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ABSTRACT

Face detection is a preprocessing step in many computer vision applications.
Important factors are accuracy, inference duration, and energy efficiency of
the detection framework. Computationally light detectors that execute in real-
time are a requirement for many application areas, such as face tracking and
recognition. Typical operating platforms in everyday use are smartphones and
embedded devices, which have limited computation capacity.

The capability of face detectors is comparable to the ability of a human
in easy detection tasks. When the conditions change, the challenges become
different. Current challenges in face detection include atypically posed and tiny
faces. Partially occluded faces and dim or bright environments pose challenges
for detection systems. State-of-the-art performance in face detection research
employs deep learning methods called neural networks, which loosely imitate
the mammalian brain system. The most relevant technologies are convolutional
neural networks, which are designed for local feature description.

In this thesis, the main computational optimization approach is neural network
quantization. The network models were delegated to digital signal processors
and graphics processing units. Quantization was shown to reduce the latency
of computation substantially. The most energy-efficient inference was achieved
through digital signal processor delegation. Multithreading was used for
inference acceleration. It reduced the amount of energy consumption per
algorithm run.

Keywords: energy-efficiency, face detection, smartphones, real-time,
quantization, deep learning, convolutional neural networks, RetinaFace
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TIIVISTELMA

Kasvojen ilmaisu on esikisittelyvaihe monelle konenion sovellukselle.
Tarkeita kasvoilmaisimen ominaisuuksia ovat tarkkuus, energiatehokkuus
ja suoritusnopeus. Monet sovellukset vaativat laskennallisesti kevyiti ilmaisimia,
jotka toimivat reaaliajassa. Esimerkkeji sovelluksista ovat kasvojen seuranta-
ja tunnistusjirjestelmiit. Yleisid kiyttoalustoja ovat idlypuhelimet ja sulautetut
jarjestelmit, joiden laskentakapasiteetti on rajallinen.

Kasvonilmaisimien tarkkuus vastaa ihmisen kykyid helpoissa ilmaisuissa.
Nykyiset ongelmat kasvojen ilmaisussa liittyvit epityypillisiin asentoihin ja
erityisen pieniin kasvokokoihin. Myds kasvojen osittainen peittyminen, ja
pimeiit ja kirkkaat ympiristot, vaikeuttavat ilmaisua. Neuroverkkoja kiytetiin
tekodlyjirjestelmissi, joiden lihtokohtana on ollut mallintaa nisikkéiden aivojen
toimintaa. Konvoluutiopohjaiset neuroverkot ovat erikoistuneet paikallisten
piirteiden analysointiin.

Tédssad opinnidytetyossia kiytetty laskennallisen optimoinnin menetelmi on
neuroverkkojen kvantisointi.  Neuroverkkojen ajo delegoitiin digitaalisille
signaalinkisittely- ja grafiikkasuorittimille. Kvantisoinnin osoitettiin
viahentivian laskenta-aikaa huomattavasti ja suurin energiatehokkuus
saavutettiin digitaalisen signaaliprosessorin avulla. Suoritusnopeutta liséittiin
monisiikeistykselli, jonka havaittiin vihentivin energiankulutusta.

Avainsanat: energiatehokkuus, Kkasvoilmaisu, é&lylaitteet, reaaliaikainen,
kvantisointi, syviioppiminen, konvoluutioneuroverkot, RetinaFace
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1. INTRODUCTION

Computer vision is a field of artificial intelligence in which systems are designed to
interpret the visual world. Due to the importance of vision, the human body has
developed a vast system for processing and interpreting visual signals that the research
tries to imitate. [1]

With early face detection algorithms, slight differences in the orientation of a head
could easily affect the prediction outcome. Another goal was low latency. For some
real-world applications the processing should be done in real-time. [2]

Face detection deals with a variety of challenges. Datasets are used for
categorization of known problem cases. Figure 1 represents core challenges in WIDER
Face dataset. [3]

Scale

Occlusion

Expression Makeup Mumination

. ar~

Figure 1. Datasets contain various challenges for face detection algorithms.

Decades ago computers were lacking the computational resources needed for
processing useful artificial neural networks. Although some systems were introduced,
not many were effectively put in use. Development of hardware efficiency and power
output in coming years changed the situation.

Multi-scale detection is one of many active object detection research areas. Finding
small faces in large images has been a complex issue in face detection research. An
example of a challenging multi-scale detection situation is presented in Figure 2. [4]

Figure 2. World’s largest selfie by Lumia 730 is a challenging face detection scenario.



The use of smartphones introduced new challenges for face detection algorithm
design. Energy efficiency became important, while neural computing-based solutions
require traditionally vast amounts of computation. The majority of neural computation
is multiply-accumulate operations. The needed operations are simple but the problem
is in the quantity. Optimization techniques designed for dealing with this computation
bottleneck have branched in many directions. [2]

Common optimization solutions for neural computing can be roughly categorized
followingly:

e Speeding-up the detection pipeline

Speeding-up the detection pipeline is achieved by implementing multiply-
accumulate computation on novel specialized hardware. The most common
delegation hardware are graphics processing units (GPUs) and digital signal
processors (DSPs). Specialized hardware is more efficient in terms of energy
usage.

e Numerical precision reduction

Optimization methods introduce a level of error to classification accuracy. The
precision reduction is called quantization. The predictive power of a neural
network is based on the idea of receptive fields, which capture both large- and
small-scale structures. Due to a huge amount of variables, most networks are
tolerant of error.

e Algorithm innovations

Lightweight deep learning methods are used for energy-efficient face detection.
Mobile deep learning algorithms are the optimal choice for a trade-off in terms
of prediction accuracy and detection latency.

1.1. Scope of the Thesis

In Chapter 2 traditional face detection systems are considered. Main mechanisms
and elements of neural computing are covered and the most relevant neural network
optimization techniques are elaborated. In Chapter 3 the fundamentals of computer
arithmetics and computing models are described. The architectures are considered in
neural computing context. In Chapter 4 a face detection implementation is presented.
In Chapter 5 a set of measurements are conducted and metrics are introduced for
evaluation purposes. Chapter 6 discusses topics that are relevant for the future of this
work.
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2. FACE DETECTION

Face detection is a relevant phase in various modern problems involving person
verification, identification, and expression analysis. The first stage of a face detection
system is feature extraction, where representations of features are acquired. Extracted
feature representations are used for detection classification.

2.1. Hand-Crafted Features Based Methods

Face detection is traditionally based on using hand-crafted features. The most common
feature forms are edges and corners. Features are used for finding proportionally
distinct intensity changes within image presentation [2]. For instance, Harris corner
detector is an algorithm where edge and corner feature representation was combined
into a single detector [5]. Early detector pipelines usually consisted of noise reduction,
feature calculation, thresholding, and normalization algorithms [6]. Figure 3 visualizes
the features used by a Canny edge detector. Image taken from [3].

Figure 3. Example of an edge detection algorithm.

Feature variance is relevant challenge in object detection systems. Scale-invariant
features (SIFT) is a traditional algorithm for scale and variance tolerant feature
extraction. Scale, translation, and rotation invariant features are expensive to calculate
due to image information richness. [7]

For latency minimization speeded-up robust features (SURF) algorithm was
developed for efficient GPU execution. Both SURF and SIFT are based on local
information, and on features calculated from gradients in an image [8]. Another
traditionally popular algorithm is histogram of oriented gradients (HOG), the flow of
which is displayed in Figure 4 [9].

Input |"D;‘3;’;‘rma Gradient Feature Contrast | | HOG ‘ | s:;:‘:g:‘ Classification
Image = computation voting normalization | i | | machine

Figure 4. HOG detector workflow.

The basic face detection methods can be categorized into template-matching and
part-based model schemes. Template-matching methods introduced a face template,
which can contain dimensions, contour, and facial elements. Elements can contain
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knowledge about relationships present in a face or a set of facial features. This
approach is simple to implement, but performs poorly compared to other face detection
algorithms. [10]

The idea in part based models is that each object consists of one global base filter
and several part models, for example, a head and eyes. Usually the first model, the
body, is defined by a coarse template. The model defines the placement space for its
child part models, which are usually inspected at a higher resolution. Both body and
child filters are scored based on some evaluation rules. These rules have been extended
to include multiple methods during the years and a large portion of algorithmic success
was due to these advancements. [11]

Image channel features have played a huge part in face detection over the years.
Image channel methods are used for non-linear and linear face detection, where the
most common features are extracted from color channels [12]. There are also many
non-linear channels, and the most popular use of non-linear channels were adapted
with a Canny edge detector [6] by displaying edges and gradient magnitude (edge
strength) [2].

2.1.1. Viola-Jones

Among the first robust and real-time capable face detection algorithm is the Viola-
Jones (VJ) face detector. One of the main contributions was the integral image
representation method for accelerated feature evaluation. It is a method for narrowing
the total number of needed haar-like features without losing quality from the
prediction.

VJ detector used several weak learners for forming a strong classifier for a
classification task. A weak learner is a learner that does not hold enough information
for a detection alone.

In Figure 5 haar features are visualized. The features are obtained by subtracting the
sum of pixels under the white rectangle from pixels under the black rectangle. This
way the detector gains information from relevant relationships for a face detection.

Edge
features
Line
features
Four-rectangle
features

Figure 5. Example of a haar-feature set.

Vast number of predictions in a detection are negative. Detection cascade was
developed for dealing with this challenge. The cascading technique increases the
performance of a detector significantly by focusing attention on promising image
regions. In the VJ detector, a variant of adaptive boosting (Adaboost) is used for
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selecting a core set of features and boosting the classification performance of a system.
[14]

2.1.2. LBP Based Face Detection

Local binary pattern (LBP) methods are originally general texture descriptor methods.
The methods were extended to face detection domain as a rotation invariant and
lightweight techniques. LBP considers compositions of micro-patterns as global
descriptors and the method is commonly applied on a grey-scale image. LBP
operator is calculated using a pixel and its neighbourhoods, originally an eight-pixel
neighbourhood method was used. In this method a binary collection of pixels is
obtained by starting binary from top-left corner and advancing in clockwise direction.
[15]

LBP for face detection relies on extended usage of neighbourhoods, some variations
are (8,1) and (16,2) neighbourhood sizes. Later the operator was extended to uniform
patterns, which is an pattern, where transition between bits is at most two. [15]

The first step in using LBP for face detection is calculating feature histograms.
Figure 6 represents LBP histogram generation stages, in which extracted binary values
form histograms of features.

p 1 IR
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Figure 6. LBP feature generation stages.

