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Drone-based applications are already seeing tremendous adoption across a variety of

industries, including photography and inspection services, while next-generation applica-

tions such as last-mile delivery, wireless services, and even transportation are beginning to

emerge. To this end, e↵orts have worked to manage and coordinate multiple drones, and

drones have already been used in wireless research to measure the unique wireless character-

istics in various environments associated with drone-based communications. In particular,

the propagation of the wireless signal from the perspective of the drone is of increased interest

due to the unique mobility and freedom in all three-dimensions that drones o↵er in contrast

to traditional ground-based wireless communications. In parallel, wireless testbeds have

been created that seek to isolate and evaluate emerging concepts such as highly-directional

and distributed wireless communications, often associated with the fifth-generation (5G) of

wireless communications technologies. These advances rely on coordination among an in-

creasing number of wireless nodes with substantially more antennas to provide a greater

degree of wireless channels and improved signal quality for increased data throughput. How-

ever, the intersection of these families of works does not directly focus on characterizing

the impact that a drone has on wireless communications. The unique drone-based aspects

that have been separately identified include: (i.) the drone’s structure and size, (ii.) the

type of antenna, as well as its placement and orientation on the drone, and (iii.) the dis-
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tributed and dynamic coordination among multiple drones, better known as drone swarms.

To better understand and study the culmination of these aspects in the three-dimensional

space that drones operate requires a controlled, repeatable in-flight environment with a

surrounding wireless testbed infrastructure. In this work, we design a drone-flight-enabled

isolation chamber to capture complex spatial wireless channel relationships that drone links

experience as applications scale from single-drone to swarm-level networks within a shared

three-dimensional space. Driven by the challenges of outdoor experimentation, we identify

the need for a highly-controlled indoor environment where external factors can be mitigated.

To do so, we first build an open-source drone platform to provide programmable control with

visibility into the internal flight control system and sensors enabling specialized coordina-

tion and accurate repeatable positioning within the isolated environment. We then design

a wireless data acquisition system and integrate distributed software-defined radios (SDRs)

to inspect multi-dimensional wireless behavior from the surrounding area. We achieve and

demonstrate the value of measurement perspectives from diverse altitudes and spatial loca-

tions with the same notion of time. Finally, we demonstrate how multi-dimensional models

from experimental measurements can be implemented to simulate multi-drone networks on

a practical scale.
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Chapter 1

Introduction

1.1. Motivation

The unique perspective that drones provide makes them an attractive tool for numerous

commercial applications. With over 436k commercial drones registered with the Federal

Aviation Administration (FAA) as of February 2020 [1] and with the current projection

for the number of commercial registrations to be 2 to 3 years early [2], many industries

are quickly adopting drones for their operations. As drones move from single-platform, on-

demand use cases to those with cooperative networks of nodes, it is important to understand

the spatially-distributed challenges these wireless links face. Furthermore, due to the dy-

namic nature of drone nodes joining and leaving a localized wireless network (ad hoc) and

the intricacy of next-generation, multi-antenna wireless protocols, it is imperative to fully

characterize these complex wireless channels across spatial distributions in the horizontal

and vertical dimensions.

There are several works utilizing drones for a variety of purposes, such as measuring

cellular coverage and interference [3–5], servicing Internet of Things (IoT) devices [6], and

testbeds for developing enhanced vehicular control algorithms [7–9]. Some works characterize

the multi-dimensional propagation environment from a drone’s perspective as well as the

impact of antenna orientation in outdoor environments [10, 11]. There also exist wireless

testbeds investigating next-generation wireless technologies and distributed networks for

a variety of applications [12–16] as well as unique methods for distributed clocking [17].

However, these works do not provide the necessary infrastructure to fully join these e↵orts
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and characterize the complex multi-dimensional aspects that drone-based communications

present.

1.2. Background

Our background in outdoor experimental measurement studies provided us with a per-

spective on how to approach the design of the drone-flight-enabled wireless isolation chamber.

In our studies, we have explored the complex behaviors of wireless signals traveling through

space in various environments from the perspective of users [18], mobile vehicles [19], and

various drone-based scenarios [20–23]. In our studies concerning drones, we have examined

how drone communications are a↵ected by the transmission and reception of wireless signals

to nodes on the ground, as well as to another drone in the air.

When assessing how wireless signals are a↵ected by communicating on a drone, we iden-

tified several concepts that have shaped our measurements and understanding. One of the

major e↵ects that any wireless communication faces are how the signal is modified or at-

tenuated, as it travels through space, a concept commonly known as path loss. A standard

antenna is typically estimated as a point source that radiates equal power in all directions

or omnidirectionally. When this power radiates in all directions through the air with no

physical obstructions in its path, it is considered free-space path loss. However, even air

causes this power density to quickly degrade exponentially following an inverse-square law.

When a drone is communicating at a high enough altitude with another drone, we consider

this a perfect line-of-sight, free space environment and this tends to be the best-case scenario

for the attenuation of wireless signals.

However, once a drone begins communicating to a node on or near the ground several

other factors are introduced and it can no longer be considered free-space propagation. The

ground itself and any other obstacles around the ground can cause the wireless signal to

2



be reflected, absorbed, di↵racted, scattered, and refracted by various objects and materials.

These various electromagnetic wave behaviors can drastically alter the wireless path that a

signal travels. As these paths are comprised of various distances and experience di↵erent

levels of attenuation, this creates multiple communication paths in both space and time from

the perspective of a drone. Figure 1.1 illustrates how two drones communicating near the

ground could potentially experience various paths of propagation due to the surrounding

environment.

Figure 1.1: Multipath wireless propagation, including the line-of-sight component.

Even as these wireless signals travel near the speed of light, the combination of this

multipath e↵ect with the many unpredictable factors in the physical environment, such as a

metal car driving by or a tree with all its leaves moving in the wind, can a↵ect the quality of

the signal. It is this unpredictable and uncountable number of factors that have some small

e↵ect on the wireless signal that adds up at the receiver and can cause the channel quality

to vary. While in most instances we are concerned with the average quality of a wireless

channel over time, if these e↵ects are experienced extremely rapidly or over a long enough

period, they can cause the wireless communication to fade to a point that it is no longer

able to be understood by the intended receiver.
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Within our drone studies, we focused on providing a detailed analysis of the three-

dimensional aspects that are inherent to mobile drone platforms and their e↵ect on wireless

signal propagation in space. In particular, multi-rotor drones, or quadcopters, provide unique

flight dynamics not typically seen with fixed-wing aircraft, such as jets or planes. Not only

do multi-rotor drones have the ability to hover in place, but they can quickly change to

any direction of travel in three-dimensional space. For our purposes, a three-dimensional

Cartesian coordinate plane (X, Y, Z) is considered for describing a drone’s position, while

the orientation at that position is given by a form of Euler angles (roll, pitch, yaw) often

associated with aircraft. Figure 1.2 illustrates the position and orientation planes on a drone

body. Since a drone frame is a rigid body with fixed rotors, a drone modifies its position and

orientation in space by applying various amounts of thrust to a corresponding combination of

its rotors. Due to the weight/gravity experienced by a drone body with fixed rotors, a drone

that is hovering in place can only modify its yaw orientation without a↵ecting its position.

If the pitch or roll is adjusted during a hover, this would result in movement in the X or Y

plane. This unique ability of multi-rotor movements in all three-dimensions as well as the

freedom to orientate in all 360 degrees of yaw provides drones with a unique perspective for

wireless communication applications.

