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ABSTRACT

This thesis attempted to optimize a novel GLCM-based 3D Texture Analysis
software in terms of its input parameters in order to maximize the early
prediction of knee osteoarthritis from 3D DESS MR images. 20 subjects (10
control subjects; 10 progressor subjects) containing image data from baseline
and from a 36-month-follow-up were extracted from the Osteoarthritis Initiative
database and used as the study dataset. Multiple sets of 3D Texture Analysis were
conducted incorporating 22 static and dynamic grey level quantization schemes,
6 bin quantization schemes and 4 offset settings. Cliff’s delta was calculated to
measure the effect size between the patient cohorts. Multilayer perceptron, Naïve
Bayes and Support Vector Machines were implemented to classify the patients
into their respective cohorts and estimate the robustness of the 3D Texture
Analysis outputs. The predictions were done using only the baseline data, where
all patients showed no signs of osteoarthritis. Maximum achieved robustness was
87%. The 3D Texture Analysis was found to have a high potential for the early
prediction of knee osteoarthritis based on the GLCM features and the results
outlined the importance of the software’s input parameters.
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LIST OF ABBREVIATIONS AND SYMBOLS

2D two-dimensional
3D three-dimensional
BCI bone-cartilage interface
CPU central processing unit
CTRL control cohort
DESS double echo steady state
FISP fast imaging with steady-state precession
GE gradient echo
GLCM grey level co-occurrence matrix
GPU graphics processing unit
KL Kellgren-Lawrence
L10 cartilage layer at 10% height of the cartilage thickness
L50 cartilage layer at 50% height of the cartilage thickness
L90 cartilage layer at 90% height of the cartilage thickness
MRI magnetic resonance imaging
OA osteoarthritis
OAFI Osteoarthritis Foundation International
OAI Osteoarthritis Initiative
PRGS progressor cohort
PSIF reverse FISP
RF radio-frequency
ROI region of interest
SE spin echo
SNR signal-to-noise ratio
SUM cartilage layer representing the full cartilage thickness
TA texture analysis
TE time to echo
TR repetition time

δ Cliff’s delta∑
summation

Ng GLCM size corresponding to the number of quantization
bins
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1. INTRODUCTION

Knee osteoarthritis (knee OA) is one of the most troubling medical conditions
plaguing the world’s population. A disease considered to be one of the leading causes
of disability, though no cure has yet been developed. Medications and drugs only
target the symptoms, however the cause (or causes) of the knee OA remain a mystery.
There are plenty of factors known to be contributing to the development of knee OA,
including age, weight, metabolic processes, environment, etc., however there is no
standardized map outlining the osteoarthritis timeline and the severity of the impact
caused by various factors. A significant emphasis is made regarding the prevention
by adopting a healthy lifestyle, however some degree of osteoarthritis seems to be
inevitable for the vast majority of people throughout their lifetime. [1, 2, 3, 4]

In recent years, researchers have been utilizing Magnetic Resonance Imaging
(MRI) to visualize and study the articular cartilage and the subchondral bone. MRI
provides yet unsurpassed detail and resolution of the cartilage structure, plus is
capable of generating three-dimensional (3D) images. Such images are considered
to be theoretically bearing specific markers, which might indicate an inclination
towards osteoarthritis, which is yet invisible to the human eye. Therefore, various
quantitative methods were established to extract texture information from the MR
images and attempt to differentiate between subjects with and without various degrees
of osteoarthritis progressions. One of the most well-known methods is the calculation
of Grey Level Co-occurrence Matrices (GLCMs) and the resulting GLCM features,
which provide a quantitative insight into the spatial distribution of the pixel intensities
within the given image. The GLCM approach was originally developed in the 1970’s
for analyzing aerial photography, however various research projects have shown
promising results for utilizing GLCM features for the detection of knee osteoarthritis.
[5, 6, 7, 8]

In 2018, a novel method for calculating the GLCM features from 3D isotropic MR
data called 3D Texture Analysis was developed by Ari Väärälä at the Research Unit of
Medical Imaging, Physics and Technology, University of Oulu. This novel algorithm
utilizes the construction of the well-known grey level co-occurrence matrices, however
their calculation is based on a unique way of interpolating and extrapolating the 3D
MR data. Since the studied software is based on an entirely new methodology, there
are no prior roadmaps on what to expect, except of some preliminary results and the
general knowledge about the GLCMs provided by the referenced research projects. [9]

The software has 4 input parameters, which are of crucial importance for the GLCM
calculation: minimum grey level, maximum grey level, bin quantization number and
offset. The core of this thesis lies within the presumption that the studied 3D Texture
Analysis input parameters might have a significant impact on the analysis output.
However, the size of the impact is the topic of this thesis. Therefore, in order to gain
a clearer image about the software, multiple sets of 3D Texture Analysis with varied
input parameters were conducted on both symptomatic and asymptomatic subject
images derived from a large longitudinal study and the output features were studied
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and evaluated. [9, 10]

Although the four parameters are crucial for determining the structure of the grey
level co-occurrence matrices, only a handful of researchers actually report their
selected values and further discuss them. Several studies pointed out the lack of
standardization in terms of the GLCM parameters and call for a study focusing on
the resulting differences in the outputs features caused by the changes in the input
parameters. [11, 12, 13]

A study sample of 20 subjects including image data from two timepoints (baseline
and 36-month follow up) was extracted from the Osteoarthritis Initiative database,
which is an ongoing longitudinal study of OA. 10 subjects were extracted from the
control cohort, which contains subjects without any sign of osteoarthritis throughout
the entire duration of the study. The other 10 subjects came from the incidence and
progression cohorts, which contain subjects who actually developed the disease since
the baseline screening. [14, 15]

The methodology has been divided into statistical analysis and machine learning
analysis. Statistical analysis aims to provide a better idea about how well the output
features can differentiate between the subject cohorts in terms of effect size. The
subsequent machine learning analysis, on the other hand, utilizes some of the findings
from the previous statistical results. It provides more of a practical evaluation
and determines the robustness of the collected 3D TA outputs in terms of the OA
prediction. A complex machine learning pipeline including three machine learning
algorithms and various additional approaches was utilized. The prediction was based
on knee images with no signs of osteoarthritis. Some knees would go on and develop
OA and others would not. However, the machine learning approach does not utilize
the image data from the subsequent screenings and the prediction is based merely on
the baseline image data.

This thesis addresses two questions: 1) is it possible to use the 3D Texture Analysis
software to predict knee osteoarthritis purely from the baseline data? 2) Does altering
the input parameters affect the predictive performance of the calculated features? Since
each knee is of unique anatomy and attributes, a single set of recommended input
parameters does not seem viable. Therefore, the goal of this thesis is to provide
an idea about how the input parameters affect the output features of the 3D Texture
Analysis in terms of osteoarthritis prediction and establish recommendations, which
might hopefully provide some additional guidance for the researchers focusing on
GLCM-based knee osteoarthritis predictions.
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2. THEORETICAL BACKGROUND

2.1. Anatomy of the Knee Joint

The knee is the largest joint within the human body. It is encapsulated within a joint
capsule and held together by Collateral ligaments and Patellar ligament, which is an
extension of the Quadriceps femoris tendon. Femur, Tibia and Patella are the three
bones present within the knee joint. In some literature, Fibula might also be included,
however Fibula is not part the joint itself, because it attaches to the proximal part of
Tibia. Tibiofemoral and Patellofemoral joints create the knee mechanism (Figure 1).
The basis of each joint is the articular cartilage, which serves as gliding surface for the
touching bone ends. The bone surface lying directly below the cartilage is referred to as
subchondral bone. Joint cavity is the small space between the cartilages and contains
the synovial fluid, which ensures a resistance-free joint movement. In order to help
the cartilage protect the knees from various pressures, a fibrocartilaginous structure
(Meniscus) acts as a shock absorbent by distributing the outer forces towards various
directions and basically acts as a cushion for the tibiofemoral joint. [16, 17]

Figure 1. The anatomy of the tibiofemoral joint. A) Side view of the knee; B) Frontal
view of the knee.

The cartilage tissue is quite unique due to its complete lack of blood vessels, lymph
vessels and nerves. The main determinant of its mechanical properties (durability,
stiffness, etc.) is its extracellular matrix (ECM), which is basically the scaffolding
of the cartilage. The ECM consists mainly of water (approximately 80%), collagen
(10-30%) and proteoglycans (3-15%). Their properties and concentration vary across
the cartilage thickness. The amount of water is higher at the surface of the cartilage,
meaning that the cartilage gradually becomes more dense towards the subchondral
bone. There are specialized cells called chondrocytes distributed across the ECM
in no particular order. ECM provides an optimal environment for the chondrocytes,
which in return synthesize and regenerate the extracellular matrix. There is a constant
fluid movement between the chondrocytes and the synovial fluid in order to ensure the
delivery of proper nutrients and the removal of molecular waste. [16, 18, 19]
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2.2. Osteoarthritis

Osteoarthritis ("osteo" = bone; "arthritis" = joint disease) is a degenerative joint
disease and is considered to be one of the leading causes of disability for the adult
population. According to the Osteoarthritis Foundation International (OAFI), over
300 million people worldwide are suffering from some kind of osteoarthritis and as a
result experiencing a significantly lower quality of life. The diagnosis and treatment
of osteoarthritis has been for decades one of the most researched topics in the medical
field. The main symptoms of OA include joint pain and joint stiffness. Therapies like
intra-articular injections are common, however, such therapy usually numbs the pain
without any sign of helping to regenerate the missing soft tissue or to improve the
state of the joint bones. [1, 2, 9, 20]

Two general types of OA are universally recognized. Primary OA is a result of
articular degradation of the cartilage. There are no particular or specific reasons to be
credited for the continual loss of soft tissue. There are merely known factors, that are
believed to influence the rate with which the cartilage dissolves. Primary OA is the
most common type of osteoarthritis. Secondary OA is caused by an inflicted trauma,
accident, etc. [1, 21]

The OA research has shown that multiple crucial factors are contributing to the
development of the disease such as mechanical forces, inflammation, metabolic
processes, etc. Apart from the degeneration of the cartilage tissue, bone lumps called
osteophytes start to form usually at the subchondral bone. As a result of the reduction
of cartilage thickness, osteophytes start to peak through the cartilage and cause a direct
contact between the bones themselves. Such bone-on-bone contact is a major pain
inflictor and a cause for knee stiffness. In more advanced stages of the OA progression,
the remodeling of the bone becomes quite significant along with the narrowing of the
cartilage space. [20, 22]

Knee osteoarthritis is the most common type of OA. The probability of developing
knee OA increases with age. The significant lifelong stress combined with metabolic,
environmental, genetic and inflammatory impacts cause the cartilage and bone to
degenerate over time. Even though knee OA is one of the most researched diseases,
it is still significantly unknown. There are many question marks in terms of both
diagnosis and treatment. The absolute majority of treatment methods are focused
on reducing the pain and therefore only delay the probable surgical action. Arthritis
foundations put a high emphasis on proper prevention and joint care. Moderate
exercise is strongly recommended. Exercise with low joint stress (swimming, yoga,
etc.) should be prioritized over heavy lifting. Also, a healthy diet and weight control
play important roles and are recommended. The progression is so far understood as
irreversible and therefore the research focuses highly on early diagnosis. [1, 3, 4]

Kellgren-Lawrence score (KL score), a scoring system developed in 1957 by J. H.
Kellgren and J. S. Lawrence, aims to evaluate the OA progression based on medical
images. The range of the KL score is divided into 5 grades; Grade 0 - no visible
presence of OA; Grade 1 - debatable narrowing of the joint space; Grade 2 - Formation
of osteophytes, joint space probably narrower; Grade 3 - definite decrease in the joint



10

space volume, definite presence of osteophytes; Grade 4 - a severe case of OA, bone
deformation with significantly reduced joint space. KL = 2 is officially considered
osteoarthritis. [23, 24]

Magnetic Resonance Imaging has been used in recent years to study and visualize
the joint structure due to its great ability to differentiate between the bone and
cartilaginous tissue in great detail.[6, 25]

2.3. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging modality used in clinical diagnostics
to visualize the anatomy and physiology of the subject. At this moment in time,
MRI is the best modality for the articular cartilage visualization both in 2D and 3D,
and therefore is very suitable for monitoring and diagnosing the knee osteoarthritis.
[6, 5, 26]

The history of MRI reaches back to 1920s to the studies of Nils Bohr and Arnold
Sommerfeld focusing on the discrete magnetic moments of particles. A decade later
in 1938, Isidor Isaac Rabi et al. from Columbia University and Huner College in New
York published an article describing a method of measuring the magnetic properties of
individual atoms by utilizing a focused electromagnetic beam to re-orient the magnetic
moment and nuclear spin.[27, 28, 29, 30]

