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Percolation of aligned rigid rods on two-dimensional triangular lattices
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The percolation behavior of aligned rigid rods of length k (k-mers) on two-dimensional triangular lattices
has been studied by numerical simulations and finite-size scaling analysis. The k-mers, containing k identical
units (each one occupying a lattice site), were irreversibly deposited along one of the directions of the lattice.
The connectivity analysis was carried out by following the probability RL,k (p) that a lattice composed of L × L
sites percolates at a concentration p of sites occupied by particles of size k. The results, obtained for k ranging
from 2 to 80, showed that the percolation threshold pc(k) exhibits a increasing function when it is plotted as a
function of the k-mer size. The dependence of pc(k) was determined, being pc(k) = A + B/(C + √

k), where
A = pc(k → ∞) = 0.582(9) is the value of the percolation threshold by infinitely long k-mers, B =
−0.47(0.21), and C = 5.79(2.18). This behavior is completely different from that observed for square lattices,
where the percolation threshold decreases with k. In addition, the effect of the anisotropy on the properties of
the percolating phase was investigated. The results revealed that, while for finite systems the anisotropy of the
deposited layer favors the percolation along the parallel direction to the alignment axis, in the thermodynamic
limit, the value of the percolation threshold is the same in both parallel and transversal directions. Finally,
an exhaustive study of critical exponents and universality was carried out, showing that the phase transition
occurring in the system belongs to the standard random percolation universality class regardless of the value of
k considered.
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I. INTRODUCTION

Percolation is a very active field of research and applied to
a wide range of fields, such as biology, nanotechnology, de-
vice physics, physical chemistry, and materials science [1–4].
The problem of percolation is not a new one but still attracts
considerable interest [5–7], and some unsolved questions
remain.

Percolation theory was derived for periodic lattices of
sites (bonds) which are occupied with probability p or empty
(nonoccupied) with probability (1 − p) [1]. In the case of de-
position processes, p coincides (in the thermodynamic limit)
with the coverage of the lattice or fraction of sites occupied by
the deposited objects. If the concentration of these objects is
sufficiently large, a cluster (a group of occupied sites in such a
way that each site has at least one occupied nearest-neighbor
site) extends from one side to the opposite one of the system.
The central idea of the percolation theory is based on finding
the minimum concentration for which a complete path of
adjacent sites crossing the entire system becomes possible.
This value of the concentration rate is named the critical
concentration or percolation threshold pc and determines the
phase transition in the system [1].

One of the most popular methods of studying percolation
of deposited objects is the random sequential adsorption
(RSA) technique [8–11]. In this process, objects of a specified
shape are randomly and sequentially adsorbed onto a substrate
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and then immobilized. Excluded volume, or particle-particle
interaction, is incorporated by rejection of deposition overlap,
while particle-substrate interaction is modeled by the irre-
versibility of deposition. The final state generated by RSA
is a disordered state (known as jamming state), in which no
more objects can be deposited due to the absence of free space
of appropriate size and shape (the jamming state has infinite
memory of the process and the orientational order is purely
local). Thus, a competition between percolation and jamming
is established [9,10]. In some applications one may want that
percolation dominates (e.g., communications), and in others
one may prefer that jamming dominates and percolation is
suppressed at an early stage (e.g., forest fires).

From an experimental point of view, RSA model and its
variants have been widely studied to explain the observations
of various natural and experimental scenarios [12–19]. For
example, the model has been used to describe adsorption
phenomena of proteins at solid-liquid interfaces [12–17]. In
the absence of significant protein-protein interactions, except
short-range repulsions, proteins populate the surface in a
purely randomized arrangement, which is described by the
RSA theory. According to this framework proteins only ad-
sorb to the surface if they approach an area which does not
overlap with any other pre-adsorbed protein. Otherwise, if a
protein were to hit an adsorbed protein on its way toward the
surface, it is rejected back into the bulk volume. This ends up
in a very inefficiently packed protein layer leaving undefined
gaps between adsorbed proteins which are not large enough
to accommodate another protein. RSA process has been also
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applied to model the microstructure of composites containing
randomly oriented fibers [18,19].

For randomly distributed and isotropically oriented linear
k-mers [20] (linear rigid particles occupying k consecutive
sites) on square lattices, it was shown that the percolation
threshold does not change monotonically with the length of
needles [21–23]. For short objects the percolation thresh-
old decreases rapidly, goes through a minimum around k =
13, . . . , 15, and then starts to increase moderately. Later Kon-
drat et al. [24] presented a strict proof that in any jammed
configuration of nonoverlapping, fixed-length, horizontal or
vertical needles on a square lattice, all clusters are percolating
clusters. The theorem refutes the conjecture [21–23] that in
the RSA of such needles on a square lattice, percolation does
not occur if the needles are longer than some threshold value
k∗, estimated to be of the order of several thousand.

