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The problem of decision making under uncertainty can be broken down into two

parts. First, how do we learn about the world? This involves the problem of modeling

the system and its uncertainty. Secondly, given what we currently know about

the world, how should we decide what to do, taking into account uncertainty of

future events and observations that may change our conclusions. Many systems

evolve over time and often the next state of the system is not known with certainty,

often modeled as a probability distribution over system states. Dealing with such

systems especially when we can make a decision at different points in time is difficult

due to uncertainty. Making optimal decisions requires understanding the system

including its characteristics, how it evolves and changes over time, and how taken

actions affect the system. There are multiple dimensions to this problem, and each

dimension might require its own specific method. We need a descriptive method

that can summarize the system and its evolution, a predictive model that is used to

extract information from the complicated systems and also a prescriptive model that

works as the main decision model and incorporates the effects of actions. In this

thesis I consider Partially Observable Markov Decision Process (POMDP) as the

main decision-making/prescriptive model, Hidden Markov Models (HMM) as the

descriptive model of system evolution, and a predictive model to create observations

iv



for the POMDP. In this research, I develop a framework by combining these methods

and demonstrate its use with two applications. I apply the proposed framework to

the problem of diabetes screening and also resource allocation under uncertainty

for emergency management. I demonstrate using simulation that implementing the

proposed policy will bring about significant improvements in both systems compared

to the existing policies.

Keywords: decision-making under uncertainty, predictive analytics, Markov

decision process, hidden Markov models
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Chapter 1

Introduction

The problem of decision making under uncertainty can be broken down into two parts.

First, how do we learn about the world? This involves both the problem of modeling our

uncertainty about the world, and that of drawing conclusions from evidence and our initial

information. Secondly, given what we currently know about the world, how should we

decide what to do, taking into account future events and observations that may change our

conclusions (Dimitrakakis and Ortner (2018)). In other words, understanding the system

for which we are trying to make a decision plays an important role in making an optimal

decision at any point in time. This understanding includes knowledge about the currently

most likely state of the system, and how it may evolve over time. The next step is to find a

method to make optimal decision.

Many systems evolve over time in a discrete manner where their status changes from one

state to another. Often, the state of the system is not known with certainty. Dealing with

such systems especially when we have to make a decision at some point in time is difficult

due to our uncertainty about the system. Though the short term effects of the decision made

now might be obvious to the decision maker, the long term consequences of such decisions

are hard to estimate since the system has inherent uncertainty associated with it. In other

words, the decision maker might think that the decision he is making right now is the best

since it seems to have the largest short-term reward, the long-term effects on the system are

less certain. This can be more complicated if the decisions can affect how the system changes

from one state to another. An example is called the tiger problem (Cassandra et al. (1994)),

where you are trapped in a room with two doors. Behind one of the doors is a hungry tiger

waiting to eat you while behind the other is a treasure. You have no idea behind which door

the tiger is. You can open either doors or listen to see if you can hear anything. Listening is
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not accurate since you might hear the tiger behind the left door while it is actually behind

the right one. Making the optimal decision (how long to listen before opening a door) in

such a system demands understanding the uncertainty, and how the actions taken reduce

uncertainty.

1.1. Contributions

Making optimal decisions under uncertainty, requires understanding the system including

its characteristics, how it evolves and changes, and how the actions affect the system over

time. This demands special tools and methods to deal with, and it might also require

integration of multiple methods from different areas; methods that help us model the

underlying states of a system, and how these states evolve into each other. A descriptive

method handles modeling the system and its evolution. A prescriptive model works as the

main decision model and analyses the effects of actions and decisions on the system and in

long term. A predictive model is used to extract information from the system, providing

the decision model with information that the actual descriptive model may not be able to

provide. The major contribution of this research is the integration of these methods in a

single data-driven framework and the application to several problems. An R package named

’pomdp’ is also developed to support this research, enabling the user to easily define POMDP

models and solve them. The manual of the package can be found in the appendix.

1.2. Methodology

The main problem this research is dealing with is the difficulty of making optimal decisions

in situations that have inherent uncertainty stemming from a complex system. These systems

can often be modeled as a combination of multiple states that transition into each other with

certain probabilities. This requires methods that can model the progression of these systems

and take into account their multi-state nature. We will later see that this is the main

reason why we have chosen methods such as Partially Observable Markov Decision Process

(POMDP) as the main decision model for this research. We will clarify on the methods and

2



techniques used in this research later in chapter 2 and discuss the relation between them.

In this research we use real data collected in a quantitative approach from the application

areas studied. The data collected is analyzed from various perspectives to estimate the

characteristics of the associated system it was collected from and these characteristics are

later used to simulate a duplicate of the system in order to further analyze it.

This research is mainly model-based driven by idealized model (which is usually denoted

as axiomatic research). The primary concern here is to obtain optimal solutions within the

defined model and make sure that these solutions provide insights into the structure of the

problem. Typically, axiomatic research is normative, although descriptive research, aimed

at understanding the process that has been modeled, is also present. Normative research

is primarily interested in developing policies, strategies, and actions, to improve over the

results available in the existing literature, to find an optimal solution for a newly defined

problem, or to compare various strategies for addressing a specific problem. Although in the

axiomatic domain, the discussion on methodology is largely absent, the operational research

approach of this research consists of a number of phases including (1) conceptualization,

(2) modeling, (3) model solving, and (4) implementation (Will M. Bertrand and Fransoo

(2002)).

In the conceptualization phase, we develop a conceptual model of the problem and system

being studied. We make decisions about the variables that need to be included in the model,

and the scope of the problem and model to be addressed. In the next phase, we actually build

the quantitative model, thus defining causal relationships between the variables. After this,

the model solving process takes place, in which the mathematics usually play a dominant

role. Finally the results of the model are implemented, after which a new cycle can start.

1.3. Motivations and Applications

In this research, we examine two systems each having their own characteristics and

behavior while we are trying to provide policies for the decision makers of each system,

policies that work optimally given the uncertainty in the systems. We use the proposed
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framework we talked about in the previous section of this chapter for both applications and

we demonstrate how this framework and the integration of the methods we use works for both

applications in providing optimal policies for decision makers in systems that have inherent

uncertainty. For the first system, we focus on chronic diseases such as HIV, Diabetes, and

CKD, where modeling the initial uncertainty about what stage of the disease the patient

is in and what decision should be taken with respect to the patient’s status taking into

account the future events are the major problems. For the second system, we mainly focus

on emergency management, where the uncertainty lies in which area of the city is in need

of more resources in the near future. What is common among these two systems, is first,

they are both systems that have states changing over time with uncertainty associated with

them, and second, the actions and decisions of the decision maker affects the system and has

long term effect on it. We also use the same framework we talked about to deal with each

system.

Application 1: Diabetes Screening: In chapter 3, we focus on chronic diseases

specifically diabetes. Type 2 diabetes (which for the sake of simplicity we call diabetes

here) is a major cause of morbidity and mortality worldwide. Diabetes is the 7th leading

cause of death in the U.S. and causes macro-vascular complications, including heart attacks

and strokes, and micro-vascular complications including retinopathy, nephropathy, and

neuropathy (Petersen (2016)). The number of people who have Diabetes worldwide was

estimated to be 221 million in 2010 and is expected to increase to 300 million by 2025 (Bjork

(2001)) In the U.S. 9.4% of the population (30.3 million) have diabetes, 7.2 million of which

are undiagnosed. An additional 33.9% of the population (84.1 million) have prediabetes

of which almost 77 million are undiagnosed (CDCP (2017)). Consequently, diabetes is a

major source of medical expenditures in the form of direct medical costs including hospital

inpatient care (43% of the total direct medical expenditures), prescription medication to treat

the complications caused by diabetes (18%), antidiabetic agents and diabetic supplies (12%),

physician office visits (9%), and nursing/residential facility stays (8%) (Petersen (2016)). In
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the U.S., estimates of direct costs were increasing from $176 billion in 2012 to $237 billion

in 2017 (American Diabetes Association (2018)). Diabetes also imposes high indirect costs

due to work-related absenteeism, reduced productivity at work and home, reduced labor

force participation from chronic disability and premature mortality which increased from

$69 billion in 2012 to $90 billion in 2017 (American Diabetes Association (2018); Bjork

(2001); Petersen (2016)).

Application 2: Emergency Management: In chapter 4, we focus on emergency

management. According to Dallas Fire and Rescue Department, a structural fire incident

needs resources from several fire stations around the city which are close to the incident

location, each providing a specific type of vehicle. This means if more than a single structural

fire incident happens in a small area of a city within a short period of time, no resources

would be available to be dispatched to the incident. This can cause huge damages.

An important question for the Dallas Fire and Rescue Department is whether resources

should be moved around in the city to cover areas where the resources are currently

responding to an ongoing incidence. Every time an incident happens, resources in a particular

zone of the city will be dispatched and become unavailable for several hours. If another

incident happens in that zone during that time, resources from other areas of the city will

need to respond which will increase response time. To mitigate such situations, we can

temporarily reallocate resources.

1.4. Structure of this thesis

In chapter 2, we propose to utilize and combine three techniques and methods in a single

framework to model each system using its key characteristics. In our framework we have a

descriptive model that uses the characteristics of the system’s evolution to model its changes

over time including the inherent uncertainty in the changes. This model is learned directly

from the data available from each application area. We use a prescriptive decision model,

to optimize the decisions and actions the decision maker can make taking into account each
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action’s immediate and long term effects on the system. The decision model provides us

with an optimal policy. Additional information (signals) are provided using the predictive

model. The predictive model is also directly learned from the available data.

In chapter 3, we focus on chronic diseases specifically diabetes. We propose a targeted

screening policy (equivalently, screening strategy) that uses all available information on

individual patients to identify whom to screen (that is, which patients should receive the

gold-standard test) and when to screen them; the policy is also age-specific. We develop

and validate our model on a detailed and proprietary dataset – of over 12,000 patients over

an 18-month period – from a large safety-net hospital and demonstrate, using a simulation

analysis, that our proposed screening policy can improve patient outcomes.

In chapter 4, we focus on emergency management. We apply the proposed framework,

and formulate the problem as a POMDP problem. We focus on one city zone in order to

define our state space. We try to capture the availability of the resources in that zone in

the near future; By implementing the proposed POMDP policy, and through simulation,

we demonstrate that we can improve the average response time by a significant amount

compared to existing policies.

Chapter 5 concludes this thesis. In the appendix of this thesis, details of the simulations

conducted as well as the manual to the R package ’pomdp’ developed to support the research

are included.
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Chapter 2

A Data-Driven Decision Framework

We propose to utilize and combine three techniques and methods in a single framework to

create a decision framework that uses data in all main phases. In our framework we have a

descriptive model that uses the characteristics of the system’s evolution to model its changes

over time including the inherent uncertainty in the changes. This model is learned directly

from the data available from each application area. We use a prescriptive decision model,

to optimize the decisions and actions the decision maker can make taking into account each

action’s immediate and long term effects on the system. The decision model provides us

with an optimal policy. Additional information (signals) are provided using the predictive

model. The predictive model is also directly learned from the available data.

Figure 2.1 represent the integration of the methods into a single decision-making

framework. The vertical classification of the methods used in the framework can vary based

on the application but it is strongly related to the perspective the decision maker is looking at

the system from. We will later see how this classification works for each of the applications.

In this work we will use Partially Observable Markov Decision Process (POMDP) as the

main decision-making/prescriptive model (Figure 2.1 upper-right box). The reason behind

choosing POMDP as the main decision model, is the nature of the systems we are analyzing;

the status of each system can be modeled into separate states that change over the time and

these states could be the actual states of a Markov chain. We will elaborate on this later in

each chapter associated with each application.

We use Hidden Markov Models (HMM) as the descriptive model of the systems (Figure

2.1 upper-left box). The role of HMM is to model the evolution or dynamics of the system

in a Markov chain and estimate the parameters of this Markov chain. HMM here provides

the decision model with the parameters of the underlying Markov chain that is being used in

7



Figure 2.1: Multi-method decision-making framework to combine descriptive modeling and
predictive modeling with optimization

the POMDP of the decision model. The HMM is directly learned from the historical data.

The predictive model (Figure 2.1 lower-right box) provides the POMDP model with

external information in the form of observations. Below we will see how this predictive

model works in combination with the decision model and how this integration works toward

the contribution of this research.

2.1. Stochastic systems and their evolution

When it comes to decision making under uncertainty, understanding the system for which

we are trying to make an optimal decision is of great importance. Applying rule of thumb

methods is popular when it comes to decision making under uncertainty, but it typically leads
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to suboptimal and often very poor decisions. Systems vary in terms of how they change over

time (how their dynamics work) and where the actual inherent uncertainty comes from.

The way a system changes over time and where the uncertainty comes from impact how an

optimal decision should be made given the current state of the system.

The evolution of many systems over time is continuous but can be simplified into discrete

time-steps with a finite number of states. Including uncertainty, such a system can be

modeled as a discrete-time stochastic process with a discrete state space. Assuming that,

given the current state of such a system the future state of the system is independent of

the past states, the system can be modeled as a Markov chain. If we narrow down the

systems we are dealing with to a system that can be modeled as a Markov chain, then a

set of techniques including Markov Decision Processes (MDPs) or its generalizations such

as Partially Observable Markov Decision Processes (POMDPs) can be applied to determine

optimal decisions. The use of MDPs or POMDPs depends on the nature of the system and

where the uncertainty comes from.

In some systems, the current state of the system cannot be observed directly and thus

is unknown. Only a probabilistic belief of the current state can be constructed using

observations or information coming from the system. POMDPs which are a generalization

of MDPs, allow capturing this type of uncertainty regarding the observability of the current

state of the Markov process. For many applications, the current state of the system is either

unknown or unobservable by the decision maker and this adds to the uncertainty that lies

within the system’s evolution. The two major complications regarding POMDPs are due

to the two types of uncertainty in these types of systems: First, the uncertainty resulting

from the stochastic nature of the system evolution, and second and more importantly, the

uncertainty regarding the current state of the system which has to be inferred via imperfect

information. The second type of uncertainty here is formed by the relation between the

underlying state of the system and the observations produced by the system revealing some

information about the current state of the system.
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Observations used in POMDPs can be any signal that the system emits which gives

information about the actual state of the system. The nature of the observations depends

on the nature of the system. In the tiger problem (Cassandra et al. (1994)) for example, the

decision maker needs to decide which of two doors to open. Behind one door is treasure while

behind the other is a hungry tiger. The decision maker does not know behind which door the

tiger is and can only make observations by listening for tiger noises which are not perfectly

accurate. The question is how often to listen for tiger noises before the decision make opens

a door. The more complex the system is, the more different observations can be made about

the current state of the system. An observation can be a single signal observed at a time or a

combination of signals from different sources within the system. What matters is how much

an observation will help the decision maker to determine the current state of the system and

thus to make the best decisions. Therefore, finding accurate sources of observations from

the system and choosing the best ones is a key step in modeling a POMDP and making the

best decisions.

2.2. Introduction to Partially Observable Markov Decision Processes

POMDPs are generalizations of MDPs where there the state space is not completely

observable to the decision maker (Drake (1962)). A discrete-time POMDP model is a 7-

tuple (S,A,P ,Ω,O, R, λ), where

• S is the set of states (s) describing the various states the system can be in,

• A is the set of available actions (a) the decision maker can take,

• P is the set of transition probabilities between the states which simply describes how

the system evolves over time and is conveying part of the uncertainty in the system

(stochastic dynamics of the system),

• Ω is the set of all observations (o),

• O is the set of observation probabilities or how the observations relate to the actual

states of the system,
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• R is the reward function of the model, and

• λ is a discount factor between 0 and 1.