It was, however, in 1946 when two teams of researchers, one team from
Massachusetts Institute of Technology lead by Edward Mills Purcell and the other team
from Stanford University lead by Felix Bloch, experimentally described the nuclear
resonance phenomenon in both solids and liquids and thus laid the grounding stone for
what is known today as Magnetic Resonance Imaging. [30, 31, 32]

Decades later, in 1970’s, Paul Lauterbur developed a method to obtain images based
on the local magnetic interactions. In 1977, the first MRI machine was built and the
first human subject was screened. Over the past decades, MRI has established itself
as one of the best screening modalities and is unsurpassed in terms of visualizing soft
tissues within body. To sum up the history section with an interesting trivia; in 1988
shortly before he passed away, Isidor Isaac Rabi himself underwent a screening in an
early MRI machine, to which he said: "I never thought my work would come to this."
[33, 34, 35]

The main part of the MR machine is the magnetic coil wrapped around the subject
bed introducing a horizontal magnetic field flowing through the tunnel. The machine
size is described by the strength of the magnetic field. Usually, 1.5 Tesla to 3 Tesla
machines are available in clinical practice. The quality of a MR machine reflects the
homogeneity of the magnetic field. Non-homogeneous field may result in various
artefacts. [5]

The basic principle of MRI (Figure 2) lies within the atomic nuclei. In clinical
practice, hydrogen protons are the most common, due to the high percentage of
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Figure 2. Visualization of the physical phenomena occurring during the MR screening.
The blue balls represent hydrogen protons and the black arrows illustrate their
magnetic moment. A) randomly scattered hydrogen protons in the absence of external
magnetic fields; B) Alignment of the hydrogen protons either against (high-energy
protons) or along (low-energy protons) the external magnetic field B0; C) Analogy of
the nuclear spin. The protons, once aligned, precess around the external magnetization;
D) For illustrative purposes, the protons were plotted starting from the same base. The
orange arrow signifies a longitudinal magnetization - sum of all the aligned magnetic
moments; E) The introduction of a radio-frequency pulse (RF pulse) onto the protons.
The RF pulse has the same frequency as the proton precession frequency. F) Upon the
RF pulse excitation, a transversal magnetization (green arrow) is created as a result of
flipping some of the protons into their high-energy states and aligning the phases.
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water within a human body. Each hydrogen proton spins1 around its axis similarly
to a spinning top. This constant spin orients the direction of the proton magnetic
moment. However, the orientation of each proton is randomly scattered (Figure
2A). By introducing the protons into a magnetic field B0, the orientations of the
magnetic moments align either along (low-energy state) or against (high-energy
state) the direction of the external magnetic field and thus creating a clearly oriented
longitudinal magnetization (2B). The nuclear precession frequency can be obtained
by the Larmor equation [5, 9]:

ω0 = γ × B0 (1)

where ω0 is the Larmor frequency of the proton, γ corresponds to the gyromagnetic
ratio, which is constant specific for any type of nuclei (Hydrogen nuclei have
γ = 42,58 MHZ/Tesla), and B0 refers to the magnet strength.

Up until this point, the nuclei are aligned in terms of the directions, however their
precessions are out of phase. To obtain measurable data, a radio-frequency pulse with
a frequency equal to the Larmor frequency is introduced (Figure 2D) and disrupts the
aligned equilibrium by flipping some of the low-energy protons into their high-energy
states and aligning the precessional phases (Figure 2E). As a result, a transversal
magnetization vector perpendicular to B0 gets established (Figure 2F). The transverse
magnetization can be measured with a receiver coil. The system starts to relax and
return to equilibrium after the RF pulse excitation. The time between adjacent RF
pulses is marked as Repetition Time (TR). As the transversal magnetization slowly
decays, the measurable signal grows smaller in amplitude. The time between the RF
excitation and measurement of the signal is called Time to Echo (TE). The return of
some protons to low-energy state from high-energy state (rebirth of the LM) results
in heat dissipation into the surrounding tissue. The time it takes to annihilate the
transversal magnetization is referred to as T2 relaxation time, or spin-spin relaxation.
In return, the time to recover the longitudinal magnetization is called T1 relaxation
time, or spin-lattice relaxation. The lengths of T1 and T2 relaxation times depend on
the tissue properties. T1 and T2 create the contrast differences, however TR and TE can
be adjusted to accentuate contrasts between the desired types of tissue. T1-weighted
images best depict anatomical details. On the other hand, T2-weighted images are best
to depict pathologies and are great to differentiate between various tissues which have
high water content. [5, 9, 26, 37]

The received signal needs to be spatially located and encoded. Short-term linear
inhomogeneities of the magnetic field called gradients are created by gradient coils
across all three axes in order to localize the echoing signal. The gradient pulses
are responsible for the typical loud "bangs" during the MR screening process. All
the collected signal responses compose the raw MRI data and the locations and
amplitudes are encoded into a 2D k-space matrix, which is a matrix of the same
size as the final image. The k-space matrix consists of complex values, where each

1This is merely an analogy to describe the behavior of subatomic particles. In reality, the particles
are not actually spinning according to the traditional meaning. However, the quantum understanding of
a dipole is analogous to a description of spinning object by classic mechanics. [36]
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pixel stores information about the spatial frequency and phase and contributes to the
whole final image. To generate the real image, a discrete inverse Fourier transform
reconstructs the human-readable MR image from the k-space matrix. [9, 5, 37, 38]

Various MR sequences are used to create different contrasts between tissues and
fluids. Each sequence consists of carefully placed RF pulses and gradient pulses. All
the available sequences are based on two essential sequence families: spin-echo (SE)
and gradient-echo (GE or GRE). SE sequences use two RF pulses (usually 90◦ for
exciation + 180◦ for refocusing), whereas GRE sequences use a single RF pulse with
variable flip angle and image gradients to dephase and rephase the echoed signal. The
main benefit of GRE is their very short TR, however they are very susceptible to errors
caused by the magnet inhomogeneities. [5, 37]

3D DESS (Double Echo Steady State) is a GRE sequence patented by Siemens and
is a direct result of the effort by Bruder et. al. from 1988 [39] to produce two separate
MR images with different contrasts at the same time and combine them into one. The
first part is FISP-like (fast imaging steady precession) with high T1/T2 ratio contrast
and provides a good morphological detail of the cartilage structure. The second part is
based on reversed FISP (PSIF), which is responsible for a good resolution between
various fluids due to its T2-weighted contrast. 3D DESS basically combines the
T1-weighted intra-cartilaginous detail while providing the great T2-weighted contrast
between cartilage and synovial fluid. The sequence is however very sensitive to motion
and, as a GRE sequence, struggles with the magnetic inhomogeneities. 3D DESS
provides improved SNR over traditional methods, better contrast between the cartilage
and synovial fluid and high isotropic resolution of the formed images. [5, 9, 26, 39, 40]

2.4. Digital Image Processing

Every two-dimensional (2D) digital image is merely a m × k matrix of numerical
values, where m is the number of horizontal pixels and k is the number of vertical
pixels constructing the image (Figure 3). Each pixel value determines the intensity of
the given pixel. The pixel data is then described as the texture. By applying various
algorithms onto the texture i.e. pixel values, various texture features can be extracted
in order to precisely describe, categorize or classify the image.

A binary image, which means that the pixel values can only be either 0 or 1, is
depicted in Figure 3. In this case, 0 indicates black color and 1 indicates white. A
binary image can be described as a 1-bit image. A bit is the smallest carrier of digital
information and it can either be 0 or 1, true or false. So, if only 1 bit determines
the value of each pixel, such value can only be 0 or 1. Expanding this logic, in a n-
bit image, each pixel is encoded by n number of bits and since each bit provides 2
possible pixel values, the color spectrum increases into 2n tonal values ranging from 0
up to n − 1. To visualize this more clearly, Figure 4 shows how the encoding of the
grey scale works.

In slightly different words, n-bits divides the color space between black and white
into 2n color values. For example, in a grey scale 3-bit image, there would be 23 = 8
different grey tones encoded. Similarly, for an 8-bit image, 28 = 256 intensity values
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Figure 3. Numerical representation of a binary digital image

Figure 4. Encoding grey scale images according to the number of bits

would be available and so each pixel value could be anywhere between 0 and 255.
Higher bit number ensures better color resolution but the information size of the image
increases and more disc space and computational power is required to work with such
images. Medical images are usually encoded with 12 to 16 bits per pixel. Such bit
depth provides between 4 096 - 65 536 distinguishable grey tones. [41]

This brief introduction into digital computing is included not only to revise the
basics, but most importantly to transfer the reader into a slightly more digital mindset
and evoke the understanding that studying digital images is nothing but a game
of numbers. Every image is a simple matrix of numerical values which can be
mathematically described and analyzed. And such analysis, although seemingly
abstract, might extract some information from the image which are hidden to the
human eye.
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2.5. Texture Analysis

Texture analysis could be considered in itself a sub field of the image analysis research
branch, which has been linked to a great diagnostic success in the field of medicine.
The term texture analysis can be understood as a method of describing images or
regions of images by extracting their specific texture features based on the spatial
distribution of the pixel data. [42]

To fully understand what exactly is meant by texture analysis and why it is done at
all, let us consider a situation, where we have visited an art exhibition and afterwards
we want to describe the paintings to our friends. In order to describe the memorized
image, we put the memory in front of our eyes and start describing the attributes of the
image, which we believe are important and clearly recognizable. In other words, we
are trying to describe the texture of the image by extracting its texture features, most
probably the ones we believe are the most significant and will result in a quick and
easy recognition by our friends. In the case of a painting, the significant features might
include the colors, size, style, technique, etc. Another example might be a description
of a human face. In such case, the features might include eye color, beard, hair length,
smile, etc. Essentially, texture analysis helps us to summarize an image in terms of its
apparent features so it is as recognizable as possible without the need to describe every
single detail.

In computing, the idea of texture analysis stays the same, however the extracted
features might not be as clearly representable visually, but merely statistically and
numerically. This also gives the opportunity to study and compare various texture
features, that might have significant impact on the classification process. Computers
cannot see and recognize their surroundings the same way humans do, therefore
mathematical representation is necessary for the computer to classify the image.

If we transpose this logic into the world of computational medicine, texture analysis
has a tremendous potential to assist with the diagnostic process and most importantly
uncover aspects of the subject images that might be simply invisible to human
perception. Texture analysis has had a substantial success with not only segmentation
of anatomical structures, but also with diagnosis of lesions, differentiating suspicious
tissues and many more. [42]

One of the well-established methods for texture analysis is a Grey-Level Co-
occurrence Matrix (GLCM) proposed by Robert M. Haralick in 1973 [7]. A GLCM
contains counts of how many times a pair of pixel intensities appeared within
a quantized image. As such, GLCMs provide a quantitative information about the
spatial distribution of pixel intensities. [8]

A GLCM is a simple Ng ×Ng square matrix, where Ng is the number of grey levels
represented in the quantized image, i.e. the bin quantization number. The calculation
of GLCMs has a few input parameters, which significantly influence the output. The
first step to construct the GLCM matrix is the quantization (or "binning") of the image.
The image quantization refers to a process, where all the intensities present within
the image are put (i.e. quantized) into a selected number of bins. If, for example, we
choose to do an 8-bin quantization, then all the pixels will be assigned values between
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1 - 8 according to their original pixel intensities. An m×k image with pixel intensities
ranging from 0 to 255 (8-bit image) would result in 256/8 = 32 intensity values per
each bin. As a result, pixels with intensities 0 - 31 would be assigned intensity 1 in
the quantized image; pixels 32 - 63 would get the value 2 and so on. It is possible to
determine the grey level range, in which the quantization is being calculated. This
is done by selecting the minimum and maximum grey level. Intensities with values
outside of the minimum-maximum grey area can be either omitted or assigned to a
certain bin as well.

GLCMs can be calculated for various angles (or "directions") and offsets. Each pixel
has 8 neighbouring pixels, which results in 8 possible angles for the GLCM calculation
(Figure 5). The only exceptions are the edge and corner pixels.

Figure 5. Possible directions described as angles for the GLCM calculation. The *
represents the root pixel.

Figure 6 shows an example of the construction of GLCMs for angles 0◦ and 90◦ out
of a 4-bin quantized image. The GLCM is always a square matrix and its dimension is
determined by the number of bins. To fill the matrix, an algorithm looks for pixel pairs,
counts how many times they appear within the quantized image and adds the count to
the GLCM. The corresponding row in the GLCM is determined by the root pixel value
and the column is determined by the value of the selected neighbour.

Figure 6. Visual representation of constructing the GLCM for offset 1 and angles 0◦

and 90◦ from a 4-bin quantized image.

The offset determines the spacing of the considered pixels. In other words, the offset
number means which neighbouring pixel should be considered along the selected
angle. Offset 1 takes the nearest neighbouring pixel; Offset 2 takes the second pixel
behind the nearest one and so on. Figure 7 depicts the impact of offset 2 on the overall
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construction of the matrix.

