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Abstract 

Cities in arid and semi-arid regions have been exploring urban sustainability policies, such as 

lowering the vegetation coverage to reduce residential outdoor water use. Meanwhile, urban 

residents express concerns that such policies could potentially impact home prices regardless of 

the reduced water costs because studies have shown that there is a positive correlation between 

vegetation coverage and home values. On the other hand, lower vegetation coverage in arid and 

semi-arid desert regions could increase surface temperatures, and consequently increases energy 

costs. The question is therefore where the point in which residential outdoor water use can be 

minimized without overly increasing surface temperatures and negatively impacting home values. 

This study examines the impacts of spatial composition of different vegetation types on land 

surface temperature (LST), outdoor water use (OWU), and property sales value (PSV) in 302 local 

residential communities in the Phoenix metropolitan area, Arizona using remotely sensed data and 

regression analysis. In addition, the spatial composition of vegetation cover was optimized to 

achieve a relatively lower LST and OWU and maintain a relatively higher PSV at the same time. 

We found that drought-tolerant landscaping that is composed of mostly shrubs and trees adapted 

to the desert environment is the most water efficient way to reduce LST, but grass contributes to a 

higher PSV. Research findings suggest that different residential landscaping strategies may be 

better suited for different neighborhoods and goal sets can be used by urban planners and city 

managers to better design urban residential landscaping for more efficient water conservation and 

urban heat mitigation for desert cities. 

 

Keywords: optimization; green space; land surface temperature; evapotranspiration; outdoor water 

use; property sales value 
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Optimization of Residential Green Space for Environmental Sustainability and Property 1 

Appreciation in Metropolitan Phoenix, Arizona 2 

 3 

 4 

1. Introduction 5 

Urban regions in the United States are dominated by residential land, which creates challenges and 6 

opportunities for sustainable land management due to the preponderance of outdoor space in yards. 7 

Recent estimates revealStudies estimated that approximately 65% of all urban land is devoted to 8 

single-family residential neighborhoods and it is the most prevalent zoning in areas slated for 9 

future development (Burchell & Shad, 1998; Burchell & Mukherji, 2003; Hirt, 2014). Residential 10 

land use is often associated with proliferating turf grass in the continental U.S., which in many 11 

regions require extensive irrigation to maintain (Milesi et al., 2005; Cook and Faeth, 2006). This 12 

is particularly true in the arid U.S. Southwest, where precipitation can be 18 cm or less per year 13 

(Sheppard et al., 2002). Nevertheless, irrigated landscaping provides both environmental benefits 14 

such as lower temperatures (Wang et al., 2016; Wang, 2018) and economic benefits such as higher 15 

home values (Kestens et al., 2004, Mei et al., 2018). Research is therefore needed to better 16 

understand both the relationships and tradeoffs between vegetation cover, land surface 17 

temperature, water use, and home values. 18 

Generally, green infrastructure contributes to a range of ecosystem services in cities (e.g., 19 

habitat provisioning, stormwater regulation, carbon sequestration), though the mix and extent of 20 

services depends on vegetative type and management, and homogenous turf landscapes likely 21 

provide nominal ecological benefits (Larson et al., 2016; Groffman et al., 2017). Green 22 

infrastructure can also provide socioeconomic and health benefits. For illustration, large public 23 

Revised manuscript with changes marked
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green spaces can influence social capital by providing an environmental-friendly gathering place 24 

for local residents to develop and maintain neighborhood social ties (Kweon et al., 1998; Kuo et 25 

al., 1998; Maas et al., 2009). The presence of green vegetation can also significantly contribute to 26 

residents’ sense of social safety and adjustment (Kuo et al., 1998). In addition, neighborhood parks 27 

and views of natural landscapes show a positive relationshiphave positive contributions to with 28 

home values (Lo and Faber, 1997; Escobedo et al. 2015). From a public health perspective, urban 29 

green spaces can not only help maintain physical health, but also improves mental functioning, 30 

mental health and wellbeing (Sugiyama et al., 2008).  31 

Despite all the environmental, socioeconomic and health benefits of urban green 32 

infrastructure, vegetation requires a significant amount of water for irrigation, adding demand for 33 

scarce water resources, especially in hot, arid desert cities. Research has shown that Americans 34 

irrigate more acres of turf than its largest three crops—corn, wheat, and soy—combined (Milesi et 35 

al., 2005). In desert cities, Myint et al. (2013) studied the impacts of grass fraction and tree fraction 36 

on LST surface temperature for the City of Phoenix and found that trees had a stronger cooling 37 

effect than grass. Middel et al. (2015) reported that a targeted 25% tree cover in Phoenix residential 38 

neighborhoods would yield a 2-m air temperature reduction of up to 2 °C at the canopy layer (2 39 

meters above the surface). Moreover, vegetation is correlated with higher property values both at 40 

the individual parcel and within the neighborhood (Bark et al., 2011; Escobedo et al., 2015), which 41 

provides an economic benefit for property owners, but creates a trade-off with housing 42 

affordability and homeownership attainment. Resolving these trade-offs will require better 43 

understanding of the interrelationships among vegetation structure, temperature, water use, and 44 

property value. 45 
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Multiple studies have examined relationships among environmental and economic 46 

variables, but never in a single study and without the focus on residential neighborhoods. For 47 

instance, several studies examined the relationship between the composition and configuration of 48 

urban land use land cover and land surface temperature (LST), finding that the relationship varies 49 

depending on land use and region (Connors et al., 2013; Rotem-Mindali et al., 2015, Schwarz and 50 

Manceur, 2015; Li et al., 2016; Wang et al., 2019). However, most studies analyzed the cooling 51 

effect of vegetation at global or regional scales regardless of various vegetation types, with a few 52 

exceptions that examined trees only (Myint et al., 2013, Middel et al., 2015). Similarly, studies 53 

have examined relationships between vegetative cover, LST, and outdoor water use (OWU) 54 

finding that small decreases in temperature are associated with large increases in water use 55 

(Guhathakurta and Gober, 2007; Kaplan et al., 2014; Wang, 2018). These studies do not 56 

disambiguate vegetative cover type, but have shown that native shrubs are well adapted to the 57 

desert climate that can thrive without much rainfall or irrigation (Martin, 2001; Stabler and Martin, 58 

2002). Additionally, vegetation with large canopy and structure, such as mature trees, can also 59 

provide shade to reduce temperature for better thermal comfort (Armson et al., 2012; Armson et 60 

al., 2013; Middel et al., 2015; Zhao et al., 2018a). Finally, another subset of studies examined 61 

relationships between urban vegetation and property sales value (PSV), generally finding a 62 

positive relationship, and suggest that trees may have the most positive effect (Kestens et al., 2004, 63 

Mei et al., 2018). Given variability in effect of different types of vegetative cover (i.e., trees, 64 

shrubs, grass) on urban cooling, water use, and property values, understanding the outcomes 65 

associated with different vegetative mixes in arid desert urban residential neighborhoods is 66 

essential for minimizing trade-offs and maximizing co-benefits. 67 
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To better understand the related dynamics between environmental and economic tradeoffs, 68 

this study examines single-family residential neighborhoods with homeowner associations 69 

(HOAs) in the Phoenix metropolitan area (PMA), Arizona, USA. HOAs are entities that dictate 70 

minimum landscaping requirements and claim to maintain property values over time (McKenzie, 71 

1994; Wentz et al., 2016). The first objective is to examine the impacts of spatial composition of 72 

different vegetation cover types on LST, OWU and PSV in major residential communities in the 73 

PMA. The second objective is to optimize the spatial composition of residential green spaces in 74 

order to achieve a relatively lower LST and OWU and to maintain PSV at the same time. The third 75 

objective is to propose residential landscaping strategies for urban sustainability of desert cities in 76 

terms of more efficient water conservation and urban heat mitigation based on research findingsthe 77 

optimization results. 78 

 79 

 80 

2. Materials and Methods 81 

2.1 Study Area 82 

The PMA is located in Maricopa County, Arizona, USA. The total population is about 4.67 million 83 

residents with nearly 1.66 million households, as estimated by the 2018 American Community 84 

Survey (ACS) (U.S. Census Bureau, 2019). As of 2019, the housing stock consists predominantly 85 

(~76.2%) of single-family homes with an increasing number of multi-family structures and 86 

mobile/manufactured homes (MAG, 2019). The 2018 mean household income of PMA was 87 

$87,435, which was lower than the national mean of $87,864 (U.S. Census Bureau, 2019). PMA 88 

residents, therefore, need to be conscious of the costs associated with cooling homes, caring for 89 

landscaping, and resale values. 90 
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The PMA is part of the northeastern Sonoran Desert featuring a subtropical semi-arid hot 91 

desert climate (Köppen climate classification: BWh) (Figure 1). It is characterized by long, hot 92 

summers, but short, mild winters. The daily high exceeds 37.8 ºC for an average of 110 days every 93 

year, which normally occurs between early June and early September (Wang et al., 2016). The 94 

highest temperature can reach over 43.3 ºC (110 ºF) for an annual average of 18 days (Wang et al., 95 

2016). The mean annual precipitation in the past 30 years is merely 204 mm (8.03 inch) with most 96 

rainfall taking place during the summer monsoon season (U.S. Climate Data, 2020). This means 97 

that residential vegetation is largely managed through a combination of automated irrigation 98 

systems (e.g., drip, sprinkler), flood irrigation (in older neighborhoods), and drought tolerant 99 

vegetation. 100 

To study the economic and environmental tradeoffs, we selected a sample of 302 local 101 

single-family residential communities that are managed by HOAs (Figure 1). Selecting only 102 

neighborhoods managed by HOAs provides continuity in the structure and governance of 103 

landscaping. The 302 communities were derived from a random sample of single-family 104 

residential subdivisions in Maricopa County using Maricopa County Assessor's Subdivision and 105 

