. It is involved in the regulation of triglycerides and fatty 

acid synthesis and degradation [10]. Zinc plays a key role in insulin production and 

secretion since this hormone is stored as insulin-zinc crystals that protect it from 

degradation in pancreatic beta cells. Moreover, zinc may contribute to adequate insulin 

signaling pathway and tissue glucose uptake [11]. 

In previous studies we demonstrated that dietary zinc restriction during prenatal 

and postnatal growth programs an increase in systolic blood pressure (SBP) and impaired 

renal and cardiac development and function in adult male rats. These alterations are 

related to higher renal oxidative stress and reduced renal and cardiac nitric oxide synthase 

activity [12-14]. Zinc deficiency during early life also programs vascular alterations in both 

male and female adult rats. However, females are less sensitive to the cardiovascular 

effects of zinc deficiency [15]. 

We hypothesize that prenatal and postnatal moderate zinc restriction in male and 

female rats induces alterations in liver, adipose tissue (AT) and lipid and glucose 

metabolism that can, in turn, increase cardiovascular risk in adult life. These metabolic 

alterations could not be completely reversed by adequate zinc intake during postnatal life. 

The objective of this study was to evaluate liver and retroperitoneal adipose tissue (RPAT) 

morphology and oxidative stress as well as serum metabolic profile and glucose tolerance 

in adult male and female rats exposed to zinc deficiency during fetal life, lactation and/or 

postnatal growth.  

Materials and methods 

Animals and study design  

Female Wistar rats weighing 280±10 g obtained from the breeding laboratories of 

Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina, were mated 

by exposure to Wistar males for one week. Immediately afterwards, female rats were 

randomly fed either a moderately zinc-deficient (L, 8ppm, n=10) or a control zinc diet (C, 

30ppm, n=5) during pregnancy and lactation periods. Eight rat pups remained with each 

mother until 21 days of life (weaning) by random culling of pups at birth and retaining a 1:1 

male-to-female ratio. After weaning, male (m) and female (f) offspring of L mothers were 

fed either a low (8ppm; Llm and Llf groups, n=20/group) or a control (30ppm; Lcm and Lcf 

groups, n=20/group) zinc diet for 60 days, and offspring of C mothers were fed a control 

zinc diet (30ppm; Ccm and Ccf groups, n=20/group) (Fig. 1). 

Both diets included all the necessary nutrients, except zinc content, to meet rat 

requirements for the pregnancy and lactation periods according to AIN-93 
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recommendations [16]. Mothers and their offspring were housed in plastic cages in a 

humidity- and temperature-controlled environment with a 12-hour light-dark cycle. Animals 

were allowed food and deionized water ad libitum. At 74 days of life, part of the offspring 

from each experimental group were fasted for 6 hours to perform the oral glucose 

tolerance test (OGTT) and the rest were fasted for 12 hours to evaluate serum metabolic 

profile. Blood was obtained from the tail vein and serum samples were stored at -20 °C 

until analysis.  

At 81 days of life, SBP was measured indirectly in awake animals by the tail-cuff 

method (PowerLab 8/30, LabChart 6 Pro software, ADInstruments, Australia), as 

described previously [15]. Afterwards rats were weighed and euthanized by cervical 

decapitation. Blood was collected to determine serum zinc concentration using atomic 

absorption spectrometry (spectrometer SpectrAA-20, air acetylene flame, 0.5nm slit, 

wavelength 213.9nm, Varian, Australia) [17]. Liver and RPAT, perigonadal and mesenteric 

AT were removed and weighted. In order to evaluate hepatic and RPAT histology, 

samples were fixed in 4% phosphate buffered formalin for 24 hours and transferred to 70% 

ethanol, trimmed and embedded in paraffin. Liver samples were frozen in liquid nitrogen to 

perform oil red O staining. Tissue samples were frozen in liquid nitrogen and stored at -

80°C to evaluate oxidative stress. Right tibia length (TL) was measured. 

