
 

 
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Brian Johannes Irvine 
 
 

AUTOMATED GAIT SEGMENTATION AND TRACKING 
USING INERTIAL MEASUREMENT UNITS 

 
 
 
 
 
 
 
 

 
 

Master’s Thesis 
Degree Programme in Biomedical Engineering 

December 2020 
 



 

Irvine B.J. (2020) Automated Gait Segmentation and Tracking Using Inertial 
Measurement Units. University of Oulu, Degree Programme in Biomedical 
Engineering. Master’s Thesis, 61 p. 
 
 
 

ABSTRACT 
 
In this thesis, a methodology is presented to automate the labelling, event 

detection, segmentation, tracking, and parameter extraction of IMU gait data for 
sensors placed on the feet and shanks. The algorithms presented were tested using 
IMU data from three different styles of gait, normal gait, antalgic gait, and 
limited mobility gait. The algorithms developed were found effective for all of the 
simulated gait styles without mislabelling or detecting erroneous gait segments. 
The resultant gait trajectories and parameters were analyzed and were found to 
accurately depict the differences between each of the different styles of gait.  
The methodology presented can be used for the rapid and accurate processing 

of gait data for multiple styles of gait. This quantification of gait data can enable 
the collection of IMU gait data on a larger scale. This provides an accessible, low-
cost option for out-of-laboratory gait data collection. 
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ABBREVIATIONS AND SYMBOLS 
 
AHRS attitude and heading reference system 
DOF degrees of freedom 
EC end contact 
EFC end full contact 
EMG electromyography 
GE gait events 
GTP gait temporal parameters 
IC initial contact 
IFC initial full contact 
IMU inertial measurement unit 
MARG magnetic, angular rate, and gravity sensor 
MEMS micro electromechanical system 
PD Parkinson’s disease 
 
 
ECk time of kth occurrence of EC event 
ICk time of kth occurrence of IC event 
 
S frame of reference 
R frame rotation matrix 
𝑎 linear acceleration 
𝑎" linear acceleration with gravity removed 
t time 
t0 initial time 
a roll angle 
g yaw angle 
qP pronation angle 
qI in-turn angle 
 
[ ]T transpose 
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1. INTRODUCTION 
 
Walking is an essential activity of daily living for many people. Often oversimplified, 
walking is a complex activity made possible by the cooperation of different body 
systems to sense the orientation of the body and provide feedback which leads to 
motion. The result is the ability to provide locomotion while maintaining balance.  
Not everyone has the same style of walking. It is impacted by the performance of 

each system which makes walking possible. Walking abnormalities can be a result of 
impairment to the musculoskeletal or nervous systems.  Perhaps the most simple 
explanation of gait analysis is that “gait analysis is the process of determining what is 
causing patients to walk the way they do.” [1].  
Clinical gait analysis is used for a variety of reasons, to assess an individual’s need 

for orthopaedic surgery, to develop compensatory strategies in rehabilitation, or 
recently even to discern between neurological disorders. In all of these cases the 
quality of data is paramount in order to provide the proper surgery, rehabilitation, or 
diagnosis. Because, of this requirement of high-quality data, much of the clinical gait 
analysis is done using motion capture, force plates, or the professional observation of 
high-speed video. These methods contribute to a high cost of analysis and enforce an 
additional constraint that gait analysis must be performed within a clinic or laboratory. 
The increasing performance of inertial measurement units (IMU) is making them a 

viable tool for clinical gait analysis. The IMU benefits from its relatively low cost 
compared to other modalities. Compared to motion capture the IMU has a lower setup 
time, because fewer sensors are required than the number of markers for viable motion 
capture. The IMU also benefits from a much wider collection environment which 
expands beyond the walls of the laboratory. With a wireless IMU module, like the one 
described in this thesis, collection can be done in the laboratory, at home, outside, or 
anywhere that has a flat and safe surface to walk on. This allows for the collection of 
data from many more strides than is possible with motion capture, force plate, or 
professional observation. 
Compared to professional observation, the IMU measurements have the additional 

benefit of being quantitative. This removes observational bias and allows for the 
calculation of non-discriminatory gait parameters. These gait parameters can them be 
studied by gait pathologists to determine the source of the gait abnormality and suggest 
treatment in the form of surgery or rehabilitation. The added benefit of these 
quantitative measures is that they allow for gait analysis to be done by machine 
learning models which will be exhibited in the literature review to have a significant 
ability to distinguish between neurological gait pathologies. 
This thesis proposes a tool to help with the quantification of IMU gait data. The tool 

is a data pipeline which was developed to automatically label sensors, detect gait 
events, remove gait artefacts, and produce organized and meaningful gait parameters. 
This thesis will follow this process of developing this pipeline from the sensor level to 
the extraction of gait parameters. This pipeline will prove useful in the rapid processing 
of large amounts of gait data produced by the IMU as collection becomes more 
ubiquitous. With the low cost of collection and the ability to collect data outside of the 
laboratory. This means that gait data measured by IMU has the potential to collect vast 
amounts of walking data by having the patient wear the system as they simply go about 
their day. As collection becomes more ubiquitous and data volumes increase, the 
proposed pipeline, or similar data processing strategies will be essential to achieving 
high-accuracy, low-cost gait analysis. 
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2. LITERATURE REVIEW 
 
Walking is a critical activity of daily living for many people. Being able to walk 
efficiently is a certain improvement to quality of life. Not only can walking 
inefficiently or slowly decrease someone’s ability to get around, it can also induce 
stigma, or lead to injury. Falls that occur during walking due to impairment of gait 
pose a serious risk to the elderly [2]. The fear of falling and associated reduction in 
mobility and independence is also a significant detriment to quality of life [3]. 
It was once believed that gait disorders were an inevitable development associated 

with aging, however it is now apparent that gait disorders are indicative of specific 
underlying disorders which warrant diagnostic tests [3]. These underlying condition s 
include subtle white-matter lesions, vestibular dysfunction, or oculomotor changes [3]. 
Further testing has the potential to identify the cause of gait abnormalities using a 
systems-based approach. In some cases the manifestation of gait disturbances, even in 
isolation, can be a pre-clinical indicator of underlying cerebrovascular or 
neurodegenerative disease [3]. Gait parameters such as gait speed are also an effective 
marker of clinical health and is are effective predictors of mortality in older adults [4].  
The impact of gait disturbances on quality of life and the potential for gait to be used 

as a tool for identifying pre-clinical conditions provides apt motivation for the 
development of new tools and methods for the monitoring of gait. This chapter will 
discuss current developments in the monitoring of gait and the applications made 
possible through the quantification of gait. This begins with a more detailed 
investigation of gait from a systems-based perspective, analyzing the anatomy and 
physiology which, when unimpeded, enable normal gait. 

2.1. Anatomy and Physiology of Gait 

Human walking is complicated. It is a result of symphonic cooperation between the 
nervous system, vestibular system, and musculoskeletal system. The interconnected 
physiology of systems related to gait is evident in a study by Sejdić in which 
challenging conditions for gait manifest changes in electrodermal, respiratory, and 
cardiological function [5]. This provides evidence for considering gait, and by 
extension, gait abnormalities as an indicator of multi-factor systemic function. 
The most common causes of abnormal gait are non-neurological, including those 

caused by joint pain or a lack of joint mobility [3]. These are effectively a challenge 
to the musculoskeletal system which preforms gait.  
Further impairments to gait can be caused by the nervous system which initiated, 

controls, and adapts to changes in gait. In the nervous system, gait is “governed by the 
hierarchical control of the primary motor cortex, premotor  and supplemental motor 
cortices, basal ganglia, cerebellum, brainstem, spinal pattern generators and feedback 
from the vestibular system.” [3] The key functions of neuronal systems during gait are 
locomotion, balance, and ability to adapt to the environment which are supported by 
executive, cognitive, and affective dimensions of control [3]. Disruption of the 
underlying motor or neural system results in inability to complete these functions 
which manifests as abnormal gait.  
The process of walking is highly dependent on cognitive executive function. This 

has been shown in experiments in which participants are cognitively challenged by 
additional tasks while walking. The additional cognitive load leads to gait decrements 
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in healthy and patient populations [3]. This additional cognitive load could reveal 
underlying gait abnormalities if given the opportunity. In a paper assessing the 
interaction between physical systems while walking outside, the author suggests that 
laboratory walking may not provide enough to stress physiological systems [5]. This 
suggests that testing for specifically neural gait abnormalities should be tested in a way 
that provides a default cognitive load such as outside environments. 
Due to the heavy involvement of the neural function in gait it is no surprise that 

neurological diseases heavily impact gait. The complexity of the neural systems being 
affected also means that the manifestations of disease in gait patterns may have disease 
specific patterns. This has allowed researchers to develop machine learning models 
which predict neurological disorders based on gait data. An example of this is a study 
by Mannini et al. which used IMU data and a support vector machine (SVM) classifier 
to accurately label gait data from healthy individuals, post-stroke patients, and 
individuals with Huntington’s disease [6]. Although successful classifiers like the one 
mentioned above have been developed and are in constant development, widely 
applicable algorithms remain very complex because gait disorders are a result of 
concurrent effects from multiple causal factors [7].  
Gait analysis involves measuring the spatial and temporal aspects of walking [1]. 

Spatial measurements include step length and step width [1]. One step is defined as 
the movement of one foot to be in front of the other while a stride, consisting of two 
steps, begins and ends with the same foot returning to its initial position [1]. Temporal 
aspects of gait are the times required for different motions in walking and include step 
times or times spent in different phases of gait [1]. Spatial and temporal parameters of 
interest in this work will be discussed further in sections 2.7 and 2.8. 

2.2. Methods for Collection of Gait Data 

Gait abnormalities are commonly evaluated through combination of observation, 
functional assessment and questionnaires [8].  However, this can be problematic due 
to observational bias and lack inter-rater reliability [8]. This was somewhat alleviated 
by the introduction of video capture systems which allow for observation by multiple 
professionals to develop a second opinion. However, largely these issues remained and 
have motivated a change in the way that gait is studied from qualitative to quantitative 
analysis.  
The first widespread use of quantitative gait analysis used electromyography (EMG) 

to measure muscle activity [1]. EMG measures the electrical activity produced by the 
activation of motor units [1]. Electrodes could be placed over any superficial muscles 
in the thigh or shank to monitor muscle activity. This could be used to determine 
asymmetry between legs or to diagnose medical conditions. However, now the use of 
EMG is no longer the norm for clinical gait analysis [1]. 
Kinematic monitoring of gait using motion capture and force plates has become the 

norm for clinical gait analysis. Technological advancement in the field led to the 
development of 3D motion capture and force plate systems [8]. Motion capture works 
by placing markers on the subject which are detected by a series of cameras 
surrounding the capture area. Markers are detected by the cameras simultaneously and 
the 3D location of each marker is reconstructed through comparison of camera images 
[1]. This gold standard in gait analysis provides high quality data, but is expensive to 
acquire and maintain and has a very limited range within the constrained environment 
of a laboratory [8]. Additionally, these systems require qualified personnel to operate 
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and interpret their results [9]. This high cost makes motion capture systems a luxury, 
motivating other technologies to provide lower cost, more widely applicable solutions. 
There are also lower cost vision based systems such as the Reha@home mentioned 

in a comparison of vision-based and sensor based systems for join angle gait analysis 
by Kyrarini, Wang, and Graser [10]. However, these systems still have the 
consequence of being location dependent and can only work within a constrained 
capture area. These systems have also faced issues with the assessment of gait 
parameters. A low-cost vision-based system using Microsoft Kinectä was compared 
to a Vicon 3D motion capture in a study by Pfister et al. [11]. It was found that the 
Kinectä based system inaccurately reported joint angles and was declared by the 
authors as not suitable for clinical use [11]. 
Other solutions focus on using sensors like inertial measurement units (IMU) to 

collect data outside of the laboratory. Of all of the sensors used in out-of-laboratory 
gait analysis, IMU seem to be the most popular, because they are lightweight, low-cost 
sensors which produce high quality acceleration and angular position data at high 
sampling rates. A study by Sabatini et al. was the first to show how accelerometer data 
could be used to create accurate measurements of foot position during gait [12]. IMU 
is sometimes supplemented with other technologies as in the case of the Xsens 
ForceShoeä which combines two IMU with two 3D force and motion sensors to 
produce an ambulatory gait lab which has been validated against the gold standard of 
3D motion capture [13]. 
Often the best results in gait analysis have come from multimodal approaches. An 

example of this is a system developed by Rodrigues et al. which improved the accuracy 
of a marker-less vision based system using the Microsoft Kinectä which achieved 
95% accuracy compared to Vicon 3D by adding IMU sensors on the shank and thigh 
[9]. 