Parcel Data. Detailed sample selection methods can be found in Minn et al. (2015), Ye et al. (2018) 106 

and Turner & Stiller (2020). 107 

 108 

2.2 Data 109 

Figure 2 shows the flowchart of research design. Four data sets were used to evaluate the trade-110 

offs among LST, OWU and PSV with regards to residential green space composition. The data 111 

sets include land cover classification, remotely sensed surface temperature imagery, model-112 

predicted actual evapotranspiration (ETa), and property sales records from 2010. The reason why 113 
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2010 data sets were used is because all the data and products used were available from this year. 114 

Although it sounds out of date, the purpose of this study is to generalize empirical trade-off 115 

relationships and we assume these relationships would hold over time and space for small local 116 

residential communities. The reminder of this section describes the acquisition of these data sets 117 

and the derivatives of data that are used for the subsequent analyses. 118 

 119 

2.2.1 Land surface temperature 120 

We calculated a summer daytime mean LST for each residential community using a combination 121 

of Landsat 5 Thematic Mapper and Advanced Spaceborne Thermal Emission and Reflection 122 

Radiometer (ASTER) data for June through September in 2010. The reason why both Landsat and 123 

ASTER images were used is because of the poor temporal resolution of single satellite data. The 124 

LST data set from Landsat 5 was obtained from Level-2 provisional surface temperature product 125 

that has a 30-m spatial resolution, which is resampled from thermal bands of 120-m spatial 126 

resolution, and has a relative accuracy of 0.19 K (Cook et al., 2014). We also acquired ASTER 127 

surface kinetic temperature product (AST08) that has 90-meter spatial resolution and a relative 128 

accuracy of 0.3 K (JPL Propulsion Laboratory, 2001). Both Landsat and ASTER LST products 129 

are calibrated, processed and distributed by NASA and USGS. We calculated summertime mean 130 

LST value for each residential community using 23 cloud-free images, within which 7 were from 131 

ASTER and 16 were from Landsat 5. 132 

 133 

2.2.2 Outdoor water use 134 

The municipal water delivery system in the PMA does not have separate water meters for indoor 135 

and outdoor water use. We therefore estimated OWU using ETa as a proxy (Singh et al., 2014). 136 
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ETa was modeled using a surface energy balance model named METRIC (Mapping 137 

Evapotranspiration at high spatial Resolution with Internalized Calibration) (Allen et al., 2007a). 138 

Surface energy balance model is an essential approach for heat flux and evaporation estimation in 139 

applied meteorology and hydrology. More specifically, the METRIC model computes the latent 140 

heat flux as the residue of the surface energy balance, which can be written as: 141 

 142 

LE = Rn – G – H,                                                           (1) 143 

 144 

where Rn is the net incoming radiation, G is the ground heat flux, H is the sensible heat flux, and 145 

LE is the latent heat flux. METRIC has been successfully applied to Landsat and MODIS images 146 

to predict ETa at various spatial scales (e.g. Trezza, 2002; Hendrickx and Hong, 2005; Allen et al., 147 

2007b; Zheng et al., 2015). Research also demonstrated ETa prediction accuracy of 15%, 10% and 148 

5% for daily, monthly, and seasonal timescales (Plaza et al., 2009; Shao and Lunetta, 2012). Model 149 

predictions can effectively represent ETa for both urban and non-urban areas with or without 150 

irrigation (Allen et al., 2007b). More detailed model calculation and implementation procedures 151 

can be found in Allen et al. (2007a). 152 

Model predicted ETa maps were created using 22 time-series cloud-free Landsat 5 images 153 

and meteorological data collected from the weather stations in the Arizona Meteorological 154 

Network (AZMET, 2020) that covered the entire year of 2010. Gaps between each two adjacent 155 

image acquisition dates were filled using a polynomial curve-fitting method at every single image 156 

pixel location, which finally resulted in 365 daily ETa maps of 30-meter resolution. A summertime 157 

total ETa map was created by aggregating all the daily images in June, July, August and September. 158 

We calculated a mean ETa value for each selected residential community. Model predicted ETa 159 
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values were validated using actual water usage data acquired from 49 community parks in the 160 

PMA as described in Kaplan et al. (2014). Detailed validation procedure and results can be found 161 

in Wang (2018). 162 

 163 

2.2.3 Property sales value 164 

We obtained property sales records between 2009 to 2011 at parcel level from the Maricopa 165 

County Assessor’s Office (2020). Multiple years’ records were used because the number of sales 166 

records from one single year was relatively small and some communities show no record in 2010. 167 

In addition, using three-year data can reduce the large variation caused by the economic recession 168 

in 2008-2009. We calculated a mean PSV (U.S. Dollars in thousands, $k) using all the sales records 169 

within each selected residential community. 170 

 171 

2.2.4 Land cover classification 172 

Land cover classification for the PMA was performed by the Central Arizona – Phoenix Long-173 

Term Ecological Research (CAP-LTER) at Arizona State University using 2010 National 174 

Agriculture Imagery Program (NAIP) imagery and an object-based image classification technique. 175 

Detailed classification procedure and metadata can be found at the CAP-LTER website (CAP-176 

LTER, 2015) and in Li et al. (2014). This land cover map has 1-meter spatial resolution and 12 177 

land cover classes with an overall accuracy of nearly 92%. We selected four green space classes 178 

that include grass, shrubs, trees and open soils, and then calculated percent area of each class within 179 

each selected residential community. 180 

 181 

2.3 Analysis 182 
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We aimed to explore both the landscaping factors that influence LST, OWU and PSV and the 183 

tradeoffs between them. To that end, we performed both a linear regression and an optimization 184 

analysis. These methods are described here.We first performed a linear regression analysis to 185 

explore the empirical relationships between landscaping factors and LST, OWU, and PSV. An 186 

optimization analysis was subsequently used to examine the tradeoffs between these variables.  187 

 188 

2.3.1 Regression analysis 189 

We used simple linear regression to examine the interrelationship among three dependent 190 

variables: LST, OWU and PSV. We then used multivariate linear regression analysis to quantify 191 

the empirical relationship between three dependent variables and percent land cover (grass%, 192 

shrub%, tree% and soil%) as independent variables. The regression equation is formulated as: 193 

 194 

𝑦𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑥𝑖 + 𝜀𝑗                                                      (2)                                                                          195 

 196 

where: 197 

i = index of four independent variables (grass%, shrub%, trees% and soil%); 198 

j = index of three dependent variables (LST, OWU and PSV); 199 

xi = area percentage of land cover type i; 200 

β0j = intercept term of the regression model for dependent variable j; 201 

βij = coefficient estimate for land cover type i in relation to dependent variable j; 202 

ɛj = error term of the regression model for dependent variable j. 203 

 204 

2.3.2 Optimization 205 
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The objective of this study is to find a set of area percentage values of grass, shrub, tree and soil 206 

that can yield the lowest possible LST and OWU, and meanwhile maintain a relatively high PSV. 207 

We first definedformulated the optimization question as an integer programming problem with an 208 

objective function to minimize the summation of model predicted LST and OWU, and then 209 

formulated the optimization question as an integer programming problem. Consider the following 210 

notations: 211 

 212 

I = set of all land cover types (grass, shrub, tree and soil); 213 

J = set of established empirical relationships for LST, OWU and PSV; 214 

Φ = set of vegetation land cover types (grass, shrub and tree); 215 

Ψ = set of established empirical relationships for LST and OWU; 216 

𝑚𝑥𝑖
= observed minimum of xi; 217 

𝑢𝑥𝑖
= observed mean of xi; 218 

𝜎𝑥𝑖
= observed standard deviation of xi; 219 

𝑚∑ 𝑥𝑖𝑖∈Φ
= observed minimum of percent all vegetation cover; 220 

𝑢∑ 𝑥𝑖𝑖∈Φ
= observed mean of percent all vegetation cover; 221 

𝜎∑ 𝑥𝑖𝑖∈Φ
= observed standard deviation of percent all vegetation cover; 222 

𝑚∑ 𝑥𝑖𝑖∈𝐼
= observed minimum of percent all land cover; 223 

𝑢∑ 𝑥𝑖𝑖∈𝐼
= observed mean of percent all land cover; 224 

𝜎∑ 𝑥𝑖𝑖∈𝐼
= observed standard deviation of percent all land cover; 225 

𝜇𝑦𝑗
= observed mean of yj; 226 

𝑚𝑦𝑗
= observed minimum of yj; 227 
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 228 

The objective function is therefore formulated as: 229 

 230 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑦𝑗𝑗∈Ψ ,                                                         (3) 231 

 232 

which is subject to the following restrictions: 233 

 234 

𝑦𝑗 ≤ 𝜇𝑦𝑗
 ∀ 𝑗 ∈ Ψ,                                                           (4) 235 

 236 

𝑦𝑗 ≥ 𝑚𝑦𝑗
 ∀ 𝑗 ∈ 𝐽,                                                           (5) 237 

 238 

𝑥𝑖 ≤  𝑢𝑥𝑖
+ 2𝜎𝑥𝑖

 ∀ 𝑖 ∈ 𝐼,                                                     (6) 239 

 240 

𝑥𝑖 ≥  𝑚𝑥𝑖
 ∀ 𝑖 ∈ 𝐼,                                                           (7) 241 

 242 

∑ 𝑥𝑖 ≤𝑖∈Φ 𝑢∑ 𝑥𝑖𝑖∈Φ
+ 2𝜎∑ 𝑥𝑖𝑖∈Φ

,                                                 (8) 243 

 244 

∑ 𝑥𝑖 ≥𝑖∈Φ 𝑚∑ 𝑥𝑖𝑖∈Φ
,                                                          (9) 245 

 246 

∑ 𝑥𝑖 ≤𝑖∈I 𝑢∑ 𝑥𝑖𝑖∈𝐼
+ 2𝜎∑ 𝑥𝑖𝑖∈𝐼

,                                                  (10) 247 

 248 

∑ 𝑥𝑖 ≥𝑖∈I 𝑚∑ 𝑥𝑖𝑖∈𝐼
,                                                        (11) 249 
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 250 

𝑥𝑖  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ 𝑖 ∈ 𝐼.                                                      (12) 251 