Figure 7. Example of a GLCM construction with offset 2.

Haralick et. al. [7] defined 14 texture features, which can be extracted from the
GLCMs. The texture features are calculated from a normalized GLCM, which is
the original GLCM divided by the summation of its elements. This means, that the
normalized GLCM can be viewed as a matrix of probabilities, i.e. how likely it is that
such grey pixel pair is to appear within the image. All the features describe the image
texture in a quantitative way and it is presumed that they might have an indicative
value in terms of detection of early OA [8, 9, 10, 11].

There are many research projects ([10, 11, 12, 13, 43, 44, 45, 46, 47, 48, 49] and
many more) utilizing the GLCM features in the biomedical field. More specifically,
various knee osteoarthritis studies utilized GLCMs to a great success [12, 45, 46, 49].
In 2014, Schooler et. al. [10] directly showed good indicative abilities of GLCMs
for cartilage degradation. Unfortunately, only a fraction of the studies actually report
the GLCM input parameters used during their research and even less underline their
importance and how they might affect the output texture features.

Gomez et. al. [13] studied breast ultrasound images and used GLCM features
to analyze segmented lesions. Gomez’s study is the only one found which details
the approach of minimum and maximum grey level assignment. Each lesion was
normalized between grey values 0 and 255 in order to stretch (or reduce) the grey
scale of the image within the same boundaries. This approach allowed them to use 0 as
the minimum grey level and 255 as the maximum grey level and thus cover all the grey
tones within all the images. In terms of bins, 8, 16, 32, 64, 128, and 256 were tested
and the team reported, that bin quantization does not improve nor worsen the results.

Brynolfsson et. al. [11] considered the importance of the input parameters by testing
bin counts of 4, 8, 16, 32, 64, 128 and 256 on ADC MR images. They concluded to a
suggestion to keep the bin number static and reported large changes in the quantitative
results based on the different bin quantizations. Brynolfsson’s study is also the only
one found that reports a conclusion in terms of the grey level boundaries and suggests
static minimum and maximum grey level, which would encapsulate all the possible
intensities found across the cohort. Brynolfsson’s team also discussed the lack of
standardization of the input parameters and urges researches to report their chosen
parameters.
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Peuna et. al. [12] also discussed the lack of information about the GLCM parameters
and how exactly they might affect the outcome. Peuna’s research implemented offsets
1-4 and 8-bin quantization in their GLCM calculations for evaluating a novel method
of GLCM calculation by cartilage flattening. The results from various offsets were
found to be similar. In terms of the bin number, in spite of statistically significant
results, a call was made for a further optimization of the bin quantization scheme in
future studies.

Several publications [10, 45, 47, 48] were found to be using exclusively offset 1 (the
nearest neighbour co-occurrence) for the GLCM calculations, however they did not
conduct any further offset investigation.

Blumenkrantz et. al. [49] studied 3D spoiled GE images of the knee and utilized
GLCM calculations to evaluate cartilage T2 values. The team implemented offsets
1-3 based on the approximate cartilage thickness being 3-4 pixels. Their conclusion
showed equally good results for all of the studied offset settings and demonstrated
strong positive correlations between them. The study reports a shortcoming of a low
image resolution, which could have an impact in terms of the offset setting.

Li et. al. [50] studied the relationship of MR relaxation times and knee osteoarthritis.
Their study included GLCM calculations from various 3T MR images with offsets 1-3
due to the cartilage thickness being 3-4 pixels. The paper reports all offsets showing
similar results, which supports findings by Blumenkrantz et. al. [49].

Williams et. al. [46] showed that short-term (6 months) evaluation of T2
mappings and selected texture features may provide an early anticipation of the
cartilage degeneration. In their paper, offsets 1, 3 and 5 were used to study contrast,
homogeneity, correlation and energy, however their results remain inconclusive in
terms of the offset setting.

Materka et. al. [51] demonstrated that the GLCM texture features might be sensitive
to inhomogeneities in MRI and therefore recommend artifact removal and/or image
normalization prior to the texture analysis. They also point out a good resolution and
large volumetric data from the ROI should have a positive impact on the analysis.

2.6. Machine Learning

Machine learning (ML) is a computing approach to learn the inner patterns and
relationships based on empirical data and as a result establish decisions based on the
learnt patterns. It can be understood as a computational approximation of the human
learning process and the subsequent application of the learnt knowledge. Machine
learning is concerned with utilizing algorithms to make predictions based on collected
data. [52]

The machine learning process generally consists of three phases: Pre-processing,
training, validation and testing. [52]

• Pre-processing refers to data preparation, feature extraction and feature
selection. The data preparation involves 1) filtering incomplete, missing or
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noisy samples; 2) merging all the multiple sources if applicable; and 3) data
normalization, i.e. fitting the feature values into a given range. Feature extraction
is the process of extracting the features from the collected data. The raw data
can serve as a training set or there is a further analysis applied in order to extract
additional information about the dataset. Once the features are extracted, feature
selection methodology takes into account either all of the features or merely
their subset. The selection can be justified by various means such as statistical
analysis, or by utilizing a more complex methods for dimensionality reduction,
such as Principal Component Analysis (PCA). The resulting feature vectors are
divided into a training set and a testing set. [52, 53]
• Training is the learning phase. Essentially, training a model means to establish

a function, which is responsible for producing the desired outputs based on the
available inputs. Theoretically, there exists a function, which predicts the labels
flawlessly based on the input data and the machine learning algorithm simply
attempts to approximate it as closely as possible. Once the training set is ready, a
machine learning model is applied onto the training set and adjusts its properties
accordingly in order to understand its patterns. The learning can follow three
main paradigms: supervised, unsupervised or reinforcement approach.

– Supervised learning relies on prior knowledge of the correct output. The
goal of the algorithm is to adjust its properties so that the output of the
algorithm matches the desired labels. Classification and regression are the
two main types of supervised learning. Classification provides categorical
outputs (for instance, differentiating if an image is a cat or a dog) while
regression approximates the input data in order to predict a real value (for
example, temperature prediction). [52, 53, 54]

– Unsupervised learning has no prior knowledge about the labels and its goal
is to identify the structural patterns of the input data. A typical example of
unsupervised learning is clustering. The algorithm attempts to divide the
dataset into a number of groups (clusters) based on the data distribution.
[52, 53, 54]

– Reinforcement learning is based on trial and error methodology by
assigning a reward or a penalty based on the learnt outcome [52]. A
great example of reinforcement learning are the open-source AI Pac-Man
projects provided by the UC Berkeley [55]. The projects are based on
Pacman independently learning how to get to the desired dot through the
complicated maze while avoiding the evil ghosts.

• Validation is utilized to improve the trained model. K-fold cross-validation is
a great example of validation. The k-fold method takes the training dataset and
splits it into k number of chunks. For each learning epoch, one of the chunks is
assigned as a training set and the rest of them are combined into a new training
set. This process repeats until all of the small chunks have been assigned as a
testing set. In the end, the results are combined based on their evaluation scores
and used to update the model. [56]

• Testing phase applies a testing dataset as an input for the trained model. The
testing accuracy is then recorded and presented. It is crucial to have the testing
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dataset separated from the training dataset, otherwise the testing results might
be misleading. The difference between a validation set and a testing set is that
the validation set is utilizing during the training, however the testing set serves
merely for the evaluation of the tuned model. [54]

Ideally, a learnt model should be applicable to a large variety of testing data and
have no problem with correct predictions. In other words, the more generalized
a model is, the better. Overfitting and underfitting are two terms related to model
generalization. Overfitting refers to a situation, where a model is fit very tightly to the
training data and therefore has difficulties classifying any other inputs. Underfitting is
the opposite case and refers to a model which is too loosely fit and therefore outputs
inaccurate predictions. The ultimate goal of machine learning is to strike the perfect
balance between overfitting and underfitting and achieve a generalized model which
remains applicable for future predictions. [54, 57]

The data for machine learning usually comes in a form of a NS × NF table, where
NS is the number of samples and NF is the number of features. Each row represents
a feature vector, a 1 × NF array of the individual feature values describing a specific
sample. The features indicate the state of the samples in relevance to the study. For
example, features such as age, Body Mass Index (BMI), KL score, etc. are valuable
for subjects involved in knee OA studies.

Artificial neural networks (ANNs or NNs) are a very popular machine learning
methodology. Basically, they are constructed to simulate the human brain. The
fundamental piece of any neural network is a neuron. Just like in the human brain,
neurons can receive an input, process it and send out an output. The idea is exactly
the same for the artificial neuron. A neural network can consist of multiple neurons
organized into consecutive layers. With each added neuron, the complexity of the
network increases. The simplest NN is called a perceptron and it consists of a single
neuron. A neural network with a number of perceptrons organized into multiple layers
is called a multilayer perceptron (MLP). MLP consists of an input layer, hidden layers
and output layer. The feature values are passed from the input layer to the neurons
within the hidden layers. The hidden layers process the values and send them to the
final output layer, which produces the network output. [58]

In order for a Multilayer Perceptron to learn, a backpropagation learning is often
utilized. Firstly, the backpropagation algorithm calculates the error between the
predicted value and the desired label and, secondly, travels back through the network
and initiates a change in the internal parameters (weights and biases for each neuron)
based on the calculated error. The backpropagation algorithm requires at least one
layer of neurons fully connected to another layer. [59]

Naïve Bayes (NB) is another machine learning method however different from the
neural networks. It is based on the Bayes theorem and it determines the most probable
output based on calculating the prior probabilities from the prior knowledge about the
data. Naïve Bayes is called naive, because it assumes independence of the attributes,
which is a very rare condition in real life. However, in practice, Naïve Bayes is a very
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simple algorithm and as such allows for a very fast processing. [59]

Support Vector Machines (SVM) are based on calculating a hyperplane or
hyperplanes to separate the input data according to their class. The hyperplane is fit in
between the data by maximizing the distances between the hyperplane and the closest
points i.e. maximizing the margin. In contrast to Naive Bayes, SVM methodology is
not described with probabilities and only classifies the samples by either being on one
side or the other from the hyperplane. SVM achieve their accuracy by transforming
the data into higher dimensions based on a chosen kernel function and as a result,
achieve a distribution that is easier to separate. [54, 60]

Machine learning has been substantially utilized in knee osteoarthritis studies
throughout the past couple of years. In September 2020, Kokkotis et. al. [52]
published a review of the current state of machine learning in knee OA studies. They
found that Support Vector Machines seemed to be the most utilized algorithm due
its good generalizability. Neural Networks were the second most popular choice.
Furthermore, they found GLCMs to be one of the most popular approaches for feature
extraction in studies utilizing either MR or X-ray images.

Deokar et. al. [61] applied a Multilayer Perceptron with Back Propagation learning
method to differentiate between subjects with and without osteoarthritis. In their
methodology, GLCM features Contrast, Correlation, Energy, Homogeneity and
Entropy were used for the training. Their results show a 92% testing accuracy,
however the paper does not provide any further information about the subject data nor
about the GLCM input parameters.

Du et. al [60] applied a Multilayer Perceptron (one hidden layer), SVM, Naïve
Bayes and a Random Forest for knee osteoarthritis prediction based on a novel texture
feature extraction methodology. Although their study did not utilize GLCM features,
they provide a good insight into the machine learning used for osteoarthritis studies.
The best overall results were reported for the MLP, however very competitive results
were reported in terms of Naive Bayes as well.
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3. METHODS

3.1. Subject Dataset

The study sample was extracted from the Osteoarthritis Initiative (OAI), a longitudinal,
observational study consisting of 4 796 (information valid for July 2020) participants
being both men and women aged 45-79 at recruitment with, or at risk of, primary knee
OA. All participants underwent MRI screenings at baseline and then after 12 months,
24 months, 36 months, 48 months, 72 months and 96 months. Such longitudinal
research protocol provides highly valuable information about the progression of
the knee OA disease over time. The collected images were analyzed by medical
professionals and each subject was assigned a KL score according to the state of their
cartilage at each screening timepoint. Based on the acquired KL grade, the entire
dataset is divided into three separate cohorts. The control cohort refers to a group of
asymptomatic subjects (KL = 0 at all screenings); incidence cohort is categorized by
an increased risk of OA and longitudinal data show slow development of the disease;
and progression cohort, consisting of subjects with both osteophytes and frequent
symptoms. [14, 15]

For the purposes of this study, a dataset of 20 subjects was derived from the OAI
database. For each selected subject, image data from the baseline (00m) and from
the 36-month follow-up (36m) screening were included. 10 subjects were extracted
from the control cohort (CTRL) and the other 10 subjects came from the incidence
and progression cohort (PRGS). The selected PRGS subjects showed KL = 0 at
baseline but progressed rapidly and scored KL ≥ 2 at the 36 month visit. Both subject
cohorts showed no signs of the disease at the baseline screening. The study sample
was constructed in a pair-wise manner. Every CTRL subject had a matching PRGS
subject, with whom they shared same sex, same age (± 2 years) and the difference in
Body-Mass Index (BMI) over the 36-month long period was ±2 kg/m2. This subject
matching was done to rule out the age, sex and BMI as confounding factors. The
longitudinal relative BMI variation for each subject was within 10%. The samples and
their attributes can be found in Table 2.

