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Biomass thermal conversion processes, such as pyrolysis, tend to produce mixtures of mono- and 

poly-aromatic species. While the high aromatic content is desirable in gasoline fractions, middle-distillate 

cuts, particularly jet fuel and diesel, require upgrading via hydrogenation and ring opening to achieve 

better combustion characteristics. There have been many proposed methods for producing drop-in fuels 

from woody biomass, one of them being Thermal DeOxygenation (TDO). The TDO process converts 

organic acids from cellulose hydrolysis into a low-oxygen bio-oil containing large amounts of substituted 

naphthalene compounds. 

Poly-aromatic molecules, such as those found in TDO oil, have low cetane numbers (CN), 

particularly due to their high aromatic content. Even after deep hydrogenation, certain combustion 

characteristics, such as specific volume, hydrogen content, and CN may still be below required 

specifications. Thus, naphthenic ring opening coupled with aromatic hydrogenation is the desired process 

to enhance the fuel characteristics.  

This research focuses on the hydrogenation of 2-methylnaphthalene (2-MN) to increase the CN. 

These reactions are performed industrially using a precious metal catalyst (e.g., based on palladium or 

platinum), but because of their intrinsically high cost and sensitivity to impurities, we focused on 



  

supported nickel catalysts to perform the desired reactions. We hydrogenated 2-MN in a down-flow 

trickle-bed reactor at a variety of operating conditions.  

In this research, we compared several Ni catalysts to a commercial Ni catalyst with respect to 

reaction rate and product selectivity. Impregnated Ni catalysts showed higher activation energies and 

lower reaction rates than the commercial catalysts, but coprecipitated Ni catalysts produced products 

with similar selectivities as the commercial catalyst. We found that higher amounts of Ni in the 

coprecipitated catalysts slightly increased the cis/trans-methyldecalin ratio, whereas higher temperatures 

decreased the same ratio. Impregnated coprecipitated catalysts with Ni and a precious metal also changed 

the cis/trans-methyldecalin ratio. Although bimetallic IrNi and PdNi catalysts barely altered the ratio, the 

PtNi catalyst was selective towards trans-methyldecalin, whereas RuNi was selective towards cis-

methyldecalin. We provided a possible explanation for that observed selectivity as well as other trends 

throughout this research. 
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CHAPTER 1 

INTRODUCTION 

MOTIVATION 

Fossil fuels play a crucial role in our everyday lives, allowing us to maintain a high standard of 

living and forming a foundation for modern society. In the last handful of decades, the United States has 

been a net importer of petroleum products, recent events have allowed the United States to be a net 

exporter and one of the largest oil producers in the world. Crude oil production is projected to reach 14 

million barrels per day by the year 2022 and remain at this level through 2040.1 And of the products 

obtained from oil, transportation fuels, such as diesel and jet fuel, are projected to have increased demand 

in the United States at least through 2050.  

Most commercially available transportation fuels are petroleum-based, despite their detrimental 

environmental effects and status as a nonrenewable energy source. Over the last two decades, there has 

been a push towards the use of renewable and sustainable fuels from feedstocks like ethanol and 

cellulose. These renewable fuels are a sustainable alternative to traditional fossil fuels and comprised 

approximately 7.3% of the fuel blending pool in 2019.1 By 2050, that market share is expected to grow to 

about 9.0% with moderate fuel prices, but models with higher crude oil prices predict the biofuel market 

share to rise to about 13.5%. 

Cellulosic fuels could be an important source of biofuel in many parts of the United States. 

Cellulose comprises approximately 40 to 50% of wood content, and it can easily be obtained from woody 

biomass using existing techniques and infrastructure. Additionally, sources of cellulose are numerous and 

include forest residues, agricultural residues, and municipal solid waste, just to name a few. Efforts have 
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been made to develop processes that economically convert these waste materials into usable 

transportation fuels, which can reduce our reliance on fossil fuels.  

In this thesis, we discuss a process coined Thermal DeOxygenation (TDO) that produces an 

aromatic-rich oil from cellulose hydrolysate. We evaluate methods of upgrading the material into diesel 

and jet fuels by use of model compounds to study hydrogenation reactions over a variety of catalysts. The 

conversion and selectivity data were compared to those obtained using a commercial hydrogenation 

catalyst. We also discuss future upgrading steps that could be employed to use TDO oil as a blending agent 

in diesel fuel. 

To understand how cellulosic fuels might fit into the existing transportation fuel infrastructure, it 

is helpful to understand the process of refining petroleum as well as similarities that exist between 

renewable fuels and refinery intermediates. 

PETROLEUM REFINING 

BACKGROUND 

Since the start of the Industrial Revolution, fossil fuels have played an increasingly important role 

in advancing society and increasing our quality of life. In the 18th century, the mining and burning of coal 

was essential for the production of iron, which helped spur economic growth throughout Europe and the 

United States. Most power generated today in the United States and around the world comes from 

burning coal, petroleum (oil), and natural gas. Additionally, most plastics are derived from petroleum, 

which are used for a large array of consumer goods from food storage to furniture. However, the largest 

use of petroleum is for liquid transportation fuels. Although small seeps of oil had been used since ancient 

times, large-scale oil production started in the late-1850’s after the discovery of oil by Edwin Drake in 

Titusville, PA. A few years later in nearby Findlay, OH, the first commercial natural gas well was drilled. 
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Although the fossil fuel industry has dramatically increased production and designed vast new 

technologies since the first wells and mines were constructed, the demand for these materials has also 

grown. 

Transportation fuel demand is expected to increase worldwide in the future, and the demand for 

cleaner-burning diesel fuel is projected to increase much faster than gasoline. This growth in demand is 

largely driven by the Asia-Pacific region, where diesel fuel is more commonplace.2 This is in contrast to 

North America, where gasoline demand is higher. And while gasoline demand is projected to increase by 

2 million barrels per day, the increase in diesel is projected to be about 5 million barrels per day.3  

Although there is increased demand for transportation fuels, there has also been a notable 

decrease in the availability of conventional reserves throughout the world because those were 

preferentially extracted due to their lower boiling points and number of impurities. Unfortunately for 

refiners, unconventional reserves (e.g., shale gas, heavy oil, bitumen, etc.) are becoming more commonly 

extracted. These are unwelcome changes because these residues contain larger quantities of nonvolatile 

(i.e., asphaltene) components and heavier molecules. In turn, these are more difficult to refine and 

contain higher quantities of heteroatoms.4 This trend is evidenced by the decrease in average crude oil 

specific gravity by 0.12 °API/yr and an increase in the average sulfur content by 0.057 wt%/yr between 

1997 and 2001.5 Figure 1 shows characteristics of conventional and unconventional reserves of crude oil, 

while Table 1 shows the composition of a typical barrel of petroleum. 
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Figure 1. Viscosity, density, and specific gravity of some conventional and unconventional reserves. 

Reproduced from Speight (2007).4 
 
 

Table 1. Ultimate analysis of typical petroleum reserves. Adapted from Speight (2007).4 
 

Element Composition 

Carbon 83 – 87% 

Hydrogen 10 – 14% 

Oxygen 0.05 – 1.5% 

Nitrogen 0.1 – 2% 

Sulfur 0.05 – 6% 

Metals (Ni and V) <1000 ppm 

 
 

Petroleum refineries are highly complex and systematic processing facilities that can produce vast 

quantities of fuel and petrochemicals from crude oil feedstocks. Although crude oil is distilled into 

different fractions, each fraction usually requires a series of upgrading steps before reaching the desired 

product. A schematic of a refinery is displayed in Figure 2, which shows several intermediate steps that 

are used to produce gasoline (motor gasoline blending) and diesel fractions (distillate fuel blending).  
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Figure 2. Refinery streams used to produce different petroleum fractions from light crude oil. 

Reproduced from Speight (2007).4 
 

AROMATIC FRACTIONS OF PETROLEUM 

One common theme for many of the units in Figure 2 is that they require hydrogen. Feedstocks 

for those units generally contain large quantities of aromatic molecules that need to be hydrogenated or 

hydrocracked to produce lower-boiling-point molecules. While the straight-run distilled fractions are 

valuable, the materials from the bottom of the barrel are also important. This is because large asphaltenes 

can be broken down into many smaller molecules, which have higher demand and fetch higher prices than 

asphalts or resins.6 These smaller molecules are useful as blending agents in gasoline or diesel fuel, or 

they can be converted into molecules of the BTX (benzene, toluene, xylene) fraction. BTX molecules are 

projected to have higher demand in the future, and prices for benzene and xylene are predicted to 

increase more than toluene.7,8 But regardless of the final material use, there are several refinery streams 
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that require upgrading (via hydrogenation or hydrocracking) to be blended into fuel or converted to BTX 

molecules. These feedstocks are all similar in the fact that they contain large quantities of unsaturated 

(aromatic) molecules.  

Light Cycle Oil (LCO) is the best-known petroleum stream that contains aromatic molecules. It is 

a middle distillate fraction (170° – 370°C) produced from a fluid catalytic cracking (FCC) unit. LCO is known 

for its high sulfur, nitrogen, and aromatic (diaromatics in particular) content. In the past, it was added to 

heavy fuel oil (for use on ships) to change the viscosity, but with decreasing demand for those heavy oils, 

it is an ideal candidate to upgrade to more valuable products.9 In a refinery, LCO is typically processed in 

one of two ways: 1- complete hydrotreating and heteroatom removal then blending in diesel fuel or  2- 

partial aromatic saturation and heteroatom removal, then hydrocracking to produce a BTX fraction.10  

Atmospheric gas oil (AGO) is an aromatic stream that is sometimes present near the bottom of 

the atmospheric distillation column, with a boiling point range of 250 – 350°C.3 It has similar 

characteristics to heavy fuel oil, and depending on the refinery, the terms are somewhat interchangeable.4 

Vacuum gas oil (VGO) is another important source of aromatic molecules that are used in the diesel 

blending pool. These materials are fractionated from the vacuum distillation unit and are sent to either a 

hydrocracking unit or to the FCC to produce middle distillates. Coker gas oil (CGO) also contains a high 

quantity of aromatic materials and is sent to the same units as VGO, but it differs from VGO because it is 

formed in the coker.   

Vacuum residue (VR) is the heaviest fraction produced from the vacuum distillation of 

atmospheric bottoms, as Figure 2 shows. The VR fraction contains hydrocarbons with atmospheric 

equivalent boiling points higher than 565°C, roughly 3% sulfur and 0.5% nitrogen, and upwards of 10 wt% 

asphaltenes (depending on the material source).4 With the increasing use of unconventional feedstocks 
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(such as heavy crude oil and bitumen), on average about 25 wt% of crude oil feed contains VR. 11 By the 

use of coking, visbreaking, cracking, and hydrocracking, this heavy VR material can be converted into 

lower-boiling point components. VR hydrocracking is usually performed in two reactors, with different 

catalysts operating at different temperatures. 

PETROLEUM REFINING REACTIONS 

During the refining process, there are multiple reactions that occur, which are useful in meeting 

fuel and industry standards for final products. Heteroatoms (oxygen, nitrogen, sulfur, and metals) are 

found in crude oil throughout the world, regardless of the deposit or geology as Table 1 shows. These 

atoms need to be selectively removed to avoid destroying or poisoning catalysts in downstream refining 

reactors and to avoid the formation of harmful compounds during combustion in an engine (e.g., nitrogen 

oxides, NOx, and sulfur oxides, SOx). 

Hydrogenation (HYD) is the process of adding hydrogen to unsaturated molecules. In this thesis, 

HYD reactions involve adding hydrogen to both olefins and aromatic molecules, but more often the latter. 

HYD is a common refinery process, and hydrogen is used to remove heteroatoms or functional groups 

from different fractions of crude oil. 

Hydrodearomatization (HDA), or aromatic saturation (ASAT), is the process of removing aromatic 

groups from crude oil. Although light fractions have very little aromatic content, polyaromatic molecules 

comprise a majority of heavier fractions. The amounts of aromatic molecules are limited in transportation 

fuels because they lead to the formation of particulate matter when burned. There are regulations in 

place that specify the maximum aromatic content of diesel fuel, which is currently capped at 35% in the 

United States.12 To address this issue, HDA reactions strive for partial or complete aromatic saturation, 

depending on the desired product. Typical HDA catalysts are also very active for HYD reactions as well.  
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Although Table 1 shows that the oxygen content of crude oil is very low, it is nonetheless found 

in a variety of functional groups. Lighter fractions contain few oxygen compounds, but heavier fractions 

of crude oil contain as much as 8 wt% oxygen, mostly found in phenolic-like groups.4 To remove these 

compounds, hydrodeoxygenation (HDO) is employed, and because oxygen is found in different functional 

groups, upgrading strategies vary depending on the molecules present in the specific fraction. However, 

when looking at all the reactions employed, HDO reactions are not critical upgrading steps for a petroleum 

refinery because oxygen is typically removed with other heteroatoms, such as sulfur and nitrogen. 

Hydrodesulfurization (HDS) is arguably the most important process in a refinery. Not only is the 

amount of sulfur in final products regulated (15 ppm S in diesel fuel), but sulfur also poisons many catalysts 

used in downstream operations. Most catalysts that facilitate HYD reactions also catalyze HDS reactions, 

though they can be limited because of sulfur poisoning and their activity level.4 Sulfur compounds in crude 

oil commonly take the form of thiophenes or benzothiophenes, both heterocyclic aromatic molecules.13 

The sulfur compounds are usually termed reactive or refractive species, which differ in their reactivity. 

Reactive sulfur species are reacted quickly when they reach the catalytic surface, but refractory sulfur 

species require longer residence times to reach the same level of HDS as reactive species.14 Sulfur is 

removed from HDS reactions as H2S, a deadly gas that is further converted to elemental sulfur using the 

Claus process. Because of the crucial importance of HDS reactions, there has been plenty of research in 

developing catalysts with higher sulfur tolerance and better ability to perform HYD and HDS reactions.  

Hydrodenitrogenation (HDN) is another reaction that takes place in petrochemical reactors 

because nitrogen is also heavily regulated. Most nitrogen-containing compounds are aromatic with 

nitrogen incorporated into a cyclic structure (such as pyrrole, pyridine, indole, and other derivatives).15 

Nitrogen is removed from the reactor in the form of NH3, which can temporarily poison many catalysts, 
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despite catalytic advances meant to tolerate higher amounts of ammonia. HDN is generally more difficult 

to accomplish than HDS because C-N bonds are more difficult to break than C-S bonds. However, since 

nitrogen comprises a smaller fraction of crude oil (as Table 1 shows), most catalysts are optimized for HDS, 

although there has been some recent interest in designing HDN catalysts as the nitrogen content of crude 

oil increases.4 

A vast majority of the metals found in crude oil are nickel and vanadium, with trace amounts of 

others, depending on the original source.4 The metals are not freely floating around in the oil; they are 

usually chelated in porphyrins. When passed over an HDS catalyst, hydrodemetallization (HDM) reactions 

take place. The metal is broken from its structure and is deposited on the catalyst surface, which in turn 

poisons the catalyst. For this reason, there are sometimes extra steps required to improve the catalyst 

lifespan. When there are high concentrations (>300 ppm) of metals, a guard reactor is sometimes used. 

The guard reactor uses a cheaper catalyst to remove metal heteroatoms without poisoning a more 

expensive HDS catalyst.4 However, to ensure continuous HDM, fresh catalyst is continuously added. 

Various catalysts have been developed for each of these petroleum refining reactions, and an 

example of an HYD/HDS catalyst is discussed in further detail in a later section (c.f.,  

Sulfided Catalysts). Although removing heteroatoms does not dramatically change the fuel 

combustion characteristics, the removal or saturation of aromatic molecules is crucial in producing diesel 

fuel with enhanced characteristics, like cetane number. 

CETANE NUMBER 

Cetane number (CN) is an important factor in determining the ignition quality of diesel fuel. Fuels 

with high cetane numbers have short ignition delay times and are more beneficial in an engine. Just as 

octane number is important for gasoline, cetane number is probably the most important factor that 



 

 

 
10 

affects the combustion of diesel fuel. Cetane numbers are typically between 0 and 100, and the scale is 

based on two chemicals, 1-methylnaphthalene and n-hexadecane.  