 252 

The objective function (3) is to minimize the summation of empirical estimations of LST and 253 

OWU that are derived from regression equation (2). Constraint (4) is defined to force model 254 

predicted LST and OWU to be less than the observed mean, and constraint (5) is to restrict 255 

predicted LST, OWU and PSV to be greater than the observed minimum. Constraints (6) and (7) 256 

restrict the percent area of each land cover to be between the observation minimum and +2 standard 257 

deviations from the observed mean. Similar to (6) and (7), constraints (8)-(9) and (10)-(11) restrict 258 

the area percentage of vegetation cover and all land cover between the observation minimum and 259 

+2 standard deviations of the observed mean, respectively. Integer restrictions on independent 260 

variablesarea percentage of land cover types are stipulated in Constraint (12). 261 

The optimization procedure was implemented using Gurobi 9.0 Python API (Gurobi 262 

Optimization, 2020) in the Jupyter Notebook environment. We selected top 100 sub-optimal 263 

solutions to the objective function (3) that generated the smallest possible summation of LST and 264 

OWU, and then searched for the highest predicted PSV values within these 100 solutions. The top 265 

5 best scenarios were finally selected as the optimal solutions. 266 

 267 

 268 

3. Results 269 

3.1 Summary statistics 270 

The summary statistics of residential green space land cover types, LST, OWU, and PSV are 271 

shown in Table 1. The total OWU that was estimated using actual evapotranspiration (ETa) ranges 272 



13 

 

 

from 105 mm to nearly 800 mm with a mean value of 453 mm for the summer months of 2010. 273 

LST ranges from 41.5 °C to 55.6 °C with a mean LST of 50.3 °C. PSV ranges from $6.1k to 274 

$4,700k with a mean PSV of $340.6k and a large standard deviation of $431.3k. For these all the 275 

302 residential neighborhoods, open soil has a mean percent area of 38.8%, which is the largest 276 

among four land cover types. This could include desert style or unfinished landscaping. This is 277 

followed by trees (µT% = 12.1%), grass (µG% = 8.1%), and finally shrubs (µS% 3.2%). This land 278 

cover profile in residential communities in the PMA is generally consistent with ‘xeriscaped’ and 279 

other low vegetative cover yard structure types prevalent in the region. This is fairly typical too of 280 

properties in HOA neighborhoods, where vegetation composition can be regulated. Even in 281 

residential communities with relatively higher vegetative land cover, the mean percent vegetated 282 

area is only 21.1% with a maximum cover of 52.7%. 283 

  284 

3.2 Regression results 285 

Figure 2 3 shows the relationship among three dependent variables (LST, OWU and PSV) using 286 

simple linear regression. LST and OWU have a strong, negative relationship, which means 287 

vegetation can significantly cool down LST but increase OWU as well. PSV is negatively 288 

correlated with LST but has a positive relationship with OWU, which means higher PSV values 289 

are generally found in more vegetated residential communities with lower LST but higher OWU.A 290 

statistically significant negative relationship was found between LST and OWU and between LST 291 

and PSV, while a statistically significant positive relationship existed between PSV and OWU. 292 

This implies that higher surface temperatures are generally found in residential communities of 293 

lower water use and lower home values. On the other hand, higher water use is often associated 294 
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with lower surface temperatures and higher home values. We believe the underlying cause of these 295 

relationships is the variation of vegetation coverage. 296 

Multiple regression results of LST, OWU, and PSV with percent vegetation cover are 297 

presented in Table 2. Model A shows that percent vegetation cover variables can be used to explain 298 

nearly 60% (adjusted R2 = 0.598) of the total variation in LST, and the model is statistically 299 

significant at the 0.01 level. Except percent soils, all the other coefficient estimates are statistically 300 

significant and have negative contributions to LST, which means increasing percent vegetation 301 

cover can effectively lower LST in a residential community. According to the value of 302 

standardized coefficients, the cooling efficiency is ranked as: Trees > Grass > Shrubs. 303 

Theoretically speaking, a 10% increase in percent area of grass, shrubs and trees can result in an 304 

average decrease in LST of 1.4 °C, 1.2 °C and 2.4 °C, respectively. In other words, replacing grass, 305 

shrubs and open soils with trees can potentially minimize the heating effect in local residential 306 

communities in the PMA. 307 

Model B in Table 2 shows regression results of OWU as the dependent variable. This model 308 

is also statistically significant (p-value < 0.01) and meaning that vegetation cover can explain 309 

nearly 50% of the total variation in OWU (adjusted R2 = 0.495). Percent grass and trees have 310 

significant, positive relationships with OWU, and the coefficient estimate of percent grass is much 311 

larger than trees, which means increasing percent grass area can result in more OWU than 312 

increasing the same percent area of trees. Percent soils have a negative relationship with OWU, 313 

which means increasing the percentage of open soils can potentially reduce OWU. Percent shrub 314 

is insignificant in this model. 315 

Model C in Table 2 shows the regression results of PSV. Although this model has a 316 

relatively lower goodness-of-fit (adjusted R2 = 0.228), it is statistically significant at the 0.01 level. 317 
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We anticipate a lower R2 because studies using hedonic models of home price are complex and 318 

show that individual factors such as house size and lot size as well as regional factors such as 319 

parks, transportation, and schools influence home prices (Glaesener and Caruso, 2015; Seo et al., 320 

2019). For our model, the coefficient estimates are positive and statistically significant at the 0.05 321 

level (p-value < 0.05). The relative contribution of vegetation land cover types to PSV is ranked 322 

as: Grass > Shrubs > Trees > Soils. This result implies that increasing vegetation cover, especially 323 

grass and shrubs, can effectively maintain a relatively higher PSV. 324 

In summary, increasing percent tree cover alone can efficiently lower LST and OWU, but 325 

its contribution to PSV is relatively low. On the other hand, increasing percent grass cover alone 326 

can lower LST and help maintain a relatively higher PSV, but it would also largely increase OWU, 327 

which is not an ideal practice for water conservation. Although shrub has a moderate contribution 328 

to PSV, its cooling efficiency is the lowest and it does not significantly lower OWU. It becomes 329 

evident that different spatial composition of vegetation cover has varying effects on urban 330 

residential microclimate. Understanding these effects can help address the trade-off issue among 331 

LST, OWU and PSV. 332 

 333 

3.3 Optimization results 334 

We first solved the integer programming problem and obtained the top 100 sub-optimal solutions 335 

for the lowest possible summation of LST and OWU values and their corresponding land cover 336 

compositions, and then searched for the highest predicted PSV values within these solutions. These 337 

records are therefore considered as our final optimization solutions because they not only have the 338 

lowest possible LST and OWU values, but also provide the highest possible PSV.  339 
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We present top 5 optimization scenarios in Table 3. These five scenarios suggest that 340 

shrubs should be given the largest weight within all the vegetation types to maximize its 341 

environmental and economic benefits. On the other hand, minimizing the use of grass but 342 

maximizing open soil coverage can also contribute to lower LST and OWU. PSV can be higher if 343 

a larger percent grass cover is given, but OWU would also be higher as well. As suggested, a 344 

residential landscape that is composed of 1-2% grass, 11-13% shrubs, 7-9% trees, and 62-64% 345 

soils can result in the lowest possible LST and OWU and help maintain a relatively higher PSV at 346 

the same time. Within these scenarios, predicted LST varies from 49.8 ºC to 50.2 ºC, which is less 347 

than the observed mean LST (Table 1, µLST = 50.26 ºC). Predicted OWU ranges from 327.5 mm 348 

to 334.4 mm, which is around the mean minus one standard deviation (µ - σ = 329.7 mm) of 349 

observed OWU. Predicted PSV in these scenarios varies from $728.6k to $761.6k, which is higher 350 

than observed mean (µPSV = $340.6k) but lower than the mean plus one standard deviation (µ + σ 351 

= $771.9k). 352 

 353 

 354 

4. Discussion 355 

4.1 Effect of vegetation cover on LST, OWU and PSV 356 

Our analysis shows that trees provide the greatest cooling efficiency, followed by the combination 357 

of grass and shrubs. This implies that planting more trees or replacing other land cover with trees 358 

in a desert residential neighborhood has the potential lower LST to its maximum. This result is 359 

consistent with prior studies of the effect of the urban heat island effect in Phoenix and other areas 360 

that show this relationship between vegetation and land surface temperature (see Myint et al., 2013 361 

and Middell et al., 2015). Additionally, trees provide shade and thermal comfort co-benefits (Zhao 362 
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et al., 2017; Zhao et al., 2018b). These studies support efforts by the City of Phoenix, which 363 

initiated a Tree and Shade Master Plan in 2010 to ameliorate extreme heat during the summer 364 

months by increasing tree canopy from 10% in 2010 to 25% by 2030 (City of Phoenix, 2010). Our 365 

study is the first to consider shrubs, which is the most populated native vegetation in a desert 366 

environment (Martin, 2001). Shrubs had the lowest cooling efficiency among all the vegetative 367 

types, meaning that shrubs are the least efficient way to achieve cooling as measured by LST in 368 

our study. They also do not provide the shade co-benefit of trees.  369 

 The rankings for water use efficiency are different than for cooling. Our result suggests 370 

that grass is the least water efficient vegetation type, while shrub has no significant contribution 371 

to OWU (Table 2). This finding is consistent with other studies that find that grass requires a large 372 

water inputs to survive in a hot, semi-arid desert climate (Vickers 2006) and that native shrubs are 373 

well adapted to desert climates (Odening et al., 1974; Bamberg et al., 1975; Martin et al., 2001; 374 

Stabler and Martin, 2002). Trees are species specific: most desert-adapted trees do not rely on 375 

irrigation, while fruit trees and deciduous trees that are also widely populated in local residential 376 

communities in the PMA heavily depend on irrigation to survive in a desert environment. Our 377 

result suggests that overall trees have higher water use efficiency than grass (Table 2), which can 378 

be considered as a landscaping alternative to lawn and turf.  379 

 Our results are consistent with other studies showing that vegetation increases property 380 

values in residential neighborhoods (Kestens et al., 2004, Bark et al., 2011, Escobedo et al., 2015) 381 