In a very recent paper, Slutskii et al. [25], using simula-
tion techniques, corroborated the result reported by Kondrat
et al. [24]. Based in a very efficient parallel algorithm, the au-
thors studied the problem of large linear k-mers (up to k = 217)
on a square lattice with periodic boundary conditions. The
obtained results indicate that the percolation threshold tends
to a constant value as k → ∞, being pc(k → ∞) = 0.615(1).
The limit value of pc is lower than the asymptotic value of the
jamming coverage: pj (k → ∞) = 0.655(9) [26]. This finding
reinforces the theoretical analysis in Ref. [24], namely, in the
case of linear k-mers on square lattices, percolation always
occurs before jamming.

An interesting problem arises when the probability of
taking horizontal and vertical orientation is not the same.
In this context, the advent of modern techniques for build-
ing highly conductive rodlike particles (such as carbon nan-
otubes [27], metal nanowires [28], etc.) has considerably
encouraged the investigation of anisotropic composites made
of these elongated particles on an insulating matrix. The study
of the conductive properties of these composite materials is
an area of increasing interest for the production of flexible
transparent conductors [29–31], with diverse applications in
solar cells, touch screens, and transparent heaters [32–36].
These promising applications are inspiring both theoretical
and experimental studies in this field [37].

In order to design a composite with the desired properties,
it is crucial to understand and control the formation of a
system-spanning network of nanofillers inside the host matrix,
which happens above a critical concentration of filler mate-
rial. This critical concentration coincides with the percolation
threshold of the system [38,39], demonstrating the importance
of percolation theory and its applicability to studying the elec-
trical conductivity of materials composed of rodlike highly
conducting fillers. Along this line, numerous works have been
conducted on percolation of rodlike particles and its connec-
tion with the electrical conductivity [40–47]. The studies in
Refs. [40–47] represent an important step in the understanding
of the percolating properties of anisotropic conductors.

For the continuum problem, several theoretical and simu-
lation studies have been performed on the impact of particle
alignment on percolation in three-dimensional space. These
studies showed (1) that percolation happens along the align-
ment direction and perpendicular to that at the same concen-
tration and (2) that the probability of percolation crosses at a

value different from 0.5 for different system sizes, depending
also on the probing direction. Relevant literature about this
subject can be found in Refs. [48–54].

In the case of lattice models, which is the topic of this
paper, the effect of anisotropy (or k-mer alignment) on perco-
lation was recently investigated for the case of aligned rigid
k-mers on square lattices [55]. The results, obtained for k
ranging from 1 to 14, showed that (1) the percolation threshold
exhibits a decreasing function when it is plotted as a function
of the k-mer size and (2) for any value of k(k > 1), the
percolation threshold is higher for aligned rods than for rods
isotropically deposited. Later Tarasevich et al. [21] extend
the analysis in Ref. [55] to larger lattices (100 � L � 19 200)
and longer objects (2 � k � 512). The authors corroborate
the results obtained by Longone et al. [55] for the case of
perfectly aligned rods and complete the study by including the
percolation behavior of partially ordered phases (states whose
degree of anisotropy varies between the two limit cases, i.e.,
isotropic and perfectly aligned k-mers).

Interesting results have also been reported on triangular
lattices: RSA of objects of various shape [56], reversible
RSA [57], reversible RSA of mixtures [58], anisotropic RSA
of extended objects [59], percolation of extended objects [60],
and jamming and percolation in RSA of extended objects
on lattice with quenched impurities [61]. However, the effect
of k-mer alignment on percolation has been poorly studied.
In this context, the main objective of the present paper is
to study the percolation behavior of aligned rigid rods on
2D triangular lattices. For this purpose, extensive numerical
simulations (with 2 � k � 80 and 75 � L/k � 640) supple-
mented by analysis using finite-size scaling theory have been
carried out. The obtained results revealed that the percolation
threshold pc(k) is an increasing function with k. This finding
contrasts with the decreasing tendency observed for pc(k)
in square lattices, showing that (1) it is of interest and of
value to inquire how a specific lattice structure influences
the main percolation properties of particles occupying more
than one site and (2) the structure of the lattice plays a
fundamental role in determining the statistics of extended
objects. In addition, the anisotropy effect on the percolation
probabilities characterizing the different lattice directions was
investigated. The study also includes a complete analysis of
critical exponents and universality.

The present work is a natural extension of our previous
research in the area of percolation of polyatomic species, and
the results obtained here could have potential application in
the field of conductivity in composite materials. The paper is
organized as it follows: the model and basic definitions are
given in Sec. II. Percolation properties are studied in Sec. III.
Finally, the conclusions are drawn in Sec. IV.