Some more recent advances in LBP usage have been adaptations from other
traditional detection paradigms: usage of other classification techniques in pre- or post-
processing, and efficient usage of a cascade of classifiers. Some applied classification
techniques are support vector machine (SVM) and eigenface (PCA) methods. Facial
representation is considered as small non-overlapping regions used to form feature
histograms for the prediction. [16]

LBP is a lightweight and fast algorithm in terms of feature calculation. However,
LBP based features cannot be learned by neural computing.

2.1.3. Feature Learning in Face Detection

Feature learning methods capture efficient feature representations. Two main
categories exist: supervised and unsupervised learning. In supervised learning we



13

have data and labels. The goal is to adjust the parameters so the system finds how the
data and labels are correlated based on a loss function. Unsupervised learning works
without the labels. [17]

In this thesis we apply supervised learning. Its phases are

e Training

The learning goal is reached through an iterative training process. Model weights
are either tuned or learned in this process.

e Testing

In testing phase the testing data is used for model evaluation during training.
Testing can be used as an evaluation tool for observing the loss function.

e Validation

The validation data is used for the final validation of the model.

Datasets that consist of data, labels, and noise, are used for feature learning. In
a supervised learning environment labels can be used for building a meaningful loss
function for the trained network. The network is meant to learn weight parameters from
the training data. Testing and validation data sets are often smaller, and are used for
determining if the loss converges. The network has not used the testing and validation
data for training, so the classification situations are new for the network. [18]

In Figure 7 the design flow of a supervised learning system is depicted.

> Traming —*|  Leaming  ———><{ Model
data '\‘ } S

Processed \
data * Testing ><_ Model
— data

Validation

S

—Evaluation < Model
data
New —»  Preprocessing > Mod>—> Prediction

data

Figure 7. Supervised learning stages.

In training phase the prediction ability of a model is created. The challenges in
feature learning are over- and underfitting. Overfitting means that the model follows
the details of the data too closely thus being unable to adapt to new situations.
Underfitting means that the model has not been able to capture patterns present in
the data. [19]

In Figure 8 model fitting challenges are visualized. The system needs to be able to
find essential patterns in the data for optimal detection capability. [18]
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Underfitting Optimal fitting Overfitting
Figure 8. Challenges present in fitting of a Machine Learning model.

Neural networks are usually trained with backpropagation algorithm. Feedforward
algorithm is used for predicting. [17]

2.2. Feedforward Algorithm

In feedforward, models the information flow is directed from input layers through the
hidden layers to the output layers. Layers consist of neurons that get their inputs from
the output signals of the preceding layer, forming a chain of processes. The output
layer of the network constitutes the overall response to the activation pattern fed by
the input layer [20]. A neuron is visualized in Figure 9, where a node consist of n
connections, input values € = {x,...,r,}, synapse weights w = {w, ..., w,}, a
bias b, and an activation function f. Figure is adapted from [17].

Lo Wwo

ny(Z%'wa;er)

mn
Z riw; + b
Figure 9. Early prototype of a neuron.

Feedforward algorithm is the backbone of neural computing. In Figure 10 a
feedforward system is presented, consisting of input, hidden, output, and activation
nodes, which define what connections are active during neural computing.

Activation functions enable networks to learn complex data. Nonlinear activation
function rectified linear unit (ReLLU) and its variations are often used in the state-of-
the-art (SOTA) classification networks. The algorithm of ReLU is given in Equation
(1). ReLU introduces non-linearity by mapping negative values as zeros. In other cases
input values remain intact. [21]

f(x) = mazx(x,0) (D

Due to its simplicity ReLU has small computation cost, and negative values do not
form connections. [22]
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_________ Hidden
node

Figure 10. Feedforward algorithm is the backbone of a neural network.

Convolutional neural networks (CNNs) are used for SOTA face detection feature
calculation. CNNs employ multistage texture extraction. Feature learning can be
accelerated by use of preprocessing techniques, such as batch normalizations. [23]

2.2.1. Preprocessing

Feature scaling enables faster and stabler learning. As we progress deeper in the
network, the input parameters for each layer shift in the distribution of inputs, slowing
down the optimization. This is known as internal covariate shift. [23]

Parameter whitening has been used for accelerating learning. In whitening the mean
and variance of each feature is normalized to be the same. Figure 11 illustrates the
principles: The range of features is transformed into the same scale. [23]

A A

Feature 1
Feature 1

Feature 2 Feature 2
. L.

»

Before normalization After normalization

il

Figure 11. Features are normalized into the same scale.

Batch normalization uses four parameters in each batch normalization layer. Batch
variance (02) and batch mean (1) are used for shifting and scaling of variables. Other
parameters are standard deviation () and mean () parameters, which are learned
during the normalization process. [23]

Parameter learning in a batch normalization is based on Equations (2) and (3), where
b= {xy,...,x,} is the input batch.
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Each normalization layer applies Equation (4), where z is an input element of the
layer, 2’ is the normalized element value, and € is a small constant for numerical
stability. [23]

 — R 4)

Vo?+e

With these equations, the process enables more independent learning of parameters
for each layer. o and p are sometimes randomly initialized, as previous optimizations
might no longer be optimal: an optimizer might unlearn these normalizations if it is a
convenient way to minimize the loss function.

~ and [ parameters in a batch normalization transform change weights per activation
in Equation (5), where z is the input to a layer and ' is the normalized value.  and (3
are used for batch scaling and shifting. [23]

¥ =yr+p &)

Batch normalization reduces internal covariate shift and the dependence of gradients
on the scale of parameters, regularizing the model and normalizing layer level
responses [23]. This is an important aspect in quantization, which saves energy,
improves computing speed, and enables higher learning rates. [24] For inference, the
network needs to do the same normalizations as during training. These normalizations
can be calculated offline by folding [25].

2.2.2. Convolutions

Let’s presume we have an input signal z(n), an impulse response h(n) and an output
signal y(n). Equation (6) is a convolutional system, where ® is the convolution
operator. [26]

y(n) = z(n) @ h(n) ()

In CNNs convolutional layer computations essentially extract features. In Equation
(7) the output vector (y) is equated, where W is the weight matrix, x is the input
vector, and b is the bias vector.

y=Wx+b (7)

W is represented as a multi-dimensional array and b is defined as an vector in
Equation (8).
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Convolutional layers are fundamentally built on local receptive fields, shared
weights, and spatial sub-sampling. Local receptive fields refer to design architecture,
where convolutions are connected to their input layer. Input image can contain millions
of pixels, but we can detect meaningful features, that only inhabit a region of dozens
of pixels, as the convolution kernels are small.

The execution time depends on the kernel size [26]. Figure 12 visualizes
convolutional layers and the kernel computation flow from layer to layer.

_

.
T~ =

= P —

Figure 12. Convolutional layers form a chain of operations in neural network.

2.3. Neural Network Optimization

Neural computing acceleration needs to consider operator throughput, memory access
compression, precision arithmetic, bitwidth, and quantization. The aim is to accelerate
inference, to reduce model size, and to achieve better energy efficiency. The problem
with most methods is the inability to exploit sparsity or value homogeneity. [25]

It is known that classification neural networks are robust under heavy quantization
noise, and 8-bit, or even 4-bit precision may suffice [25]. Among the optimization
techniques are weight clustering, quantization aware training (QAT), post-training
quantization (PTQ) and pruning. The most effective optimization method is QAT, but
it is the hardest to deploy. PTQ is relevant technique in many cases, as the accuracy
difference between QAT and PTQ is usually marginal [27].

2.3.1. Quantization

In this thesis quantization means mapping 32-bit floating point models into lower
precision and numeric range. Important attributes in quantization are dynamic range
and precision. Dynamic range refers to the range of variable space and precision is the
number of levels in range [25]. Range and precision impact the amount of quantization
error.
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Quantization of a signal is visualized in Figure 13, where quantization error is
the rounding error between the original and quantized signals, and the number of
quantization levels is defined by the value range of original signal.

Output

Original signal

Quantized signal
Quantization levels
-<*~._.. Quantization error

I\\

h Inpl:lt
Figure 13. Visualization of signal quantization.

Most common quantization approaches in convolutional neural computing are
range- and clipping-based approaches. Range-based quantization approaches use the
full variable range. Clipping-based approaches use a static or a learned range that
results in limiting the maximum and minimum values. Common quantization methods
are symmetric and asymmetric methods. [28]

Typically three variables are used in quantization:

e Common exponent

The exponent is often called zero-point. It is the offset of values, and is a neural
computing specific constraint. For many operations we need the real value of 0
to be exactly representable in a quantized form, as it is an optimality constraint.
[24]

e Scaling factor
The scaling factor is used to adapt weights of tensors to a dynamic range. Scaling
factor is usually defined per-channel or per-layer. [24]

e Minimum and maximum activation ranges
The range functions are applied to the variable before and after to-be quantized

layers and they map the activation range of each layer. [24]

Quantization of a scalar is defined in Equation (9), where X;; is the input element,
X y(i5) 1s the quantized value of x, z is the zero-point, and s is the scaling factor. [24]

Xij = (Xgj) — 2) * s ©)

Digital signal processors (DSPs) and tensor processing units (TPUs) used in neural
computing rely on quantized inputs. For eliminating as much floating point arithmetic
as possible, the matrix multiplications (MMs) must be quantized.
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Computation using a low precision general matrix multiplication (GEMMLOWP)
algorithm is in Equation (10), where notations R;;) are the quantized values, 7, the
zero-point, and R, the scale of the result, and LH Sg(;;jy and RH S (;;) are quantized
left-hand and right-hand side matrices. [29]

lhsg * rhs,

Ry = R + ——

The innermost part of an accumulation is called the kernel loop. In neural networks
it is the most computationally intensive part. Elimination of as many variables as
possible from the kernel loop reduces the computation cost of MMs. Neural network
inference is often measured in terms of multiply accumulate operations (MACsS).
Accumulator size is minimized as computational cost significantly increases along the
size of the accumulator. [29]

Optimal accumulation A, for a quantized general matrix multiplication is defined in
Equation (11).

Agij) = LHS 5y « RHS i) (11)

Post-training quantization is a common technique used to optimize model inference.
In parameter abundant networks there are outliers in learned weights, so losing
information on these variables does not change the model behaviour fundamentally
[24]. Smaller models are different as their lightweight architecture provides smaller
representation capacity [30].

2.3.2. Folding

CNN computation is a repetitive pipeline, which consists of calculation, normalization
and activation of features. Figure 14 visualizes the most repetitive neural computation
scheme, a block, which consists of convolution, batch normalization and activation
layers.