Animals were cared for according to Argentina’s National Drug, Food and Medical 

Technology Administration standards (Regulation No.6344/96) and the Guide for the Care 

and Use of Laboratory Animals published by the US National Institutes of Health (NIH 

Publication No.85-23, Revised 1996). Experimental procedures were approved by the 

ethics committee for the care and use of laboratory animals of Facultad de Farmacia y 

Bioquímica, Universidad de Buenos Aires, Argentina (Resolution No.3191). 

Serum metabolic profile 

Glycemia, triglycerides (TG), total cholesterol, high-density lipoprotein (HDL) 

cholesterol and activity of transaminase enzymes –aspartate transaminase (AST) and 

alanine transaminase (ALT)– were measured by standardized enzymatic methods in a 

Cobas 6000 analyzer (Roche Diagnostics, Germany). Non-HDL cholesterol, as an 

indicator of apoB-containing lipoproteins, was calculated as the difference between total 

and HDL cholesterol [18]. Castelli’s risk index (total/HDL cholesterol) was calculated for 

cardiovascular risk assessment. TG/HDL cholesterol index and TyG index (ln 

(TG*glycemia/2)) were estimated to evaluate insulin resistance (IR) [19,20].  

Oral glucose tolerance test  
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A load of 0.2 g of glucose/100g body weight (BW) was administered orally to fasted 

rats. Blood was sampled before loading (t=0) and at 30, 60, 120 and 180 minutes after 

glucose administration. Glycemia was measured using test strips and a glucometer (Accu-

Chek Performa, Roche Diagnostics, Germany). Integrated area under the curve (AUC) 

was obtained from the plotting of glucose concentration as a function of time [21]. 

Histological evaluation  

Liver sections (5μm thick) were stained with hematoxylin-eosin to evaluate tissue 

organization [22] and with Picrosirius Red to assess interstitial collagen levels [23]. Oil red 

O staining was performed to detect lipid droplets (9μm thick) [24]. RPAT sections (6μm 

thick) were stained with hematoxylin-eosin for determination of size and density of 

adipocytes [25]. 

Histological studies were performed using an Olympus BX51 light microscope 

equipped with a digital camera (Qcolor 3 Olympus America) and connected to Image-Pro 

Plus 4.5.1.29 software (Media Cybernetics, LP, Silver Spring, MD). Histological 

examination was performed in a blinded manner, analyzing 20 fields at x400 per animal. 

Hepatic and retroperitoneal adipose tissue oxidative stress 

Lipid oxidative damage was assessed measuring the extent of formation of 2-thiobarbituric 

acid reactive substances (TBARS) [26]. Glutathione content (GLUT) was determined using 

the Ellman reagent (5,5'-dithiobis-(2-nitrobenzoic acid or DTNB) [27]. Superoxide 

dismutase (SOD) activity was assessed by measuring the ability of the homogenate to 

inhibit autoxidation of epinephrine [28]. Catalase (CAT) activity was determined by the 

conversion of hydrogen peroxide to oxygen and water [29]. The assay described by Flohé 

and Gunzler was used to measure glutathione peroxidase (GPx) activity [30]. Protein 

concentration was determined by the method of Bradford [31]. 

Statistical analysis 

All values are expressed as mean ± SEM. A two-way analysis of variance (ANOVA) 

followed by a Bonferroni post hoc test for multiple comparisons was performed (Graph Pad 

Prism 5.0 Software, San Diego, CA). One factor was diet and the other was sex. P<0.05 

was considered a significant difference.  

 

Results 

Body and tissue weight, serum zinc concentration and systolic blood pressure  

Llm, Lcm, Llf and Lcf offspring showed reduced BW and TL compared with Ccm 

and Ccf, respectively. These growth markers were higher in male than in female groups. 
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Llm rats showed a reduced RPAT weight compared with Ccm and Lcm. However, zinc 

restriction did not induce changes in liver, perigonadal AT or mesenteric AT weight. As 

previously reported, female rats exhibited higher perigonadal AT and lower RPAT weight 

than males [32]. Serum zinc concentration was lower in Llm and Llf compared with male 

and female Lc and Cc rats. Llm and Lcm offspring showed an increase in SBP compared 

with Ccm. However, no differences in SBP levels were observed among female groups 

(Table 1). 