Figure 2.2: States space and observation space of a POMDP model

The state space and observation space of a POMDP model are depicted in Figure 2.2.

In a POMDP, the states, actions, and observations can be discrete. We denote them at

time by st, at, and ot respectively. Transition probabilities are action and state-dependent

function: P (st+1, st, at) = pr {st+1| st, at}. The observation probabilities are a function

of state, action, and observation: O (at, st+1, ot) = pr {ot|at, st+1}. Since the states are

not directly observable, the decision maker’s belief about the current state of the system is

represented by a belief state πt which is a probability distribution over all possible states. The

belief state is updated using Bayes’ rule every time an action is taken and an observation is

observed: πt+1 (st+1) ∝ O(at, st+1, ot)
∑P(st+1, st, at)πt. The importance of the observations

and their relations with the actual states is given in the belief state update formula based

on Bayes’ rule where the function O is used. The more accurate this function is in terms of

providing information about the actual state of the system, the better is the solution of the

POMDP.
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At each time step or decision epoch, the decision maker makes a decision and takes an

action available from the action set. The decision maker takes this action based on the

observation. The system then evolves into a new state, new observations are made, and the

decision maker needs to take an action again. Each time an action is taken a certain amount

of reward is given to the decision maker based on the given reward function R (st, at) which

is action and state-dependent.

In POMDPs we are trying to find a set of actions (a policy) that maximizes (minimizes)

the expected total discounted rewards (costs) over an infinite horizon. Such a policy is called

the optimal policy. The optimal policy ℘∗ is obtained by solving the Bellman Optimality

Equation

V ∗ (π) = maxa∈A
{
R (π, a) + λ

∑
o∈ΩO (a, π, o)V ∗(π′)

}
.

The optimal value can be computed by applying dynamic programming to iteratively

improve the value of the function.

Since the belief space is uncountable, the above dynamic programming recursion does

not translate into practical solution methodologies. Even with the finite dimensional

characterization of a POMDP (finite state space, finite action space and finite observation

space), determining the piecewise linear segments of the value function at each epoch is

computationally expensive due to the fact that the number of piecewise linear segments

can increase exponentially with the action space dimension, state space dimension and

observation space dimension. Therefore, exact computation of the optimal policy is only

computationally tractable for small state dimension, small action space dimension and small

observation space dimension. It is shown in Papadimitriou (1987) that solving a POMDP

is a PSPACE-complete1 problem. Littman (2009) gives examples of POMDPs that exhibit

this worst case behavior. It is inferred that simplifying a POMDP model in any way such

1Decision problem A is PSPACE-complete if both of the following are true (Sipser (1997)):

1. A ∈ PSPACE (PSPACE: Decision problems solvable in polynomial space)

2. For every X ∈ PSPACE, X ≤P A.

12



as reducing the dimension of any of the spaces including the observation space can save

significant amount of computational expenses. In the next section, we will see how this

problem of interest has been studied in the literature.

2.3. Literature related to Partially Observable Markov Decision Processes

Controlling a Markov process with incomplete state information (including a partially

observable state space) was first studied in Dynkin (1965). The first POMDP model was

developed in Drake (1962). Other researchers at the same time developed finite horizon

POMDPs in the context of stochastic control problems (Aoki (1965); Astrom (1965)).

During the past years many other generalizations and versions of POMDPs have been

investigated and developed by researchers including POMDPs with an uncountable action

space (Sawaragi and Yoshikawa (1970)), POMDPs with Borel spaces (Rhenius (1974)),

POMDPs with an arbitrary core process state space (Furukawa (1967)), non-stationary

POMDPs (Hinderer (1970)), undiscounted infinite horizon POMDPs (Platzman (1980)),

semi-Markov core process PODMPs (White (1975, 1976)), and so on.

There also exists a large number of papers investigating Bayesian control of the sequential

decision process including Furukawa (1967); Rieder (1975); Satia and Lave (1973); Wessels

(1968).

In terms of dealing with observations and the observation space, not much research has

been reported. Most of the studies that utilize POMDPs to solve their problems including

Ayer et al. (2012a); Cassandra (1997); Grosfeld-Nir (1996); Hauskrecht (2000); Littman

(2009); Monahan (1982); Sandikci et al. (2013) simply and naively assume that a single-signal

is apriori known, not considering the fact that real-world systems produce a large number of

signals and that the observation space plays a significant role in POMDPs where the current

state has to be inferred through observations. There exist only a few studies that deal with

how to select multiple observations from a multidimensional observation space. In Hoey

and Poupart (2005) authors speak of multidimensional observation spaces, how to sample

from them, and how to aggregate observations in order to reduce the dimensionality of the
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observation space. Observations can be aggregated in some cases if the policies associated

with them are the same (policy-directed observation aggregation). Observations can also be

aggregated in one-dimensional continuous observation spaces by discretizing the continuum

into segments whose observations yield the same optimal policy (Hoey and Poupart (2005)).

For multidimensional observation spaces, authors in Hoey and Poupart (2005) examine two

approaches. The first approach is for observation spaces where observations are composed

of conditionally independent variables. For this case, they reduce the observation space to

one dimension by sequentially processing the observation variables in isolation. The second

approach which is used for arbitrary multi-dimensional observations is sampling and it is

proved to be an effective approximation technique for computing aggregate probabilities.

The authors in Hoey and Poupart (2005) propose a dynamic partitioning technique which

is integrated with point-based backups. There are several drawbacks associated with these

types of methods. These methods do not work with some POMDP algorithms such as

Incremental Pruning (Cassandra et al. (2013); Zhang and Liu (1996)), Witness algorithm

(Kaelbling et al. (1998a)), and Bounded Policy Iteration (Poupart and Boutilier (2004)).

Another drawback is that the proposed method in Hoey and Poupart (2005) deals only

with POMDPs with continuous observations but discrete states. Although others have tried

to reduce the dimensionality of the whole POMDP by reducing the observation space’s

dimensionality, they have never looked at the problem from a different perspective. All the

efforts that have been made are post-POMDP dimensionality reductions. Here we apply a

pre-modeling technique for observation aggregation that not only produces more meaningful

and accurate observations from the system, but it also shapes both the state space and

observation space in full compliance with each other.

2.4. Predictive Modeling for Observation Aggregation

Observations and their relations to the actual states in POMDPs are extremely important.

Systems may produce more than one signal and these signals can be used as observations in

POMDPs. The question of how to choose the signals to use as observations in a POMDP
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is still open in the literature. If all signals are used as observations, we will have a large

observation space which makes POMDPs very difficult to solve. Even if there is no problem

with the dimensionality, determining the relationship between these many signals and actual

states of the model is not always possible. As mentioned before, reducing the dimensionality

of the observation space by aggregating the observations into more accurate and informative

ones can save significant amount of computational expenses.

The fact that systems produce signals all the time (either continuously or discretely in

time) reveals that the information from these signals gathered over time provides historical

data for the system. If enough data is gathered from the sources of signals (enough signals

recorded), the data can then be analyzed for further purposes using data-driven analytics

techniques. One purpose is to select a subset of signals and aggregating them into a single

more accurate and meaningful observation. This problem is broken down into two major

steps in this research work. The first step is to select a proper subset of signals from the

system (signal selection step). And the second step is to combine or aggregate the selected

signals into a strong observation (signal aggregation step). These two steps are depicted in

detail in Figure 2.3.

The first step is a feature selection problem. We try to select a subset of features (signals)

that are later going to be used in a predictive model to produce more meaningful observations.

From another perspective, using historical data recorded from the signals, in this step we

identify which signals are giving more information about the actual states of the model. The

outcome of this step would be a list of signals, sorted based on their strength in pointing to

the right state of the system.

What needs to be taken into consideration in the signal selection step, is the problem of

missing data. This matters because one type of signal may be accurate, but it might be

harder to observe and thus not always available. We will later see in the signal aggregation

step why this is important.

The signal aggregation step is implemented by a predictive model that uses the selected

features from the previous step in order to provide outcomes that are more meaningful and
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Figure 2.3: Data-driven signal selection and aggregation framework

accurate. In this step, we develop a classification model where the input is the selected

signals from the signal selection step and the classes are the actual states of the model. By

training this classifier we will have a predictive model that takes all the signals as the input

and then predicts the state of the system. These predictions are then used in the POMDP

as observations to update the belief state.

Predictive models are rarely perfect. There are always misclassification errors associated

with such models. These errors are taken into consideration and used as the relationship

between the predictions (that are going to be used as the observations) and the actual states

of the POMDP. In another word, the accuracy of the predictive model is implemented in the

POMDP as the observation probability function.

Figure 2.3, shows an example system that has a total number of N states (i.e. card(S) =

N) and the system produces M signal at each epoch. Each signal can take N distinct

values (signal i ∈
{
σ1
i , σ

2
i , . . . , σ

N
i

}
). This means that in a POMDP model that takes

all these observations into account, the total number of observations would be NM (i.e.
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card(Ω) = NM). Not all these N signal are perfect in pointing to the true underlying state

of the system at each epoch. Some might work better than others. The strong signals are

selected in the signal selection part of the framework. The predictive model then uses these

signals to predict the state of the system. Although the prediction (the outcome of the

predictive model) is in terms of the state of the system, it typically will not be completely

accurate but can be used as an informative observation, increasing our understanding of

what state the system most likely is in. Using the framework in Figure 2.3 we produce only

one signal out of M signals, and this signal can take N distinct values (observations). Thus,

the total number of observations will be N and therefore the size of the observation space is

reduced significantly.
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Chapter 3

Optimal Individualized Diabetes Screening (P1)

This chapter describes the application of the decision framework to the problem of

diabetes screening. In this chapter, we provide details on the techniques used in the decision

framework in Figure 3.1. We use POMDP to formulate the sequential screening decision-

making problem. The model is informed by the population-specific disease progression

learned from data using the HMM. The disease stages and the costs to the healthcare

system and the patient are derived from the medical literature and clinical expertise. The

screening decisions are highly personalized using a predictive model trained on a large set

of electronic health record data. While any predictive model can be used, we apply here

a logistic regression model with L1 regularization (LASSO). The solution of the POMDP

given the assumptions is an optimal screening policy which can be used in clinical practice.

We propose to supplement existing guidelines with an opportunistic screening strategy

that (1) incorporates all clinical information available about each patient to identify

individuals at higher risks of developing prediabetes or diabetes, and (2) identifies the optimal

time to perform the screening to optimize expected health outcomes and healthcare cost.

Figure 3.1 shows the high-level multi-method framework proposed in this paper. We use

a POMDP model (upper right) to find an optimal policy for the main decision-making

problems of whom to screen and when to screen/re-screen. The transition parameters of

the POMDP model are estimated using a disease progression model (upper left), a Hidden

Markov Model learned from historical patient data. The observations used by the POMDP

model are created via a predictive model that incorporates patient-level risk factors (lower

right).

18



Figure 3.1: Multi-method decision-making framework to combine progression modeling and
predictive modeling with optimization

3.1. Background on Diabetes

Like many other chronic diseases, Type 2 diabetes has a prolonged asymptomatic period

during which early detection is possible because diabetes onset occurs on average 9-12

years before clinical diagnosis Lu et al. (2010). Diabetes risk increases across a continuum

with higher glucose levels corresponding to higher risk as the glucose level is an indicator

of whether the patient has diabetes. For diagnostic and treatment purposes, two key

stages are characterized – prediabetes and diabetes. In the prediabetes stage, patients are

asymptomatic and blood glucose is higher than normal but not high enough to be classified

as diabetes. Although progression to diabetes can be reversed by lifestyle modification and

interventions like bariatric surgery, many patients with prediabetes go on to develop diabetes,
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Figure 3.2: the costs associated with the disease increase very quickly as the severity of the
disease increases

a chronic disease requiring medical treatment to control the disease and prevent/manage

complications. Importantly, identification of patients during the prediabetes stage allows

the delivery of evidence-based interventions to delay or prevent the development of diabetes

prevention Program (2008); Group (2002). Thus, screening of individuals at risk for diabetes

and timely surveillance of patients with prediabetes to detect the transition to diabetes is

critical to improving health outcomes and reducing healthcare costs (see Figure 3.2).

Systematic diabetes screening and prevention programs can identify patients at risk for

diabetes and target preventive interventions to delay or prevent the development of type

2 diabetes. The American Diabetes Association (ADA) and the US Preventative Services

Task Force (USPSTF) provide physicians with guidelines for screening. These guidelines

recommend screening about 70% of the population Calonge and Petitti (2008); Care (2013),

which is a very expensive proposition and in many cases, operationally impractical Howard

et al. (2010). The guidelines are based on only a as small number of predictors including

age, body mass index, and a few risk factors. This results in a sensitivity as low as 65%

for USPSTF and specificity as low as 23% and 67% for ADA and USPSTF respectively for

identifying diabetes cases.
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3.2. Related Literature

Figure 3.1 provides an overview of the methods used in this paper to address the problem

of diabetes screening. Many of these methods have been employed independently to answer

specific questions in the healthcare context but they have not been integrated to address

such a decision-making problem. In the following, we review the literature related to these

methods and techniques.

3.2.1. MDP for Medical Decision Making

Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs) are

methodological tool of choice to study medical decision making problems for chronic diseases

such as Diabetes (Kuo et al. (1999); Santoso and Mareels (2001); Shih et al. (2007); Hoerger

et al. (2004)), HIV/AIDS (Lee et al. (2014); Gafa et al. (2012); Shechter et al. (2008)),

Cancers (Ayer et al. (2012b); Garćıa-Mora et al. (2010); Ahsen and Burnside (2018); Maillart

et al. (2008); Chhatwal et al. (2010)) and their associated complications (Sandikci et al. (2008,

2013); Schaefer et al. (2004); Sukkar et al. (2012); Alagoz et al. (2010)). MDPs have also been

used for hypertension treatment specifically for designing therapeutic regimens for patients

with hypertension (Zargoush and Daskalopoulou (2018)). Also, MDPs have been used for a

wide range of healthcare management problems such as dealing with emergency department

congestion (Patrick (2011)). An attractive key feature of MDPs is that they can be used to

deal with sequential decision-making problems in contexts with large levels of uncertainty

(for example, in terms of how fast the disease progresses in a given patient population). In

such settings, MDP’s can be used to determine the optimal time for screening and treatment

initiation (Alagoz et al. (2010)). For example, MDPs have been used to answer questions

such as: optimal time to initiate antiretroviral therapy in HIV patients (Shechter et al.

(2008)), optimal time for breast cancer screening in women (Maillart et al. (2008); Chhatwal

et al. (2010); Ayer et al. (2012b)), or optimal time for accepting a living-donor transplant

in patients suffering from end-stage liver disease (Alagoz et al. (2004, 2005); Sandikci et al.

(2013, 2008)). Readers are directed to (Alagoz et al. (2010); Monahan (2008); Cassandra

21



(1997); Schaefer et al. (2004)) for a review of literature describing uses of MDPs in medicine.