Convolution BatchNorm

weight (8x3x3x3)
kernel=3,3

layout = NCHW
num_Ffilter = 8
pad=1,1

stride =2, 2

gamma ¢8)
beta (8)
mean {8)
variance (8)

eps = 0.00001
fix_gamma = false

Activation

act_type =relu

Figure 14. Convolutional, batch normalization and activation layers.

Folding is a technique where offline calculable weights are fused to weights of
another layer. This decreases the number of operations per inference. Usual way for
folding is fusing together convolution, normalization and activation layers. [24]

Folding process is visualized in Figure 15 where input, convolution, and activation
weights are quantized. Quantization nodes are used for quantization, and they contain
information about the minimum and maximum activation ranges of the layer. [24]
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Figure 15. Folding of convolution, normalization and activation layers.

The convolution layers consist of weights (W) and biases (b) [24]. Folding of a
weight w, which is one of the elements defined in Equation (8), is presented in Equation
(12), where ~ is batch standard deviation parameter, o a variance parameter and ¢ a
small constant for numerical stability. [23]

vk w

Wrold = —F——"—
fo Vo?+e

Folding of bias element b, which is defined in Equation (8), is presented in Equation
(13), where (3 is the mean parameter of batch normalization. [23]

(12)

by — 1= 1)
fo Vo?+te

Equations (12) and (13) are combined in Equation (14). With this folding technique
both weights and biases of a convolutional layer can be folded. [23]

+ (13)

+ (14)

An example of the quantization and folding of a block is presented in Appendix 1.

2.3.3. Pruning

Pruning is a network compression technique. Pruning is based on the fact that model
has many weights that hold little to no information for the detection [31]. Network
sparsity is the goal of pruning. Layer sparsity is defined in Equation (15).

\iﬂg,o! !$§,1| e \wg,n!
|Xp| — ‘x1,0| ’$1,1| te ‘xl,n’ (15)
250l |2l |25
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Sparsity can be conducted on multiple levels: on fine-grained-, vector-, kernel-, and
filter-level. Better results can be achieved by using smoother pruning algorithms [32],
but there are no general guidelines what is the breaking point of a model [33]. In
Equation (16) calculation of the zero-element count of a layer takes place.

=) >l (16)

i=0 j=0

Neurons with no connections can be safely pruned in any pruning algorithm.
The most straightforward pruning technique is one-shot pruning, where algorithm
randomly deletes data based on threshold. The more advanced pruning includes
training-aware pruning, where a training optimizer is used for fine-tuning. The idea
is to learn which weights are the least important. [33]

Traditional neural architectures are error tolerant by design, but mobile neural
architectures are not as error tolerant due to smaller parameter count [31]. However,
for most classification networks, pruning of later layers should prove useful as long as
the most critical layers are avoided [34].

2.3.4. Clustering

Clustering is based on weight sharing. Weight sharing means dropping the number
of unique weight values in a model. Weights are put into clusters and each weight
belonging to the cluster is replaced with centroid value of the cluster. K-means
implementation on neural computing is illustrated in Figure 16. [35]
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Figure 16. Feature homogeneity is increased by use of clustering methods.

2.4. Summary

Normal computations can be accelerated and the energy efficiency improved by
quantization, and by exploitation of the specific opportunities provided by the ReLU
activation function. By folding offline calculable weights the number of operations
can be reduced. By applying sparsity to the model the model size can be reduced,
but pruning has narrow applicability on mobile networks as the number of parameters
is limited. In mobile implementations, high level performance is desired while the
computational solution should be minimized.
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3. NEURAL COMPUTING ON EMBEDDED PLATFORMS

Understanding hardware and model design is fundamental in training and inference
optimization. ~Most optimization methods concern one or multiple aspects of
throughput, efficiency, latency, accuracy and memory usage. Usually optimization
is a trade-off between these issues. [36]

The most vital components used in neural network training are memory, central
processing units (CPUs), accelerators (e.g. GPUs), high-speed connectors (network
connection and buses) and fast storage. Seamless design of the computing pipeline is
a requirement for producing a low latency solution.

3.1. Number Representations

A computer representation is always restricted due to storage requirements. There
are two main types of numbers modern microprocessors operate on: fixed- (FX) and
floating point (FP) representations [37]. Fixed-point (FX) numbers represent fractional
values and are heavily used in low-cost embedded microprocessors. Figure 17
illustrates FX 8-bit (FX-8) unsigned (uint8) and signed (int8) representation examples,
where s is a sign, ¢ = {iy,...,4,} is the integer part, and f = {f1,..., fi.} is the
fractional part of a representation [38].

sian Integer Fractional
9 part part
1bit 3 bits 4 bits
8 | s | i i i@f|f|f]|f
4 bits 4 bits
wint | i |0 i@f | f|f|f
|
Binary
point

Figure 17. Representations of important signed and unsigned FX formats.

Neural networks are often trained using FP arithmetic, but for efficient neural
network inference we need to map FP to FX representation. For mapping a FX
presentation from a FP presentation, we need to consider the dynamic range of the
conversion, and precision. Dynamic range is defined by the largest and smallest
numbers, and precision is the number of levels in the representation. FX arithmetic
is often represented in Q-, or UQ-format, for signed and unsigned, respectively, where
m 1s the integer bit count and n is the fractional bit count. [26]

FP to FX optimization can improve performance and accuracy. In used optimization
methods the FX scaling factor is shared. [36]
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FX approximation of a FP number can be calculated by Equation (17), which is the
two’s complement representation. [38]

FX = [(FP*2™)] (17)

The required FX representation for optimal neural 8-bit precision is (U)Q1.7 format.

FP arithmetic is the most common way of representing numbers in computing
systems. FP consists of three parts: The sign s, the exponent e = {ey, ..., e, } and the
mantissa m = {my, ..., m,,} [39]. FP arithmetics are visualized in Figure 18. In a
FP system the compromise is made between the mantissa and the size of the exponent
[40]. FP formats useful for neural computing are:

e IEEE 754 floating point 32-bit (Single-precision) representation (FP-32)

Single-precision FP is typically used during training of neural network.

e IEEE 754 floating point 16-bit (Half-precision) representation (FP-16)
Mapping between IEEE 754 FP data types requires conversion of values due to
differences in exponent and fractional part sizes.

e Brain floating point 16-bit representation (BFP-16)

Google brain team has presented brain floating point format (BFP-16) for usage
instead of conventional FP-16. BFP-16 uses same amount of bits in exponent
part making the conversion easier to implement. The range of BFP-16 is the
same as with FP-32. The hypothesis is to have better classification accuracy on
BFP-16 compared to FP-16. [41]

Sign Exponent part Fractional part
1 bit 5 bhits 10 bits

FP-16 | s (e |e | e | e emMm M M/ m/(m m/ m| m|m|m

1 bit 8 bits 7 bits

BFP-16 | s (e |e e | e | e | e | e e/ M M M| m| m| m|| m

1 bit 8 bits 23 bits

FP-32 | s (e |e | e | e | e | e | e e mMm M mj|... m m M

Figure 18. Representations of important FP formats.

In hardware, saturated or unsaturated arithmetics are used. Saturated arithmetics
clip over- or underflow to maxima or minima, respectively. Unsaturated arithmetics
allow overflows. [42]
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3.1.1. Number Formats for Neural Networks

CNNs employ FP-32s for storing gradient weights. This is currently the most
commonly used procedure for keeping gradient values from vanishing during training
[17]. In inference we need only to compute the forward pass. Typically FP-16 or FX-8
suffices for classification networks [25]. When utilizing a particular arithmetic, speed,
accuracy, range, portability, ease of use, and speed are the core attributes [38].

3.2. Computing Concurrency

Computing concurrency in neural computing has many levels, most relevant ones for
inference being operator and network concurrency. At operator level there are two
scales: the single operator and the decomposition of operators. Decomposition of
operators deals with convolutions. [43]

Data parallelism deals with batch size and communication, which are important for
training of a network, but model parallelism and pipelining are relevant for latency
optimization. Model parallelism deals with layer level optimization methods and
memory footprint reduction. Pipelining concerns the data flow of a model and layer
process partitioning. Hybrid parallelism is a combination of multiple parallelism
schemes, it is a common practice to combine multiple parallelism schemes. [43]

Multiprocessing and parallel processing, in theory, provide for linear speedup, while
Amdahl’s law shows it is limited by serial parts of the application [44]. In practise
linear speedup is limited due to communication and memory bottlenecks. Load
balancing, communication, and processor synchronization are important aspects for
effective parallelization [45]. Different computing schemes are visualized in Figure
19, where P = {1, 2} are processors.

Serial Parallel Multi-
processing processing processing
[ R ) R ) Rl B
1 1 2 1 2
2 3 4 3 4

Figure 19. Different processing schemes.

3.2.1. Convolution Algorithms

One of the most important hardware features for neural computing is the effectiveness
of convolution computation. Convolutional layers in neural computing are the SOTA
method for feature representation, but are heavy to compute due to high number
of operations. Convolutional layers include majority of computations involved in
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inference and training of CNNs [43]. Convolution optimization algorithms reduce the
total number of operations and communication [46].
Three convolution algorithms are typically used in neural computing:

im2col

In im2col a discrete convolution is transformed into a matrix multiplication
(MM). The im2col method is good method for acceleration, but it consumes
a high amount of memory which results in bad scalability. im2col is also known
as general matrix multiplication (GEMM) method. [43]

Fast Fourier Transform (FFT)

Compared to im2col, FFT algorithm is efficient for large convolutions due to
weight reuse. FFT can be optimized further by usage of zero-padding due to
many kernel values being zero. For optimality pruned FFT is especially efficient.
In pruned FFT number of operations is reduced. [43]

Winograd’s fast convolution algorithm

Winograd’s algorithm cuts the number of multiplications, but its cost grows
quadratically with kernel size so it is only used for small kernels. Winograd’s
algorithm affects the numerical accuracy. [47]

Visualization of each algorithm is in Figure 20, which is adapted from [43] and [47].
In im2col 3D tensors are disassembled into 2D matrices. Kernels and image data are
multiplied and the result is the convolved tensor. In FFT algorithm data and kernels
are transformed by FFT and element-wise multiplied. Inverse FFT is then applied for
getting the result. In Winograd’s algorithm, convolutions are decomposed into sums of
tiled small convolutions from transformed kernel and activation layer products. [43]

im2col FFT *  Winograd
: Fourier Transformed : Activati Ki 1
Image Data : Kernel Data : ctivation erne
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Figure 20. Convolutional Computation method visualizations.