Serum metabolic profile 

Llm rats showed an increase in glycemia, TG, TG/HDL cholesterol and TyG index 

compared with Ccm and Lcm. No differences were observed among females. Zinc 

restriction did not induce changes in transaminases or in total, HDL or non-HDL 

cholesterol. However, HDL cholesterol levels were higher in females, and Castelli’s risk 

index was lower in Llf and Lcf rats compared with Llm and Lcm, respectively (Table 2). 

Oral glucose tolerance test 

No differences were found in basal glycemia or at 30, 60 or 120 minutes after glucose 

overload. However, Llm and Lcm rats had higher serum glucose levels at 180 minutes 

post-overload compared with Ccm. No differences were observed in AUC (Ccm: 27.5±0.6; 

Llm: 27.5±0.8; Lcm: 28±1; Ccf: 26.3±0.7; Llf: 25.5±0.8; Lcf: 27±1 min.mg/dl/1000; n=6-

8/group) (Fig. 2). 

Hepatic histological evaluation 

Hematoxylin-eosin staining revealed no alterations in hepatic parenchyma 

organization, steatosis or infiltration of inflammatory cells in the liver of the different groups 

(Fig. 3). Sirius red showed no differences in hepatic collagen deposition (Fig. 4). Zinc 

restriction did not induce changes in hepatic lipid deposition according to Oil red O staining 

(Fig. 5). 

Hepatic oxidative stress 

Llm rats showed an increase in TBARS levels and CAT activity compared with Ccm 

and Lcm. Zinc restriction did not alter TBARS levels or CAT activity among female rats. 

Female offspring showed lower CAT activity compared with male offspring. No differences 

were observed in GLUT content or in SOD or GPx activity (Table 3). 

Retroperitoneal adipose tissue histological evaluation 

Llm rats showed larger adipocytes and a decrease in adipocytes density compared 

with Ccm and Lcm. Zinc restriction did not induce changes in these parameters among 

females (Fig. 6, Fig. 7). 
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Retroperitoneal adipose tissue oxidative stress 

Llm and Lcm rats showed an increase in lipid peroxidation and a reduction in CAT 

and GPx activity. Moreover, Llf and Lcf rats showed lower GPx activity compared with Ccf. 

Zinc restriction did not induce changes in GLUT levels or in SOD activity (Table 4). 

 

Discussion 

The results of the present study show that moderate zinc deficiency during fetal 

and postnatal development leads to cardiovascular and metabolic alterations in adult life.  

Zinc restriction during prenatal and postnatal life induced an increase in SBP only 

in adult males and a growth delay in offspring of both sexes. Moreover, an adequate zinc 

diet during post-weaning life could not normalize either growth markers in male and female 

offspring or SBP in male rats. Several studies showed that zinc stimulates cell proliferation 

by up-regulating gene expression of enzymes involved in DNA synthesis as 

deoxythymidine kinase [33] and by stimulating production of growth hormone and insulin-

like growth factors [8]. Moreover, our group has demonstrated that this nutritional injury 

programs morphological and functional alterations in cardiovascular and renal tissues, that 

are greater in adult male rats than in females [13-15]. These changes would contribute to 

SBP increase only in males. Furthermore, our results are in agreement with different 

developmental programming animal models that show that female offspring exhibit a 

protected status compared with male offspring [5]. 

In the present study, we observed that chronic zinc restriction during life induced an 

increase in glycemia after a 12-hour fasting, as well as, in IR indexes. In this regard, it has 

been reported that zinc plays an important role in blood glucose control since it is crucial 

for insulin biosynthesis, storage and release. Moreover, zinc favors the actions of insulin in 

target tissues increasing phosphorylation of its receptor and proteins involved in the insulin 

signaling pathway, as protein-kinase B [11]. Furthermore, our results are supported by 

human studies reporting an inverse correlation between serum zinc levels and fasting 

blood glucose [34]. Likewise, it has been shown that zinc supplementation reduces 

glycemia in diabetic patients [35]. 