This dataset provided altogether 80 cartilages for analysis, 40×femur and 40×tibia.
All cartilages were be divided into 8 subgroups by 10, according to the subject cohort,
cartilage type and the screening time. The list of all the cartilages can be found in
Table 1.

The image data itself included isotropic DICOM images collected using 3T clinical
MR system with a 3D DESS MR sequence. The slice thickness is 0, 7 mm and all
the data was encoded into 16-bit grey scale with a resolution of 384×384 pixels per
slice. There are 160 slices per subject. The cartilages were automatically segmented
by a novel deep-learning software developed at the Research Unit of Medical Imaging,
Physics and Technology at the University of Oulu by Panfilov et. al. [62]. An example
of the cartilage segmentation is illustrated in Figure 8.
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Table 1. The subject dataset described by the various cartilages

Number of
Cartilages

subject
cohort

Cartilage
type Timepoint

10 CTRL Femur 00m
10 CTRL Femur 36m
10 CTRL Tibia 00m
10 CTRL Tibia 36m
10 PRGS Femur 00m
10 PRGS Femur 36m
10 PRGS Tibia 00m
10 PRGS Tibia 36m

Table 2. subject dataset

Pair ID Group* Sex Age
[years]

BMI 00m**
[kg/m2] KL 00m BMI 36m

[kg/m2] KL 36m Difference
BMI 00m-36m

1 9892736 CTRL male 48 23,0 0 23,0 0 0,0 %
9509294 PRGS male 48 24,3 0 23,9 2 1,6 %

2 9893729 CTRL male 49 24,7 0 24,8 0 0,4 %
9723972 PRGS male 49 25,5 0 24,5 2 3,9 %

3 9093584 CTRL male 61 25,7 0 25,9 0 0,8 %
9656912 PRGS male 61 25,7 0 25,9 2 0,8 %

4 9256066 CTRL male 65 27,0 0 26,1 0 3,3 %
9086407 PRGS male 64 26,1 0 28,1 3 7,7 %

5 9931342 CTRL female 46 22,3 0 23,0 0 3,1 %
9623707 PRGS female 45 24,1 0 21,8 2 9,5 %

6 9900690 CTRL female 48 25,1 0 26,8 0 6,8 %
9624154 PRGS female 46 26,9 0 26,5 2 1,5 %

7 9915764 CTRL female 51 26,2 0 26,6 0 1,5 %
9271853 PRGS female 51 25,6 0 25,6 3 0,0 %

8 9276291 CTRL female 57 22,6 0 24,1 0 6,6 %
9828518 PRGS female 57 24,6 0 22,6 2 8,1 %

9 9254514 CTRL female 56 23,9 0 23,4 0 2,1 %
9545340 PRGS female 57 24,8 0 25,5 2 2,8 %

10 9907767 CTRL female 59 22,1 0 23,0 0 4,1 %
9412037 PRGS female 59 22,5 0 22,6 2 0,4 %

*CTRL - subjects from the control cohort; PRGS - subjects from the incidence or progressive cohort.
**00m is the baseline visit (initial screening); 36m is the 36 month visit (3 year follow up screening)

Figure 8. An example of the image data with the pre-calculated mask segmentation
using the automatic cartilage segmentation tool.
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3.2. Cartilage Histogram Analysis

The pixel distributions of the cartilages can provide a quantitative insight into the
physiological changes within both symptomatic and asymptomatic cartilages. In
order to establish initial understanding of the studied cartilages, a histogram analysis
was performed. Each subject’s cartilage data, both femur and tibia, was studied
both individually and longitudinally. Particular focus was put on finding some clear
differences between the cartilage at baseline and 36-month-follow-up screenings for
the subject cohorts.

Upon extracting the cartilage pixels based on the segmented masks (Figure 9),
each 2D cartilage matrix was flattened into a 1-dimensional vector vc and used for
the histrogram calculations. Each subject provided a histogram of: 1) Femur from
00m; Femur from 36m; Tibia from 00m; Tibia from 36m. The focus was kept on
both longitudinal changes but also the differences between the subjects at a single
timepoint. All histograms were visually inspected.

Figure 9. Acquiring the cartilage pixels.

To extract an overall picture about all the subject cartilages, the occurrences of
every detected pixel intensity were counted across all 80 cartilages and a cumulative
histogram Htotal was calculated. Such cumulative histogram provided information
about all the pixel intensities across the entire subject dataset and provided indications
about the possible choices of the input parameters for the subsequent 3D Texture
Analysis.

The minimum pixel intensity and maximum pixel intensity were collected from
each femur and tibia. In order to remove extreme points from the cartilage histograms
before applying the 3D Texture Analysis, a threshold algorithm dubbed Pixel threshold
was utilized. The algorithm follows these steps: 1) The flattened cartilage vector vc
is sorted in ascending order; 2) The non-cartilaginous (black) pixels are discarded;
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3) A given percentage of the pixel amount was cut off from each side of the sorted
sorted vc vector. For example, if a femur cartilage consisted of 10 × 104 pixels and
the cutoff percentage was selected to be 2%, then 0, 2× 104 pixels would be removed
from each side of the flattened cartilage resulting in a output cartilage vector vcut of
9, 6×104 pixels. The first and last element of the shortened sorted cartilage vector vcut
marked the updated minimum and maximum pixel intensities respectively. Updated
minimum and maximum pixel intensities were collected for 2%, 5% and 10% cutoff
percentages. The collected minimum and maximum pixel intensities were further
averaged across 1) all the cartilages; 2) the subject cohorts; 3) the timepoints; and 4)
subject cohorts at different timepoints. These average pixel intensities were further
utilized for the application of the 3D Texture analysis.

3.3. 3D Texture Analysis Tool

The 3D Texture Analysis Tool (3D TA) was developed in 2018 by Ari Väärälä[9] as
a novel method for the extraction of GLCM-based features from the knee cartilage
texture. The unique aspect of this type of analysis is, as the name suggests, that the
data is analyzed in three dimensions. This novel approach has a potential for improved
recognition of cartilage degradation and early prediction of OA.[9]

The tool provides a unique way to quantitatively assess the cartilage in various
thickness layers. The cartilage layers are 1-pixel thick and calculations for four layers
are currently implemented: 1) L10, accounting for layer found at 10% thickness
height; 2) L50, found in the middle of the cartilage; 3) L90, providing information
about a cartilage layer found at the 90% cartilage height; and 4) SUM, which
represents the full cartilage thickness. Figure 10 provides a visual representation of
the cartilage layers.

The 3D Texture Analysis was developed with Matlab R©(MathWorks Inc., MA, USA)
at the Medical Imaging, Physics and Technology Research Unit at the University
of Oulu. In order to extract the texture features, the software first calculates the
pixels at the bone-cartilage interface (BCI), which is the edge where the cartilage and
subchondral bone meet. Next, the segmented 3D cartilage is anatomically normalized
into a number of tiny overlapping 3D rectangles, which carry the information about the
neighbouring pixels for each BCI pixel. The layers of the 3D rectangle correspond to
the cartilage 1-pixel thick layers. The grey level co-occurrence matrices are calculated
from the neighbouring pixels in the 3D rectangles. Each studied layer (L10, L50 and
L90) has its own calculated GLCMs. The SUM layer provides information about
the full thicknes by summarizing the GLCMs altogether. 19 GLCM features defined
by Haralick et. al. [7], Clausi et. al. [63] and Soh et. al. [64] are extracted by the
3D Texture Analysis for each layer. Table 3 lists all the extracted features and their
corresponding reference. [9, 11]

The tool has 12 input parameters altogether, out of which the first 4 are of crucial
importance for this thesis:
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Figure 10. Cartilage layers. Blue dashed line represents the thickness of the cartilage.
L10, L50, L90 show the layer heights, in which the cartilage was analyzed. SUM
represents the summation of all layers (full cartilage thickness)

Table 3. List of the output GLCM texture features with their corresponding reference

Feature name Reference
1 Autocorrelation Soh et. al. [64]
2 Cluster prominence Haralick et. al. [7]
3 Cluster shade Haralick et. al. [7]
4 Contrast Haralick et. al. [7]
5 Correlation Haralick et. al. [7]
6 Difference entropy Haralick et. al. [7]
7 Difference variance Haralick et. al. [7]
8 Dissimilarity Soh et. al. [64]
9 Energy Haralick et. al. [7]
10 Entropy Haralick et. al. [7]
11 Homogeneity Soh et. al. [64]
12 Information measure of correlation 1 Haralick et. al. [7]
13 Information measure of correlation 2 Haralick et. al. [7]
14 Inverse difference Clausi et. al. [63]
15 Maximum probability Soh et. al. [64]
16 Sum average Haralick et. al. [7]
17 Sum entropy Haralick et. al. [7]
18 Sum of squares (variance) Haralick et. al. [7]
19 Sum variance Haralick et. al. [7]
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1. Minimum grey level - determines the minimum pixel intensity and sets the
lower boundary for the bin quantization. Figure 11 shows an example of
choosing the pixel intensity of 50 as the minimum grey level on a randomly
selected tibia histogram.

2. Maximum grey level - determines the maximum pixel intensity and sets the
upper boundary for the bin quantization. Figure 11 shows an example of
choosing the pixel intensity of 300 as the maximum grey level on a randomly
selected tibia histogram.

3. Bin quantization number - determines the quantization range. Figure 11
illustrates an example of an 8-bin quantization. The algorithm keeps the grey
values located outside of the selected grey level boundaries and assigns them to
the first and last bin. In this example, the quantized image would consist merely
of pixel values 1 to 8 and all the calculated GLCMs would be 8× 8 in size. The
number of bins is also directly proportional to the computational time. Since the
bin quantization merges several pixel intensities into one, the quantization also
works as a simple noise filter. As a result, the higher the bin number, the more
noise will pass through into the analysis. At this point, only linear quantization
(= equal bin size for all the bins within the grey level boundaries) is supported.
[9, 13]

4. Offset - refers to the spacing between the root pixel and the selected neighbour
while constructing the GLCM. An example of the change in offset number and
its impact on the GLCM calculation can be found in section 2.5.

Figure 11. Example of an 8-bin quantization based on 50 minimum grey level and 300
maximum grey level. Pixel intensities found below the minimum grey level are added
to the first bin. Pixel intensities found above the maximum grey level are added to the
last bin.

3.4. Applied 3D Texture Analysis

The input parameters for the GLCM calculation are rarely studied and multiple
researchers have raised awareness about the lack of the parameter standardization
[49][12]. Therefore, to achieve a clearer image about their effect, various combinations
of minimum grey level, maximum grey level, bins and offset were studied and analyzed.
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The rest of the 3D TA input parameters were kept fixed.

In this thesis, bin quantization schemes 4, 8, 12, 16, 32, 64 and offset settings
1, 2, 3, 4 were studied. The input parameters were divided into five subcategories
based on the analyzed grey level quantization schemes:

• dynamic - dynamic approach assigns a specific grey range based on the pixel
intensity distribution of the analyzed cartilage. Minimum grey level is assigned
based on the minimum intensity of the current cartilage. Similarly, the maximum
grey level is assigned based on the maximum pixel intensity of the cartilage.
This approach corresponds to the grey level quantization methodology utilized
by Gomez et. al. [13].
• dynamic - static uses the dynamic grey level assignment only for the minimum

grey level value. The maximum grey levels are statically assigned.
• static - dynamic uses the dynamic grey level assignment only for the maximum

grey level value. The minimum grey level is constant.
• static - static approach has both grey level boundaries fixed for all the subjects.

Encapsulating all the possible intensities present within the dataset is a grey level
quantization method recommended by Brynolfsson et. al. [11].
• special approach is based on averaging the minimum and maximum pixel

intensities of the cartilages across to the cartilage type (femur or tibia), time of
acquisition (00m or 36m) and subject cohort (CTRL or PRGS). The minimum
and maximum grey levels were selected based on the average values and
assigned to the corresponding cartilage subgroups. The special approach can be
viewed as a subtype of the static - static approach, however with mathematically
defined grey level boundaries. There were 3 different setups:

1. Average grey levels for femur and tibia. This creates 2 different sets of
input values for each subject, one for femur and one for tibia.

2. Average grey levels for femur at 00m, femur at 36m, tibia at 00m and
tibia at 36m. This approach creates 4 different sets of input parameters for
each analyzed subject.

3. Lastly, separate static grey levels for every possible cartilage
categorization, which means a specific input parameter set for a femur
from a CTRL subject at 00m, femur from CTRL at 36m and so on. This
approach creates 8 different sets of input parameters for each subject.