The linear hydrocarbon n-hexadecane (also known as n-cetane) is assigned a cetane number of 

100, whereas the polyaromatic molecule 1-methylnaphthalene is assigned to the number 0. Figure 3 

shows the cetane numbers of various classes of molecules. The graph shows that molecules with the best 

cetane numbers are paraffins and olefins, with isoparaffins and aromatics lagging behind. The graph also 

shows that the cetane number tends to increase with the number of carbons, although the molecular 

structure turns out to be more important than the number of carbon atoms in a hydrocarbon.  

 
Figure 3. Cetane numbers of some hydrocarbon structures. Reproduced from Rédey et al. (2011).16 

 
 

Cetane number is highly dependent on the arrangement of carbon atoms in a molecule.17 Linear 

molecules (i.e., paraffins) have higher cetane numbers than branched ones (i.e., isoparaffins), as Figure 3 

shows. In fact, the more branching that occurs in a molecule, the lower the cetane number, and molecules 

that have multiple branches lead to little-to-no cetane improvement from a molecule like decalin. Figure 

4 shows some products that can be obtained from decalin ring opening, a reaction that can occur on some 

hydrogenation catalysts. The first ring opening reaction produces chemicals that slightly increase the 
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cetane number, but the second ring opening is more important in the determination of the cetane 

number.18 The final products obtained from decalin can capture a wide range of cetane numbers, even 

beyond the ones shown in Figure 4.  

 
Figure 4. Cetane numbers for decalin ring opening. Reproduced from Santana et al. (2006).18 

 
 

The current fuel standard in most of the European Union is EN 590, which sets the minimum 

cetane number at 51. That is in contrast with most areas in the United States, which base their cetane 

number off ASTM D975 and have a minimum cetane number of 40, with values typically ranging between 

42 and 44.12 However, states have the opportunity to pass legislation that exceeds federal regulations, 

and California, which is known for having strict regulations, requires a cetane number of 53, much higher 

than the national average of 42.19 

As was mentioned before, aromatic molecules have the lowest cetane numbers of any 

hydrocarbon class. And of the aromatic molecules, polyaromatic compounds have lower cetane numbers 

than monoaromatic ones. From a refiner’s perspective, to increase the cetane number of a feedstock like 

LCO that has plentiful aromatic molecules, there should be hydrogenation followed by ring opening 

reactions.20 
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Naphthalene, a diaromatic molecule found in the diesel range, has a cetane number of only 5, and 

a density around 1 g/mL. The requirement for diesel fuel is to have a minimum cetane number of 40 and 

a maximum density (specific gravity) of 0.878 g/mL.21 Figure 5 shows that the hydrogenation of 

naphthalene to decalin dramatically improves the cetane number and density, but the two characteristics 

still remain below the required specifications. Ring opening can be used to increase the cetane number. 

However, it is important to use selective ring opening (SRO), which minimizes the branching in a molecule 

favoring products with higher cetane numbers. 

 
Figure 5. Cetane number and density of some molecules formed by decalin ring opening. Modified from 

Santana et al. (2006).18 
 

THERMAL DEOXYGENATION (TDO) OIL 

There have been many processes developed to produce diesel and other renewable fuels from 

cellulosic sources. The most common process uses pyrolysis, which involves heating biomass to produce 

a mixture of aromatic hydrocarbons. However, one of the issues with this process is that the oily mixture 

contains large amounts of oxygen, which makes it unstable and difficult to upgrade. It is also difficult to 

store and transport because it forms gums that clog pipes and other infrastructure. For these reasons and 

others, there have been other processes to produce renewable fuels. 
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Another process that has been developed to produce renewable diesel fuel is through a process 

called Thermal DeOxygenation (TDO). Schwartz et al. (2010) found that when calcium levulinate was 

heated to 450°C, it produced a vast array of substituted, cyclic hydrocarbons that had a potential higher 

heating value (HHV) of 35 MJ/kg.22 Case et al. (2012) further advanced the work by testing various 

mixtures of calcium formate and levulinate salts to further increase the HHV.23 They found that an 

equimolar mixture of levulinic and formic acids produced a bio-oil, shown in Figure 6, that had a very low 

oxygen content and a HHV of 40.7 MJ/kg.24  

 
Figure 6. TDO oil, showing phase separation between organic oil and water layers. Reproduced from 

Case et al. (2012).23 
 
 

Production of TDO oil requires both levulinic and formic acids, and the Biofine process can 

produce both acids from cellulose using a dual-reactor setup.25,26 The first reactor operates in plug flow 

mode and converts hexosan into a mixture of 5-hydroxymethylfurfural and hexose sugars. The second 

reactor, a continuous stirred tank reactor, converts hydroxymethylfurfural and the hexose sugars into 

levulinic and formic acid in a 1:1 molar ratio as Equation 1 shows: 

 𝐶!𝐻!𝑂" 	+ 2 ∙ 𝐻#𝑂 → 𝐶$𝐻%𝑂" +𝐻𝐶𝑂𝑂𝐻 (1) 
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Eaton et al. (2013) further studied the TDO oil by analyzing its combustion characteristics and 

increasing the reactor scale from a 300 mL Parr reactor to a 3 L semibatch reactor.27 They found that the 

oil had a broad boiling point distribution (75 – 550°C) and low total acid number, making it a candidate 

for different types of fuel. However, the high aromatic content causes the specific gravity, hydrogen 

content, and cetane number to be off from the required specifications for diesel fractions. Further 

evaluations of the distilled fractions indicated that about 15 wt% of the crude TDO oil was in the naphtha 

fraction (<200°C) with an octane rating of 81 – 87 and had potential for blending in gasoline.27 Further 

distillation yielded about 70 wt% of the fuel in the middle distillates region, with the remaining 15 wt% 

fraction present as heavy gas oils. 

In another study, Eaton et al. (2015) further increased production of crude TDO oil by increasing 

the scale to a 50 L semibatch reactor.21 The crude oil was found to have similar characteristics as the oil 

from the 3 L reactor, and several of those properties are displayed in Table 2. Unlike pyrolysis oil which 

contains a high percentage (~20 wt%) of oxygen, TDO oil is noted for its low oxygen content (<6 wt%). 

Additionally, the oxygen atoms are mostly present in ketone and alcohol functional groups, which are 

easily removed by catalysts. However, the hydrogen content and cetane number were found to be well 

below specifications due to the high aromatic content of the middle distillate fraction. The crude TDO oil 

needed further upgrading to be used in diesel or jet fuel fractions.   
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Table 2. Properties of crude and hydroprocessed TDO oil as reported by Eaton et al. (2015).21 
 

Fuel Characteristic ASTM Method Requirementa Crude Hydroprocessed 

Density (kg/dm3) D1298 0.876 (max) 1.003 0.89 

Carbon (wt%) D5291  86.3 87.4 

Hydrogen (wt%) D5291 13.5 (min) 8.3 12.7 

Oxygen (wt%)b D5291-Diff  5.7 - 

Cetane Number D976 40 (min) -c 26.3 
a Requirements for ASTM D975 No. 2 Distillates 

b Oxygen content measured by difference. 
c Cetane number was not tested for crude TDO oil, but it was estimated to be <10.  

 
 

In the same study, Eaton et al. (2015) further hydroprocessed the TDO oil using a silica-alumina-

supported nickel catalyst purchased from Alfa Aesar.21 They obtained a 94% mass recovery of 

hydrotreated TDO oil after processing for 700 hours of time-on-stream, and the upgraded TDO oil had a 

better density, hydrogen content, and cetane number values than the crude oil. The oxygenate species 

had also been completely removed from the hydroprocessed oil, but the cetane number of the fuel was 

still only found to be 26.3. Analysis of the molecules found in the naphtha fraction of crude and 

hydroprocessed TDO oil are found in Figure 7. 

 
Figure 7. Molecular classes of components found in crude and hydroprocessed TDO oil at various carbon 

numbers. Reproduced from Eaton et al. (2015).21 
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Although hydroprocessing the fuel with the Alfa Aesar catalyst increased the values of the crude 

TDO oil, it still did not reach specifications. This problem was caused because the catalyst did not 

completely hydrogenate the molecules and because the cycloparaffin content was still too low. 

 
 

Figure 8. GCMS chromatogram of TDO oil with major peaks displayed. *Labeled molecules are not 
necessarily the correct isomer present in TDO oil but are meant to give the reader an illustration of a 

possible isomer. 
 
 

The major components of TDO oil are mono- and diaromatic molecules, as Figure 8 shows, with 

the most common molecule being 2-methylnaphthalene (2-MN), a diaromatic compound. Because of its 

prevalence in TDO oil and the relative difficulty of hydrogenating and ring opening polycyclic molecules, 

2-MN would make a good model compound to study. If a catalyst was designed that had good 

hydrogenation ability, we could potentially increase the cetane number of the fuel beyond the values 

reported by Eaton et al. (2015). Then, the TDO oil could potentially be used as a renewable blending 

component for diesel or jet fuels. 

UPGRADING CHEMISTRY 

Like petroleum, TDO oil is a complex mixture of molecules, comprising many hydrocarbon classes, 

as Figure 7 shows. The hydroprocessing experiments performed by Eaton et al. (2015) did not completely 
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hydrogenate the aromatic molecules found in crude oil, and although there was an increase in the 

cycloparaffin (naphthene) content, it was not enough to increase the cetane number of the fuel, owing to 

the low amount of paraffins and olefins. 

To convert the aromatic and naphthenic molecules into ones that have better combustion 

characteristics, there are a variety of chemical reactions that can occur. The reactions occur on the surface 

of a catalyst, which ideally can be tailored to promote certain reactions for improving the combustion 

characteristics of fuel and avoiding unwanted side reactions.  

Table 3. Types of reactions discussed in this thesis. 
 

Reaction Type: Sample Reaction:  

Dehydrogenation 
 

(Reaction 1) 

Hydrogenation 
 

(Reaction 2) 

Isomerization 

 

(Reaction 3) 

Ring Contraction 
 

(Reaction 4) 

Ring Opening / 
Hydrocracking  

(Reaction 5) 

 
 

Table 3 showcases examples of most of the reactions that are discussed in this report. Reaction 1 

is a dehydrogenation reaction that converts decalin (C10H18, decahydronaphthalene) to naphthalene 

(C10H8). Dehydrogenation reactions are thermodynamically favored at high temperatures (>400°C) and 

are one of a limited number of reactions that generate hydrogen (as opposed to consuming it) in a 

- H2

+ H2

+ H2
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petroleum refinery. Reaction 2 is a hydrogenation reaction, which proceeds in the opposite direction as 

reaction 1. This process consumes hydrogen and is thermodynamically favored at low temperatures. 

Because this thesis focuses on hydrogenation reactions, these are treated in more detail in another 

section (c.f., Hydrogenation). 

Reaction 3 is an isomerization from 1-methylnaphthalene (a-methylnaphthalene) to 2-

methylnaphthalene (b-methylnaphthalene). Both molecules have the same molecular formula, C11H10, 

and they only differ by the position of the methyl- group on the naphthalene ring. Isomerization reactions 

tend to occur at higher temperatures and on acidic sites of a catalyst. 

Reaction 4 is a ring contraction reaction forming methylperhydroindan from decalin. This reaction 

also does not require hydrogen and both molecules have identical molecular formulas of C10H18. The only 

difference is that a cyclohexane-like molecule (6-membered ring) in the structure is converted to a 

cyclopentane-like ring (5-membered ring). This process is only possible over a Brønsted acid site and is 

usually paired with a ring opening or hydrocracking reaction (reaction 5).28 In this last reaction, the 

addition of diatomic hydrogen to decalin opens one of the 6-membered rings. Ring opening reactions 

usually occur alongside ring contraction reactions, and these high-temperature processes are useful in 

creating molecules with high cetane numbers. 

HYDROGENATION 

Hydrogenation (HYD), also known as hydrotreating, is the process of adding hydrogen to 

unsaturated molecules or to remove heteroatoms. However, in the scope of this thesis, hydrogenation 

reactions occur when hydrogen is added to saturate aromatic molecules, similar to reaction 2 in Table 3. 

MODEL COMPOUNDS  
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Although reaction 2 shows the hydrogenation of naphthalene, a diaromatic compound, 

researchers have analyzed the hydrogenation of a variety of aromatic compounds. These molecules are 

good representations of aromatic streams present in LCO and other aromatic-rich petroleum streams. In 

general, the last aromatic ring in a molecule is the most difficult to saturate because the ring contains 

resonance stabilization.29 Additionally, hydrogenating the first ring in naphthalene only requires the 

addition of two H2, whereas three are required for the final ring. Moreau et al. (1988) claimed that the 

hydrogenation of naphthalene behaved similarly to the hydrogenation of butadiene (an olefin), whereas 

the hydrogenation of the final ring in tetralin behaved like benzene (an aromatic molecule).15 

The reactivity of aromatic molecules follows the trend polyaromatics ≥ diaromatics > 

monoaromatics because larger molecules have an easier first hydrogenation step. In a study of tetralin 

(monoaromatic), naphthalene (diaromatic), and phenanthrene (polyaromatic) hydrogenation, 

Beltramone et al. (2008) found that the conversion was >90% for phenanthrene and naphthalene, but at 

identical conditions, the tetralin conversion was only 45%.30 

 
Figure 9. Common model compounds used in hydrogenation reactions. 

 
 

It has also been postulated that the hydrogenation of tetralin (monoaromatic) and naphthalene 

(diaromatic) take place via different reaction mechanisms or on different adsorption sites.31 Rautanen et 

al. (2002) showed that the deactivation order for the hydrogenation of naphthalene and tetralin was 

significantly different and did not follow a sequential model of hydrogen addition, which was assumed to 

occur at the time. 

PhenanthreneNaphthaleneTetralin
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In hydrogenation studies, the concentration of the model aromatic species is generally not very 

high. The first reason is because aromatic species like naphthalene and phenanthrene (shown in Figure 9) 

are solids at room temperature, so it would be challenging to test in a flow reactor unless they were 

dissolved. Secondly, with such a high concentration of aromatic species, there must also be an increase in 

catalyst mass to reach an appreciable weight hourly space velocity (WHSV). This is also a challenge 

because aromatic molecules can deactivate catalysts quickly, so having a lower aromatic concentration 

usually means a lower deactivation rate. In most catalytic studies, there is usually between 5 and 20 wt% 

of aromatics in the feed, which is dissolved in a nonpolar solvent that cannot undergo hydrogenation 

reactions. For these reasons, toluene or cyclohexane are not appropriate solvents because they could 

undergo hydrogenation and ring opening reactions respectively. As a result, the solvent for these 

reactions is usually a paraffin, like n-decane. 

MONOAROMATICS. The hydrogenation of monoaromatic molecules has been heavily researched. 

Most studies focus on hydrogenation of benzene or tetralin, but phenol has also been a common starting 

point for hydrodeoxygenation reactions.20 One of the most important studies on benzene hydrogenation 

was performed by van Meerten et al. (1976), who found that there are three different ways that benzene 

can adsorb on a catalytic surface.32 Two of the forms are reactive, but the last form of adsorption occurs 

dissociatively and acts as an inhibitor to the hydrogenation reaction. Lin and Vannice (1993) also found 

that the strength of benzene adsorption onto Lewis acid sites increased as the number of sites increased.33   

However, since benzene and toluene are found in the gasoline fraction of crude oil, our interest 

in their hydrogenation is limited. However, tetralin (the first compound shown in Figure 9) is considered 

a monoaromatic molecule even though it is formed from the partial hydrogenation of naphthalene (a 

diaromatic) and is found in diesel fractions of crude oil. Tetralin hydrogenation was found to take place 
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on both metal sites and with metal-assisted acid spillover sites, indicating that bifunctional catalysts are 

ideal for this process.34 Additionally, Rautanen et al. (2002) also found that the hydrogenation of tetralin 

was irreversible, as decalin did not dehydrogenate back to tetralin, especially if there was still tetralin in 

the feed.  