When OGTT was performed, no changes in basal glycemia were observed among 

experimental groups. We suggest that the greater sensitivity of Llm rats to stressing stimuli 

could explain why a prolonged 12-hour food restriction, but not a 6-hour fasting, increased 

basal glycemia. However, Llm and Lcm offspring showed higher glycemia at 180 minutes 
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post-overload compared with Ccm. This alteration would reflect a lower glucose tolerance 

programmed by zinc restriction during fetal life and lactation in male rats. Moreover, 

changes in fasting glycemia and glucose intolerance could be considered early signs of 

type 2 diabetes [36]. 

Chronic zinc restriction also induced a rise in serum TG concentration in Llm rats. 

This result is relevant since TG increase contributes significantly to cardiovascular risk and 

the associated mortality, independent of cholesterol levels [37]. Ranasinghe P et al. 

described that zinc reduces IR and inhibits lipolysis in AT. Consequently, this micronutrient 

could reduce the release of free fatty acids to the circulation and their flow to the liver, 

preventing the excessive synthesis of hepatic lipoproteins and the elevation of blood TG 

[38]. In addition, zinc favors fatty acids utilization in hepatocytes mitochondria, thus 

regulating the hepatic synthesis of lipids [39]. Therefore, we postulate that the rise in TG 

observed in Llm rats could be due to alterations in lipid metabolism in AT and liver induced 

by zinc restriction. Further studies in these tissues should be conducted to confirm our 

hypothesis.  

In our experimental model, metabolic alterations induced by zinc restriction were 

not associated with changes in hepatic morphology or in serum transaminases activity. 

However, Llm rats showed an increase in hepatic lipid peroxidation that was accompanied 

by a rise in CAT activity, probably to compensate a tissue pro-oxidant state. Changes in 

hepatic oxidative stress in Llm, as well as alterations in serum metabolic profile, would be 

an effect of chronic zinc restriction. In accordance with our results, previous studies have 

demonstrated that low hepatic zinc bioavailability induces an increase in oxidative stress 

and apoptosis in rodents [40]. In addition, hepatic oxidative stress is associated with IR 

development [41].  

Alterations in abdominal AT, including RPAT, are associated with dyslipidemia, IR 

and higher cardiovascular risk [42]. In the present study, Llm rats showed an increase in 

the size of RPAT adipocytes accompanied by a reduction in adipocyte density and in 

RPAT mass. In this regard, previous studies have shown a correlation between adipocyte 

hypertrophy and their dysfunction, IR and a greater release of pro-inflammatory factors 

[42]. Therefore, we postulate that morphological RPAT changes would be related to 

alterations in the serum metabolic profile observed in Llm rats. It has been shown that 

adipocytes hypertrophy is not necessarily associated with an increase in AT mass [43]. 

Thus, we suggest that chronic zinc deficiency in male rats would affect adipogenesis 
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leading to a reduced RPAT adipocyte number since several transcription factors involved 

in this process have zinc finger motifs [44]. 

There is ample evidence that AT oxidative stress not only correlates with IR but 

also precedes it and is involved in its development. Zinc acts as an antioxidant inducing 

the generation of metallothioneins and activating GPx gene expression by nuclear factor 

(erythroid-derived 2)-like 2 [45]. In the present study, Llm and Lcm rats showed an 

increase in RPAT lipid peroxidation and a decrease in CAT and GPx activities. Similar 

results were previously observed in kidney of zinc-deficient male rats and also in AT of 

other fetal programming animal models [12,46]. 