The special approach was included to study, if a customized grey level
quantization schemes adjusted for separate cartilages, timepoints and subject
cohorts could yield superior results.

The nomenclature of the analysis outputs is based on the order of the input
parameters. For special cases, the naming varies according to the type of the special
approach. Table 4 summarizes the naming of the various outputs. The cutoff
percentages within the examples in Table 4 are 0, 05, i.e. 5%.

The original 3D Texture Analysis script allowed only a single set of grey levels and
bins to be calculated at a time. However, the algorithm was optimized to accommodate
a calculation of multiple grey level ranges and bin quantizations at the same time,
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Table 4. Nomenclature based on the various grey level quantization schemes

Grey level
quantization scheme Nomenclature Example

dynamic - dynamic -1_-1_binNumber -1_-1_8
dynamic - static -1_maximumGreyLevel_binNumber -1_300_16
static - dynamic minimumGreyLevel_-1_binNumber 0_-1_4
static - static minimumGreyLevel_maximumGreyLevel_binNumber 0_400_32
special 1 cutoff_f_t_binNumber* 0-05_f_t_12
special 2 cutoff_f00_t00_f36_t36_binNumber 0-05_f00_t00_f36_t36_64
special 3 cutoff_all_different_binNumber 0-05_all_different_4
*cutoff refers to the cutoff percentage used to shorten the original cartilage vector
before extracting the grey levels

since grey level limits and bins are not bound to the interpolation and extrapolation
tasks. This update should provide a substantial reduction in the computation time and
as a result, more combinations of input parameters can be collected and subsequently
evaluated.

Altogether, 528 3D Texture Analysis outputs were collected. The outputs were
collected separately for each offset, i.e. 132 results for offsets 1-4. Due to this type
of collection, majority of the methods were separated by offset as well to make the
analysis more feasible.

3.5. Statistical Analysis

In order to collect the statistical differences between CTRL and PRGS subjects,
the effect size was calculated between the corresponding output texture features.
For example, CTRL Autocorrelation values calculated from femur at 00m were
statistically compared to the PRGS Autocorrelation values calculated from femur at
00m and calculated effect size was collected.

Normality of the output texture features was tested with Lilliefors test, Kolmogorov-
Smirnov test and Jarque-Bera test. Lilliefors and Jarque-Bera indicated, that the
features come from normal distribution, however Kolmogorv-Smirnov test rejected
that hypothesis. Additionally, the small sample size in this study (10 subjects per
cohort) should not be overlooked and, although two out of three tests indicated
normality, a non-parametric analysis was considered to be the most appropriate
solution. [65, 66]

Therefore, Cliff’s delta (δ) was utilized to measure the differences between CTRL
and PRGS cohorts based on the output texture features. Cliff’s δ was introduced in
1993 as a non-parametric measure of effect size and has been utilized ever since in
order to remove the condition of normality from the statistical analysis. Cliff’s method
has not only been shown to be more robust and therefore might be more suitable, but
also seems to strongly correlate with Cohen’s d, a well-established powerful parametric
measure of effect size. [67, 68, 65]



30

Table 5. Table of effectiveness level based on Cliff’s delta

Cliff’s δ Level of effect
0, 474 ≤ |δ| Large
0, 33 ≤ |δ| < 0, 474 Medium
0, 147 ≤ |δ| < 0, 33 Small

|δ| < 0, 147 Negligible

To calculate the δ values, a Matlab toolbox ’Measures of Effect Size’ by Hentschke
and Stüttgen [68] was utilized. The algorithm for Cliff’s δ per se is not implemented in
the toolbox, however the δ is linearly proportional to the Area Under the Receiver
Operating Characteristic Curve (AUROC), which is a widely used non-parametric
measure of effect size and happens to be part of the toolbox. Based on the linear
relationship, the δ values can be extracted from the AUROC values fairly easily with
the following equation[68]:

δ = 2× AUROC − 1 (2)

The range of Cliff’s δ is from -1 to 1, where 0 indicates no detectable effect between
the studied groups. In 1988, Cohen [69] established a method, how to evaluate the
effect of his d. Those principles can be re-interpreted for the non-parametric δ into a
set of evaluation guidelines for the absolute δ values, which can be found in Table 5.
[68, 70]

To statistically evaluate which combination of 3D Texture Analysis input parameters
might be the most beneficial for differentiating between CTRL and PRGS subjects, the
total number of small, medium and large effects found per the studied combinations of
grey level ranges, bins and offsets were counted and tabulated.

The goal of the statistical analysis is: 1) evaluate the ability of individual 3D Texture
Analysis outputs to measure differences between the subject cohorts; and 2) to identify
features which are responsible for localizing above-average number of effects between
the studied subject cohorts and thus create a selected feature subset for the subsequent
machine learning analysis.

3.6. Machine Learning Analysis

To assess the predictive abilities of the calculated features, a machine learning
(ML) pipeline for the knee OA prediction was established. The ML pipeline has 5
parameters and the entire flowchart is depicted in Figure 12. The collected 3D Texture
Analysis output features served as an input for the machine learning algorithms. Only
data from baseline was utilized for the machine learning analysis. The goal was
to see the predictive capabilities based upon measurements at the beginning of the
longitudinal study before any OA symptoms were registered in the progressive cohort.

The machine learning analysis consists of these steps:
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1. Select the ML pipeline parameters.
• Cartilage selection. Firstly, it is important to select which cartilage will

be utilized to train the classifiers.
• Feature selection. The learning phase can utilize either all 19 available

features or only a selected feature subset determined upon the results from
the statistical analysis.
• Classifier selection. Multilayer Perceptron (MLP), Naïve Bayes (NB) and

Support Vector Machines (SVM) were utilized in order to collect the ML
results.

– Multilayer Perceptron is a type of feed-forward artificial neural
network. A predefined implementation of MLP with backpropagation
learning developed in 2016 for Matlab by Hesham Eraqi [71] was
utilized. The network consists of two hidden layers, each containing
11 neurons, and 2 output neurons (one for each class).

– Naïve Bayes (NB) classifier was implemented with the native Matlab
function fitcnb().

– Support Vector Machine (SVM) classifier was implemented with the
native Matlab function fitsvm() with no kernel function assigned
to it.

• Data split type. Two possible ways of creating the training and testing sets
were utilized: pair-wise and random. In the pair-wise scenario, a single
CTRL-PRGS pair was used as the testing set and the remaining 18 samples
(9 CTRL samples and 9 PRGS samples) were used for training. In the
random scenario, either 1, 2 or 3 randomly selected subjects were used as
testing samples. The rest of the samples were used for training.
• Bootstrapping. Bootstrapping was introduced to further challenge the

robustness of the input data. If m is the number of testing data, then the
bootstrapping takes m random training samples and adds their copies into
the training dataset. With the original dataset consisting of 20 samples, the
bootstrapping makes sure that the training set is scaled up to 20 samples as
well, no matter the data split type.
• Cross-validation. Before testing the trained model, Naïve Bayes and

Support Vector Machines were either cross-validated with 10-fold cross-
validation or left untouched. The MLP remained without cross-validation,
because the idea was to test the implemented MLP algorithm as is without
any adjustments.

2. Apply the established pipeline. In order to evaluate any stochastic machine
learning, Brownlee [72] recommends to repeat the algorithm anywhere between
30 up to 1000 times. The number of repetitions purely depends on the hardware
and the time necessary to finish the task. Each repetition, the output labels are
recorded and stored. For the purposes of this thesis, 200 was chosen as the
repetition number due to the time limitations. In the end, each Texture Analysis
output is described by its 1× 200 vector containing the individual classification
accuracies from each repetition.

3. Collect the tables Y1, Y2, Y3 and Y4. Each Yi table is NR/O × 200, where NR/O

refers to the number of 3D Texture Analysis outputs per offset (NR/O = 132).
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For example, table Y1 contains accuracies only for the Texture Analysis outputs
obtained with offset 1, Y2 with offset 2, etc. Such approach should provide easier
evaluation due to the smaller table size, plus it allows us to immediately compare
the robustness values merely for the grey level and bin quantization schemes.

4. Calculate robustness. The robustness refers to the average accuracy for each
row of a Yi matrix, i.e. the average accuracy of each 3D TA output across
the 200 repetitions. Those Texture Analysis outputs which yield consistently
favorable results (i.e. high robustness) will be considered superior. The measure
of robustness simply indicates how many times the algorithm was able to
classify the samples correctly into their corresponding cohorts (for example,
60% robustness means 60 times out of 100 were the subjects classified correctly
as CTRL or PRGS by a model trained on features from the corresponding 3D
Texture Analysis output).

5. Extract tables B1, B2, B3 and B4. Each Bi table contains only the top 10 most
robust performers from the corresponding Yi table, where i = {1, 2, 3, 4}. Each
Bi table can be understood as a shrunk down version of the Yi table with only
the best performers.

6. Repeat the entire pipeline j number of times with various combinations of
the pipeline parameters. Therefore, j number of the pipeline runthroughs will
yield j number of B1,2,3,4 tables, each containing the best performers for the
corresponding pipeline parameter combination. Only a subset of all the possible
pipeline parameter combinations were applied due to the time constraints.

7. Find the best performing 3D Texture Analysis outputs. It was considered how
many times a certain 3D Texture Analysis output appeared within the Bi,j

matrices. In other words, how many times has a certain 3D TA output appeared
amongst the top 10 performers across the results from all the applied pipeline
parameter combinations. The more times a 3D TA output performed the top 10,
the higher it scored. Finally, a sorted Ball table is created, containing NR/O of
3D Texture Analysis outputs with their corresponding number of times each one
appeared amongst the top 10 performers. The 20 best overall performers as well
as 20 overall worst performers were tabulated.

In order to measure the average impact of the 3D Texture Analysis input parameters,
the differences between the 3D TA outputs with the best robustness and worst
robustness from each collected Yi,j matrix were calculated and subsequently the
maximum measured difference and the average difference were extracted.

The impact of feature selection was studied by comparing the average robustness
scores across all the Bi,j tables between all-feature-based and selected-feature-based
results.

The bin quantization number of each 3D Texture Analysis output was extracted from
the Ball table. Since the Ball table contains the sorted best performers, extracting their
bin quantization numbers into a 1×NR/O vector provided a bin distribution across the
best performers.

The impact of varying offset was evaluated by averaging the robustness scores
for each 3D Texture Analysis output across the studied offsets and collecting the
percentual increase or decrease in robustness for offset 2,3 and 4 compared to the
average robustness scores for offset 1.
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Figure 12. Flowchart of the machine learning pipeline. Y1, Y2, Y3 and Y4 are the
output matrices of accuracies from individual offsets.
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4. RESULTS

All results were collected on a Windows 10 PC with 8 GB of RAM using
Intel R©CoreTMi5-8400T CPU with 6 cores, 6 threads and a base clock speed 1,70 GHz.

4.1. Cartilage Histogram Analysis

The number of pixels found in femur was approximately three times larger than in
tibia. On average, femur cartilage contained around (13, 7 ± 3, 0) × 104 pixels (mean
± SD). Tibia cartilage, on the other hand, consisted of about (4, 9± 1, 4)× 104 pixels.

Femur showed a slightly negatively skewed unimodal distribution (see Figure 13).
On the other hand, tibia showed a predominantly bimodal distribution. The y-axis
values varied due to the different pixel amounts. Both cartilages showed similar
intensity levels across their x-axes at baseline, however longitudinal comparison
showed an increase in pixel intensity range for all subjects over time. After 36 months,
maximum pixel intensities exhibited an average increase of 31,5% for femurs an 30,5%
for tibiae. Histograms from a single randomly selected subject are plotted in Figure 13
to demonstrate the longitudinal change in pixel intensity range.

Figure 13. Histograms of a femur (upper row) and tibia (lower row) at 00m (left
column) and 36m (right column) from a randomly selected subject. The x-axes denote
the pixel intensity distributions. The y-axes mark the number of occurrences. The
orange circles highlight the longitudinal increase in pixel intensity.

The number of occurrences of every pixel intensity present within the 80 studied
cartilages was counted and a cumulative histogram Htotal was calculated and plotted
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in Figure (14). The 90% cumulation was measured right after the 300 pixel intensity,
the 99% cumulation at 399 pixel intensity and finally 100% cumulation was recorded
at 788 pixel intensity (denoted by a red line in Figure 14). The 788 pixel intensity
was found only once in a single progressive subject in their 36m screening data. In
contrast, the most represented pixel intensity across all the cartilages was 203 (4,7×104
occurences).

Figure 14. Cumulative histogram of all the pixel intensities collected from all studied
cartilages. X-axis marks the pixel intensity distribution. Y-axis marks the normalized
number of occurrences. Vertical dashed lines denote the percentual cumulation relative
to the pixel intensities. Pixel intensity 107 marks 10% cumulation; pixel intensity 200
marks 50% cumulation; pixel intensity 307 marks the 90% cumulation; pixel intensity
399 marks the 99% cumulation. Red line denotes the full 100% cumulation at 788
pixel intensity.