DIAROMATICS. Naphthalene, the simplest diaromatic compound, has been studied extensively, 

and a review and study of naphthalene hydrogenation was published by Weitkamp (1968).29 In it, he 

discussed the likelihood that naphthalene adsorbed differently on different metals (Pt, Pd, Ru, and Rh), 

which was confirmed in later studies. Jacquin et al. (2003) found that on rhodium and ruthenium, 

naphthalene adsorbed similar to an olefin, whereas on platinum, naphthalene adsorbed like an aromatic 

molecule.35 They also postulated that the adsorption caused the final product distribution to change, and 

for rhodium and ruthenium, the major product was mostly tetralin, whereas fully hydrogenated decalin 

was the predominate product for platinum.  

Methylnaphthalenes have also been studied for hydrogenation reactions, though most studies 

focus on their hydrocracking ability. Miki and Sugimoto (1995) looked at hydrocracking reactions with 1-

methylnaphthalene (1-MN) and 2-methylnaphthalene (2-MN).36 They found that the hydrogenation of 1-

MN and 2-MN both favor saturation of the ring without the methyl group, although the ratio of 

methyltetralins was found to be independent of temperature for 1-MN and slightly dependent on 

temperature for 2-MN. They also noted that 1-MN tended to crack into lower molecular weight (LMW) 

fragments, whereas 2-MN tended to ring open instead of crack, which yielded higher molecular weight 

(HMW) fragments. Karakhanov et al. (2018) found the same ring opening result using a similar catalyst.37 

And although ring opening of 2-MN had a higher selectivity towards ring opening than 1-MN, the ring 

opening was still more difficult for the b-isomer (2-MN) relative to the a-isomer (1-MN).  
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POLYAROMATICS. Polyaromatic molecules like phenanthrene (see Figure 9), anthracene, and 

larger ring structures are not typically used as model compounds for hydrogenation reactions. These 

molecules have higher boiling points and, in a refinery, would be sent to a hydrocracker to break the 

molecules into smaller components rather than hydrogenating them. Additionally, the reactivity of 

polyaromatics is fairly similar to that of diaromatics, but in general, the trend is that the reactions are 1st 

order in the aromatic species and each successive ring saturation becomes more difficult for 

polyaromatics.20 

THERMODYNAMIC LIMITATIONS 

Hydrogenation is a exothermic reaction favored at low temperatures.38 Additionally, 

hydrogenation is a reversible reaction, and there are times where it may not be possible to achieve 

complete conversion. Cooper and Donnis (1996) showed the equilibrium concentration of an aromatic 

species, A, is given by Equation 2: 

 
𝑌&

𝑌& + 𝑌'
=

1
1 + 𝐾( ∙ 𝑃'!

)  (2) 

where YA and YH are the mole fractions of an aromatic species A and the hydrogenated product H, 

respectively, Ka is the equilibrium constant, PH2 is the hydrogen pressure and n is the number of moles of 

hydrogen required for saturation.20 Increasing the reaction temperature decreases the Ka which favors 

the aromatics, but high partial pressures of hydrogen, PH2, favor formation of the hydrogenated product. 

However, as discussed in the next chapter, most catalysts that are active for hydrogenation are 

more efficient at high temperatures, where the reverse (dehydrogenation) reaction is favored. This is 

especially true for sulfided catalysts, which require severe operating conditions to hydrogenate aromatic 

compounds. These catalysts require high temperatures and high pressures as well as low space velocities 

to favor the hydrogenation reaction and achieve acceptable aromatic saturation. Figure 10 shows 
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aromatic saturation of a heavy gas oil stream over a sulfided catalyst as a function of reactor temperature 

and pressure.  

 
Figure 10. Aromatic hydrogenation as a function of temperature and hydrogen pressure on Middle East 

heavy gas oil:  , 4.5 MPa; +, 6.5 MPa; *, 12.5 MPa. Reproduced from Cooper et al. (1992).39 
 
 

As Figure 10 shows, aromatic saturation is dependent on both the temperature and hydrogen 

pressure. At low pressures, there appears to be a point of maximum saturation, which occurs around 650 

K (375°C). However, increasing the hydrogen partial pressure dramatically increased the amount of 

saturation that occurs.  

Jacquin et al. (2003) also showed that naphthalene hydrogenation is thermodynamically limited 

at atmospheric pressure, and incomplete conversion (14-90%) was reached with a variety of metals, 

compared with almost complete conversion (>95%) when the reactions were conducted at 6 MPa.35 The 

high pressure requirement of hydrogen in these reactions is consistent with collision theory and Le 

Chatelier’s principle of forcing the reaction forward by adding more reactant.40  

Thermodynamic limitations also exist within the reaction products. Figure 11 shows the 

equilibrium that exists between cis- and trans-decalin, the fully hydrogenated derivatives of naphthalene. 

Rautanen et al. (2001) performed Gibb’s free energy calculations and found that trans-decalin is 
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thermodynamically favored by more than 90% at typical reaction temperatures.41 However, they showed 

that each catalyst had different selectivity and cis/trans ratios, which led them to conclude that the 

cis/trans ratio of decalin was governed solely by kinetics and was not thermodynamically limited. 

Furthermore, Schmitz et al. (1996) showed that the cis/trans ratio was highly dependent on the metal and 

support used for hydrogenation.42 The importance of forming each decalin isomer is discussed in further 

detail in the introduction of Chapter 4. 

 
Figure 11. Equilibrium between cis- and trans-decalin. 
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CHAPTER 2 

CATALYSTS IN OTHER HYDROGENATION STUDIES 

CATALYST SUPPORTS 

The majority of metallic catalysts are synthesized as metal nanoparticles dispersed on a support. 

Unsupported catalysts are uncommon, but there are some reactions that use them.43 While there are 

many reasons to use supported catalysts, perhaps the most important reason is the price of the metal 

being used. Reactions only occur on the surface of a catalyst, and any metal inside the bulk of a catalyst is 

essentially wasted, because it cannot participate in reactions. Some metals used for hydrogenation, like 

platinum and palladium, are very expensive (as Figure 12 shows), so limiting their use in a catalyst by 

supporting a small amount of metal (e.g., 1 wt%) on an inexpensive support makes more financial sense 

when dealing with large amounts of catalyst. 

Another important factor in determining a good support is finding a catalyst with a large surface 

area. Since reactions only occur at the catalyst surface, doubling the surface area of a catalyst could 

potentially mean doubling the number of reactions that can simultaneously occur (assuming there were 

no diffusion limitations and the metal was dispersed equally across both catalysts).  

It is generally assumed that at low metal loadings, metal nanoparticles become highly dispersed 

across the surface of a catalyst and act like nanoparticles (isolated from other metal clusters), but this is 

not always true. Some metal-catalyzed reactions can be assisted by or occur on the surface of a support. 

Hydrogenation reactions can be assisted by acid sites via several methods.  

Bifunctional catalysts (as discussed in this research) are catalysts that contain both metal and acid 

sites. The hydrogenation ability of metals will be discussed later (c.f., Metal Catalysts), but in general 

supports with a moderate acidity are most efficient at hydrogenating aromatic molecules. Supports with 



 

 

 
26 

no acidity are not able to assist the reaction, but supports that are too acidic will catalyze coking reactions 

that deactivate catalytic sites and excessively crack components.44 The acidic strength of catalytic supports 

follows the order: SiO2 < Al2O3 < amorphous silica alumina < zeolites, which encapsulates supports with 

no acidity (silica) and supports with very high acidities (zeolites).45 

SILICA 

Silica (SiO2) is a commonly used support because of its abundance and very large surface area that 

can be attained (>1000 m2 g-1). Silica is also neutral in acidity because it lacks both Brønsted and Lewis 

acid sites. Thus, a hydrogenation catalyst supported on silica would only have metal sites. This is 

disadvantageous for hydrogenation reactions, because the support does not assist in the reaction. 

However, it can be beneficial to help avoid any reactions that are caused by acidity, like isomerization, 

ring contraction, and ring opening reactions.   

Despite a lack of acid sites, silica is thermally stable and can easily be formed into mesostructures 

like SBA-15, HMS, and MCM-41. Of these, SBA-15 has been demonstrated to have better characteristics 

for hydrogenation of polyaromatic molecules.46 Additionally, incorporating aluminum into the framework 

of SBA-15 has been shown to greatly increase the acidity, which increases the catalyst’s ability to perform 

hydrogenation and ring opening reactions.47  

ALUMINA 

Alumina (Al2O3) is the most common support for hydrogenation reactions, mainly due to its high 

surface area, stability, and low cost.48 Of the different phases of alumina that can be synthesized, gamma-

alumina (g-Al2O3) has the best catalytic properties for most reactions owing it its higher surface area, 

presence of Lewis acid sites, and decent thermal stability. For the remainder of this thesis, gamma-

alumina will be referred to as alumina for simplicity.  
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Alumina possesses mainly Lewis acid sites, although there are a few weak Brønsted acid sites that 

can be found on the support. Those sites exist as isolated surface hydroxyl groups, but they comprise a 

very small number of the acid sites on the support.49  

Because most of the acid sites on alumina are Lewis acids, alumina is not a good fit for reactions 

that require Brønsted acid sites. For instance, the Brønsted acid sites on alumina were not abundant 

enough to isomerize or promote ring-opening reactions of aromatic compounds when tested.50 However, 

modifying an alumina support with halogens has been reported to increase their acidity and activity. The 

addition of Cl- was shown to increase the number of Brønsted acid sites on an alumina catalyst, which in 

turn increased the catalytic activity for methylnaphthalene hydrogenation.47 

AMORPHOUS SILICA ALUMINA   

Amorphous silica alumina (ASA) supports are comprised of a mixture of Si and Al atoms arranged 

on a molecular level (i.e., not a physical mixture of silica and alumina). ASA supports are usually comprised 

of more Si than Al, but they each can range from 0-100% of each element. Because the ASA support 

contains both Si and Al, it possesses both Lewis and Brønsted acid sites, which are relative to the Si/Al 

molar ratio. Catalysts with high amounts of Si have low Brønsted acidity, and in those catalysts, the Lewis 

acidity dominates over the Brønsted acidity.51 

Catalysts with atomic Si/Al ratios approximately equal to unity have ideal characteristics for 

hydrogenation experiments, with the range 0.75 to 1.5 being the best.52 In a study with catalysts of various 

amounts of silica and alumina, it was found that the SIRAL support (a type of ASA) with 40 wt% silica 

displayed the highest strength and quantity of acid sites.49 With higher silica content, the activity 

dramatically dropped as the support surface became coated with silica. 
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ASA catalysts also have other advantages over some supports. For instance, it was found that the 

acidity in an ASA support increased the sulfur tolerance of a precious metal catalyst supported on silica 

from a few ppm to 10 ppm.20 However, another paper suggested that precious metals impregnated on 

alumina had better sulfur resistance than ASA.9 From a commercial standpoint, ASA has limited use in 

most petroleum refineries because it has low tolerance to basic compounds, such as ammonia, which are 

common during HDN.4  

ZEOLITES 

Zeolites are a family of crystalline aluminosilicates with more than 1,000 synthetic varieties.53 

Zeolites are one of the most commonly employed industrial supports because of their high surface area 

and adjustable acidity.45 Zeolites can also act as catalysts themselves with their ability to perform some 

reactions without a metal. Zeolites (like ASA) have very high Brønsted acidity because of bridged hydroxyl 

groups between Si and Al atoms, and like ASA, the number of acid sites is proportional to the Si/Al molar 

ratio. However, zeolites differ from ASA because zeolites contain a crystalline framework, unlike the 

amorphous structure of ASA. 

Zeolites come in many shapes and sizes, and the pore size is crucial in determining what catalysts 

are appropriate for a reaction. Diaromatic molecules, like naphthalene, are too large to fit inside the pores 

of medium-pore zeolites, like ZSM-5.54 The kinetic diameter of naphthalene is 6.2 Å, and the pores of ZSM-

5 only measure 5.3 x 5.6 Å, so the reaction would be severely diffusion limited.38,53 However, large-pore 

zeolites like faujasite (zeolite Y, 7.4 x 7.4 Å) and b-zeolite can be used for polycyclic molecules.54 

Since zeolites can contain high concentrations of Brønsted acid sites, they have a tendency to 

crack molecules.55 These cracking reactions often lead to excessive coking on the catalytic surface, which 

causes the active sites to deactivate.44,56 The strength and number of acid sites can be decreased by 
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modifying the surface with addition of an alkali metal to ion-exchange on some of the sites, or by 

physically combining the zeolite a support with little Brønsted acidity, like alumina.9 Reducing the 

Brønsted acidity of the support yields higher amounts of hydrogenated products while limiting the 

number of hydrocracked products.  

Zeolites have also been shown to increase the sulfur tolerance of Pt and Pd catalysts. Because the 

zeolitic support pulls electron density out of surface metallic species, it decreases the strength of Pt-S 

bonds on the catalysts surface. This helps sulfur escape from the catalyst surface, and is therefore not 

converted into a permanent poison.57 

OTHER SUPPORTS 

There have been numerous other supports used in hydrogenation catalysts, including carbon, 

zirconia (ZrO2), magnesia (MgO) and titania (TiO2) to name a few. These supports are uncommon for 

hydrogenation of aromatics in petroleum upgrading, and as a result, there is little information on their 

usefulness. Carbon and magnesia are not used because they are neutral and basic supports, respectively, 

and do not assist metal sites in hydrogenation. And although zirconia and titania are acidic and are useful 

in bifunctional catalysts, their high cost and lower abundance limits their usability, although they have 

shown some promise as alternative supports for HDS reactions.14  

METAL CATALYSTS  

There are many factors to consider when designing a catalyst. The first and foremost of these is 

the activity of the metal. If the chosen metal cannot perform a reaction, then regardless of how efficient 

the catalytic system is, the reaction will not occur. The second consideration is the price of the materials. 

Although some metals are much cheaper, a lower activity is sometimes more detrimental than the 

material price. This is especially the case because industrial catalysts are expected to endure months or 
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years of continuous use (depending on the system conditions and presence of catalytic poisons). The 2006 

and 2019 prices of some common transition metals are displayed in Figure 12. 

     
Figure 12. Price of several transition metals used in hydrogenation catalysts using 2006 (left) and 2019 

prices (right).58 2006 prices reproduced from Eijsbouts et al. (2007).43 
 
 

Although most of the prices have remained consistent between 2006 and 2019, a few have 

dramatically changed. The price of rhenium has decreased, while the price of iridium and palladium have 

both significantly increased. Most of the expensive metals are precious metals, and with low natural 

abundances, it makes sense they cost more. Compare their prices to non-precious metals like nickel and 

cobalt, and you see a large difference. Non-precious metals remain very low in price compared to some 

precious metals that are used in hydrogenation catalysts. In this section, I will discuss the three main types 

of catalysts that are used in hydrogenation reactions, as well as benefits and drawbacks of each one. 

PRECIOUS METAL CATALYSTS 

A vast majority of precious metal catalysts are based on platinum or palladium, but there are 

other metals that also can perform these reactions. Huang and Kong (1996) studied hydrogenation of 

naphthalene with various metals supported on g-Al2O3 and found the activity followed the trend Pt > Pd 

> Rh > Ru > Ir.59 They found that after platinum and palladium, there was a large decrease in activity, which 
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explains why the latter three are uncommon in hydrogenation catalysts. Since most catalysts contain Pt 

or Pd, in this section I focus on their use and implementation.  

Platinum was one of the first metals found to perform hydrogenation reactions. Studies have 

shown that when compared on a variety of supports, platinum has a greater turnover frequency (TOF) 

than palladium.60 However, there are many factors that determine the metal activity, such as: metal 

dispersion, crystallite size, support interaction, and the metal incorporation method.47 

Palladium has also been used as an aromatic hydrogenation catalyst, albeit less often than 

platinum. One reason this may be is because in the presence of aromatics, palladium preferentially 

saturates olefins before aromatics.29 Weitkamp (1968) also found that palladium hydrogenated 

naphthalene directly to tetralin with 99.7% selectivity, whereas platinum formed more decalin, the fully-

hydrogenated form. Therefore, if a catalyst is meant to produce fully saturated products, it will likely be 

made of platinum, but for less-saturated products, palladium is the metal of choice. 