3.2.2. HMM to Model Disease Progression

Disease progression modeling is important for disease prognosis improvement, drug

development, and clinical trial design. Difficulties with modeling disease progression

include progression heterogeneity (patients have different progression trajectories due to

many reasons), incomplete patient records (censoring and missing information), discrete

observations (disease progression is a continuous process, but patients’ records of the

progression are observed and recorded at discrete times with varied intervals), and

irregularity of observations (due to irregular visits) (Wang et al. (2014)).

A large portion of the literature on disease progression modeling focuses on evidence-

based modeling using machine learning and statistical techniques based on observational

data. A popular model is the hidden Markov model, where disease progression is modeled

as a progression through a set of unobservable discrete disease states governed by transition

probabilities. For example, a general hidden Markov model to estimate transition rates

between states as well as the probabilities of states of misclassification is presented in Jackson

et al. (2003). Another study (Liu et al. (2015)) presents an effective learning method for

continuous-time HMMs by dealing with the challenges of estimating the posterior state

probabilities and the computation of end-state conditional statistics. In Sukkar et al. (2011)

the authors develop a six-state HMM of Alzheimer’s disease which allows progression by one

or two states or regression by one state using data from 595 subjects. They calculate the

states transitions and conditional probabilities of being in each state using the developed

model. The authors also propose an HMM for the Alzheimer’s progression in another study

(Sukkar et al. (2012)) with the ability to identify more granular disease stages than the three

currently accepted clinical stages for Alzheimer’s disease. Some studies use techniques other

than HMMs to model the disease progression or obtain state transitions such as simulation

(Lee et al. (2008)). Best practices on estimating the transition rates between states including

techniques such as HMMs can be found in Denton (2018); Siebert et al. (2012).
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3.2.3. Predictive Models in Healthcare

There is a growing number of studies using predictive models in healthcare decision

making. These studies include the use of analytics in healthcare such as personalized diabetes

management (Bertsimas et al. (2017)), chemotherapy regimens for cancer (Bertsimas et al.

(2016)), hospital readmissions (Shams et al. (2015)), and healthcare screening decisions such

as screening for Hepatocellular Carcinoma (Yuen and Lai (2003)), breast cancer screening

(Maillart et al. (2008)), and HIV screening (Deo et al. (2015)). Studies on the use of

predictive models for diabetes screening are reviewed in (Collins et al. (2011)) where the

authors conduct a systematic review of the methodology of 39 studies and in (Jahani and

Mahdavi (2016)) where the authors develop neural network models for diabetes prediction

and compare with other models.

(Collins et al. (2011)) survey 39 studies with 43 risk prediction models that use 4 to 64

predictors including age, family history, body mass index (BMI), hypertension and fasting

glucose. The most common modeling method among these studies is logistic regression. It

is reported, that almost all reviewed studies remove incomplete cases or do not mention

how missing data are treated. There are two types of predictive model in the literature,

single-factor and multi-factor models. The single-factor models use common predictors such

as age or BMI for which the availability in routine clinical settings is high. The drawback for

single-factor predictive models is that no prediction can be made if the factor is not available

for a patient. On the other side, for multi-factor models, can incorporate many factors, but

since all these factors need to be available for the patient, for the sake of practicality a small

number of predictors is typically preferred. Multi-factor models consider more information

about the patient and therefore can provide better predictions compared to single-factor

models.

The majority of the reviewed literature focuses on using a only single technique of the

multi-method framework proposed in Figure 3.1. While these methods individually can

be used to predict desease progression at the population level or what patients are more

at risk of having undiagnosed diabetes, they only. . . The key contributions of this paper
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is that we group all these methods and techniques together, using one to feed another,

feeding all with real data to answer a question that has implications for clinical practice

as well as contributions to a theoretical operations literature. Researchers have used the

same techniques but independently, they have used MDPs or POMDPs to model decision

making problems that concern healthcare but independent of what a specific hospital system

would need or without using real data. They current state of the art is to simply assume

some transition rates while we actually calculate using real data. They have used HMMs

to estimate transition and progression rates for various disease but not in the context of a

decision making problem. They have used data driven methods including predictive models

to predict specific chronic diseases such as diabetes but never used it to feed MDPs as

an individualized input for the decision making problem. . . . our approach is able to

answer the questions of whom to screen, when to screen them and how often rescreening

should take place in an integrated, analytics-driven decision framework that takes health

outcomes, healthcare cost, cohort information, and available individual patient information

into account.

3.3. The Partially Observable Markov Decision Process Formulation

Partially Observable Markov Decision Processes (POMDP) are an extension of Markov

Decision Processes (MDP) to make optimal decisions when the current state of the system

(in our case, the true health status of the patient) is not directly observable. The method

uses a probabilistic belief distribution over the unobservable states of the system which is

informed by observations. These Markov models assume that the process is Markovian, i.e.,

that future states only depend on the current state. While this is a very strong assumption,

models based on the assumption are often very useful.

The set of states for the screening decision model are healthy, prediabetes, and diabetes.

The decision is whether to screen the patient, henceforth referred to as “screening” decision.

We assume the following: (a) the decision-maker is the clinician who acts on behalf of the

patient and the health system, (b) the screening decision for a given patient is independent
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of other patients, (c) screening decisions are made at discrete points in time when the patient

and clinician meet, and (d) patients stay in each state for at least one decision epoch.

A discrete-time POMDP model is a 7-tuple (S,A, P,Ω, O,R, λ), where S is the set of

states, A is the set of actions, P is the set of transition probabilities between the states, Ω is

the set of all observations, O is the set of observation probabilities, R is the reward function

of the model and λ is discount factor. Below are the detailed description of the essential

components associated with the POMDP that need to be defined in advance to model the

problem Cassandra et al. (1994); Kaelbling et al. (1998b); Puterman (2005):

3.3.1. Time Horizon and Decision Epochs

We use decision epochs of one year. Decisions are made at the beginning of each period

starting from the first time the patient meets the clinician. We represent the epochs with

t = 0, ..., T . The time horizon in our problem expands from the first time the patients meets

the clinician until the patient dies or reaches the age of 79.

3.3.2. State Space

The state space in our model consists of a total of 7 distinct states S =

{H,P,D, SH, SP, SD,∆} and includes both observable and unobservable states. The 3

unobservable states are: Healthy (H), Prediabetes (P), Diabetes (D) which are the main

underlying stages of diabetes. The 3 observable states are the screened representatives of

the observable states: Screened Healthy (SH), Screened Prediabetes (SP), Screened Diabetes

(SD). These states are completely observable, since they are the outcome of screening. The

last state is Death (∆), which is the absorbing state.

3.3.3. Action Space

The action space, A = {S,N}, represents the decision to screen (S) or not to screen (N)

a patient. We use at ∈ A to denote the action that is taken at time t at each decision epoch.
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3.3.4. Transition Probabilities

These probabilities indicate the probability of a patient moving from the current state

(st) to another state (st+1), given action at is taken. This probability is denoted by p{st+1 |
st, at}. These transition probabilities are associated with the arcs on the Markov model

underlying the POMDP (depicted in Figure 3.3). We use P to represent the set of all

transition probabilities (typically one state-to-state transition matrix per action). Regression

from diabetes to prediabetes or healthy states is very unlikely we therefore do not include

an arc from state D to P or D to H, corresponding to a transition probability of zero.

For our model, we assume that the transition probabilities are stationary in the considered

cohort. Thus, we drop the index t and use the notation p{s′ | s, a} to denote the “stationary”

probability of transitioning to state s
′

given the current state is s and action a is taken.

A key characteristic of the transition probabilities is that the sum of the probabilities of

transitioning from the current state to all other states including the current one should be

equal to 1 for each single action; that is

∑
s′∈S

p{s′ | s, a} = 1, for all s and a. (3.1)

We have the following:

p{H | H,N} = 1−
∑

s′∈S−{H}

p{s′ | H,N} = 1− p{P | H,N} − p{D | H,N} − p{∆ | H,N},

(3.2)

Similarly, for states P and D we have:

p{P | P,N} = 1−
∑

s′∈S−{P}

p{s′ | P,N} = 1−p{H | P,N}−p{D | P,N}−p{∆ | P,N}, (3.3)
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and

p{DH | D,N} = 1−
∑

s′∈S−{D}

p{s′ | D,N} = 1− p{H | D,N}− p{P | D,N}− p{∆ | D,N}.

(3.4)

We assume that a positive screening result (i.e., the patient is diagnosed with prediabetes

or diabetes) influences the patient. The patient will receive medical treatment or may

perform lifestyle changes (e.g., diet, exercising, weight loss). We capture these effects using

the factors β, γ ∈ (0, 1) which are used to reduce the transition probabilities for the disease

to progress from screened states (SP, SD) into more severe stages compared to patients in

the same states but not screened.

3.3.5. Observations and Observation Probabilities

At each decision epoch, a signal/observation, o ∈ Ω, provides information about the true

underlying (unobservable) state of the patient. Depending on the nature of the problem,

observations can be obtained from various sources. We propose to create these observations

using a predictive model (see Section 3.4) which classifies the patients into the groups of

Predicted as Healthy (PH), Predicted as Prediabetic (PP) and Predicted as Diabetic (PD).

Thus, the observation space is Ω = {PH,PP, PD}. Predictive models are usually not

perfect and therefore the predictions used as observations are probabilistically connected to

the unobservable states, i.e., the probability associated with predicting a specific observation

o ∈ Ω, given that the true state of the patient is s is O(o | s) where O is the set of all

observation probabilities.

3.3.6. Belief States

Π(S) is the probability simplex over the state space S, defined as Π(S) = {π ∈ R3 :∑3
i=1 πi = 1, πi ≥ 0,∀i}, also called the belief space Sandikci et al. (2013); Brafman (1997);

Sandikci et al. (2010). We use πt to denote the belief state at period t which is the probability

27



distribution over the set of possible states, i.e., πt = (πt(H), πt(P ), πt(D)).

3.3.7. Reward Functions

The POMDP maximizes expected rewards. Taking action a while being in state s will

bring about an immediate reward denoted by the reward function r(s, a). We use as the

values of the reward function estimates that combine the patient’s QALY (Quality Adjusted

Life Year Neumann et al. (2014b) ), the costs of prediabetes, diabetes and screening tests all

measured in US dollars. We formulate each state-and-action specific reward function from

the societal perspective as follows:

r(s, a) =



Q , s = H, a = N

(1− αP )Q, s = P, a = N

(1− αUD)Q, s = D, a = N

Q, s = SH, a = N

(1− αP )Q, s = SP, a = N

(1− αDD)Q, s = SD, a = N

(Q− CS)ur, s = H, a = S

(1− αP )Q− CP − CS, s = P, a = S

(1− αDD)Q− CD − CS, s = D, a = S

(Q− CS)ur, s = SH, a = S

(1− αP )Q− CP − CS, s = SP, a = S

(1− αDD)Q− CD − CS, s = SD, a = S



(3.5)

where the terms Cs, CD, CP , Q, le, ld, ur, Q and αi, i = {P,UD,DD,D} are later described

and estimated in Table 2 in section 4 alongside their values.

3.3.8. Bayesian Belief State Update and Optimality Equation

To implement learning from a new observation o, the belief state π = (π(H), π(P ), π(D))

is updated to π
′

using the Bayes’ rule. The updated component of π
′

associated with state
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s
′

is given by

π
′
(s

′
) =

O(o
′ | s′)∑s∈S p{s

′ | s, a}π(s)∑
s′∈S O{o′ | s′}

∑
s∈S p{s′ | s, a}π(s)

(3.6)

Using belief states, the POMDP can be reformulated as a continuous state MDP and the

optimal solution is the result of solving the Bellman optimality equations Puterman (2005):

ν(s, π) = maxa{r(s, a) + λ
∑
j

∑
s′

∑
o′

p{s′ | s, a}O{o′ | s′}ν(s
′
, π

′
)} (3.7)

where λ ∈ [0, 1) is the discount rate. The result will be the optimal screening program

suggested by the model (see Section 5).

Figure 3.3: Underlying health states and observations of our POMDP model and the
transitions among them. Only possible transitions are shown and those, which are not likely
such as the transition from Diabetic to Healthy, are not depicted. Black arcs correspond to
the natural progression of disease, green arcs correspond to the screening decisions, and red
arcs correspond to reversion from screend states to uncontrolled ones.
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3.4. Hidden Markov Models

A significant issue with using models that are based on transitions between unobservable

states is how to estimate transition probabilities reliably from data. In our case, the states

H,P,D are not directly observable, but the POMDP models needs transition probabilities

between these states. The available data are provided by patient histories where at some

point in time a diagnosis of prediabetes or diabetes is made, typically via a HbA1c screening

lab test. We assume that up to the point in time when the diagnosis is made no significant

medical intervention is performed and that the lab test reveals the true state (with some

error). Transition probabilities between the unobservable states can be estimated from such

data using a Hidden Markov Model (HMM), where the word hidden is used here for the fact

that the true disease states are unobservable.

A HMM is a sequence of random variables Xt for time t = {1, 2, ...} representing the

hidden state with 3 possible values H,P,D and a sequence of associated random variables

Yt whose realizations of the 3 possible values SH, SP, SD represent observations. There are

two types of parameters associated with HMMs: the transition probabilities between two

unobservable states given by the transition matrix

M = {mij} = P (Xt = j | Xt−1 = i), (3.8)

and the probabilities that indicate the likelihoods that a certain hidden state will lead to a

specific observation in the form the emission probability matrix

N = {nj(yt)} = P (Yt = yt | Xt = j). (3.9)

The initial state distribution for t = 1 is defined as qi = P (X1 = i). The aim is to

estimate the parameters of the hidden Markov chain, σ = (M,N, q) from observational data.

The standard estimation procedure for HMMs is the Baum-Welch algorithm which utilizes

the Expectation–Maximization iterative algorithm in order to find the maximum likelihood

estimate of the parameters of the model given a set of historical observations Huang et al.
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(2001). The transition matrix M provides a data-driven estimate for the transitions between

the unobservable states in the POMDP specific to the cohort under consideration.

3.5. The Predictive Risk Model

Predictive risk models are powerful tools that can contribute to the decision-making

process especially in the field of medical decision making. PRMs are usually multivariable,

using several patient risk factors that are used to predict an outcome such as patient’s status.

These models can be utilized in many different ways including identifying those who are at

an increased risk of having an undiagnosed condition to target healthcare interventions or

lifestyle changes to.

Instead of using different risk factors directly in the update of the belief state in the

POMDP, we propose to use a predictive risk model (PRM) to generate personalized

predictions (used as observations) for the POMDP. Using a PRM offers many attractive

features including a wide selection of available classification methods, a simple and efficient

learning process, the possibility of data-driven feature selection, and the availability of

methods that deal with missing data. These are very important advantages for working with

electronic health record data, where the amount of information available for each patient

can vary substantially.

The PRM model is used to predict one of the K = 3 values for the response variable

G = H,P,D using a feature vector x. Here we consider multinomial regression, an extension

of logistic regression for a response variable with multiple levels. The probability of value k

is predicted by

P (G = k | X = x) =
eβ0k+βT

k x∑K
l=1 e

β0l+β
T
l x

(3.10)
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and the value with the highest probability is used as the prediction. The parameters are

estimated from N observations yi using

minβ0,β
1

N

N∑
i=1

l(yi, β0k + βTk xi) + λ ‖ β ‖1, (3.11)

where the function l calculates the negative log-likelihood contribution of observation i, and

the last term is used for L1 regularization.