Furthermore, the majority of practical antennas don’t produce a perfect sphere or isotropic,

pattern of radiation for various reasons. First is a physical limitation. Since antennas are

inherently passive elements, the connection, or termination with a wire to a radiation source

unavoidably a↵ects the radiation pattern. The second is for practical reasons. Most ground-

based applications require coverage on the sides of the antenna, and not directly above or

below. Since the amount of radiated power is so important for the quality of wireless commu-

nications, most antenna manufactures build the antennas in such a way that this power, that

would otherwise be underutilized directly above or below the antenna, is directed towards

the sides of the antenna.
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Figure 1.2: Three-dimensional illustration of the Cartesian coordinate plane along with
their corresponding Euler angles. (DJI Matrice 100 [24])

For this reason, we chose to exploit this directional e�ciency within our studies by using a

common omnidirectional dipole antenna. This type of antenna produces a radiation pattern

similar to the shape of a torus, or donut, perpendicularly to the plane that the antenna is

vertically orientated in, as illustrated in Fig. 1.3. The greatest power density is experienced

in the horizontal plane (X & Y) and the least power density is experienced directly above and

below the antenna, or in the elevation plane (Z). Since power is such a precious resource on a

mobile drone platform, we took this directional concept a step further by testing antennas in

di↵erent positions and orientations to further explore how to create the best circumstances

for providing an optimal wireless communication channel. By mounting antennas in various

positions and orientations we can exploit the radiation pattern that is associated with this

antenna by dynamically positioning or orientating the drone’s frame.

As it became clear that the placement and orientation of the drone and antenna played

a critical role in the communication channel, we sought to better characterize and isolate

these complex three-dimensional e↵ects. However, due to the dynamic outdoor environment
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Figure 1.3: Three-dimensional torus like radiation pattern of a vertically orientated
omni-directional dipole antenna.

in which we experimented, it became challenging to separate the influences of the environ-

ment from the drone induced e↵ects and do so in an ongoing fashion. We focused on the

physical antenna structure and how the antenna orientation/polarization (vertically or hor-

izontally) could a↵ect three-dimensional converge. Figure 1.4 provides a two-dimensional

illustration of how the antenna pattern is a↵ected in the elevation and azimuth plane de-

pending on the physical orientation of the antenna. Notice that the elevation plane is rotated

90 degrees when the antenna is horizontally orientated, providing a greater radiated power

density or gain in the positions above and below. To better understand the inherent char-

acteristics of the radiation pattern in all three dimensions both on and o↵ the drone, we

performed experiments in an electromagnetically isolated environment known as a radio

frequency anechoic chamber. This electromagnetic anechoic chamber is similar to that of

an acoustic anechoic chamber, but instead of absorbing all sound, this chamber absorbs all

electromagnetic radiation in the radio frequency range and mitigates the unintended wave

propagation properties on the surrounding surfaces. This allows us to rotate the antenna

360 degrees in both the horizontal and vertical planes to measure the exact power received.

These experiments provided insight into how the antenna pattern was a↵ected while mounted

on the drone, but the physical limitations of the size of the chamber didn’t allow for in-flight

testing or experimentation with more than one drone at once.
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Figure 1.4: Two-dimensional representation of a vertically and horizontally orientated
omni-directional dipole antenna, red line indicates (top) elevation plane cross section &

(bottom) azimuth plane cross section.

As we developed a better understanding of how the antennas behaved on a drone plat-

form for various communication scenarios, we wanted the ability to implement our developed

empirical understanding with mathematical models for a computer-based simulation. In par-

ticular, modeling of the wireless behavior and drone-specific characteristics can be validated

in a simulator using experimental measurements. Once the models are validated this en-

ables the exploration of untested scenarios and applications. It also provides the ability

to scale the number of drones to a level that would be impractical to implement in actual

experimentation. This allows for the assessment of large scale coordination among complex

multi-drone networks, or drone swarms. We explored the prospect of moving our single-

drone in-field experiments and anechoic chamber knowledge to a simulation-based platform.

A simulation environment can provide the ability to test network-level performance not cur-

rently feasible and better predict practical performance at scale. There already exist several

works exploring drone-based simulators to provide a controlled and repeatable environment

for understanding drone communications [25]. Some works focus on the dynamic nature

that a mobile drone network experiences [26–28], while other works address more specialized

aspects such as network security [29]. However, these simulation e↵orts tend to focus on
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the link-level performance and provide a limited capability of modeling the highly detailed

physical layer attributes, such as antenna characteristics, that can drastically alter standard

models of wireless propagation and elevation e↵ects. Attributes such as the physical drone

body or the placement and orientation of antennas can have significant e↵ects on the wireless

propagation characteristics. However, these are typically modeled by a standard path loss

or antenna elevation model. This led us in the direction of building a drone-flight-enabled

isolation chamber to better characterize and begin to model these complex drone-specific

wireless behaviors in a highly controlled environment.

We felt this path was necessary because taking measurements from a single drone was

already a complex challenge. As our goal is to move from single-drone use cases to more

than two drones coordinating at once, understanding the multidimensional nature from

several drones while still maintaining the ability to separate the drone specific e↵ects from

the experimental variables became an impractical task. This was further complicated by

the constantly changing outdoor environment and an increasing number of uncontrollable

factors. It became clear that not only did we need an infrastructure capable of supporting

several drones at once, but a way of providing a multidimensional understanding that can

be separated from the drone body itself.

1.3. Contributions

In order to focus on the e↵ects that are localized to the drone, we draw on the challenges

we experienced with outdoor drone-based measurements to make informed design decisions.

However, outdoor experimentation alone has several issues such as the lack of control of

external factors that lead to unrepeatable e↵ects and an inability to set up wireless measure-

ment nodes to encompass a flyable space in an ongoing manner due to weather elements.

While the anechoic chamber provides a highly isolated environment, it su↵ers from several

limitations that prevent the assessment of multi-dimensional multi-drone networks. Hence,

in this work, we design and build a drone-flight-enabled isolation chamber (Fig. 1.5) to
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Figure 1.5: Indoor Drone-Flight-Enabled Isolation Chamber.

understand the spatial relationships that wireless drone links encounter. To carry out this

vision, we address the following challenges with the described solutions:

System-Level Integration of Programmable and Observable Subsystems. First,

we describe in detail the drone-flight-enabled wireless system and the experience that led

to the specific indoor design. We explain the system-level integration of the infrastructure’s

supporting subsystems. We also describe the approach to addressing the challenges that an

indoor system presents. While carrying out such an experiment, we additionally need to

provide full observability of the drone platform and SDR network to facilitate a full view of

the e↵ects experienced by the drone.

Sending Drones to Fixed Positions for Fixed Time Durations. Without access to

GPS, we seek to instruct a drone to fly to a certain indoor location and hold the position

with high precision. As the precision level increases, the swarm scale can correspondingly

increase. To do so, we give a detailed breakdown of the selected open-source drone platform

that enables accurate control and coordination within the system. We show that proprietary

solutions lack built-in solutions for highly-controlled positioning in an indoor environment

and describe the integration of our open-source drone build with an 8-anchor indoor local-
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ization system.

Synchronized Clocking and Logging across 72 Spatially-Distributed RF Chains.

Lack of GPS also impacts state-of-the-art solutions for controlling large-scale SDR networks.

Providing the same notion of time to 72 distributed nodes over 10s of meters required careful

considerations. Related to all of this, we analyze the challenges faced with the distributed

coordination of the various nodes. We then show the degree to which synchronization can

occur for the same experiment with first programmatic control and then post-processing.

Concurrent Wireless Capture from Various Horizontal and Vertical Positions.

To enable the greatest reach of our drone testbed to measure such e↵ects as wireless signals

propagating to the receiver in various spatial paths known as multipath, or applications

such as using multiple antennas across di↵erent locations and independent systems known

as distributed beamforming, an extremely high sampling rate must be carried out at each

SDR. When 10s of SDRs are performing this measurement concurrently, a simple combining

of these data rates exceeds 2 Gigasamples/second (GS/s), which can overwhelm even very

high performing servers. Hence, we develop a distributed-server solution and evaluate the

extent to which these data capture rates can be maximized. We perform a highly-controlled

experiment to demonstrate the unique capability of the infrastructure.