There is no effective general use algorithm for neural convolution computation.
The layout of the data has a huge effect on acceleration speedup of each convolution
optimization algorithm. [43]
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3.2.2. Data Order

For a high-performance matrix computation system, minimization of operation count is
not enough. Data order has a significant role for the performance. All inputs, outputs
and transformations of the data are represented in tensors that are multidimensional
arrays [43]. In Equation (18) an example of input data order for a tensor is visualized,
where T is a tensor, B is the batch size, C' is the number of channels, H is the height
and W is the width of a tensor [36].

T=[B,C,H W] (18)
Convolution processing efficiency is related to the processing architecture. Most
commonly the [C',H ,W ,B] format is used, which is the interleaved format. [48]
3.2.3. Pipelining
FP operations require multiple steps for finishing a calculation, as a clock cycle is used

for each step. When we feed x and y to an adder we get an output sum 2. Figure 21
represents example figure of a FP adder, that requires three clock cycles. [49]

z > Adjust >

y » exponents Add

h 4

Normalize — z

Figure 21. A 3-cycle adder.

Pipelining means streaming each phase at one cycle. We can expect thrice better
processing throughput by using pipelined addition [49].

For neural computing concurrency acceleration it is limited by the longest-latency
element in the pipeline. Pipelining can be conducted on layer and model levels.
Pipelining in neural computing needs to address data dependency and resource
allocation related challenges. [43]

During inference the data is used when available, but data dependency is a bottleneck
when using batch normalization techniques. Layer partitioning has been shown to
reduce the required amount of parameters and communication between processors
[43]. Figure 22 visualizes pipelined execution, where {1, ..., 4} are execution groups.

For efficient pipelining specialized hardware, such as systolic arrays, are used [50].
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Figure 22. Pipelined computation visualization.
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FX calculations are simpler, however both FX and FP representations are restricted
in precision and dynamic range. Restrictions manifest rounding and saturation errors,
which propagate through networks, and the effects on the networks are hard to analyze,
requiring experimentation [51]. Design of a concurrent system requires consideration
of instruction and data stream(s). A popular taxonomy for computation concurrency is
Flynn’s taxonomy [52].

3.2.4. Instruction and Data Streams

An instruction stream is an sequence of instructions performed by the machine and a
data stream is a sequence of data called by the instruction stream. A program is an
ordered set of instructions. [53]

Usage of multiple threads is called multithreading (MT). MT is a prominent way of
accelerating computing. In interleaved MT the tasks are coarse- or fine-grained, where
thread executions are based on cycle counts, cache misses and fairness. [43]

Figure 23 displays the idea of fine-grained parallel execution, where threads are used

for asynchronous tasks t = {1, ..., 8} processing.
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Figure 23. Multiple threads are used for accelerating computational tasks in fine-
grained parallelism.

The weaknesses of fine-grained parallelism appear when dealing with elements that
need to be saved to cache for long time spans, while coarse-grained tasks are good for
environments where large number of cache misses are an issue. [43]

Single instruction, multiple threads (SIMT) and multiple instructions, multiple
threads (MIMT) architectures are used for efficient neural computing. In neural
computing

e Single instruction, multiple threads (SIMT)

Single instruction, multiple threads (SIMT) is based on idea of thread warping,
where warps are collections of threads. Multiple entities of data are accesses
simultaneously and divided into smaller tasks [54]. Advantages of using the
SIMT model are thread individuality and flexibility of warping, which translate
to inference acceleration possibilities by fine-grained task scheduling.

Figure 24 illustrates differences between Single Instruction architecture
pipelines.
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Figure 24. Single instruction stream architectures.

e Multiple instructions, multiple threads (MIMT)

MIMT is an execution model used in parallel computing, where system utilizes
multithreading with multiprocessing. In multithreaded computing a set of
parallel threads are grouped into warps. Ideal warp execution happens without
conflicts. Different conflict cases are instruction and data level read misses, and
data write misses. If threads of a warp come to a data dependent branch, the
warp serially executes each branch till the paths are completed. [54]

The inference acceleration idea behind MIMT is based on fine-grained thread
warping. Instruction level warping for multiply-add is in Figure 25.
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Figure 25. Optimal instruction level parallelism in multiply-add.

Multiple instruction architectures offer a possibility for simplifying matrix
multiplication (MM) algorithms, but simplifying the algorithms is not straight-
forward process as systems have different bottlenecks and data dependencies.
[46]
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3.3. Delegation

CPU, GPU and DSP are exhibits of instruction set architecture (ISA) implementations.
An implementation is built on top of instructions. A system consisting of
multiple processors with different architectures is called a heterogeneous computer.
Heterogeneous computing is typical when reaching for an optimized computing
system, where computing is delegated to the most efficient platform. [50]

Data handling, memory operations and control flow operations are cornerstones of
ISA design, where parallelism is divided into three types:

o Task-level

Task-level parallelism is achieved when different threads are executed on
different or same data.

e Data-level

Data-level parallelism is achieved when each processor performs same task on
different pieces of distributed data. Location of memory access affects read
and write times and cause of increasing memory latency. This is one reason
why memories are grouped into private and shared memories. The smaller the
memory is in size, the faster the processing speed. [45]

e Instruction-level

Instruction-level parallelism is achieved when instructions are grouped and
executed in parallel without changing the end result. Instructions can only be
grouped together if there is no data dependency between instructions. [45]

CPUs commonly use SIMT architecture, but are optimized for serial operations.
CPUs have large cache sizes and complex control logic, but low processing unit
capability. Many computation pipelines map data initially to CPU accessible
memories, which account to low initialization durations.

The most common delegation platforms for smartphones are GPUs and digital signal
processors (DSPs). Less common mobile delegation platforms are field programmable
gate arrays (FPGAs). For delegation the system needs to decrease information
richness, as the information processing pipeline is dependent on used delegation
hardware and software.

3.3.1. Graphics Processing Units

GPUs have high memory access costs. It is therefore important that the processing
time is optimized against data transfers. Boosting performance of a GPU is done by
keeping memory access patterns local. [45]

GPUs used for neural acceleration excel either at training or inferencing. Biggest
problems with GPU delegation are enormous memory allocation times, which is the
critical factor in mobile GPU delegation. GPU architectures specialize for maximal
FP burst reading throughput, but are not good at handling interrupts and sparse data
formats,. The way of boosting GPU performance is to keep memory access patterns
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local and to minimize handling interrupts and sparsity of data. Generally data transfer
is the most common bottleneck when delegating on a GPU. [55]

3.3.2. Digital Signal Processors

Typical MIMT implementations are parallel DSPs used in digital image processing.
Generally main benefits are lower power consumption and better inference speed
compared to CPUs and GPUs. In our context DSPs employ FX inference pipeline.
Fundamentally DSPs are designed to perform some basic operation very quickly.
System should be designed to be sustainable and meet minimum requirement for
task processing speed as processing speed increases the power consumption. Power
consumption of algorithm is affected by the complexity of the algorithm. [56]

3.3.3. Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) provide high speedups and data parallelism
compared to regular processors. FPGAs are reprogrammable special-purpose
hardware. Relevant design techniques for accelerating MM algorithms on FPGAs are
systolic arrays. [57]

3.3.4. Systolic Arrays

Systolic systems consist of cells, which are processing- (PUs) and memory units.
Systolic design is bound on a particular computational task. The systolic array is a
good design choice memory bandwidth-, computational output- and modularity-wise
as the system is simple and regular by design. [54]

The idea of a systolic system is to reduce latency by reducing the communication
time and by having a pipeline of operations, enabling processing of multitudes of
operations compared to the original system. Figure 26 represents a systolic system,
where the processing units form a chain of operations.

Systolic system

PU PU PU PU PU PU

Memory

Figure 26. A systolic system is a set of processing units working together for solving
a task.

Producing special systolic hardware comes with a price: for a large input size the
cost and performance increase proportionally, but due to usage of simple elements the
design will remain regular: it needs to be tailored to the problem. [54]
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3.3.5. Tensor Processing Units

For efficient tensor processing unit (TPU) design, a matrix multiplier unit (MXU)
is one of the most specialized designs. TPU is a specialized architecture for NN
inference, where MXU consists of FX-8 multiply-and-add operations. MXU is a
matrix processor, which is capable of processing hundreds of thousands of matrix
operations in a single clock cycle. [58] The MXU provides vast number of multiplies
per second and usage of variables without need for intermediate storage. The weight
pipeline forms a partial sum pipeline. A MXU is visualized in Figure 27, where cells
form a systolic array for multiplications.
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Figure 27. MXU flow in a TPU.

A systolic array is used for allowing the data to flow into the matrix multiplication
without storing variables to registers. While TPUs offer accelerated performance, they
are single purpose application-specific integrated circuit (ASIC) designs. [59]

3.4. Summary

Computation can be reduced by mapping the variables into smaller number formats.
The representations are important factors for enabling a trade-off for precision and
inference acceleration of a neural computation system. Pipelining and parallelism are
key elements which have led to many coherent concurrent hardware implementation
designs. The general convolution algorithm can be simplified by replacing it with faster
convolution methods. Neural inference can be accelerated by dividing computational
tasks into fine-grained threads, which are coordinated between processing cores.
Computation throughput can be accelerated by using special hardware with narrow
implementation pipelines, but bottlenecks for each hardware vary.
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4. FACE DETECTION IMPLEMENTATION

The Common face detection pipeline consists of three steps. The first step is filling the
input, the second is inference and the third step is output decoding. The objective on
the last step is turning output to format where it becomes useful information for the
end user. In our implementation RetinaFace project was chosen for the baseline. The
reasons being clear technical documentation and the results on public benchmarks. [4]

4.1. Input Fill

Initially the input image is transformed to the needed format and moved to memory
for the inference engine.In TensorFlow Lite the input tensor expects the model format
to be formatted in [B, H, W, C'] format. In Figure 28 the input image is transformed
from planar to interleaved image representation.
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Figure 28. Converting image from continuous to interleaved format.

4.2. RetinaFace Computing

Before the model inference, the input dimensions are allocated, and the model is
initialized. The inference engine calculates weights for the input image. The forward
pass is used for producing outputs. Outputs need to be decoded after extraction.

The most common decoding approach is using bounding boxes and classification
scores. Classification scores are used as the first discarding value. For bounding box
representation, in a single shot detector scheme, we need to connect anchor boxes to
the matching bounding boxes. Bounding box voting is used to discard non-interesting
predictions. Bounding box voting consists of intersect over union (IoU) [60], and
non-maximum suppression (NMS) [61] techniques. Single shot detection phases are
visualized in Figure 29.
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Figure 29. The Single shot detector pipeline.