Predictive models make classification errors. For example, a healthy patient may be

misclassified as having prediabetes. These errors can be assessed using standard cross-

validation techniques and are typically summarized in a so-called confusion matrix. Since

we use predictions as observations o and the correct classification is given by the unobservable

state s, the confusion matrix can be used as an estimate for the observation matrix O.

3.6. Parameter Estimation

In this section, we will first describe the data used in this research, and then we provide

explanations on how we estimated each set of parameters using the techniques previously

introduced and described in this chapter.

3.6.1. Data Description

The data used in this part of the research comes from the Electronic Health Record (EHR)

of a large, integrated safety-net health system. Our cohort consists of patients from the

Parkland Health & Hospital System, who are at risk for diabetes but have not been diagnosed

with diabetes at the time of cohort entry. The cohort period is 2010 to 2014, during which

individuals in the cohort may be diagnosed with diabetes. We retain patients, who have been

diagnosed with diabetes, follow them over time, noting that additional information has been

collected on them after their diabetes diagnosis. The cohort includes established primary

care patients with an index visit occurring between January 1, 2012, and June 30, 2013,

and 2 or more completed outpatient visits between the index visit and December 31, 2014.

Patients are between 18 and 64 years of age at cohort entry. We exclude prevalent diabetes
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Table 3.1: Key characteristics of the cohort studied

Entire Cohort (N=12071) Normal Glycemia (N=4883) Diabetes (N=1314)

Age, years (SD) 47.49 (10.5) 45.18 (11.1) 50.02 (8.9)
Female, % 69.9 69.8 68.2
Race/ethnicity Non-Hispanic White 13.3 15.2 10.2

Black 39.8 35.2 44.7
Hispanic 42 45 40.4

Other 4.9 4.7 4.7
Education, years, mean (SD) 8.73 (3.3) 9.06 (3.2) 8.15 (3.4)
BMI, kg/m2, mean (SD) 31.37 (7.4) 29.74 (6.8) 35.2 (8.1)
Primary payer, % Charity 40 39 41.7

Private 13.2 13.1 11.8
Medicare/Medicaid 26.7 25 31.2

Self-pay 20 22.6 15.3
Lab values, mean (SD) Random Glucose 97.48 (17) 93.16 (12.9) 112.4 (27.3)

HDL-C 51.74 (15.5) 53.65 (15.5) 47.57 (13.8)
LDL-C 193.52 (38.6) 190.95 (38) 195.87 (39.4)

Triglycerides 146.35 (99.4) 135.52 (86.6) 173.62 (136.3)
Systolic BP 129.11 (15.7) 126.01 (15.6) 135.44 (15.5)

White Blood Count 7.39 (2.7) 7.34 (2.7) 7.71 (2.2)
Ferritin 140.06 (322.1) 140.26 (360.3) 150.95 (312.7)

Tobacco User, % Yes 12.2 12.8 12
Never 69.5 71.3 66.1

Passive 1.8 1.9 1.7
Quit 16.4 14 20.1

Alcohol User, % 10 9.9 10.2
Family history DM, % 71.1 74.8 62.1
Hypertension, % 46.9 38 62.6
CHF, % 2.3 1.7 3.8
Cardiovascular Disease, % 22.8 17.8 29.5
Medication use, % Steroids 18 18.6 17.6

Anti-hypertensives 45.5 37.4 61.5

and gestational diabetes. We excluded patients diagnosed with diabetes and prediabetes on

or 18 months before the index visit using ICD-9-CM encounter codes, problem list diagnoses,

and laboratory results (A1c, fasting glucose, oral glucose tolerance tests) meeting diagnostic

criteria . Table 3.1 provides summary statistics.

We estimate various parameters of our model using the data described in Table 3.1. We

reiterate that our goal is to provide an age-specific screening policy; some parameters such

as mortality rates are estimated for various age ranges.

3.6.2. Estimating Transition Probabilities

We estimate the transition probabilities for the POMDP, using patients’ historical data

(screening results from the EHR) as an input for the HMM. Screening results can be subject
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to error and thus the true health status of the patients is not observed directly but through

realizations or observations which are the LAB results. These trajectories are all discrete

observations recorded irregularly in time with varied intervals (due to irregular visits) and

are not always complete. The trajectory (P,*,*,*,*,P,*,*,D,*,D) can be an example of a

sequence of observations for a single patient during 11 years where * are representatives of

missing values (the years at which the patient did not show up or was not screened).

HMM uses the above-mentioned trajectories as an input for an iterative algorithm and

tries to find the transition probabilities that best fit the input sequences. The outcome of

HMM will be a transition probability matrix that best fits our data. This is shown in matrix

P .

p =


0.9438 0.048 0 0.0082

0.0328 0.9242 0.0348 0.0082

0 0 0.9916 0.0084

0 0 0 1


(3.12)

Note that it is impossible to go directly from Healthy to Diabetic since all the patients will

experience prediabetes by definition before getting into diabetes. There is also no regression

from diabetes to prediabetes and as soon as the patient gets into diabetes will have to stay

there.

The three elements of the matrix P that cannot be estimated from our data are age-

specific mortality rates for healthy, prediabetes and diabetes states. We obtain this from

the National Center for Health Statistics that reports the age-adjusted death rate of 0.0072

(2016 numbers) for standard population considering all possible causes of death Kochanek

et al. (2016) . We also estimate the age-specific death rates for age groups starting from 15

as well as the mortality rate for diabetes for the total population.

In order to estimate the age-specific mortality rates we define three random variables X,

Y ,and Z, where X is the random variable indicating the age of the patients in the cohort, Y is

the random variable representing the age at the death of the patients, and Z is the difference
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between these two random variables, i.e. Z = Y −X. Based on Kochanek et al. (2016) the life

expectancy for the U.S. population in 2016 is 78.6, i.e. E[Y ] = 78.6. Also from our dataset

we have E[X] = 47.5 (Table 3.1). Thus E[Z] = E[Y −X] = E[Y ]−E[X] = 78.6−47.5 = 31.1

would be the expected remaining life for the whole cohort. The quantity of interest is actually

p{Z = 1} = P1 for each specific age that translates into the mortality rate per each year

assuming the mortality rate is stationary. Thus, we have:

p{Z = n} = (1− P1)n−1P1, (3.13)

assuming each year is independent of other years. (3.13) is the probability distribution

function (pdf) of the Geometric distribution where Z is the number of independent trials

until a failure occurs (in this case, death). Thus, based on the Geometric distribution,

E[Z] = 1/P1. This way we can calculate the death rate per year P1 for each age assuming

E[Y ] = 78.6 using E[Z] = E[Y −X] = E[Y ]−E[X] = E[Y ]−X. We calculate this rate for

healthy, prediabetes and diabetes patients and show them with P(1, H), P(1, P ), and P(1, D)

respectively. It is worth highlighting that the life expectancy, E[Y ], varies for patients with

diabetes. Based on a 2010 report by the Diabetes UK, type 2 diabetes reduces the lifespan

by 10 years Key statistics on UK (2010). Another study claims that for people over 55, type

2 diabetes reduces lifespan for an average of 6 years for women and 5 years for men Loukine

et al. (2012).

3.6.3. Estimating Observation Probabilities

We extracted more than 40 features from the electronic health records and addressed

missing data using multiple imputation de Goeij et al. (2013). All features are scaled to

z-scores and multinomial regression with L1 regularization is applied. Table 3.2 gives the

parameters for the strongest 10 predictors converted to odds-ratios for the class diabetes

against health and prediabetes. The AUC column shows the area under the receiver

operating characteristic curve (diabetes against healthy and prediabetes) achieved by adding

more and more features.
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Table 3.2: Top 10 features of the proposed regularized multinominal regression model

Feature OR AUC
MEAN RANDOM BLOOD GLUCOSE LEVEL 1.67 65.53%
BMI 1.40 68.50%
SYSTOLIC BP 1.14 71.17%
HYPERTENSION 1.04 72.10%
FAMILY HISTORY 1.19 72.10%
HIGH DENSITY CHOLESTEROL 0.85 72.60%
AGE 1.19 72.87%
BLOOD PREASURE MEDICATION 1.06 72.87%
CHOLESTEROL MEDICATION 1.09 73.15%
CHOLESTEROL HDL RATIO 1.02 73.42%

The observation matrix O needed by the POMDP is estimated using the risk model’s

confusion matrix obtained via ten-fold cross-validation. For example, the observation

probability that a healthy patient will be classified as having prediabetes O(P,H) is the

estimated classification error of the model. The estimated observation matrix is given as

follows.

O(o | s) =


0.8 0.15 0.05

0.15 0.7 0.15

0.05 0.25 0.7

 (3.14)

The observation matrix for a perfect predictive model would have a probability of 1 along

the diagonal of the matrix and zero otherwise.

3.6.4. Estimating Rewards

Table 3.3 lists the values for these parameters and the cost of a diabetes screening test in

the U.S. All reward parameters and constants are annual and are based on estimates found

in the literature (see column source in the table). All costs are estimated from the societal

perspective.
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Table 3.3: Parameters associated with the reward function of the POMDP model

Parameter Description Source Value
Cs Cost of a diabetes screening test Chatterjee et al. (2013); Zhang et al. (2003);

O’connor et al. (2001); Kahn et al. (2010)
$8,346 1

Q Quality-Adjusted Life Year in U.S. dollars Neumann et al. (2014a) $50,000
CD Direct medical costs per year for a new-onset diabetes Chatterjee et al. (2013) $4,174
CP Incremental direct medical costs per year for

a patient with prediabetes
Chatterjee et al. (2013) $1,316

αP Annual utility decrease of living with prediabetes Ackermann et al. (2009); Neumann et al. (2014a) 0.16
αUD Annual utility decrease of living with undiag-

nosed diabetes
Ackermann et al. (2009); Zhang et al. (2012a);
Bahia et al. (2017); Zhang et al. (2012b)

0.2

αDD Annual utility decrease of living with diag-
nosed diabetes

Ackermann et al. (2009); Zhang et al. (2012a);
Bahia et al. (2017); Zhang et al. (2012b)

0.18

mT Age-Adjusted mortality rate in U.S. in 2016 Kochanek et al. (2016); Murphy et al. (2015) 0.0084
mD Age-adjusted mortality rate for Diabetes in 2016 Kochanek et al. (2016); Murphy et al. (2015) 0.00021
le Life expectancy for the U.S. population in 2016 Kochanek et al. (2016) 78.7
ld Lifespan decrement due to Diabetes Loukine et al. (2012) 5
ur Uptake rate of Diabetes screening 2 Khunti et al. (2015); Park et al. (2008); Orton

et al. (2013); Davies (1999); Eborall et al.
(2012)

0.644

3.7. Optimal Screening Policy3

There are various algorithms to solve POMDP problems. Details on how to solve

POMDPs and a survey on POMDPs solution methods are beyond the scope of this research

and can be found in Lovejoy (1991a,b). In this paper we will apply a popular grid-based

approximation Hauskrecht (2011); Ahuja and Birge (2018) called the finite grid method

Sandikci et al. (2013); Cassandra and Rocco (1998).

When the solution of the POMDP problem converges, then we can create a finite state

controller from the value function’s partitioning of the belief space. Using this controller, the

decision maker can execute the optimal policy without the need to track the actual belief

states. The controller is a graph where nodes are representatives of the belief states and arcs

represent updates of the belief state due to new observations. As an example of this graph,

the optimal policy for patients of age 55, solved with a coarse grid is depicted in Figure 3.4.

We use a coarse grid, since it results in a smaller number of belief states and a graph that

is easier to visualize and interpret. The initial node is determined by the prior belief about

the health status of the patient. For example, assuming that the prevalence of diabetes and

prediabetes among the patients in our cohort is 10 percent and 20 percent, respectively, the

3The authors of this paper have also developed an R (Team (2018)) package called “pomdp” which
provides an interface to pomdp-solve, a solver for Partially Observable Markov Decision Processes (POMDP)
Kamalzadeh and Hahsler (2019)
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Figure 3.4: Policy graph for patients of age 55 solved with a coarse grid

initial belief state will be π1 = (π1(H) = 0.7, π1(P ) = 0.2, π1(D) = 0.1) or node 6 in Figure

3.4. In other words, the decision maker will assume, based on the existing prevalence rates

(and with no other information) that the patient is in node 6 when she shows up for the first

time. As additional information on a patient becomes available (e.g., blood pressure, BMI

or symptoms of a DM complication), the predictive model will create a prediction which

is used as an observation to update the beliefs, or in other words, the state of the world

(represented by nodes) changes. We have arranged the graph such that the belief about

the decease severity increases from right to left and Predictions as Healthy (PH) move the

patient to the left, while Predictions as Diabetic (PD) move the patient to the right.

The only belief state where the optimal action is screening is state number 3. From there

the patient can go to the best state 9 (screened healthy), state 1 (screened diabetic), or stay

in state 3 (screened prediabetic). This implies that the optimal choice for patients of age 55

that are screened as prediabetic is to rescreen them in the next period since they remain in

the screening state.

By using a finer grid, we can create decision graphs with many more belief states, however,

the visualization of the decision graph becomes more and more difficult to read. We can

visualize the belief space as a ternary plot and place a belief states in that space. Figure 3.5
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(a) shows how a single belief state is located in the plot. Figure 3.5 (b) shows all the belief

states using a very fine grid for patient of age 55. Belief states where the optimal action

is screening are colored red. It can be seen that the decision boundary between screening

and not screening states can be approximated by a straight line through the belief space.

The patient should be screened whenever the belief about the patient’s health falls below

the line. A patient can be assigned to a belief state that indicates screening because the

physician makes that determination during the first encounter or because the belief state for

an existing patient is updated due to high-risk observations created by the PRM.

Since prevalence of diabetes is age dependent, also the optimal screening policy is age

dependent. We calculate the optimal policy graphs for different age groups, find the linear

separation between screening and not screening states and just place the linear separation

lines in the Figure 3.5 (c). As the patient’s age increases the decision boundaries move upper

from the triangle base. This indicates that the model is trying to reduce the risks as the

patients get older. For example, it is not optimal to screen a 60 years old patient with a belief

state of (40, 50, 10), but the same patient should be screened the next year. It shows that

as the age increases, the model moves the screening thresholds in a way that even patients

with lower risks get screened. For ages above 71, the policy the model provides is to screen

at each period (always screen).
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Healthy = 26%

(26,46,28)

(a) how to read the graph

screen
not-screen

(b) decision boundary for age 55

(c) decision boundaries for various ages

Figure 3.5: Ternary plots representing the decisions associated with each belief state.
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3.8. Policy Implications And Evaluations

3.8.1. Simulation Model for Guidelines Evaluation

There exists a vast literature on comparing different screening policies using cost-

effectiveness analysis Howard et al. (2010); Kahn et al. (2010); Chen et al. (2001); Chatterjee

et al. (2013); O’connor et al. (2001); Hoerger et al. (2004). Most of the studies simulate a

cohort of patients with specific parameters provided to evaluate the cost-effectiveness of either

mass screening or opportunistic screening for type 2 diabetes. We apply here simulation to

evaluate the effectiveness of the proposed screening policy and to compare it with existing

screening guidelines. To simulate the natural progression of diabetes and its complications

including retinopathy, nephropathy, and neuropathy we use the Markov models shown in

Figure 8 and developed in Chen et al. (2001). Each node in the graphs represents one stage

of disease, and the stages are arranged from least to highest severity as one goes from left

to right. The costs associated with each stage of thee complications are taken from Howard

et al. (2010); Chen et al. (2001).