Generally, percent vegetative cover in desert neighborhoods also had a significant positive 382 

relationship with PSV with grass cover having the greatest contribution, followed by shrubs and 383 

trees (Table 2). However, the goodness-of-fit of the regression model is relatively low (adj. R2 = 384 

0.228) because we did not include other factors shown to influence home values such as property 385 
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size, home size, school districts, etc. While adding such variables can potentially increase R2 value, 386 

it’s not relevant for this study. Rather, our goal was to examine the combined effect of different 387 

types of vegetation cover on PSV. Our study, however, shows trees have much lower contribution 388 

to PSV than grass and shrubs. This result likely deviates from previous studies conducted in 389 

Québec City and Florida because PMA has a much lower percent tree cover (only 12%) and annual 390 

precipitation than temperate and humid regions (Escobedo et al., 2015; Kestens et al., 2004). We 391 

therefore suggest that it is necessary to take climate background and dominant native vegetation 392 

into consideration when examining the effect of vegetation cover on PSV because experiences and 393 

findings from some cities may not apply to the others. Moreover, trees had the least effect on 394 

property value among three vegetation types, which could be considered a benefit in some regions 395 

given that low income communities currently have the greatest need for shade trades, but are also 396 

vulnerable to displacement if housing costs increased (Landry and Chakraborty, 2009). Overall, 397 

regional social and ecological context are important in assessing the relative benefits of trees versus 398 

grass and shrubs. 399 

 400 

4.2 Implications of optimization result and policy recommendation 401 

Five optimization scenarios in Table 3 suggest that minimizing the use of grass in residential 402 

landscaping in a desert city can contribute to a lower LST and OWU, while PSV maintains 403 

relatively high. In face of severe drought in the Southwestern U.S., California Department of Water 404 

Resources initiated the Institutional Turf Replacement Program (ITRP) to replace more than 405 

165,000 square feet of turf with California native and water-efficient landscaping to provide long-406 

term water savings, and each eligible household can receive a rebate of approximately $2 per 407 

square foot of removed and replaced turf (CDWR, 2009). Tull et al. (2016) used 545 unique single-408 
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family residential turf rebates and found that the mean water savings were estimated at about 1 m3 409 

per square meter of turf removal per year for each household. Another study by Matlock et al. 410 

(2019) studied 227 participating customers in southern California and found the average reduced 411 

water usage was approximately 392 m3 per year after turf removal. Both studies confirmed the 412 

effectiveness of ITRP in California, and our study further provides the theoretical basis of a similar 413 

program that can be potentially implemented in the PMA. Completely removing large grass cover 414 

or replacing grass with desert-adapted shrubs or trees can become a sustainable development 415 

practice for residential communities in desert cities to mitigate heat and conserve water. 416 

 Another recommendation is to widely adopt xeric landscape style that mostly include 417 

individually watered and low water-use exotic and native plants as a sustainable landscaping 418 

strategy as suggested by the XeriscapeTM movement that began in Denver, Colorado in 1981 419 

(Martin, 2001). Xeriscape is a water-efficient landscaping method that has become increasingly 420 

popular in the arid southwestern U.S. (Sovocool and Morgan, 2006). Research has shown that in 421 

southern Nevada, Xeriscape can save an average of 55.8 gal/sq. ft (or 2.27 m3/m2) per year 422 

resulting from replacing turf grass with xeric landscape (Sovocool and Morgan, 2006). Households 423 

realized a 30% annual water use reduction after converting to xeric landscape that equals 424 

approximately 363 m3 annually (Sovocool and Morgan, 2006). Xeriscape can also save labor and 425 

money for maintenance because of water-efficient and desert-adapted plants and efficient 426 

irrigation. On the other hand, Martin (2008) compared four landscape design archetypes and 427 

proposed an oasis landscape design that consists of a mixture of small areas of well-irrigated turf 428 

grass interspersed with drip-irrigated landscape trees and shrubs and decomposed granite mulch 429 

has an overall better performance in water conservation than the traditional xeric style landscape 430 

in Phoenix, Arizona. 431 
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 432 

4.3 Limitations and future research 433 

This study only used summer daytime remotely sensed data for the analysis because the PMA 434 

experiences extreme heat in the summer months that has brought various concerns to its residents 435 

and sustainability. In order tTo better quantify the actual effect of percent vegetation cover on LST 436 

and OWU, one should also consider nighttime and situations in other seasons and nighttime. Due 437 

to the limitation of data limitation, our study only used three inclusive vegetation types of grass, 438 

shrubs and trees, which cannot reflect the real landscaping situation. Different vegetation species 439 

have various drought resistant capabilities. It would be ideal if major local vegetation species were 440 

identified and used in the analyses instead of using these three inclusive vegetation types. In 441 

addition, we did not have more detailed data at parcel or household level, and the analysis was 442 

performed using the entire residential community as a study unit. Urban sustainability is broadly 443 

influenced by policy makers and urban planners at larger spatial scales, but household behaviors 444 

also have a significant influence on landscape sustainability at smaller spatial scales (Cook et al., 445 

2011). 446 

 Further research can be focused on two topics. First is to study the effect of different types 447 

of desert residential landscaping, such as mesic, xeric, and oasis, on LST, OWU and PSV at parcel 448 

level. This analysis requires extensive field surveys and very high spatial resolution remotely 449 

sensed data. The second direction can be the research on the combined effect of vegetation cover 450 

on LST, OWU and PSV for cities in other climate regions because the regional climate background 451 

also has a significant influence on the relationship. 452 

 453 

 454 
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5. Conclusions 455 

Green infrastructure is a well-known and efficient urban heat mitigation strategy that can 456 

effectively lower ambient and surface temperatures, provide thermal comfort, and have various 457 

socio-economic and health benefits. Despite its ecosystem service values and benefits, increasing 458 

vegetated area in a desert city can also lead to a significant increase of outdoor water use, which 459 

is not ideal for long-term urban sustainable development. Moreover, landscaping is linked to 460 

property values, a central socio-economic concern in residential neighborhoods. It therefore 461 

becomes crucial for residents to balance the tradeoffs between green infrastructure in order to 462 

maximize the heat mitigation effect, to minimize water usage, while also considering property 463 

value at the lowest cost of water use. 464 

This study has made four significant contributions to the sustainability of desert cities. 465 

First, we find that even though trees can efficiently reduce LST, its contribution to PSV is the 466 

lowest in a semi-arid desert environment. One implication of this finding is that trees might be a 467 

water effective means to mitigate urban heat and address income-based shade disparities in the 468 

city, while minimizing property value increases that could drive unintended consequences like 469 

gentrification. Second, minimizing the use of grass in a semi-arid desert city is crucial because it 470 

is the least water use efficient vegetation type, although it contributes to a higher PSV. Third, 471 

desert-adapted shrubs and trees can be widely promoted because they not only have higher water 472 

use efficiency, can significantly lower LST, but also have a relatively higher contribution to PSV. 473 

Paired, these findings suggest a slight trade-off between the most environmentally efficient 474 

landscape type (e.g., xeriscaping) and property value maximization (e.g., grass) in some existing 475 

residential neighborhoods. Nevertheless, there are multiple yard landscaping market types in 476 

Phoenix. Therefore, more work is needed to understand the extent to which the observed positive 477 
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relationship between grass and property value is moderated by homeowner preferences across 478 

different style neighborhoods. Fourth, our results and findings provide strong evidence and a 479 

theoretical basis for the environmental benefits of turf removal programs and xeric or oasis style 480 

landscaping design, which can be used as a guideline by desert cities for a better design of 481 

residential landscaping for urban sustainable development in the future. 482 

 483 

 484 
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Figure 1. Map of study area and locations of selected residential communities. 685 

  686 
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Figure 2. Flowchart of research design. 688 
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 690 

Figure 23. Simple linear regression analysis among three dependent variables: (a) LST vs. OWU, 691 

(b) LST vs. PSV, and (c) OWU vs. PSV. 692 

  693 
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Table 1. Summary statistics of all the independent and dependent variables. These values were 694 

calculated based on all the selected single-family residential communities (n=302). 695 

 696 

Variable 
Independent Variables Dependent Variables 

Grass% Shrub% Tree% Soil% LSTa (°C) OWUb (mm) PSVc ($k) 

Min. 0.0 0.0 0.0 7.3 41.5 104.9 32.0 

Max. 34.6 17.8 42.7 97.0 55.6 800.0 4,700.0 

Mean (µ) 8.0 3.2 12.1 38.8 50.3 452.8 341.4 

Std. Dev. (σ) 4.8 4.5 8.1 12.8 2.5 123.0 429.2 

µ + σ 12.8 7.7 20.2 51.6 52.8 575.8 770.6 

µ + 2σ 17.6 12.1 28.3 64.4 55.3 698.8 1,199.8 

µ - σ 3.15 - 4.06 26.02 47.7 329.7 - 

µ - 2σ - - - - 45.2 206.7 - 

 697 

a Land surface temperature 698 

b Outdoor water use 699 

c Property sales value 700 

 701 

 702 

 703 

  704 
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Table 2. Multiple regression results of LST, OWU and PSV with percent vegetation cover 705 

 706 
Model 

(Dependent 

variable) 

A (LST1) B (OWU2) C (PSV3) 

R2 0.616 0.517 0.264 

Adj. R2 0.598 0.495 0.228 

p < 0.01 < 0.01 < 0.01 

RMSEa 1.626 77.113 429.540 

       

Independent 

variable 
Βb SEc p βd Β SE p β Β SE p β 

Grass% -0.135* 0.042 0.002 -0.242 10.172* 1.997 0.000 0.432 52.638* 13.595 0.000 0.442 

Shrub% -0.118* 0.046 0.012 -0.206 -1.588 2.175 0.467 -0.065 27.657* 12.881 0.035 0.247 