Our results demonstrated that female rats are less sensitive to zinc deficiency since 

they showed lesser metabolic effects than male offspring. Moreover, females showed 

higher levels of HDL cholesterol and lower values of Castelli’s risk index, suggesting a 

reduced cardiovascular risk compared with males. Even though we have not evaluated the 

zinc-related mechanisms associated with these sex differences, previous studies have 

shown that estrogen exerts multiple protective effects by regulating insulin secretion in 

pancreatic beta cells [47], playing antioxidant actions on hepatic and adipose tissues [48], 

increasing insulin sensitivity and preventing inflammation and lipid accumulation on 

skeletal muscle, AT and liver [49]. Other nutritional injuries such as a high-fat diet induced 

later development of AT oxidative damage, IR and obesity in female mice compared with 

males [50].  Moreover, Stubbins RE et al. demonstrated that 17β-estradiol administration 

improves glucose tolerance and the serum lipid profile and reverts adipocyte hypertrophy 

and oxidative stress in AT of ovariectomized mice exposed to high-fat diet [51].  

Conclusion 

Our findings suggest that dietary zinc restriction during fetal life, lactation and post-

weaning growth induces an increase in IR indexes and in serum glucose and TG in male 

rats, which could be related to alterations in liver and RPAT. Consequently, these 

metabolic disturbances could increase cardiovascular risk in adult male rats exposed to 

zinc deficiency during vulnerable periods of life. Moreover, we demonstrated that an 

adequate zinc diet during post-weaning life could revert most of these metabolic 

alterations. Finally, female rats were less sensitive to the metabolic effects of this 

nutritional injury. 
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Figure legends 

 

 

Fig. 1. Experimental animal model of moderate zinc deficiency during fetal life, lactation, 

and/or postnatal life.  Female rats were randomly fed either a moderately zinc deficient diet 

(L, 8ppm) or a control zinc diet (C, 30ppm) during the pregnancy and lactation periods. Rat 

pups remained with each mother until weaning (21 days of life). Female (f) and male (m) 

offspring born from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control 

(Lcm and Lcf, 30ppm) zinc diet for 60 days after weaning, and m and f offspring born from 

control mothers were fed control zinc diet (Ccm and Ccf, 30ppm).  
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Fig. 2. Oral glucose tolerance test 

in male (A) and female (B) rats at 74 days of life. Female (f) and male (m) offspring born 

from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and Lcf, 

30ppm) zinc diet after weaning, and m and f offspring born from control mothers were fed 

control zinc diet (Ccm and Ccf, 30ppm).*P<0.05 vs. Ccm 180min. (n=6-8/group)  
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Fig. 3. Hematoxylin-eosin staining in liver of 81-day-old rats. Female (f) and male (m) 

offspring born from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control 

(Lcm and Lcf, 30ppm) zinc diet for 60 days after weaning, and m and f offspring born from 

control mothers were fed control zinc diet (Ccm and Ccf, 30ppm). 400x; scale bar = 50m. 

(n=6/group)  
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Fig. 4. Picrosirius Red staining in liver of 81-day-old rats. Female (f) and male (m) offspring 

born from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and 

Lcf, 30ppm) zinc diet for 60 days after weaning, and m and f offspring born from control 

mothers were fed control zinc diet (Ccm and Ccf, 30ppm). Collagen fibers are stained red; 

400x; scale bar = 50m. (n=6/group) 
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Fig. 5. Oil red O staining in liver of 81-day-old rats. Female (f) and male (m) offspring born 

from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and Lcf, 

30ppm) zinc diet for 60 days after weaning, and m and f offspring born from control 

mothers were fed control zinc diet (Ccm and Ccf, 30ppm). 400x; scale bar = 50m. 

(n=6/group) 
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Fig. 6. Hematoxylin-eosin staining in retroperitoneal adipose tissue of 81-day-old rats. 