The simulation consists of a hypothetical cohort of 50000 patients whose characteristics

have been described previously in Table 3.1. Parameters such as transition probabilities in

disease Markov models, utilities and costs, incidence, prevalence and mortality rates of each

state of the disease progression models used in this paper are all taken from Chen et al.

(2001); Kahn et al. (2010); Howard et al. (2010). We simulate seven different scenarios

representing different screening policies including the proposed screening policy. Patients

leave the simulation when they die or when they reach the maximum life expectancy. For

the opportunistic screening policy, the patient’s chance of getting screened or diagnosed with

prediabetes, diabetes or its complications is limited by the number of times they visit the

physician, either randomly for a blood test or due to observing a symptom of a complication,

as in the case of existing guidelines. We also assume that early detection and treatment

of prediabetes can lead a patient back to a healthy state again and reduces the chances

of progressing into diabetes. Also, early detection and treatment of diabetes can reduce
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(a) Retinopathy: {NDR: No Diabetic Retinopathy, NPDR: Non-proliferative Diabetic Retinopathy,
PDR: Proliferative Diabetic Retinopathy, ME: Macular Edema, B: Blindness}

(b) Nephropathy: {NNP: No Nephropathy, MA: Microalbuminuria, PR: Proteinuria, ESRD: End
Stage Renal Disease, CVD: Cardo Vascular Disease, DE: Death}

(c) Neuropathy: {NNR: No Neuropathy, SNR: Symptomatic Neuropathy, LEA: Lower Extremity
Amputation}

Figure 3.6: Markov models for natural disease progression of diabetes complications

the patient’s chances of developing complications or progressing into more severe stages of

complications.

A detailed description of the conducted simulation can be found in the appendix.

3.8.2. Guidelines Evaluation

To compare the outcomes of the different simulated scenarios and thus the efficacy of the

proposed policy with other screening policies, we report the metrics used in the literature.

These metrics include ICER (incremental cost-effectiveness ratio), years gained, QALYs

gained, diagnosis lead time, macrovascular events prevented, microvascular events prevented,

and deaths prevented Chen et al. (2001); Kahn et al. (2010). To calculate the ICER, each

systematic policy is compared with an opportunistic screening policy. Table 3.4 reports the

outcome measures for the different screening policies.

42



T
ab

le
3.

4:
co

m
p
ar

is
on

b
et

w
ee

n
va

ri
ou

s
sc

re
en

in
g

gu
id

el
in

es
in

te
rm

s
of

co
st

-e
ff

ec
ti

ve
n
es

s,
ye

ar
s

an
d

Q
A

L
Y

s
ga

in
ed

,
d
ia

gn
os

is
le

ad
ti

m
e

an
d

ev
en

ts
p
re

ve
n
te

d
(f

ro
m

50
re

p
li
ca

ti
on

s)

S
cr

e
e
n
in

g
P

o
li
cy

a
IC

E
R

(c
o
st

p
e
r

Q
A

L
Y

,
$
U

S
)

b
(S

D
)

Y
e
a
rs

G
a
in

e
d

c
(S

D
)

Q
A

L
Y

s
g
a
in

e
d

b
,c

(S
D

)
D

ia
g
n
o
si

s
le

a
d

ti
m

e
d
,

c
(S

D
)

M
a
cr

o
v
a
sc

u
la

r
e
v
e
n
ts

p
re

v
e
n
te

d
e

(S
D

)
M

ic
ro

v
a
sc

u
la

r
e
v
e
n
ts

p
re

v
e
n
te

d
e

(S
D

)
D

e
a
th

s
p
re

v
e
n
te

d
e

(S
D

)

S
P

30
-3

$2
7,

04
2

(1
26

8)
0.

75
(0

.0
4)

2.
04

(0
.0

5)
19

(0
.2

)
22

(1
.6

)
20

7
(4

)
48

(2
)

S
P

45
-1

$3
7,

36
6

(1
75

5)
0.

62
(0

.0
4)

1.
18

(0
.0

3)
14

(0
.1

)
21

(1
.5

)
17

8
(4

)
45

(2
)

S
P

45
-3

$3
1,

15
5

(1
79

1)
0.

61
(0

.0
4)

0.
96

(0
.0

3)
11

(0
.1

)
20

(1
.4

)
16

5
(4

)
44

(2
)

S
P

45
-5

$2
9,

64
4

(2
17

5)
0.

60
(0

.0
4)

0.
86

(0
.0

3)
9

(0
.1

)
20

(1
.5

)
15

7
(4

)
44

(2
)

S
P

60
-3

$3
2,

20
1

(2
96

6)
0.

59
(0

.0
4)

0.
60

(0
.0

3)
6

(0
.1

)
19

(1
.4

)
14

2
(4

)
42

(2
)

S
P

30
-1

(M
ax

im
u

m
sc

re
en

in
g)

$3
6,

80
1

(1
23

3)
0.

83
(0

.0
5)

2.
63

(0
.0

5)
25

(0
.2

)
23

(1
.5

)
22

9
(4

)
50

(2
)

S
P

-P
O

M
D

P
$2

0,
42

6
(1

33
9)

0.
81

(0
.0

4)
2.

06
(0

.0
5)

18
(0

.2
)

23
(1

.5
)

21
9

(5
)

49
(2

)

a
S

cr
ee

n
in

g
p

ol
ic

ie
s

ar
e

ab
b

re
v
ia

te
d

as
S

P
A

G
E

-R
E

P
E

A
T

,
w

h
er

e
A

G
E

is
th

e
a
g
e

a
t

th
e

fi
rs

t
sc

re
en

in
g

a
n

d
th

en
th

e
sc

re
en

in
g

is
re

p
ea

te
d

ev
er

y
R

E
P

E
A

T
ye

ar
s

u
n
ti

l
th

e
p

at
ie

n
t

re
ac

h
es

ag
e

79
.

b
A

ll
co

st
s

an
d

Q
A

L
Y

s
ar

e
d

is
co

u
n
te

d
at

3%
p

er
ye

a
r.

c
p

er
p

at
ie

n
t

d
M

ea
n

le
ad

ti
m

e
in

d
ia

gn
os

is
ga

in
ed

b
y

ea
ch

sc
re

en
in

g
st

ra
te

g
y

co
m

p
a
re

d
w

it
h

o
p

p
o
rt

u
n

is
ti

c
sc

re
en

in
g
.

e
p

er
10

00
p

at
ie

n
ts

43



Table 3.4 shows that the proposed policy, SP-POMDP, performs better than all other

policies in every metric except for the maximum screening policy, SP30-1. Compared to

opportunistic-screening, SP-POMDP diagnoses prediabetes and diabetes patients on average

18 years earlier while this is only outperformed by the maximum screening policy. In terms

of macrovascular events, microvascular events and deaths prevented, although the maximum

screening policy produces slightly better simulation results compared to SP-POMDP, there

is not a significant difference between POMDP and the maximum screening guideline. SP-

POMDP achieves very similar outcomes to SP30-1, but reduces the cost per gained QALY

significantly from more than $36,000 to less than $20,500.

(a) (b)

Figure 3.7: (a) Costs per QALY and (b) cost per years gained of seven screening guidelines
compared with opportunistic screening in terms of QALYs and years of life gained. The
efficient frontier is shown as a line.

Figure 3.7 compares the screening policies in Table 3 using the notion of the efficient

frontier. Figure 3.7 shows that the efficient frontier is comprised of SP30-1 (maximum

screening), SP-POMDP, and SP60-3, indicating that all other policies are inefficient. The

SP-POMDP is slightly inferior to SP30-1 but it takes significantly less resources, less time

from the patients, less lab tests, and cause less stress for patients.
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3.8.3. Sensitivity Analysis of the Simulation Model

To evaluate the sensitivity of our model to the parameters introduced in Table 3.3, we

performed two different sets of sensitivity analyses. The first set is designed to evaluate

the sensitivity to the cost parameters including the cost of the diabetes screening test Cs,

the annual utility decrease of living with prediabetes αP and the annual utility decrease of

living with diabetes αUD, αDD. The second set is designed to evaluate the sensitivity to

the probabilities including transition probabilities P and observation probabilities O. The

same output measures as in Table 3.4 are used to evaluate the sensitivity of the model to

these parameters. Table 3.5 shows the result of the performed sensitivity analysis.

Table 3.5 shows that the proposed SP-POMDP model is robust with respect to most

parameters. The model is sensitive to the costs of screening which affects cost-effectiveness,

QALYs gained, and diagnosis lead time. As we expect, the higher the cost of screening,

the less cost-effective (higher ICER) the policy would be and the opposite. As the cost of

screening increases the proposed model move toward postponing the screening as much as

possible which results in lower QALYs gained and an increase in diagnosis lead time.

The value of a QALY affects the policy with lower values of a QALY representing a

lower rewards in the POMDP reward structure which will result in postpone screening to

accumulating more costs and gaining fewer QALYs as well as decreasing the diagnosis lead

time. On the other hand, higher values of QALY translates into higher rewards in the

POMDP model which in turn translates into more cost-effective policies with more QALYs

gained and longer diagnosis lead time.

Table 3.5 also shows that higher screening uptake rates also result in more cost-effective

policies with more QALYs gained and longer diagnosis lead time. This is because higher

uptake rates will result in higher rewards for screening healthier people, and then policies

that screen people earlier (longer diagnosis lead time), thus bring about more gained QALYs.

Lower transition probabilities between health states means patients take more time to

develop diabetes. This results in policy graphs with more nodes and screenings can be

postponed longer without producing higher cost and shorter diagnosis lead times. The
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opposite happens on the hand when transition probabilities increase. We also see more cost-

effective policies with more QALYs gained as well as longer diagnosis lead times when a

more accurate predictive model (better observation probabilities) is available.
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Chapter 4

Resource Allocation Under Uncertainty for Emergency Situations

(P2)

The Emergency Response Bureau and Special Operations of the Dallas Fire and Rescue

Department (DFRD) encompasses two operational divisions. One of these divisions,

Emergency Response, is responsible for the day-to-day operations involving normal fire

suppression and emergency first responder calls. The Emergency Response Division provides

the residents of Dallas with fire suppression and protection, emergency rescue capabilities,

and emergency medical first responder services. Customer Service is DFRD’s primary goal

for the citizens of Dallas, to be obtained through providing safety, mitigating emergency

situations, and reducing loss of any kind.

An important question for the DFRD is whether resources should be moved around in

the city to cover areas where the resources are currently responding to an incidence. Every

time an incident happens resources in a particular zone of the city will be dispatched and

become unavailable for several hours. If another incident happens in that zone during that

time, resources from other areas of the city will need to respond which will increase response

time. In this chapter I will describe the application of the decision framework to the problem

of finding an optimal resource allocation policy.

4.1. The need for a resource reallocation policy

A Battalion is a combination of several fire stations working together to deal with

situations. They are spread out in the city in a way that each Battalion covers a specific area

of the city. The area that we define as city zone, includes several fire stations all working

together under the same Battalion. Battalions are responsible to respond to incidents
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happening in the city zone under their control. The DFRD battalions, the territory under

their observance and their fire stations are shown in Figure 4.1.

Although each battalion is supposed to respond to the incidents happening in its territory,

there are situations in which on battalion does not have enough resources to respond to a new

incident since all or the majority of the resources of the zone are already dealing with other

incidents. Using the data available from the DFRD, we can analyse if there are situations

which one zone does not have enough resources to respond to incidents happening in it and

asks for extra resources from other zones (battalions) of the city. We visualize some examples

in Figure 4.1.

To be able to see these situations, we have focused only on one zone (battalion) of the

city of Dallas and this is the downtown area to which battalion 1 responds.

The small purple dots that form lines from other zones to zone 1 are emergency vehicle

locations during the dispatch process from their original stations in other zones to incident

locations in zone 1 (light pink area in downtown). We can notice that there are many

instances of requesting resources from other battalions for incidents happening in zone 1

(Table 4.1).

From Zone (Battalion) Total Per Week Average Response Time
3 13675 131 6.1
6 2663 25 6.76
9 1930 19 6.85
8 1682 16 6.83
5 792 8 6.58
4 285 3 9.11
7 181 2 7.4
2 103 1 6.95

Table 4.1: Dispatches from other zones to zone 1 from 2015 to 2017

These happen at the moment the incidents happen and the time it takes for the resources

to get to the incidents’ locations from other zones are significantly larger than usual (Table

4.1).
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Figure 4.1: AVL of vehicles from other zones responding to incidents in zone 1
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The average response times shown in Table 4.1 are way above the limit DFRD is trying

to keep its response times under (6 minutes) and in emergency situation not just minutes

but even seconds count since the lives of people are in danger. With a proper reallocation

policy that is implemented in advance, these response times can be cut shorter.

4.2. The Partially Observable Markov Decision Process Formulation

In order to apply the framework proposed in chapter 2, we need to formulate the problem

as a POMDP problem. To do so we focus on one city zone in order to define our state space.

We try to capture the availability of the resources in that zone in the near future; i.e. the

states of our model are trying to describe the status of a particular zone in the near future.

This near future depends on how long in advance we want to be aware of the future and also

the risk associated with the problem. In this research we define near future as 15 minutes

from the current time. By defining what would be the status of a zone in the near future as

the state of the model, we add unobservability to the model and since only in the future we

will for sure know the answer to this question, the state space is always unobservable to us.

The two main variables that affect the state of the system are: the availability of

the resources in the near future, and the road condition in the near future. The model

has therefore a two-dimensional state space where one dimension is the remaining system

capacity, and the other is the road condition. We have no control over the road conditions

but the system capacity is fully under our control. Below, we define and introduce all the

components of the POMDP model.

4.2.1. State Space

The state sapce of the POMDP has two dimensions. One dimension is the remaining

capacity of the system (the proportion of the resources available and ready for dispatch).

We categorize this dimension into 3 categories called, low capacity, medium capacity, and

high capacity; which translates into what proportion of the resources is available or would be

available within a short period of time from now (near future). Thus Scap = {low,med, high}.
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The other dimension of the state space represents the road condition. Here we only assume

traffic, but other conditions such as weather conditions can be used as well. We categorize this

state into normal hours or no major traffic on the road, and rush hour or major traffic on the

road; the latter corresponds to higher travel times. Thus Sroad = {no− traffic, traffic}.
Considering these two dimensions for the state space, the state space will have a total of

six different states represented in Table 4.2 and Figure 4.2.

State space (S)
Remaining System Capacity

High Med Low

Road Condition
No traffic sN,H sN,M sN,L

Traffic sT,H sT,M sT,L

Table 4.2: POMDP model state space and dimensions

𝒔𝑵,𝑯 𝒔𝑵,𝑴 𝒔𝑵,𝑳

𝒔𝑻,𝑯 𝒔𝑻,𝑴 𝒔𝑻,𝑳

𝒐𝑵,𝑯 𝒐𝑵,𝑴 𝒐𝑵,𝑳

𝒐𝑻,𝑯 𝒐𝑻,𝑴 𝒐𝑻,𝑳

Figure 4.2: POMDP model, state space and observation space with arcs
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4.2.2. Action Space

There are two available actions for each state of the system: one is to (1) Ask for extra

resources from other zones that can provide the requested resource and the other one (2) is

not to ask for any extra resources (the second action is simply not doing anything until the

next epoch). Thus the action set would be A = {aask, anothing}.