Tree% -0.243* 0.029 0.000 -0.689 3.680* 1.390 0.010 0.247 19.698* 7.926 0.015 0.300 

Soil% -0.009 0.020 0.646 -0.042 -2.114* 0.942 0.027 -0.229 12.297* 5.491 0.028 0.293 

Cons. 54.183* 1.121 0.000 - 410.5* 53.139 0.000 - -615.858 317.402 0.056 - 

 707 
1 Land surface temperature  708 

2 Outdoor water use 709 

3 Property sales value 710 

a Root mean square error 711 

b Unstandardized coefficients 712 

c Standard error 713 

d Standardized coefficients 714 

* Statistically significant at the 0.05 level 715 

  716 
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Table 3. Optimization results with top 5 scenarios 717 

 718 

Scenario Grass Shrub Tree Soil 
Predicted 

LSTa (ºC) 

Predicted 

OWUb (mm) 

Predicted 

PSVc ($k) 

a 2% 13% 7% 63% 50.1 331.3 761.6 

b 2% 13% 7% 62% 50.1 333.2 749.3 

c 2% 11% 8% 64% 50.2 334.4 738.2 

d 1% 13% 9% 62% 49.8 334.2 736.0 

e 1% 13% 8% 63% 50.0 327.5 728.6 
a Land surface temperature 719 

b Outdoor water use 720 

c Property sales value 721 

 722 
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Optimization of Residential Green Space for Environmental Sustainability and Property 1 

Appreciation in Metropolitan Phoenix, Arizona 2 

 3 

 4 

1. Introduction 5 

Urban regions in the United States are dominated by residential land, which creates challenges and 6 

opportunities for sustainable land management due to the preponderance of outdoor space in yards. 7 

Studies estimated that approximately 65% of all urban land is devoted to single-family residential 8 

neighborhoods and it is the most prevalent zoning in areas slated for future development (Burchell 9 

& Shad, 1998; Burchell & Mukherji, 2003; Hirt, 2014). Residential land use is often associated 10 

with proliferating turf grass in the continental U.S., which in many regions require extensive 11 

irrigation to maintain (Milesi et al., 2005; Cook and Faeth, 2006). This is particularly true in the 12 

arid U.S. Southwest, where precipitation can be 18 cm or less per year (Sheppard et al., 2002). 13 

Nevertheless, irrigated landscaping provides both environmental benefits such as lower 14 

temperatures (Wang et al., 2016; Wang, 2018) and economic benefits such as higher home values 15 

(Kestens et al., 2004, Mei et al., 2018). Research is therefore needed to better understand both the 16 

relationships and tradeoffs between vegetation cover, land surface temperature, water use, and 17 

home values. 18 

Generally, green infrastructure contributes to a range of ecosystem services in cities (e.g., 19 

habitat provisioning, stormwater regulation, carbon sequestration), though the mix and extent of 20 

services depends on vegetative type and management, and homogenous turf landscapes likely 21 

provide nominal ecological benefits (Larson et al., 2016; Groffman et al., 2017). Green 22 

infrastructure can also provide socioeconomic and health benefits. For illustration, large public 23 
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green spaces can influence social capital by providing an environmental-friendly gathering place 24 

for residents to develop and maintain neighborhood social ties (Kweon et al., 1998; Kuo et al., 25 

1998; Maas et al., 2009). The presence of green vegetation can also significantly contribute to 26 

residents’ sense of social safety and adjustment (Kuo et al., 1998). In addition, neighborhood parks 27 

and views of natural landscapes have positive contributions to home values (Lo and Faber, 1997; 28 

Escobedo et al. 2015). From a public health perspective, urban green spaces can not only help 29 

maintain physical health, but also improves mental functioning, mental health and wellbeing 30 

(Sugiyama et al., 2008).  31 

Despite all the environmental, socioeconomic and health benefits of urban green 32 

infrastructure, vegetation requires a significant amount of water for irrigation, adding demand for 33 

scarce water resources, especially in hot, arid desert cities. Research has shown that Americans 34 

irrigate more acres of turf than its largest three crops—corn, wheat, and soy—combined (Milesi et 35 

al., 2005). In desert cities, Myint et al. (2013) studied the impacts of grass fraction and tree fraction 36 

on surface temperature for the City of Phoenix and found that trees had a stronger cooling effect 37 

than grass. Middel et al. (2015) reported that a targeted 25% tree cover in Phoenix residential 38 

neighborhoods would yield a reduction of up to 2 °C at the canopy layer (2 meters above the 39 

surface). Moreover, vegetation is correlated with higher property values both at the individual 40 

parcel and within the neighborhood (Bark et al., 2011; Escobedo et al., 2015), which provides an 41 

economic benefit for property owners, but creates a trade-off with housing affordability and 42 

homeownership attainment. Resolving these trade-offs will require better understanding of the 43 

interrelationships among vegetation structure, temperature, water use, and property value. 44 

Multiple studies have examined relationships among environmental and economic 45 

variables, but never in a single study and without the focus on residential neighborhoods. For 46 
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instance, several studies examined the relationship between the composition and configuration of 47 

urban land use land cover and land surface temperature (LST), finding that the relationship varies 48 

depending on land use and region (Connors et al., 2013; Rotem-Mindali et al., 2015, Schwarz and 49 

Manceur, 2015; Li et al., 2016; Wang et al., 2019). However, most studies analyzed the cooling 50 

effect of vegetation at global or regional scales regardless of various vegetation types, with a few 51 

exceptions that examined trees only (Myint et al., 2013, Middel et al., 2015). Similarly, studies 52 

have examined relationships between vegetative cover, LST, and outdoor water use (OWU) 53 

finding that small decreases in temperature are associated with large increases in water use 54 

(Guhathakurta and Gober, 2007; Kaplan et al., 2014; Wang, 2018). These studies do not 55 

disambiguate vegetative cover type but have shown that native shrubs are well adapted to the desert 56 

climate that can thrive without much rainfall or irrigation (Martin, 2001; Stabler and Martin, 2002). 57 

Additionally, vegetation with large canopy and structure, such as mature trees, can also provide 58 

shade to reduce temperature for better thermal comfort (Armson et al., 2012; Armson et al., 2013; 59 

Middel et al., 2015; Zhao et al., 2018a). Finally, another subset of studies examined relationships 60 

between urban vegetation and property sales value (PSV), generally finding a positive relationship, 61 

and suggest that trees may have the most positive effect (Kestens et al., 2004, Mei et al., 2018). 62 

Given variability in effect of different types of vegetative cover (i.e., trees, shrubs, grass) on urban 63 

cooling, water use, and property values, understanding the outcomes associated with different 64 

vegetative mixes in arid desert urban residential neighborhoods is essential for minimizing trade-65 

offs and maximizing co-benefits. 66 

To better understand the related dynamics between environmental and economic tradeoffs, 67 

this study examines single-family residential neighborhoods with homeowner associations 68 

(HOAs) in the Phoenix metropolitan area (PMA), Arizona, USA. HOAs are entities that dictate 69 
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minimum landscaping requirements and claim to maintain property values over time (McKenzie, 70 

1994; Wentz et al., 2016). The first objective is to examine the impacts of spatial composition of 71 

different vegetation cover types on LST, OWU and PSV in major residential communities in the 72 

PMA. The second objective is to optimize the spatial composition of residential green spaces in 73 

order to achieve a relatively lower LST and OWU and to maintain PSV at the same time. The third 74 

objective is to propose residential landscaping strategies for urban sustainability of desert cities in 75 

terms of water conservation and urban heat mitigation based on the optimization results. 76 

 77 

 78 

2. Materials and Methods 79 

2.1 Study Area 80 

The PMA is located in Maricopa County, Arizona, USA. The total population is about 4.67 million 81 

residents with nearly 1.66 million households, as estimated by the 2018 American Community 82 

Survey (ACS) (U.S. Census Bureau, 2019). As of 2019, the housing stock consists predominantly 83 

(~76.2%) of single-family homes with an increasing number of multi-family structures and 84 

mobile/manufactured homes (MAG, 2019). The 2018 mean household income of PMA was 85 

$87,435, which was lower than the national mean of $87,864 (U.S. Census Bureau, 2019). PMA 86 

residents, therefore, need to be conscious of the costs associated with cooling homes, caring for 87 

landscaping, and resale values. 88 

The PMA is part of the northeastern Sonoran Desert featuring a subtropical semi-arid hot 89 

desert climate (Köppen climate classification: BWh) (Figure 1). It is characterized by long, hot 90 

summers, but short, mild winters. The daily high exceeds 37.8 ºC for an average of 110 days every 91 

year, which normally occurs between early June and early September (Wang et al., 2016). The 92 
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highest temperature can reach over 43.3 ºC (110 ºF) for an annual average of 18 days (Wang et al., 93 

2016). The mean annual precipitation in the past 30 years is merely 204 mm (8.03 inch) with most 94 

rainfall taking place during the summer monsoon season (U.S. Climate Data, 2020). This means 95 

that residential vegetation is largely managed through a combination of automated irrigation 96 

systems (e.g., drip, sprinkler), flood irrigation (in older neighborhoods), and drought tolerant 97 

vegetation. 98 

To study the economic and environmental tradeoffs, we selected a sample of 302 local 99 

single-family residential communities that are managed by HOAs (Figure 1). Selecting only 100 

neighborhoods managed by HOAs provides continuity in the structure and governance of 101 

landscaping. The 302 communities were derived from a random sample of single-family 102 

residential subdivisions in Maricopa County using Maricopa County Assessor's Subdivision and 103 

Parcel Data. Detailed sample selection methods can be found in Minn et al. (2015), Ye et al. (2018) 104 

and Turner & Stiller (2020). 105 

 106 

2.2 Data 107 

Figure 2 shows the flowchart of research design. Four data sets were used to evaluate the trade-108 

offs among LST, OWU and PSV with regards to residential green space composition. The data 109 

sets include land cover classification, remotely sensed surface temperature imagery, model-110 

predicted actual evapotranspiration (ETa), and property sales records from 2010. The reason why 111 