2.3. Inertial Measurement Unit (IMU) 

The IMU is a relatively complex sensor made up of multiple components. By 
definition an IMU contains at least an accelerometer and a gyroscope with the 
magnetometer considered as optional. In this thesis, the magnetometer will always be 
included in the definition of an IMU. IMU are available with different numbers of 
degrees of freedom (DOF). In this thesis, the IMU will be considered to have 9 DOF, 
3DOF for each orthogonal direction of the accelerometer, gyroscope, and 
magnetometer. Some IMU like the one used in this study, contain a temperature sensor 
for compensation of sensor drift due to temperature change. IMU vary in many aspects 
including price, size, accuracy, and amount of onboard processing.  
    The IMU used for this project are microelectronic mechanical system (MEMS) 
IMU. MEMS IMU are desirable for their small form factor and weight. MEMS IMU 
use miniature mechanical systems which deform when an acceleration, angular 
velocity, or magnetic field is applied. The deformations in the miniaturized mechanical 
system produce electrical signals which are converted to digital signals by and onboard 
processing unit. The mechanism for each of the IMU components will be described in 
greater detail in the following sections. MEMS  sensors are not as accurate as their 
tactical grade equivalents, but they have advantages in terms of smaller size, lower 
power, and lower cost of implementation [14]. MEMS IMU sensors suffer from bias, 
noise, scaling errors, non-linearity, temperature effects, and misalignment errors [14]. 
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For these reasons it is important to have software solutions to extract meaningful data. 

It is possible to implement software solutions to these issues and many distributors of 

MEMS IMU include this software with the devices. Figure 1 shows an image of the 

Hillcrest FSM-9, a 9 DOF IMU, which was used in this thesis. 

 

 

Figure 1. Hillcrest FSM-9 9-axis inertial measurement unit (IMU) (CEVA, 2019). 

   The accelerometer is responsible for measuring the acceleration of the sensor 

including the acceleration effects produced by gravity. These acceleration signals are 

produced by the motion of a proof mass through a substrate with a fixed electrode on 

either side[15]. The motion of the proof mass changes the capacitance between the 

plates which is then measured as a proxy for acceleration [15]. One accelerometer is 

required for each DOF of the accelerometer. 

The vector of acceleration due to gravity is known to be 9.81m/s2 straight up, 

orthogonal to the surface of the Earth. This is important for determining the orientation 

of the sensor. The acceleration can also be integrated to get velocity and twice to get 

position. However, integration introduces a lot of drift error through the summation of 

sensor noise. For this reason, getting an accurate sensor is essential when the integrals 

of acceleration are desired.  

Angular velocity is measured by an onboard gyroscope. The MEMS gyroscopes can 

use a variety of techniques to measure vibrations imposed by the Coriolis effect when 

the sensor is rotated [16]. This is commonly measured using a tuning fork whose tines 

oscillate upon rotation. The Coriolis force can then be measured based on the 

differential bending of the tines or by the vibration of the stem [16]. Again, one of 

these units is required for each DOF of the sensor. 

The magnetic field is measured with an onboard magnetometer which functions 

through a variety of methods for measuring the resistance of two piezo resistors 

attached to a U-shaped cantilever beam. When introduced to a magnetic field the 

cantilever beam induces strain in the two sensors which is converted to an electrical 

signal via Wheatstone bridge [17]. Knowledge of the Earth’s ambient magnetic field 

is useful because it is static and can therefore be used in conjunction with the vector 

of acceleration due to gravity in order to determine orientation. 

2.4. Gait Events (GE) and Gait Temporal Parameters (GTP) 

Gait is a cyclic process punctuated by gait events. The gait cycle begins with a specific 

gait event of one foot with the ground and lasts until the same gait event repeats itself 

[18]. The gait cycle can be broken down with varying degrees of granularity which are 

summarized in a well-received article by Taborri et al. [18]. These levels of granularity 

include 2-8 phase models of gait, with increasing specificity with each additional 

phase. The simplest of these is the two-phase gait model which only shows stance 
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phase, when the foot is in contact with the ground, and swing phase, when the foot is 
not in contact with the ground. Taborri et al. notes that the two-phase gait model is 
sufficient for most applications of functional electrical stimulation (FES) and for the 
actuation of assistive motors in exoskeletons [18]. This is a meaningful statement, 
because it shows that complexity is not always required and increasing the number of 
phases is unnecessary in some cases and can be costly. This is because increasing the 
number of phases also increases the demands on hardware and software, without 
returns in real-world applicability. Increasing granularity allows for a greater ability to 
differentiate between gait activities or assess pathological gait [18]. This thesis will 
focus on the four-phase gait model which consists of the loading response, flat foot, 
pre-swing, and swing phases which begin with initial contact (IC), initial full contact 
(IFC), end full contact (EFC), and end contact (EC) respectively. It should be noted 
that naming of gait events and phases is not always consistent. 
Gait temporal parameters are the standard quantifications of gait, perhaps because 

they can be uniformly and accurately measured using so many different modalities, 
from foot switches to IMU [19]. Gait events are detected using a variety of algorithms 
including foot switches, foot pressure insoles, linear accelerometers, gyroscopes, IMU, 
EMG, electroneurography, ultrasound, force platforms, and opto-electronic systems 
[18]. When using IMU, gait events are generally based on the target variables of 
acceleration and/or angular velocity [20]. For this thesis, gait events will be detected 
based on angular velocity which was used by Jasiewicz et al. [19]. This algorithm will 
be explained in detail in section 5.4. 

2.5. Gait Orientation and Position Trajectories 

Orientation and position tracking are important measurements because they provide 
data which is easily understood. They also provide essential spatial data which can be 
used in the detection and understanding of abnormal gait. However, this is problematic 
when measuring walking using IMU orientation and position are not default outputs, 
they require calculation based on the accelerometer, angular velocity, and 
magnetometer signals.  
Orientation estimates are produced by time-integrating with known initial 

conditions [21]. These estimations are sensitive to gyroscope drift but can be helped 
by the known acceleration due to gravity and the assumption of a homogenous 
magnetic field [21]. The Earth’s ambient magnetic field vector can be used in 
conjunction with the ambient gravity vector to determine orientation by providing two 
known vectors with which to orient the sensor [22]. Seel, Raisch, and Schauer cite 
potential issues with this reasoning as the orientation of the sensor and actual body 
segment may not align, and that in practice the magnetic field is prone to ferromagnetic 
distortion [23]. For this reason, in a subsequent paper, Seel, Graurock, and Schauer 
decided to leave out the magnetometer entirely when developing their algorithm for 
orientation estimation [24]. This required an assumption of unchanging orientation 
between flat foot segments [24]. From accurate, globally referenced, orientation it is 
also possible to produce joint angle measurements which open up more possibilities 
for gait analysis. 
Another challenge with using the IMU for gait analysis is in measuring linear 

velocity (ie. walking speed), or position. The challenge is that one cannot simply 
integrate the acceleration measurements to calculate these values. This is partially due 
to the effect of gravity which results in a constant acceleration on the sensor, with no 
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associated motion [25]. Another issue is that drift errors in the accelerometer 
accumulate very quickly when integrated [25]. Sabatini et al. proposed a partial 
solution to this by resetting the integration for each stride [12].  This was enabled by 
setting initial conditions for the integration based on the moment when the foot is flat 
and the shank is vertical and there is not linear or angular acceleration of the foot [12]. 
A similar technique was used by Kitagawa and Ogihara to achieve step-by-step foot 
trajectories which estimated stride length with an average error of only 20±50mm and 
foot clearance with an average error of 2±7mm [26]. A very impressive result 
compared to the 1mm error assumed with the gold standard VICON 3D motion capture 
[26]. 
Another, rather unique solution to the problem of position tracking by IMUs was 

implemented by Roetenburg et al. By creating an augmented magnetic field using 
wearable magnetic coils [27]. This allows low-frequency magnetometer based 
observations of position to correct for integration drift through the use of a Kalman 
filter [27]. This is effectively the same as the other algorithms which use the Earth’s 
magnetic field, but with a much high signal-to-noise ratio (SNR) and much lower 
influence from external ferromagnetic disturbances. 

2.6. Assessment of IMU Gait Data Quality 

Error in IMU-based gait measurement can be studied in several different ways. The 
most popular is to compare the gait temporal parameters calculated with the IMU to a 
gold standard measurement system, such as motion capture [27], [28], force plate [8], 
[20], or stereophotogrammetry.  This is a measure of validity. Washabaugh et al. 
measures the validity of IMU based measurement of gait temporal parameters by 
comparing the IMU GTPs to those would by a force plate [8]. The authors of this study 
also measure repeatability of IMU systems by having participants monitored on 
consecutive days, assuming that they will have the same gait parameters [8]. The result 
of this study was that the IMU gait measurement system had both a high validity and 
repeatability for healthy young adults [8]. 
    Another way of calculating the error is through absolute error testing. This requires 
the IMU to be moved in such a may that the ground truth motion parameters are known. 
This is not very common but has been performed by Ricci, Taffoni, and Formica. In 
this study, IMUs were rigidly fixed to a robotic arm and moved at frequencies 
indicative of human gait [29]. They authors tested different sensor fusion methods for 
dynamic and static measurements [29]. Absolute measurements like this are highly 
desirable, but very difficult to achieve, for this reason relative error measurement 
methods are generally used instead. Ricci, Taffoni, and Formica used relative error 
measurements defined as the piecewise difference between two sensors in their 
measurement of the same orientation [29]. They define the orientation difference as 
the length of the shortest path between two quaternions [29]. 

2.7. Gait Data in Rehabilitation and Assistive Devices 

Another topic in gait analysis is rehabilitation. Rehabilitation is often the combination 
of gait quantifications with therapy, often occurring in a cycle to meet patient needs 
over time. This repetition means that the data needs to be repeatable and have a low 
minimum discernable change (MDC) so that improvement of gait parameters can 
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attributed to therapy rather than error [8]. In these cases, it would also be beneficial to 
have a greater number of steps measured and in a greater number of environments. 
This provides motivation for portable systems for gait analysis. This motivates the use 
of IMU to preform measurements because they do not rely of a laboratory environment 
and can take place in uncontrolled environments where the participant will have 
minimal impacts to the naturality of their gait. 
In addition to monitoring gait to come up with therapeutic solutions it is also 

possible to use the online processing of gait data to build assistive robotic devices such 
as the exoskeleton built by Bae et al. [30]. This soft and light exoskeleton uses IMU 
sensors attached laterally to the foot to detect gait events [30] . The system controller 
used the gait events to provide assistance at the correct time to compensate for 
weakened or asymmetric gait in post-stroke patients [30]. This is one example of how 
online gait collection and processing can enable people to improve their gait, and the 
associated quality of life. This also highlights the necessity of accurate measurements. 
If gait events were detected at the wrong times, then the actuations would occur at the 
wrong time and gait could be further impaired.   
Although this thesis focuses primarily on offline methods of gait analysis, there are 

shared features such as the collection of good data for processing by using a sound 
methodology and effective sensor placements. Offline data could also provide as 
training information for future machine learning algorithms to run online. 