4.2.3. Observations

We define one observation for each state of the system. These observations would be

produced using a predictive model from a combination of signals that come directly from

the system. Each observation points to one state of the system. The set of observation then

would be Ω = {oN,H , oN,M , oN,L, oT,H , oT,M , oT,L}.

4.2.4. Cost Structure

The costs in this POMDP model associated with each action and state are in the form of

travel times. Thus c(s, a) is the average travel time of emergency vehicles given the system

is in state s and action a is taken.

4.3. Parameter Estimation

In this section we use the same methods previously introduced in chapter 2 to estimate

all the parameters associated with the POMDP model.

4.3.1. Data Description

The data used in this application of the research is provided by the Dallas Fire and Rescue

Department. The data mainly consists of the Automated Vehicle Locations (AVL) of the

emergency vehicles used by DFRD, information on incidents responded to by the DFRD and

the status of the vehicles used. Below is a brief description of each of these data components.
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AVL data: The AVL data consists of the locations of the vehicles dispatched to the

incidents recorded at various points in time during the response time. The AVL data

contains:

• Incident number: a unique ID assigned to each incident. This column indicates what

incident the vehicle was dispatched for.

• Radio name: a unique ID that indicates the type of the vehicle dispatched.

• Date and Time: the exact date and time of the recorded vehicle location.

• Latitude and Longitude: the exact coordinates of the vehicle location at the recorded

moment.

• Heading: a number between 0 and 360 indicating the heading of the vehicle at the

moment.

• Speed: the speed of the vehicle in miles per hour at the recorded moment.

Status data: The status data contains information about the exact date and time of the

changes in the status of the vehicles dispatched to the incidents. The status data contains:

• Incident number: a unique ID assigned to each incident. This column indicates what

incident the vehicle was dispatched for.

• Radio name: a unique ID that indicates the type of the vehicle dispatched.

• Assigned: date and time of the moment the vehicle was assigned.

• Enroute: date and time of the moment the vehicle started moving.

• Arrived: date and time the vehicle arrived to the incident location.

• Cleared: date and time the vehicle cleared the situation.
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Incidents data: The status data contains information about the exact location, date and

time of the incidents occurred. The incidents data contains:

• Incident number: a unique ID assigned to each incident.

• Response date and time: the date and time of the occurrence of the incident.

• Address: the address where the incident happened.

• Postal code.

• Longitude and Latitude: the coordinates of the location of the incident.

Table 4.3 provides some basic information on the data provided by the DFRD.

Distribution of the incident length defined as the time between assigning a vehicle and

clearing the situation is depicted in Figure 4.3. Although the majority of the incidents get

cleared in less than an hour, there are still significant number of incidents that take longer

than that. These incidents will keep the system busy for longer than normal incidents and

thus bring down the remaining capacity of the system.

The data can also provide us with the distribution of the remaining capacity of the system.

Figure 4.4 shows this distribution for zone 1 of the city. Although the majority of the time,

the system has high remaining capacity, still there are quite significant number of times where

the remaining capacity of the system hits lower than usual. As we can see the distribution

has a long tail on the left side indicating that the remaining capacity can get very low at

some times.

4.3.2. Estimating Transition Probabilities

To estimate the transition probabilities, we need to use data to estimate the system state

at each point in time. since the state space is 2 dimensional, we need to first estimate each

dimension and then combine the two dimensions to get the actual state of the system.

For the road condition dimension of the state space, we use the rush hours from Dallas city.

If the system is in rush hours then the road condition is experiencing traffic and otherwise

no traffic.
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Figure 4.3: Incident length distribution for zone 1 (minutes)

For the remaining system capacity we use the number of emergency vehicles that are

available at the moment.

Given the above information we can calculate the transition probabilities. Tables 4.4 and

4.5 represent the transition probabilities for action aask and action anothing respectively.

4.3.3. Estimating observation probabilities

Same as the previous application, we develop a predictive model to produce both

observations and observation probabilities. The outcome of the predictive model would

be one of the observation defined in the previous section which belongs to the set Ω =

{oN,H , oN,M , oN,L, oT,H , oT,M , oT,L}.
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Figure 4.4: Distribution of the remaining capacity of the system for zone 1

The prediction is the state of the system and the independent variables are as follow:

• Current remaining capacity of the system:

• Current road condition

• Day of the week

• Time of the day

• Current month

• Number of incidents happened in the last epoch

Given the above features and target variable we then use Multinomial Logistic Regression

to find the relationship between the independent and target variable. The predictive model
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Transition Probabilities (aask)
Ending state

sN,H sN,M sN,L sT,H sT,M sT,L

Starting state

sN,H 0.99 0 0 0.01 0 0
sN,M 0.99 0 0 0.01 0 0
sN,L 0.99 0 0 0.01 0 0
sT,H 0.03 0 0 0.97 0 0
sT,M 0.02 0 0 0.98 0 0
sT,L 0.006 0 0 0.994 0 0

Table 4.4: Transition probabilities for action aask

Transition Probabilities (a2)
Ending state

sN,H sN,M sN,L sT,H sT,M sT,L

Starting state

sN,H 0.92 0.065 0.004 0.01 0.001 0.00
sN,M 0.093 0.83 0.063 0.008 0.005 0.001
sN,L 0.043 0.089 0.85 0.005 0.006 0.007
sT,H 0.027 0.004 0.00 0.87 0.106 0.007
sT,M 0.02 0.015 0.002 0.088 0.80 0.075
sT,L 0.009 0.011 0.016 0.035 0.099 0.83

Table 4.5: Transition probabilities for action anothing

then predicts the state of the system given the features defined above and the prediction is

used as an observation for the POMDP.

For the observation probabilities, according to what we defined before, we will use the

prediction performance in the form of a confusion matrix. This is shown in Table 4.6.

4.3.4. Costs

Since the most important performance metric for the DFRD is the response times, we

focus on defining our POMDP cost structure based on the same metric. We are trying to

reduce the response times as much as possible using the proposed policy.

The basic costs element would be the average response time of the emergency vehicles.

Before that we need to mention that there seems to be a relationship between the response

times and the remaining capacity of the system. This relation ship is best shown in Figure

4.5.
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Observation Probabilities
(Confusion Matrix)

Observation
(Predicted)

oN,H oN,M oN,L oT,H oT,M oT,L

State (Actual)

sN,H 0.9 0.065 0.004 0.019 0.0015 0.0005
sN,M 0.1 0.82 0.063 0.008 0.006 0.003
sN,L 0.05 0.089 0.84 0.004 0.01 0.007
sT,H 0.03 0.004 0.00 0.86 0.096 0.009
sT,M 0.02 0.016 0.002 0.087 0.80 0.075
sT,L 0.01 0.02 0.016 0.035 0.099 0.82

Table 4.6: Observation probabilities (confusion matrix) from the predictive model

Figure 4.5: Average response time for each remaining capacity level of the system
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Figure 4.5 shows that average response time increases as the remaining capacity of the

system decreases. We descretize the remaining capacity of the system into 3 levels. Figure

4.5 shows that there are also 3 levels of response time. Table 4.7 shows the costs given the

state of the system and the action taken.

Costs
State

sN,H sN,M sN,L sT,H sT,M sT,L

Action
aask 4.2 6.8 8.7 9.7 10.2 12.4

anothing 4.2 5.8 6.7 6.9 8.6 10.1

Table 4.7: Action and state dependent costs of the POMDP model (in minutes)

Since action anothing indicates asking for help immediately when an incident happens

and there are no resources available, the three elements of the matrix including

c(anothing, sN,H), c(anothing, sN,M), c(anothing, sN,L) are average response under different re-

maining capacity levels obtained from data. The other three elements of the matrix relating

to action 2 including c(anothing, sT,H), c(anothing, sT,M), c(anothing, sT,L) are obtained the same

but they are for when the system is experiencing traffic.

For c(aask, sN,H), there are no extra costs compared to the c(anothing, sN,H) case, since

asking for help not only does not affect the current remaining capacity of the zone 1, but

also it does not take too much capacity from the zone asked from (literally just a few engines

are asked and this does not change the capacity level of the other zone and also does not

really change the current capacity of the zone 1 and thus really does not affect the response

time). For c(aask, sN,M), we have the cost of c(anothing, sN,M) as well as the cost of the

other zone changing from sN,H to sN,M (which is the difference between c(anothing, sN,M) and

c(anothing, sN,H)). For c(aask, sN,L) we have the cost of c(anothing, sN,L) as well as the cost of the

other zone changing from sN,H to sN,L (which is the difference between c(anothing, sN,L) and

c(anothing, sN,H)). For the other three costs, i.e. c(aask, sT,H), c(aask, sT,M), and c(aask, sT,L),

the logic is the same but with one difference, and the difference is that, this time the other

zone will have some costs, even for the c(aask, sT,H) case and the reason is that we now have

traffic and it is not a good idea to lose capacity. Note that the main logic behind these costs
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Figure 4.6: costs of POMDP model in minutes for each action and state

is that: by asking for help nothing happens immediately to zone 1 (since it takes time for

vehicles to get there) but we have some costs inferred from the other zone immediately (since

they dispatch the vehicles as soon as we ask and thus they immediately lose capacity).

Figure 4.6 also shows the costs in a single plot.

4.4. Optimal Reallocation Policy

Using the parameters estimated in previous section and the model developed before, we

can now solve the formulated POMDP using the finite grid method over a horizon of 90

days. The optimal policy that POMDP returns is shown in Table 4.8 as follows.

4.5. Policy Evaluation using Simulation

In this section we try to evaluate the proposed policy using simulation. We simulate one
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Policy
Observations

Action oN,H oN,M oN,L oT,H oT,M oT,L

Value function segments

(Policy Nodes)

1 aask 10 4 1 1 1 1
2 anothing 10 9 3 1 1 1
3 anothing 10 8 9 1 1 1
4 anothing 10 9 7 1 1 2
5 anothing 10 8 9 1 1 2
6 anothing 10 8 7 1 2 2
7 anothing 10 8 9 1 3 5
8 anothing 10 8 9 5 3 9
9 anothing 10 8 9 3 3 3
10 anothing 10 8 9 2 3 5

Table 4.8: Optimal reallocation policy produced by POMDP

zone of city during 90 days, with limited number of resources and compare the proposed

policy to when the policy is to ask immediately for help if there are no resources available

and an incident has happened.

To better simulate the system we estimate the parameters of the simulation including the

distributions of response time and incidents’ inter-arrival times.

4.5.1. Simulation parameter estimation

In this section we estimate the following set of parameters using the available data.

• Incidents inter-arrival time (distribution)

• Type of incident

• Number of resources to dispatch

• Response time (distribution)

• Clearance time (distribution)

Incidents inter-arrival time distribution estimation: For the incidents inter-arrival

times, we fit multiple distributions including the exponential distribution as this is expected

to be the one that fits the most using the maximum likelihood method. Figure 4.7 shows
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fitted distributions alongside the Q-Q plot for the theoretical quantiles. As it is inferred

from the plot, exponential distribution fits the data the best and also is not rejected by the

tests. The results for the tests are provided in Table 4.9.

Histogram and theoretical densities

data

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

norm

lnorm

exp

gamma

weibull

0 200 400 600 800 1000

0
20

40
60

80
10

0

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

norm

lnorm

exp

gamma

weibull

Figure 4.7: The fitted distributions of incidents inter-arrival times

Table 4.9: Distribution fitting analysis for incidents inter-arrival times

Inter-arrival times
Distributions

Log Normal Normal Exponential Gamma Weibull

Parameters
Meanlog= 2.2 (0.0041)

Sdlog= 1.1 (0.0029)
Mean= 15.41 (0.062)

Sd= 16.58 (0.043)
Rate= 0.064 (0.0002)

Shape= 1.073 (0.005)
Rate= 0.069 (0.0004)

Shape= 1.007 (0.0028)
Scale= 15.47 (0.06)

Goodness of
fit statistics

Kolmogorov-Smirnov statistic 0.057 0.192 0.062 0.053 0.061
Cramer-von Mises statistic 44.56 793.3 32.27 48.46 34.97
Anderson-Darling statistic 369.43 4521.8 295.8 347.79 303.0

Goodness-of-fit
criteria

Akaike’s Information Criterion 531352.1 603937.1 533648.4 533424.6 533642.4
Bayesian Information Criterion 531370.4 603955.5 533657.6 533442.9 533660.8

Type if incidents: For the types of the incidents that happen, we simply use the number

of resources required to handle the incident. We use the frequency of each type of incident as

the probability of that type of incident. These frequencies and their respective probabilities

are given in Table 4.11.
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Table 4.10: Distribution fitting analysis for response times

Response times
Distributions

Log Normal Normal Exponential Gamma Weibull

Parameters
meanlog= 1.35 (0.0018)
sdlog= 0.501 (0.0013)

Mean= 4.38 (0.009)
SD= 2.42 (0.006)

Rate=0.228 (0.00024)
Shape= 4.21 (0.021)
Rate= 0.96 (0.005)

Shape= 1.92 (0.0047)
Scale= 4.95 (0.01)

Goodness of
fit statistics

Kolmogorov-Smirnov statistic 0.144 0.172 3.354615e-01 0.125 0.157
Cramer-von Mises statistic 213.535 430.68 1.987939e+03 195.86 317.37
Anderson-Darling statistic 1246.5 Infinite 1.013887e+04 1111.83 1931.8

Goodness-of-fit
criteria

Akaike’s Information Criterion 296725.9 328277.4 353039.7 298307.1 309576.9
Bayesian Information Criterion 296744.2 328295.8 353048.9 298325.4 309595.2

The number of resources required to handle each incident type depends the incident type

as this is how we defined the incident type.

Response time distribution estimation: To find the distribution that best fits the

distribution of response times, we fit multiple distributions including the normal, log normal,

gamma, and Weibull distributions using the maximum likelihood method. Figure 4.7 shows

fitted distributions alongside the Q-Q plot for the theoretical quantiles. As it is inferred

from the plot, the log normal distribution fits the data the best and also is not rejected by

the tests. The results for the tests are provided in Table 4.10.

Clearance time: The clearance time which is the time it takes for the resources to handle

the situation, clear it and get back to the stations and eventually get ready for the next

incident depends on the incident type. This is clearly shown in Figure 4.9 where clearance

time is depicted with relation to the incident type. Thus we estimate this from the data for

each incident type and provide the averages for each in Table 4.11.
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Table 4.11: Incident types and their respective probabilities of happening

Incident type Frequency Probability Average clearance time (minutes)
1 45497 0.61 33.56
2 18473 0.24 18.58
3 7643 0.10 13.09
4 1468 0.019 12.36
5 358 0.004 12.12
6 153 0.002 16.9
7 173 0.002 14.14
8 78 0.001 15.16
9 49 0.0006 10.9
10 43 0.00057 34.09
11 36 0.00048 46.7
12 18 0.00024 27.57
13 14 0.00018 34.09
14 42 0.00056 18.12
15 39 0.00052 20.01
16 24 0.00032 19.7
17 11 0.00014 14.1721
18 5 0.00006 17.52
19 6 0.00008 17.93
20 2 0.000026 33.77
21 2 0.000026 61.9
22 1 0.000013 59.5
24 1 0.000013 65.3
26 1 0.000013 104.42
28 1 0.000013 68.07
29 1 0.000013 74.86
30 1 0.000013 76.56
31 1 0.000013 97.548
39 3 0.00004 108.48
40 1 0.000013 112.32
41 1 0.000013 94.9
44 1 0.000013 101.17
53 1 0.000013 163.45
56 1 0.000013 157.23
65 1 0.000013 232.32
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Figure 4.8: The fitted distributions of response times

Figure 4.9: The average clearance time for each type of incident

67



Based on Figure 4.9 the average clearance time increases as the type of incident increases

(more severe incidents).