4.3. Model Outputs

Outputs of the model are prediction scores, and bounding box deltas. Prediction
scores are extracted from softmax layers, and bounding box deltas are extracted from
convolutional layers. The outputs are designed to be extracted for each anchor per the
densification parameter. Densification means the number of bounding box locations
for each anchor position.

4.3.1. Prediction Scores

Output level always contains an output layer for extracted bounding boxes and
classification scores. Prediction scores need to be mapped according to the
transformations applied to the bounding box outputs (bounding box deltas).

4.3.2. Bounding Boxes

We want to extract minimum bounding boxes for detected faces. Bounding boxes
adopt scale-invariant transformations for the centers, and log-scale transformation for
the height and width. For determining a prediction position, the prediction center
position, and the bounding box delta and anchor are used, which are visualized in
Figure 30, where offsets are the extracted delta variables of a bounding box layer.

Y L

Wprediction

A

hottset

<—. hanchor hprediction
Woffset

Wanchor

Figure 30. The bounding box decoding phase.

A minimum bounding box is visualized in Figure 31. The detection is defined to
tightly contain the forehead, chin and cheek. If the face is occluded, parameters are
used for placing the bounding box on the estimated location of the face. [3]
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Figure 31. An example of minimized bounding box.

4.3.3. Anchors

After we have decoded the bounding box deltas the generation of anchors commences.
An anchor is an default position for a bounding box. The face detector implementation
contains three levels. The anchors are calculated based on the levels and each level
defines a stride length. Strides are fixed constants with lengths of 8, 16 and 32 pixels.

4.4. Predictions

We have a number of predictions by linking the bounding box predictions with
matching scores. By reshaping the tensor data into shape where we can easily align
corresponding bounding boxes with prediction scores. An example of predictions with
high detection scores are visualized in Figure 32, which consists of example images
from [3]. A voting scheme is needed for removing predictions representing the same
faces.

Figure 32. Examples of predictions with high confidence scores.
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The previous processes generate a large number of detections. The detector needs
to determine acceptable discarding criteria for predictions. Bounding box voting is a
set of techniques, where the aim is to limit proposed detections per object to the most
matching detection. Intersect over union (IoU) and non-maximum suppression (NMS)
are used for voting of predictions.

4.4.1. Intersect over Union

In intersect over union (IoU) the area of each bounding box is measured and the
intersection between each targeted bounding box is calculated. Figure 32 shows
examples of detections without applying voting techniques. An example visualization
of IoU is in Figure 33.

Inter-
section
Intersect
over =
Union
Union

Figure 33. Intersect over Union visualization.

IoU is a popular evaluation metric used in face detection for removing unwanted
candidate predictions. For calculating IoU a cost function is used, common ones being
Manhattan and Euclidean distances. The formulae of IoU is in Equation (19), where a
and b are the areas of predicted bounding boxes, ¢ is the intersection area and w is the
union area.

land| i
IoU = aUb " u (19)

Suggested alternative for IoU is the generalized IoU (GIoU). If the voted predictions
do not overlap, the value of IoU is zero. GIoU is defined in Equation (20), where c is
the smallest convex area that encloses both predictions. The smaller c value, the better
prediction score is. [60]

l¢/(aUD)]

]

GIloU = IoU — (20)
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4.4.2. Non-Maximum Suppression

NMS is a post-processing technique where a set of bounding boxes are transformed
into a single detection. The most important parameter of the voting scheme is the
threshold which is used for discarding boxes with large IoU score.

In our implementation we use a greedy-NMS algoritm. Greediness means the
system assumes the best scoring bounding box covers the object and drops other
bounding boxes based on the suppression threshold.

When each bounding box below threshold value is removed, the second highest
scoring window is selected and the procedure is repeated until all windows have been
iterated through. Combining the IoU and NMS gives Algorithm 1.

Algorithm 1. Bounding Box voting scheme

1 In voting p stands for prediction, ¢ stands for target and ¢ stands for intersect.
Before this algorithm we have sorted predictions from ascending by
prediction.

2 for p preds do

3

4 threshold = 0,5

5 Parea = Pomae = Pomin + 1) % Pyas = Pyin + 1)
6

7 for t to preds do

8

9 Qi = MAx (P, — ey, + 1)

10 Gymin = maz(py, . —t, . +1)

1 i2an = MAT Doy — tope, T 1)

12 Tymaz = MAT(Pye = typae +1)

13

14 Gayen = MAx(ly,, .. — g, + 1) xmax(iy,,. —iy,.. +1)
15 tarea = (twmaz - thmz‘n + 1) * (ty’maz - tymin + 1)
16 10U =g,/ (Parea + tarea = area)

17

18 if 2ou > threshold then

19 | erase t from preds

20 else

21 ‘ continue

22 end
23 end
24 end

After processing the detection proposals, the detector outputs the selected outcome.
In optimal cases the detection contains one detection per object in an input image. In
Figure 34 we have removed the detections representing the same object. Notice the
difference to Figure 32. Images taken from [3].



Figure 34. Examples of voted predictions.

4.5. Implementation Toolkit

The detector is implemented using TensorFlow (TF) C++ API and TensorFlow Lite
(TFLite). [59]

4.5.1. TensorFlow

TF is a framework for neural network computing. It supports both model training and
inference. The design of a neural network is done by using dataflow graphs. Important
aspects, why TF was chosen for implementation, are the on-device acceleration
capabilities. Typically custom code is required for delegation, however TF contains a
delegate API. Usage of APIs minimizes the programming work required for delegating
a model on specialized platforms. [62]

4.5.2. TensorFlow Lite

TFLite is an optimization toolkit for transforming the TF models into TFLite models,
which is a compressed, smaller, faster, and efficient format. The toolkit has two main
components: an interpreter and a converter. TFLite has optimized versions for most
operators, but some optimizations are hardware-specific. [24]

For inference we extracted FP-32 and FX-8 models. For accuracy tests we used
FP-32, FP-16 and FX-8 models. Our final model has estimated 423420 parameters.
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Operations and MACs are related to input sizes. The estimated number of arithmetic
operations required for inference are in Table 1.

Table 1. Estimated number of arithmetic operations

Input size Number of arithmetic operations
QVGA [320 240] 4.0 *10°
VGA [640 480] 1.5 *10°
FHD [1920 1080] 1.0 * 10"
DCI 4K [4096 2160] 4.3 * 100
4.5.3. C++

In the implementation the project was ported to a C++ environment, main reasons
being ability for compilation and better portability. Compiled languages offer the
ability for building executables from source files which, in terms of speed, are on a
different level compared to interpreted languages. [63]

Portability in C++ means that we can build source files with one device, move the
source files to another device, and the device has minimal asset requirement outside
of the project. This becomes crucial when developing applications for hardware
with limited computational capabilities, such as embedded and mobile devices. The
compilation process is visualized in Figure 35. Preprocessor processes the macros and
defined files are expanded based on declarations. The compilation process assembles
the code into machine-readable formats. In the linking process, a library or an
executable is produced. [63]

Pre-
processor

Y

Y

Compiler Assembler »  Linker

Figure 35. Compilation Process in C++.

4.5.4. Calibration

Before the evaluation phase, calibration was conducted. In this process, the model was
prepared for folding by dividing operations into separate nodes. Calibration consists
of two phases: calibration and model conversion.

In calibration we finalize the graph and insert fake quantization nodes. Fake
quantization nodes are containers for the quantization parameters. For calibration, a
small dataset was gathered. The model was finalized before quantization, meaning that
the network weights are not modified. Fake quantization nodes are used for mapping
quantization ranges of quantized layers. Activation ranges are saved to checkpoint
files. For conversion, we used the TensorFlow Lite optimization toolkit.
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S. FACE DETECTION EXPERIMENTS

In inference benchmarking there are two fundamental issues of interest. Average
runtime and the initialization time. The tests concern model inference time, model
size, accuracy and power consumption.

The model inference test includes two parts: optimal threading and resolution.
Testing each threading option gives the optimal threading for each hardware: CPU,
GPU and DSP. Tests have been carried out for each important resolution. They are

e Quarter Video Graphics Array (QVGA) [320 240],
e Video Graphics Array (VGA) [640 480],

e Full High-Definition (FHD) [1920 1080], and

e Digital Cinema Initiatives (DCI 4K) [4096 2160].

For model accuracy tests we need to select meaningful datasets. The most important
attributes are consistency, scalability, and the level of difficulty. The dataset needs to
contain images with multiple levels of detection challenges in various situations, so
the detector required balanced data for proper benchmark scoring. Precision-recall
data was used for accuracy evaluation.

Model weights and parameters of a network are saved for inference. We were
interested in FP-32, FP-16 and FX-8 models, because the different hardware options
support different arithmetics. During quantization information is lost and there are no
distinct guidelines for model capacity and the breaking point of the model. Delegates
are helper functions for accelerating models on certain platforms.

Hardware development kit 8250 (HDK8250) was used for measurements. Important
characteristics for tests are computation arithmetic, delegation and hardware. Tests
were conducted on:

e CPU (Qualcomm Kryo 585 CPU)

Supports both FP and FX arithmetics. CPU calculations are operated on an
OpenCL optimized solution. Qualcomm Kryo 585 consists of single 2.84GHz
(Cortex A77), three 2.4GHz (Cortex A77) and four 1.8GHz (Cortex A55) cores.

e GPU (Qualcomm Adreno 650 GPU)

Requires a FP model for inference. For GPU acceleration we use TFLite GPU
delegate, which supports OpenGL.

e Mobile DSP (Qualcomm Hexagon 698 DSP)

Requires a FX model. NNAPI and Hexagon delegates are used for accelerating
on DSP. NNAPI is a general-purpose accelerator and Hexagon delegate is
specific for Qualcomm devices. The DSP has a theoretical output of 15 Tera
operations per second (TOPS). However, the actual processing time for an image
is more meaningful metric, representing the time the model needs for inference.

The threading benchmark provides minimum-, average- and maximum inference
times of the run as standard deviation.
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5.1. Optimal Threading

Many TF operations support multi-threaded kernels. Like inference, threading is
hardware specific. We conducted the tests for optimal number of threads on CPU
inference. For GPU and DSP the optimal number of threads is 1 on all tests. Optimal
thread count was found by testing at each resolution. A half-second minimum warmup
time was used. The minimum number of test runs was 50. The average value of
set of runs is the measurement value. Cooldown of five seconds was used between
measurements. Figure 36 shows the absolute FX and FP inference durations at each
test resolution.