II. MODEL AND BASIC DEFINITIONS

Straight rigid rods are deposited randomly, sequentially,
and irreversibly on a 2D triangular lattice. In the computer
simulations, a rhombus-shaped system of M = L × L sites (L
rows and L columns) is used (see Fig. 1). The deposition
process is performed with the following restrictions: (1) the
k-mers contain k identical units and each one occupies a lattice
site, and small adsorbates with spherical symmetry would

052104-2



PERCOLATION OF ALIGNED RIGID RODS ON … PHYSICAL REVIEW E 100, 052104 (2019)

FIG. 1. Snapshot corresponding to a configuration of aligned
tetramers (k = 4) on a rhombus-shaped triangular lattice. Open green
circles and solid red circles represent empty sites and tetramer units,
respectively.

correspond to the monomer limit (k = 1); (2) the distance
between k-mer units is assumed in registry with the lattice
constant a, and hence exactly k sites are occupied by a k-mer
when deposited; (3) the k-mers are deposited along one of
the directions of the lattice, forming an oriented structure as
depicted in Fig. 1; (4) the incoming particles must not overlap
with previously added objects; and (5) periodic boundary
conditions are considered.

Due to the blocking of the lattice by the already randomly
adsorbed elements, the limiting or jamming coverage, pj =
p(t = ∞) is less than that corresponding to the close packing
(pj < 1). Note that p(t ) represents the fraction of lattice sites
covered at time t by the deposited objects. Consequently, p
ranges from 0 to pj for objects occupying more than one
site [9]. For a fully aligned system, as studied here, the jam-
ming problem reduces to the one-dimensional (1D) case. In
this limit, an important exact result for jamming concentration
pj (k) of linear k-mers in 1D RSA has been reported by
Krapivsky et al. [11,26]:

pj (k) = k
∫ ∞

0
exp

⎡
⎣−u − 2

k−1∑
j=1

(
1 − e− ju

j

)⎤
⎦du. (1)

As an example, the jamming coverage for dimers (k = 2)
deposited along one line is pj (2) = 1 − e−2 ≈ 0.864665
and for trimers (k = 3) is pj (3) = 3D(2) − 3e−3D(1) ≈
0.823653, where D(x) = e−x2 ∫ x

0 es2
ds is Dawson’s integral.

For infinitely long rods (k → ∞), the jamming thresh-
old tends to Rényi’s parking constant pj (k → ∞) → cR ≈
0.7475979202 [62]. Interested readers are referred to Ref. [11]
(chap. 7) for a detailed description of Eq. (1).

III. PERCOLATION

A. Calculation method and percolation thresholds

As mentioned in Sec. I, the central idea of the pure
percolation theory is based in finding the minimum
concentration of elements (sites or bonds) for which a
cluster extends from one side to the opposite one of the
system. For this particular value of the concentration rate,
the percolation threshold pc, at least one spanning cluster

(also called “infinite” cluster, inspired by the thermodynamic
limit) connects the borders of the system [63–66]. In that
case, a second-order phase transition appears at pc, which is
characterized by well-defined critical exponents.

In the simulations, each run consists of the following
stages: (a) the construction of the lattice for the desired
fraction p = kN/M of sites (N is the number of k-mers
deposited), according to the filling procedure presented in
previous section and (b) the cluster analysis by using the
Hoshen and Kopelman algorithm [67,68] with open boundary
conditions. In the last step, the size of the largest cluster SL is
determined, as well as the existence of a percolating island.
For this purpose, the probability R = RX

L,k (p) that a L × L
lattice percolates at a concentration p of sites occupied by rods
of size k can be defined. Here the following definitions can be
given according to the meaning of X [1,69,70]:

RP
L,k (p): the probability of finding a percolating cluster in a

parallel direction to the alignment axis (see Fig. 1)
RT

L,k (p): the probability of finding a percolating cluster in a
transverse direction to the alignment axis (see Fig. 1).

Other useful definitions for the finite-size analysis are the
following:

RU
L,k (p): the probability of finding either a parallel or a

transverse percolating cluster
RI

L,k (p): the probability of finding a cluster which perco-
lates both in a parallel and in a transverse direction and

RA
L,k (p) = 1

2

[
RU

L,k (p) + RI
L,k (p)

]
.

n runs of such two steps are carried out for obtaining the
number mX of them for which a percolating cluster of the
desired criterion X is found. Then RX

L,k (p) = mX /n is defined,
and the procedure is repeated for different values of p, L,
and k. A set of n = 106 independent samples is numerically
prepared for each pair p and L/k (L/k = 75, 100, 128, 256
and 640). The L/k ratio is kept constant to prevent spurious
effects due to the k-mer size in comparison with the lattice
linear size L.

In Fig. 2 the probabilities RA
L,k (p), RI

L,k (p), and RU
L,k (p) are

presented for aligned rods with k = 4. As mentioned above,
the simulations were performed for lattice sizes ranging be-
tween L/k = 75 and L/k = 640. Three sizes are shown in the
figure: L/k = 128 (up triangles), L/k = 256 (down triangles),
and L/k = 640 (diamonds). Several conclusions can be drawn
from Fig. 2 (and from data are not shown here for clarity).
First, curves for different lattice sizes but with the same value
of k cross each other in a unique point, RX ∗

k (measured in the
vertical axis, see figure), which depends on the criterion X
used, and those points are located at very well-defined values
in the p axes determining the critical percolation threshold
(measured on the horizontal axis; see figure) for each k.
Second, pc(k) shifts to the right upon increasing the k-mer
size. This observation is a clear indication that the percolation
threshold increases upon increasing k.