The maximum and minimum pixel intensities were derived from each cartilage. The
minimum and maximum pixel intensities were averaged across all subjects (blue row
in Table 6), subject cohorts (red rows in Table 6), timepoints (yellow rows in Table 6)
and subject cohorts at separate timepoints (green rows in in Table 6). The table shows
minimum and/or maximum average pixel intensities after a particular cutoff. The
difference between 00m and 36m maximum grey level further illustrates the increase
in pixel intensity over time. The average difference between the actual maximum pixel
intensities (0%) and the maximum pixel intensities from the 2% shortened cartilage
vectors was 120, 7 intensity values for femur and 97, 1 intensity values for tibia.

These results provide a solid ground for establishing the static grey level limits for
the texture analysis algorithm. 2% cutoff percentage was selected for the dynamic
grey level quantizations. Based on the total cumulative histogram in Figure 14), static
minimum grey level 0 and maximum grey levels 300, 400, 500, 600, 700, 800 were
chosen for the static grey level quantization. The pixel intensity values from Table 6
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Table 6. Average minimum and maximum pixel intensities across the available
cartilage classes derived from either original or shortened cartilage vectors

Femur Tibia
Average
across

Minimum
pixel intensity

Maximum
pixel intensity

Minimum
pixel intensity

Maximum
pixel intensity

0% 2 % 5 % 10 % 0%* 2 % 5 % 10 % 0% 2 % 5 % 10 % 0% 2 % 5 % 10 %
all 8,3 72,1 93,0 107,1 425,6 305,2 293,4 286,6 2,0 31,9 42,0 50,8 395,0 297,9 286,2 278,0
ctrl 7,5 69,9 90,7 104,9 421,9 303,8 292,8 286,4 1,8 31,0 41,2 50,0 399,5 297,5 285,8 277,7
prgs 9,1 74,3 95,4 109,4 429,4 306,7 294,0 286,9 2,2 32,7 42,9 51,6 390,5 298,3 286,6 278,2
ctrl_00m 4,9 57,6 76,1 88,9 349,8 257,9 248,8 243,4 1,4 24,7 33,5 41,4 326,5 252,8 243,3 237,0
ctrl_36m 10,1 82,2 105,2 120,9 493,9 349,7 336,8 329,4 2,2 37,3 48,8 58,6 472,4 342,1 328,3 318,4
prgs_00m 5,5 60,4 79,2 91,3 346,3 254,4 245,4 240,1 1,1 25,8 34,6 41,9 322,2 248,8 239,7 233,3
prgs_36m 12,7 88,2 111,6 127,4 512,4 358,9 342,5 333,6 3,3 39,6 51,1 61,2 458,8 347,7 333,5 323,1
00m 5,2 59,0 77,7 90,1 348,1 256,2 247,1 241,8 1,3 25,3 34,1 41,7 324,4 250,8 241,5 235,2
36m 11,4 85,2 108,4 124,2 503,2 354,3 339,7 331,5 2,8 38,5 50,0 59,9 465,6 344,9 330,9 320,8
* 2%, 5% and 10% denote the percentage pixel cutoff used to shorten the cartilage vector before the extraction of minimum
and maximum grey levels. For example, minimum pixel intensity 10% column shows the average minimum intensities
derived from the flattened cartilage vectors shortened by 10% from each side.
* 0% percentage means the minimum and maximum pixel intensities were derived from the original cartilage vector.

were used for the special approach of static grey level quantization.

4.2. Applied 3D Texture Analysis

Altogether, 528 3D Texture Analysis outputs were collected for. Six bin quantization
schemes were calculated at a time during each 3D Texture Analysis run. The number
of simultaneously calculated grey level quantization schemes varied between one to
three. The average acquisition time for one grey level quantization scheme and six
bin quantization schemes was approximately 49 hours and 50 minutes; for two grey
level quantization schemes 59 hours and 45 minutes; for three grey level quantization
schemes 68 hours and 42 minutes. Each grey level calculation added approximately
10 hours to the overall computation time. The 3D Texture Analysis outputs were
collected over a period of four months and list of the collected outputs is shown in
Table 7.

4.3. Statistical Analysis

Cliff’s delta (δ) effect sizes between the control and progressive subjects were
calculated based on the output texture features. Altogether, 58 313 small δ effect sizes
(0,147≤ δ <0,33), 18 193 medium δ effect sizes (0,33≤ δ <0,474) and 11 690 large
δ effect sizes (0,474≤ δ) were observed across the collected outputs. The identified
effect sizes between the subject cohorts were summarized across the cartilage layers,
cartilage types and timepoints, grey level quantization schemes, bin quantization
schemes and offsets in order to accentuate the individual importance of each variable.

The amount of the δ effect sizes across the cartilage layers are shown in Table 10.
The highest amount of small and medium effect sizes was found in L10 and the highest
amount of large effects in L50. In contrast, the least amount of the studied effects was
observed in L90.
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Table 7. List of analyzed combinations of input parameters

Cutoff
percentage

Minimum
grey level

Maximum
grey level Bin number Offset

2 %* -1** -1 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % -1 300 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % -1 400 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % -1 500 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % -1 600 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % -1 700 4, 8, 12, 16, 32, 64 1, 2, 3, 4

2 % 0 -1 4, 8, 12, 16, 32, 64 1, 2, 3, 4

- 0 300 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 300 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 400 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 500 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 600 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 700 4, 8, 12, 16, 32, 64 1, 2, 3, 4
- 0 800 4, 8, 12, 16, 32, 64 1, 2, 3, 4

2 % f_t*** 4, 8, 12, 16, 32, 64 1, 2, 3, 4
5 % f_t 4, 8, 12, 16, 32, 64 1, 2, 3, 4

10 % f_t 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % f00_t00_f36_t36 4, 8, 12, 16, 32, 64 1, 2, 3, 4
5 % f00_t00_f36_t36 4, 8, 12, 16, 32, 64 1, 2, 3, 4

10 % f00_t00_f36_t36 4, 8, 12, 16, 32, 64 1, 2, 3, 4
2 % all_different 4, 8, 12, 16, 32, 64 1, 2, 3, 4
5 % all_different 4, 8, 12, 16, 32, 64 1, 2, 3, 4

10 % all_different 4, 8, 12, 16, 32, 64 1, 2, 3, 4
* Cutoff percentage indicates the percentage used to shorten
the cartilage vector and assign the grey levels.
** -1 indicates dynamic grey level assignment.
*** f_t, f00_t00_f36_t36 and all_different utilize average pixel
intensities for the minimum and maximum grey level.

Table 8. The amount of δ effect sizes found per each analyzed cartilage layer

Amount of effect sizes

Layer small δ effects
(0,147≤ δ <0,33)

medium δ effects
(0,33≤ δ <0,474)

large δ effects
(0,474≤ δ)

L10 15702* 5514 2957
L50 14358 4408 4335
L90 14823 3630 1511
SUM 13430 4641 2887
* The table is vertically color-coded. The cell color saturation
is directly proportional to the cell value.
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Table 9. The amount of δ effect sizes found per each cartilage and timepoint

Amount of effect sizes

Cartilage small δ effects
(0,147≤ δ <0,33)

medium δ effects
(0,33≤ δ <0,474)

large δ effects
(0,474≤ δ)

00m Femur 12162* 2065 502
00m Tibia 14617 10559 8890
36m Femur 16023 3033 1311
36m Tibia 15511 2536 987
* The table is vertically color-coded. The cell color saturation
is directly proportional to the cell value.

In terms of the results from cartilages and timepoints (Table 9), 00m Tibia
showed the uppermost amount of all three effect sizes, most notably accounting for
approximately 76% of all observed large effect sizes.

4.3.1. Grey Levels

The amount of non-negligible effect sizes obtained with all texture features for each
grey level quantization scheme is reported in Table 10.

Dynamic - dynamic quantization (-1_-1) exhibited the highest amount of small effect
sizes and medium effect sizes. However, dynamic - static -1_500 quantization found
the top amount of large effect sizes, which is more than 10% higher than the second
highest amount observed with -1_-1. Additionally, static - dynamic quantization (0_-
1) was second best in terms of the amount of medium effects. Special grey level
quantization schemes show competitive results, especially 0-05_f00_t00_f36_t36 in
terms of large effect sizes and 0-10_all_different in terms of small effect sizes.

4.3.2. Bins

The total amount of non-negligible effect sizes found per each bin quantization
schemes is reported in Table 11. The highest amount of small and medium effect
sizes were identified using a 4-bin quantization. However, the amount of large effect
sizes peaked with 8-bin quantization and subsequently proceeded decrease with higher
bin quantization schemes.

The amount of large effect sizes per single bin quantization scheme were observed
for each texture feature and plotted in Figure 15. Using Cluster Prominence, Cluster
shade, Correlation, Information Measure of Correlation 1, Information Measure of
Correlation 2, Sum of square variance and Sum variance found more than 100 large
effects for at least one bin count. Cluster prominence, Cluster shade, Maximum
probability, Sum of square variance and Sum variance showed an overall increase
while Information measure of correlation 1 showed an overall decrease in the amount
of large effect sizes with increasing bin quantization number.
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Table 10. The amount of δ effect sizes per each grey level quantization scheme

Totals of effects sizes
Grey level
quantization schemes

small δ effects
(0,147≤ δ <0,33)

medium δ effects
(0,33≤ δ <0,474)

large δ effects
(0,474≤ δ)

-1_-11 28713 1607 601
-1_300 2428 937 568
-1_400 2703 921 569
-1_500 2711 913 687
-1_600 2890 969 597
-1_700 3028 831 613
0_-1 2420 1334 611
0_300 2711 751 423
0_400 2628 717 397
0_500 2343 744 516
0_600 2648 652 511
0_700 2888 642 361
0_800 2810 612 318
0-02_f_t2 2369 675 437
0-05_f_t 2378 763 451
0-10_f_t 2547 829 458
0-02_f00_t00_f36_t36 2246 639 580
0-05_f00_t00_f36_t36 2226 629 664
0-10_f00_t00_f36_t36 2227 693 638
0-02_all_different 2926 710 468
0-05_all_different 3172 799 599
0-10_all_different 3142 826 623
average 2650 827 531
1 Using bold-font schemes yielded above-average totals for all three effect sizes.
-1 indicates dynamic grey level assignment.
2 0_02, 0_05, 0_10 indicate cutoff percentages used to shorten the cartilage vector
and assign the grey levels. f_t, f00_t00_f36_t36 and all_different
utilize averaged grey ranges.
3 The table is vertically color-coded. The cell color saturation is directly proportional
to the cell value.

Table 11. The amount of δ effect sizes observed for each bin quantization scheme

Amount of effect sizes
Bin quantization
scheme

small δ effects
(0,147≤ δ <0,33)

medium δ effects
(0,33≤ δ <0,474)

large δ effects
(0,474≤ δ)

4 10302* 3651 1907
8 9870 3224 2136
12 9502 2864 2129
16 9548 2740 2054
32 9555 2844 1765
64 9535 2870 1699
* The table is vertically color-coded. The cell color saturation is directly
proportional to the cell value.
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Figure 15. The amount of large effect sizes for each texture feature using different
bin quantization schemes. The x-axis shows every bin quantization scheme for each
texture feature. Y-axis marks the amount of observed large effect sizes.

4.3.3. Offset

The total amount of non-negligible effect sizes found per each bin quantization
schemes is reported in Table 12. The highest amounts of small and medium effect
sizes were observed with offset 4. The highest amounts of large effects were found
with offset 2, then with offset 4 as the second best, then offset 3 and lastly offset 1.

The amount of large effect sizes observed for each feature and separate offset setting
is shown in Table 13. Using correlation and offset 2 yielded the highest amount of
large effect sizes. The highlighted rows in Table 13 mark those features of which their
total value exceeded the average total. Figure 16 visualizes the amount of effect sizes
found across the texture features with different offsets.

Those features with totals exceeding the average total were used for the selected
training feature set for the subsequent machine learning analysis. Based on the results
from Table 13 and Figure 16C, features Autocorrelation, Cluster prominence, Cluster
shade, Correlation, Information measure of correlation 1, Information measure of
correlation 2, Sum of square variance and Sum variance were selected. Although
the total for Autocorrelation (387) did not exceed the average total, the second best
feature after Autocorrelation was the Maximum probability with the total value of 183
across offsets, which is less than a half below the Autocorrelation result.
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Table 12. The amounts of δ effect sizes per each offset setting

Amount of effects sizes
Offset
setting

small δ effects
(0,147≤ δ <0,33)

medium δ effects
(0,33≤ δ <0,474)

large δ effects
(0,474≤ δ)

offset 1 14519* 4577 2377
offset 2 13766 4241 3343
offset 3 14677 4482 2782
offset 4 15350 4893 3188
* The table is vertically color-coded. The cell color saturation is directly
proportional to the cell value.

