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Emerald Ash Borer Specific Gene
Silencing Has No Effect on
Non-target Organisms
Flavia Pampolini and Lynne K. Rieske*

Department of Entomology, University of Kentucky, Lexington, KY, United States

The sequence complementarity of the RNA interference (RNAi) pathway allows for

targeted suppression of genes essential for insect survival, and enables development

of pest management strategies specific to a given species while reducing the likelihood

of adversely impacting non-target organisms (NTOs). The feasibility of manipulating

the RNAi pathway to cause mortality in the highly invasive emerald ash borer (EAB)

has been demonstrated. Here the spectrum of activity of three double stranded RNAs

(dsRNAs) targeting the genes hsp, shi, and sn-rnp in EAB was evaluated in model

insects representing five functional guilds including herbivore, predator, detritivore,

pollinator, parasitoid; the last represented by the classical biological control agents

currently deployed for EAB management in North America. All NTOs were exposed

to EAB-specific dsRNAs in diet bioassays that measured potential lethal effects. Gene

expression and in silico analysis were also assessed on NTOs for which gene sequences

were publicly available. Bioassays demonstrated no lethal effects on our model insects,

suggesting a narrow spectrum of activity for the three EAB-specific dsRNAs evaluated.

The gene expression and in silico analyses suggest potential sublethal effects on our

model pollinator; however we found no effects on insect survival. Overall, our results

suggest no adverse effects of the RNAi strategy targeting EAB genes on the survival

of the selected non-target organisms we evaluated. The results from this study provide

guidance for future RNAi risk analyses that will allow this technology to move forward to

a deployment stage.

Keywords: RNAi, specificity, Agrilus planipennis, dsRNA, environmental risk assessment

INTRODUCTION

RNA interference (RNAi) is a molecular mechanism triggered by the introduction of
double-stranded RNA (dsRNA) designed to induce gene knock-down; it is a promising technology
with powerful potential for insect pest control. The RNAi pathway disrupts target genes and can
lead to insect mortality when essential genes are silenced and subsequent protein synthesis is
interrupted (Huvenne and Smagghe, 2010; Zhang et al., 2017). The RNAi pathway involves the
complementarity of≥21 base pair sequences to the target genes in a given species or closely related
species (Agrawal et al., 2003; Bachman et al., 2016). This specificity minimizes any detrimental
effects of an RNAi strategy to non-target organisms (NTOs).
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Implementation of crop protection strategies applying RNAi
technology are under development (Poelchau et al., 2016; Vogel
et al., 2019). Potential applications of environmental or dietary
RNAi for pest control include applications of dsRNA in foliar
sprays (San Miguel and Scott, 2016); systemic uptake through
plant material (Hunter et al., 2012; Dalakouras et al., 2018;
Pampolini et al., 2020), oral administration of dsRNA in baits
(Zhou et al., 2008), embedded in nanoparticles (Zhang et al.,
2010; Yan et al., 2020), expressed in genetically engineered
microorganisms (Zhu et al., 2011; Joga et al., 2016), or expressed
in transgenic plants (Baum et al., 2007; Mao et al., 2007; Ghag,
2017; Zhang et al., 2017).

In addition to its application for agricultural purposes,
RNAi technology has been investigated in forest pests including
the southern pine beetle, Dendroctonus frontalis (Coleoptera:
Curculionidae) (Kyre et al., 2019), the congeneric mountain
pine beetle, D. ponderosae (Kyre et al., 2020), the wood-boring
Asian longhorned beetle, Anoplophora glabripennis (Coleoptera:
Cerambycidae) (Rodrigues et al., 2017a), and the emerald
ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera:
Buprestidae) (Rodrigues et al., 2017b, 2018; Pampolini et al.,
2020).