Modeling Drone-Based Communications for Multi-Drone Networks. Finally, simulation-

based modeling of experimentally measured drone-based e↵ects is demonstrated. As poten-

tial applications require an increasing number of drones across various three-dimensional po-

sitions and orientations, a programmable and scalable environment enables complex scenarios

to be evaluated. We demonstrate how drone induced e↵ects can be accurately accounted

for in a network simulation tool. Lastly, we highlight the ability of the drone-flight-enabled

infrastructure to further validate developed models by isolating increasingly complex drone

specific characteristics for multi-drone networks.
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Chapter 2

Drone-Flight-Enabled Wireless Isolation Chamber

The goal of our drone-flight-enabled isolation chamber is to ultimately support a swarm

of drones to fly at specified locations, whether fixed or mobile, for tens of minutes with

a surrounding wireless infrastructure to monitor the wireless activity of that drone swarm.

The extent to which the drone network can scale in the infrastructure heavily depends on the

degree to which drones can be trusted to reliably hold position and the size of the space in

which the flights can take place. The indoor drone-flight-enabled wireless isolation chamber

is housed in an indoor facility that allows approximately 20x20 m of flyable space. The

minimum height within the flyable space is 5 m along the perimeter of the flyable space,

but the pitched roof along the center of the building allows a maximum height of 7 m.

Surrounding this flyable space, safety netting is installed for the protection of personnel and

SDR hardware.

In an indoor environment, accurate positioning is challenging, especially with a metal

roof, as is the case in our facility. In fact, in Chapter 3, we even show that the interpretation

of distances in an o↵-the-shelf drone controller from outdoor GPS in an unobstructed envi-

ronment is to the extent that multiple drones flying inside a 20x20 m flyable space would be

problematic. Also, the drone platform needs to be able to interpret position from a position-

ing system and be programmatic so that it can receive directives to move to a given position

for a given amount of time. Both aspects have been elusive in a widely-used o↵-the-shelf

system that we have used extensively for outdoor experimentation, motivating our custom

design of an open-source drone platform.
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Isolating and inspecting a single wireless event requires all 72 RF chains that are dis-

persed over a large three-dimensional cube to be temporally synchronized. In Chapter 4, we

articulate the challenges of building such a network and evaluate the timing alignment of

that network with a highly-controlled experiment in Chapter 5.

A final issue that we experienced in designing the drone-flight-enabled wireless isolation

chamber has to do with the data sampling rate desired at each of the RF chains. Next-

generation MIMO applications require an extended bandwidth [30–32]. To enable multi-

path and MIMO phase-level analysis, each RF chain needs a sampling rate of at least 30

MS/s. With 72 RF chains, we need to record over 2.1 GS/s from all SDR positions. We

explored the tradeo↵s of distributed logging per SDR versus centralized logging and real-

time versus post-experiment processing. In Section 4.2, we describe the details behind a

surprising finding that a real-time, centralized approach greatly outperforms a distributed,

o↵-line approach, which is due primarily to the design of the SDR.

Figure 2.1: High-level overview of drone-flight-enabled wireless isolation chamber
infrastructure.

In summary, the infrastructure relies on the following interacting subsystems: (i.) an

indoor localization system due to the lack of GPS, (ii.) an open-source drone platform that

directly interfaces with the localization system, (iii.) eighteen SDRs that are distributed

along the walls and ceiling, which are each attached to four log-periodic antennas pointed

toward the center of the facility and connected to each RF chain, (iv.) a five-server system

for distributed data acquisition, and (v.) three dedicated cabling runs from each SDR to
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the server rack for clocking (fiber), data logging (fiber), and control (Ethernet). The overall

system infrastructure is illustrated as a block diagram in Fig. 2.1. Additionally, a 2D layout

of the flyable space is shown in Fig. 2.2, pictured with an overhead view where the walls are

laid down on the outside of the flyable space and each SDR is numbered with a surrounding

square.

Figure 2.2: Layout of 18 - USRP N310s and 72 - Log Periodic Antennas.
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Chapter 3

Architecting an Open-Source Drone Platform

As mentioned previously, we have experience working with o↵-the-shelf proprietary plat-

forms for a wide range of outdoor experiments. However, to accomplish seamless integration

into our infrastructure we need more control over the software architecture and design as

well as full visibility into the drone’s flight control system. All of our e↵orts have been

focused on multi-rotor drone platforms, more specifically quadcopters, that provide the abil-

ity to hover. This unique aspect of flight o↵ers an unparalleled perspective for wireless

applications. Designing a custom open-source drone platform with this capability took care-

ful consideration of not only the flight dynamics and load capacity, but in the selection of

open-source hardware and software to achieve our vision.

Even commercially engineered out-of-the-box drone platforms from established companies

such as DJI su↵er from errors in accuracy when attempting to hold a stable hovering position.

According to DJI’s specifications [24], their common Matrice 100 quadcopter platform’s flight

controller can have errors of ±0.5 m in the vertical plane and ±2.5 m in the horizontal

plane when maintaining a hover under ideal flight conditions. These errors are only made

worse in an unpredictable outdoor environment where several other factors can a↵ect flight

controller performance and accuracy. Factors such as wind, GPS error [33], and atmospheric

fluctuations in temperature and air pressure can potentially induce unintended mobility

and have a direct e↵ect on the specified position and therefore the prediction and quality

of a wireless channel. For example, one critical sensor that is responsible for introducing

error in the vertical plane is the barometric air pressure sensor [34–36] associated with

many consumer drone platforms, which does not have the ability to be calibrated. As the
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atmospheric conditions fluctuate over time, this can greatly a↵ect a drone’s ability to hold

or repeat a stable altitude.

For comparison, we demonstrate the accuracy of the popular DJI Matrice 100, a com-

mercial load carrying drone-based on DJI’s N1 flight controller. Fig. 3.1 illustrates the

three-dimensional error experienced by the drone’s intended hover position. There are a

total of seven intended hover locations that are marked with a bold black point, and the

measured GPS locations are indicated by the smaller blue points. The bounding circle in-

dicates the intended position’s corresponding measurements, while the dotted line indicates

the distance from the intended point to the average of the received GPS measurements for

that location. An external GPS receiver was used to separate the discrepancy that the

drone’s flight controller sensors experienced from the experimental measurements. From

this outdoor experiment, we see errors of up to 3.57 m in the latitude axis, 1.53 m in the

longitude axis, and 9.49 m in the vertical axis, or altitude, from the intended position when

attempting to hover in a programmatically-specified location.

Figure 3.1: Error in latitude, longitude, and altitude from intended hover position.
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Due to these DJI limitations for this indoor application, we began working with commercially-

available, open-source drone platforms. We first used a 3DR Solo, which is based on the

widely-used, open-source ArduPilot flight controller software and PixHawk Cube hardware.

This platform supports a payload capacity of 700 g and is meant for more consumer-level

hobby and photography applications. This drone was outfitted with the lightweight (24 g)

Ettus USRP B200mini-i SDR for the wireless communication link and connected to a Rasp-

berry Pi 3 Model B+ (RPi) for on-board processing. The RPi bridged the computing gap

between the SDR and the flight controller over a serial data connection. Using the wireless

SDR link, the RPi communicated received control messages to the flight controller and al-

lowed flight sensor data to be transmitted to the ground station. The full-duplex capability

of the SDR provided a frequency-division-duplex link that was needed to implement our

custom communication protocol. The uplink channel was dedicated to critical drone control

messages, and the downlink channel provided sensor feedback to the ground station. This

separation of uplink and downlink channels enabled us to establish a functional SDR link

to the drone and provide programmatic flight commands from the ground station based on

sensor feedback.