Female (f) and male (m) offspring born from zinc deficient mothers were fed a low- (Llm 

and Llf, 8ppm) or a control (Lcm and Lcf, 30ppm) zinc diet for 60 days after weaning, and 

m and f offspring born from control mothers were fed control zinc diet (Ccm and Ccf, 

30ppm). 400x, scale bar = 50m. (n=6/group) 
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Fig. 7. Adipocyte size (A) and density (B) in retroperitoneal adipose tissue of 81-day-old 

rats. Female (f) and male (m) offspring born from zinc deficient mothers were fed a low- 

(Llm and Llf, 8ppm) or a control (Lcm and Lcf, 30ppm) zinc diet for 60 days after weaning, 

and m and f offspring born from control mothers were fed control zinc diet (Ccm and Ccf, 

30ppm). *P<0.05 vs. Ccm; ‡P<0.05 vs. Llm; §P<0.05 vs. Lcm. Sex x diet interaction was 

considered significant (P<0.05). (n=6/group)  
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Table 1. Body and tissue weight, tibia length, serum zinc concentration and systolic blood 

pressure at 81 days of life. 

 

 
Ccm Llm Lcm Ccf Llf Lcf 

BW (g) 389±6 312±7* 346±6*,‡ 249±4* 215±5†,‡ 221±4†,§ 

Liver/BW 

(g/kg) 
30.7±0.7 32.1±0.6 31.6±0.9 30.1±0.4 31.5±0.7 29.7±0.6 

TL (cm) 3.91±0.04 3.62±0.03* 3.70±0.03* 3.56±0.03* 3.38±0.02†,‡ 3.39±0.02†,§ 

RPAT/BW 

(g/kg) 
12.2±0.9 9±1*,§ 12±1 8.3±0.6* 6.3±0.5‡ 6.9±0.5§ 

Perigonadal 

AT/BW (g/kg) 
11.0±0.6 10.5±0.7 10.9±0.6 18.1±0.9* 17±1‡ 16±1§ 

Mesenteric 

AT/BW (g/kg) 
8.3±0.3 8.5±0.5 8.2±0.4 9.6±0.4 8.7±0.3 8.6±0.5 

Serum zinc 

concentration 

(g/dl) 

163±8 118±5*,§ 153±9 159±5 103±6†,a 153±5 

SBP (mmHg) 123±1 144±2* 145±2* 121±3 119±4‡ 122±4§ 

 

BW: body weight, TL: tibia length, RPAT: retroperitoneal adipose tissue, AT: adipose 

tissue, SBP: systolic blood pressure. Female (f) and male (m) offspring born from zinc 

deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and Lcf, 30ppm) 

zinc diet for 60 days after weaning, and m and f offspring born from control mothers were 

fed control zinc diet (Ccm and Ccf, 30ppm). *P<0.05 vs. Ccm; ‡P<0.05 vs. Llm; §P<0.05 

vs. Lcm; †P<0.05 vs. Ccf; aP<0.05 vs. Lcf. Sex x diet interaction: significant (P<.05) for 

RPAT/BW and SBP. (n=12/group)  
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Table 2. Serum metabolic profile at 74 days of life.  

 

 
Ccm Llm Lcm Ccf Llf Lcf 

Glycemia (mg/dl) 130±6 154±6*,§ 128±5 136±5 135±5‡ 131±5 

TG (mg/dl) 85±4 112±6*,§ 80±5 75±4 76±6‡ 82±6 

Total cholesterol 

(mg/dl) 

67±3 68±3 70±3 76±2 74±2 73±3 

HDL cholesterol 

(mg/dl) 

47±2 46±2 49±2 61±1* 62±2‡ 60±3§ 

Non-HDL 

cholesterol (mg/dl) 

17±1 16±1 18±1 16±1 14±1 13±1 

Total-cholesterol/ 

HDL-cholesterol 

1.32±0.02 1.35±0.02 1.35±0.02 1.23±0.02 1.20±0.02‡ 1.22±0.02§ 

TG/HDL 

cholesterol 

1.8±0.1 2.4±0.1*,§ 1.6±0.1 1.2±0.1* 1.2±0.1‡ 1.4±0.2 

TyG index 8.6±0.1 9.1±0.1*,§ 8.5±0.1 8.5±0.1 8.5±0.1‡ 8.6±0.1 

AST (IU/l) 86±2 82±4 89±5 87±2 80±3 79±4 

ALT (IU/l) 28±2 25±1 28±2 22±2 20±1 22±2 

 

TG: triglycerides, AST: aspartate transaminase, ALT: alanine transaminase. Female (f) 

and male (m) offspring born from zinc deficient mothers were fed a low- (Llm and Llf, 

8ppm) or a control (Lcm and Lcf, 30ppm) zinc diet after weaning, and m and f offspring 

born from control mothers were fed control zinc diet (Ccm and Ccf, 30ppm). *P<0.05 vs. 