EAB is an exotic, highly invasive, phloem-feeding beetle native
to Asia. Since its discovery in North America in 2002, EAB
has killed millions of Fraxinus spp. throughout its invaded
range (Cappaert et al., 2005; Poland and McCullough, 2006),
devastating urban forests, posing a threat to forest ecosystems,
reducing biodiversity, and causing unprecedented economic
losses (Aukema et al., 2011). Fortunately, previous studies
evaluating the susceptibility of EAB to RNAi (Zhao et al.,
2015) and the effectiveness of this technology against this pest
(Rodrigues et al., 2017b, 2018; Pampolini et al., 2020) shows
promise, and suggests that RNAi could be a viable option when
implemented as a component of an integrated management
strategy for EAB.

To move a biopesticide using RNAi technology toward
commercialization, its risk to the environment and possible
adverse effects on non-target organisms must be evaluated (Vélez
et al., 2016; Haller et al., 2019). Given the novel mode of action
of dsRNA-based products, the regulatory requirements for their
deployment have been discussed internationally (USEPA, 2014;
Mendelsohn et al., 2020; Romeis and Widmer, 2020). The risk
assessment framework currently in use for genetically engineered
plants expressing insecticidal proteins, such as those expressing
Cry proteins from Bacillus thuringiensis, has been suggested
as a starting point to evaluate the potential hazards for RNAi
products (Romeis et al., 2013; Romeis and Widmer, 2020). This
framework tests the risk hypothesis that the stressor (dsRNA)

Abbreviations: ACT, actin; ANOVA, one-way analysis of variance; BLAST, Basic

Local Alignment Search Tool; CPB, Colorado potato beetle; dsRNA, double-

stranded RNA; EAB, emerald ash borer; GE plants, genetic engineered plants;

GFP, green fluorescent protein; HSP, heat shock 70-kDa protein; NADHdh,

NADH dehydrogenase; NCBI, National Center for Biotechnology Information;

NTO, non-target organisms; RNAi, RNA interference; RNP, U1 small nuclear

ribonucleoprotein; RP4, ribosomal protein4; RP16S, ribosomal RNA 16S; RP18,

ribosomal protein 18; RP18S, ribosomal RNA 18S; RP49, ribosomal protein 49;

SHI, shibire; vATPase, vacuolar ATPase.

does not adversely impact non-target arthropods in the field,
and recommends investigating pest-specific dsRNA impacts in
species that represent key functional groups of economic and
ecological importance (Romeis et al., 2008; USEPA, 2013); this
is the approach used here.

We evaluated model insects, including an herbivore, predator,
detritivore, and pollinator, for any effects of the EAB-specific
dsRNAs considered for future deployment. We then evaluated
the effects of the same dsRNAs on classical biological control
agents currently deployed for EAB management in North
America. Our overall goal is to generate data that will allow
the EAB-specific dsRNAs that silence genes and induce rapid
mortality to move to the deployment stage.

MATERIALS AND METHODS

Target Genes
Mortality of EAB neonate larvae and adults can be induced
after oral ingestion of dsRNA targeting the genes heat shock
70-kDa protein (hsp), shibire (shi) (Rodrigues et al., 2018),
and U1 small nuclear ribonucleoprotein (sn-rnp from hereafter
referred as rnp) (Pampolini and Rieske, unpublished data),
so these were selected to evaluate specific EAB-dsRNA effects
in the non-target organisms (Supplementary Table 1). Green
fluorescent protein (gfp) was used as the negative control, and
a positive control included a dsRNA specific to the insect under
evaluation (Supplementary Table 1) and/or potassium arsenate
(KH2AsO4) (Sigma-Aldrich, St. Louis, MO USA), a stomach
poison (Romeis et al., 2011) selected to confirm effectiveness of
the feeding bioassay.

Synthesis of dsRNA
Total RNA is extracted using Trizole reagent (ThermoFisher,
USA), and the quantity and quality of the RNA is checked
by electrophoresis and spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA). cDNA is synthesized
from 3 µg of total RNA using a M-MLV reverse transcriptase kit
(ThermoFisher, USA).