Additionally, a bimetallic combination of Pt and Pd was found to possess superior characteristics 

than each of the metals individually.55 They were found to be more efficient at hydrogenation reactions, 

and when paired with a zeolite support, they had a higher sulfur tolerance.20 

Despite their higher TOF and activity, precious metal catalysts have limited use because of their 

poor sulfur tolerance and high price. Although bimetallic PtPd alloys can have sulfur tolerance up to 50 

ppm, there is still a significant amount of sulfur that must be removed from feedstocks (like crude oil) to 

reach that level of sulfur (which is often not economical). Additionally, as Figure 12 shows, the cost of 

hydrogenation metals Pt and Pd remain very high ($40,000 and $80,000 per kg respectively as of 2019), 

and for the catalyst to be economically feasible, only a small amount of metal may be deposited onto the 
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catalyst. As a result, there were catalysts developed that were more efficient at higher sulfur content    

(c.f.,  

Sulfided Catalysts) and catalysts that were less costly (c.f., Non-Precious Metal Catalysts), which 

are discussed in further detail in the next sections. 

SULFIDED CATALYSTS 

Sulfided catalysts, also known as transition metal sulfide (TMS) catalysts, are ones that are used 

specifically for feedstocks that contain large quantities (100-6000 ppm) of sulfur. For this reason, these 

are the main catalysts used in petroleum applications. Sulfided catalysts simultaneously perform not only 

hydrodesulfurization (HDS), but also hydrogenation.   

Sulfided catalysts usually contain a Group VIB metal (Cr, Mo, W) coupled with a metal from the 

iron group (Fe, Co, Ni).4 Of these, Cr and Fe are rarely used, while Co, Ni, and Mo are widely used. In these 

catalysts, there is always at least one metal from each group. The reason for the coupling is because the 

Group VIB metal provides the metal needed for the active site, while Co and Ni are used as promoters for 

the reaction.   

The active sites on sulfided catalysts are complex, but a brief summary is presented here. It has 

been proposed that active sites on sulfided catalysts are found at coordinatively unsaturated points where 

exposed Mo atoms exist with sulfur vacancies.57 These vacancies are active for hydrogenation only if they 

are at the edge or corner sites of MoS2 structures, not at basal sites.  

Co- or Ni-promoted catalysts can enhance the rate of reaction by two different mechanisms that 

have been postulated. The first method (known as the contact synergy model) assumes that the promoter 

and active site each exist as separate crystallites, but the Co or Ni metal provides hydrogen atoms to the 

MoS2 site, which activates them, similar to a hydrogen-spillover mechanism.61 The second postulated 
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mechanism states that Co or Ni atoms on the corner sites are used to donate electrons to adjacent Mo 

atoms. These added electrons weaken the Mo-S bond and create sulfur vacancies, which are the active 

sites in hydrogenation reactions.62  

However, not all combinations of metals are equally efficient, and they also have different sulfur 

tolerances and HYD capacity. For instance, the hydrogenation capacity of the catalysts follows the trend: 

NiW > NiMo > CoMo > CoW.4 However, CoMo has the highest sulfur tolerance and HDS activity of any 

catalyst followed by NiMo. The catalyst that is most efficient at a desired reaction depends entirely on the 

feed to a reactor. Feedstocks with very high sulfur content usually require CoMo, while applications where 

aromatic saturation is most important usually require NiMo.9  

Sulfided catalysts are usually supported on a gamma-alumina carrier. This carrier contains a large 

surface area (200 to 300 m2 g-1) and provides moderate acidity for the reaction. Typically 13-20 wt% MoO3 

is added along with about 3 wt% of CoO and NiO.4 By adding both Co and Ni, the catalyst is able to perform 

at the optimal conditions for each metal. These catalysts are typically formed into extrudates between 1 

and 4 mm long and with a length/diameter ratio of 2 to 4.4 

One of the disadvantages of sulfided catalysts is that they have low TOF and thus only efficiently 

generate partially-hydrogenated products.20 When a feed containing aromatics was fed into a two-stage 

reactor (NiMo in first stage, NiW in second stage), only moderate (25-50%) aromatic saturation occurred, 

which was due to lower activity.57 This is contrary to most precious metal catalysts, which generally 

produce fully-hydrogenated species.  

Another issue with sulfided catalysts is that they require a feed containing an appreciable amount 

of sulfur (at a minimum of about 50 ppm). This is because sulfur is routinely expelled from the catalytic 

surface, creating sulfur vacancies. Over time, as more and more sulfur vacancies are formed, the dwindling 
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amount of remaining sulfur on the surface becomes more difficult to remove and with a feedstock lacking 

the sulfur needed to replenish the catalyst, the activity would rapidly decrease, and the catalyst would 

need to be re-sulfided to become activated again. For this reason, sulfur is required in the feed to maintain 

a constant amount of sulfur that can replenish the sulfur lost when the sulfur vacancies are lost. 

Because TDO oil is formed from cellulosic feedstocks, it inherently contains very little sulfur, 

making it a potentially attractive feedstock for ultra-low sulfur distillate (ULSD) fuel. However, to use a 

sulfided catalyst to hydrogenate TDO oil, sulfur would need to be added to the feedstock. This is not the 

best option because the final product would contain sulfur, and the fuel might not meet ULSD 

specifications. However, there are also other catalysts that are less expensive and do not require sulfur in 

their feed that can efficiently hydrogenate cellulosic fuels, such as TDO oil. 

NON-PRECIOUS METAL CATALYSTS 

Catalysts containing non-precious metals occupy a niche position for some reactions. They are 

much more affordable than precious metal catalysts and they do not require sulfur in the feed, but they 

do generally exhibit lower TOF’s than precious metals and cannot tolerate high levels of sulfur (although 

they have higher tolerance than some precious metal catalysts). The only metal that falls into and is 

substantially used in this category is nickel.  

Nickel is attractive for aromatic hydrogenation because it is active at low temperatures and has a 

moderately high activity.31 Its activity also dramatically increases as the hydrogen partial pressures 

increases, making reactions at high pressure advantageous.63 Combining Ni with a precious metal catalyst 

can also have advantages, and Castaño et al. (2007) found that the incorporation of 1 wt% Pd onto Ni 

tempered catalyst deactivation and further increased activity.51 
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The biggest drawback with non-precious metal catalysts is their lower activity towards 

hydrogenation. Although they will activate aromatic hydrogenation reactions, they need more active sites 

to achieve the same conversion as their precious metal counterparts. In this thesis, the vast majority of 

catalysts produced were supported Ni catalysts. 

CATALYST DEACTIVATION 

Deactivation is a topic of interest when designing any sort of catalyst, because there are multiple 

methods of catalytic deactivation. While some types of deactivation are temporary, others are 

permanent. Determining what types of poisons are present in a feedstock is crucial to determining which 

type or types of deactivation will likely be relevant. The four main classes of catalyst deactivation are 

sintering, coking (fouling), poisoning, and erosion (leaching). A short description of each type of 

deactivation follows. 

Sintering is a thermal process by which a catalyst loses surface area because of exposure to high 

temperatures. This loss in surface area is usually two-fold, with a loss in support surface area as well as a 

loss in metal surface area. The support surface area may be lost because of changes in the crystalline 

structure of the support or because of pore clogging that occurs as pores narrow or close.64 Since the 

surface of metal particles are where most catalytic reactions take place, it is important to retain as much 

metallic surface area as possible. When temperatures approach the Tammann temperature (roughly 40% 

of the melting point of a metal), individual metal nanoparticles agglomerate into larger crystals.65 

Additionally, Ostwald ripening occurs when small nanoparticles dissolve from the catalytic surface and are 

redeposited in larger clusters. Either way, these large crystals have less surface area than the smaller ones, 

which leads to a smaller area for catalytic reactions to occur and thus lower activity.  
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Another common type of catalyst deactivation is known as coking or fouling. This deactivation 

occurs when carbonaceous deposits, known as coke, form on the surface of a catalyst. The coke is formed 

through a complex interaction between the metal and hydrocarbon, and coke is built up over time and 

blocks access to metal sites, which can completely clog pores. However, coke is not considered a poison, 

but rather a temporary inhibitor.64 Catalysts coated with coke can usually be regenerated by burning the 

carbon off the catalyst. Additionally, coke production can be minimized by running reactions at high 

pressures and using excess hydrogen.  

Another type of deactivation is called poisoning, which occurs when molecules irreversibly 

chemisorb onto a catalytic surface and poison the active sites. Because the chemisorption is irreversible, 

catalyst poisons cannot easily be removed from the surface. The active sites that are poisoned are 

permanently lost, so minimizing this type of deactivation is crucial to retaining activity and long catalyst 

lifespans. 

The last type of deactivation I discuss is erosion, which is a mechanical process. As fluid (liquid or 

gas) flows through a reactor, it can wear away metal nanoparticles on the outside of a catalyst. This 

process is similar to how water from the Colorado River eroded layers of sandstone over millions of years, 

creating the Grand Canyon (although this is a much smaller scale).  

Together, these four types of deactivation are common in catalytic systems, but in hydrogenation 

applications, coking and poisoning are the major ones observed. Coking is commonplace in many 

reactions, and coke is easily formed on fresh catalysts when a feedstock with aromatics is flowed over it.9 

Rautanen et al. (2002) studied a Ni/Al2O3 catalyst and noted that significant deactivation occurred even 

without the presence of impurities, which indicated that coking was the major deactivation mechanism, 

not poisoning.31 They also went on to determine that the hydrogen pressure did not have a significant 
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effect on deactivation and that the coke formation was only mildly influenced by temperature. In another 

study, Park et al. (2013) studied a spent catalyst from 1-methylnaphthalene hydrogenation on a solid-

state NMR, and their 13C spectrum is displayed in Figure 13.50 

 
Figure 13. 13C solid-state NMR spectrum of used alumina-USY catalyst. Reproduced from Park et al. 

(2013).50 
 
 

Figure 13 indicates that the coke on the catalyst contained a significant amount of aliphatic and 

aromatic carbons, indicating that 1-methylnaphthalene was not likely the major component in the coke. 

Rather, it appears that the coke is somewhat similar to a methyltetralin structure, possessing both 

aromatic carbons as well as primary and secondary aliphatic carbons. This conclusion fits with the result 

of Rautanen et al. (2002), who showed that tetralin dissociation was the major cause of coke buildup, 

whereas naphthalene dissociation was negligible.31 Although coking is usually the major cause of catalyst 

deactivation, poisoning is the other type of deactivation to watch out for. 

Catalyst poisoning is commonplace in many reactions because there are a myriad of poisons that 

can destroy an active site. The most commonplace one in petroleum applications is sulfur, which binds to 

metal sites and deactivates them. Because the sulfur (and to a lesser extent nitrogen) levels of crude oil 
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are so high, sulfided catalysts must be used, otherwise a non-sulfided catalyst would be rapidly 

deactivated. But because of sulfided catalysts’ low activity, efforts have been made to increase the sulfur 

tolerance of other catalysts. For instance, using a strongly acidic support can sufficiently modify the 

electronic structure of a metal to increase its sulfur tolerance. There also have been studies that showed 

that adding other elements, such as gold, to a catalyst can have a big impact on increasing the sulfur 

tolerance.66 

Because the ultimate goal of this thesis project is to hydrogenate TDO oil, it is important to think 

about the catalyst poisons that could be present in that feedstock. Because TDO oil is formed from 

renewable sources, there is a possibility that biomass impurities such as potassium, sodium, and other 

alkali metals may be present in TDO oil.67 Chemicals used in the TDO process could also remain in the oil 

layer, such as sulfuric acid and calcium hydroxide. These can all act as catalyst poisons by binding to active 

sites and deactivating them. Regardless of the experiment, there will always be catalyst deactivation, but 

the goal should be to design a process that minimizes the deactivation that occurs. 
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CHAPTER 3 

SYNTHESIS AND DESIGN OF HYDROGENATION CATALYSTS 

MATERIALS AND METHODS 

CATALYST CHARACTERIZATION 

NITROGEN ADSORPTION/DESORPTION 

Nitrogen physisorption was performed on a Micromeritics ASAP 2020, which is displayed in Figure 

14. The multistep procedure involved carefully weighing out the sample, degassing the tube, and running 

sample analysis. Long, narrow bulb tubes were used to hold the samples. The mass of the tube and frit 

(the cap on the tube) were weighed out and then the sample was added. Generally, about 0.1 g of sample 

was weighed out, with less mass used for samples with high surface areas (>200 m2 g-1) and more mass 

used for lower surface area catalysts (<100 m2 g-1). 

 
Figure 14. Micromeritics ASAP 2020 instrument used for nitrogen physisorption. 

 
 

After the samples were weighed out, they were placed in the instrument for degassing. During 

the evacuation phase, the sample was heated to 90°C at 10°C/min while evacuating to 100 mmHg. 

Afterwards, the sample was heated to 350°C at 10°C/min and was kept constant for 4 hours. After the 



 

 

 
40 

sample cooled to room temperature, it was weighed out again and placed in the analyzer port. During the 

analysis phase, a Brunaner-Emmett-Teller (BET) isotherm was taken at 77 K. A sample isotherm is 

displayed in Figure 15 showing the adsorption and desorption curves.   

 
Figure 15. Nitrogen adsorption and desorption curves for Alfa Aesar catalyst. 

 
 

Specific surface areas (m2 g-1) reported in this thesis are measurements of the BET surface area. 

Pore volumes (cm3 g-1) were measured as a cumulative sum of the total pore volume of all pores smaller 

than 4 microns. Average pore size (Å) was measured as the average adsorption pore width.  

THERMOGRAVIMETRIC ANALYSIS (TGA) 

Thermogravimetric Analysis (TGA) was performed using a TGA Q500 instrument, shown in Figure 

16. Using a very precise balance, a small amount of sample is heated in the presence of oxygen while 

measuring the change in mass. Looking at the mass loss curve, the sample undergoes periods of mass loss 

that correlate to various materials being ejected from the surface.  
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Figure 16. TGA Q500 used for this research. 

 
 

Using the TGA Q500, samples of about 15 mg were loaded onto platinum trays and placed onto 

the sample holder via the autosampler. The furnace was then lifted over the sample and the temperature 

ramp was started. The temperature was increased at a rate of 10°C/min from room temperature to 800°C, 

while the mass loss was studied. A sample TGA curve is displayed in Figure 17. 

 
Figure 17. TGA curve of uncalcined 100Ni catalyst. 

 
 

As Figure 17 shows, the mass retention is shown in blue and decreases during the heating ramp. 

The change in mass per unit time (first derivative) is displayed in red and clearly shows points where the 
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mass loss was highest. For instance, in this sample, the largest mass loss by far is around 300°C, with mass 

lost between 25 and 450°C.  

X-RAY DIFFRACTION (XRD) 

X-ray diffraction (XRD) analysis was performed on a Panalytical X-Pert Pro. Samples were prepared 

by placing about 0.1 g of calcined catalyst onto a glass plate. The plate was inserted into the instrument, 

and the sample was scanned from 20 to 80° using a scan step size of 0.05°. The instrument used a Cu Ka 

X-ray anode with a parabolic mirror, 10 mm mask, and slit of 0.5°. As the sample was being scanned, a 

255-channel PIXCEL detector was used to generate the resulting XRD spectra. 

TRANSMISSION ELECTRON MICROSCOPY (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons 

is passed through a specimen, forming an image. Samples were placed inside a vacuum chamber and the 

image was formed by the electron interaction, which was viewed by the user. The TEM used in this 

experiment was a Phillips CM-10 TEM, as Figure 18 shows.  

 
Figure 18. Phillips CM-10 TEM. 
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Samples were prepared for use on the TEM by placing samples onto a copper coated grid. Excess 

solids were tapped off the surface, and the remaining materials were inserted into the instrument. The 

TEM operated at 100 kV and had a point resolution of 0.5 nm. Sample images were taken using the built-

in Orius SC200 CCD camera.  