Following our experience with the 3DR Solo, we continued to work with ArduPilot as

well as PX4 for the flight control software and continued to rely on the RPi as the companion

computing platform. We also continued using the PixHawk hardware as the flight controller

interface on all of our subsequent drone builds. A total of three di↵erent custom drone

platforms were built since using the 3DR Solo. The main di↵erence between these platforms

and the 3DR Solo is that the frame and motors were carefully selected to support a larger

payload capacity ranging from 2 kg to our current platform’s capacity of 6 kg, which is shown

in Fig. 3.2. This increased capacity was necessary to support multiple radio platforms for

control of the drone as well as provide separate wireless SDR links for use in dedicated

experimentation. All of our custom open-source drones follow the basic design presented in
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Fig. 3.3, with the exception of the indoor localization that was recently added for precise

positioning inside the isolation chamber.

Figure 3.2: Open-Source Drone Platform.

In addition to the drone control method using an SDR link, there also exist several other

options in terms of establishing a wireless control link to the drone, with varying degrees of

reliability. Out of the various options we explored, the most common is a standard manual

remote controller typically used for the purpose of hobby flight. This is not an ideal control

method for repeatable and controlled experimentation, as even an experienced pilot would

have trouble maintaining an accurate and precise level of repeatable position control. A GPS

waypoint mission is another option, but this method is typically pre-programmed and o↵ers

no immediate feedback or dynamic control during the programmed flight mission.
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Figure 3.3: Block Diagram Design of Open-Source Drone Platform.

Another wireless control method that we explored used a standard 802.11 WiFi link

to the companion computer. However, the performance of the consumer-level hardware

caused excessive latency and reliability issues. Furthermore, all of these technologies, other

than the SDR-based control links, are limited to their designed frequency bands, typically

900 MHz, 2.4 GHz, or 5 GHz bands. This would limit controlled experimentation within

these popular frequency bands of interest. For this reason, an SDR-based control link is an

attractive option as it allows for a dynamic selection of frequencies in order to stay out of the

frequency bands where we wish to run experiments. It also provides the ability to structure

control messages in any format, depending on the application. However, designing a robust

protocol for an indoor environment to mitigate unique multipath and attenuation e↵ects

while maintaining low latency and desired baseband performance has been a challenge when

using SDR hardware with limited computational resources. We physically steered control to

the 3DR Solo while in flight to avoid equalization complexities in early SDR designs.

While an open-source drone platform provides the level of customization that we need

to support highly-controlled experimentation with SDRs and interface the flight controller

with our systems, these platforms require: (i.) meticulous considerations in the structural

design and distribution of weight for good flight dynamics, (ii.) careful calibration of several

sensitive sensors such as the compass, gyroscope, and accelerometer, and (iii.) manually

incorporating any backup control and fail-safe features in case these sensitive systems have a
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critical error or failure. In our design, a traditional remote control link is used as a fail-safe

to take over manual control or issue an emergency motor stop in case of a critical error.

With the increased payload capacity that our custom drone platforms o↵er, other Linux

development boards such as the Nvidia Jetson, ROCK960, and the MinnowBoard Turbot

have been explored as a more powerful companion computing platform compared to the

Raspberry Pi. These options leverage higher performance architectures that enable more

robust processing power and an increased level of complexity onboard the drone. This enables

the implementation of more intricate protocols and control schemes that are often optimized

for di↵erent architectures (X86 vs. ARM). However, tailoring Linux (e.g., OpenEmbedded)

to meet the computational demands and dependencies of our system is an ongoing e↵ort.

With the accuracy and precision of positioning within the three-dimensional (3D) space

being so important for repeatable and controlled experimentation, an indoor localization

method was needed. In order to achieve a detailed level of positioning within our indoor

flight space, we installed a 3D position tracking system by IndoTraq. To do so, we secured

tripods to the ceiling at each of the four corners of the flyable space to hold two anchors

each at heights of 2 m and 4 m for a total of 8 anchors. This system uses ultra-wideband

wireless technology in addition to inertial-based tracking to provide sub-millimeter precision

with update rates as high as 150 Hz while also providing localization throughout the entire

flyable space. In an 8 anchor system, accuracy in all three dimensions is within 16 mm of the

intended position [37]. The ultra-wideband technology operates at a frequency of 6.5 GHz.

This is outside the operable frequency range of our SDRs and therefore eliminates the risk of

interference for isolated wireless measurements. A lightweight sensor tag (7 g) is integrated

on our custom drone platform, pictured in Fig. 3.2, using a serial connection to the Raspberry

Pi companion computer, and the calculated position is fed to the PixHawk flight controller in

order to provide 3D positioning and tracking. Then, using the wireless control link, specified

locations within the flight space can be programmatically and dynamically communicated to
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the drone. This indoor localization solution along with the isolated indoor chamber addresses

the previous GPS precision inaccuracies and atmospheric factors by eliminating the need to

rely on the flight controller sensors that are prone to error.
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Chapter 4

Software Defined Radio Network for Distributed Data Acquisition

In this chapter, we describe challenges with the distributed SDR network mounted on

the ceiling and walls around the flyable space: (i.) clocking over long distances, and (ii.)

data logging from 72 RF chains.

4.1. Clocking Challenges with Distributed SDRs

The SDR platform used throughout the facility is the Ettus USRP N310. This SDR is

capable of simultaneously providing four full-duplex channels (4 TX / 4 RX), each with a

maximum instantaneous bandwidth of 100 MHz. It provides an extended frequency range

of 10 MHz - 6 GHz and a sample rate of up to 153.6 MS/s. The N310 is a larger platform

measuring 35.71 cm x 21.11 cm x 4.37 cm and weighing 3.13 kg, making it a challenge to

fly on the drone. The SDRs that we have carried on the drone platform include the USRP

B200mini-i and the USRP E312, weighing 24 g and 446 g, respectively. Both o↵er a tunable

frequency range of 70 MHz - 6 GHz and provide up to 56 MHz of instantaneous bandwidth.

The E312 o↵ers two full-duplex channels, while the B200mini-i o↵ers only one. The E312

possesses an embedded Linux system running on an ARM Cortex A9 chip enabling stand-

alone operation, where the B200mini-i relies on a USB connection to a host. This makes the

B200mini-i more suited for integrating drone control over an SDR link with a companion

computer, while the E312 is more e↵ective for collecting raw measurements or running a

stand-alone protocol.

Each N310 has four LP0965 log-periodic PCB antennas connected to the RF front end

that are operational over the entire operating carrier frequency range of the SDR. The 6-dBi

antennas either point directly towards the floor from the ceiling mounts or directly towards
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the opposing wall from the wall mounts. Each antenna connects to the TX/RX port allowing

for time-division duplexing. With four antennas at each SDR, a total of 72 simultaneous

channels can transmit, receive, or any combination of the two. Each of the eighteen SDRs

has been strategically located to cover the flyable space with a 3-m spacing between adjacent

antennas. Fig. 2.2 shows the arrangement of antennas and radios.

With so many radios operating together in a distributed fashion, a clocking solution

was needed to provide synchronous operation. The first option explored was Ettus’ Octo-

Clock solution that provides synchronization for up to eight devices per OctoClock device.