Third, RI∗
k and RU ∗

k show a strong dependence on the k-
mer size. For k = 1 (data not shown here), RI∗

1 ≈ 0.311 and
RU ∗

1 ≈ 0.687, as reported in previous work for standard site
percolation on a rhombus-shaped lattice with open boundary
conditions [71]. As k is increased, two well-differentiated
behavior are observed: (1) RU ∗

k increases monotonically to
RU ∗

k ≈ 1 for larger sizes and (2) RI∗
k decreases monotonically
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FIG. 2. Fraction of percolating lattices RX
L,k (p) (X = I,U, A as

indicated) as a function of the concentration p for k = 4 and three
different lattice sizes: L/k = 128 (up triangles), L/k = 256 (down
triangles), and L/k = 640 (diamonds). The vertical dashed line de-
notes the percolation threshold in the thermodynamic limit.

to RI∗
k ≈ 0 for larger sizes. On the other hand, RA∗

k remains
constant (around 0.5 [71]) when k increases. A similar be-
havior has been observed in the case of aligned k-mers on
square lattices [55] and thermal transitions in the presence of
anisotropy [72,73].

In percolation theory, the value of the probability RX
L at the

transition point in the thermodynamic limit plays an important
role in the scaling theory, being indicative of the universality
class of the transition. From this perspective, the dependence
of RI∗

k and RU ∗
k on k could be taken as a first indication of a

nonuniversal behavior of the system for variable k-mer size.
However, as pointed out by Selke et al. [72,73], the measure
of the probability intersection may depend on various details
of the model which do not affect the universality class, in
particular, the boundary condition, the shape of the lattice,
and the anisotropy of the system. Consequently, more research
is required to determine the universality class of the phase
transition.

In order to express RX
L,k (p) as a function of continuous

values of p, it is convenient to fit RX
L,k (p) with some approxi-

mating function through the least-squares method. The fitting
curve is the error function because dRX

L,k/d p is expected to
behave like the Gaussian distribution [74]

dRX
L,k

d p
= 1√

2π�X
L,k

exp

⎧⎨
⎩−1

2

[
p − pX

c (L, k)

�X
L,k

]2
⎫⎬
⎭, (2)

where pX
c (L, k) is the concentration at which the slope of

RX
L,k (p) is the largest and �X

L,k is the standard deviation from
pX

c (L, k).
The standard procedure just described is valid for RT

L,k (p)
and RP

L,k (p) in all range of k. The same does not occur in the
case of RA

L,k (p). In fact, as will be discussed in detail later (see
Figs. 7 and 8 below), the anisotropy of the percolating phase
leads to a separation between the parallel and transversal
probabilities. As a consequence of this separation, which

FIG. 3. Percolation probability RA
L,k (p) as a function of the con-

centration p for k = 12 and L/k = 75. Upper-left inset: Magnifica-
tion of the main figure in the range 0.523 � p � 0.538. Lower-right
inset: dRA

L,k/d p as a function of p around the critical point pA
c (L, k).

Symbols correspond to simulation data, and the solid line represents
a Gaussian fitting curve.

increases with k, the RA
L,k (p) curves tend to gradually develop

a plateau, with a marked inflection point around RA∗
k ≈ 0.5.

This inflection point, which is barely perceptible in Fig. 2,
can be clearly visualized in Fig. 3, where the percolation
probability RA

L,k (p) has been plotted as a function of the
concentration p for k = 12 and L/k = 75.

The upper-left inset shows a zoom of the plateau region.
On the other hand, the lower-right inset shows dRA

L,k/d p as
a function of p around the inflection point. Thus, the value
of pA

c (L, k) can be obtained from the concentration at which
the minimum occurs. For an accurate determination of this
concentration, we fit the simulation data with an inverted
Gaussian function. The procedure is shown in the lower-right
inset: open circles correspond to simulation data, and the solid
line represents the Gaussian fitting curve.

Once we have determined the positions pX
c (L, k), the per-

colation threshold pc(k) can be obtained using an extrapola-
tion scheme. Thus, for each criterion (I , U , and A), and for
each value of k, one expects that [1]

pX
c (L, k) = pc(k) + AX L−1/ν, (3)

where AX is a nonuniversal constant and ν is the critical
exponent of the correlation length. As will be shown in
Sec. III B, the values of the critical exponents characterizing
the percolation phase transition occurring in our model are
consistent with those of 2D random percolation [75]: ν = 4/3,
γ = 43/18, and β = 5/36 [1].