SD865 CPU (Kryo 585) threaded inference — Non-Quantized ak
Non-Quantized FHD
Non-Quantized QVGA
Non-Quantized VGA
2000 4 —— Quantized 4K

—— Quantized FHD
Quantized QVGA

Quantized VGA
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| \\P/—?
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Thread count

Inference time (ms) per run

Figure 36. RetinaFace threaded inference on Qualcomm Kryo 585

For used models the larger the input image is, the more threads can be effectively
utilized. However increasing the thread count increaces the amount of energy used, so
there is trade-off between number of threads used and energy efficiency.

Figure 37 shows QVGA and VGA inference durations when the number of threads
goes from one to eight. The fastest inference is achieved by using three threads on
each resolution.
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Figure 37. RetinaFace QVGA and VGA threaded inference on Qualcomm Kryo 585
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In ARM big.LITTLE architecture cores are divided into two clusters: big and
LITTLE. Big cores are designed for maximum throughput and LITTLE cores for
maximum efficiency. LITTLE cores are utilized for minor tasks as the static leakage
is smaller compared to the performance-oriented CPU design. To run task on either
cluster independently, or pairing cores from clusters or with all cores visible for the
task. In our tests we will use only the big cluster for maximizing stability. With larger
input sizes more threads can be effectively used. A — % of measurements is given
by Equation (21), where x is the observed inference duration and z,. is the reference
inference duration.

|z — x|

A—%= « 100% 1)

Ly

The measurements were conducted on three different thread counts:

e Single thread inference,

e Balanced thread inference and

The thread with highest delta in inference duration balances efficiency and
energy usage. We observed the most energy-efficient and fastest inference cases
compared to a single thread inference. The thread count was decided based on
Equation (22), where x is the inference duration, x,, is the inference duration of
threading, n is the number of threads and ¢; is the balanced consumption test
case. The plots are displayed in Appendix 2.

¢ = max 1 = @l (22)
n

e Maximum throughput threading.

Maximum throughput threading was the thread count where the smallest
inference duration was measured.

Threading acceleration on FP-32 model is observed in Tables 2 and 3. The FP-
32 model was capable of acceleration on tested resolutions. In two-threaded case, the
QVGA was slightly worse at accelerating, compared to other resolutions. In maximum
throughput case, the QVGA test was the best case at acceleration.

Table 2. Balanced threading FP-32 inference acceleration

Input Size Candidate | Target- Single- A—%
threading thread thread
inference inference
QVGA [320 240] 2 11.1 ms 15.7 ms 29.3 %
VGA [640 480] 2 45.2 ms 68.0 ms 33.5 %
FHD [1920 1080] 2 337.8 ms 510.2 ms 33.8 %
DCI 4K [4096 2160] | 2 1463.6 ms | 2212.6 ms | 33.9 %




Table 3. Maximum throughput threading FP-32 inference acceleration

Input Size Maximum | Target- Single- A—%
throughput | thread thread
threading inference inference
QVGA [320 240] 3 8.2 ms 15.7 ms 47.8 %
VGA [640 480] 3 36.6 ms 68.0 ms 46.2 %
FHD [1920 1080] 3 273.2 ms 510.2 ms 46.5 %
DCI 4K [4096 2160] | 3 1201.7ms | 2212.6 ms | 45.7 %

Threading acceleration on FX-8 model is observed in Tables 4 and 5.
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FX

acceleration was relatively better in maximum throughput 4K tests, while slightly
worse in other tests. However, FX inference is, at least twice, faster in all test cases.

Table 4. Balanced threading FX-8 inference acceleration

Input Size Candidate | Target- Single- A—%
threading thread thread
inference inference
QVGA [320 240] 2 4.6 ms 6.0 ms 233 %
VGA [640 480] 2 16.7 ms 24.1 ms 30.7 %
FHD [1920 1080] 2 124.6 ms 181.3 ms 313 %
DCI 4K [4096 2160] | 2 553.3 ms 802.2 ms 31.0 %

Table 5. Maximum throughput threading FX-8 inference acceleration

Input Size Maximum | Target- Single- A—%
throughput | thread thread
threading inference inference
QVGA [320 240] 3 3.6 ms 6.0 ms 40.0 %
VGA [640 480] 3 13.6 ms 24.1 ms 43.6 %
FHD [1920 1080] 3 100.4 ms 181.3 ms 44.6 %
DCI 4K [4096 2160] | 4 410.2 ms 802.2 ms 48.9 %

5.2. Accuracy Benchmarking

Loss functions expose what kind of errors are minimized in the prediction. A common
metric is precision-recall (PR) that can be presented in easy to understand graphical
form. Precision and recall are given by Equations (23) and (24).

. TP .
r = —
precision TP—|— FP
TP
= ——" 24
T = TP L FN 24)

Some other metrics are receiver operating characteristic (ROC), area under curve
(AUC) and area under PR curve (AUCRP). PR curves are used when system is dealing
with imbalanced datasets [64]. Each of these metrics has unique characteristics. PR
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and ROC curves are used for performance measurements in classification problems.
AUC describes model capability between classes. AUCRP is a general performance
measurement for describing a complete PR curve [65]. A robust model has AUC near
1, while a model with AUC 0.5 has no capability for class separation.

Most evaluation metrics require ground truth labels. Work required for labeling a
large dataset is enormous, so it is common to use public datasets for testing [66]. In
Figure 38 WIDER Face dataset is used for benchmarking prediction capabilities of
the selected models. Measurement goals are determination of quantization accuracy,
resolution prediction capability and relevance.

Relevance is tested by comparing RetinaFace implementation against other SOTA
face detector benchmarking scores. The tests measure FP-32 performance. RFB and
slim [67] are lightweight single shot detection algorithms released after RetinaFace
[4]. BlazeFace was tested with input sizes [256,256,3] and [128,128,3] [68].
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Figure 38. WIDER Face easy (left), medium (middle) and hard (right) subset
precision-recall comparisons between models.

We tested the model capability resolution with following model types: FX-8, FP-
16 and FP-32. The FX-8 model is post-training quantized. The resolution tests were
benchmarked using WIDER Face dataset at QVGA, VGA and [1600 2150] formats.
Benchmark parameters are listed in Table 6.

Table 6. Benchmark parameters used in resolution tests

Target size Smaller dimension of image is resized to this value. For
[QVGA, VGA, [1600 2150] the value is [240, 480 and
1600].

Maximum size Defines the clipping range for larger image dimension.

Small value results in changing of aspect ratio. Large value
is set for keeping the aspect ratio.

Multi-scale Only a single shot detection for each image is carried out.
detection
Detection threshold | Is set to 0.02. By setting low detection threshold the
detector reviews many candidate matches. Low value can
result in large number of false positive detections.
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FP-32 to FP-16 reduced the accuracy barely noticeably as documented in Appendix
3. However, FX-8 quantization has significant impacts on the prediction result. The
accuracy drops are documented in Figure 39.
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Figure 39. RetinaFace FX-8 quantization precision and recall on easy (left), medium
(middle) and hard (right) subsets.

Currently trending problems with face detection deal with occlusion due to increased
mask usage. This motivated a two part occlusion test: In the first test a static input size
face detector is tested on VGA images, and in the second test a dynamic detector is
used. Static and dynamic refer to the input image that is fed to the detector. In the
face detector implementation largest stride has length of 32 pixels, so the input image
dimension needs to fit into the stride in dynamic testing.

In these experiments the classifications were divided into four types:

e True positive (TP),
A prediction is a true positive (TP) when prediction agrees, according to defined
threshold value, with the ground truth value.

e False positive (FP),
False positive (FP), or type 1 error (FP), is a prediction when there is no
corresponding ground truth value present.

e False negative (FN), and
False negative (FN), or type 2 error, occurs when condition is not detected even
though the condition is presented in the ground truth value.

e True negative (TN).

A true negative (TN) result is a result where there is no detection and there is no
reason for detection.

These variables are represented in a confusion matrix. Confusion matrix summarizes
the classification performance according to the test data. In a two-class problem it is
2-dimensional.

A number of evaluation metrics can be used for confusion matrices for obtaining
information about prediction capability and plausible pitfalls of a prediction. Metrics
for accuracy and sensitivity are defined in Equations (25) and (26).
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B TP+TN 25)
Y = TP Y TN + FP+ FN
TP
e )
sensitivity TP I FN (26)

The total size of the dataset was 108 images with one face per image. Database
image category explanations are in Table 7.

Table 7. Benchmark categories in resolution tests

Face occlusion | light, medium and heavy occlusion. light occlusion case is
a face with mask. Medium case is easy case with a hat or
long frontal hair. Hard occlusion is a medium case face with
mirror glasses or a mask that casts shadow over face.

Mask type Mask types are divided into categories of common,
uncommon and other. Common masks are white, light
blue or black masks. Uncommon category consists of
masks with patterns. Other category is invented methods
for occluding face, including old diving gear, blanket, shoe
and fruits.

Image Size By image size we divide dataset into tiny (=<320), small
(320<S=<480) and normal (>480) images. Category is
defined by bigger image dimension in dynamic dataset face
detection evaluation.

Face Size Face size is defined as head, body and small. In head
category models head is covering most of the image. Selfie
or close-up still shot would be most accurate example. In
body, the model would have at least chest on the picture. In
tiny only a small part of the image consists of the human
model.

Ambience Ambience is controlled, normal or heavy. Example of
controlled scene is photographic session background setup
for faces or white background. Normal ambience is
in daylight and common background such as restaurant,
airport or pavement. Heavy ambience indicates the alpha
of image is clearly affected by a directed point light source
or ambient effect. Ambient effects are scenes with low-
lightning setup. We define images by categories next.

Pose Pose of images is always typical according to WIDER Face
pose setting.

bounding box | We adapt face bounding box representation rules from
representation | WIDER Face evaluation scheme, where face is defined to
tightly contain forehead and chin. [3]

Dataset is numerically categorized in Table 8. The data contains multiple difficulty
levels, various scenarios, and occlusion types. The dataset is created for having a
reliable, but compact, validation set.
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Table 8. Occlusion dataset images categorized

Face Occlusion 54 (Light) 40 (Medium) 14 (Heavy)
Mask Type 67 (Common) 28 (Uncommon) | 13 (Other)
Image Size 88 (Tiny) 6 (Small) 14 (Normal)
Face Size 66 (Head) 34 (Body) 8 (Small)
Ambience 44 (Controlled) | 58 (Normal) 6 (Heavy)

Dynamic FX-8 model test result is in Figure 40, where p’ and n’ are the predicted
values, and p and n are the ground-truth values. In dynamic detection occlusion test
the most important notations are sensitivity and false negative rate (FNR). Sensitivity
is 88.89% for our predictions and FNR is 11.11%. However, the input image and face
sizes have significant impacts on the prediction robustness.