CATALYST SYNTHESIS 

Table 4 presents an overview of the catalysts which were synthesized for this thesis, and the 

synthesis methods are detailed in Appendix A. This current section includes abbreviated versions of how 

the catalysts were synthesized and why the preparation methods were used. Catalysts produced in this 

study were produced via incipient wetness impregnation (IWI), coprecipitation, or a combination of both. 

Table 4. Synthesis methods for producing each type of catalyst. 
 

Synthesis Method Ref.a Notes 

Incipient Wetness Impregnation A - D Direct impregnation onto support 

Coprecipitation 
E - P Solutions mixed at 25°C 

Q - V Solutions mixed at 90°C 

Multiple Synthesis W - Z 
Solutions mixed at 90°C to form coprecipitated 

support, then direct impregnation onto support 

a Corresponds to the location of the references in Appendix A. 
 
 
INCIPIENT WETNESS IMPREGNATION CATALYSTS 

Of all catalyst synthesis methods, incipient wetness impregnation (IWI) is the most commonly 

used. The impregnation of porous supports is simple, has limited waste byproducts, and gives 

reproducible results between batches.47  
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The first step in synthesizing a catalyst via IWI was to determine the incipient wetness point of 

the support. Water was added dropwise to the support until it looked like a paste and had a texture like 

wet sand. Then, the amount of water was used to determine the volume of water that fit inside the pores 

of the support. Next, a metal solution was prepared by dissolving a metal precursor (nickel nitrate 

hexahydrate) in a solution of water (which had an equivalent volume as the pores of the support). 

When the metal solution was slowly dropped onto the support, capillary action drew the solution 

into the pores of the catalysts. The support was stirred to break up chunks and to distribute the solution 

evenly across the support. After the dropwise addition of the metal solution was completed, the wetted 

support was dried to remove the solvent (in this case water) from the pores, leaving behind particles of 

the metal precursor. The catalyst was then heated (i.e., >350°C) in oxygen to oxidize (calcine) the 

precursor and leave the metal oxide (NiO) deposited on the catalyst, which was safe to store and handle. 

Whenever it was time to perform a reaction, the calcined catalyst was inserted into the reactor and heated 

with hydrogen (reduced) at high temperatures.  

Since most chemical reactions take place on metal sites on the surface of a catalyst, it might seem 

ideal to apply as much metal as possible to the surface. However, above a certain metal loading, the extra 

metal particles agglomerate, where smaller particles combine together, and the resulting catalyst has a 

decreased surface area and metal dispersion.51 Additionally, some of the precious metals used in 

hydrogenation catalysts are expensive (remember Figure 12), so there is also a trade-off between the cost 

of the catalyst and the desired activity.  

COPRECIPITATION CATALYSTS 

Coprecipitation is another method of synthesizing catalysts. The solids are produced from a 

solution, and a precipitating agent or a change in pH is used to precipitate the catalyst out of solution.68 
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Unlike incipient wetness catalysts, coprecipitated catalysts can contain metal contents much larger than 

20 wt%. However, there is a trade-off because IWI catalysts only disperse metal particles onto the surface 

and pores of the catalyst, but in coprecipitated catalysts, the positioning of the metal atoms is unknown. 

Some metal atoms would be present in the bulk of the catalyst (and thus would be unable to participate 

in the reaction), but there would also be many metal particles on the surface, which would be 

advantageous because they have stronger interactions between the metal and the support.69 

Detailed synthesis methods for all coprecipitated catalysts are in Appendix A. In this thesis, 

coprecipitated catalysts were formed from two solutions: one comprised of sodium carbonate and the 

other containing aluminum chloride with nickel nitrate. When the two solutions were combined together, 

the precipitating agent (sodium carbonate) caused the catalyst to precipitate out of the solution. 

According to solubility rules, all carbonates are insoluble except for ones bound to a Group 1A 

cation (like Na+). Ni and other transition metals were supplied in their nitrate or chloride form, which are 

all water-soluble. The same is true for the source of aluminum (AlCl3). When these compounds dissolve in 

water, they dissociate into their cationic and anionic species. One solution contained Na2CO3 and the other 

solution contained Ni2+ and Al3+, both of which were dissolved in water. However, when each of these 

solutions were combined, they underwent a double displacement reaction that formed NiCO3, Al2(CO3)3, 

NaNO3, and NaCl. The first two products are water-insoluble, and so they precipitate out of solution 

together. The latter two remain in the solution and are washed off the catalyst during vacuum filtration.  

Although we mentioned that Al2(CO3)3 is formed via a double displacement reaction, other 

chemists question its stability as a species.70 They believe that the carbonate species is so alkaline that it 

only produces gaseous CO2 and water-insoluble Al(OH)3 instead of aluminum chloride. Although I cannot 

confirm which material was precipitated to produce the final catalysts, I know that the formed species is 
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merely a precursor to the catalyst. After the material was filtered, washed, and dried, it was calcined, 

which formed a powder of interlocking crystals of NiO and Al2O3 from the water-insoluble products. The 

coprecipitated catalysts were formulated as Ni/Al2O3.  

Two different methods were used to synthesize the coprecipitated catalysts. The main difference 

was the temperature at which the carbonate and metal solutions were combined. Initially, the bimetallic 

coprecipitated catalysts (like NiCr) and some monometallic Ni catalysts were prepared by mixing solutions 

at room temperature (25°C). However, after multiple trials, we discovered that the catalyst characteristics 

could be dramatically enhanced by increasing the mixing temperature to 90°C. These results are discussed 

in further detail later, and more detailed synthesis descriptions are in Appendix A. 

MULTIPLE SYNTHESIS METHODS 

Catalysts synthesized by multiple methods were prepared by successive treatments of 

coprecipitation followed by IWI. This procedure was done to ensure that a precious metal would only be 

deposited on the surface and pores of the catalyst, while simultaneously containing active sites from the 

coprecipitated catalysts. Economically, this is also a good choice because a relatively inexpensive metal 

like Ni was used in the coprecipitated portion of the catalyst, while a more expensive metal, like Pt or Pd, 

would be dispersed across the catalyst surface and pores. 

One large batch of 60 wt% Ni/Al2O3 (60Ni) coprecipitated support was used for preparing each of 

the precious metal catalysts to ensure consistency among the catalysts. The coprecipitated catalysts were 

prepared in the same manner as the 60Ni catalyst prepared at 90°C. From there, a 1 wt% solution of a 

precious metal (Pd, Pt, Ir, Ru) was impregnated onto the catalyst. Detailed synthesis methods for each of 

the catalysts can be found in Appendix A. 
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COMMERCIAL CATALYST 

A nickel on silica-alumina catalyst purchased from Alfa Aesar was compared to each of the 

catalysts synthesized in this study. The Alfa Aesar catalyst (Part # 031276; Nickel on silica-alumina) used 

in this thesis has a proprietary composition, but it was sold as containing 66 ± 5% Ni. The same bottle of 

Alfa Aesar catalyst was used throughout the entirety of the experiments, and the batch of catalyst that 

was used contained 62 wt% Ni as well as a surface area of 173 m2 g-1, a pore volume of 0.22 cm3 g-1, and a 

pore size of 52 Å. This catalyst is hereafter referred to as Alfa Aesar. 

RESULTS AND DISCUSSION 

Prior to being calcined and reduced, the catalysts in this thesis were inactive. The calcination 

process converted the metal precursors into their respective metal oxide form upon the addition of 

oxygen (from air). From there, reduction with hydrogen reduced most (depending on the metal 

reducibility) of the metal oxide particles into their reduced form (ex. Ni0, Pt0, Pd0, etc.). 

After each of the catalyst precursors were synthesized, they were dried overnight in an oven at 

100°C. The resulting precursors were crushed and sieved down to 350-212 microns. The samples were 

calcined in a muffle furnace at 450°C for 4 hours using a heating ramp of 2 °C/min. Catalysts were then 

reduced in situ under flowing hydrogen (Matheson, Grade 5) at 400°C for 4 hours using a heating ramp of 

2°C/min. 

To find the temperature required to calcine the catalysts, TGA was used to determine the 

temperature at which mass loss was limited. It was important to avoid overheating the samples, which 

could cause sintering (leading to a lower surface area), even though the calcination temperature used was 

lower than the Tammann temperature. The temperature at which sintering becomes highly likely for Ni is 

around 580°C.65 The TGA curve for coprecipitated 60Ni/Al2O3 is shown in Figure 19. 
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Figure 19. TGA curve of uncalcined 60Ni catalyst. 

 
 

Figure 19 shows the TGA curve of an oven-dried 60Ni catalyst, which contains a mixture of nickel 

and aluminum carbonate. As the temperature is increased, the temperature where the nickel and 

aluminum carbonate species were oxidized to form NiO and Al2O3 was evaluated. The heating ramp shows 

the largest mass loss around 300°C, and by about 400°C, there appears to be minimal mass loss. For this 

reason, we chose 450°C for catalyst calcination.  

Ma et al. (2013)71 showed that bulk NiO catalysts (such as the coprecipitated catalysts synthesized 

in this study) reduce fully at 370°C, but other studies have shown that higher reduction temperatures 

were necessary for supported Ni catalysts if there was NiAl2O4 spinel present.72–74 To determine if nickel 

aluminate was present, the catalyst was analyzed by XRD. 
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Figure 20. XRD curves for Alfa Aesar catalyst as well as fresh and spent 60Ni catalyst. 

 
 

Figure 20 presents the XRD spectrum for the Alfa Aesar catalyst along with spectra for fresh and 

reacted-and-regenerated 60Ni catalysts. The XRD spectra for fresh and used 60Ni display similar peaks, 

but the peaks appear to be narrower in the fresh sample, indicating smaller crystallite particles. The three 

main reflections on the coprecipitated 60Ni catalysts at 37.3°, 43.3°, and 62.9° correspond to [1 1 1], [2 0 

0], and [2 2 0] NiO planes, not spinel.65,75 The Alfa Aesar catalyst has a minor peak at 43.3°, but none of 

the other peaks for NiO. It also displays a sharp peak at 26.4°, which could be an a-SiO2 [0 1 1] plane,76 

because the Alfa Aesar catalyst contains diatomaceous earth, which is comprised mainly of silica. These 

peaks also had similar relative intensities to the ones reported by Richardson et al. (2003). Barrio et al. 

(2003) also noted that after calcining at 450°C, there was limited diffusion of Ni into the support, and 

therefore there was a low likelihood that spinel-like structures existed, which matched with the results of 

the XRD curves displayed in Figure 20.77 

Because the TGA results in Figure 19 showed that almost all of the catalyst mass was lost by 350°C, 

calcining the samples at 450°C was enough to oxidize essentially all of the metal surface. Although we do 
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not have temperature programmed reduction (TPR) data for our catalysts, other groups have found that 

400°C was enough to reduce nickel if no nickel aluminate spinel was formed.71 The XRD curve in Figure 20 

displayed only peaks for NiO and none for NiAl2O4. This meant that all the coprecipitated Ni/Al2O3 catalysts 

were sufficiently reduced to metallic Ni for hydrogenation at 400°C. It has not been determined whether 

there was spinel formation on the incipient wetness impregnation Ni/Al2O3 catalyst or if the other 

catalysts were fully reduced.  
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CHAPTER 4 

HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR 

INTRODUCTION 

Polyaromatic molecules, such as those found in TDO oil, have low cetane numbers, due to their 

high aromatic content. Even after deep hydrogenation, certain combustion characteristics, such as specific 

volume, hydrogen content, and cetane number may still be below required specifications.20,78 One 

approach to solve these problems is through naphthenic ring opening. An ideal catalytic process would 

include complete hydrogenation and maximizing ring opening while minimizing cracking reactions (which 

reduce the molecular weight and cetane number of the products).5,44,79 This current work focuses on 

designing hydrogenation catalysts. 

Although there has been plenty of research on monoaromatic compounds, there has been less 

focused on diaromatic or polyaromatic species. These compounds are more difficult to fully saturate 

because they require separate hydrogenation steps, and although saturating the first ring is somewhat 

easy, hydrogenating the second ring is much more difficult.30,31 Additionally, substituted diaromatic 

molecules like 2-methylnaphthalene (2-MN) are even more difficult to hydrogenate than unsubstituted 

ones, because of the steric hindrance of the methyl group.36 Because 2-MN is the most common molecule 

present in TDO oil, as Figure 8 shows, we decided to study it as a model compound in our experiments.  
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Figure 21. Reaction network for hydrogenation and ring opening of 2-methylnaphthalene. 

 
 

Figure 21 shows the reaction network for hydrogenation of 2-methylnaphthalene. There are two 

major products, partially hydrogenated methyltetralins (MT), and fully hydrogenated methyldecalins 

(MD). There is stereochemistry in MD along the fused carbon-carbon bond as well as at the methyl group 

position. In this thesis, molecules are either designated as cis- or trans-MD depending on the central 

stereocenter (the one shown in Figure 21). Although methyloctalin is also formed as a stable intermediate, 

other studies have shown that it was only a very minor product.29,31,41 Because of resonance stabilization, 

the hydrogenation of tetralin-like molecules is difficult, and reaction rates for the hydrogenation of 

naphthalene to tetralin is at least an order of magnitude faster than tetralin to decalin.54,60,80 A more 

complete hydrogenation and ring opening scheme for methylnaphthalene is displayed in Figure 22, which 

shows reactions possible on both metal and acid sites of a bifunctional catalyst. 
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Figure 22. A more complete reaction mechanism for hydroconversion of methylnaphthalene showing 

hydrogenation, isomerization, ring contraction, and ring opening reactions. Reproduced from 
Jaroszewska et al. (2015).47 

 
 

The cis- and trans- stereoisomers of decalin have different chemical properties. First, the cetane 

numbers are different, and cis-decalin has a cetane number of 42, whereas the trans- form has a value of 

32.81 Cis-decalin also has a slightly higher heat of combustion value (38.3 versus 37.2 MJ/m3).29,82 But 

perhaps most importantly, ring opening of cis-decalin is much more likely to occur over precious metals 

than trans-decalin.5,35 While cis-decalin preferentially performs ring opening reactions, trans-decalin 

tends to crack, producing lower molecular weight fragments with lower cetane numbers.5 Thus, a goal in 

designing a hydrogenation catalyst for diesel fuel is to preferentially produce cis- isomers. However, trans-

decalin has a higher thermal stability and inhibits deposition of solid particles in aviation fuel, which makes 

it the stereoisomer of choice for jet fuel.74,83 

Hydrogenation of aromatic molecules can be difficult because they bind strongly to metal and 

acid sites on a catalyst. This is evidenced by the strong equilibrium constants of molecules with 

unsaturated rings (atm-1): naphthalene (70), tetralin (50), trans-decalin (10), and cis-decalin (8).30 Although 

aromatic molecules bind strongly to the surface, their saturated counterparts desorb quickly from a 

catalyst. In a study on benzene hydrogenation, van Meerten et al. (1976) found that cyclohexane rapidly 

desorbed from the catalyst surface and formed no inhibition for benzene adsorption.32 Therefore, we do 
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not believe that decalin will inhibit the catalytic sites, although it has been proposed that the products of 

tetralin dissociation can lead to catalyst inhibition.31 

The goal of this project is to first determine the activation energy of 2-MN over various supported 

Ni catalysts. This work looks to develop catalysts that can effectively hydrogenate 2-MN and to compare 

the results with a commercial Ni catalyst. The final goal of this project is to determine the cis/trans ratio 

of various catalysts and to design a suitable catalyst that selectively produces cis-MD.  

MATERIALS AND METHODS 

FEEDSTOCK PURIFICATION  

Since most naphthalene and methylnaphthalene reagents are derived from coal tar, they often 

contain sulfur impurities.29 In the 2-methylnaphthalene (Alfa Aesar, 97%), there were two sulfur impurities 

(4- and 5-methylbenzothiophene), which correlated to a sulfur concentration of about 25 ppm. Sulfur 

binds very strongly to metal surfaces and deactivates the sites by poisoning them. To avoid deactivating 

the catalysts, we removed about 90% of the sulfur from the reactant by recrystallization.  