Figure 4 shows the plots towards the thermodynamic limit
of pX

c (L, k) (X ≡ P, T, I, A,U ) according to Eq. (3) for the
cases k = 4 [Fig. 4(a)] and k = 8 [Fig. 4(b)]. From extrapo-
lations it is possible to obtain the percolation thresholds for
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FIG. 4. Extrapolation of pX
c (L, k) towards the thermodynamic

limit according to the theoretical prediction given by Eq. (3). Open
squares, open triangles, solid triangles, solid circles, and solid
squares denote the values of pX

c (L, k) obtained by using the criteria
P, T , I , A, and U , respectively. The data correspond to the cases
k = 4 (a) and k = 8 (b).

the criteria I , A, and U . Combining the three estimates for
each case, the final values of pc(k) can be obtained. Addi-
tionally, the maximum of the differences between |pc(k)U −
pc(k)A| and |pc(k)I − pc(k)A| gives the error bar for each
determination of pc(k). In this case, the values obtained
were pc(k = 4) = 0.5220(2) [Fig. 4(a)] and pc(k = 8) =
0.5281(5) [Fig. 4(b)].

It is interesting to analyze the behavior of pP
c (L, k) (open

squares) and pT
c (L, k) (open triangles). As can be observed

from Fig. 4, the curves corresponding to P and U criteria are
coincident. The same goes for T and I criteria. This behavior
can be easily understood by noticing that pP

c (L, k) < pT
c (L, k)

(fixed and finite L). However, as L → ∞ (L−1/ν → 0), both
quantities converge to the same limit value pP

c (k) = pT
c (k) =

pc(k). This point will be discussed in detail in regard to Figs. 7
and 8 below.

The study shown in Figs. 2–4 demonstrates the relevance of
the probability RA

L,k (p) for calculating percolation thresholds.
In fact, we can clearly observe in Fig. 2 the point at which
RA

L,k (p) = 0.5 behaves like the so-called fixed point. This fact
supports that, even when the system size L is not very large,
pA

c (L, k) is very close to the threshold pc(k) of an infinite
lattice [let us note that pA

c (L, k) gives a perfect horizontal
line in Figs. 4(a) and 4(b)]. Such a behavior has been already
reported in the literature [69].

TABLE I. Percolation thresholds versus k.

k pc(k)

2 0.5157(2)
4 0.5220(2)
8 0.5281(5)
12 0.5298(8)
16 0.5328(7)
32 0.5407(6)
48 0.5455(4)
64 0.5487(8)
80 0.5500(6)

The procedure in Fig. 4 was repeated for different val-
ues of k ranging between 2 and 80. The obtained values
of pc(k) are collected in Table I (second column) and are
plotted in Fig. 5 (open squares). As can be observed from
the figure, the percolation threshold increases upon increas-
ing k. The curve rapidly increases for small values of k,
then it flatten out for larger values of k and asymptotically
converge towards a definite value as k → ∞. In the range
2 � k � 80, the data of pc(k) can be fitted with the func-
tion proposed in Ref. [25]: pc(k) = A + B/(C + √

k), where
A = pc(k → ∞) = 0.582(9) the value of the percolation
threshold by infinitely long k-mers, B = −0.47(0.21), and
C = 5.79(2.18). The adjusted coefficient of determination is
R2 = 0.9899. As observed in previous theoretical [41–44],

FIG. 5. Percolation threshold as a function of k for aligned k-
mers on triangular lattices (open squares). In all cases, the error bar
is smaller that the size of the symbols. The dashed line corresponds to
the fitting function pc(k) = A + B/(C + √

k) (see discussion in the
text). The figure also includes the curve of pj (k) (open circles joined
by a solid line). The corresponding numerical values were obtained
by solving Eq. (1) (with t → ∞). Inset: Percolation threshold as a
function of k for aligned k-mers on square lattices. Solid triangles
and open diamonds denote previous data in Refs. [55] and [21],
respectively. The dashed line represents the fitting curve obtained in
Ref. [21]: pc(k) = a1/kα1 + pc(k → ∞).
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FIG. 6. Connectivity of the deposited phase at percolation
threshold ξ

(T )S
k (pc ) as a function of k. Open squares and open

triangles represent results obtained for square and triangular lattices,
respectively. In all cases, L/k = 100. Inset: Average number of
occupied nearest-neighbor sites ξ

S(T )
k as a function of the surface

coverage p for L = 100 and k = 1. The solid lines correspond to
theoretical curves as discussed in the text.

experimental [76–78], and simulation work [21,55,79–81],
the percolation threshold is higher for aligned rods than for
rods isotropically deposited (see Ref. [82], where the problem
of isotropic k-mers on triangular lattices has been studied).

The inset of Fig. 5 shows the behavior of pc(k) for
aligned k-mers on square lattices. Solid triangles and open
diamonds correspond to data in Refs. [55] and [21], respec-
tively. The dashed line represents the fitting curve obtained
in Ref. [21]: pc(k) = a1/kα1 + pc(k → ∞), where pc(k →
∞) = 0.533(1), a1 = 0.088(3), and α1 = 0.72(4). These re-
sults are qualitatively different from those obtained for tri-
angular lattices (main figure). Clearly, the structure of the
lattice plays a fundamental role in determining the statistics
and percolation properties of extended objects.