2.8. Gait Data in Diagnosis 

Gait is commonly used to diagnose and evaluate the severity of neurological disorders 
that modify the movement of the body. The most common disease in this category is 
Parkinson’s disease (PD) [31]. The primary symptoms of PD are the lack of postural 
stability, tremors, and movements that can be slow or halting [31].  Given that these 
effects all manifest in gait it makes sense that it would be possible to diagnose and 
estimate the progression of the disease. Even with many features appearing in gait, it 
is difficult to design machine learning models appropriate to differentiating these 
subtleties from the subtleties of normal gait [32]. Cuzzolin et al. proposed an algorithm 
to deal with this by encoding gait parameters within hidden Markov models to 
represent gait data over a fixed-length [32]. The algorithm then uses  a nearest neighbor 
classifier to classify the gait as indicative of Parkinson’s disease or normal gait [32]. 
The algorithm was considered successful, with an accuracy of 85.51% and a sample 
size of 156 people [32]. The ability of IMU data to potentially diagnose neurological 
conditions also includes post-stroke patients [6], patients with Huntington’s disease 
[6], and patients with multiple sclerosis[33] .  
In the diagnosis of neurological disorders such as Parkinson’s disease (PD) , it is the 

momentary status of the patient that is being analyzed [31]. This motivates repeated 
measurements to measure progression of symptoms. One of the benefits of using gait 
analysis for tracking neurological disorders is that with the right equipment, the IMU, 
repeat measurements can be repeated regularly at low cost. This provides a more 
holistic understanding of disease progression and could improve the quality of care 
and treatment received by individuals with neurological conditions.  
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3. HARDWARE AND DESIGN 
 
The first step of gait analysis is converting the real-world event of gait into electrical 
signals which can be processed. If accurate gait data is desired, it is essential to ensure 
that the system inputs of acceleration, angular velocity, and magnetic field from the 
IMU are as accurate as possible. Even the best algorithms for gait analysis will be 
useless if the input data is inadequate. This chapter follows the process of designing a 
system to collect, synchronize, and save data from IMU for the purpose of offline 
processing of gait data. 

3.1. IMU Sensor Selection 

As mentioned above, sensor accuracy is paramount to a successful gait analysis 
system. However, accuracy is not the only criterion of importance, size, weight, 
interactivity, technical support, and sampling rate are additional factors which needed 
to be considered. High accuracy is important in ensuring high-quality data. Small size 
and weight are important in ensuring the subjects ability to perform natural gait. IMU 
sensors with options for simple interactivity through USB interfaces are preferential 
for this development case, because they enable rapid prototype development and 
simple interchangeability of components. Actionable technical support in the form of 
open-source libraries is important, because it greatly reduces development time. 
Finally, sampling rate should be high in order to not miss out on potential high-
frequency signals. 

The selected sensor, the FSM-9 by Hillcrest Labs was chosen for its marriage of 
small size and weight with high accuracy and a relatively high data rate. The FSM-9 
collects accelerometer, gyroscope, and magnetometer at 500Hz and can produce 
sensor fusion outputs at 250Hz. The FSM-9 is also factory calibrated [34].The 
accuracy of the FSM-9 is also quite good, based on the Hillcrest FSM-9 reference 
material which is cited in part in table 1 [34]. This table also shows that sensor has 
sufficient resolution to provide a smooth signal. Additionally, the sensors have 
relatively little bias, due to the factory calibration. Finally, the range of the FSM-9 
includes the ranges of acceleration (±4g) and angular velocity (±500˚/s) characteristic 
of human gait [12]. Having sufficient range ensures that there is no sensor clipping. 
Table 1: Summary of sensor specifications for the FSM-9 taken directly without unit 
conversion from the Hillcrest FSM-9 Data Sheet [34] 

 Linear 
Acceleration 

Angular Velocity Magnetometer 

Range ±8g ±1833˚/s ±600µT 
Resolution < 6mg 0.04˚/s < 1µT 
Bias < 20mg 0.01rad/s < 5µT 

Non-Linearity 
(% full scale) 

0.5% 0.2% 0.5% 

 
 
 
In addition to these impressive specifications the FSM-9 has also built a reputation 

through use in other peer reviewed articles [10], [35]. In one of these studies the FSM-
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9 was show to be able to measure joint angles within 3 degrees of error compared to a 
PASCO  PS-2138 goniometer ground truth [10]. Its use in existing academic literature 
suggests that the sensor is of sufficient quality for modern academic research.  

The FSM-9 also had some quality-of-life improvements in terms of development 
over other sensors. One of these is that each sensor is factory calibrated using a highly 
controlled gimbal. The sensor outputs are also subjected to dynamic calibration over 
changing time and temperature [34]. The FSM-9 also uses a predefined 
communication protocol with open source libraries for programming data collection 
[36]. The inclusion of a USB interface for simplified data transmission compared to 
I2C or SPI. USB provides a better interface for this application, because it allows easy 
assembly, disassembly, and replacement of components. It also reduces modes of 
failure introduced by soldered joints on the sensors. 

3.2. Sensor Controller Selection,  

A sensor controller was designed to receive and save the streamed data from the IMU 
sensors. The Raspberry Pi 4 B computer was selected as the processing unit for the 
data collection device. It was selected for its small size, ability to run for hours powered 
by a relatively small battery, abundance of USB ports for connection to the IMU 
sensors, and its native Wi-Fi support which allows it to run an Apache Server and be 
accessed remotely. Finally, the controller needed to have accurate time signals 
provided by a real time clock (RTC). The RTC used for this project was the ChronoPi 
1.0. The Raspberry Pi was supported in an adjustable waist pouch with its 
accompanying battery pack. 

3.3. Device Programming, Communication, and Networking 

Collection of data from the sensors was simplified by the inclusion of the publicly 
available Hillcrest Freespace libraries (Hillcrest Labs, Mountain View, USA). 
Communication protocols are included in the HCOMM Reference Manual [36]. 
However, changes and additions needed to be made to the code base to only collect 
the required data. The code was also edited to provide multi-device scaling and 
synchronization. Interfacing with the IMU occurs through the sending of data requests 
and the subsequent receiving of the requested data. A system of asynchronous 
collection was selected, because it allowed for collection at higher sampling rates than 
synchronous collection which would face major delays at higher sampling rates. In 
this way the sensors are initialized, set to the proper sampling rate by a motion data 
request, then set to stream data continuous until reset or turned off. Importantly each 
sensor sends the motion data packet with fields indicating the numerical sensor ID and 
sequence number. The sequence number is a monotonically increasing integer applied 
to each packet which allows for the detection of any packets lost in transmission. The 
device ID and sequence number combined with the time stamp applied to the packet 
on arrival by the Raspberry Pi allow for the real-time determination of sampling rate 
for each sensor. The desired features from each packet are extracted and written to a 
csv file. This process is contained in two executable programs, one for initialization 
and setting the data rate and the other for collecting gait data. 
The two executable files were then made executable over a network connection. 

By running an Apache server with PHP on the Raspberry Pi it is possible to create a 
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series of web pages have access to run these executables on the Raspberry Pi. In this 
way, the person collecting the data could log on to the local area network on a computer 
or a smartphone and be able to set the device data rate, collect data, and reboot the 
Raspberry Pi if necessary. In the future this network could be expanded by connecting 
the Raspberry Pi to the internet and enabling remote access. However, this would 
require security improvements as the current device, and the data on it, is primarily 
controlled by limiting access to the network. In order to restrict unauthorized access to 
the server, the controller and the network and communications were encrypted using 
standard wifi methods. Although these are proactive measures, further care should be 
taken in the future to ensure that patient data remains secure.  
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4. COLLECTION METHODOLOGY 
 
The collection of gait data is the origin of gait analysis upon which all other aspects of 
gait analysis rely. Poor collection protocols would produce inaccurate gait parameters 
regardless of the quality of gait data post-processing.  There are also considerations to 
be made at this point about how the data can be collected in a way which is ethical and 
supportive of the needs of the participant. This section will outline the decisions which 
were made to produce inertial measurements which will produce actionable gait 
parameters. The first section will describe the selection of sensor placement locations 
and describe a method for sensor attachment which will minimize motion artefacts and 
maintain consistency between trials and participants. The second section will outline 
the procedure used for collecting the gait data for this project. 

4.1. Sensor Positioning and Attachment 

The first decision to be made about the gait collection methodology is to decide where 
to place the IMU sensors. In the literature, foot, shank, thigh, and trunk placements are 
all common [20]. However, shank and foot are the most effective placement positions 
for the identification of gait events compared to the thigh and trunk placements 
according to a review of 17 different gait studies by Panebianco et al. [20]. Some 
studies use only the foot or only the shank, but in this case both locations were used 
so that sensor fusion of the two sensor locations could be used to verify gait events. 
Increasing the number of sensors to include the thigh and trunk could add some data 
richness at the expense of added complexity in the methodology design and the data 
analysis. These additional sensors were determined to be unnecessary for this project. 
When analyzing gait, it is important to consider the connection between sensor and 

the body segment to which it is attached. When using any sensor or marker attached 
to the surface of the skin, some deformation is unavoidable. It is caused by the 
deformation of the soft tissue surrounding the bone. This results in readings which are 
not entirely representative of the motion of the bones during gait. It can introduce 
inertial signals due to oscillation of the sensor following impact. This source of error 
can be mitigated by attaching sensors in locations where long bones are close to the 
skin surface. It can also be reduced by taping the sensors either directly to the skin or 
over tight clothing. Cables should also be taped down to prevent their motion from 
acting on the IMU sensors. These precautions cannot completely eliminate these 
motion artefacts, but by minimizing oscillation and understanding when these artefacts 
will occur, such as on initial contact, it is possible to minimize the effects that these 
oscillations have on the output data. 
One sensor was placed for each body segment, the left foot, right foot, left shank, 

and right shank. Foot sensors were placed over metatarsals II and III approximately 1 
cm from the distal end with the x-axis aligned with the direction of the foot, the same 
as the direction of walking, rather than the direction of the metatarsals. Shank sensors 
were placed approximately 30% of the way from ankle to knee with the x-axis of the 
IMU aligned with the long axis of the tibia pointing downwards toward the ankle joint. 
Sensors and USB cables were held in place using medical tape. Sensors were taped to 
tight fitting clothing worn by the subject rather than their own skin to reduce 
discomfort when removing the tape. This could be adjusted to reduce the effect of 
deformation or pulling as a result of the tight clothing. Tape was wrapped around the 
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foot under the arch and the shank tape was wrapped around the whole calf to keep the 
sensor in line with the body segment and avoid twisting. Figure 2 shows a participant 
wearing the sensors and carrying the Raspberry Pi 4 computer in the hip pouch. 
Sensors in this case are all taped firmly over tightly fitted clothing. 
 

 
Figure 2. Subject wearing the sensor system, the Raspberry Pi computer is inside the 
hip pouch and the sensors are attached to the shanks and feet, tape is used to secure 
the sensors and their cables. 