4.5.2. Evaluation using simulation

Using the parameters estimated and calculated in the previous section, we simulate one

zone of the city with a limited number of resources (similar to zone 1 of the city of Dallas,

we only have 24 emergency vehicles available). We compare two different scenarios:

• Scenario 1: The DFRD asks for extra resources from other zones only when an incident

happens and not enough resources are available to respond

• Scenario 2: The DFRD follows the proposed POMDP policy demonstrated in Table

4.8 and asks for extra resources whenever the policy implies.

We then run the simulation for 90 days and 30 replications and compare the two scenarios

in various metric presented in Table 4.12.

According to Table 4.12 by implementing the proposed POMDP policy we can improve

the average response time by almost 48 seconds (by 13%) which is a significant improvement

in emergency situations. We can also decrease the number of times not enough resources

are available to respond to an incident by almost 80 percent. This means that our system

will have less chances of having not enough resources available to respond to an incoming

incident. We also decrease the number of resources requested when not enough resources are

available by around 66 percent. This means even if we are asking for extra resources from

other zones, this request comes in very small amounts. POMDP policy tends to keep the

system at full capacity while without such a policy the average remaining capacity of the

system is around 67 percent. Implementing the proposed policy will result in spending more

time in state 1 and 4 compared to the time where no such policy is implemented in which

case the system is mostly in states 3 or 6. This is what we are trying to avoid.
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Chapter 5

Conclusion

The framework proposed in this work focuses on using historical data to develop a

predictive model that provides fewer but more accurate observations from a system modeled

as a POMDP. The focus of the framework is first, to reduce the dimensionality of the

observation space of the POMDP by selecting only a collection of signals that provides a

single observations, and second, to provide more accurate observations by aggregating the

selected signals using a predictive model that predicts the state of the system. Using the

framework, we reduce the size of the problem by a large (exponential) factor while sacrificing

only little in terms of the quality of the resulting POMDP policy. We also avoid the effort

required to estimate all the observation probabilities which can be a difficult task when not

enough data is available. This task is easily handled by the predictive model and from the

data available and these probabilities are then provided more accurately.

The effectiveness of the proposed framework depends on the data available, but this is

generally true for using POMDPs since parameters need to be estimated. The framework

provides all the advantages of predictive modeling including methods for feature selection,

dealing with missing data and data quality issues. When using this framework, the predictive

model is trained supervised, i.e., the training data needs to be annotated with class

information. This means that at some point in time, information on the actual states of

the system must have been recorded along with the signal values. Otherwise, no predictive

model can be developed based on the available data.

The framework can also be used by aggregating groups of signals into several types of

observations. So far, we have only considered a single signal aggregated from a selected set

of signals. This selection is only based on the accuracy of signals from the system. But in the

future, the framework can expand in a way that provides various signals each a combination
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of a different set of signals from the system. The sets can include signals that are more

related to each other or are from the same part of the system or their nature is closer to each

other. The relationship between signals can also be learned from data using unsupervised

learning technique after the signal selection step to group signals into sets.

The proposed framework is then utilized in two different applications.

5.1. Optimal Individualized Diabetes Screening

Diabetes, a prevalent chronic disease affecting over 30 million American adults, is

associated with multiple comorbidities and is the seventh-leading cause of death in the United

States. The disease, associated with hundreds of billions of dollars in direct and indirect costs

(ADA 2018), progresses with a lengthy asymptomatic period of 9 to 12 years, on average (Lu

et al. 2010). Thus, it is critical to screen patients who have undiagnosed diabetes or those

who are at an elevated risk of developing diabetes as this can result in substantial savings,

since appropriate interventions can be put in place to prevent progression to diabetes and

development of diabetes complications. Existing guidelines such as those from ADA (ADA

2019) are generic and cost-prohibitive if implemented on the entire population, since (i) only

9.4 percent of the population is at risk of developing diabetes (CDC 2017), and (ii) the gold

standard test (using A1c) for screening is very expensive (Chatterjee et al. 2013). There

does not exist, to the best of our knowledge, a personalized screening strategy for detecting

patients with diabetes or prediabetes. This is exactly what this paper attempts to do.

In this study, we propose a targeted screening policy (equivalently, screening strategy) that

uses all available information on individual patients to identify whom to screen (that is, which

patients should receive the gold-standard test) and when to screen them; the policy is also

age-specific. Our proposed policy relies on multiple methods and is based on actual patient

data (available in the form of EHRs), making it practically implementable. In particular,

POMDP is used for determining optimal decisions at each time period (a year) while HMM

and PRM are used to generate the transition and observation probabilities, respectively,

for POMDP. Thus, a key contribution of this work is the holistic integration of the three
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methods to answer a practical healthcare decision-making problem of this magnitude.

We develop and validate our model on a detailed and proprietary dataset – of over

12,000 patients over an 18-month period – from a large safety-net hospital and demonstrate,

using a detailed simulation analysis, that our proposed screening policy can improve patient

outcomes by 106 percent - at only 65 percent of the cost – compared with existing guidelines.

Our detailed sensitivity analyses show no significant or unjustifiable change in the results of

the simulation due to changes in the model parameters.

The integration of data analytics with optimization methods has become increasingly

critical to solve important problems in healthcare and beyond. In this study, we have

demonstrated how existing methods can be combined with POMDP to produce an optimal

screening policy that incorporates cohort-specific characteristics as well as individualized

medical information.

Our study has several limitations. From a methodological standpoint, first, the use of

POMDP approach relies on a potentially strong assumption that the Markov property holds,

at least approximately. However, our assumption is consistent with previous work, where

experts have argued that Markov models are useful approximations for disease progression

models. Second, our state space is primarily based on a single measure (A1c), resulting

in a simplistic single dimensional state space. However, our review of the literature and

conversations with our clinical co-author reveal that A1c is the most commonly used

test in clinical practice to screen and diagnose patients for diabetes. While inclusion of

additional covariates may enrich the model, it also increases the model complexity and the

computational effort required to solve such a model. Third, we only consider two actions

– screen or do not screen (the latter being essentially an absence of action). However,

expanding the action space will require the estimation of all associated transition parameters.

Therefore, smaller state and action spaces are preferable from a practical standpoint. Fourth,

estimation of the disease progression rates relies on the available screening results from

the EHR data and is, thus, applicable only to screened patients with visits in the health

system studied. We estimate the transition rates of unscreened patients by using a factor
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representing treatment effectiveness. This is a simplistic approach that requires more

research. Finally, our analysis is limited to patients at a single hospital who may not

share the same characteristics with patients in other hospitals. However, we believe our

methodological approach is generalizable and can be applied to patients in other settings,

with modifications.

5.2. Resource Allocation Under Uncertainty for Emergency Vehicles

An important question for the DFRD is whether resources should be moved around in

the city to cover areas where the resources are currently responding to an incidence. Every

time an incident happens resources in a particular zone of the city will be dispatched and

become unavailable for several hours. If another incident happens in that zone during that

time, resources from other areas of the city will need to respond which will increase response

time. To mitigate such situations, we can temporarily reallocate resources.

We apply framework proposed in chapter 2, and formulate the problem as a POMDP

problem. We focus on one city zone in order to define our state space. We try to capture the

availability of the resources in that zone in the near future; i.e. the states of our model are

trying to describe the status of a particular zone in the near future. This near future depends

on how long in advance we want to be aware of the future and also the risk associated with

the problem. By defining what would be the status of a zone in the near future as the state

of the model, we add unobservability to the model and since only in the future we will for

sure know the answer to this question, the state space is always unobservable to us.

By implementing the proposed POMDP policy, and through simulation, we demonstrate

that we can improve the average response time by almost 48 seconds which is a significant

improvement in emergency situations. We can also decrease the number of times not enough

resources are available to respond to an incident by almost 80 percent. This means that

our system will have less chances of having not enough resources available to respond to an

incoming incident. We also decrease the number of resources requested when not enough

resources are available by around 66 percent. This means even if we are asking for extra
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resources from other zones, this request comes in very small amounts. POMDP policy tends

to keep the system at full capacity while without such a policy the average remaining capacity

of the system is around 67 percent. Implementing the proposed policy will result in spending

more time in state 1 and 4 compared to the time where no such policy is implemented in

which case the system is mostly in states 3 or 6. This is what we are trying to avoid.
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Appendix A

Diabetes Simulation Details

In this section we provide details on the simulation conducted for the fist application in

this work. The simulation consists of a hypothetical cohort of 50,000 patients starting from

age 30 to age 79, with characteristics described in Table 3.1. We simulate seven different

scenarios representing different screening policies, including our proposed one. The only

difference between these scenarios is the screening policy implemented. The six scenarios

that use the existing or hypothetical guidelines are similar to each other thus only one of

them will be explained here along with the proposed policy. All scenarios are compared

to the base scenario. The base scenario is when there is not a specific screening policy

(commonly called opportunistic screening). This means that we screen patients if they show

up and have symptoms or if they request so, but we never prescribe screening for them or

ask them to show up later for a screening test.

The simulation is an aging loop where patients enter with the age of 30 and leave either

when they die or reach the age of 79 as demonstrated in Figure A.1. We explain here each

part of the simulation loop in details.

A.1. Patient Instantiation

We instantiate each patient using the prevalence rate of each of the stages of the disease

in the cohort described in Table 3.1. These prevalence rate are taken from Table 3.1. We

also assign diabetes complications to the patients that already have Diabetes using the

prevalence rates from Chen et al. (2001), Howard et al. (2010), and Kahn et al. (2010).

These complications along with the diabetes progression Markov models are demonstrated

in Figure 3.6. The prevalence rates for each of the states of the models in Figure 3.6 are

provided in Table A.1.
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Figure A.1: Simulation loop for the base scenario

A.2. Updating Health Status

At the beginning of each iteration, patients’ health status gets updated using the

progression rates obtained via HMM and from Chen et al. (2001), Howard et al. (2010),

and Kahn et al. (2010) according to the Markov models demonstrated in Figure 3.6. The

progression rates for each transition is provided in Table A.2.

A.3. Calculating Patient’s Utility

At each iteration, patient’s utility of life is calculated using the EQ-5D index from

Ackermann et al. (2009), Bahia et al. (2017), and P. Zhang et al. (2012). These utilities

are provided in Table A.3. The worst utility is assumed to be the utility of the patient with

multiple chronic conditions and complications.
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Table A.1: Prevalence rates of Diabetes and its complications stages

Disease Stages

Diabetes
Healthy Pre-Diabetes Diabetes

0.508 0.358 0.133

Retinopathy
NDR NPDR PDR ME B
0.5 0.2 0.05 0.25 0

Nephropathy
NNP MA PR ESRD CVD
0.579 0.2 0.05 0.025 0.146

Neuropathy
NNR SNR LEA
0.7 0.3 0

Table A.2: Progression rates for transitions in Diabetes and its complications

Disease Transitions

Diabetes
H to P P to H P to D
0.048 0.0328 0.0348

Retinopathy
NDR to NPDR NPDR to PDR NPDR to ME PDR to B ME to B

0.073 0.0103 0.1928 0.0148 0.033

Nephropathy
NNP to MA MA to PR PR to ESRD ESRD to CVD CVD to DE

0.0267 0.1572 0.0042 0.5 0.2

Neuropathy
NNR to SNR SNR to LEA LEA to DE

0.0144 0.028 0.02
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Figure A.2: Diabetes and its complications Markov progression models
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Table A.3: Life utilities for different health conditions

Condition Utility of Life for living with the condition
Healthy 1
Pre-Diabetes 0.84
Diagnosed Diabetes 0.82
Undiagnosed Diabetes 0.8
Blindness 0.69
ESRD 0.61
CVD 0.63
LEA 0.59

A.4. Check for Diagnosis

For Diabetes and its complications there is usually a time to diagnosis from the onset

of the disease. For Diabetes it is on average 10 years and for its complications it is on

average 3 years (Lu et al. 2010). This means that given there is no screening policy, the

patients will be diagnosed on average after the given amount of time due to major health

problems they face. Thus at each iterations there is a certain chance based on the patient’s

conditions that the patient gets diagnosed with her condition. This is contingent upon the

patient’s showing up and visiting doctor. There is a certain chance associated with that

called patient’s tendency to visit doctor given their health conditions. These probabilities

include on average 10%, 25% and 55% for when they have almost zero symptoms, medium

risk symptoms and high-risk symptoms respectively. The high-risk symptoms are associated

with later stages of the diseases presented in Figure A.2.

A.5. Patient’s Annual Costs

At each year the total annual costs of the patient including Diabetes costs and

Complications costs are calculated using the figures provided in Chen et al. (2001), Howard

et al. (2010), and Kahn et al. (2010). All these costs are provided in US dollars in Table

A.4. All costs are then discounted by 0.03 each year.

A.6. Leaving the Simulation
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Table A.4: All costs associated with Diabetes and its complications

Type of Cost Detail Costs

Visit and Screening
Visit $134

Screening $192

Intensive Glycemic control
Drugs $862

Outpatient $910
Conventional Glycemic control Total $765

Complications Costs

Blindness $1,997
Photocoagulation $2,682

ESRD $68,131
LEA (per operation) $31,139

CVD $2,757

Intensive Hypertension Control
Drugs $686

Outpatient $217

Conventional Hypertension control
Drugs $394

Outpatient $149

At the end of each year, the patient will leave the simulation if she dies by any of the

complications or through the natural progression of Diabetes or by reaching the age of 79.

This means that the patients will stay in simulation for at most 50 years and then leave it.

A.7. Implementing POMDP Policy/Other Guidelines

Almost everything is the same as the base scenario except for the screening policy here.

In the POMDP scenario, we have the same chances for patients show-up at the doctors as

the base scenario. Each time the patient shows up, the policy node at which the patient is,

gets updated according to the observation made by the predictive model. At the show-up

where the policy indicates screening, the screening would take place. For other guidelines it

is the same except that guidelines have a fixed frequency of screening and if that matches

with the time that the patient shows up, the screening will take place. Note that in all

scenarios, no screening would happen if the patient does not show up. The simulation loop

for POMDP scenario is depicted in Figure A.3.
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Figure A.3: Simulation loop for the POMDP policy
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Appendix B

R Package ’pomdp’

Following is the manual to the R package ’pomdp’ developed during this research. This

package is a solver for Partially Observable Markov Decision Processes. The package enables

the user to simply define all components of a POMDP model and solve the problem using

several methods. The package also contains functions to analyze and visualize the POMDP

solutions (e.g., the optimal policy)

The ’pomdp’ package is available at CRAN at https://cran.r-project.org/package=pomdp
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Package ‘pomdp’
December 16, 2019

Title Solver for Partially Observable Markov Decision Processes
(POMDP)

Version 0.9.2

Date 2019-12-06

Description Provides an interface to pomdp-solve, a solver for Partially Observable Markov Deci-
sion Processes (POMDP). The package enables the user to simply define all compo-
nents of a POMDP model and solve the problem using several methods. The package also con-
tains functions to analyze and visualize the POMDP solutions (e.g., the optimal policy).