Table 13. The amounts of large δ effect sizes found using individual texture features
per offset setting

Texture feature Sum of large δ effect sizes
(0,474≤ δ) per offset setting

offset 1 offset 2 offset 3 offset 4 Total
autoCorrelation* 59 140 97 91 387
clusterProminence 80 249 210 241 780**
clusterShade 237 446 398 427 1508
contrast 10 6 11 15 42
correlation 474 741 601 608 2424
differenceEntropy 22 7 13 14 56
differenceVariance 10 6 8 23 47
dissimilarity 27 15 13 16 71
energy 44 23 15 17 99
entropy 19 31 12 15 77
homogeneity 32 14 19 32 97
informationMeasureOfCorrelation1 266 397 367 476 1506
informationMeasureOfCorrelation2 375 415 364 489 1643
inverseDifference 33 12 21 25 91
maximumProbability 66 47 35 35 183
sumAverage 43 53 33 23 152
sumEntropy 37 30 11 23 101
sumOfSquaresVariance 272 416 422 427 1537
sumVariance 271 295 132 191 889
average 125,1 175,9 146,4 167,8 615,2
* Bold italic font indicates features selected to be part of the selected feature subgroup
for the machine learning analysis.
** Green marked fields indicate features with the totals above the average total.
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Figure 16. The amount of effects found with each offset setting for individual texture
features. Figure A depicts the amount of small δ effects. Figure B shows the amount
of medium δ effects. Figure C shows the amount of large δ effects.
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4.4. Machine Learning Analysis

Altogether, 200 machine learning pipeline outputs were collected, 50 for each offset.
96 results were calculated using the Naive Bayes (NB) algorithm. Other 96 were
achieved by utilizing Suport Vector Machines (SVM). Finally, 8 results were extracted
using a Multi-layer Perceptron (MLP). Table 14 describes the collected results and the
varying configuration parameters between the individual results. NB and SVM were
both collected with and without cross-validation. MLP was the most time consuming,
taking over 24 hours to finish the results. NB and SVM were much faster, rendering
the output in approximately 12 hours each.

Table 14. List of the collected outputs from the machine learning pipeline

Classifier Analyzed
cartilages

Features
utilized

Boot-
strapping

Data split
utilized

Cross-
validation
(10-folds)

Multilayer Perceptron femur; tibia selected1 yes pair-wise2 no
Naive Bayes femur; tibia all; selected yes; no pair-wise; random3 yes; no
Support Vector Machines femur; tibia all; selected yes; no pair-wise; random yes; no

1 Selected features include Autocorrelation, Cluster prominence, Cluster shade, Correlation,
Information measure of correlation 1, Information measure of correlation 2,
Sum of square (Variance) and Sum variance.
2 Pair-wise method selects a single CTRL-PRGS pair as the testing set.
3 Random method selects 1-3 random samples as the testing set.

A list of best performers according to their robustness score was drawn for each
machine learning pipeline output. This yielded altogether 200 small tables, each
containing all 3D Texture Analysis outputs with their robustness scores for each layer.
The tables were sorted and only ten best performers were kept. The highest robustness
score (87%) was achieved by a dynamic - static -1_500 with a 4-bin quantization,
offset 2, using Naive Bayes with only selected features from tibia, no bootstrapping
and pair-wise data split. The complete results are shown in Table 15.

Differences between between the best performing and worst performing 3D Texture
Analysis outputs were collected from each ML pipeline output. The average difference
between the best and worst performers was 25, 42±10, 23 %. The maximum measured
difference was 62, 92%.

To evaluate the proposed feature selection, average robustness scores were
calculated separately for results collected with selected features and all features. The
differences between the average robustness scores from selected-based results vs all-
based results are shown in Table 16. Using selected features showed a decrease in
robustness for femur-based predictions in layers L10, L50 and SUM. A positive impact
of using selected features was observed for tibia-based predictions from all layers.

MLP provided the highest femur robustness score (76,5%; offset 2; selected
features; bootstrapped; pair-wise), however tibia showed superior results overall. In
terms of the average robustness score, tibia outperformed femur by: 10,72% for L10;
19,74% for L50; 17,41% for L90; and 21,48% for SUM.
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Table 15. Robustness scores containing the highest achieved robustness obtained with
Naive Bayes, 3D Texture Analysis outputs based on offset 2, only selected features
from tibia, pair-wise data split, 2-sample bootstrapping and no cross-validation

L10 L50
3D Texture Analysis
output

Robustness
r [%]

3D Texture Analysis
output

Robustness
r [%]

’0_700_12’ 77,3 %* ’-1_500_4’ 87,0 %
’-1_-1_12’ 75,8 % ’-1_300_64’ 86,5 %
’0-05_all_different_8’ 75,8 % ’0_300_8’ 86,3 %
’0_-1_12’ 74,5 % ’-1_400_32’ 83,0 %
’-1_600_16’ 74,0 % ’0-10_all_different_64’ 83,0 %
’0-10_f00_t00_f36_t36_12’ 73,8 % ’0_600_16’ 83,0 %
’0-02_f_t_12’ 73,5 % ’-1_700_8’ 82,5 %
’0_-1_4’ 73,5 % ’0-10_f_t_8’ 82,3 %
’0-02_all_different_8’ 72,5 % ’0-05_f_t_32’ 81,3 %
’0-10_f_t_16’ 72,5 % ’0-10_f_t_64’ 81,0 %

L90 SUM
3D Texture Analysis
output

Robustness
r [%]

3D Texture Analysis
output

Robustness
r [%]

’0_600_12’ 78,8 % ’0_500_8’ 83,8 %
’0_700_12’ 78,5 % ’0_800_64’ 82,0 %
’0-02_f_t_64’ 78,3 % ’-1_500_4’ 81,3 %
’-1_-1_8’ 77,8 % ’0-02_f00_t00_f36_t36_8’ 80,5 %
’0_600_4’ 76,8 % ’0-02_f_t_8’ 80,3 %
’0-10_f_t_64’ 76,5 % ’0_600_4’ 80,3 %
’-1_500_8’ 76,0 % ’0_800_12’ 80,3 %
’0-10_f00_t00_f36_t36_64’ 75,5 % ’-1_400_16’ 79,3 %
’-1_-1_4’ 75,3 % ’0-05_f00_t00_f36_t36_12’ 79,3 %
’-1_700_12’ 75,0 % ’-1_400_32’ 79,0 %
* Robustness represents the average accuracy across
200 training and testing repetitions.

Table 16. Percentual differences in average robustness scores for different cartilages
between results collected with selected features versus all features

Cartilage L10 L50 L90 SUM
Femur -3,22 %* -2,03 % 3,11 % -0,12 %
Tibia 3,14 % 5,08 % 2,52 % 4,66 %
* Green color indicates a positive impact of the
selected feature set. Red color indicates a
negative impact.
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Overall best performers were collected from all predictions, femur-based predictions
and tibia-based predictions according to the number of times each 3D Texture Analysis
output appeared amongst the ten best performers for each machine learning output.
Table 17 shows only the 20 best and worst performers overall. The highest amount of
appearances was counted for -1_500_4. Second and third place was then occupied by
the 0_-1 grey level quantization scheme. Out of the 20 best performers, 13 were based
on dynamic grey level assignment and only two (no. 16 and 19) were utilizing the
special average-based grey level quantization scheme. The median bin number for the
twenty best performers was 8; The median bin number for the twenty worst performers
was 32. The complete bin distribution across the sorted best performers is depicted in
figure 17.

Table 17. Best overall performers and worst overall performers with offset combined

Best of
all ML* results

Best of
FEMUR-based

ML results

Best of
TIBIA-based
ML results

Worst of
all ML results

1 ’-1_500_4’** ’0_-1_12’ ’-1_500_4’ 113 ’0-02_f_t_16’
2 ’0_-1_12’ ’0_700_4’ ’0_-1_4’ 114 ’0-05_f_t_12’
3 ’0_-1_64’ ’0_-1_32’ ’-1_500_8’ 115 ’0-02_f00_t00_f36_t36_16’
4 ’0_700_4’ ’0_-1_64’ ’0_500_16’ 116 ’0-02_f00_t00_f36_t36_32’
5 ’0_-1_32’ ’0_700_8’ ’-1_700_12’ 117 ’0-05_all_different_64’
6 ’0_700_8’ ’0_-1_8’ ’-1_600_12’ 118 ’0_500_64’
7 ’0_-1_4’ ’-1_600_4’ ’-1_700_8’ 119 ’0-05_all_different_12’
8 ’0_-1_8’ ’0_800_4’ ’-1_400_8’ 120 ’0-05_all_different_32’
9 ’-1_-1_4’ ’-1_-1_4’ ’-1_400_4’ 121 ’0-02_all_different_16’

10 ’-1_-1_8’ ’0_-1_16’ ’0_600_16’ 122 ’-1_500_64’
11 ’-1_600_4’ ’-1_-1_8’ ’0_400_12’ 123 ’-1_700_64’
12 ’0_800_4’ ’0-10_f_t_4’ ’-1_400_16’ 124 ’0-02_f_t_64’
13 ’0_-1_16’ ’-1_500_4’ ’-1_700_16’ 125 ’-1_400_64’
14 ’0_600_4’ ’0_400_4’ ’0_600_4’ 126 ’0_300_16’
15 ’-1_500_8’ ’0_800_8’ ’0_700_12’ 127 ’0_600_32’
16 ’0-10_f_t_4’ ’0-10_f00_t00_f36_t36_4’ ’-1_400_12’ 128 ’0-02_all_different_12’
17 ’-1_700_12’ ’0-02_f00_t00_f36_t36_4’ ’-1_600_16’ 129 ’0_800_64’
18 ’0_500_16’ ’-1_-1_12’ ’0_700_16’ 130 ’0_700_32’
19 ’0-10_f00_t00_f36_t36_4’ ’0-05_f00_t00_f36_t36_4’ ’0_800_12’ 131 ’-1_300_32’
20 ’-1_-1_12’ ’0-10_all_different_16’ ’0_500_12’ 132 ’-1_300_64’
* Machine Learning
** -1 indicates dynamic grey level assignment. 0_02, 0_05, 0_10 indicate cutoff percentages
used to shorten the cartilage vector and assign the grey levels. f_t, f00_t00_f36_t36 and
all_different utilize averaged pixel intensities as minimum and maximum grey level.

Average robustness scores were calculated for each offset and compared against
the average robustness scores from offset 1. Table 18 demonstrates the percentual
impact of utilizing higher offset settings compared to offset 1. Offset 3 improved the
L10 robustness scores by approximately 3, 41%, while offset 4 positively impacted the
average robustness scores of L50 by 0, 93%, L90 by 3, 15% and SUM by 1, 79%.

The average robustness scores achieved by a given classifier per each layer, separate
for femur and tibia, are shown in Table 19. The highest average robustness was
achieved with Naive Bayes using tibial layer L50. In terms of femur, using MLP
yielded the best average robustness scores for femoral L10 and L50, 62,8% and 63,2%
respectively.
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Figure 17. Bin distribution across the best performers overall performers with offset
combined. The scales range from the most robust performer (left) to the least robust
performer (right). Purple color corresponds to the 4-bin quantization scheme and beige
color corresponds to the 64-bin quantization scheme.

Table 18. Average improvements in robustness scores for offsets 2,3 and 4 compared
to offset 1 for each cartilage layer

Offset
setting L10 L50 L90 SUM

Offset 1 - - - -
Offset 2 1,83 %* 0,61 % 0,86 % -0,73 %
Offset 3 3,41 % 0,66 % 0,66 % 0,69 %
Offset 4 2,51 % 0,93 % 3,15 % 1,79 %
* Green color marks the highest improvement.
Red color marks the highest deterioration.

Table 19. Average robustness scores for each cartilage and their corresponding layers
generated by the utilized classifiers

Femur Tibia
Classifier* L10 L50 L90 SUM L10 L50 L90 SUM
MLP 62,8 %** 63,2 % 53,5 % 58,6 % 62,7 % 70,3 % 64,6 % 66,6 %
NB 53,7 % 53,8 % 48,5 % 48,1 % 67,2 % 77,5 % 71,1 % 77,4 %
SVM 28,7 % 29,5 % 26,1 % 29,4 % 36,6 % 45,4 % 38,3 % 43,0 %
* MLP - Multilayer perceptron; NB - Naive Bayes; SVM - Support Vector Machines
** The cell color saturation is directly proportional to the cell value.
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5. DISCUSSION

The initial cartilage histogram analysis provided valuable information about the pixel
distributions within the cartilage. Both femur and tibia seemed to follow a pattern in
terms of their histograms and can be clearly differentiated from each other by mere
visual inspection. The major finding, however, is the increase in the maximum pixel
intensity over time for both femur and tibia. Unfortunately, it is only a speculation if
such longitudinal change is associated with physiological changes or if it is simply a
result of the reduced reproducibility of the measurements over the years. The fact that
there is a significant increase for both CTRL and PRGS subjects indicates that it does
not reflect the progression of the disease. All the cartilages were averaged into a single
cartilage and a cumulative histogram was created. The 100% cumulation was achieved
before the 800 pixel intensity mark and therefore, a static-static grey level range from
0 to 800 would provide a coverage of all the pixel intensities present within the studied
dataset. The large difference in intensity between the 99% (399) cumulation and
100% cumulation is almost 400 intensity values. This observation suggests a presence
of outliers within the pixel distribution. Both femur and tibia showed a difference
larger than 100 intensity values between their original maximum intensity value and
the maximum intensity value after a 2% cutoff. The differences between 2%, 5%, and
10% cutoffs are less than 20 intensity values. This result suggests that the 2% cutoff
should be enough to remove the extremities and therefore was chosen as the cutoff
percentage for all the dynamic grey level quantization schemes.