However, this solution is operated over copper connections and required a GPS input for

a disciplined clock source. These factors proved challenging for several reasons. First, the

max distance from the central clock source would be approximately 30 m away when the

cables were routed. This is not practical for copper-based connections as these distances

would experience significant cable losses as well as introduce unnecessary drift and noise

in the clock pulses, resulting in unacceptable errors in synchronization. Secondly, the in-

door environment lacked a reliable GPS signal which would further degrade the quality of

the clock source. The clocking method that we chose to incorporate in our system was the

White Rabbit Network Switch from Seven Solutions. This solution provided sub-nanosecond

time accuracy over fiber connection for up to eighteen devices on one network switch. Since

it operates over a fiber link, it can support multiple-km distances, easily supporting our

needs. It also didn’t require a disciplined clock and still o↵ers a clocking accuracy to within

1 nanosecond [38]. Using the White Rabbit clock, we ran single-mode fiber cable from a cen-

tral control point to each of the eighteen radios to provide accurate and distributed clocking,

which we experimentally evaluate in Chapter 5.

4.2. Challenges to Command/Log 72 RF Chains

Another critical challenge faced with operating eighteen SDRs in such a distributed fashion

is providing command and control to each radio. The other challenge that logically followed
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was collecting, generating, and processing the large amount of data that would either need

to be created or captured at each radio. First, to provide remote command and control, a

wired 1 Gbps Ethernet-based connection was established to each of the radios. This allowed

for remote configuration from a central point but didn’t provide a method for collecting,

processing, or storing measurement data. To address this we took a methodical approach in

assessing di↵erent techniques for handling this challenge.

We first explored processing samples locally at each N310. However, each radio was

limited to the local ARM Cortex-A9 processor and used a flash-based microSD card for data

storage. Using a single N310 to benchmark a radio’s performance, first, the Unix command-

line utility ’dd’ was used to test the disk write speed in MB/s for several di↵erent microSD

cards from various manufactures. Next, based on the max disk performance, a theoretical

sample rate was calculated to predict the max achievable sample rate. This calculation

was based on the fact that each sample written to file is a complex float producing a total

of 8 bytes per sample or 4 bytes per I and Q, respectively. Finally, the true measurement

capability was assessed by using a benchmark utility provided by Ettus and slowly backing o↵

the predicted sample rates until there was no longer data overflow, meaning loss of samples

due to the lack of bu↵er space. Each microSD card’s speed class, capacity, quoted write

speed, ’dd’ write speed results, calculated theoretical max rate, and benchmark utility test

results were recorded. The results from these tests are presented in Table 4.1. From these

results, we show that the max sample rate achieved was approximately 1.5 MS/s, greatly

underutilizing the N310’s max capability of 153.6 MS/s.

Next, we shifted from locally-processing samples to attempting to send and receive sam-

ples using a networked mode. To achieve this process and handle the large amount of data

associated with higher sample rates, we identified the need for a high-performance computing

platform. To better understand the computing needs and data rate budget, we started with

one server-grade machine to test how many radios we could support on a single machine
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Card Class Capacity
(GB)

Write
(MB/s)

’dd’
(MB/s)

Max Rate
(MS/s)

Tested Rate
(MS/s)

Samsung Evo 10, U3 512 90 17.5 2.1875 1

Samsung Evo 10, U3 256 90 15.6 1.95 1.201923

SanDisk Extreme U3, V30 400 90 17 2.125 1.506024

SanDisk Extreme U3, V30 128 90 17.2 2.15 1.404494

Lexar Professional U3, V90 128 150 10.9 1.3625 0.5

Table 4.1: Write and sample rate performance of microSD cards.

before scaling to a multi-server setup to service all eighteen radios. We used a dedicated

quad-port SFP+ network interface card (NIC) operating on Peripheral Component Inter-

connect express Revision 3 (PCIe Rev. 3) to provide a direct link from the N310 to the

server to get the best data rate and network performance without any potential bottlenecks

in the network, such as a router or switch.

The first cabling method tested from the N310 to the server was CAT 6 RJ45 Ethernet,

supporting 10 Gbps on an SFP+ adapter at both the radio and NIC. However, when testing

the max distance cable length of 30 m, the link did not support the full 10 Gbps speed and

reverted to a 1 Gbps link. Since this issue would bottleneck the data link budget, we then

moved to using a full-duplex multi-mode fiber connection over a supporting SFP+ adapter

at both the radio and NIC. With the full 10 Gbps speed in both the uplink and downlink

confirmed, several tests using a network-mode benchmark utility allowed us to gauge how

many radios we could support using one machine. Using up to three quad-port NICs on the

single server-grade test machine, we benchmarked the performance for a total of 4, 6, and

9 network-mode links with the radio front end connection configuration, set receiver (RX)

sample rate, and set transmitter (TX) sample rate noted. Then, each test was performed

for 10 s.

The results for the various tested combinations of receiving RX and generating TX sample

rates are shown in Table 4.2. The front end connections refer to the number of front end

connections per radio, so 4-RX and 4-TX across four N310s signify a total of 16 channels of
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both RX and TX. The tests that completed without an underflow or overflow in the network

bu↵ers are indicated with a pass (P), where those that experienced at least one bu↵er issue

are indicated with a fail (F). These front end combinations were selected to assess the best

and worst-case scenarios for di↵erent configurations. From these results, we conclude that

connecting four radios per machine in the server design would provide the best network

performance for processing samples and still achieve near the maximum capability of the

N310 hardware.

Therefore, a total of five servers were custom built to match the specifications of the test

machine and provide dedicated connectivity to each of the eighteen SDRs. Each server was

outfitted with one quad-port NIC, 2 terabytes (TB) of high-speed solid-state storage (2 x 1

TB in RAID 0) with a maximum write speed of 3.3 GB/s, and 10 TB of hard disk space

that allows o✏oading from high-speed storage to enable various combinations of collection

times and sample rates. An overview of the clocking and server system architecture with

connections to each N310 is presented in Fig. 4.1.

Data Rate(DR) = Sample Rate(SR)⇥ 8Bytes⇥# Channels(C) (4.1)

Collection T ime(CT ) =
Disk Space

Data Rate
(4.2)

E.g. SR = 30MS/s, C = 16, DR = 3.84GB/s, CT = 520.8 s

Equations 4.1 & 4.2 demonstrate the theoretical maximum collection time based on the

sample rate and number of channels. Recall, each server has a maximum of four connected

N310s and therefore, a maximum of 16 channels per server. Using the high-speed 2 TB
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storage and sample rates of 30 MS/s across all 16 RX channels for one server results in a

maximum collection time of 520.8 s.

Figure 4.1: Detailed overview of clocking, command & control, and data acquisition server
system layout.
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Front End RX (MS/s) TX (MS/s) Pass/Fail

Four - N310

1-RX 125 N/A P

1-RX 125 N/A P

1-RX 1-TX 125 125 P

1-RX 1-TX 125 125 P

4-RX 4-TX 62.5 62.5 P

4-RX 4-TX 62.5 62.5 P

4-RX 4-TX 125 62.5 F

Six - N310

1-RX 62.5 N/A P

1-RX 125 N/A P

4-RX 31.25 N/A P

4-RX 62.5 N/A F

4-RX 125 N/A F

1-RX 1-TX 62.5 6.25 P

1-RX 1-TX 62.5 12.5 F

4-RX 4-TX 31.25 1.25 P

4-RX 4-TX 62.5 1.25 F

4-RX 4-TX 12.5 6.25 F

4-RX 4-TX 31.25 6.25 F

Nine - N310

1-RX 20.83 N/A P

1-RX 31.25 N/A P

1-RX 62.5 N/A F

4-RX 4-TX 1.25 1.25 P

4-RX 4-TX 31.25 31.25 F

Table 4.2: Achievable sample rates in networked mode based on number of SDRs
connected to a single server.
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Chapter 5

Multi-Dimensional Wireless Data Capture Results

To demonstrate the scale and level of control at which we can perform experiments,

we provide a simple experimental setup for capturing received samples from a transmitting

drone. First, to achieve a distributed level of control, the servers institute a parallel control

scheme that issues command messages over the Ethernet network and directs each USRP

to their respective server over fiber to start a measurement collection. Using Ettus’ USRP

Hardware Driver (UHD) software API, a simple write-to-file application is created to sample

1.25 MHz of bandwidth at a center frequency of 5.15 GHz. For this demonstration, we

capture one RX channel across all eighteen SDRs simultaneously. To isolate the e↵ect of

receiving from each location, the drone is placed on a fixed platform at the center of the

flyable space directly below SDR #14 in Fig. 5.2 at a height of 3.5 m. The drone is orientated

with an omnidirectional, vertically-orientated TX antenna in Fig. 3.2 facing towards SDR

#2. The USRP B200mini-i SDR is used as the transmitter on the drone and sends a narrow-

band sine wave at a center frequency of 5.15 GHz in a periodic on-o↵ pattern with a cycle

frequency of 0.5 Hz. Then, one receiver chain from each of the eighteen N310s simultaneously

samples at a rate of 1.25 MS/s for a total of 30 seconds. The IQ samples are stored from

each SDR on their respective server and are later processed for the received signal strength

(RSS) in dB.