To gain some understanding on the observed differences
between square and triangular percolation results, the connec-
tivity properties of the aligned k-mers were analyzed. Namely,
for each geometry (square and triangular) and each value of
k, the average number of occupied nearest-neighbor sites of
each occupied site (normalized to the lattice size M) was
measured as a function of the lattice coverage p. We denote
these functions as ξ S

k (p) and ξT
k (p) for square and triangular

lattices, respectively.
It is useful to begin the study with the case k = 1, where

we can go beyond numerical simulations. Thus, considering
that the monomers are distributed completely at random on
the lattice, ξ S

k=1(p) can be written as ξ S
k=1(p) = 4p, where

4 is the square lattice connectivity and p is the occupation
probability of each site. As expected, the corresponding curve
varies between ξ S

k=1 = 0 (p = 0) and ξ S
k=1 = 4 (p = 1). In

the case of triangular lattices, ξT
k=1(p) = 6p, where ξT

k=1 = 0
(p = 0) and ξT

k=1 = 6 (p = 1). See the inset in Fig. 6, where
symbols and lines correspond to simulation data for L = 100
and theoretical curves, respectively. For k > 1, the statistical

problem becomes more complex, and it is difficult to obtain
analytically the functions ξ

S(T )
k (p).

We will focus now on the behavior of the connectivity of
the deposited phase (clusters of occupied sites) at percolation
threshold ξ

(T )S
k (pc). In the case k = 1, ξ S

1 (pc ≈ 0.5927) ≈
2.3708 and ξT

1 (pc ≈ 0.5) ≈ 3.0. ξ (T )S
k (pc) as a function of k is

shown in Fig. 6 for square (solid squares) and triangular (solid
triangles) lattices with L/k = 100 and different values of k
ranging from k = 1 to k = 64. The behavior is qualitatively
similar for square and triangular lattices: the curves increase
monotonically with the increase of the size k, varying between
ξ

(T )S
1 (pc) (k = 1) and a limiting value at large sizes k. These

limit values are ξ S
k→∞ ≈ 3.1 and ξT

k→∞ ≈ 4.2.
The results shown in Fig. 6 indicate that, in terms of

connectivity, the structure of the percolating phase at the
critical condition tends to be similar as k is increased. This
finding is found to be independent of lattice geometry (square
or triangular), validating the tendencies observed for pc(k)
in Fig. 5. However, further research is necessary to fully
understand the differences between the curves of pc(k) for
square and triangular lattices. Along this line, future efforts
will be devoted (1) to extend the simulations to honeycomb
lattices and higher values of k, (2) to analyze the connectivity
of the percolation cluster, and (3) to compare the simulation
data with theoretical results obtained from exact counting of
configurations on finite cells [83].

Returning to Fig. 5, the analysis also includes the behavior
of pj (k) for aligned k-mers (open circles joined by a solid
line). The corresponding numerical values were obtained by
solving Eq. (1). For this purpose, any standard mathematical
software package (such as MAPLE or MATHEMATICA) can
be used. It is also possible to measure pj (k) from simula-
tions. The corresponding procedure is described by García
et al. [84]. The study in Ref. [84] includes an exhaustive com-
parison between simulation results and exact values obtained
from Eq. (1).

As it can be observed from Fig. 5, the curve of pj (k)
remains above the curve of pc(k), tending to pj (k → ∞) ≈
0.7475979202 in the limit of infinitely long rods [62]. This
finding indicates that the RSA model of aligned k-mers on
triangular lattices presents percolation transition in the whole
range of k.

To complete the study, and given the anisotropy of the
percolating phase, it is interesting to analyze the behavior
of the transversal [RT

L,k (p)] and parallel [RP
L,k (p)] percola-

tion probabilities. In Fig. 7 the probabilities RP
L,k (p) (solid

symbols) and RT
L,k (p) (open symbols) are presented for a

typical case: aligned rods with k = 4 and different lattice
sizes between L/k = 75 and L/k = 640. From a simple in-
spection of the figure it is observed that, first, for a fixed
value of L = L1, the RP

L1,k
(p) curve shifts to the left of the

RT
L1,k

(p) curve. The result indicates that for finite systems the
anisotropy of the deposited layer favors the percolation along
the direction of the alignment axis. This scenario does not
occur in isotropic systems, where for a fixed L, the vertical and
horizontal percolation probabilities are indistinguishable [85].
Then, second, RP∗

k and RT ∗
k crossing points are located at

the same point on the p axis (vertical line in the figure),
indicating that, in the thermodynamic limit [86], the value
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FIG. 7. Fraction of percolating lattices RX
L,k (p) (X = P, T as indi-

cated) as a function of the concentration p for k = 4 and different lat-
tice sizes: L/k = 75 (squares), L/k = 100 (circles), L/k = 128 (up
triangles), L/k = 256 (down triangles), and L/k = 640 (diamonds).
The vertical dashed line denotes the percolation threshold in the
thermodynamic limit.

of the percolation threshold is the same in both parallel and
transversal directions.