Before any outputs were collected, the algorithm of the 3D Texture Analysis was
tweaked in order to accommodate for multiple grey level and bin quantizations to
be calculated at a time. The algorithm update was possible due to the fact that the
grey level boundaries and the bin number are independent from the interpolation
and extrapolation tasks. Therefore, the GLCMs can be calculated based on the same
interpolation data. Such update resulted in approximately 6× faster computation
time, which means that around 83% of the computation time was reduced. Additional
improvements that could be implemented are adjusting the measurements of the
computation time and making it resilient to interruptions.

The statistical analysis provided not only a glimpse into the importance of the input
parameters for the 3D Texture Analysis of 3D DESS images to differentiate between
the controls and the progressive cohort, but also outlined the abilities of individual
texture features to differentiate between CTRL and PRGS subjects. The approach was
based on calculating the amounts of the effect sizes found per the studied layers (L10,
L50, L90 and SUM), cartilage types and timepoints (00m Femur, 00m Tibia, 36m
Femur, 36m Tibia), grey level quantization schemes, bin quantization schemes and
offsets. Additionally, charts indicating the total amounts of effect sizes found per bin
quantization scheme and offset setting for each texture feature were analyzed. The
approach of calculating the amount of measured effect sizes is in itself a questionable
method. Although finding a large amount of effect sizes with certain combination
of parameters might indicate superior results, a large quantity might not be strictly
associated with better quality. The contrast between quality and quantity was pointed
out with the differences between the total amounts of large effect sizes found per
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texture feature. Even though the differences between the texture features might
be visible from the small effect size chart, the large effect sizes clearly accentuate
those differences and make them much more interpretable. Also, the limited number
of samples might have a negative influence on the effect size calculation and the
estimated numbers might not be as precise and reliable as they might be with a larger
sample size. [73]

The study of quantized cartilage layers showed that L50 and L10 might provide
the most insight into the OA differences. This result might be due to the fact, that
cartilage tends to be denser and contain less fluid towards its base and therefore
deeper layers could provide more detail into the intra-cartilaginous changes. Further
research is recommended to establish new methodologies how to effectively combine
the information from all the layers and achieve maximum predictive potential.

In terms of the cartilage data from different timepoints, results from tibia at baseline
showed the highest amount of medium and large effect sizes. This is a surprising
result, because by logic, the most amount of differences would be expected at the 36
month follow-up time point, where the progressive subjects had developed their OA
significantly while the control subjects stayed approximately the same and therefore
the differences should theoretically get accentuated. Although not following the initial
expectation, this result supports the primary application of the 3D Texture Analysis
software in this thesis and that is to differentiate between CTRL and PRGS subject
at baseline. However, the amount of effect sizes found using femurs from baseline is
around twice as lower than the amount found in femurs from 36 month screenings.
Nonetheless, more than 70% of all the effect sizes detected at baseline were collected
by utilizing the tibial cartilage.

The statistical results for the studied grey level quantization schemes indicated
superiority of the dynamic grey level assignment. Dynamic grey level quantization
assigns the grey levels according to the pixel intensity distribution of the analyzed
cartilage, which seemed to benefit the calculations of δ effect sizes.

The statistical evaluation of bins suggested that smaller number of bins might be
beneficial. 4 bin quantizations yielded the most amount of small and medium effect
sizes. However, large effect sizes benefited mostly from 8 up to 16 bin quantization
schemes. The benefit of smaller number of bins follows the preconceived expectations
and is caused likely due to the reduced amount of noise within such schemes. The
higher the number of bins, the higher the noise effect to the GLCM. This might
subsequently result in worsening the predictive power. However, the bin number
has an inconsistent effect on the individual texture features. For example, features
Information Measure of Correlation 1 seemed to benefit from smaller number of bins
in terms of large δ effect sizes. On the other hand, Sum of Squares (Variance) found
the most large effect sizes from 64-bin quantized outputs. Overall, the range between
4 and 16 bins is probably more beneficial in general applications. Lower number of
bins does not allow much noise to affect the GLCMs, which might be the reason for
their better performance.

The highest amount of effect sizes was observed with offset 4. However, the offset
study provided a way to extract features for a selected feature subset to be utilized
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for the machine learning. Only features that had a total of identified large effect sizes
higher than the average total from all features were selected.

At the point of writing this thesis, only linear bin quantization was supported by the
3D Texture Analysis. Adjusting the bin size according to the histogram density might
also have an impact on the 3D Texture Analysis output features. In 2017, Di et. al.
[74] implemented non-linear GLCM quantization in order to improve seismic texture
analysis and their results show a potential for the non-linear approach. Therefore,
further research might attempt to study and implement non-linear quantization
methods and their impact on the knee OA prediction.

The machine learning analysis provided a more practical evaluation of the input
parameters and shows how they might influence the early prediction of knee OA
based on the cartilage data. Only subject data from baseline was used to train and
test the classifiers. The entire ML pipeline was constructed so that various types of
machine learning approaches would be utilized and, as a results, the various 3D TA
outputs would show their robustness. Due to the small amount of subject data, the
ML algorithms seemed to be prone to overfitting. Therefore, the training and testing
phase for each 3D TA output was repeated 200× with randomly selected training and
testing subjects and random initial weights. This was crucial for the study, because
the ultimate goal of the machine learning analysis was not to find the algorithm which
performs the best, but rather to see, which 3D TA outputs perform the best and showed
overall robust results and kept their classification power regardless the chosen ML
method.

The inclusion of multiple classifiers and the entire machine learning pipeline
provided a rigorous testing site for the 3D Texture Analysis outputs. Multilayer
perceptron was the most time-consuming, however provided the best possible results
from Femur (on average 63,2% from L50). The 2 hidden layers each containing
11 neurons created a powerful neural network, which might have pushed the model
towards overfitting and therefore diminishing the predictive potential. Naive Bayes,
on the other hand, showed the best results overall (on average 77,5% from L50,
77,4% from SUM). Naive Bayes exceled with its simplicity and therefore low time
consumption. SVM showed the worst performance, however that is most likely due
to the fact that no kernel function was utilized for the training. This, on one side,
significantly sped up the collection of the results, but on the other, cost the possible
predictive power. Probably the most relevant possibility for a future research is the
optimization of machine learning algorithms for the knee osteoarthritis prediction
using the 3D Texture Analysis outputs. The study could utilize some of the findings
from this thesis and expand the knowledge by maximizing the predictive power of the
various machine learning methods.

The feature selection for the machine learning might benefit from further testing.
On average tibia-based predictions showed improvements by using only the selected
feature subset, however femur-based predictions suffered. In the future, some more
sophisticated methods for feature selection might be implemented and analyzed,
for example Principal Component Anlaysis (PCA). The predictions based on tibial
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features significantly outperformed the predictions based on femur. Similarly to
the cartilage layers, a possible future study focusing on combining the femoral and
tibial features to maximize the predictive potential would provide the necessary
understanding and yet again push the osteoarthritis prediction forward.

The machine learning results indicated that dynamic grey level quantization
schemes yield improved predictions. This finding supports the results from the
statistical analysis. The dynamic grey level assignment is slightly more difficult to
implement, however the results support its effectiveness. 0 - dynamic was placed
amongst the 20 best overall performers with all 6 bin quantization schemes. It is the
only grey level quantization approach which placed itself amongst the performers
with bin quantizations 32 and 64. Dynamic - static showed above average results
in the statistical analysis. The table of best overall performers also includes static
- static quantizations 0_700 and 0_800, which support the recommendations by
Brynolfsson et. al. [11] to use a static grey level quantization which encapsulates all
the pixel intensities present within the ROIs. Static - static grey level quantization
is the simplest to use, however the 0 - dynamic approach seems to provide the same
results plus seems to be more resilient and capable of the same robustness with
higher bin quantization schemes. The special approach was included to see, if a
customized grey range for different cartilages, timepoints and study groups yield
superior differentiation and prediction. Although their results were competitive, the
dynamic approach seemed to provide better results. Moreover, in real-life clinical
setting, the special approach is not optimal. The idea is to find a simple grey level
quantization scheme, which can independently extract the most amount of information
from a single subject at a single time point.

The machine learning analysis further supports the smaller bin quantization
schemes. As seen from the overall best performers, despite the 0-dynamic 64-bin
second best performer, a lower number of bins seems to correlate with better prediction
of OA subjects. Additionally, low bin quantization schemes are faster to calculate
due to smaller GLCMs. This is another reason to opt for a lower number of bins,
especially on large datasets.

The results for the offset indicate that using higher offset setting might be beneficial.
Although higher offset seems to correlate with better machine learning output, it is
not very clear which offset number might yield the best result. Based on the results,
offset settings 2 and higher can be recommended. The comparison of offsets in terms
of robustness improvement also showed that offsets 3 and 4 might be better, however
that evaluation is based on heavy averaging. Although the indication is supported
by the statistical results, further research is necessary to generalize the offset setting.
Follow-up studies might be interested in collecting the 3D TA outputs from various
offset settings and averaging those outputs into one. Such protocol increases the
calculation time, since each offset requires its own TA run. However, provided there
is a good computational power, an average output across various offset might provide
valuable insights.



51

The importance of the input parameters was demonstrated by measuring the
difference in robustness between the best performing and worst performing 3D
Texture Analysis outputs in each collected ML pipeline output. The average measured
difference was approximately 25% and the maximum found difference was over 60%.
In other words, there was an extreme case of more than 60% difference in robustness
between the 3D Texture Analysis outputs applied with the same machine learning
parameters. The average difference of 25% basically says, that by optimizing the 3D
TA input parameters, the predictive performance can increase on average by 25%.

This thesis was a subject to a number of limitations. The subject dataset in this
thesis consisted of only 20 subjects screened at two timepoints (baseline and 36 month
follow-up). The small sample size might be arguably one of the biggest limitations of
this study due to its probable impact on the classifiers. However, a limited amount of
subjects was necessary in order to collect all the desired 3D Texture Analysis outputs
in the given time. Moreover, the available computer hardware might struggle severely
with a larger dataset. Future studies with larger sample sizes should definitely be
considered. The number of simultaneously calculated grey level and bin quantizations
was also limited by the computer hardware. Unfortunately, the 3D TA is exclusively
CPU operation and cannot be accelerated by a graphics card. Therefore, more CPU
cores and higher clock speeds should result in a reduction of the computation time
and larger RAM should be able to accommodate for more quantization schemes to be
calculated simultaneously.
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6. CONCLUSION

This thesis attempted to optimize the input parameters of a novel GLCM-based 3D
Texture Analysis software in order to maximize its predictive capabilities of knee
osteoarthritis. The studied parameters were assumed to have a significant impact
on the output texture features and, therefore, have a potential to influence the early
prediction of knee OA. The software was applied onto a study dataset of 10 control
subjects and 10 progressive subjects containing cartilage data from the baseline and
the 36-month follow up screening. The outputs were compared in terms of their ability
to identify significant δ effects between the subject cohorts. The machine learning
phase attempted to predict the knee OA purely from the baseline data, where both
control and progressive subjects showed no signs of the disease.

Adjusting the grey level quantization scheme according to the cartilage pixel
intensity distribution had a positive impact on the predictive power of the calculated
texture features. Bin quantization schemes utilizing 4 to 12 bins were found to not only
require less amount of computation time but also yield the most robust predictions.
Although offsets > 1 were associated with improved results, the optimal offset setting
remains undetermined and further investigation is recommended.

The results indicated that the 3D Texture Analysis input parameters can have a
significant impact on the output features and consequently on their predictive power.
The presented results also prove that the 3D Texture Analysis software holds a solid
potential for accurate early prediction of knee osteoarthritis from the baseline data. The
findings of this thesis might provide some guidance for the possible future research
activities utilizing the 3D Texture Analysis software. The goals of this thesis have
therefore been achieved. Further studies, especially focusing on optimization of the
machine learning methods, should improve and stabilize the predictive capabilities of
the software.
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