Depends R (>= 3.5.0)

License GPL (>= 3)

Suggests knitr, rmarkdown

VignetteBuilder knitr

LazyData true

Imports igraph

Copyright pomdp-solve is Copyright (C) Anthony R. Cassandra; LASPack
is Copyright (C) Tomas Skalicky; lp-solve is Copyright (C)
Michel Berkelaar, Kjell Eikland, Peter Notebaert; all other
code is Copyright (C) Hossein Kamalzadeh and Michael Hahsler.

NeedsCompilation yes

Author Hossein Kamalzadeh [aut, cph, cre],
Michael Hahsler [aut, cph],
Anthony R. Cassandra [ctb, cph]

Maintainer Hossein Kamalzadeh <hkamalzadeh@smu.edu>

Repository CRAN

Date/Publication 2019-12-16 09:30:08 UTC

R topics documented:
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
policy_graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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model

POMDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
solver_output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
solve_POMDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
TigerProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
write_POMDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Index 15

model Extract the User-defined Model Components from a Solved POMDP

Description

The function returns the POMDP model components of a solved POMDP.

Usage

model(x)

Arguments

x object of class POMDP returned by solve_POMDP.

Value

An object of class "POMDP_model", i.e., a list of all model components.

See Also

solve_POMDP

Examples

data("TigerProblem")
tiger_solved <- solve_POMDP(model = TigerProblem)
tiger_solved

model(tiger_solved)
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plot

plot Visualize a POMDP Policy Graph

Description

The function plots the POMDP policy graph in an object of class POMDP. It uses plot in igraph
with appropriate plotting options.

Usage

## S3 method for class 'POMDP'
plot(x, y = NULL, belief = TRUE, legend = TRUE, cols = NULL,...)

Arguments

x object of class POMDP.

y ignored.

belief logical; display belief proportions as a pie chart in each node.

legend logical; display a legend for colors used belief proportions?

cols colors used for the states.

... plotting options passed on to plot.igraph in igraph (see plot.common for
available options).

Details

The policy graph nodes represent segments in the value function. Each segment represents one or
more believe states. The pie chart in each node (if available) represent the average belief proportions
of the belief states belonging to the node/segment.

See Also

solve_POMDP, plot.igraph, igraph_options, plot.common

Examples

data("TigerProblem")
tiger_solved <- solve_POMDP(model = TigerProblem)
tiger_solved

## policy graph
policy_graph(tiger_solved)

## visualization
plot(tiger_solved)

library(igraph)
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policy_graph

## use a different graph layout (circle and manual)
plot(tiger_solved, layout = layout.circle)
plot(tiger_solved, layout = rbind(c(1,1), c(1,-1), c(0,0), c(-1,-1), c(-1,1)))

## hide edge labels
plot(tiger_solved, edge.label = NA)

## custom larger vertex labels (A, B, ...)
plot(tiger_solved,

vertex.label = LETTERS[1:nrow(solution(tiger_solved)$pg)],
vertex.label.cex = 2,
vertex.label.color = "white")

## add a plot title
plot(tiger_solved, main = model(tiger_solved)$name)

## plotting using the graph object
## (e.g., using the graph in the layout and to change the edge curvature)
pg <- policy_graph(tiger_solved)
plot(pg,

layout = layout_as_tree(pg, root = 3, mode = "out"),
edge.curved = curve_multiple(pg, .2))

policy_graph Extract the Policy Graph (as an igraph Object)

Description

Convert the policy graph in a POMDP solution object into an igraph object.

Usage

policy_graph(x, belief = TRUE, cols = NULL)

Arguments

x A POMDP object.

belief logical; add belief proportions as a pie chart in each node of the graph.

cols colors used for the states in the belief proportions.

Value

An object of class igraph containing a directed graph.

Author(s)

Hossein Kamalzadeh, Michael Hahsler
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POMDP

See Also

solve_POMDP

Examples

data("TigerProblem")
tiger_solved <- solve_POMDP(model = TigerProblem)
tiger_solved

pg <- policy_graph(tiger_solved)

plot(pg)

POMDP Define a POMDP Problem

Description

Defines all the elements of a POMDP problem including the discount rate, the set of states, the
set of actions, the set of observations, the transition probabilities, the observation probabilities, and
rewards.

Usage

POMDP(discount, states, actions, observations, transition_prob,
observation_prob, reward, start = "uniform", max = TRUE, name = NA)

R_(action, start.state, end.state, observation, value)
O_(action, end.state, observation, probability)
T_(action, start.state, end.state, probability)

Arguments

discount numeric; discount rate between 0 and 1.

states a character vector specifying the names of the states.

actions a character vector specifying the names of the available actions.

observations a character vector specifying the names of the observations.
transition_prob

Specifies the transition probabilities between states. Options are:

• a data frame with 4 columns, where the columns specify action, start-state,
end-state and the probability respectively. The first 3 columns could be
either character (the name of the action or state) or integer indices.

• a named list of m (number of actions) matrices. Each matrix is square of
size n × n, where n is the number of states. The name of each matrix the
action it applies to. Instead of a matrix, also the strings "identity" or
"uniform" can be specified.
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POMDP

observation_prob

Specifies the probability that a state produces an observation. Options are:

• a data frame with 4 columns, where the columns specify action, end-state,
observation and the probability, respectively. The first 3 columns could be
either character (the name of the action, state, or observation), integer in-
dices, or they can be "*" to indicate that the observation probability applies
to all actions or states. Use rbind() with helper function O_() to create
this data frame.

• a named list of m matrices, where m is the number of actions. Each matrix
is of size n × o, where n is the number of states and o is the number of
observations. The name of each matrix is the action it applies to. Instead of
a matrix, also the strings "identity" or "uniform" can be specified.

reward Specifies the rewards dependent on action, states and observations. Options are:

• a data frame with 5 columns, where the columns specify action, start.state,
end.state, observation and the reward, respectively. The first 4 columns
could be either character (names of the action, states, or observation), inte-
ger indices, or they can be "*" to indicate that the reward applies to all tran-
sitions. Use rbind() with helper function R_() to create this data frame.

• a named list of m lists, where m is the number of actions (names should
be the actions). Each list contains n named matrices where each matrix is
of size n × o, in which n is the number of states and o is the number of
observations. Names of these matrices should be the name of states.

start Specifies the initial probabilities for each state (i.e., the initial belief state) used
to find the initial node in the policy graph and to calculate the total expected
reward. The default initial belief state is a uniform distribution over all states.
No initial belief state can be used by setting start = NULL. Options to specift
start are:

• a probability distribution over the n states. That is, a vector of n probabili-
ties, that add up to 1.

• the string "uniform" for a uniform distribution over all states.
• an integer in the range 1 to n to specify a single starting state. or
• a string specifying the name of a single starting state.
• a vector of strings, specifying a subset of states with a uniform start distri-

bution. If the first element of the vector is "-", then the following subset of
states is excluded from the set of start states.

max logical; is this a maximization problem (maximize reward) or a minimization
(minimize cost specified in reward)?

name a string to identify the POMDP problem.
action, start.state, end.state, observation, probability, value

Values used in the helper functions O_(), R_(), and T_() to create an entry for
observation_prob, reward, or transistion_prob above, respectively.

Details

POMDP problems can be solved using solve_POMDP. Details about the available specifications can
be found in [1].
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POMDP

Value

The function returns an object of class POMDP which is list with an element called model contain-
ing a list with the model specification. solve_POMDP reads the object and adds a list element called
solution.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

[1] For further details on how the POMDP solver utilized in this R package works check the fol-
lowing website: http://www.pomdp.org

See Also

solve_POMDP

Examples

## The Tiger Problem

TigerProblem <- POMDP(
name = "Tiger Problem",

discount = 0.75,

states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
observations = c("tiger-left", "tiger-right"),

start = "uniform",

transition_prob = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),

observation_prob = list(
"listen" = rbind(c(0.85, 0.15),

c(0.15, 0.85)),
"open-left" = "uniform",
"open-right" = "uniform"),

# the rew helper expects: action, start.state, end.state, observation, value
reward = rbind(

R_("listen", "*", "*", "*", -1 ),
R_("open-left", "tiger-left", "*", "*", -100),
R_("open-left", "tiger-right", "*", "*", 10 ),
R_("open-right", "tiger-left", "*", "*", 10 ),
R_("open-right", "tiger-right", "*", "*", -100)
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reward

)
)

TigerProblem

model(TigerProblem)

reward Calculate the Reward for a POMDP Solution

Description

This function calculates the expexted total reward for a POMDP solution given a starting belief
state.

Usage

reward(x, start = "uniform")

Arguments

x a POMDP solution (object of class POMDP).

start specification of the starting belief state (see argument start in POMDP for details).

Details

The value is calculated using the value function stored in the POMDP solution.

Value

A list with the components

total_expected_reward

the total expected reward starting with the initial policy graph node representing
the starting belief state.

initial_pg_node

the policy graph node that represents the starting belief state.’
start_belief_state

the starting belief state specified in start.

Author(s)

Michael Hahsler

See Also

POMDP, solve_POMDP
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Examples

data("TigerProblem")
tiger_solved <- solve_POMDP(model = TigerProblem)

# if no start is specified, a uniform belief is used.
reward(tiger_solved)

# we have additional information that makes us belief that the tiger
# is more likely to the left.
reward(tiger_solved, start = c(0.85, 0.15))

# we start with strong evidence that the tiger is to the left.
reward(tiger_solved, start = "tiger-left")

# Note that in this case, the total discounted expected reward is greater
# than 10 since the tiger problem resets and another game staring with
# a uniform belief is played which produces addional reward.

solution Extract the Solution of a POMDP

Description

The function extracts the solution of a POMDP as an object of class POMDP_solution which is a
list containing, e.g., the policy graph (pg) and the hyper-plane coefficients (alpha).

Usage

solution(x)

Arguments

x object of class POMDP returned by solve_POMDP.

Value

returns an object is of class POMDP_solution, i.e., a list of all solution elements.

See Also

solve_POMDP

Examples

data("TigerProblem")
tiger_solved <- solve_POMDP(model = TigerProblem)
tiger_solved

solution(tiger_solved)
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solver_output Display the Output of the POMDP Solver

Description

Displays the output generated by the solver ’pomdp-solve’. This includes used parameters, and
iterations (i.e., epochs). This produces the same output as running solve_POMDP with the argument
verbose = TRUE.

Usage

solver_output(x)

Arguments

x object of class POMDP returned by solve_POMDP.

Value

returns invisibly a character string vector with the output of ’pomdp-solve’.

See Also

solve_POMDP

Examples

data("TigerProblem")
sol <- solve_POMDP(model = TigerProblem)

## solver output
solver_output(sol)

solve_POMDP Solve a POMDP Problem

Description

This function utilizes the ’pomdp-solve’ program (written in C) to use different solution methods [2]
to solve problems that are formulated as partially observable Markov decision processes (POMDPs)
[1]. The result is a (close to) optimal policy.

Usage

solve_POMDP(model, horizon = NULL, method = "grid", parameter= NULL, verbose = FALSE)
solve_POMDP_parameter()

92



solve_POMDP

Arguments

model a POMDP problem specification created with POMDP. Alternatively, a POMDP
file or the URL for a POMDP file can be specified.

method string; one of the following solution methods: "grid", "enum", "twopass",
"witness", or "incprune". Details can be found in [1].

horizon an integer with the number of iterations for finite horizon problems. If set to
NULL, the algorithm continues running iterations till it converges to the infinite
horizon solution.

parameter a list with parameters passed on to the pomdp-solve program.

verbose logical, if set to TRUE, the function provides the output of the pomdp solver in
the R console.

Details

solve_POMDP_parameter() displays available solver parameter options.

Note: The parser for POMDP files is experimental. Please report problems here: https://github.
com/farzad/pomdp/issues.

Value

The solver returns an object of class POMDP which is a list with the model specifications (model),
the solution (solution), and the solver output (solver_output). The elements can be extracted
with the functions model, solution, and solver_output.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

[1] For further details on how the POMDP solver utilized in this R package works check the fol-
lowing website: http://www.pomdp.org

[2] Cassandra, A. Rocco, Exact and approximate algorithms for partially observable Markov deci-
sion processes, (1998). https://dl.acm.org/citation.cfm?id=926710

Examples

data("TigerProblem")
TigerProblem

tiger_solved <- solve_POMDP(model = TigerProblem, parameter = list(fg_points = 10))
tiger_solved

## look at the model
model(tiger_solved)

## look at the solution
solution(tiger_solved)
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## look at solver output
solver_output(tiger_solved)

## plot the policy graph
plot(tiger_solved)

## display available solver options which can be passed on to the solver as parameter.
solve_POMDP_parameter()

## solve a POMDP from http://www.pomdp.org/examples
sol <- solve_POMDP("http://www.pomdp.org/examples/cheese.95.POMDP")
sol
plot(sol)

TigerProblem Tiger Problem POMDP Specification

Description

The model for the Tiger Problem [1].

Usage

data("TigerProblem")

Format

A list with the elements: discount, states, actions, observations, start, transition_prob, observa-
tion_prob, reward, name.

Details

The Tiger Problem is defined as follows [1]. A tiger is put with equal probability behind one of
two doors, while treasure is put behind the other one. You are standing in front of the two closed
doors and need to decide which one to open. If you open the door with the tiger, you will get hurt
by the tiger (negative reward), but if you open the door with the treasure, you receive a positive
reward. Instead of opening a door right away, you also have the option to wait and listen for tiger
noises. But listening is neither free nor entirely accurate. You might hear the tiger behind the left
door while it is actually behind the right door and vice versa.

The states of the system are tiger behind the left door (tiger-left) and tiger behind the right door
(tiger-right).

Available actions are: open the left door (open-left), open the right door (open-right) or to listen
(listen).

Rewards associated with these actions depend on the resulting state: +10 for opening the correct
door (the door with treasure), -100 for opening the door with the tiger. A reward of -1 is the cost of
listening.
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As a result of listening, there are two observations: either you hear the tiger on the right (tiger-right),
or you hear it on the left (tiger-left).

The transition probability matrix for the action listening is identity, i.e., the position of the tiger
does not change. Opening either door means that the game restarts by placing the tiger uniformly
behind one of the doors.

References

[1] Anthony R. Cassandra, Leslie P Kaelbling, and Michael L. Littman (1994). Acting Optimally
in Partially Observable Stochastic Domains. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pp. 1023-1028.

Examples

data(TigerProblem)
TigerProblem

# solve the problem and look at the optimal policy graph (as a table and as a plot)
sol <- solve_POMDP(TigerProblem)
sol

solution(sol)$pg
plot(sol)

write_POMDP Write a POMDP Model to a File in POMDP Format

Description

Writes a POMDP file suitable for the pomdp-solve program. This function is used internally.

Usage

write_POMDP(model, file)

Arguments

model an object of class POMDP_model.

file a file name.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

POMDP solver website: http://www.pomdp.org
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See Also

POMDP
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