!

P n’
P 06 12 108
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Figure 40. Occlusion test confusion matrix with dynamic input size.

Static FX-8 VGA mode test result is in Figure 41. Sensitivity of static occlusion
dataset run is 96.26% and FNR only 3.74%, while the precision is 95.37%. After
resizing the input size to VGA, the sensitivity and FNR of detections are better than
detection scores at original image sizes. However, due to the change of input size, a
new problem has emerged. Because of the restrictions of the NMS, some detections
are only coarsely at the ground-truth locations, resulting in type 1 errors.

p’ n’
Pl 103 4 107
n 5 0 5
108 4

Figure 41. Occlusion test confusion matrix with static input size.
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5.3. Detection Ranges

When we make a prediction on an image, the network indicates face representations.
A relevant question is what are the smallest and largest detectable faces, and how
well the detector performs in non-ideal situations, where the face is noisy, pixelated or
deformed. The fundamental variables are absolute and relative sizes of the face and
the image, which are presented in Figure 42.

Figure 42. The variables in the face tests.

The next phase in testing was changing the image-to-face ratio. The image-to-face
ratio was scaled stepwise by factor of 0.5 until a detection failed. We are also interested
on the robustness of the detector in case of differences between the FP-32 and the FX-
8 model predictions at different scales. Figure 43 is an example of a test suite for
determining minimum face scale detection range.
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Figure 43. An example of minimum prediction test.

The smallest detection was 25-by-30 pixels with FP-32 model. However, with lower
quality input data the results deteriorated.

For better representation of detection capability the worlds largest selfie was tested.
The prediction threshold was set to 0.1. Red indicates confident detection and the more
yellow the bounding box becomes, the less confident the prediction is. The detections
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were predicted on the image on original input size, which is 2048-by-1150 pixels. The
FP-32 model detections are in Figure 44. The total number of faces in the image was
1151. The total number of detections is 737, but there are false positives among the
predictions.

Figure 44. FP-32 model detections on the World’s Largest Selfie powered by Lumia
730.

With the FX-8 model, the face detector lost small sized faces. Quantized detections
are observed in Figure 45. The total number of detections was 456.

Figure 45. FX-8 model detections on the World’s Largest Selfie powered by Lumia
730.
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Measurements consisted of 250 inferences, for the tests TFLite Android benchmarking
tool was used. In every measurement maximum throughput threading was used. CPU

inference measurements are in Table 9.

Table 9. CPU inference benchmarking

Input Size FX-8 FP-32 A-%

QVGA [320 240] 3.5 ms 8.0 ms 56.3 %
VGA [640 480] 13.4 ms 36.7 ms 63.5 %
FHD [1920 1080] 99.1 ms 270.9 ms 63.4 %
DCI 4K [4096 2160] | 395.7 ms 1051.1 ms 62.4 %

GPU inference benchmark is visualized in Table 10.

In TFLite inference

benchmarking FP-16 inference is tested by using all GPU FP cores. Typically mid-

range smartphone GPUs do not gain acceleration by usage of all cores.

Table 10. GPU inference benchmarking

Input Size FP-16 FP-32 A-%
QVGA [320 240] 11.2 ms 12.1 ms 7.4 %
VGA [640 480] 18.1 ms 28.1 ms 35.6 %
FHD [1920 1080] 79.8 ms 122.1 ms 34.6 %
DCI 4K [4096 2160] | 244.1 ms 407.1 ms 40.0 %

For DSPs there is an option to use FX-8 model on full and fallback quantization. In
fallback mode unsupported operations are executed by the CPU. Results are observed

in Table 11.
Table 11. DSP inference benchmarking
Input Size Full FX-8 Fallback FX-8 A-%
QVGA [320 240] 3.4 ms 5.6 ms 393 %
VGA [640 480] 16.5 ms 28.6 ms 42.3 %
FHD [1920 1080] 65.0 ms 136.8 ms 52.5 %
DCT 4K [4096 2160] | 314.7 ms 569.4 ms 44.7 %

The initialization times are documented in Table 12. The initialization time for
the model starts when the system begins to load the input image and ends when the
processing of inference begins. For initialization times averages at all resolutions are
measured. CPU and DSP measurements are on FX-8 models and GPU measurements
on FP models. Initialization times are the means of 10 runs.

Table 12. Initialization times

Input Size CPU FX-8 GPU FP-32 | GPUFP-16 | DSP FX-8
QVGA [320 240] 1.1 ms 661.9 ms 826.0 ms 107.5 ms
VGA [640 480] 0.4 ms 681.2 ms 826.0 ms 103.7 ms
FHD [1920 1080] 0.5 ms 727.4 ms 857.5 ms 203.1 ms
DCI 4K [4096 2160] | 0.4 ms 924.2 ms 940.0 ms 481.2 ms

Additional benchmarks for mid-range chipsets are in Appendix 4.
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6. POWER DISSIPATION ANALYSIS

In this chapter energy efficiency of the face detection algorithm on CPU, GPU, and
DSP is analyzed. The test cases determine energy usage to find a trade-off against the
inference and performance. Factors inducing noise and bias to the measurements are
presented in Appendix 5.

6.1. Measurement Environment Setup

Chipset SnapDragon 865 (SD865) was used for the measurements and big. LITTLE
architecture was optimized for stability. FX-8 models were tested with the CPU and
DSP, and FP-32 and FP-16 models were tested with the GPU.

The energy dissipation is calculated as means over a period of time. In practice,
minute-long inference sessions were run for gathering the data points at §98.08 Hz.
Power consumptions are measured using a National Instruments USB-4065 device
and are performed using TFLite Android benchmarking application. For visualization
purposes, a Gaussian filter and smoothing have been applied to the data. The raw data
visualization is in Appendix 6.

6.1.1. CPU Measurement Visualization

CPU energy dissipation was measured for single-threaded (T1), balanced per-thread
(TB) and maximized throughput threading (TT) cases based on Tables 4 and 5. The
fastest threading consumes significantly more energy per duration compared to other
measurements, but the duration is shorter. The measurements are shown in Figure 46.
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Figure 46. CPU FX-8 power dissipation visualization.
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6.1.2. GPU and DSP Delegation Visualization

Figure 47 contains GPU tests for the FP-32 and FP-16 models, and DSP test for the
FX-8 model. The initialization part is the peak of energy consumption, which limits
the number of inferences we were able to run for each test benchmark.
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Figure 47. GPU FP-32 and FP-16, and DSP FX-8 power dissipation visualization.

6.2. Quantitative Power Dissipation Analysis

Evaluation of measurements visualized in Figures 46 and 47 takes place in this section.
The goals of the analysis are the power consumption of battery use case and per
inference energy dissipation. The measurements are for model inferences only.

6.2.1. Initial Setup for Measurements

Per-inference duration is the total time divided by the count of inferences. Setup for
all variables needed for measurements are in Appendix 7. (Recall Tables 10 and 11.)
In Table 13 the actual per inference durations are displayed. The initialization latency
impacted the number of inference runs in GPU and DSP tests.

Table 13. Actual Per-inference duration

Run mode QVGA VGA FHD 4K

CPU FX-8 T1 6.1 ms 23.9 ms 184.5 ms 833.5 ms
CPU FX-8 TB 4.3 ms 16.8 ms 130.3 ms 612.5 ms
CPUFX-8TT 3.8 ms 14.0 ms 102.7 ms 445.7 ms
GPU FP-32 13.9 ms 30.1 ms 143.5 ms 494.6 ms
GPU FP-16 11.5 ms 19.4 ms 98.6 ms 314.3 ms
DSP FX-8 12.5 ms 19.8 ms 81.0 ms 322.5 ms

6.2.2. Energy Consumption Tests

Wattage of the system is calculated in Table 14.
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Table 14. Per-inference energy consumption

Run mode QVGA VGA FHD 4K

CPU FX-8T1 1.8 W 1.9W 23 W 23 W
CPU FX-8 TB 29W 31w 33W 31w
CPU FX-8 TT 39W 41W 4.0W 41W
GPU-32 1.2 W 1.6 W 22W 2.6 W
GPU-16 1.0 W 1.6 W 1.9W 24W
DSP FX-8 0.5W 0.8 W 1.3W 1.5W

Usually, 40 or more frames per second (FPS), or less than 25 ms per inference, is
the requirement for a real-time operation. However, the device has to do other tasks in
parallel, and also the dissipation needs to be taken into account.

In most applications, we don’t need the maximum rate inference. Detections can be
made in the beginning and then the face can be tracked. Many tracking algorithms are
cheaper to calculate compared to real-time detection. This saves resources and limits
the representation space.

Energy-inference trade-off was concluded in a real-time detection case and a
theoretical calculation on battery consumption in-device. Most of the time energy
consumption in still-image detection is not as vital as in real-time video detection.

6.2.3. Estimated Power Consumption on Smartphones

Typical lithium-ion battery provides 2.8-4.2 V. Temperature, age, optimization
techniques, and discharge capacity affect the voltage. 12 V' direct current (DC) was
converted to a nominal charge of 3.7 V' DC. It is preferred to draw as little current as
possible from the battery to maximize its capacity. The results are in Table 15.

Table 15. Estimated Electrical Current on 3.7 V DC

Run mode QVGA VGA FHD 4K

CPU FX-8 T1 0.4836 A 0.5234 A 0.6142 A 0.6214 A
CPU FX-8 TB 0.7748 A 0.8309 A 0.8821 A 0.8274 A
CPUFX-8 TT 1.042 A 1.1017 A 1.079 A 1.1079 A
GPU-32 0.3133 A 0.4301 A 0.5863 A 0.7008 A
GPU-16 0.2805 A 0.4294 A 0.5235 A 0.6418 A
DSP FX-8 0.1249 A 0.2053 A 0.3490 A 0.4164 A

Per-inference energy consumption is calculated from the mean consumption
measurements, voltage and per-inference times. The outcome is in Table 16.