4.2. Recommended Gait Data Collection Protocol 

The first step in collecting data is to set the data collection rate. Previous packet loss 
testing has indicated that sampling rates above 250Hz should not be used, because 
above this sampling rate samples are lost with regularity. For this reason, all gait trials 
with the FSM-9 should collect at the maximum rate of 250Hz. 
Next the participant should be prepared by attaching the sensors as described in the 

previous section. If an impairment is added to alter the gait pattern it should also be 
added at this time. This project studied two different patterns of abnormal gait, antalgic 
gait and limited mobility gait. Antalgic gait was simulated by taping a small plastic 
object to the underside of the right foot to evoke a painful sensation during the stance 
phase. Limited mobility gait was simulated by taping a plastic rod to the participants 
left leg to immobilize the knee joint in an extended position. For both abnormal gait 
conditions, the participants were asked to walk around briefly to find a comfortable 
walking strategy to cope with the impairment. 
Gait samples were collected for one minute for each trial, with the participant 

walking at a comfortable speed. Trials were collected under different conditions to test 
the gait analysis system. These conditions included normal gait, reduced mobility gait, 
and antalgic gait. Gait trials should be conducted indoors or outdoors on flat ground 
with no obstacles. Part of the novelty in this device is that enables the collection of gait 
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data at home or outdoors. It is important when considering a location, that the 
participant avoid walking near power lines, magnets, large metal objects, or any object 
which induces a significant magnetic field. These objects could affect the 
magnetometer used for orientation tracking and may lead to less accurate results. 
For the verification of the automated labeling algorithm, participants were asked to 

follow a right-leg-raised protocol at the start of each trial to assist with the verification 
of sensor labeling. By raising the right foot at the start of the trial it is possible to use 
the accelerometer data to reliably match corresponding shank/foot sensors. 
Following the gait trial, the gait data was saved to a computer for post-processing. 

The following chapter goes into detail on the software and algorithms used for the 
post-processing of gait data in this project. 
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5. SOFTWARE AND ALGORITHMS FOR OFFLINE 
PROCESSING 

 
This section will outline the pipeline of data from the moment it is received the sensor 
to the point where it contains useful gait information such as orientation or trajectory 
data. Unless otherwise noted, the algorithms were developed by the author. Algorithms 
were implemented offline in Matlab. 
The algorithms for gait analysis provided in this work are meant for off-line 

implementation. Despite having computational advantage of being run off-line, an 
attempt was made to implement simple algorithms which could in the future be 
implemented and run on-line using a microcontroller. 
 An accompanying program was designed for the controlled use of these algorithms 

for gait analysis. This Matlab app provides a graphical user interface (GUI) to guide 
users in their analysis. 

5.1. Packet Loss Testing 

Packet loss is a result of either failed reading by the sensor or of failed communication 
between the sensor and the controller. The worst cases of packet loss are when they go 
unnoticed and the data contains an undetermined number of lost packets inn 
undetermined locations. In this case the data becomes almost totally unusable. For this 
reason, the following three metrics, packet loss, packet loss percentage, and relative 
sampling rate are used as qualifiers for further analysis to take place. Each sensor is 
tested individually for packet loss to identify any sensor malfunction then the average 
values are calculated to understand the overall performance of the sensor unit.  
    Packet loss can be easily diagnosed if the sensor data includes a sequence number. 
The sequence number is a monotonically increasing integer generated by the sensor 
each time it means to collect a sample. This allows for the comparison between the 
theoretical number of packets created by the sensor and the actual number of packets 
received by the controller. The total number of lost packets is equal to the number of 
packets created minus the number of packets received. 

 
𝑃𝑎𝑐𝑘𝑒𝑡	𝐿𝑜𝑠𝑠 = 𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝐶𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

 
(1) 

    Packet loss percentage is a better metric of data loss because it is relative to the total 
number of samples sent, so it is comparable between different collection frequencies 
and durations. 

 
𝑃𝑎𝑐𝑘𝑒𝑡	𝐿𝑜𝑠𝑠	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

= 	
𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝐶𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑

𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝐶𝑟𝑒𝑎𝑡𝑒𝑑 	

× 	100% 
 

(2) 

    Actual sampling rate is a metric which shows the rate at which samples are created 
by the sensor. Actual sampling rate is calculated by dividing the number of packets 
created by the sensor by the duration of elapsed time as measured by the controller’s 
real time clock (RTC). 
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𝐴𝑐𝑡𝑢𝑎𝑙	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 =
𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝐶𝑟𝑒𝑎𝑡𝑒𝑑
𝑇𝑖𝑚𝑒	𝐸𝑙𝑎𝑝𝑠𝑒𝑑  

 
(3) 

  
    Observed sampling rate is a metric designed to ensure that collection is happening 
at the prescribed sampling rate. Observed sampling rate is calculated by dividing the 
number of packets received by the duration of elapsed time as measured by the 
controller’s real time clock (RTC).  

 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 =
𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑇𝑖𝑚𝑒	𝐸𝑙𝑎𝑝𝑠𝑒𝑑  

 
(4) 

5.2. Data Resampling and Trimming 

After the data has been qualified for further processing by diagnosing any packet loss 
the next step is to process the data for further analysis. This includes removing the data 
header and footer which where sensors are starting up or shutting down. The header 
size is dependent on the selected sampling rate, because at higher sampling rates the 
sensor takes a longer time to start up. At the recommended sampling rate of 250Hz the 
header size is 75 samples or 300ms. The sampling rate is then normalized for all 
sensors. This is done because each sensor yields a sampling rate which is very slightly 
different even when no packet loss is identified. Accurate timestamps on every sample 
allow for the accurate resampling of the data without significant data quality losses. 
Resampling is done by linearly interpolating sensor data and applying an anti-aliasing 
filter using the Matlab resample function. Sensor data is then saved to a uniform data 
structure for each sensor so that it can be simply recalled.  
At the end of the collection period sensors turn off in sequence, so some sensors 

send more samples than others. These excess samples are removed by trimming the 
ends of the signals to include the same number of samples. 

5.3. Automated Sensor Labeling 

According to the methodology used there is one sensor on each shank and foot. An 
algorithm was developed to automatically label each of the sensors (“right shank”, left 
foot”, etc.) using their acceleration signals as the input. The flow diagram for this 
process is shown in Figure 3. 
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Figure 3. A schematic showing the axes of the shank and foot sensors for the left foot. 
The first step of the algorithm differentiates between shank and foot. This is possible 

by using the z-acceleration signal. The first step is to identify the value of the z-
acceleration during the stance phase. During the stance phase the acceleration signal 
is relatively constant because the foot is in contact with the ground while the other foot 
progresses forward. This results in the histogram of the acceleration signals having a 
peak value when the acceleration value is closest to the acceleration value experienced 
during stance phase, which very similar to the acceleration value when the subject is 
standing still. During the stance phase the foot sensors have a z-acceleration of 
approximately -8m/s^2 because the z-axis of the IMU is facing downward, opposite 
the gravity vector. The shank sensors indicate a z-acceleration near zero because the 
z-axis is orthogonal to the gravity vector. Histograms for the z-acceleration of a shank 
and a foot are shown in Figure 4. In this figure it is notable that the shank has a more 
uniform distribution. This is because, during the stance phase the foot remains static 
on the ground while the shank continues to move. For this reason, the threshold was 
selected to be -6m/s^2, slightly closer to the right foot z-acceleration peak. A threshold 
of -6m/s^2 was used to distinguish between foot and shank sensors. 
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Figure 4. Histograms of z-acceleration for a shank and a foot showing the distribution 
of acceleration values, which allow for the automated differentiation between foot and 
shank. 
Once the feet and shanks separated the next step is to determine the left and right 

foot sensors based on the y-acceleration in stance phase. This determination is possible 
because of the dorsal arch of the foot. Because the sensors are on the outward facing 
surfaces of the dorsal arch. This causes the y-acceleration vector of the left foot to be 
slightly positive because it faces slightly upward, and the right foot to be slightly 
negative, because it faces downward. This is shown in the histograms of left and right 
feet that are shown in Figure 5. A threshold of 0m/s^2 was used to distinguish between 
left and right feet. 
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Figure 5. y-acceleration of left and right feet. 

Finally, the right and left shank are differentiated by comparing the x-acceleration 
signals with those of the right and left feet. This works because the impact of the heel 
strike is detectable in the acceleration signal of shank and foot sensors. The x-
acceleration signal was first passed through a 9th order Butterworth high pass filter 
with a cut-off frequency of 20Hz to isolate the higher frequency acceleration signals 
found at heel strike. The power of these signals was then found by squaring. Each of 
the shank power signals are multiplied, elementwise, by the power signal of the left 
foot. The higher sum of the of the resultant multiplications is the left shank, the lower 
sum is the right shank. This process is shown in Figure 6, notice how the power signals 
are aligned for sensors on the same side. 
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Figure 6. x-acceleration of each sensor before filtering (top), after being passed 
through a 9th order Butterworth high pass filter with a cutoff of 20Hz (middle), and the 
power of the filtered signal (bottom). 

5.4. Gait Event Detection and Segmentation 

Gait events for this thesis were detected according to the four phase model from 
Taborri et al. [18]. This level of granularity was selected because it offers the ability 
to investigate the foot roll from heel strike to flat foot. The phases in this model are 
the loading response, full contact, pre-swing, and swing. In order to identify these 
phases, the following gait events need to be identified. The four-phase model showing 
how gait phases are separated by gait events is shown in Table 2.  
First, Initial Contact (IC) denotes when the foot first contacts the ground, separating 

the swing and loading response phases. Loading response then continues until the full 
contact. The first instant of full contact is the Initial Full Contact (IFC) gait event. The 
full contact phase continues until the End Full Contact (EFC) event when the heel is 
first lifted from the ground. EFC marks the beginning of the pre-swing phase which 
continues until the End Contact (EC) when the whole foot is lifted from the ground. 
EC marks the beginning of the swing phase which continues until the next IC event. 

Table 2. Four phase gait model 

Loading Response Full Contact Pre-Swing Swing 
IC IFC EFC EC IC 
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The way to segment gait into phases begins with the detection of the IC, IFC, EFC, 
and EC events. IC and EC events were detected based on an algorithm used by 
Jasiewicz et al. [19]. The algorithm by Jasiewicz et al. was not used to determine EFC 
and IFC. The Jasiewicz et al. algorithm identifies search windows for IC and EC events 
based on local minima and maxima in the angle of ankle plantar flexion [19]. The IC 
event is identified either as the location of the maxima in z-acceleration or as the zero 
crossing following the minima in foot angular velocity within the IC search window 
[19].  The EC event is identified either as the maxima in x-acceleration or by the first 
peak of foot angular velocity within the EC search window [19]. The proposed 
algorithm for this work uses a different method for identifying search windows, based 
on shank angular velocity. After the IC and EC windows are identified, the proposed 
algorithm is the same as that proposed by Jasiewicz et al for determining EC and IC. 
The EC search window is defined for this work as the 250ms before the upward zero 

crossing of the shank y-axis angular velocity. The IC search window is defined as the 
250ms after the downward zero crossing of the shank y-axis angular velocity. The 
shank signal is advantageous for this purpose, because it only has two zero crossings 
per cycle, this behaviour is shown in Figure 7. An additional requirement of the 
proposed algorithm is that the peaks used to find EC and IC must be below a threshold 
of -130 deg/s.  
The location first peak corresponds to the EC event, as outlined in the Jasiewicz et 

al. algorithm. EFC occurs before EC and is easily identified by the moment where the 
angular velocity becomes nonzero. For this reason, the EFC event can be found by 
working backward from the EC event until the value of the angular velocity is 
sufficiently close to zero (< 5deg/s). The location of the IC and IFC events are found 
in relation to the second peak. IC is the zero crossing of the foot y-angular velocity 
preceding the second peak as determined by the Jasiewicz et al. algorithm. IFC is the 
zero crossing following the second peak. The resultant gait event labels are shown in 
Figure 7. 
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Figure 7. Zero crossings of the shank angular velocity (top), search windows and 
detected peaks of foot angular velocity (middle), and the resultant gait events and gait 
phases (bottom). 
Now that gait events have been detected, the next step is to remove gait segments 

that are incomplete or otherwise problematic. This is called the discard step. In this 
case the segment is defined from one IFC event, to the next EFC event. This is done 
to ensure that every segment used in the calculation of the gait temporal parameters 
contains two full contact periods which are used to remove drift due to sensor bias due 
to drift. This process is discussed in the next section. Figure 8 below shows how gait 
events are discarded if they do not meet the inclusion criteria. This step is designed to 
have high specificity to ensure that no artefacts are incorrectly labelled as gait events. 
First, the algorithm removes all gait events from before the first IFC and after the final 
EFC. Second, the algorithm checks that all IFC segments are paired up a corresponding 
EFC segment. This ensures that there are no extra IFC or EFC events in the sample. 
Third, the algorithm checks the distance between the start of the potential segment, 
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from one IFC to the next and deletes segments which are more than 1.2 times the mean 
stride time, from example, the gap between IFC events at 9.5s and 15s in Figure 8. If 
a long interval like this is detected, all events on the interval are discarded. Finally, the 
algorithm checks that each potential segment has all the required gait events (IFC, 
EFC, EC, IC, IFC, EFC), discarding segment that either do not have all events or have 
events occurring in the wrong order. 