A supersaturated solution of 2-MN was prepared in n-decane (Alfa Aesar, 99%) after heating the 

solution to 80°C. The solution was stirred continuously for 2 hours and was then transferred to an 

Erlenmeyer flask and was slowly cooled back to room temperature, where crystals of 2-MN slowly formed. 

The milky-colored crystals were tested on a gas chromatograph-mass spectrometer (GCMS) and were 

shown to have a dramatic reduction in the sulfur-laden peaks. Crystallization was effective because of the 

difference in the melting/freezing points of the impurities, which are shown in Table 5.  
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Table 5. Structure and melting points of 2-MN and impurities. 
 

Compound Name Structure Melting/Freezing Point 

5-methylbenzothiophene 
 

20.5°C84 

2-methylnaphthalene 
 

34.4°C85 

4-methylbenzothiophene 

 

N/A 

1-methylnaphthalene 

 

-30.4°C86 

 
 

Because of the differences in melting points that Table 5 shows, if the solution was kept above 

25°C, in theory, only the 2-MN would precipitate, whereas the sulfur impurities would remain as a liquid 

and could easily be separated from the crystallized product. Although the melting/freezing point of the 

second sulfur impurity was not found in the literature, it was assumed to be below room temperature by 

comparing the melting points of 2-MN and 1-MN and knowing the b-position relative to the a-position 

melting point. After recrystallizing the 2-MN, the sulfur concentration was decreased to less than 2 ppm. 

This purified material was used as reactor feed, which was comprised of 10 wt% 2-MN dissolved in n-

decane. 

CATALYTIC REACTION TESTING 

Catalytic studies were carried out in a high-pressure down-flow trickle-bed reactor as depicted in 

Figure 23. Reactor tubes were made from ¼” or ½” stainless steel tubing depending on the amount of 

S
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catalyst used in the study. The reactor tube was loaded with carborundum (Pfaltz & Bauer, 99%), calcined 

catalyst, and quartz wool to aid in liquid distribution and reduce void volume in the reactor. Catalytic 

testing was performed at T = 200 – 350°C, P = 1000 psi, WHSV = 0.1 – 0.5 hr-1, and H2/2-MN = 20 – 40. All 

samples were taken after the system reached steady state, and the reactor was given time to adjust to 

new reactor conditions before taking samples.  

 
Figure 23. Reactor schematic for hydroprocessing studies. 

 
 

SAMPLE ANALYSIS 

All liquid samples were collected and analyzed on a GCMS (Shimadzu GCMS-QP2010) using a 

Restek Rxi-5ms column (30 m x 0.25 mmID x 0.25 µm). Biphenyl was used as an internal standard and 

peaks were identified using the resulting mass spectrum, comparisons with the internal NIST database, 

and use of the retention indices. Reaction products were grouped into five categories: ROP (ring opening 

products), MD (methyldecalins), MT (methyltetralins), MN (methylnaphthalenes), and DAP (dealkylated 

products - decalin and tetralin). 
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Over the course of each reaction, the steady-state mass balance closed within 98%, so it was 

assumed that there was minimal cracking of 2-MN or the solvent n-decane to light hydrocarbons. 

Additionally, there was limited isomerization of 2-MN to 1-MN. Conversion of 2-MN was defined as: 

 𝑋 =	
𝑛#*+,-) − 𝑛#*+,./0

𝑛#*+,-)
 (3) 

where X is the fractional conversion, n2MN,in is the number of moles of 2-MN flowing into the reactor, and 

n2MN,out is the number of moles of 2-MN collected as products. This conversion was calculated from a 

decrease in the 2-MN signal on the GCMS. The product selectivity (Si) and cis-MD selectivity (Scis) were 

defined as: 

 𝑆- =
𝑛-

𝑛12.3/405
 (4) 

 𝑆4-5 =
𝑛*6,4-5
𝑛*6

 (5) 

where ni is the number of moles of species i, nproducts is the number of moles of products collected, nMD,cis 

is the number of moles of cis-MD and nMD is the total number of moles of MD. Although there are two 

points of stereochemistry in MD, we ignored the stereochemistry of the methyl group because 

combustion characteristics were much more dependent on the shape of the saturated ring than the axial 

or equatorial position of the methyl group.29  

To verify that the data were reproducible, multiple experiments were conducted for each 

temperature and catalyst for the activation energy determination. The standard error was calculated for 

each initial reaction rate, and they were combined to estimate the error for each data point. Duplicate 

trials were also conducted to determine the cis-MD selectivity for each catalyst at 350°C, and the error 

bars represent the standard error between trials.  
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RESULTS AND DISCUSSION 

DETERMINATION OF 2-MN ACTIVATION ENERGY 

The activation energy for the initial hydrogenation of 2-MN was determined for catalysts of 

various acidities prepared by incipient wetness impregnation. The physical characteristics of the catalysts, 

such as surface area, are presented in Table 6. (The reference letters displayed in the following tables are 

used to view the synthesis methods of each catalyst in Appendix A.) The reactor was operated at 

conditions resulting in conversion less than 10% so that the rate constant and activation energy could be 

calculated using the amount of catalyst and amount of conversion (a so-called “differential reactor”). 

Because the catalysts rapidly deactivated over the course of the reaction (probably due to methyltetralin 

dissociation and inhibition on the catalyst surface),9 initial reaction rates were used to estimate catalyst 

performance. Apparent first-order activation energies (Ea) were estimated by plotting rates at multiple 

temperatures, T, and determining the slope of 

 ln 𝑘 = −
−𝐸(
𝑅 7

1
𝑇9

+ ln𝐴 (6) 

where k is the initial reaction rate, R is the gas constant, and A is the pre-exponential factor. A modified 

Arrhenius plot is displayed in Figure 24, which shows the initial reaction rate values for each catalyst. Using 

a rearranged version of the Arrhenius equation, the apparent activation energies are plotted for each 

catalyst, and the results are displayed in Figure 25. 
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Table 6. Nitrogen physisorption measurements of incipient wetness impregnation catalysts and a 
commercial Ni catalyst. 

 
Catalyst Ref. SABET (m2 g-1) Vp (cm3 g-1) dp (Å) 

Ni/SiO2 A 400 0.48 48 

Ni/Al2O3 B 151 0.32 84 

Ni/SiAl C 308 0.43 56 

Ni/ASA D 218 0.31 68 

Alfa Aesar - 173 0.22 52 

Note: Catalysts contain 20 wt% Ni except for Alfa Aesar catalyst (62 wt% Ni). 
Note: SABET, surface area; Vp, pore volume; dp average pore size. 

 
 

 
Figure 24. Arrhenius analysis to determine the activation energy of various supported Ni catalysts. 

 
 

 
Figure 25. Apparent activation energies of the Ni catalysts in Figure 24. 
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Figure 25 shows an interesting trend for the activation energy; the activation energy was lowest 

for the Alfa Aesar catalyst and highest for the amorphous silica-alumina (ASA) catalyst. For the catalysts 

we synthesized, it appeared that the activation energy increased as the surface acidity increased. It is 

widely accepted that strength of acid sites follows the trend SiO2 < Al2O3 < ASA. We found that this trend 

was similar to the activation energy, as the catalyst with the fewest and weakest strength acid sites 

(Ni/SiO2) showed the lowest activation energy, whereas the catalyst with strongest acid sites (Ni/ASA) 

showed the highest activation energy. At very low conversions, the major products formed from 2-MN 

were 2-MT and 6-MT, partially hydrogenated products that can be produced from acid-assisted metal 

sites on a catalyst.44,47,87 Given our results, we believe that the acid-assisted hydrogenation reaction must 

have a higher energy barrier than a reaction solely on a metal site, which would be the reaction that occurs 

on a neutral support. However, when Lin and Vannice (1993) studied benzene hydrogenation with 

supported catalysts, they found the activation energy was independent of the support acidity.33 Despite 

impregnating platinum on SiO2, Al2O3, TiO2, and ASA, each of the activation energy values were similar (42 

– 54 kJ/mol). The difference in activation energy between supported platinum and supported nickel 

catalysts could be explained because of different mechanisms or the difference in model compounds. 

However, more studies would need to be conducted to elucidate this difference. 

One trend that we do not understand from Figure 25 is why the activation energy of Ni/SiAl (a 

physical mixture of silica and alumina – not to be confused with ASA) was higher than the trends for 

Ni/Al2O3 and Ni/SiO2. There is a very small chance this could be an anamoly, since the lower error bars of 

Ni/SiAl are close to the upper error bars of Ni/Al2O3. Otherwise, there is little evidence that explains why 

a physical mixture of two supports would have a value that is not between each of the individual 
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components. Future experiments could focus on titrating the catalysts or doing pyridine adsorption to 

determine the strength and number of Brønsted and Lewis acid sites on the Ni/SiAl catalyst and comparing 

that to the acid sites found on Ni/Al2O3 and Ni/SiO2. 

HYDROGENATION OVER COPRECIPITATED CATALYSTS 

We hypothesized that the catalysts prepared by incipient wetness impregnation possessed low 

initial reaction rates and deactivated quickly because they possessed a limited number of metallic sites 

and were quickly deactivated by coking. Monometallic Ni/Al2O3 and Co/Al2O3 catalysts as well as bimetallic 

catalysts were used in this initial study. The monometallic catalysts were comprised of 60 wt% metal (60Ni 

or 60Co), whereas the bimetallic catalysts contained 60 wt% Ni with 4 wt% of another metal (NiM where 

M is second metal identity). The cis/trans-methyldecalin (MD) selectivities of some of the catalysts are 

displayed in Table 7. 

Table 7. Cis/trans-MD selectivity of various monometallic and bimetallic coprecipitated catalysts. 
 

 cis-MD Selectivity (%) 

Catalyst Ref. 200°C 250°C 300°C 350°C 

60Ni E 77 61 15 13 

60Co F n.t. 69 63 n.d. 

NiCr G 81 68 34 25 

NiMn H 53 38 16 12 

NiFe I 69 63 36 4 

NiCo J 58 42 40 42 

NiCu K 46 38 12 11 

NiZn L 58 48 41 n.d. 

Note: n.d., not detected; n.t. not tested. 
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The results in Table 7 show a variety of selectivities for monometallic and bimetallic catalysts that 

were synthesized at 25°C. It is important to note that the selectivities from Table 7 were only measured 

once, so these trials were not duplicated. One significant trend is that the cis/trans selectivity decreases 

as the temperature increases, meaning that more trans-MD is formed at higher temperatures. This trend 

was observed for most catalysts, and some catalysts gave a wide variety of selectivities as a function of 

temperature (NiCr, NiFe), whereas other ratios remained relatively similar (NiCo).  

While most of the catalysts had a lower cis/trans ratio than 60Ni (the catalyst to compare to), 

there were two metals that might have a synergistic effect with Ni for hydrogenating 2-MN. The NiCr and 

NiFe both appeared to show good selectivity towards cis-MD and might be potential promoters to a Ni 

catalyst. One catalyst that produced mostly trans-MD at all temperatures was CuNi. Copper is known for 

having a low hydrogenation activity, and when alloyed with Pd, it was found to be a bad promoter metal 

for naphthalene hydrogenation.55 We are unsure if the metals in each of the catalysts were alloyed 

together or had no interactions, but it is possible that we formed alloys because we coprecipitated the 

metals.88 

Although the previous catalysts were only prepared using 60 wt% Ni (and some with a bimetallic 

mixture), we were interested in evaluating the effect that changing the amount of metal on the catalyst 

had on the physisorption properties as well as the selectivity. Monometallic Ni catalysts were synthesized 

with Ni contents between 20 wt% (20Ni) and 100 wt% Ni (100Ni). These catalysts were synthesized at 

25°C, and physisorption measurements of each catalyst is displayed in Table 8. 

 

 

 



 

 

 
63 

Table 8. Nitrogen physisorption measurements of coprecipitated Ni catalysts synthesized at 25°C. 
 

Catalyst Ref. SABET (m2 g-1) Vp (cm3 g-1) dp (Å) 

20Ni M 142 0.49 139 

40Ni N 114 0.26 90 

60Ni E 88 0.24 108 

80Ni O 68 0.21 124 

100Ni P 30 0.11 145 

 
 

The catalysts from Table 8 show a decrease in surface area as the Ni content increases. This is 

expected, since alumina is typically added to catalysts to increase the surface area, although most metals 

(at low loadings) are impregnated on g-Al2O3, not precipitated with it. 

During the catalyst synthesis, we discovered that heating the metal and carbonate solutions as 

they were added together enhanced the surface area and pore volume of the catalysts. (Detailed synthesis 

methods are found in Appendix A.) Instead of stirring the solution at room temperature (25°C), stirring it 

near the boiling point of water (~90°C) changed the catalyst characteristics (despite everything else 

remaining the same). Physisorption measurements of the 90°C coprecipitated catalysts are displayed in 

Table 9. The results show that there was a huge difference in the surface area and pore volume of the 

catalysts as the Ni content was varied, and a comparison of the surface area and pore volume of the 

catalysts from Table 8 and Table 9 are displayed in Figure 26. 
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Table 9. Nitrogen physisorption measurements of coprecipitated Ni catalysts synthesized at 90°C. 
 

Catalyst Ref. SABET (m2 g-1) Vp (cm3 g-1) dp (Å) 

Alumina Q 80 0.50 248 

20Ni R 401 1.18 118 

40Ni S 331 1.12 107 

60Ni T 258 0.96 149 

80Ni U 100 0.29 165 

100Ni V 39 0.22 227 

Alfa Aesar - 173 0.22 52 

60Nia - 199 0.85 171 
a Catalyst after reaction and regeneration. 

 
  

  
Figure 26. BET surface area and pore volume measurements of coprecipitated Ni/Al2O3 catalysts at 

various Ni content. 
 
 

Also of interest in these graphs was that at high Ni content, the characteristics between the 

methods were fairly similar, but below 80% Ni, the properties diverge, and seem to further deviate as the 

Ni content decreases. One possible explanation for this is because the extra heat allowed the Ni and Al 
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species to migrate, creating a more complex framework. This could show why there is little deviations at 

high Ni loadings, because there is not a sufficient amount of alumina for the Ni species to migrate into.  

Another important point is the difference betweeen the 20Ni and 0Ni (alumina) shown in Table 

9. The 20Ni catalyst had a surface area of 401 m2 g-1 and a pore volume of 1.18 cm3 g-1, but the 0Ni catalyst 

only had a surface area of 80 m2 g-1 and a pore volume of 0.50 cm3 g-1. That was a dramatic difference 

between the two catalysts, although it was not surprising that the 0Ni catalyst had a low surface area. 

Since there was no special preparation, we believe that we synthesized amorphous alumina, which is 

known to have a lower surface area than other alumina species. But nonetheless, the difference that the 

incorporation of 20 wt% Ni had was surprisingly large, and this difference was probably due to the 

incorporation of Ni into the alumina framework, which has been reported elsewhere to increase the 

surface area.69  

Over the course of a reaction, the catalyst is inhibited by aromatic adsorption and some catalyst 

sites are poisoned by the sulfur in the feedstock. To remove the deposited coke on the catalyst, the spent 

material was heated using the same calcination ramp as preparing catalysts (i.e., heating to 450°C for 4 

hours using a ramp of 2°C/min). However, the poisoned sites on the catalyst were not able to be 

regenerated, and over the course of the reaction, some pore closing and other mechanical deactivation 

occurred, which all would lead to inferior physisorption measurements than fresh catalyst.  

Interestingly enough, the regenerated 60Ni catalyst only showed a decrease in surface area by 

about 25%, while the pore volume and pore size were only slightly changed from their original values. This 

is consistent with the small difference between the XRD data for fresh and spent 60Ni catalysts in Figure 

20, indicating that most of the crystalline structure was retained after regenerating the spent catalyst. 
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Although the surface areas of the catalysts differ with the synthesis method, the selectivities were 

similar except for the 100Ni catalyst, and Table 10 compares conversion and selectivity data of the two 

highest Ni loading catalysts at two different reaction temperatures. 