2010 data sets were used is because all the data and products used were available from this year. 112 

Although it sounds out of date, the purpose of this study is to generalize empirical trade-off 113 

relationships and we assume these relationships would hold over time and space for small local 114 

residential communities.  115 
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 116 

2.2.1 Land surface temperature 117 

We calculated a summer daytime mean LST for each residential community using a combination 118 

of Landsat 5 Thematic Mapper and Advanced Spaceborne Thermal Emission and Reflection 119 

Radiometer (ASTER) data for June through September in 2010. The reason why both Landsat and 120 

ASTER images were used is because of the poor temporal resolution of single satellite data. The 121 

LST data set from Landsat 5 was obtained from Level-2 provisional surface temperature product 122 

that has a 30-m spatial resolution, which is resampled from thermal bands of 120-m spatial 123 

resolution, and has a relative accuracy of 0.19 K (Cook et al., 2014). We also acquired ASTER 124 

surface kinetic temperature product (AST08) that has 90-meter spatial resolution and a relative 125 

accuracy of 0.3 K (JPL Propulsion Laboratory, 2001). Both Landsat and ASTER LST products 126 

are calibrated, processed, and distributed by NASA and USGS. We calculated summertime mean 127 

LST value for each residential community using 23 cloud-free images, within which 7 were from 128 

ASTER and 16 were from Landsat 5. 129 

 130 

2.2.2 Outdoor water use 131 

The municipal water delivery system in the PMA does not have separate water meters for indoor 132 

and outdoor water use. We therefore estimated OWU using ETa as a proxy (Singh et al., 2014). 133 

ETa was modeled using a surface energy balance model named METRIC (Mapping 134 

Evapotranspiration at high spatial Resolution with Internalized Calibration) (Allen et al., 2007a). 135 

Surface energy balance model is an essential approach for heat flux and evaporation estimation in 136 

applied meteorology and hydrology. More specifically, the METRIC model computes the latent 137 

heat flux as the residue of the surface energy balance, which can be written as: 138 
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 139 

LE = Rn – G – H,                                                           (1) 140 

 141 

where Rn is the net incoming radiation, G is the ground heat flux, H is the sensible heat flux, and 142 

LE is the latent heat flux. METRIC has been successfully applied to Landsat and MODIS images 143 

to predict ETa at various spatial scales (e.g. Trezza, 2002; Hendrickx and Hong, 2005; Allen et al., 144 

2007b; Zheng et al., 2015). Research also demonstrated ETa prediction accuracy of 15%, 10% and 145 

5% for daily, monthly, and seasonal timescales (Plaza et al., 2009; Shao and Lunetta, 2012). Model 146 

predictions can effectively represent ETa for both urban and non-urban areas with or without 147 

irrigation (Allen et al., 2007b). More detailed model calculation and implementation procedures 148 

can be found in Allen et al. (2007a). 149 

Model predicted ETa maps were created using 22 time-series cloud-free Landsat 5 images 150 

and meteorological data collected from the weather stations in the Arizona Meteorological 151 

Network (AZMET, 2020) that covered the entire year of 2010. Gaps between each two adjacent 152 

image acquisition dates were filled using a polynomial curve-fitting method at every single image 153 

pixel location, which finally resulted in 365 daily ETa maps of 30-meter resolution. A summertime 154 

total ETa map was created by aggregating all the daily images in June, July, August, and 155 

September. We calculated a mean ETa value for each selected residential community. Model 156 

predicted ETa values were validated using actual water usage data acquired from 49 community 157 

parks in the PMA as described in Kaplan et al. (2014). Detailed validation procedure and results 158 

can be found in Wang (2018). 159 

 160 

2.2.3 Property sales value 161 



8 

 

 

We obtained property sales records between 2009 to 2011 at parcel level from the Maricopa 162 

County Assessor’s Office (2020). Multiple years’ records were used because the number of sales 163 

records from one single year was relatively small and some communities show no record in 2010. 164 

In addition, using three-year data can reduce the large variation caused by the economic recession 165 

in 2008-2009. We calculated a mean PSV (U.S. Dollars in thousands, $k) using all the sales records 166 

within each selected residential community. 167 

 168 

2.2.4 Land cover classification 169 

Land cover classification for the PMA was performed by the Central Arizona – Phoenix Long-170 

Term Ecological Research (CAP-LTER) at Arizona State University using 2010 National 171 

Agriculture Imagery Program (NAIP) imagery and an object-based image classification technique. 172 

Detailed classification procedure and metadata can be found at the CAP-LTER website (CAP-173 

LTER, 2015) and in Li et al. (2014). This land cover map has 1-meter spatial resolution and 12 174 

land cover classes with an overall accuracy of nearly 92%. We selected four green space classes 175 

that include grass, shrubs, trees, and open soils, and then calculated percent area of each class 176 

within each selected residential community. 177 

 178 

2.3 Analysis 179 

We first performed a linear regression analysis to explore the empirical relationships between 180 

landscaping factors and LST, OWU, and PSV. An optimization analysis was subsequently used to 181 

examine the tradeoffs between these variables.  182 

 183 

2.3.1 Regression analysis 184 
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We used simple linear regression to examine the interrelationship among three dependent 185 

variables: LST, OWU and PSV. We then used multivariate linear regression analysis to quantify 186 

the empirical relationship between three dependent variables and percent land cover (grass%, 187 

shrub%, tree% and soil%) as independent variables. The regression equation is formulated as: 188 

 189 

𝑦𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑥𝑖 + 𝜀𝑗                                                      (2)                                                                          190 

 191 

where: 192 

i = index of four independent variables (grass%, shrub%, trees% and soil%); 193 

j = index of three dependent variables (LST, OWU and PSV); 194 

xi = area percentage of land cover type i; 195 

β0j = intercept term of the regression model for dependent variable j; 196 

βij = coefficient estimate for land cover type i in relation to dependent variable j; 197 

ɛj = error term of the regression model for dependent variable j. 198 

 199 

2.3.2 Optimization 200 

We formulated the optimization question as an integer programming problem with an objective 201 

function to minimize the summation of model predicted LST and OWU. Consider the following 202 

notations: 203 

 204 

I = set of all land cover types (grass, shrub, tree and soil); 205 

J = set of established empirical relationships for LST, OWU and PSV; 206 

Φ = set of vegetation land cover types (grass, shrub and tree); 207 
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Ψ = set of established empirical relationships for LST and OWU; 208 

𝑚𝑥𝑖
= observed minimum of xi; 209 

𝑢𝑥𝑖
= observed mean of xi; 210 

𝜎𝑥𝑖
= observed standard deviation of xi; 211 

𝑚∑ 𝑥𝑖𝑖∈Φ
= observed minimum of percent all vegetation cover; 212 

𝑢∑ 𝑥𝑖𝑖∈Φ
= observed mean of percent all vegetation cover; 213 

𝜎∑ 𝑥𝑖𝑖∈Φ
= observed standard deviation of percent all vegetation cover; 214 

𝑚∑ 𝑥𝑖𝑖∈𝐼
= observed minimum of percent all land cover; 215 

𝑢∑ 𝑥𝑖𝑖∈𝐼
= observed mean of percent all land cover; 216 

𝜎∑ 𝑥𝑖𝑖∈𝐼
= observed standard deviation of percent all land cover; 217 

𝜇𝑦𝑗
= observed mean of yj; 218 

𝑚𝑦𝑗
= observed minimum of yj; 219 

 220 

The objective function is formulated as: 221 

 222 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑦𝑗𝑗∈Ψ ,                                                         (3) 223 

 224 

which is subject to: 225 

 226 

𝑦𝑗 ≤ 𝜇𝑦𝑗
 ∀ 𝑗 ∈ Ψ,                                                           (4) 227 

 228 

𝑦𝑗 ≥ 𝑚𝑦𝑗
 ∀ 𝑗 ∈ 𝐽,                                                           (5) 229 
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 230 

𝑥𝑖 ≤  𝑢𝑥𝑖
+ 2𝜎𝑥𝑖

 ∀ 𝑖 ∈ 𝐼,                                                     (6) 231 

 232 

𝑥𝑖 ≥  𝑚𝑥𝑖
 ∀ 𝑖 ∈ 𝐼,                                                           (7) 233 

 234 

∑ 𝑥𝑖 ≤𝑖∈Φ 𝑢∑ 𝑥𝑖𝑖∈Φ
+ 2𝜎∑ 𝑥𝑖𝑖∈Φ

,                                                 (8) 235 

 236 

∑ 𝑥𝑖 ≥𝑖∈Φ 𝑚∑ 𝑥𝑖𝑖∈Φ
,                                                          (9) 237 

 238 

∑ 𝑥𝑖 ≤𝑖∈I 𝑢∑ 𝑥𝑖𝑖∈𝐼
+ 2𝜎∑ 𝑥𝑖𝑖∈𝐼

,                                                  (10) 239 

 240 

∑ 𝑥𝑖 ≥𝑖∈I 𝑚∑ 𝑥𝑖𝑖∈𝐼
,                                                        (11) 241 

 242 

𝑥𝑖  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ 𝑖 ∈ 𝐼.                                                      (12) 243 

 244 

The objective function (3) is to minimize the summation of empirical estimations of LST and 245 

OWU that are derived from regression equation (2). Constraint (4) is defined to force model 246 

predicted LST and OWU to be less than the observed mean, and constraint (5) is to restrict 247 

predicted LST, OWU and PSV to be greater than the observed minimum. Constraints (6) and (7) 248 

restrict the percent area of each land cover to be between the observation minimum and +2 standard 249 

deviations from the observed mean. Similar to (6) and (7), constraints (8)-(9) and (10)-(11) restrict 250 

the area percentage of vegetation cover and all land cover between the observation minimum and 251 
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+2 standard deviations of the observed mean, respectively. Integer restrictions on area percentage 252 

of land cover types are stipulated in Constraint (12). 253 

The optimization procedure was implemented using Gurobi 9.0 Python API (Gurobi 254 