 
Figure 8. Foot y-axis angular velocity with gait event labels before and after gait 
segment discard step. 

5.5. Gait Temporal Parameters (GTP) 

Gait temporal parameters (GTP) are important manifestations of gait patterns. 
Different GTP can indicate differences in gait patterns between legs, between trials, or 
between populations. The most common GTP are stride time, cadence (which is the 
inverse of stride time), stance time, swing time, stance percentage, and swing 
percentage. Stride time is defined as the time from one initial contact to the next (5). 
Cadence is the inverse of stride time multiplied by 60 to get strides/min (6). Stance 
time is the time from initial contact to the next end contact (7). Swing time is the time 
from one end contact to the next initial contact (8). Stance percentage is the percentage 
of the stride in which the foot is on the ground (9). Swing percentage is the percentage 
of the stride in which the foot is off the ground (10) 
 

 
𝑆𝑡𝑟𝑖𝑑𝑒	𝑇𝑖𝑚𝑒 = 𝐼𝐶!"# − 𝐼𝐶! 

 
(5) 
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𝐶𝑎𝑑𝑒𝑛𝑐𝑒 =
60

𝑆𝑡𝑟𝑖𝑑𝑒	𝑇𝑖𝑚𝑒 
 

 
 
(6) 

 
𝑆𝑡𝑎𝑛𝑐𝑒	𝑇𝑖𝑚𝑒 = 𝐸𝐶!"# − 𝐼𝐶! 

 
(7) 

 
𝑆𝑤𝑖𝑛𝑔	𝑇𝑖𝑚𝑒 = 𝐼𝐶! − 𝐸𝐶! 

 
(8) 

 

𝑆𝑡𝑎𝑛𝑐𝑒	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 	100% ∗	
𝑆𝑡𝑎𝑛𝑐𝑒	𝑇𝑖𝑚𝑒
𝑆𝑡𝑟𝑖𝑑𝑒	𝑇𝑖𝑚𝑒  

 

(9) 

 

𝑆𝑤𝑖𝑛𝑔	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 	100% ∗	
𝑆𝑤𝑖𝑛𝑔	𝑇𝑖𝑚𝑒
𝑆𝑡𝑟𝑖𝑑𝑒	𝑇𝑖𝑚𝑒 

 

(10) 

 
Symmetry ratio (SR) is the final gait temporal parameter mentioned here. SR is 

unique in that it can be applied to any parameter of gait that is measured in the same 
way for both left and right sides, it provides a measure of how similar the gait 
parameters are for each side. It is found by dividing the left side GTP by the same GTP 
on the right side to get a value of 1 for perfect symmetry (11). 
 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦	𝑅𝑎𝑡𝑖𝑜 =
𝐿𝑒𝑓𝑡
𝑅𝑖𝑔ℎ𝑡 

 
(11) 

Gait temporal parameters are calculated for each stride in the sample and then 
averaged. The mean GTP values shown are calculated for all strides in the sample. 
Table 3 below shows a series of GTP for normal gait. 

Table 3. Gait temporal parameters of a typical sample of normal gait 

 Left Mean Right Mean Symmetry 
Stride Time (s) 1.771 1.788 0.991 
Cadence 
(strides/min) 33.974 33.639 1.010 

Stance Time (s) 1.104 1.141 0.968 
Swing Time (s) 0.667 0.647 1.030 
Stance Percent (%) 62.258 63.715 0.977 
Swing Percent (%) 37.742 36.285 1.040 

5.6. Foot Orientation and Position Tracking 

Foot orientation and position tracking are ideal measurements, because they can be 
easily visualized and interpreted. They also provide some unique and insightful gait 
parameters which will be discussed. Together, these measurements show the trajectory 
of the foot throughout the gait cycle. These measurements are recalculated for each 
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it er ati o n  of  t h e  g ait  c y cl e. F or  si m pl e  i nt er pr et ati o n , it  is  i d e al  t o  o bt ai n  t h es e 
m e as ur e m e nts r el ati v e t o s o m e k n o w n fr a m e. F or t h is pr oj e ct, t h e k n o w n fr a m e is t h e 
gr o u n d fr a m e  (å G)  w h er e t h e z -a xis is p oi nt e d u p w ar d, ort h o g o n al t o t h e gr o u n d , x-
a xis is p ar all el t o t h e gr o u n d  i n t h e dir e cti o n of w al ki n g, a n d y-a xis is ort h o g o n al t o x 
a n d  z  a x es . T his  is  s h o w n  i n  Fi g ur e  9. T h e  p ositi o n  of  t his  r ef er e n c e  is  d efi n e d  as 
r el ati v e t o t h e i niti al p ositi o n of t h e f o ot d uri n g f ull c o nt a ct f or e a c h st a n c e p h as e.  T h e 
al g orit h ms us e d i n t his s e cti o n t o c al c ul at e ori e nt ati o n a n d p ositi o n ar e b as e d o n t h os e 
us e d i n a p a p er b y Kit a g a w a a n d O gi h ar a [ 2 6]. 

 

Fi g ur e 9 . Ori e nt ati o n of gr o u n d fr a m e (å G) , f ull c o nt a ct fr a m e (å F) , a n d s e ns or fr a m e 
(å S) . N ot e t h at gr o u n d fr a m e a n d f ull c o nt a ct fr a m e ar e st ati c, w hil e s e ns or m o v es 
t hr o u g h o ut t h e g ait s e g m e nt.  

T h e  Hill cr est  F S M -9  I M U  us e d  f or  t his  pr oj e ct  a ut o m ati c all y  m e as ur es s e ns or 
ori e nt ati o n r el ati v e t o i niti al s e ns or  ori e nt ati o n.  T his fr a m e, r el ati v e t o t h e i niti al s e ns or 
ori e nt ati o n is t h e s e ns or fr a m e (å S).  I n or d er t o g et t h e ori e nt ati o n i n t o t h e gr o u n d 
fr a m e it is n e c ess ar y t o fi n d a fr a m e t h at is c o nsist e nt b et w e e n s e g m e nts.  T his is t h e 
full c o nt a ct fr a m e ( å F). T h e f ull c o n t a ct fr a m e is r e pr es e nt e d b y t h e ori e nt ati o n of t h e 
s e ns or w h e n t h e f o ot is i n t h e f o ot is i n t h e f ull c o nt a ct p h as e. B e c a us e t h e f o ot r et ur ns 
t o t his p ositi o n e a c h stri d e, it is c o nsist e nt b et w e e n ori e nt ati o ns. T h e tr a nsf or m ati o n 
fr o m  å S t o å F is d o n e b y di vi di n g t h e q u at er ni o n arr a y d es cri bi n g t h e s e ns or-b as e d 
ori e nt ati o n pi e c e wis e b y t h e si n gl e q u at er ni o n  d es cri bi n g t h e ori e nt ati o n 7 5 % of t h e 
w a y  t hr o u g h  t h e  f ull  c o nt a ct  p h as e  r e pr es e nt e d  b y 𝑡 $ . N ot e  t h at  f or  t h e  p ur p os e  of 
r e pr es e nt ati o n, q u at er ni o n s ar e d e pi ct e d b y r ot ati o ns, w h er e s u bs cri pts r e pr es e nt t h e 
i niti al  fr a m e  a n d s u p ers cri pts  r e pr es e nt  t h e d esti n ati o n  fr a m e.  H o w e v er,  i n  t h e 
pr o gr a m mi n g, q u at er ni o n r ot ati o ns w er e us e d w h e n e v er p ossi bl e t o a v oi d gi m b al l o c k.  
I n t h e f oll o wi n g e q u ati o ns a r e pr es e nts t h e li n e ar a c c el er ati o n. S u p ers cri pts ar e us e d 
t o d e n ot e t h e fr a m e i n w hi c h t h e v e ct or is r e pr es e nt e d. 

 

𝑅 % ( 𝑡 )& = 	𝑅 % ( 𝑡 ) 	[𝑅 % ( 𝑡 $ ) ]'  
 

(1 2 ) 



 

 

31 

The rotation matrix 𝑅%(𝑡)&  can be broken down into its constituent rotations about 
each axis described by i, j, and k. 

 
[𝑖	𝑗	𝑘] = 𝑅%& (𝑡) 

 
(13) 

The rotation 𝑅%(𝑡)& 	is used to determine pronation and in-turn. These 
measurements are based on the roll, a, and yaw, g, of the rotation matrix 𝑅%(𝑡)& . These 
two measurements could be useful in monitoring for abnormal walking patterns. 
Pronation is defined as the inward rotation of the foot about the x-axis. In-turn is the 
inward rotation of the foot about the z-axis. Note that for the left foot these are 
indicated by positive roll and yaw values, with on the right foot they are indicated by 
negative roll and yaw values. The equations for pronation angle, 𝜃((𝑡)	and in-turn 
angle,  𝜃)(𝑡). Are shown in equations 13 and 14 below. 

 

𝜃((𝑡) = Q 𝛼(𝑡), 𝑙𝑒𝑓𝑡	𝑓𝑜𝑜𝑡
−𝛼(𝑡), 𝑟𝑖𝑔ℎ𝑡	𝑓𝑜𝑜𝑡 

 

(14) 

 

𝜃)(𝑡) = Q 𝛾(𝑡), 𝑙𝑒𝑓𝑡	𝑓𝑜𝑜𝑡
−𝛾(𝑡), 𝑟𝑖𝑔ℎ𝑡	𝑓𝑜𝑜𝑡 

 

(15) 

    The rotation  𝑅%(𝑡)&  is then used to rotate acceleration vectors into the flat foot 
reference frame.  

 
𝑎(𝑡) =& 	 𝑅%(𝑡)& 𝑎(𝑡)%  

 
(16) 

 
𝑎"& (𝑡) = 	 𝑎(𝑡)& −		 𝑎(𝑡$)&  

 
(17) 

The next important issue is to find the rotation which transforms the åF to åG. This 
was found using the known direction of acceleration due to gravity, orthogonal to the 
ground, and the assumption that the sensor was positioned correctly to have the x-axis 
of the sensor pointing in the direction of walking, in the sagittal plane of the foot. With 
these assumptions the rotation from åF to åG was found using the following 
equations. 

 

𝑧 = 	
𝑎(𝑡$)&

V 𝑎(𝑡$)& V
 

 

(18) 

 

𝑦 =
𝑧 × 𝑖
|𝑧 × 𝑖| 

 

(19) 

 
𝑥 = 	𝑦 × 𝑧 

 
(20) 
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𝑅* = [𝑥𝑦𝑧]&  
 

(21) 

The orientation relative to the ground position can then be described by 𝑅%(𝑡)* . 
This quaternion can be represented as a rotation matrix or as Euler angles for 
demonstration purposes. The Hillcrest sensor determines orientation through the 
integration of angular velocity fused with the knowledge of the direction of the gravity 
vector from the accelerometer and the direction of the greatest magnetic field strength 
from the magnetometer. Orientation errors were further corrected by correcting for 
sensor drift by assuming the sensor would return to the same orientation during each 
full contact phase. 