Fig. 5.1 shows a one-second portion of the transmitter-on cycle for a temporal represen-

tation of the RSS. To better visualize the general trend, a moving average was taken over

a window size of 3000 samples. The top graph shows the best synchronization that can be

achieved with programmatic control alignment of sampled data by using a timestamp from
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the start of the collection. While the bottom graph shows the post-processed alignment,

based on the rising edge of the first cycle. There was a maximum of 26,907 samples, or 21.53

milliseconds, between the first and last rising edge using the programmatic control method of

synchronization. After post-processing based on the rising edge, both the rising and falling

edges were perfectly aligned.

Figure 5.1: Average RSS with programmatic (top) and post-processed (bottom)
synchronization.

By inspecting the RSS values in Fig. 5.1, we see a maximum of a 23.12 dB di↵erence

in the RSS from SDR #14 to SDR #5, across all eighteen spatially-distributed receivers.

We can additionally refer to Fig. 5.2, which illustrates the overall average RSS experienced

at each SDR in the form of a colored heat-map overlay. Both of these figures indicate that

the drone experiences vastly di↵erent propagation e↵ects from approximately equidistant

receivers in this controlled environment. In particular, the receivers located above the drone

are consistently lower in terms of their received signal quality as compared to the antennas on

the walls, likely due to the transmitting, vertically-oriented omnidirectional antenna which
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Figure 5.2: Layout view of average RSS highlighted from measurement results.

has the lowest radiation pattern value at that elevation angle. Furthermore, there is diversity

even among the walls, highlighting the potential impact the drone body itself is having on the

omnidirectional antenna mounted on the SDR #2 side of the drone. This further highlights

the need to better understand the complex three-dimensional e↵ects that drones experience,

a key component that our unique drone-flight-enabled wireless isolation chamber enables.
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Chapter 6

Building a Drone-Based Simulation Environment

Our work towards a drone-based simulation environment focuses on modeling our ex-

perimental understanding and implementing those results in a computational setting. In

particular, an emphasis is placed on emulating the physical layer characteristics that we

have identified and accurately representing their impact on the wireless channel. Compared

to standard wireless propagation and elevation models, our experimental results show an in-

creased need for characterizing multi-dimensional drone specific aspects to properly represent

practical drone-based communications. Aspects such as the relative three-dimensional loca-

tion of drone nodes, the physical drone body, placement of antennas, and orientation of the

antennas require several variations in standard models to e↵ectively represent their induced

e↵ects. Properly capturing and representing these e↵ects becomes increasingly important

as the scale of the drone network increases. By accurately modeling the multi-dimensional

characteristics, we can predict the complex communication channels among large networks

of drones across diverse three-dimensional positions and altitudes.

Rather than programming a custom simulation environment from the ground up, we chose

to utilize an existing network simulation tool. There exist several software-based network

simulators such as NS-3, OpNet, and NetSim that can provide a starting point for mobile

ad hoc networks. We chose to use OMNeT++ with INET, a C++ based framework that

provides several models that can easily be customized to represent the required elements of

multi-dimensional drone-based communications. In particular, we needed a programmable

environment to simulate a complex network stack, implement several physical layer aspects,

create various wireless interfaces, provide three-dimensional mobility, and assess radio and
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network-level performance. OMNeT++ with INET provided a su�cient starting point for

all of these requirements.

In our initial simulation work, we have demonstrated how experimental results from our

outdoor measurement studies and indoor anechoic chamber experiments can be transferred to

a simulation environment for the evaluation and validation of drone-based communications.

In particular, we have explored two-dimensional and three-dimensional scenarios that have

taken into account the e↵ect of the drone body as well as multiple antenna orientations and

positions. It is important to note that to e↵ectively target the drone induced e↵ects, all of the

described experiments utilized the same antenna across similar frequencies eliminating any

physical antenna dependent characteristics when comparing results. However, as previously

mentioned we lacked an isolated control of other variables in the outdoor environment to

completely separate the various undesirable e↵ects from the intended experimental variables.

Even in the isolated environment of the anechoic chamber, there are limitations that prevent

the characterization of altitude e↵ects, in-flight e↵ects, and the assessment of multiple drones

at once. Regardless of these barriers, we have gained valuable insight into how our developed

models can accurately predict observed wireless behavior in a simulation-based environment.

This initial step brings us closer to providing a repeatable and scalable simulation framework

to accurately describe complex multi-drone networks.

Our initial transfer of an experimental model to the simulation environment focused on

a simple two-dimensional representation of the relative angle between a transmitting drone

to a receiving drone in an outdoor, unobstructed line-of-sight environment. The general

layout and results from this in-field experiment are represented in Figs. 6.1 & 6.2. An

important aspect of this experiment is that both drones were fixed at the same elevation

and had their forward-mounted antennas facing towards 0 degrees (fixed yaw) throughout

this experiment, creating a unique scenario for assessing two-dimensional directional losses.

Figure 6.1 illustrates the distances and angles that were measured with the receiving drone
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in the middle and the transmit drone positions highlighted with the average received signal

strength (RSS) experienced by the receiving drone along each axis creating angles of 0, 90,

180, and 270 degrees. From this figure, it is clear that the transmitting drone that was

directly in front of the receiving drone provided the highest RSS of the measured angles.

Figure 6.1: In-field two-dimensional experiment RX drone (center) with TX drone
positions (surrounding), average RSS highlighted.

It is common to assume that in a fixed horizontal, or azimuth plane that the radiation

pattern and therefore observed losses would be constant no matter the direction of the

transmitter from the receiver. However, from our two-dimensional experiment it was clear

that once the antenna was mounted on the drone and the transmit-receive angle was changed,

this assumption was no longer valid. Figure 6.2 shows a detailed plot of the RSS for each

measured angle and distance (20, 40, 60, 80, 100 m). The dotted line illustrates the predicted

RSS using a standard log-normal path loss model. Using this standard path loss model, we

observe that a constant azimuth assumption greatly underestimates the path loss experienced

by the drone by up to 23.15 dB. To account for these losses, we represent the di↵erences

in path loss by adding a shadowing factor to a log-normal path loss model for each of the

measured angles. This modified model allowed us to accurately predict and simulate the
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RSS for each measured angle. This modified model produced a maximum average prediction

error of 4.10 dB in simulation for the angle of 180 degrees. When compared to the standard

model error of up to 25.58 dB, we demonstrate an 83.9% reduction in error.

Figure 6.2: In-field RSS vs. Distance for each measured angle, predicted standard path loss
model also shown (dotted line).