Optimization, 2020) in the Jupyter Notebook environment. We selected top 100 sub-optimal 255 

solutions to the objective function (3) that generated the smallest possible summation of LST and 256 

OWU, and then searched for the highest predicted PSV values within these 100 solutions. The top 257 

5 best scenarios were finally selected as the optimal solutions. 258 

 259 

 260 

3. Results 261 

3.1 Summary statistics 262 

The summary statistics of land cover types, LST, OWU, and PSV are shown in Table 1. The total 263 

OWU that was estimated using ETa ranges from 105 mm to nearly 800 mm with a mean value of 264 

453 mm for the summer months of 2010. LST ranges from 41.5 °C to 55.6 °C with a mean LST 265 

of 50.3 °C. PSV ranges from $6.1k to $4,700k with a mean PSV of $340.6k and a large standard 266 

deviation of $431.3k. For all the 302 residential neighborhoods, open soil has a mean percent area 267 

of 38.8%, which is the largest among four land cover types. This could include desert style or 268 

unfinished landscaping. This is followed by trees (µT% = 12.1%), grass (µG% = 8.1%), and finally 269 

shrubs (µS% 3.2%). This land cover profile in residential communities in the PMA is generally 270 

consistent with ‘xeriscaped’ and other low vegetative cover yard structure types prevalent in the 271 

region. This is fairly typical too of properties in HOA neighborhoods, where vegetation 272 

composition can be regulated. Even in residential communities with relatively higher vegetative 273 

land cover, the mean percent vegetated area is only 21.1% with a maximum cover of 52.7%. 274 
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  275 

3.2 Regression results 276 

Figure 3 shows the relationship among three dependent variables (LST, OWU and PSV) using 277 

simple linear regression. A statistically significant negative relationship was found between LST 278 

and OWU and between LST and PSV, while a statistically significant positive relationship existed 279 

between PSV and OWU. This implies that higher surface temperatures are generally found in 280 

residential communities of lower water use and lower home values. On the other hand, higher 281 

water use is often associated with lower surface temperatures and higher home values. We believe 282 

the underlying cause of these relationships is the variation of vegetation coverage. 283 

Multiple regression results of LST, OWU, and PSV with percent vegetation cover are 284 

presented in Table 2. Model A shows that percent vegetation cover variables can be used to explain 285 

nearly 60% (adjusted R2 = 0.598) of the total variation in LST, and the model is statistically 286 

significant at the 0.01 level. Except percent soils, all the other coefficient estimates are statistically 287 

significant and have negative contributions to LST, which means increasing percent vegetation 288 

cover can effectively lower LST in a residential community. According to the value of 289 

standardized coefficients, the cooling efficiency is ranked as: Trees > Grass > Shrubs. 290 

Theoretically speaking, a 10% increase in percent area of grass, shrubs and trees can result in an 291 

average decrease in LST of 1.4 °C, 1.2 °C and 2.4 °C, respectively. In other words, replacing grass, 292 

shrubs and open soils with trees can potentially minimize the heating effect in local residential 293 

communities in the PMA. 294 

Model B in Table 2 shows regression results of OWU as the dependent variable. This model 295 

is also statistically significant (p-value < 0.01) and meaning that vegetation cover can explain 296 

nearly 50% of the total variation in OWU (adjusted R2 = 0.495). Percent grass and trees have 297 



14 

 

 

significant, positive relationships with OWU, and the coefficient estimate of percent grass is much 298 

larger than trees, which means increasing percent grass area can result in more OWU than 299 

increasing the same percent area of trees. Percent soils have a negative relationship with OWU, 300 

which means increasing the percentage of open soils can potentially reduce OWU. Percent shrub 301 

is insignificant in this model. 302 

Model C in Table 2 shows the regression results of PSV. Although this model has a 303 

relatively lower goodness-of-fit (adjusted R2 = 0.228), it is statistically significant at the 0.01 level. 304 

We anticipate a lower R2 because studies using hedonic models of home price are complex and 305 

show that individual factors such as house size and lot size as well as regional factors such as 306 

parks, transportation, and schools influence home prices (Glaesener and Caruso, 2015; Seo et al., 307 

2019). For our model, the coefficient estimates are positive and statistically significant at the 0.05 308 

level (p-value < 0.05). The relative contribution of vegetation land cover types to PSV is ranked 309 

as: Grass > Shrubs > Trees > Soils. This result implies that increasing vegetation cover, especially 310 

grass and shrubs, can effectively maintain a relatively higher PSV. 311 

In summary, increasing percent tree cover alone can efficiently lower LST and OWU, but 312 

its contribution to PSV is relatively low. On the other hand, increasing percent grass cover alone 313 

can lower LST and help maintain a relatively higher PSV, but it would also largely increase OWU, 314 

which is not an ideal practice for water conservation. Although shrub has a moderate contribution 315 

to PSV, its cooling efficiency is the lowest and it does not significantly lower OWU. It becomes 316 

evident that different spatial composition of vegetation cover has varying effects on urban 317 

residential microclimate. Understanding these effects can help address the trade-off issue among 318 

LST, OWU and PSV. 319 

 320 
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3.3 Optimization results 321 

We first solved the integer programming problem and obtained the top 100 sub-optimal solutions 322 

for the lowest possible summation of LST and OWU values and their corresponding land cover 323 

compositions, and then searched for the highest predicted PSV values within these solutions. These 324 

records are therefore considered as our final optimization solutions.  325 

We present top 5 optimization scenarios in Table 3. These five scenarios suggest that 326 

shrubs should be given the largest weight within all the vegetation types to maximize its 327 

environmental and economic benefits. On the other hand, minimizing the use of grass but 328 

maximizing open soil coverage can also contribute to lower LST and OWU. PSV can be higher if 329 

a larger percent grass cover is given, but OWU would also be higher as well. As suggested, a 330 

residential landscape that is composed of 1-2% grass, 11-13% shrubs, 7-9% trees, and 62-64% 331 

soils can result in the lowest possible LST and OWU and help maintain a relatively higher PSV at 332 

the same time. Within these scenarios, predicted LST varies from 49.8 ºC to 50.2 ºC, which is less 333 

than the observed mean LST (Table 1, µLST = 50.26 ºC). Predicted OWU ranges from 327.5 mm 334 

to 334.4 mm, which is around the mean minus one standard deviation (µ - σ = 329.7 mm) of 335 

observed OWU. Predicted PSV in these scenarios varies from $728.6k to $761.6k, which is higher 336 

than observed mean (µPSV = $340.6k) but lower than the mean plus one standard deviation (µ + σ 337 

= $771.9k). 338 

 339 

 340 

4. Discussion 341 

4.1 Effect of vegetation cover on LST, OWU and PSV 342 
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Our analysis shows that trees provide the greatest cooling efficiency, followed by the combination 343 

of grass and shrubs. This implies that planting more trees or replacing other land cover with trees 344 

in a desert residential neighborhood has the potential lower LST to its maximum. This result is 345 

consistent with prior studies of the effect of the urban heat island effect in Phoenix and other areas 346 

that show this relationship between vegetation and land surface temperature (see Myint et al., 2013 347 

and Middell et al., 2015). Additionally, trees provide shade and thermal comfort co-benefits (Zhao 348 

et al., 2017; Zhao et al., 2018b). These studies support efforts by the City of Phoenix, which 349 

initiated a Tree and Shade Master Plan in 2010 to ameliorate extreme heat during the summer 350 

months by increasing tree canopy from 10% in 2010 to 25% by 2030 (City of Phoenix, 2010). Our 351 

study is the first to consider shrubs, which is the most populated native vegetation in a desert 352 

environment (Martin, 2001). Shrubs had the lowest cooling efficiency among all the vegetative 353 

types, meaning that shrubs are the least efficient way to achieve cooling as measured by LST in 354 

our study. They also do not provide the shade co-benefit of trees.  355 

 The rankings for water use efficiency are different than for cooling. Our result suggests 356 

that grass is the least water efficient vegetation type, while shrub has no significant contribution 357 

to OWU (Table 2). This finding is consistent with other studies that find that grass requires a large 358 

water inputs to survive in a hot, semi-arid desert climate (Vickers 2006) and that native shrubs are 359 

well adapted to desert climates (Odening et al., 1974; Bamberg et al., 1975; Martin et al., 2001; 360 

Stabler and Martin, 2002). Trees are species specific: most desert-adapted trees do not rely on 361 

irrigation, while fruit trees and deciduous trees that are also widely populated in local residential 362 

communities in the PMA heavily depend on irrigation to survive in a desert environment. Our 363 

result suggests that overall trees have higher water use efficiency than grass (Table 2), which can 364 

be considered as a landscaping alternative to lawn and turf.  365 
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 Our results are consistent with other studies showing that vegetation increases property 366 

values in residential neighborhoods (Kestens et al., 2004, Bark et al., 2011, Escobedo et al., 2015) 367 

Generally, percent vegetative cover in desert neighborhoods also had a significant positive 368 

relationship with PSV with grass cover having the greatest contribution, followed by shrubs and 369 

trees (Table 2). However, the goodness-of-fit of the regression model is relatively low (adj. R2 = 370 

0.228) because we did not include other factors shown to influence home values such as property 371 

size, home size, school districts, etc. While adding such variables can potentially increase R2 value, 372 

it’s not relevant for this study. Rather, our goal was to examine the combined effect of different 373 

types of vegetation cover on PSV. Our study, however, shows trees have much lower contribution 374 

to PSV than grass and shrubs. This result likely deviates from previous studies conducted in 375 