 
𝑅&* =	 Y 𝑅*& Z' 

 
(22) 

 
𝑅%(𝑡) =* 	 𝑅&* 𝑅%(𝑡)&  

 
(23) 

 
The linear acceleration vector relative to the ground frame can then be found by 

applying the frame rotation 𝑅&*  to the acceleration without gravity 𝑎"& (𝑡). 
 

𝑎"* (𝑡) = 	 𝑅&* 	 𝑎"& (𝑡) 
 

(24) 

The acceleration without gravity is then integrated using the trapezoid rule to get 
linear velocity. Integration can be problematic because it can quickly introduce errors 
caused by sensor bias, which grow continuously and unpredictably. This was managed 
in two different ways. First, acceleration data was filtered using a 9th order Butterworth 
low-pass filter with a cut-off frequency of 20Hz. This cut-off was chosen, because it 
is high enough to not affect the frequencies typical of human gait, while remove large 
amounts of accelerometer noise which could increase integration error. The next way 
in which integration error was mitigated was by making assumptions about foot 
velocity and foot position at each full contact phase. 
Velocity was calculated by integrating the acceleration without gravity signal from 

IFC to the following EFC event. Leaving in two phases of full contact, before and after 
the swing phase to use for drift compensation. The assumption was made that velocity 
in all directions would be zero during each phase of full contact. This is logical, 
because at each full contact phase the foot remains planted on the ground while the 
other foot swings past. This assumption allows for the interpolation of drift error for 
each signal which can then be subtracted from the original for each segment. The 
amount of drift for each point in each of the phases was therefore set to be the same as 
the calculated value of velocity for that point. To estimate the amount of drift during 
pre-swing, swing, and loading response the drift was linearly interpolated between the 
two full contact phases. This is shown by the example of z-velocity of the foot in Figure 
10 below. 
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Figure 10. Drift and linear drift compensation for one segment of normal gait. 
Similarly, position was calculated by integrating velocity over the same interval. In 

the case of position, the x and y values cannot be assumed to be constant between 
phases of full contact, because the foot is landing in a different position than where it 
left the ground. However, if the gait is occurring on a flat surface, as in this project, 
the change in z-position from one full contact to the next can be assumed to be zero. 
This is very helpful, because it removes integration error from the measurement of the 
height from the ground during walking with is incredibly useful for producing 
measurements such as foot clearance during walking. In this case a spline interpolation 
was used, because it seemed to best represent the sensor drift found during the 
integration. This drift compensation for z-position is shown below in Figure 11 for a 
representative gait segment. 
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Figure 11. Drift and spline drift compensation for one segment of normal gait. 
This measurement of foot position for each step allows for the extraction of four 

important gait position parameters, step length (SL), foot clearance 1 (FC1), foot 
clearance 2 (FC2), and minimum foot clearance (MFC). SL is simply the x-position 
change from one full contact phase to the next, FC1 and FC2 are the peak heights of 
the position curve shown in Figure 12, and MFC is the minimum point between the 
two peaks. Figure 12 shows how these are found based on the trajectory plot for a 
single stride of normal walking. These values were then averaged for all strides in the 
sample to get the position parameters of the sample. An example of these position 
parameters is shown in Table 4 below. 
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Figure 12. Trajectory of x and z position of foot through a normal gait cycle, showing 
how FC1, FC2, MFC, and SL are found. 

Table 4. Example of position parameters for normal gait 

 Left Mean Right Mean Symmetry 
Foot Clearance 1 

(m) 0.061 0.070 0.871 

Foot Clearance 2 
(m) 0.047 0.078 0.604 

Minimum Foot 
Clearance (m) 0.203 0.231 0.878 

Step Length (m) 1.220 1.300 0.938 
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6. RESULTS 
This chapter goes into detail on the results of testing the gait analysis system. This 
begins with an analysis of the packet loss for the sensor unit. The following sections 
show results from the various algorithms used in this project for automated sensor 
labelling, gait segmentation, trajectory tracking, and calculation of gait parameters. 

6.1. Packet Loss Testing 

Packet loss was tested for the three highest sampling rates for the hillcrest sensors, 
250Hz, 333Hz, and 500Hz. This was done to determine the highest feasible sampling 
rate. Note this is the only test in which sampling rates above 250Hz were used. Higher 
sampling rates were not used in actual gait trials, because of the packet loss that was 
found to occur. 
At 250Hz, there were no packets lost in any of the sensors. This is the perfect 

scenario, where the sampling rate works out the desired rate without unknowingly 
missing out on any data points. This was tested for three times for the exclusive 
purpose of packet loss testing. Packet loss data was also collected for every gait trial. 
In all cases, no packet loss occurred. Table 5 below shows a representative sample of 
packet loss characteristics for a 30 second collection period. The following Tables 6 
and 7 show the results from representative samples collected at 333Hz and 500Hz 
respectively. 

Table 5. Packet loss of sensor unit at 250Hz 

 Packets 
Received 

Packets 
Lost 

Percentage 
Lost (%) 

Collection 
Duration 
(s) 

Actual 
Sampling 
Rate (Hz) 

Observed 
Sampling 
Rate (Hz) 

Sensor1 7467 0 0 29.84 250.25 250.25 
Sensor2 7447 0 0 29.83 249.61 249.61 
Sensor3 7468 0 0 29.84 250.28 250.28 
Sensor4 7459 0 0 29.84 249.98 249.98 

Table 6. Packet loss of sensor unit at 333Hz 

 Packets 
Received 

Packets 
Lost 

Percentage 
Lost (%) 

Collection 
Duration 
(s) 

Actual 
Sampling 
Rate (Hz) 

Observed 
Sampling 
Rate (Hz) 

Sensor1 9927 36 0.36 29.87 333.61 332.41 
Sensor2 9905 33 0.33 29.86 332.80 331.69 
Sensor3 9935 30 0.30 29.86 333.68 332.68 
Sensor4 9923 30 0.30 29.86 333.28 332.27 

Table 7. Packet loss of sensor unit at 500Hz 

 Packets 
Received 

Packets 
Lost 

Percentage 
Lost (%) 

Collection 
Duration 
(s) 

Actual 
Sampling 
Rate (Hz) 

Observed 
Sampling 
Rate (Hz) 

Sensor1 9340 5224 35.87 29.29 497.29 318.92 
Sensor2 10697 3933 26.88 29.44 496.96 363.36 
Sensor3 8422 6141 42.17 29.25 497.87 287.92 
Sensor4 8914 5589 38.54 29.24 495.92 304.81 
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It is visible from these tables that packet loss becomes a slight issue when sampled 

at 333Hz and a significant problem at 500Hz. At 333Hz only ~0.3% of samples were 
lost making the observed sampling rate only slightly lower than 333Hz. Because it is 
known which samples are missing, one could simply interpolate over the missing 
samples, provided they do not all occur consecutively. Lost packets are distributed 
relatively equally over the four sensors. At 500Hz there is a much higher rate of loss 
of 25-45% making up a significant portion of the signal. Lost packets in this sample 
were not similar across sensors suggesting and often occurring consecutively, reducing 
the efficacy of using interpolation to compensate for lost packets. The observed 
sampling rates at a selected rate of 500Hz are also less than the observed sampling 
rates at a selected rate of 333Hz for 3 of 4 sensors. 

6.2. Automated Sensor Labeling 

The automated sensor labeling is an important feature of this project. If sensors are 
labeled incorrectly it would prevent the following algorithms from functioning 
properly and could result in inaccurate gait outputs. Luckily, it is relatively simple to 
judge if the algorithm is working by investigating the accelerometer data for each of 
the gait samples. The verification of this algorithm is made possible by the right-foot-
raised protocol in which the participant is asked to begin the trial standing upright with 
their knee flexed. In this position we can reliably identify each different sensor by its 
accelerometer signal due to the known acceleration vector due to gravity. Table 8 
below shows the axis (x, y, or z) and the direction (+ or -) with which the gravity vector 
is most closely aligned for each sensor in each case. 
 

Table 8. Approximate direction of gravity vector while at rest for right-foot-raised and 
normal stance position during gait 

 Right Foot Raised 
(Initial) 

Stance Phase (During 
Gait) 

Left Foot -z -z 
Left Shank -x -x 
Right Foot -x -z 
Right Shank +z -x 

 
Figure 13 shows sensor acceleration values in the x, y, and z axes for the first 15 

seconds of a normal gait sample where the right-foot-raised protocol was followed for 
the first ~7 seconds. The labels shown in the legend were provided by the sensor 
labelling algorithm and can be validated by observation.  
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Figure 13. Acceleration of each sensor for first 15 seconds of normal gait trial 
incorporating the right foot raised protocol. 
As expected, the right shank z-axis aligns with the gravity vector when the right foot 

is raised, indicated by a z-acceleration of ~9m/s^2 for the first 7 seconds when the foot 
is raised. Then during stance phase the x-axis aligns opposite the gravity vector 
indicated by the x-acceleration of ~-9m/s^2 for the remainder of the sample. The right 
foot also undergoes changes from having x-acceleration values of ~-9m/s^2 for the 
first 7 seconds to having the gravity vector shift to the z-axis as the x-acceleration gets 
closer to zero and the z-acceleration gets closer to -9m/s^2. The left shank and foot are 
not raised at any point, so they are expected to remain the same over the collection 
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duration. The shank has an x-acceleration of ~-9m/s^2 while the left foot has an z-
acceleration of ~-9m/s^2.  
For this sample and all other samples tested, the results were the same. In all cases 

the labeling by the algorithm produced the same results as labeling by observation. 
This is somewhat expected because the algorithm was built based on the walking 
patterns of the two individuals whose gait was collected. The labelling algorithm did 
work for the simulated cases of antalgic gait and limited mobility gait, which indicates 
that the labeling algorithm could be widely applicable to different styles of gait. 

6.3. Gait Event Detection and Segmentation 

When determining the effectiveness of the gait segmentation algorithm, two key 
questions come to mind. First, does the algorithm correctly identify the temporal 
location of gait events? Second, does the algorithm correctly identify full stride 
segments while discarding artefacts? 

Gait segmentation was completed using the gait segmentation algorithm 
presented in section 5.4. Gait segmentation was done for all different simulated gait 
styles and was successful in detecting gait events in each of them. This was found by 
comparing the results of the algorithm to an alternative algorithm for detecting EC and 
IC events defined in the same paper by Jasiesicz et al. which was used as a basis for 
the proposed algorithm for gait event detection based on foot angular velocity.  
According to a Jasiewicz et al., x-acceleration and z-acceleration can also be used 

to determine gait event locations [19].  The study shows that the EC event corresponds 
with the first peak of x-acceleration within the EC search window which follows the 
flat sections indicative of the full contact phase. The study also shows that the IC event 
corresponds with the last positive peak in z-acceleration within the IC window prior 
to the full contact phase. 
Figure 14 shows an example of how the segmentation accurately captures gait events 

by comparing the detected gait events locations to the z and x axis accelerations of the 
foot. This figure is significant, because it compares the results to an alternative method 
of detecting gait events, which is to detect peaks in z and x foot acceleration. 
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Figure 14. Gait events compared to foot acceleration for a representative sample of 
normal gait. 
By observing Figure 14 it is visible that the EC events, identified by the blue dots, 

are found, as expected, on the x-acceleration peaks following the full contact gait 
phase. Likewise, the IC events, identified by the red dots, are found, as expected, on 
the z-acceleration peaks preceding the full contact gait phase. The EFC events also 
seem accurate based on the x-acceleration, because the EFC location is detected at the 
moment that the x-acceleration leaves the steady state of the full contact phase. There 
is some deviation in the location of the IFC events. IFC events in Figure 14 show the 
IFC event occurring while the sensor is still experiencing acceleration in both x and z 
axes. 
Any potential differences in the calculation of gait events between methods appear 

very small. This verification by an alternative method supports that the algorithm 
provided in this thesis which detects gait event locations based on angular velocity of 
the shank and foot sensors is effective in accurately identifying the temporal location 
of gait events. 
The following Figure 15 shows two examples of gait, one which is continuous and 

the other which is continuously stopping and starting. This is down to demonstrate the 
samples that are lost in the discard step. In this figure, the maintained stride segments 
are green, and the discarded segments are red. 
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Figure 15. Discarded and maintained stride segments for continuous and intermittent 
gait, maintained segments are shown in green, discarded segments are shown in red. 
It is visible from Figure 15 that the algorithm acts as intended, with high specificity, 

to ensure that no artefacts that resemble a gait cycle are recorded, at the cost of 
discarding some true gait segments. Artefacts around 26s in the in the intermittent gait 
section of Figure 15 show the benefit of how artefacts are discarded and not mistaken 
for true gait segments. Gait segments around 40s in the continuous gait sample show 
how some true gait cycle segments are unintentionally removed. 