To simulate this experiment within OMNeT++, an ad hoc drone network was created to

match the experimental setup and parameters. An existing wireless AdhocHost module was

used to represent the transmitting and receiving drones. Then an Ieee80211ScalarRadioMedium

module was used to simulate the wireless physical layer parameters. Within this module, an

omnidirectional dipole antenna was chosen to match the in-field experiment antenna char-

acteristics. Next, an Ipv4NetworkConfigurator module was used to assign IP addresses and

create the routing between network interfaces. Finally, to implement our modified path loss

model, a custom module was created in C++ to capture the relative transmit-receive angle

and calculate the corresponding path loss based on the added shadowing factor. This cal-

culation was done using a lookup table and was only valid for the four distinct angles that

were measured.
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Equations 6.1 & 6.2 summarize the modified path loss model that was used for this

calculation. In Equ. 6.1, the transmit power and receive power are represented by Pt and Pr

respectively. Then PL(do) is the reference path loss calculation for a distance of 20m, ↵ is

the path loss exponent, and ⇠s is the zero-mean, normally distributed shadowing parameter

with a standard deviation of 2. In Equ. 6.2, PLUAV represents our modified path loss

value where �� is the additional averaged shadowing parameter that was induced by the

drone in the corresponding azimuth angle (�). To produce an accurate calculation within

the simulation, the same center frequency (2.5 GHz) and transmit power (6.2 dBm or 4.1687

mW) parameters were matched. Finally, the simulation was run at 1 m increments from a

distance of 20 m to 100 m while the received power was logged at each location.

Pr = Pt � PL(do) � 10↵log(d/do) + ⇠s (6.1)

PLUAV = PLlog�distance + �� (6.2)

Figure 6.3 shows the simulated results using our developed model for the angles of 0 and

180 degrees, or an additional shadowing factor (��) of 9.17 dB and 21.45 dB respectively.

When compared to the in-field experiments where only five distances were used to develop

the model, we show that on average, the same accuracy is achieved in distance increments

of 1 m.

While this two-dimensional path loss model highlighted the substantial e↵ect that the

drone body had on predicting RSS, it did not capture all 360 degrees of yaw or the various

complex antenna positions and orientations that we wished to simulate on a larger scale. It

also didn’t provide a means of separating the drone induced e↵ects from the drone-based

transmitter. Furthermore, this experiment failed to describe the unique three-dimensional

angles that drones experience when operating at di↵erent altitudes, a key aspect of drone-

based communications.
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Figure 6.3: Simulated RSS for 0 & 180 degrees with distance increments of 1 m.

Once we identified that the drone body was a substantial source of attenuation, we shifted

focus from a path loss based model to characterizing the attenuation using a directional gain

based approach. A gained based approach to modeling the unique drone-based aspects al-

lowed us to assess how the directivity of the wireless signal is a↵ected from the perspective

of the antenna by the complex influence of the drone body as well as the various antenna

positions and orientations. This approach also allows for the simulation environment to be

easily extensible to various drone bodies and antenna configurations by simply characteriz-

ing a specific drone and antenna setup once and scaling to any physical network topology

necessary. This shift in modeling was chosen because path loss is typically associated with

characterizing the surrounding propagation environment and not the direct e↵ect of the

drone body or the characteristics induced on the communicating antennas. It also allows for

the logical separation of transmitting and receiving elements and their induced e↵ects when

evaluating drone-to-drone networks with various antenna configurations. Since our outdoor

experiments were performed at an altitude where unobstructed line-of-sight propagation was

assumed, the concept of path loss did not completely capture the observed e↵ects that the

drone had on RSS.
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Following this realization, we utilized the anechoic chamber to characterize the antenna

gain in great detail both on and o↵ the drone in a highly isolated manner. Again, due to

the limited capabilities of the chamber, we were only able to accurately describe the yaw

dimension, or azimuth plane, of the antenna for a vertical antenna orientation. Within

the anechoic chamber, we characterized the antenna without the drone as well as for two

di↵erent positions on the drone. The controlled nature of the chamber enabled us to capture

a greater level of detail about each antenna configuration in the azimuth plane. Figure

6.4 shows the setup within the anechoic chamber and two antenna positions measured on

the drone body. The drone was mounted on a rotating platform controlled by a stepper

motor with a resolution of 1.8 degrees. This provided a total of 200 individual antenna gain

measurements for each antenna configuration.

Using this highly detailed characterization of the gain pattern experienced by the antenna,

the same in-field experiment was recreated in the simulation environment. However, now we

were able to provide a full representation of the azimuth plane both with and without the

drone body for all 360 degrees of yaw and the same experimental distances. Within OMNeT,

the same basic drone network setup was used as in the previous simulation. However, this

time instead of a dipole antenna, the transmitting and receiving drones were configured with

an interpolating antenna that models a directional antenna based on a sequence of angles

and gain values. Using the 200 angles and gain values measured in the chamber, these

antennas were set up to match the exact characterization for each antenna configuration.

The normalized gain values for each of the three configurations measured are illustrated in

Fig. 6.5. The three configurations are: (a) the antenna isolated on its own, (b) the vertically

drone-mounted position 1, and (c) the vertically drone-mounted position 2. Again, the same

transmit power and center frequency was matched, but this time a free-space path loss model

was used rather than the modified log-normal path loss model.
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By comparing these antenna gain patterns, we can see that the isolated antenna produces

a fairly symmetric gain pattern in the azimuth plane. However, compared to the two drone-

mounted antenna positions, it is clear that the drone induced a substantial e↵ect on the

antenna gain pattern. While several angles achieve a similar gain as the isolated antenna,

other angles show substantial losses due to the drone body. These di↵erences in the e↵ective

gain pattern will ultimately a↵ect the performance of the wireless channel depending on the

transmit-receive angles produced and need to be accounted for to properly model multi-drone

networks where any combination of angles is possible.

Figure 6.4: Anechoic chamber measurement setup with two antenna positions.

(a) Isolated Antenna. (b) Position 1. (c) Position 2.

Figure 6.5: Measured antenna gain pattern for isolated & drone mounted antenna.

By leveraging this detailed understanding of the e↵ective antenna gain patterns, we

illustrate the impact that the drone body has within the simulation environment. Figure 6.6
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provides a heat map representation of the predicted RSS for all three antenna configurations

across the same distances as our in-field experiments. The color map key represents the

expected RSS in dB experienced by the receiving drone at the center from each of the

surrounding transmit locations with a 1 m resolution. As expected, the isolated antenna

shows a gain pattern in the azimuth plane that is characteristic of a vertically orientated

omnidirectional dipole antenna. Compared to the isolated antenna configuration pattern,

it is clear that the drone has a significant e↵ect on the achievable gain of the antenna and

therefore the RSS performance for di↵erent transmit-receive angles and distances.

Even with the same drone-mounted antenna orientations and similar positions (Fig. 6.4),

there exist di↵erences in the induced azimuth gain patterns represented in Figs. 6.6b & 6.6c,

further highlighting the need to carefully characterize the various antenna orientations and

placements on the drone. One interesting observation from these figures is that the forward-

facing angle opposite of the receiving antenna placement experiences substantial losses (dark-

blue cone pattern) starting at 40 m centered at approximately 335 and 35 degrees for position

1 (Fig. 6.6b) and position 2 (Fig. 6.6c) respectively. These observations are important when

predicting the e↵ective distance and channel quality as these losses will limit the potential

range and/or achievable throughput for those specific angles.

In our later outdoor experiments, we went on to characterize how altitude a↵ected RSS for

various three-dimensional drone positions and antenna orientations. In these experiments,

we again used two drones at a su�ciently high altitude to assume free space line-of-sight

propagation, but this time we focused on the receiving antenna orientation as well as the

three-dimensional position and consequently the angles they created. It is important to note

that because of the altitude chosen to perform these experiments, the transmitter had to be

mounted on a second drone introducing a drone-based elevation plane e↵ect that has not

been characterized or accounted for. Regardless, in this experiment, the transmitting drone

was fixed and the receiving drone flew around and took measurements while hovering. Figure
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(a) Isolated Antenna.