Table 10. Conversion and selectivity of 80Ni and 100Ni catalysts (both synthesized at 90°C). 
 

Catalyst Temp. (K) Conv. (%) 
Product Selectivity (%) 

ROP MD MT MN DAP 

80Ni 
473 99.9 1.6 66.5 31.3 0.1 0.4 

623 97.7 6.3 68.4 6.3 2.3 16.4 

100Ni 
473 0.6 n.d. n.d. 0.6 99.4 n.d. 

623 21.3 n.d. n.d. 21.3 78.7 n.d. 

Reaction conditions: P = 6.9 MPa, WHSV = 0.2 hr-1, H2/2-MN = 20. 
Note: ROP (ring opening products), MD (methyldecalin), MT (methyltetralin), MN (methylnaphthalene), 

DAP (dealkylated products), n.d., not detected. 
 
 

Table 10 shows the conversion and selectivity data for 80Ni and 100Ni catalysts (both synthesized 

at 90°C). There was a dramatic difference in the conversion and selectivity of each of these catalysts 

despite identical reaction conditions. The 80Ni catalyst showed selectivity towards fully hydrogenated 

products at both temperatures listed, but the 100Ni catalyst barely had any conversion. And when it did 

have slight conversion at the higher temperature, it only formed methyltetralins, the initial hydrogenation 

step over the catalyst.  

This difference in reactivity could be explained by the surface area of each catalyst, but as Table 

9 shows, the difference in surface area between the two catalysts is not dramatic. Instead, we believe that 

the difference in reactivity is caused by the hydrogenation process. We believe that acid-assisted 

hydrogenation (found on 80Ni) is easier to perform than hydrogenation on solely a metal site (found on 

100Ni). This difference in reactivity was explained by Lin and Vannice (1993), who showed the reaction 
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included aromatics adsorbing on acid sites near a metal-acid interface and reacting with spillover 

hydrogen atoms from Ni particles.33 

Although the conversion and selectivity data for the catalysts 20Ni, 40Ni, and 60Ni were very 

similar to 80Ni (and are thus not displayed in Table 10 for brevity), there was a slight deviation in their 

cis/trans ratio. In Figure 27 , the cis-MD selectivity of the different catalysts at 6.9 MPa is shown at various 

reaction temperatures. 

 
Figure 27. Cis-MD selectivity of coprecipitated Ni catalysts and a commercial Ni catalyst. 

 
 

Figure 27 shows the cis-MD selectivity of the products that were formed on different catalysts. 

The graph appears to show that the ratio is slightly dependent on the amount of Ni in the catalyst, but the 

reaction temperature appears to be more important. This result has been verified by Huang and Kang 

(1996) as well as Rautanen et al. (2001), who showed that the cis/trans ratio was dependent on the 

catalyst activity and slightly dependent on the reaction temperature.41,59 Our results also show that the 

Alfa Aesar catalyst has a similar cis-MD selectivity as most of the coprecipitated catalysts designed in this 
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thesis. Given the similar selectivity and Ni content between the 60Ni and Alfa Aesar catalyst (62 wt% Ni), 

we analyzed samples on a TEM to look at their nanostructures, which are displayed in Figure 28. 

   

    
Figure 28. TEM images of coprecipitated 60Ni catalyst (left) and Alfa Aesar commercial Ni catalyst (right). 

 
 

The TEM micrographs in Figure 28 show many differences between the materials. The 

coprecipitated 60Ni catalyst on the left shows the presence of rod-like structures covering the entirety of 

the catalyst. These are in sharp contrast to the nodule-like structures shown on the right for the 

commercial Alfa Aesar catalyst.  

These different structures probably account for the difference in physisorption characteristics 

from Table 9. The 60Ni catalyst had a BET surface area of 258 m2 g-1, a pore volume of 0.96 cm3 g-1, and an 

a b 
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average pore size of 149 Å, compared to the commercial catalyst, which had a surface area of 173 m2 g-1, 

a pore volume of 0.22 cm3 g-1, and a pore size of 52 Å. The larger pore size makes the 60Ni catalyst more 

ideal for hydrogenating large polyaromatic molecules, like those found in TDO oil. Additionally, the much 

larger pore volume makes the 60Ni catalyst ideal for the impregnation of another metal onto the catalyst. 

HYDROGENATION OVER IMPREGNATED COPRECIPITATION CATALYSTS 

To enhance the cis-MD selectivity of the catalysts, we incorporated 1 wt% of several precious 

metals onto a 60Ni catalyst using incipient wetness impregnation. We assumed that the catalysts had 

comparable physisorption properties as the 60Ni sample in Table 9 because only a small amount of metal 

was incorporated onto the surface, which would make a marginal change in the surface area and pore 

volume. The cis-MD selectivity was tested for each bimetallic catalyst at 6.9 MPa, and the results are 

displayed in Figure 29. 

Table 11. Reference letters of each catalyst catalogued in Appendix A. 
 

Catalyst Ref. 

PdNi W 

PtNi X 

IrNi Y 

RuNi Z 
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Figure 29. Cis-MD selectivity of various bimetallic coprecipitated Ni catalysts. For comparison purposes, 

the selectivity of monometallic 60Ni is displayed. 
 
 

Figure 29 shows that the impregnation of a second metal onto the catalyst pores dramatically 

changed the cis-MD selectivity. The catalyst containing platinum (PtNi) produced more trans-MD, but the 

catalyst containing ruthenium (RuNi) increased the formation of cis-MD. The catalysts containing 

palladium (PdNi) and iridium (IrNi) had similar selectivities as the monometallic 60Ni catalyst. These 

results show that the incorporation of a precious metal onto the catalyst surface can noticeably shift the 

cis/trans ratio towards the stereoisomer of preference.  

To our knowledge, there have not been any studies of bimetallic Ni catalysts that analyzed the 

stereochemistry of the product decalin species. However, there have been studies on monometallic Pt 

that showed a tendency to produce trans- stereoisomers. Huang and Kang (1996) studied naphthalene 

hydrogenation and Jaroszewska et al. (2013) studied 1-methylnaphthalene hydrogenation over Pt 

catalysts, and each showed that trans- isomers were selectively produced.59,89 Unfortunately, there is very 

limited literature on hydrogenation of naphthalene or tetralin with Ru-based catalysts, so we are unsure 

if this cis- selectivity should have been expected or not.  
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In a review of naphthalene hydrogenation, Weitkamp (1968) proposed a series of steps for the 

hydrogenation of tetralin to the cis- and trans- forms of decalin, which is shown in Figure 30.29 Ignoring 

the presence of hexalin (hexahydronaphthalene), which is extremely unstable and has not been reported 

in almost any study, tetralin is hydrogenated through one of the octalins to produce decalin. The D9,10-

octalin intermediate is more thermodynamically favorable, and only reacts to form cis-decalin. That is 

contrary to D1,9-octalin, which can be hydrogenated to form both cis- and trans-decalin, although trans-

decalin is more thermodynamically stable. 

 
Figure 30. Possible reaction network for hydrogenation of tetralin through an octalin intermediate 
proposed by Weitkamp (1968).29 (Chirality of hydrogen atom at 1-position is meant for illustrative 

purposes to show addition of hydrogen, not stereochemistry.) 
 
 

Weitkamp also went one step further and showed that Ru catalysts on a variety of supports 

produced large amounts of D9,10-octalin, much higher than Ir, Pd, and Pt catalysts.29 In the present study, 

we found that at low temperatures, the RuNi catalyst produced D9,10-methyloctalin almost 20-fold more 

than D1,9-methyloctalin. Because the RuNi catalyst produced the thermodynamically favorable 

methyloctalin intermediate, it is likely that that initial hydrogenation of tetralin is fast compared to the 

hydrogenation of methyloctalin. Therefore, the thermodynamically favorable D9,10-methyloctalin species 

accumulated because the final hydrogenation step was slower. And because D9,10-methyloctalin can only 
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be hydrogenated to form cis-MD, this is a plausible reason that the RuNi catalyst selectively produced cis-

MD.  

On the other hand, the PtNi catalyst produced almost no methyloctalin intermediate, and the 

ratio between the D9,10- and D1,9-methyloctalin isomers was almost unity. This likely means that there was 

no accumulation of methyloctalin, because there was no buildup of D9,10-methyloctalin. Additionally, it 

has been demonstrated that the hydrogenation rate of D1,9-octalin on Pt is 25 times faster than the D9,10-

octalin form.90 This means that the methyloctalin intermediate reacted to form a MD species before it had 

time to equilibrate to D9,10-methyloctalin. And Weitkamp also noticed that D1,9-methyloctalin produced a 

mixture of cis- and trans-MD, but much more of the latter.29 We believe that the rapid hydrogenation of 

methyloctalin combined with a lack of D9,10-methyloctalin buildup is the reason that the PtNi catalyst 

selectively produced trans-MD. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

One of the biggest issues preventing the use of TDO oil as a blending agent in diesel fuel is the low 

cetane number that TDO oil possesses. Although there have been attempts to hydrogenate TDO oil using 

a commercial nickel catalyst,21 the cetane number was still below the required specifications. This present 

work developed catalysts to efficiently hydrogenate TDO oil to increase the cetane number. A laboratory-

scale trickle bed reactor was used to perform hydrogenation reactions, and 2-methylnaphthalene was 

chosen as a model compound because of its presence in TDO oil as well as the difficulty in fully saturating 

diaromatic molecules. Using the conversion and product selectivities, catalysts were chosen that yielded 

desired molecules and stereoisomers.  

This research began by analyzing the activation energies of impregnated nickel catalysts. The 

results showed that catalysts with Brønsted acid supports had the highest apparent activation energy, 

while catalysts with almost no acid sites had lower energy barriers. We attributed this to different reaction 

mechanisms, as monofunctional (only metal sites) catalysts had a lower energy barrier for hydrogenating 

the model compound than acid-assisted bifunctional (metal and acid sites) catalysts. However, the 

commercial Alfa Aesar catalyst had a lower activation energy than all the impregnated catalysts we 

synthesized, and our catalysts were rapidly deactivated from coke deposition. To resolve these issues, we 

produced coprecipitated catalysts, which contained larger amounts of nickel. The catalysts had higher 

initial reaction rates and maintained their selectivity for longer periods than the impregnated catalysts. 

The coprecipitated catalysts contained varying amounts of nickel, and it was found that adjusting 

the mixing temperature of the solution from 25°C to 90°C dramatically enhanced the surface area and 
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pore volume of the resulting catalysts. These improved coprecipitated catalysts showed promise for 

producing cis- isomers (the desired stereoisomer) at low temperatures, but while hydrogenating at high 

temperatures, mostly trans- molecules were formed. The amount of nickel was found to be slightly 

important to the stereoisomerism of the product, and catalysts synthesized with more nickel tended to 

produce more cis- isomers. A coprecipitated and commercial catalyst were examined using TEM, and they 

were shown to possess different structures, although their product selectivities were similar. 

Some coprecipitated catalysts were impregnated with a precious metal to further enhance the 

stereoselectivity. Although the impregnation of either palladium or iridium to nickel catalysts did not 

significantly change the selectivity, incorporation of two other metals did change the product distribution. 

It was found that adding platinum to a nickel (PtNi) catalyst dramatically increased the amount of trans- 

isomers, while adding ruthenium to the nickel (RuNi) catalyst pushed selectivity towards cis- molecules. 

We hypothesized that this difference in selectivity was caused by the methyloctalin intermediate that 

dictated which final stereoisomer would be favored. 

The results of this research are important for designing hydrogenation catalysts that can be used 

to hydrogenate TDO oil. Using the results of this study, the catalyst best suited for producing diesel fuel 

was the ruthenium-nickel catalyst (Ref. Z) because it produced fully saturated products with desired cis- 

stereochemistry. Thus, this catalyst would likely hydrogenate the molecules from TDO oil with the highest 

cetane numbers.  

RECOMMENDATIONS FOR FUTURE STUDIES 

In this study, we posed several questions that could be evaluated in future studies. Firstly, finding 

an explanation for the different activation energy of Ni/SiAl would be noteworthy, which could involve 

testing the acid sites using pyridine adsorption to determine the number and strength of Lewis and 
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Brønsted acid sites of that catalyst compared with Ni/SiO2, Ni/Al2O3, and Ni/ASA. Temperature 

programmed reduction (TPR) could also be performed on the catalysts to ensure that the nickel catalysts 

were fully reduced at 400°C before being used for hydrogenation. 

Additionally, further TEM studies could be conducted to compare the coprecipitated catalysts 

synthesized at 25°C and 90°C. Because of the large difference in surface area and pore volume at the 

different temperatures, we believe the TEM micrographs would look very different from each other. This 

could provide insight into the surface area enhancement and explain why the increased temperature 

produced better catalyst characteristics. Further TEM studies with energy-dispersive X-ray analysis (EDX) 

could also be used to determine the Ni and Al concentration of the rod-like and nodule-like structures in 

the 60Ni and Alfa Aesar catalysts displayed in Figure 28. 

Most of the reactions in this thesis were operated at a 20:1 hydrogen to 2-methylnaphthalene (2-

MN) molar ratio, which is four times the amount of hydrogen required to fully saturate 2-MN (which 

requires 5 H2). This ratio could be adjusted to minimize the hydrogen flow rate while getting the required 

aromatic saturation. Additionally, these reactions were performed solely at 1000 psi, and studying the 

effect of pressure on these reactions could prove important. Optimizing both parameters would be crucial 

to minimize reagent costs because hydrogen is expensive, and aromatic saturation requires a substantial 

amount of it.  

Future experiments could also be performed using TDO oil as the feedstock for this reaction to 

evaluate its feasibility. Using the most promising catalysts, the hydrogenation could take place in a ¾” 

trickle bed reactor to hydrogenate about 1 L of material. If successful, the catalyst could be used in a larger 

reactor to produce a larger amount of fuel, like 20 L. At that point, it would be important to investigate 

the cost of preparing the catalysts for scaling-up. Fortunately, the catalysts designed in these experiments 
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were produced with nickel, which is much cheaper than some other precious metals. The cost of 

producing the catalysts and the expected catalyst lifetime would also need to be accounted for if the TDO 

oil upgrading process is performed at a larger scale.  

Even with the best catalyst produced in this experiment, the cetane number of hydrogenated TDO 

oil would likely still be below specifications. We believe that the best process to further increase the 

cetane number is through selective ring opening of naphthenic molecules. If a ring opening catalyst could 

be developed that converted cycloparaffins into linear or mildly branched paraffins, then the fuel might 

meet the cetane number requirements. For this reason, we believe that the TDO oil upgrading steps will 

require a dual-reactor setup, consisting of a hydrogenation catalyst followed by a ring-opening catalyst. If 

successful, this process would be able to produce renewable diesel fuel and would help reduce our 

reliance on fossil fuels.  
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APPENDIX A                                                                                                                                                  

SYNTHESIS METHODS OF SUPPORTED HYDROGENATION CATALYSTS 

INCIPIENT WETNESS IMPREGNATED CATALYSTS 

A. Ni/SiO2 (20 wt% Ni) 

• 2.5281 g of Ni(NO3)2×6H2O was dissolved in 1.7838 g of deionized water 
• The nickel solution was added dropwise to 2.0238 g of silica and stirred to break up any 

chunks  
• The catalyst was moved to the oven, where it was heated to 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and placed in a furnace 

that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

• Resulting catalyst had a surface area of 400 m2 g-1, pore volume of 0.48 cm3 g-1, and pore 
size of 48 Å 

 

    
Figure 31. Stages of incipient wetness impregnation for a 20 wt% Ni/SiO2 catalyst: 1) metal solution is 

added dropwise to the support 2) catalyst is dried in oven overnight at 100°C, 3) catalyst is crushed and 
prepared for calcination, 4) catalyst is calcined at 450°C for 3 hours. 