6.4. Gait Temporal Parameters 

The tables below show gait temporal parameters for normal, antalgic, and limited 
mobility gait. These were calculated based on the calculations shown in section 5.5. 
Each table shows the mean GTP for a single, representative 60 second sample of gait 
data. Each sample will be analyzed to show the differences in GTP between the three 
kinds of gait 
Table 9 shows the GTP of normal gait. This can be considered a baseline when 

looking at the other tables. It is shown that the participant takes one stride, or two steps, 
every 1.8 seconds. The stance and swing phase times are very similar for the left and 
right feet and therefore have symmetry values which are very close to one.  
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Table 9. Gait temporal parameters for a sample of normal gait 

 Left Mean Right Mean Symmetry 
Stride Time (s) 1.771 1.788 0.991 
Cadence 

(strides/min) 33.974 33.639 1.010 

Stance Time (s) 1.104 1.141 0.968 
Swing Time (s) 0.667 0.647 1.030 
Stance Percent 

(%) 62.258 63.715 0.977 

Swing Percent (%) 37.742 36.285 1.040 
 
Table 10 shows the GTP for a sample of antalgic gait, caused by a painful sensation 

in the right foot while walking. The first note is that the stride times have decreased 
meaning that more steps are being be second compared to normal walking. This could 
be a result of trying to compensate for smaller steps by increasing cadence to walk at 
a normal speed. Another noticeable change is the symmetry values for stance and 
swing features which fluctuate farther from zero. Upon investigation of the stance and 
swing parameters it becomes evident that this is due to a relative increase in stance 
percentage for the left foot and a corresponding increase in swing percentage for the 
right foot. This appears to be a logical result as the participant would want to avoid the 
painful sensation of bearing weight on the right foot and therefore compensates by 
having a shorter right stance phase. 

Table 10. Gait temporal parameters for a sample of antalgic gait which was simulated 
by taping a small plastic object to the underside of the right foot 

 Left Mean Right Mean Symmetry 
Stride Time (s) 1.537 1.555 0.988 
Cadence 

(strides/min) 39.080 38.637 1.011 

Stance Time (s) 1.016 0.943 1.077 
Swing Time (s) 0.520 0.611 0.851 
Stance Percent 

(%) 66.126 60.649 1.090 

Swing Percent (%) 33.874 39.351 0.861 
 
Table 11 shows the GTP for a sample of limited mobility gait, caused by having the 

left knee joint immobilized in an extended position. The first note is that similar to the 
antalgic gait, there is an increase in cadence from the normal walking sample. There 
are also significant differences in the stance and swing parameters. The stance 
percentage of the left foot is significantly decreased compared to normal while the 
stance percentage of the right foot is increased. These changes result in symmetry 
values which are farther from 1. This decrease in stance percentage is logical because 
with the left knee immobilized it would be more difficult to maintain balance while 
the right foot is in swing phase, incentivizing the participant to reduce the amount of 
time that the right foot is in swing phase. 
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Table 11. Gait temporal parameters for a sample of limited mobility gait which was 
simulated by immobilizing the left knee joint in an extended position 

 Left Mean Right Mean Symmetry 
Stride Time (s) 1.527 1.517 1.007 
Cadence 

(strides/min) 39.352 39.584 0.994 

Stance Time (s) 0.814 1.019 0.799 
Swing Time (s) 0.713 0.498 1.431 
Stance Percent 

(%) 53.294 67.161 0.794 

Swing Percent (%) 46.706 32.839 1.422 
 
These tables of gait temporal parameters show how the abnormal styles of gait can 

be identified based on temporal changes in the occurrence of gait events. Further 
understanding of gait abnormalities can be understood by tracking changes in 
orientation and position throughout the gait cycle. These changes will be explored in 
the following section. 

6.5. Foot Orientation and Position Tracking 

The methods shown in section 5.6 were used to find the orientation and position of 
each foot sensor throughout the gait cycle. These findings are demonstrated below for 
each type of gait, normal gait, antalgic gait, and limited mobility gait. Results for each 
gait type are represented with 3 figures and 1 table. The first figure shows the patterns 
of foot pronation and in-turn for the sample. The second figure shows the patterns of 
x and z position throughout the gait cycle. Both of these figures are plotted with respect 
to the percent of the gait cycle with 0% being the IFC event and 100% being the next 
IFC event. The sections after 100% to show the transient behaviour of the sensor as it 
comes to rest after the second IFC event, even though this is technically part of the 
next gait cycle. The third figure shows the x and z position trajectory of the foot 
through the gait cycle. Finally, the table shows the accumulated gait parameters which 
are calculated based on the orientation and position of the foot sensors. 
The pronation and in-turn of the normal gait sample shown in Figure 16 indicate 

little pronation during the stance phase and negative pronation (supination) during the 
swing phase. This is logical because as the foot rolls off of the toes the foot twists to 
promote clearance for the toes to lift off the ground resulting in both supination and 
in-turn. Note that for each leg, shown separately in red or blue, the peak supination 
and in-turn occur at the same time around the time of EC. Interestingly, these occur at 
different times in the gait cycle for this individual, showing the highly personal quality 
of data, even for normal gait. Another interesting feature is that the right foot 
experiences a much lower angle of supination compared to the right foot. 
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Figure 16. Foot pronation and in-turn for a sample of normal gait. 

The x and z positions of the foot for normal walking are shown in Figure 17. From 
this figure it is noticeable that the x displacement shown by the final value of x-position 
is on average higher for the right foot than the left. The standard deviation for each 
step appears similar between the two feet. For z-position there are some more 
noticeable differences. Although the first peaks of z-position are similar between right 
and left, the left foot has a significantly lower second peak compared to the right foot 
 



 

 

45 

 
Figure 17. x and z position of foot for a sample of normal gait. 

The x and z position trajectory shown in Figure 18 contains very similar information 
to the figure above. It shows the significantly shorter step length and lower second foot 
clearance of the left foot compared to the right. 
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Figure 18. x and z position trajectory for a sample of normal gait. 

The table of orientation and position parameters for normal walking shown below 
shows the orientation and position parameters for a sample of normal gait. Effectively 
this table summarizes some features which are evident through inspection of the 
previous three figures. For example, the lower min pronation angle of the left foot 
shows that there is significantly more supination in the left foot compared to the right. 
It also shows a higher maximum value of pronation in the right foot compared to the 
left. The similarity in in-turn between samples is shown by the similar max an min 
values between left and right. Additionally, it shows similar values for the first foot 
clearance peak with lower values in the left foot for the second foot clearance peak. 
This difference is also visible in the symmetry value of the second foot clearance. 
Finally, it is shown that the mean step length is slightly longer for the right foot 
compared to the left. 
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Table 12. Table of orientation and position parameters for a sample of normal gait 

 Left Mean Right Mean Symmetry 
Max Pronation 

(deg) 1.509 9.595 0.157 

Min Pronation 
(deg) -63.676 -24.326 2.618 

Max In-Turn (deg) 54.530 42.472 1.284 
Min In-Turn (deg) -12.066 -5.728 2.106 
Foot Clearance 1 

(m) 0.082 0.073 1.114 

Foot Clearance 2 
(m) 0.053 0.078 0.687 

Min Foot 
Clearance (m) 0.020 0.025 0.790 

Step Length (m) 1.247 1.353 0.922 
 
The following figures and tables demonstrate antalgic gait. The Figure 19 shows 

how antalgic gait changes the pattern of foot pronation and in-turn. The right foot 
which experiences the painful sensation while in stance shows most of the changes. 
First, the right foot does not supinate even slightly like in the normal trials, instead it 
undergoes further pronation during the swing phase. However, it is unclear if this is 
actual pronation or if the foot in stance phase was simply much more supinated than 
normal to avoid the painful sensation. This uncertainty shows one potential issue with 
the decision to assume a normal flat foot position during each stance phase. In terms 
of in-turn the peak in-turn of the right foot also decreases significantly, this could also 
be due to the assumption of the flat foot position during stance phase. 
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Figure 19. Foot pronation and in-turn for a sample of antalgic gait. 

Figure 20 shows the x and z position of the sensor for a sample of antalgic gait. The 
first note corresponds with what was seen in the table of gait temporal parameters, that 
the left foot spends less time in swing phase, resulting in a steeper increase in x-
position and a more compressed curve in z-position for the left foot. Despite this 
change, the step length remains similar for each foot. Although both are shorter than 
step lengths found in normal gait. One interesting change is the decrease in the first 
foot clearance and increase in the second foot clearance compared to normal gait.  
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Figure 20. x and z position of foot for a sample of antalgic gait. 

 
Figure 21 shows the x and z position trajectories of the feet during antalgic gait. 

Again, this figure shows similar information to what is available in the figure of x and 
z position above. Most importantly the decrease in the height of the first foot clearance 
and increase of the height of the second foot clearance for the right foot. It also shows 
that the minimum foot clearances are relatively similar between left and right. 
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Figure 21. x and z position trajectory for a sample of antalgic gait. 

Table 13 below shows the orientation and position parameters for the same sample 
of antalgic gait. Again, this table mostly shows what can already be inferred to the 
figures representing antalgic gait. The lack of pronation and in-turn in in the right foot 
is exhibited in the high value of minimum pronation and low value of maximum in-
turn. The decrease in first foot clearance and increase in second foot clearance of the 
right foot compared to normal are also exhibited in the table. Finally, it shows that the 
step lengths of the right and left feet, although similar to one another are both shorter 
than the step lengths exhibited in normal gait. 

Table 13. Table of orientation and position parameters for a sample of antalgic gait 

 Left Mean Right Mean Symmetry 
Max Pronation 

(deg) 4.591 11.717 0.392 

Min Pronation 
(deg) -44.524 -0.434 102.646 

Max In-Turn (deg) 38.235 14.054 2.721 
Min In-Turn (deg) -8.188 -10.165 0.806 
Foot Clearance 1 

(m) 0.067 0.052 1.298 

Foot Clearance 2 
(m) 0.050 0.072 0.695 

Min Foot 
Clearance (m) 0.024 0.026 0.911 

Step Length (m) 1.010 1.056 0.956 
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The following figures and table represent limited mobility gait. This was collected 
with a rigid object holding the left knee joint in an extended position. Figure 22 shows 
the changes in pronation and in-turn. Recalling from the gait temporal parameters for 
limited mobility gait it is known that the right foot experiences a significantly shorter 
swing phase. It was postulated that this may be due to the participant feeling a sense 
of imbalance on the immobilized left leg during the right swing phase. This is 
supported by the significant increase in standard deviation of right foot pronation 
during swing phase which could be a result of the participant using the right foot to 
balance while in swing. Additionally, the right foot is found to experience a greater 
degree of pronation during swing phase. However, similar to in antalgic gait this could 
rather be due to greater supination during right stance phase, presumably to 
counterbalance the outward movement of the left leg in swing to provide clearance 
without the ability to flex the knee joint. This change in swing of the left foot is also 
represented by a muted supination and in-turn during swing, indicating that the foot is 
not rolling over the toes in the same way that it was during normal gait. 