PCR templates for in vitro synthesis of dsRNA are generated
using gene-specific primers containing T7 polymerase promoter
sequence (TAATACGACTCACTATAGGG). PCR conditions are
4min at 94◦C, followed by 30 cycles of 30 s at 94◦C, 30 s at 60◦C,
and 45 s at 72◦C, finishing with an extension step at 72◦C for
10min. The PCR template is purified using a PCR purification
kit (Qiagen Inc., Valencia, CA, USA). After PCR purification,
dsRNA synthesis is performed using the MEGAscript RNAi Kit
(Ambion Inc., Foster City, CA USA) following manufacturer’s
instructions. The reaction is incubated for 14 h at 37 ◦C, followed
by 15min of DNase treatment. The dsRNA is precipitated by
adding 0.1x volume of sodium acetate (3M, pH 5.2) and 2.5x
the volume of 100% ethanol, which is maintained at −20◦C for
at least 2 h followed by centrifugation at 4◦C for 30min. The
dsRNA pellet is then rinsed with 750 µL of 75% ethanol and
centrifuged again at 4◦C for 15min. The ethanol is removed and
the dsRNA is diluted in ultrapure distilled water. The quality of
the dsRNA is checked by electrophoresis and quantified using a
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
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USA). To attain the required concentration for each assay,
dsRNA samples are vacuum concentrated using Concentrator
plus (Eppendorf, Hauppauge, NY, USA).

Model Non-target Organisms
Non-target organisms were chosen as models to represent
multiple feeding guilds. The Colorado potato beetle (CPB),
Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), served
as our model herbivore, and the spotted lady beetle, Coleomegilla
maculata (Coleoptera: Coccinellidae), as our model predator.
Our model detritivore was the eastern subterranean termite,
Reticulitermes flavipes (Blattodea: Rhinotermitidae), and our
model pollinator was the honeybee,Apis mellifera (Hymenoptera:
Apidae). Finally, the classical biological control agents routinely
deployed for EAB population management, adult Tetrastichus
planipennisi (Hymenoptera: Eulophidae), and Spathius galinae
(Hymenoptera: Braconidae), were evaluated.

Bioassays and Gene Expression
Non-target effects were evaluated by oral delivery of EAB-specific
dsRNAs incorporated into diets; insects were fed ad-libitum. Each
NTO was exposed to three EAB-specific dsRNAs targeting the
genes hsp, shi, and rnp, the negative control gfp, and a positive
control appropriate for the assay (Supplementary Table 1). All
NTOs were exposed to dsRNA treatments for 3 consecutive
days, after which they were maintained on the appropriate
species-specific diet until assays were terminated. On day 3,
a subsample of dsRNA-treated NTOs were collected, placed
individually into micro tubes and transferred immediately to
−80◦C for later analysis of gene expression using quantitative
real time PCR analysis using the RT-qPCR primer sequences in
Supplementary Table 2.

Following total RNA extraction, cDNA was synthesized using
M-MLV Reverse Transcriptase (Life Technologies, Carlsbad, CA,
USA), and was used as a template for gene expression studies.
The expression analyses were conducted using SYBR Green PCR
Master Mix containing 1 µl of cDNA, 0.2 µl of each primer
(10mM; Supplementary Table 2), 5 µl of the SYBR green PCR
mastermix and 3.6µl of ddH2O, totaling 10µl. The StepOnePlus
Real-Time PCR system (Life Technologies, Carlsbad, CA, USA)
was used to perform real-time quantitative PCR (RT-qPCR)
under the following conditions: one cycle of 2min at 50◦C, one
cycle of 2min at 95◦C, 40 cycles of denaturation of 1 s at 95◦C,
annealing and extension for 30 s at 60◦C, ending with generation
of a melting curve to confirm a single peak and rule out non-
specific product and primer dimer formations. Reference genes
(Supplementary Table 2) and the 2-11Ct method was used to
calculate the relative expression of the target gene compared to
the control (Livak and Schmittgen, 2001). A two-tailed t-test was
used to compare the means of a single variable.