Table 16. Estimated Power Dissipation per Inference
Run mode QVGA VGA FHD 4K
CPUFX-8T1 | 109 m] 46.3 mJ 419.3 mJ 1916.4 m]
CPUFX-8TB | 123 mJ 51.6 mJ 4253 m] 1875.1 mJ
CPUFX-8TT | 147 m] 57.1m] 410.0 mJ 1827.0 mJ
GPU-32 16.1 mJ 47.9 mJ 311.3 mJ 1282.5m]
GPU-16 11.9m] 30.8 mJ 191.0 mJ 746.4 mJ
DSP FX-8 5.8 mJ 15.0 mJ 104.6 mJ 496.9 mJ
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7. DISCUSSION

In this thesis, a functional face detector was ported to CPU, GPU, and DSP. The
evaluated model was optimized to the ARM platform. The implementation was not
thoroughly optimized and the results in this thesis represent work in progress.

7.1. Initialization Pipelining

Initialization optimization requires knowledge of programming languages that are
used for shaders and kernel computation on runtime. Typically the open computing
language (OpenCL) and open graphics language (OpenGL) libraries are supported by
most smartphones, OpenGL being responsible for moving shaders to binary format
and OpenCL for creating kernels.

Initialization optimization is context-dependent. We need to have a clear view for
figuring an optimal way as the requirements vary for still-image initialization and video
tracking. In video tracking the optimal case could be to not detect until other processes
have finished, resulting in minimal latency on the system. In the still-image case, the
best approach is likely to have high priority on the inference so the user can observe
detection as soon as possible.

Initialization times on DSP and GPU can be substantially lowered if input-output
memory management unit (IOMMU) memory allocation can be used for mapping
data straight to DSP or GPU memory space. This way additional initialization is
not required as large regions of memory can be allocated to devices without massive
overheads in buffer copying. Another possibility would be mapping data to shared
memory, but this is not a widely used method.

7.2. About Evaluation

Base metrics used in the evaluation phase are mean and standard deviation on a set
of inferences. The calculated mean is most often relatively close to the minimum
inference value in inference benchmarks, so the maximum values are outliers, which
increases mean inference duration substantially. It would be more accurate to use the
minimum time for inference. This way we can evaluate the system based on hardware
capability and based on the current experience the minimum values between runs are
reduced in variance compared to mean values statistics.

7.3. New Detection Technologies

The phase in which new technologies and techniques emerge in artificial intelligence
is phenomenal. New detectors are being developed and rapidly published around the
globe. It is already observable that this implementation is not the fastest and most
reliable detector in lightweight detection in terms of some of the benchmarks but the
results are overall in a good balance for a detector, especially for VGA images.
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8. CONCLUSION

The aim of this thesis was to train, develop, and test a state-of-the-art face detection
algorithm and to create a balanced version in terms of latency, energy efficiency, and
accuracy. Optimal inference-accuracy trade-off was achieved by using a MobileNet-
based single shot face detector. The original project was developed and trained in the
MXNet [69] framework. Later the network was converted to TensorFlow framework
and deployed using the TensorFlow Lite toolkit. Compactibility of a network has
become important part of design on embedded and mobile platforms, especially for
applications requiring real-time tracking.

The most coherent inference acceleration method was fixed-point quantization.
Inference was further accelerated by fine-grained multithreading. Multithreading
accelerated the inference, but only on a couple of threads. Based on the evaluation,
latency improvements added to energy efficiency and the faster the inference duration,
the smaller the energy cost. An important aspect of energy efficiency improvements
was model delegation. Delegation to DSPs and GPUs minimizes energy consumption
compared to CPUs, but initialization durations were challenging. Best energy
efficiency was achieved by DSP delegation. Input size affects latency, inference
duration and initialization durations. With tested input sizes the computation cost grew
quadratically, so minimization of the input size required for a precise detection was
important.

Floating point model conversion to a smaller bit-depth provided minimal losses in
accuracy. Fixed-point quantization was conducted post-training and provided lossy,
but capable results after quantization to 8-bit representation. Precision and recall of
trained models were tested using the Wider Face dataset. Testing included multiple
image sizes and all results displayed prominent results, but the smaller the image size,
the detections deteriorated. Trained model capability with VGA input size performed
well for easy category, but for medium and hard categories we were able to find a better
performing detector. For QVGA input size RFB and slim detectors achieved overall
better precision-recall scores.

Occluded face detection capability of quantized model was tested on a compact
dataset, and the results were promising with small image sizes. The challenges for
a dynamic and static detection were different. Detection with dynamic input size
provided higher FNR rate, and detection tests conducted on static VGA input size
provided higher FPR. Sensitivity of the static detection tests provided overall better
results.
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Folding and quantization steps are represented in Figures 1, 2 and 3, where both
weights and biases are folded. The visualizations are taken from Netron, which is a
neural network visualization tool.
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Figure 1. Initial layer setup: operations are on separate layers.
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Figure 2. Quantization of a block illustrated as a graph representation.
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Figure 3. Folding of layers: the result is a single layer.
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The balanced threading inference durations on SnapDragon 865 (SD865) CPU are
visualized in Figure 1.
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Figure 1. SD865 CPU per-thread inference.

Small input sizes are observed in Figure 2.
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Figure 2. SD865 CPU threaded inference
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WIDER Face FP-32 to FP-16 quantization results are plotted as precision-recall
curves in Figures 1, 2 and 3. The FP-32 to FP-16 quantization has minimal effect
on the classification precision and recall.
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Figure 1. WIDER Face RetinaFace FP quantization on easy subset
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Figure 2. WIDER Face RetinaFace FP quantization on medium subset
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Figure 3. WIDER Face RetinaFace FP quantization on hard subset
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SD865 is a high-end chipset. Additional tests are concluded on mid-range chipsets
MediaTek 6883 (MT6883) and SnapDragon 765 (SD765).

The MT6883 chipset contains an octa-core CPU which consists of four ARM
Cortex-A76s and four ARM Cortex-A55s, which all run on 2.0GHz. The absolute
inference times on MT6883 are observed in Figure 1.
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Figure 1. MT6883 CPU absolute inference times

The balanced threaded inference times are plotted in Figure 2.
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Figure 2. MT6883 CPU per thread inference times
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SD765 contains a Kryo 475 octa-core CPU, which has two ARM Cortex-A76s and
six ARM Cortex-A55s. Former Cortex-A76 operates on up to 2.4 GHz rate and the
latter on up to 2.2 GHz rate. A-55s operate at 1.8 GHz rate. The absolute inference
times on SD765 are in Figure 1.
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Figure 3. SD765 CPU absolute inference times

The balanced threaded inference times are visualized in Figure 2.
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The DSP on MT6883 is not capable of inference acceleration by fine-grained
threading on the TFLite Benchmarking tool with NNAPI delegate. MT6883 DSP
threading is observed in Figure 1.
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Figure 1. MT6883 DSP optimal threading

Fine-grained threading applied on the Hexagon 696 does not accelerate computation
in the TFLite Benchmarking tool with NNAPI delegation. The DSP test is visualized
in Figure 2.
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Figure 2. SD765 DSP optimal threading
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Examples of noisy and biased measurement behaviours are observed. Baseline
behaviour with active wireless connection is visualized in Figure 1. In a controlled
situation we want to stabilize the baseline behaviour, but also have as little external
activities (apps, background apps, listeners, etc.) as possible.
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Figure 1. Baseline behaviour on active wireless connection

An USB connection is established between a PC and the test device in Figure 2.
The device draws power from the USB connector, which results in biased and smaller
energy consumption drawn from the measured power cable.
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Figure 2. Baseline behaviour on active USB connection
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Conducted raw power dissipation measurement visualizations, on SD865, are
observed. Figure 1 displays raw FX-8 model measurements on the CPU.
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Figure 1. SD865 CPU Power Consumption by resolution

Raw power dissipation measurements for GPU FP-16 and FP-32 models, and DSP
FX-8 model, are displayed in Figure 2 .
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Figure 2. SD865 GPU and DSP Power Consumption by raw input mode
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Power dissipation analysis setup for SD865 is observed. Table 1 contains total

duration for each benchmarked inference duration.

Table 1. Measured inference total duration

Run mode QVGA VGA FHD 4K

CPUFX-8Tl1 45.004 s 44.022 s 45.197 s 48.894 s
CPU FX-8 TB 43426 s 45715 s 49.114 s 44.658 s
CPUFX-8 TT 41.866 s 43933 s 46.047 s 47.879 s
GPU FP-32 52.054 s 50.591 s 49.823 s 47.163 s
GPU FP-16 50.147 s 49.894 s 45.772 s 48.684 s
DSP FX-8 48.547 s 48.092 s 47.055 s 43.538 s

Measured inference average durations for the warmup are collected to Table 2.
Minimum duration of 0.5 seconds was used for warmup. Warmup duration is used
for mainly removing the first couple (unstable) runs which would substantially affect
the benchmarking measurement stability.

Table 2. Measured inference average during warmup

Run mode QVGA VGA FHD 4K

CPU FX-8 Tl 15.3 ms 34.5 ms 260.6 ms 1123.7 ms
CPU FX-8 TB 11.4 ms 36.5 ms 187.2 ms 740.8 ms
CPU FX-8 TT 7.0 ms 24.6 ms 154.2 ms 617.1 ms
GPU FP-32 8.5 ms 17.2 ms 111.4 ms 360.8 ms
GPU FP-16 9.0 ms 16.0 ms 111.9 ms 261.7 ms
DSP FX-8 12.1 ms 19.2 ms 78.4 ms 311.0 ms

The total inference count for each test case is categorized in Table 3.

Table 3. Measured inferences per test

Run mode QVGA VGA FHD 4K
CPU FX-8T1 7500 1867 248 56
CPU FX-8 TB 9783 2694 361 81
CPU FX-8 TT 11538 3309 448 110
GPU FP-32 3830 1722 357 99
GPU FP-16 4500 2642 480 160
DSP FX-8 4000 2500 700 140

For measuring the energy amount, the mean value is calculated from actual
measurement range. The subtracted baseline calculations are in Table 4.

Table 4. Active mean consumption baseline subtraction

Run mode QVGA VGA FHD 4K

CPUFX-8T1 147.7 mA 161.9 mA 188.4 mA 182.9 mA
CPU FX-8 TB 238.5 mA 256.0 mA 274.5 mA 254.5 mA
CPU EX-8 TT 320.8 mA 338.7 mA 334.6 mA 345.5 mA
GPU FP-32 93.1 mA 129.0 mA 180.3 mA 213.7 mA
GPU FP-16 82.2 mA 128.3 mA 156.9 mA 195.2 mA
DSP FX-8 38.2 mA 57.8 mA 102.0 mA 123.8 mA
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