 
Figure 22. Foot pronation and in-turn for a sample of limited mobility gait. 

Figure 23 shows the x and z position of the foot during limited mobility gait. This 
figure also shows the decrease in swing time seen in the GTP table. It manifests here 
as a much steeper curve in x-position and a more compressed shape in z-position for 
the right foot. Otherwise, the step lengths are similar to one another although, similar 
to antalgic gait, both are shorter than what was seen in normal gait. Another change is 
in the z-position of the left foot. For this sample of limited mobility gait, all foot 
clearance values are significantly lower that with normal gait showing the difficulty of 
providing foot clearance during the swing phase of the left foot, when flexion of the 
knee is not possible. Finally, it was noticed that the first foot clearance for the right 
foot was lower than was found in normal gait. 
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Figure 23. x and z position of foot for a sample of limited mobility gait. 

Figure 24 shows the x and z position trajectory for a sample of limited mobility gait. 
Again, this figure shows information similar to the previous figure showing x and z 
position for limited mobility gait. It shows the low foot clearance of the left foot and 
the lower first foot clearance of the right foot. It is worth noting just how small this 
minimum foot clearance is, with only 1.4cm of clearance for the left foot in mid swing. 
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Figure 24. x and z position trajectory for a sample of limited mobility gait. 

Table 14 below shows the orientation and position parameters for the same sample 
of limited mobility gait. This table basically quantifies what was visible in the figures. 
For example, it shows an increase in the minimum pronation angle compared to 
normal, indicating a lower degree of supination compared to the orientation during the 
flat foot phase. It also shows the decrease in the maximum in-turn of the left foot 
compared to normal. In terms of position, the table clearly shows the decrease in step 
length of both feet compared to normal as well as the decreases in foot clearance values 
for the left foot and the decrease in first foot clearance for the right foot. 
Table 14. Table of orientation and position parameters for a sample of limited mobility 
gait 

 Left Mean Right Mean Symmetry 
Max Pronation 

(deg) 7.269 12.502 0.581 

Min Pronation 
(deg) -7.273 -1.399 5.199 

Max In-Turn (deg) 13.747 19.662 0.699 
Min In-Turn (deg) -8.388 -6.944 1.208 
Foot Clearance 1 

(m) 0.027 0.060 0.453 

Foot Clearance 2 
(m) 0.045 0.070 0.648 

Min Foot 
Clearance (m) 0.014 0.022 0.623 

Step Length (m) 0.983 1.041 0.944 
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Together, these figures and tables demonstrate the observed differences in 

orientation and position for three different kinds of gait. The implications, impacts, 
and future improvements of these measurements will be discussed in the following 
chapter. 



 

 

55 

7. DISCUSSION 
 
It was shown that packet loss was not found when collecting at 250Hz. At 333Hz a 
small number of packets were lost which were not consecutive. In the future, 333Hz 
could be considered viable if the project required higher sampling rates, while willing 
to sacrifice a small percentage (~0.3%) of packets. At 500Hz, packet loss was 
significant, and the resultant observed sampling rates were less consistent and lower 
on average than when sampling at 333Hz for this reason there is no foreseeable reason 
why anyone would use this sensor unit to sample at 500Hz. 
The labelling algorithm was found to be effective at labeling each sensor for all of 

the trials collected between two participants and three different simulated gait 
conditions. This suggests that the algorithm would be robust to different styles of gait. 
However, it is possible that unforeseen gait patterns may confuse the algorithm. One 
way that this could occur would be if a participant has a different foot shape. This is 
because the differentiation between the right and left feet is made by the y-axis of the 
foot sloping slightly up or down, on the right or left feet, respectively. Therefore, if the 
feet have a different shape then it could cause the sensors to improperly differentiate 
between right and left. If this is the case, then it would be prudent to implement further 
methods for distinguishing between right and left in the future. Another future action 
that could be taken would be to apply an artificial neural network that labels the signal 
based on many labeled samples. However, this method and other potential machine 
learning methods were considered to be out of the scope of this project. 
The gait event detection and segmentation algorithm was found to be effective in 

detecting gait events in normal gait and two different kinds of abnormal gait resulting 
from a painful sensation in the right foot or the immobilization of the left knee joint. 
These results were verified through inspection and through comparison with 
accelerometer data to identify gait events. The small differences that were found in the 
location of IFC events could be explained by inertial of the sensor and imperfect 
connection to the body segment causing the sensor to still be moving slightly, even 
after the body segment has reached a resting position. Accurate detection of gait events 
is critical, because it determines the accuracy of the gait temporal parameters. In the 
future, it would be worthwhile to compare the gait events produced by the algorithms 
to those produced by a gold standard system such as a force plate or foot switches to 
ensure accuracy. 
Additionally, it is important to not falsely detect gait segments which are really just 

artefacts of the IMU signal. The developed algorithm deals with these quite simply, by 
determining if all gait events are occurring in the correct order and in a realistic time 
frame, removing the segments that do not meet these criteria. Unfortunately, this has 
the consequence of removing some real events which do not occur as expected. This 
could limit the alter the algorithms ability to work with severely altered gait in the 
future. However, this was considered to be a worthwhile trade-off, because the IMU 
allows for the collection of such large amounts of data at rather low cost. This means 
that even if a significant percentage of gait segments are erroneously removed there 
will still be a wealth of data on which to preform analysis. The true consequence is 
that for significantly altered gait it could introduce bias to only show the more normal 
gait. This balance of specificity should continually be reconsidered, particularly when 
the system is applied to significantly altered gait. 
Accurate detection of gait events and segments is essential for the accuracy of all of 

the data which is extracted from those segments. The first of which are the gait 
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temporal parameters (GTP). Because GTP are just temporal comparisons between gait 
event, they only require two things. Accurate time data, which is provided by the real 
time clock RTC and accurate gait event detection. The GTP collected for this project 
seemed accurate and were repeatable for the same individual, demonstrating a high 
level of relative validity. It was noticeable how GTP change with different styles of 
gait showing the ability of these metrics to identify abnormal gait. However, further 
validation could be done by comparing to a gold standard system of force plates or 
foot switches. 
The most ambitious measurements in this project are the trajectories of orientation 

and position as well as their associated parameters. These measurements are 
considered ambitious, because they are difficult to deliver accurately using IMU 
sensors due to external influences on the IMU as well as the characteristic integration 
drift. As mentioned in chapter 5, many assumptions were made to better manage this 
integration drift. The most notable assumptions being that the foot returns to a normal 
flat foot position during the stance phase of each segment. It was seen in section 6.5 
that this may not always be the case for patterns of abnormal gait. In particular, the 
sample of antalgic gait which showed the foot becoming more supinated during swing 
phase may have been hiding the real effect which was that the foot was in a more 
supinated position during the stance phase. This is one of the ways in which the 
assumptions made could mask what is really happening. Despite this negative effect, 
the other assumptions seem to have few noticeable effects. For example, the 
assumption of zero velocity during each flat foot phase is likely always true unless the 
foot is slipping, or the ground is somehow moving. In fact, this assumption even helped 
to remove the effect of the sensors moving after the foot impacts the ground. Knowing 
that velocity should be zero after IFC allows for the elimination of the transient 
acceleration signal caused by the oscillation of the sensor. Finally, the assumption that 
the foot always returns to a vertical height of zero was essential and did not show any 
noticeable side-effects. It is considered essential, because of the small scale of the foot 
clearance measurements, even a change of a few millimeters could be significant.  
Measurements of orientation and position were used to construct gait parameters 

including foot clearances step lengths and maximum angles of pronation and 
supination compared to the flat foot phase. These parameters were selected to 
demonstrate how orientation and position information can be summarized very briefly 
by only a few different parameters. These parameters enable diagnosis when fed into 
machine learning algorithms to diagnose disease or act as a quick reference for 
physicians when administering rehabilitation. They are essential the final output of all 
of the algorithms included in this thesis and as such, their accuracy is critical. 
For the clearance measurements and other orientation and position parameters, 

accuracy is important. Because there was no ground truth for comparison in this 
project, validation was left to a measurement of how similar the results were between 
different segments and between different trials. It was found that for most trials the 
behavior was similar, indicating strong repeatability, however there were still some 
trials which produced abnormal and potentially erroneous results. A particularly strong 
example of this was found when measuring the z-position over time. It was found that 
in rare cases the z-position at minimum clearance would be below zero. Although trial 
means constructed from the segments were still normal, these outliers provide reason 
for concern. They also show one of the fundamental issues with position tracking using 
IMU, that drift is not entirely avoidable. Although drift can be compensated for 
through making assumptions, there is still time for bias to accumulate before it can be 
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corrected. This raises some mild concerns about the validity of IMU position tracking 
which should be further studied in the future. A good place to start with this would be 
to use a gold standard method such as motion capture and compare the result to the 
position trajectory created by the IMU. Motion capture could also be used to test 
orientation measurements by attaching frame markers to the feet. 
In the future, more attention should be paid to absolute validation. This includes 

comparison to the gold standard methods mentioned above. Once these methods are 
validated, they can be used safely and reliably to collect gait data outside of the 
laboratory. Once this occurs, the amount of data being collected will increase 
dramatically. With large amounts of data, from many sources, and many different 
styles of gait a new opportunity arises to replace the hard coded algorithms in this work 
with machine learning equivalents. Machine learning algorithms could be applied to 
pre-process gait data based on large amounts of previously labelled data. This could 
identify patterns that are not recognizable by human observers. It could also better 
quantify existing patterns. Machine learning could benefit the labelling algorithm by 
identifying more features that distinguish between foot and shank sensors, of which 
there are many. This could lead to a more robust labelling algorithm, particularly for 
abnormal gait patterns. Machine learning could also be beneficial in the identification 
of gait events by incorporating data from both the accelerometer and gyroscope to 
identify gait event location. It could also be used to discard segments which contain 
signal artefacts rather than actual gait events. As the amount of labelled gait data 
increases, these algorithms could continually improve providing a more future-proof 
solution than the hard-coded algorithms presented. However, the algorithms in this 
project do provide a fundamental stepping-stone to this future. By creating and 
labelling data, the outputs of the current algorithms could label the datasets which 
enable the gait processing algorithms of the future. 
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8. CONCLUSION 
 
The study of gait is being improved through quantification. IMU provides a method of 
gait quantification which enables gait data to be collected outside of the laboratory and 
at a relatively low cost compared to other gold standard equipment for gait analysis. 
This enables the collection and processing of vast amounts of gait data which does not 
rely on professional observation or processing. 
This thesis provides a framework for the automated analysis of gait data which is 

essential for effectively processing large quantities of gait data. The algorithms were 
found to be effective in labelling sensors, detecting gait events, segmenting gait data 
according to the four-phase gait model, and producing trajectory and parameters 
measurements for the orientation and position of the foot sensors. Although testing 
was successful for two participants and for three different styles of gait, the scope of 
the testing population is still very narrow and should be expanded in future work. 
Abnormal gait simulated in this work provided an opportunity to see how the system 
would react to non-neural gait impairments. Future work should include neural 
impairments to gait, such as dual task walking or other conditions with a known impact 
of the patterns of gait to see the changes that these neural impairments evoke. In both 
cases, comparison should be made to a gold standard measurement system to ensure 
accuracy. 
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