Herbivore (Colorado Potato Beetle)
Newly emerged second instar CPB were obtained from a
laboratory reared colony in the UK Department of Entomology.
Larvae were evaluated individually in 50 × 15mm Petri dishes
containing a 12mm diameter potato leaf disc (Zhu et al., 2011)
treated with 1 µL of 0.001% Triton x-100 (Sigma-Aldrich Co.,

St. Louis, MO USA) to increase permeability, followed by 2 µL
of the EAB-specific dsRNA, dsGFP as the negative control, and
dsRNA targeting the gene β-act for the positive control (Zhu
et al., 2011). The dsRNA concentration was 5 µg/µL, resulting in
a daily exposure of 10 µg of dsRNA per day for 3 days. The assay
was maintained at room temperature (26◦C+/−2◦C; 10:14 L:D)
for 12 days. On day 4 larvae were provided untreated leaf discs
daily through day 12, after which the assay was terminated. Ten
beetles per treatment were evaluated and the assay was repeated
three times. Mortality was evaluated at 48 h intervals for the
duration of the 12-days assay. A one-way analysis of variance
(ANOVA) was used to evaluate differences in mortality among
EAB-specific dsRNAs and the controls.

Following exposure to the EAB-specific dsRNAs, the gene
expression analysis evaluated the relative mRNA levels of the
target genes hsp, shi, and rnp, with gfp as the negative control and
β-act as the positive control. The ribosomal protein genes rp18
and rp4 were selected as reference genes to normalize expression
of the target genes (Zhu et al., 2011).

Predator (Spotted Lady Beetle)
Eggs of C. maculata were obtained commercially (Insect
Lore, Shafter, CA, USA) and neonate larvae were maintained
on a lepidopteran egg diet (Ephestia kuehniella; Lepidoptera:
Pyralidae) (Green Methods, Redding, CA, USA) until reaching
the second instar, when they were used in bioassays. Newly
emerged second instar larvae were starved for 24 h prior to
being placed individually into wells of a 96 well, flat bottom
plate (Haller et al., 2019). Each well-contained a small (∼1.5mm
diameter) cotton ball soaked with 4 µL of a 15% sucrose solution
+ EAB-specific dsRNA at a concentration of 2.5µg/µL, resulting
in a daily exposure of 10 µg; dsGFP was our negative control
and dsRNA targeting the gene vATPase was our positive control
(Yang et al., 2015). dsRNA was replenished daily for 3 days.
On day 4 the larvae were placed individually into 35mm Petri
dishes and maintained on a diet of E. kuehniella eggs until adult
emergence (∼20 days). Amoistened cotton ball in each Petri dish
provided humidity; the cotton balls and the food were replaced
every other day. Mortality was evaluated at 48 h intervals for 20
days after ingestion of dsRNAs. The assay was maintained in a
growth chamber at 25◦C +/−2◦C, 70 +/- 5% RH, and a 16:8
L:D. A total of 20 individuals were evaluated per treatment, and
there were two biological replicates. A one-way ANOVAwas used
to evaluate differences in mortality among dsRNA treatments
and controls.

The relative expression of the target gene hspwas compared to
that of our gfp negative control and our vATPase positive control.
The shi and rnp gene sequences were not publicly available at
the time of our study, so they were not included in the gene
expression analysis. The 18S ribosomal RNA (rp18S) and the 16S
ribosomal RNA (rp16S) genes were selected as the reference genes
(Yang et al., 2015).