 
 

B. Ni/g-Al2O3 (20 wt% Ni) 

• 3.7261 g of Ni(NO3)2×6H2O was dissolved in 1.6986 g of deionized water 
• The nickel solution was added dropwise to 3.0076 g of gamma-alumina and stirred to 

break up any chunks  
• The catalyst was moved to the oven, where it was heated to 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and placed in a furnace 

that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

• Resulting catalyst had a surface area of 151 m2 g-1, pore volume of 0.32 cm3 g-1, and pore 
size of 84 Å 
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C. Ni/SiAl (20 wt% Ni) 

• To make this support, both silica and alumina were added together in a 50:50 ratio, 
where 2.0068 g of alumina and 2.0084 g of silica were combined (Molecular Si:Al ratio = 
0.884) 

• 2.8952 g of Ni(NO3)2×6H2O was dissolved in 2.0691 g of deionized water 
• The nickel solution was added dropwise to 2.9128 g of the mixed support and stirred to 

break up any chunks  
• The catalyst was moved to the oven, where it was heated to 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and placed in a furnace 

that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

• Resulting catalyst had a surface area of 308 m2 g-1, pore volume of 0.43 cm3 g-1, and pore 
size of 56 Å 

 
D. Ni/ASA (20 wt% Ni) 

• This procedure is largely based on US Patent # 6,872,685 B2 (2005)52 
• Solution 2 (6 wt% SiO2) was prepared by dissolving 9.1855 g of sodium orthosilicate 

(Na4SiO4) in 40.8503 g of deionized water using a stir bar 
• Solution 1 (6 wt% Al2O3) was prepared by dissolving 17.4810 g of Al2(SO4)3×14H2O in 

30.4721 g of deionized water. The aluminum sulfate did not completely dissolve, so 2.717 
g of concentrated H2SO4 was added to the solution until all of the aluminum sulfate 
pieces dissolved at a pH of about 0.5 

• Solution 1 was stirred vigorously while solution 2 was added dropwise to solution 1 using 
a glass Pasteur pipette. White flakes formed as the drops were added. The flakes 
dissolved upon further stirring, and the pH of the solution was kept below 2.0 by adding 
more sulfuric acid. The final solution (solution 1+2) was translucent and had a pH of 1.2 

• Solution 3 was prepared by adding 37.452 g of 32 wt% NH3 solution to 116.489 g of 
deionized water 

• Simultaneously, some of each solution (1+2 and 3) was added to a new 600 mL beaker 
and the gelation started instantly, as both clear solutions turned white and appeared to 
gel. The pH was monitored very closely to maintain it between 6.5 and 7.5. More of the 
solutions were added to ensure that the pH remained in the correct range while the stir 
bar ran at the maximum speed possible. Once both solutions were completely added, 
the gel was allowed to set for 2 hours while being continuously stirred. The solution was 
an opaque white gel-like solution and by the end, the pH was 6.75 

• Solution 4 was prepared by dissolving 12.563 g of ammonium acetate in 251.107 g of 
deionized water. This solution was heated on a hot plate until it was about 50°C 

• After the 2 hours had elapsed, the opaque gel solution was vacuum filtered. Solution 4 
was added in 50 mL aliquots to the gel, then 500 mL of deionized water was used to wash 
the paste 

• The filtrate was allowed to air dry for an hour then dried in an oven at 100°C overnight  
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• The support was then sieved to size and the powder was calcined overnight at 450°C 
using a ramp of 2°C/min. The resulting ASA was beige-white after calcination 

• Resulting support had a surface area of 333 m2 g-1, pore volume of 0.56 cm3 g-1, and pore 
size of 68 Å 

 

    
Figure 32. Stages of synthesis of ASA support: 1) solution 2 is added to an acidic aluminum solution 2) 

upon addition of basic solution, the gel persists as a milky viscous liquid 3) the flakes are collected after 
vacuum filtration 4) the support was dried in an oven overnight and persisted as a white powder. 

 
 

• 2.5626 g of Ni(NO3)2×6H2O was dissolved in 1.8005 g of deionized water 
• The nickel solution was added dropwise to 2.0691 g of amorphous silica alumina and 

stirred to break up any chunks of support 
• The catalyst was moved to the oven, where it was heated to 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and placed in a furnace 

that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

• Resulting catalyst had a surface area of 218 m2 g-1, pore volume of 0.31 cm3 g-1, and pore 
size of 68 Å 

 

   
Figure 33. Various stages of incipient wetness impregnation using nickel on amorphous silica-alumina 

(ASA). 
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Figure 34. Comparison of dried ASA support, calcined support, and synthesized 20 wt% Ni/ASA catalyst. 

 
 

COPRECIPITATED CATALYSTS 

E. 60Ni – (Method I) 

• In a 250 mL beaker, 9.413 g of Ni(NO3)2×6H2O and 2.998 g of AlCl3×6H2O were dissolved in 
80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.569 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 88 m2 g-1, pore volume of 0.24 cm3 g-1, and pore 

size of 108 Å 
 

  
Figure 35. Images of coprecipitated 60Ni catalyst. 
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F. 60Co – (Method I) 

• In a 250 mL beaker, 9.612 g of Co(NO3)2×6H2O and 3.075 g of AlCl3×6H2O were dissolved 
in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 6.31 g of Na2CO3 was dissolved in 50 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 

 

   
Figure 36. Images of coprecipitated 60Co catalyst. 

 
 

G. NiCr – (Method I) 

• In a 250 mL beaker, 9.891 g of Ni(NO3)2×6H2O, 2.838 g of AlCl3×6H2O, and 0.691 g of 
CrCl2×6H2O were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.64 g of Na2CO3 was dissolved in 50 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 59.9 – 4.1 – 36.0 (Ni – Cr – Al2O3) 
• Resulting catalyst had a surface area of 98 m2 g-1, pore volume of 0.20 cm3 g-1, and pore 

size of 83 Å 
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Figure 37. Images of coprecipitated NiCr catalyst. 

 
 

H. NiMn – (Method I) 

• In a 250 mL beaker, 12.195 g of Ni(NO3)2×6H2O, 2.846 g of AlCl3×6H2O, and 0.365 g of 
MnSO4 were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.545 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 60.1 – 4.0 – 35.9 

 

   
Figure 38. Images of coprecipitated NiMn catalyst. 
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I. NiFe – (Method I) 

• In a 250 mL beaker, 12.532 g of Ni(NO3)2×6H2O, 2.949 g of AlCl3×6H2O, and 0.412 g of FeCl3 
were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.086 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 59.8 – 4.1 – 36.1 

 

   
Figure 39. Images of coprecipitated NiFe catalyst. 

 
 

J. NiCo – (Method I) 

• In a 250 mL beaker, 9.461 g of Ni(NO3)2×6H2O, 2.736 g of AlCl3×6H2O, and 0.646 g of 
Co(NO3)2×6H2O were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.839 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 59.8 – 4.1 – 36.2 
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Figure 40. Images of coprecipitated NiCo catalyst. 

 
 

K. NiCu – (Method I) 

• In a 250 mL beaker, 11.607 g of Ni(NO3)2×6H2O, 2.722 g of AlCl3×6H2O, and 0.484 g of 
Cu(NO3)2×3H2O were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7. 694 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 60.0 – 4.0 – 36.0 

 

   
Figure 41. Images of coprecipitated NiCu catalyst. 
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L. NiZn – (Method I)  

• In a 250 mL beaker, 11.548 g of Ni(NO3)2×6H2O, 2.675 g of AlCl3×6H2O, and 0.475 g of zinc 
acetate dihydrate were dissolved in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.36 g of Na2CO3 was dissolved in 50 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Final sample ratio was 59.8 – 4.5 – 35.8 

 

   
Figure 42. Images of coprecipitated NiZn catalyst. 

 
 

M. 20Ni – (Method I) 

• In a 250 mL beaker, 3.138 g of Ni(NO3)2×6H2O and 5.996 g of AlCl3×6H2O were dissolved in 
80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.652 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 142 m2 g-1, pore volume of 0.49 cm3 g-1, and pore 

size of 139 Å 
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N. 40Ni – (Method I) 

• In a 250 mL beaker, 6.356 g of Ni(NO3)2×6H2O and 4.540 g of AlCl3×6H2O were dissolved in 
80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.496 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 114 m2 g-1, pore volume of 0.26 cm3 g-1, and pore 

size of 90 Å 
 

O. 80Ni – (Method I) 

• In a 250 mL beaker, 13.459 g of Ni(NO3)2×6H2O and 1.617 g of AlCl3×6H2O were dissolved 
in 80 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.821 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 68 m2 g-1, pore volume of 0.21 cm3 g-1, and pore 

size of 124 Å 
 

P. 100Ni – (Method I) 

• In a 250 mL beaker, 15.392 g of Ni(NO3)2×6H2O was dissolved in 80 mL of deionized water 
• In a 150 mL beaker, a carbonate solution containing 7.597 g of Na2CO3 was dissolved in 

50 mL of deionized water 
• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at room temperature 
• The resulting solution was filtered to separate the precipitate 



 

 

 
95 

• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 30 m2 g-1, pore volume of 0.11 cm3 g-1, and pore 

size of 145 Å 
 

Q. Amorphous Alumina – (Method II) 

• In a 250 mL beaker, 10.024 g of AlCl3×6H2O was dissolved in 75 mL of deionized water 
• In a 50 mL beaker, a carbonate solution containing 8.313 g of Na2CO3 was dissolved in 45 

mL of deionized water 
• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C. While adding the solutions together, a gas emerged as the aluminum 
chloride solution was added 

• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 80 m2 g-1, pore volume of 0.50 cm3 g-1, and pore 

size of 248 Å 
 

R. 20Ni – (Method II) 

• In a 250 mL beaker, 3.151 g of Ni(NO3)2×6H2O and 6.024 g of AlCl3×6H2O were dissolved in 
75 mL of deionized water 

• In a 50 mL beaker, a carbonate solution containing 7.627 g of Na2CO3 was dissolved in 45 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 401 m2 g-1, pore volume of 1.18 cm3 g-1, and pore 

size of 118 Å 
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S. 40Ni – (Method II) 

• In a 250 mL beaker, 6.687 g of Ni(NO3)2×6H2O and 4.788 g of AlCl3×6H2O were dissolved in 
75 mL of deionized water 

• In a 50 mL beaker, a carbonate solution containing 7.615 g of Na2CO3 was dissolved in 45 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 331 m2 g-1, pore volume of 1.12 cm3 g-1, and pore 

size of 107 Å 
 

T. 60Ni – (Method II) 

• In a 250 mL beaker, 9.419 g of Ni(NO3)2×6H2O and 2.992 g of AlCl3×6H2O were dissolved in 
75 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 7.479 g of Na2CO3 was dissolved in 
50 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 258 m2 g-1, pore volume of 0.96 cm3 g-1, and pore 

size of 149 Å 
 

U. 80Ni – (Method II) 

• In a 250 mL beaker, 13.391 g of Ni(NO3)2×6H2O and 1.612 g of AlCl3×6H2O were dissolved 
in 75 mL of deionized water 

• In a 50 mL beaker, a carbonate solution containing 7.486 g of Na2CO3 was dissolved in 45 
mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
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• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 100 m2 g-1, pore volume of 0.29 cm3 g-1, and pore 

size of 165 Å 
 

V. 100Ni – (Method II) 

• In a 250 mL beaker, 12.992 g of Ni(NO3)2×6H2O was dissolved in 75 mL of deionized water 
• In a 50 mL beaker, a carbonate solution containing 7.630 g of Na2CO3 was dissolved in 45 

mL of deionized water 
• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate 
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 39 m2 g-1, pore volume of 0.22 cm3 g-1, and pore 

size of 227 Å 
 

IMPREGNATED COPRECIPITATED CATALYSTS 

Procedure for synthesis of 60Ni/Al2O3 support for subsequent impregnation 

• In a 250 mL beaker, 36.112 g of Ni(NO3)2×6H2O and 11.516 g of AlCl3×6H2O were dissolved 
in 100 mL of deionized water 

• In a 150 mL beaker, a carbonate solution containing 30.017 g of Na2CO3 was dissolved in 
100 mL of deionized water 

• A 600 mL beaker was filled with 150 mL of DI water 
• The first two solutions were added dropwise into the 600 mL beaker, which was stirred 

vigorously at 90°C 
• The resulting solution was filtered to separate the precipitate 
• 2-100 mL aliquots of water were added to the filtrate 
• 2-25 mL aliquots of methanol were added to the filtrate  
• The filtrate cake was then transferred to a crucible and dried overnight at 100°C 
• The catalyst was calcined in a muffle furnace at 450°C for 3 hours with a 2°C/min ramp 
• Resulting catalyst had a surface area of 258 m2 g-1, pore volume of 0.96 cm3 g-1, and pore 

size of 149 Å 
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W. PdNi – (1 wt% Pd, 60 wt% Ni) 

• When weighed out, the mass of the 60Ni “support” was 2.5003 g  
• 0.0421 g of PdCl2 was weighed out along with 3.9845 g of deionized water 
• The palladium solution was added dropwise to the support and stirred to break up 

chunks of support.  
• The wet catalyst was moved to the oven, where it was heated at 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and then placed in a 

furnace that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

 

X. PtNi – (1 wt% Pt, 60 wt% Ni) 

• When weighed out, the mass of the 60Ni “support” was 2.5021 g  
• 0.0654 g of H2PtCl6*xH2O (x was found to equal 5.3) was weighed out along with 4.0034 

g of deionized water 
• The platinum solution was added dropwise to the support and stirred to break up chunks 

of support.  
• The wet catalyst was moved to the oven, where it was heated at 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and then placed in a 

furnace that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

 
Y. IrNi – (1 wt% Ir, 60 wt% Ni) 

• When weighed out, the mass of the 60Ni “support” was 2.5051 g  
• 0.0439 g of IrCl4 was weighed out along with 3.9973 g of deionized water 
• The iridium solution was added dropwise to the support and stirred to break up chunks 

of support.  
• The wet catalyst was moved to the oven, where it was heated at 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and then placed in a 

furnace that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 

 
Z. RuNi – (1 wt% Ru, 60 wt% Ni) 

• When weighed out, the mass of the 60Ni “support” was 2.4975 g  
• 0.0518 g of RuCl3 was weighed out along with 4.0050 g of deionized water 
• The ruthenium solution was added dropwise to the support and stirred to break up 

chunks of support.  
• The wet catalyst was moved to the oven, where it was heated at 100°C overnight  
• The catalyst chunks were broken up with a mortar and pestle and then placed in a 

furnace that was heated by 2°C/min to a maximum temperature of 450°C, where the 
temperature held constant for 3 hours before cooling off to room temperature 
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Alfa Aesar Catalyst 

The Alfa Aesar catalyst (Part # 031276; Nickel on silica-alumina) used in this thesis has a 

proprietary composition, but it was sold as containing 66 ± 5% Ni. The same bottle of Alfa Aesar catalyst 

was used throughout the entirety of the experiments, and the batch of catalyst that was used contained 

62 wt% Ni as well as a surface area of 173 m2 g-1, a pore volume of 0.22 cm3 g-1, and a pore size of 52 Å.  

When I inquired about the composition of the Alfa Aesar catalyst, I got an email response from 

Rafi Dekermendjian (rafi.dekermendjian@thermofisher.com), who said that the catalyst composition was 

proprietary, but he provided a vague description of the catalyst, saying it was essentially Ni on kieselguhr. 

He also listed the following percentages:  

• 40 – 50% NiO 
• 30 – 40% Ni 
• 10 – 20% Kieselguhr (amorphous silica) 
• <10% Alumina 
• <10% Proprietary Components 

 
When the Alfa Aesar catalyst was studied under the TEM, it was clear that the catalyst contained 

kieselguhr, a fancy name for diatomaceous earth. Although the TEM images shown in Figure 28 show a 

more microscopic view of the catalyst, we also discovered there were large diatomites present in the 

catalyst mixture. Figure 43 shows one of these diatomites we discovered, and the surface was coated in 

large agglomerations of Ni particles.  
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Figure 43. A TEM image of the Alfa Aesar catalyst showing a diatomite littered with Ni particles. 
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