An alternative way to visualize the effects described in the
two points that we have made above is presented in Fig. 8. In
Fig. 8(a) the parallel and transversal probabilities are shown
for k = 4 and a fixed value of the lattice size L/k = 128. In
order to measure the separation between the curves in the p-
space, the distance δ(L, k) is defined as δ(L, k) = p∗

T (L, k) −
p∗

P(L, k), where p∗
T [P](L, k) is the value of the concentration p

for which RT [P]
L,k (p) = 0.5.

δ(L, k) was calculated for different values of k and L. The
results are shown in Fig. 8(b) for two k sizes (k = 4 and 8)
and L/k ranging between 75 and 640 (note the log-log scale
in the figure). In all cases, the separation between the parallel
and transversal curves diminishes for increasing L, where
δ(L → ∞, k) = 0. This result reinforces the arguments given
in the discussion of Fig. 7, that, namely, for an infinite system
of aligned k-mers on triangular lattices, the properties of the
percolating phase are characterized by a unique percolation
threshold, regardless of the lattice direction (transversal or
parallel to the alignment direction).

B. Critical exponents and universality

In this section the critical exponents ν, β, and γ will be
calculated. Knowing ν, β, and γ is enough to determine the
universality class of our system and understand the related
phenomena.

In addition to the different probabilities RX
L,k (θ ), the perco-

lation order parameter P, the susceptibility χ , and the reduced
fourth-order cumulant U , will be used to obtain the critical

FIG. 8. (a) RP
L,k (p) (solid triangles) and RT

L,k (p) (open triangles)
as a function of the concentration p for k = 4 and L/k = 128.
We show the procedure used to measure the distance δ(L, k) (see
discussion in the text). (b) Log-log plot of δ(L, k) as a function of the
lattice size L/k for two different values of k: k = 4, open squares,
and k = 8, solid squares.

exponents. These quantities can be calculated as

P = 〈SL〉
M

, (4)

χ =
[〈

S2
L

〉 − 〈
SL

〉2]
M

, (5)

and

U = 1 −
〈
S4

L

〉
3
〈
S2

L

〉2 , (6)

where SL represents the size of the largest cluster, and 〈·〉
means an average over simulation runs.
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FIG. 9. (a) Maximum of the derivative of the U percolation probability (dRU
L,k/d p)

max
as a function of L/k (in a log-log scale) for two

different cases: k = 4 (solid squares) and k = 8 (solid circles). The error bar in each measurement is smaller than the size of the symbols.
According to Eq. (7) the slope of each line corresponds to 1/ν = 3/4. Inset: Standard deviation �U

L,k as a function of L/k (in a log-log scale)
for the same cases shown in the main figure. According to Eq. (8), the slope of each line corresponds to −1/ν = −3/4. (b) Maximum of the
susceptibility χmax as a function of L/k (in a log-log scale) for two different cases: k = 4 (solid squares) and k = 8 (solid circles). The error
bar in each measurement is smaller than the size of the symbols. The slope of each line corresponds to γ /ν = 43/24. Inset: Maximum of
the derivative of the percolation order parameter (dP/d p)max as a function of L/k (in a log-log scale) for the same cases reported in the main
figure. According to Eq. (9), the slope of each line corresponds to (1 − β )/ν = 31/48.

The standard theory of finite size [87] allows for various
routes to estimate the critical exponent ν from simulation data.
One of these methods is from the maximum of the function
dRX

L,k/d p:

(
dRX

L,k

d p

)
∝ L1/ν . (7)

In Fig. 9(a) log [(dRU
L,k/d p)

max
] has been plotted as a

function of log[L] for k = 4 and k = 8. According to Eq. (7),
the slope of each line corresponds to 1/ν. As can be observed,
the slopes of the curves remain constant, where ν = 1.338(9)
for case k = 4 and ν = 1.328(4) for case k = 8.

Another alternative way for evaluating ν is from the di-
vergence of the root-mean-square deviation of the percolation
threshold observed from their average values, �X

L,k:

�X
L,k ∝ L−1/ν . (8)

As an example of validity of Eq. (8), the inset in Fig. 9(a)
shows �U

L,k as a function of L (note that both axis are in log-
log scale) for the same cases of the main figure. According to
Eq. (8) the slope of the line corresponds to −1/ν. In this case,
ν = 1.335(6) for k = 4 and ν = 1.329(5) for k = 8.

Once ν is known, the exponents γ and β were determined
by the finite-size scaling theory [1]. On one hand, γ is
obtained by scaling the maximum value of the susceptibility
χ . According to scaling assumption for this quantity given
by χ = Lγ /νχ (u), where u = (p − pc)L1/ν and χ is the cor-
responding scaling function. At the point where χ is max-
imal, u = const, and χmax ∝ Lγ /ν . Our simulation data are
presented in Fig. 9(b). The values obtained are γ = 2.39(1)
for k = 4 and γ = 2.40(2) for k = 8.