Ccm; ‡P<0.05 vs. Llm; §P<0.05 vs. Lcm. Sex x diet interaction: significant (P<0.05) for 

glycemia, TG, TG/HDL cholesterol and TyG index. (n=10-12/group)   
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Table 3. Liver oxidative state at 81 days of life. 

 

 
Ccm Llm Lcm Ccf Llf Lcf 

TBARS (pmol/mg 

protein) 
24.4±0.3 37.1±0.4*,§ 22.1±0.2 26.8±0.2 26.2±0.3‡ 23.8±0.3 

GLUT (g/mg 

protein) 
6.7±0.4 5.8±0.3 5.9±0.5 4.3±0.5 4.6±0.3 4.2±0.3 

SOD (U/mg 

protein) 
3.5±0.4 3.3±0.5 3.2±0.4 3.4±0.5 3.3±0.4 3.4±0.3 

CAT (pmol/s.mg 

protein) 
2.1±0.1 3.1±0.3*,§  2.3±0.1 1.4±0.1* 1.4±0.1‡ 1.3±0.1§ 

GPx (mol/min.mg 

protein) 
164±13 154±9 154±8 164±6 161±13 146±6 

 

TBARS: 2-thiobarbituric acid reactive substances, GLUT: glutathione, SOD: superoxide 

dismutase, CAT: catalase, GPx: glutathione peroxidase. Female (f) and male (m) offspring 

born from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and 

Lcf, 30ppm) zinc diet for 60 days after weaning, and m and f offspring born from control 

mothers were fed control zinc diet (Ccm and Ccf, 30ppm). *P<0.05 vs. Ccm; ‡P<0.05 vs. 

Llm; §P<0.05 vs. Lcm. Sex x diet interaction: significant (P<.05) for TBARS and CAT. 

(n=6/group)  
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Table 4. Retroperitoneal adipose tissue oxidative state at 81 days of life. 

 

 
Ccm Llm Lcm Ccf Llf Lcf 

TBARS (nmol/mg 

protein) 
0.35±0.04 0.55±0.03* 0.82±0.04*,‡ 0.63±0.03* 0.61±0.03 0.66±0.06 

GLUT (g/mg 

protein) 
6.8±0.7 6.4±0.6 6.3±0.7 4.7±0.7 4.6±0.7 4.2±0.7 

SOD (U/mg 

protein) 
2.4±0.2 2.7±0.2 2.3±0.2 2.8±0.2 2.8±0.2 2.9±0.3 

CAT (pmol/s.mg 

protein) 
1.44±0.08 1.03±0.08* 1.12±0.04* 1.17±0.06 0.89±0.08 0.97±0.07 

GPx (mol/min.mg 

protein) 
89±7 58±3* 66±7* 85±5 64±4† 67±3† 

 

TBARS: 2-thiobarbituric acid reactive substances, GLUT: glutathione, SOD: superoxide 

dismutase, CAT: catalase, GPx: glutathione peroxidase. Female (f) and male (m) offspring 

born from zinc deficient mothers were fed a low- (Llm and Llf, 8ppm) or a control (Lcm and 

Lcf, 30ppm) zinc diet for 60 days after weaning, and m and f offspring born from control 

mothers were fed control zinc diet (Ccm and Ccf, 30ppm). *P<0.05 vs. Ccm; ‡P<0.05 vs. 

Llm; †P<0.05 vs. Ccf. Sex x diet interaction: significant (P<0.05) for TBARS and CAT. 

(n=6/group)  
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