(b) Drone Position 1. (c) Drone Position 2.

Figure 6.6: Simulation results of gain pattern for isolated & drone mounted antenna.

6.7 illustrates the experiment setup and averaged RSS results for the three receive antenna

orientations (vertical up, vertical down, and horizontal) and nine di↵erent drone positions

and their corresponding angles. The black drone symbol represents the transmitting drone

where the transmit antenna was orientated vertically up on the forward center of the drone

body throughout each experiment. This was done to represent an ideal transmitter as best

as possible to characterize each corresponding receiver orientation. For the positions not

directly above or below the transmitting drone, a horizontal separation distance of 20 m was

used for those seven locations (to the right of the transmitter in Fig. 6.7). The average

RSS is highlighted in the form of a color map for each of these experiments to illustrate
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the di↵erences that these three receive antenna orientations induced on the various three-

dimensional positions and angles. We observed a substantial dependence on the relative

three-dimensional angles and antenna gain pattern based on the receiving antenna orientation

during these in-field experiments.

(a) Vertical Up Receiving Antenna. (b) Vertical Down Receiving Antenna.

(c) Horizontal Receiving Antenna.

Figure 6.7: In-field RSS results for three receiving antenna orientations and nine positions,
transmit drone (TX) with fixed vertical up antenna orientation.

However, without the isolation needed to validate these measurements and drone body

e↵ects in the elevation plane, no definitive models have been developed or validated in
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simulation. Regardless, the dependence on the drone position and antenna orientation was

observed throughout these experiments. As previously outlined in Section 1.2, all of our

experiments used omnidirectional dipole antennas with a characteristic torus-like radiation

pattern in the plane that the antenna is orientated in (Figs. 1.3 & 1.4). Similar to our results

in Chapter 5, there is an observed dependence on the elevation angle of the transmit-receive

pair that is characteristic of the radiation pattern of an omnidirectional antenna.

As expected, when the receiving antenna is orientated vertically, the drone in the im-

mediate horizontal plane experiences a higher RSS. Similarly, when the receiving antenna is

orientated horizontally, the positions above and below the immediate horizontal plane gener-

ally experience a higher RSS. While the receiving angle of 0 degrees in Fig. 6.7c matches this

predicted behavior, it fails to explain the di↵erence in RSS between the positions directly

above and below (±90 degrees) compared to the positions at the angles of ±56 degrees. Even

with the increased receiver gain in the elevation plane due to the receiving drone’s horizontal

antenna orientation, if the transmitter produced a perfect omnidirectional pattern it would

be expected that the positions directly above and below the transmitting drone would cap-

ture the least amount of radiated energy when compared to those at a horizontal separation.

However, from this in-field experiment, it is clear that this is not the case. The complex gain

based directivity e↵ects experienced by the transmitting drone body, similar to the observed

diversity in RSS along the walls in Chapter 5, has yet to be fully characterized and validated

for the development of an accurate model. This is a key component that we plan to explore

in detail within the multi-dimensional drone-flight-enabled infrastructure.

At this point in our simulation work, we plan to perform several experiments within our

indoor infrastructure to move towards a more controlled understanding of the unique three-

dimensional aspects that we have identified thus far. The simultaneous multi-dimensional

capture capability, as well as the highly precise control of drone position and orientation,

will enable us to fully characterize the unique e↵ects from the perspective of a drone-based
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receiver and transmitter. Furthermore, due to the dynamic and configurable nature of the

SDRs, it is possible to quickly switch the surrounding fixed antennas to receiving or trans-

mitting elements, e↵ectively separating the undesired drone induced variables we faced in

the three-dimensional experiment. These insights will enable the validation of multiple

drone-based scenarios as well as the dynamic switching or movement of antenna positions

and orientations providing an isolated characterization to enhance the simulation environ-

ment with a more comprehensive overview of how a practical multi-dimensional multi-drone

network will perform.
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Chapter 7

Related Work

There are several existing works that fall into two broad categories relating to our ef-

forts: (i.) using drones as tools within wireless research, such as assessing propagation or

improving path planning and control systems algorithms, and (ii.) the development of dis-

tributed testbeds used to evaluate various forms of wireless communication technologies and

coordination.

For example, in [3–5], their understanding of wireless drone performance within cellular

networks comes from simulation-based experiments and limited in-field measurements. They

demonstrate the unique signal propagation perspective that drones experience on cellular

networks when operating in low-altitude environments. In assessing three-dimensional drone

communication performance, [10] made use of IEEE 802.11 to measure and characterize

drone-to-ground and drone-to-drone links in an outdoor environment using GPS positioning.

They provided insight into how the antenna pattern and orientation have impacts on path loss

and throughput on a drone platform. In [11], they used a fixed-wing drone to further explore

how antenna type and orientation a↵ected achievable throughput. In the work servicing IoT

devices with groups of mobile drones [6], they showed via simulation a dramatic reduction

in transmit power by optimizing path planning algorithms to service a group of IoT devices

with a required bit error rate.

In MIT’s Indoor Multi-Vehicle Flight Testbed [7], they coordinate several drones at once

and provide accurate localization within an indoor space to assess control systems perfor-

mance for various missions managing the health of vehicles in the network. There was no

mention of the wireless link characteristics that were associated with the various vehicle con-
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trol scenarios. The Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) [9]

addressed control and path planning algorithms for various vehicle types including quad-

copters, fixed-wing planes, and ground-based vehicles. They focused on mission planning

and high-level task assignment while balancing vehicle health and factors of uncertainty.

In [8], they used a simulation environment to develop multiple drone coordination and con-

trol algorithms and validated them in an indoor environment with the aid of visual tracking

for localization.

Several testbeds focus on distributed and coordinated wireless technologies. The PAWR

Project [12] is helping to develop various emerging technologies such as massive MIMO and

5G connectivity. Lund University built a large array of 100 antennas to better understand

and assess the performance of a practical massive MIMO testbed [14]. In FlockLab [13],

the authors outlined the creation of a wireless testbed that provided a synchronous method

of observing distributed events in wireless embedded systems. The Open Access Research

Testbed for Next-Generation Wireless Networks (ORBIT) [15] provided a large scale wireless

testbed for indoor reproducibility as well as an outdoor network testbed to test real-world

scenarios. In AirShare [17] they proposed a novel method of sharing a reference clock to

independent wireless nodes in a distributed manner for use in distributed MIMO and rate

adaptation applications. In contrast to these e↵orts, we build a programmable testbed

around a flyable space to inspect drone networks.
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Chapter 8

Conclusion

In this work, we described our experience and lessons learned from building a drone-flight-

enabled wireless isolation chamber, which allows in-depth evaluation of the complex spatial

relationships that are experienced in drone communications. To do so, we first built an

open-source drone platform that allowed us to directly interface with an indoor localization

system and programmatically position drones for a given amount of time. Next, we designed

a wireless data acquisition system with a family of SDRs over the outside of the flyable space

in the testbed, which presented challenges for synchronization and data logging. Then we

demonstrated the culmination of this integration with a highly-controlled experiment from

the same transmitter mounted on a drone and show a significant di↵erence in signal strength

throughout the facility due to the three-dimensional aspects of the channel/radiation pattern

and possibly the drone body. Finally, we demonstrated how our experimental measurements

can be leveraged to simulate multi-dimensional drone networks on a practical scale. In the

future, the facility will be used to evaluate dynamic antenna switching and MIMO algorithms

to and from a single drone and from networks of drones.
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