Québec City and Florida because PMA has a much lower percent tree cover (only 12%) and annual 376 

precipitation than temperate and humid regions (Escobedo et al., 2015; Kestens et al., 2004). We 377 

therefore suggest that it is necessary to take climate background and dominant native vegetation 378 

into consideration when examining the effect of vegetation cover on PSV because experiences and 379 

findings from some cities may not apply to the others. Moreover, trees had the least effect on 380 

property value among three vegetation types, which could be considered a benefit in some regions 381 

given that low income communities currently have the greatest need for shade trades, but are also 382 

vulnerable to displacement if housing costs increased (Landry and Chakraborty, 2009). Overall, 383 

regional social and ecological context are important in assessing the relative benefits of trees versus 384 

grass and shrubs. 385 

 386 

4.2 Implications of optimization result and policy recommendation 387 
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Five optimization scenarios in Table 3 suggest that minimizing the use of grass in residential 388 

landscaping in a desert city can contribute to a lower LST and OWU, while PSV maintains 389 

relatively high. In face of severe drought in the Southwestern U.S., California Department of Water 390 

Resources initiated the Institutional Turf Replacement Program (ITRP) to replace more than 391 

165,000 square feet of turf with California native and water-efficient landscaping to provide long-392 

term water savings, and each eligible household can receive a rebate of approximately $2 per 393 

square foot of removed and replaced turf (CDWR, 2009). Tull et al. (2016) used 545 unique single-394 

family residential turf rebates and found that the mean water savings were estimated at about 1 m3 395 

per square meter of turf removal per year for each household. Another study by Matlock et al. 396 

(2019) studied 227 participating customers in southern California and found the average reduced 397 

water usage was approximately 392 m3 per year after turf removal. Both studies confirmed the 398 

effectiveness of ITRP in California, and our study further provides the theoretical basis of a similar 399 

program that can be potentially implemented in the PMA. Completely removing large grass cover 400 

or replacing grass with desert-adapted shrubs or trees can become a sustainable development 401 

practice for residential communities in desert cities to mitigate heat and conserve water. 402 

 Another recommendation is to widely adopt xeric landscape style that mostly include 403 

individually watered and low water-use exotic and native plants as a sustainable landscaping 404 

strategy as suggested by the XeriscapeTM movement that began in Denver, Colorado in 1981 405 

(Martin, 2001). Xeriscape is a water-efficient landscaping method that has become increasingly 406 

popular in the arid southwestern U.S. (Sovocool and Morgan, 2006). Research has shown that in 407 

southern Nevada, Xeriscape can save an average of 55.8 gal/sq. ft (or 2.27 m3/m2) per year 408 

resulting from replacing turf grass with xeric landscape (Sovocool and Morgan, 2006). Households 409 

realized a 30% annual water use reduction after converting to xeric landscape that equals 410 
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approximately 363 m3 annually (Sovocool and Morgan, 2006). Xeriscape can also save labor and 411 

money for maintenance because of water-efficient and desert-adapted plants and efficient 412 

irrigation. On the other hand, Martin (2008) compared four landscape design archetypes and 413 

proposed an oasis landscape design that consists of a mixture of small areas of well-irrigated turf 414 

grass interspersed with drip-irrigated landscape trees and shrubs and decomposed granite mulch 415 

has an overall better performance in water conservation than the traditional xeric style landscape 416 

in Phoenix, Arizona. 417 

 418 

4.3 Limitations and future research 419 

This study only used summer daytime remotely sensed data for the analysis because the PMA 420 

experiences extreme heat in the summer months that has brought various concerns to its residents 421 

and sustainability. To better quantify the effect of percent vegetation cover on LST and OWU, one 422 

should also consider nighttime and other seasons. Due to the limitation of data, our study only used 423 

three inclusive vegetation types of grass, shrubs, and trees, which cannot reflect the real 424 

landscaping situation. Different vegetation species have various drought resistant capabilities. It 425 

would be ideal if major local vegetation species were identified and used in the analyses instead 426 

of using these three inclusive vegetation types. In addition, we did not have more detailed data at 427 

parcel or household level, and the analysis was performed using the entire residential community 428 

as a study unit. Urban sustainability is broadly influenced by policy makers and urban planners at 429 

larger spatial scales, but household behaviors also have a significant influence on landscape 430 

sustainability at smaller spatial scales (Cook et al., 2011). 431 

 Further research can be focused on two topics. First is to study the effect of different types 432 

of desert residential landscaping, such as mesic, xeric, and oasis, on LST, OWU and PSV at parcel 433 
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level. This analysis requires extensive field surveys and very high spatial resolution remotely 434 

sensed data. The second direction can be the research on the combined effect of vegetation cover 435 

on LST, OWU and PSV for cities in other climate regions because the regional climate background 436 

also has a significant influence on the relationship. 437 

 438 

 439 

5. Conclusions 440 

Green infrastructure is a well-known and efficient urban heat mitigation strategy that can 441 

effectively lower ambient and surface temperatures, provide thermal comfort, and have various 442 

socio-economic and health benefits. Despite its ecosystem service values and benefits, increasing 443 

vegetated area in a desert city can also lead to a significant increase of outdoor water use, which 444 

is not ideal for long-term urban sustainable development. Moreover, landscaping is linked to 445 

property values, a central socio-economic concern in residential neighborhoods. It therefore 446 

becomes crucial for residents to balance the tradeoffs between green infrastructure in order to 447 

maximize the heat mitigation effect, to minimize water usage, while also considering property 448 

value at the lowest cost of water use. 449 

This study has made four significant contributions to the sustainability of desert cities. 450 

First, we find that even though trees can efficiently reduce LST, its contribution to PSV is the 451 

lowest in a semi-arid desert environment. One implication of this finding is that trees might be a 452 

water effective means to mitigate urban heat and address income-based shade disparities in the 453 

city, while minimizing property value increases that could drive unintended consequences like 454 

gentrification. Second, minimizing the use of grass in a semi-arid desert city is crucial because it 455 

is the least water use efficient vegetation type, although it contributes to a higher PSV. Third, 456 
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desert-adapted shrubs and trees can be widely promoted because they not only have higher water 457 

use efficiency, can significantly lower LST, but also have a relatively higher contribution to PSV. 458 

Paired, these findings suggest a slight trade-off between the most environmentally efficient 459 

landscape type (e.g., xeriscaping) and property value maximization (e.g., grass) in some existing 460 

residential neighborhoods. Nevertheless, there are multiple yard landscaping market types in 461 

Phoenix. Therefore, more work is needed to understand the extent to which the observed positive 462 

relationship between grass and property value is moderated by homeowner preferences across 463 

different style neighborhoods. Fourth, our results and findings provide strong evidence and a 464 

theoretical basis for the environmental benefits of turf removal programs and xeric or oasis style 465 

landscaping design, which can be used as a guideline by desert cities for a better design of 466 

residential landscaping for urban sustainable development in the future. 467 

 468 
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 668 
 669 

Figure 1. Map of study area and locations of selected residential communities. 670 

  671 
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 672 

Figure 2. Flowchart of research design. 673 
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 675 

Figure 3. Simple linear regression analysis among three dependent variables: (a) LST vs. OWU, 676 

(b) LST vs. PSV, and (c) OWU vs. PSV. 677 

  678 
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Table 1. Summary statistics of all the independent and dependent variables. These values were 679 

calculated based on all the selected single-family residential communities (n=302). 680 

 681 

Variable 
Independent Variables Dependent Variables 

Grass% Shrub% Tree% Soil% LSTa (°C) OWUb (mm) PSVc ($k) 

Min. 0.0 0.0 0.0 7.3 41.5 104.9 32.0 

Max. 34.6 17.8 42.7 97.0 55.6 800.0 4,700.0 

Mean (µ) 8.0 3.2 12.1 38.8 50.3 452.8 341.4 

Std. Dev. (σ) 4.8 4.5 8.1 12.8 2.5 123.0 429.2 

µ + σ 12.8 7.7 20.2 51.6 52.8 575.8 770.6 

µ + 2σ 17.6 12.1 28.3 64.4 55.3 698.8 1,199.8 

µ - σ 3.15 - 4.06 26.02 47.7 329.7 - 

µ - 2σ - - - - 45.2 206.7 - 

 682 

a Land surface temperature 683 

b Outdoor water use 684 

c Property sales value 685 

 686 

 687 

 688 

  689 
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Table 2. Multiple regression results of LST, OWU and PSV with percent vegetation cover 690 

 691 
Model 

(Dependent 

variable) 

A (LST1) B (OWU2) C (PSV3) 

R2 0.616 0.517 0.264 

Adj. R2 0.598 0.495 0.228 

p < 0.01 < 0.01 < 0.01 

RMSEa 1.626 77.113 429.540 

       

Independent 

variable 
Βb SEc p βd Β SE p β Β SE p β 

Grass% -0.135* 0.042 0.002 -0.242 10.172* 1.997 0.000 0.432 52.638* 13.595 0.000 0.442 

Shrub% -0.118* 0.046 0.012 -0.206 -1.588 2.175 0.467 -0.065 27.657* 12.881 0.035 0.247 

Tree% -0.243* 0.029 0.000 -0.689 3.680* 1.390 0.010 0.247 19.698* 7.926 0.015 0.300 

Soil% -0.009 0.020 0.646 -0.042 -2.114* 0.942 0.027 -0.229 12.297* 5.491 0.028 0.293 

Cons. 54.183* 1.121 0.000 - 410.5* 53.139 0.000 - -615.858 317.402 0.056 - 

 692 
1 Land surface temperature  693 

2 Outdoor water use 694 

3 Property sales value 695 

a Root mean square error 696 

b Unstandardized coefficients 697 

c Standard error 698 

d Standardized coefficients 699 

* Statistically significant at the 0.05 level 700 

  701 
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Table 3. Optimization results with top 5 scenarios 702 

 703 

Scenario Grass Shrub Tree Soil 
Predicted 

LSTa (ºC) 

Predicted 

OWUb (mm) 

Predicted 

PSVc ($k) 

a 2% 13% 7% 63% 50.1 331.3 761.6 

b 2% 13% 7% 62% 50.1 333.2 749.3 

c 2% 11% 8% 64% 50.2 334.4 738.2 

d 1% 13% 9% 62% 49.8 334.2 736.0 

e 1% 13% 8% 63% 50.0 327.5 728.6 
a Land surface temperature 704 

b Outdoor water use 705 

c Property sales value 706 

 707 
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