On the other hand, the exponent β is calculated from the
scaling behavior at criticality P = L−β/νP(u′), where u′ =
|p − pc|L1/ν and P is the scaling function. At the point where

dP/d p is maximal, u′ = const and(
dP

d p

)
max

= L(−β/ν+1/ν)P(u′) ∝ L(1−β )/ν . (9)

The scaling tendencies for some particular cases are shown
in the inset of Fig. 9(b). From the slopes of the curves, the
following values of β were obtained: β = 0.136(2) for k = 4
and β = 0.138(3) for k = 8.

The results in Fig. 9 agree, within numerical errors, with
the exact values of ν = 4/3, γ = 43/18, and β = 5/36 for
2D ordinary percolation.

The scaling behavior has been tested by plotting PLβ/ν

versus |p − pc|L1/ν , χL−γ /ν versus (p − pc)L1/ν , RA
L versus

(p − pc)L1/ν , and U versus (p − pc)L1/ν and looking for data
collapsing. Using the values of pc obtained and the exact
values of the critical exponents corresponding to ordinary

FIG. 10. (a) Data collapsing of the percolation order parameter,
PLβ/ν vs |p − pc|L1/ν , and of the susceptibility, χL−γ /ν vs (p −
pc )L1/ν (inset), for k = 4. (b) Data collapsing of the percolation
probability, RA

L,k (p) vs (p − pc )L1/ν , and the cumulant, UL vs (p −
pc )L1/ν (inset), for k = 4.
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percolation ν = 4/3, γ = 43/18, and β = 5/36, the curves
have an excellent scaling collapse; see Figs. 10(a) and 10(b).

It is well known that RSA has very short-range correla-
tions, which are corroborated by the values of ν, γ , and β

reported above. This also means that the percolation prop-
erties of the system presented here correspond to the same
universality class as the random percolation problem.

IV. CONCLUSIONS

In this paper, the percolation behavior of aligned rigid
rods of length k on 2D triangular (rhombus-shaped) lattices
has been investigated by computer simulations and finite-size
scaling analysis. The k-mers (with k from 2 to 80) were
deposited along one of the directions of the lattice, forming an
oriented structure. Lattice sizes up to L/k = 640 were used.

For each value of k, the size of the largest cluster SL and the
probability RX

L,k (p) (X = P, T,U, I, A) that a lattice of size L
percolates at concentration p were used to obtain the critical
point (percolation threshold pc(k) and intersection point of the
probability curves RX ∗

k ) and the critical exponents ν, β, and γ

characterizing the phase transition.
The percolation threshold exhibits a monotonic increas-

ing function when it is plotted as a function of the k-mer
size: pc(k) = A + B/(C + √

k), where A = pc(k → ∞) =
0.582(9), the value of the percolation threshold by infinitely
long k-mers, B = −0.47(0.21), and C = 5.79(2.18). This
behavior is completely different from that observed for
square lattices, where the percolation threshold decreases with
k [21,55]. The present result clearly demonstrates that the
structure of the lattice plays a fundamental role in determining
the statistics and percolation properties of extended objects.
To finish with the analysis of pc(k), it is important to note that,
for all k, the percolation threshold of aligned rods is higher
than the corresponding one to isotropic k-mers [82].

The effect of the anisotropy on the properties of the per-
colating phase was investigated by following the behavior of
RP

L,k (p) (probability of finding a percolating cluster in a paral-
lel direction to the alignment axis) and RT

L,k (p) (probability

of finding a percolating cluster in a transverse direction to
the alignment axis). For finite systems, while in the case of
isotropic k-mers the vertical and horizontal percolation proba-
bilities are indistinguishable, in the case of aligned k-mers the
anisotropy of the deposited layer favors the percolation along
the direction of the alignment axis. The difference between the
parallel and transversal probabilities diminishes for increasing
the lattice size L, where RP

L,k (p) = RT
L,k (p) in the limit of

L → ∞. In other words, the value of the percolation threshold
is the same in both parallel and transversal directions.

The breaking of the orientational symmetry also influences
the behavior of the percolation probabilities at the intersection
point RX ∗

k . Thus, RU ∗
k and RI∗

k exhibit a nonuniversal critical
behavior, varying continuously with changing the k-mer size.
A similar scenario already has been reported in the case
of aligned k-mers on square lattices [21,55] and thermal
transitions in the presence of anisotropy [72,73]. These results
indicate that the universality of the intersection points RX ∗

k ’s is
observed only for isotropic systems. For anisotropic systems,
this universality is violated, and the value of the crossing point
of the percolation probabilities is dependent upon k (and the
degree of alignment).

Finally, the improved accuracy in the determination of the
critical exponents (ν, β, and γ ) confirmed that the model
belongs to the same universality class as the random perco-
lation, regardless of the size k considered. In addition, the
corresponding curves collapse according to the predictions of
the scaling theory.
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