Detritivore (Eastern Subterranean Termite)
Termites were obtained from laboratory reared colonies in the
UK Department of Entomology; worker adults were selected
for evaluation and were starved for 24 h prior to use in assays.
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Groups of 13–15 termites were placed into 35mm culture Petri
dishes (Fisher Scientific, Waltham, MA, USA) containing a
33mm diameter filter paper treated with 20 µL of EAB-specific
dsRNA solution at a concentration of 10 µg/cm2 (Zhou et al.,
2008); dsGFP served as the negative control and the positive
control consisted of potassium arsenate at 1%. The dsRNA and
potassium arsenate solutions were applied to the filter paper
and allowed to completely dry, after which the paper disks were
moistened with an additional 50 µL of water and 1% blue food
dye (Assorted Food Colors, Kroger Co., Cincinnati, OH, USA) to
allow visual tracking of ingestion of the dsRNA in the termites’
intestinal tract. Assays were maintained at 26◦C +/- 2◦C, and
0:24 L:D for 14 days, and the filter paper was moistened every
other day with 50 µL of water and food dye. Three groups of
13–15 termites from three different colonies were evaluated per
treatment, representing three biological replicates. A one-way
ANOVA was used to evaluate differences in termite mortality
among dsRNA treatments and controls.

Our gene expression analysis assessed relative expression
of the target gene hsp compared to that of the gfp negative
control; the genes NADH dehydrogenase (NADHdh) and β-actin
(β-act) were selected as reference genes (Zhou et al., 2008).
Sequences for shi and rnp were not publicly available when the
study was conducted, so they were not included in the gene
expression analysis.

Pollinator (European Honeybee)
Honeybees were obtained from a research apiary at the UK
Department of Entomology. Hive frames were selected to ensure
brood synchrony, and newly emerged adults were collected
immediately from frames in early August for feeding bioassays
(Tan et al., 2016; Vélez et al., 2016). Groups of 8–10 bees
were placed directly into modified Petri dishes (150 × 20mm)
containing a microcentrifuge tube with access holes to a
50% sucrose solution (Figure 1), which contained dsRNA at
a concentration of 10 µg per bee for dsHSP, dsSHI, dsRNP,
and dsGFP. An additional treatment tested the combination
of dsHSP+dsSHI at a concentration of 1 µg (500 ng of each)
per bee. Potassium arsenate (0.05 µg/µL) was used as the
positive control (Tan et al., 2016). Bees were offered 1mL of
50% sucrose + dsRNA, and after consumption of the entire
solution (∼72 h), were maintained on a 50% sucrose lacking
dsRNA. Assay dishes were maintained in a growth chamber at
34◦C +/- 2◦C, 75% relative humidity, and 0:24 L:D; honeybee
mortality was evaluated for 30 days until all individuals were
dead, and the mortality assessed on day 10 was compared among
treatments. There were 8–9 dishes of 8–10 bees per dish evaluated
for each treatment. Frames from two hives were selected, and bees
from both frames were collected on 2 different days with a 14
days interval, representing four biological replicates. Honeybee
mortality was evaluated using a one-way ANOVA to assess
differences among dsRNA treatments and controls.

After 4 days of exposure to the EAB-specific dsRNAs, the
relative mRNA levels of the target genes hsp, shi, and rnp were
evaluated and compared to gfp, using act and ribosomal protein
RP49 (rp49) as reference genes to normalize expression of the
target genes (Lourenco et al., 2008).

FIGURE 1 | Honeybee bioassay chambers, in which 8–10 bees were placed

in Petri dishes containing a microcentrifuge tube with holes allowing access to

a 50% sucrose solution with the dsRNA treatments.

Classical Biological Control Agents
Laboratory reared T. planipennisi and S. galinae adults were
provided by the USDA APHIS PPQ Emerald Ash Borer Program
laboratory (Brighton, MI). Immediately upon receipt, adult
parasitoids were exposed to EAB specific dsRNAs using a
droplet feeding bioassay (Rodrigues et al., 2017b). Droplets
consisted of 2 µL of a 5% sucrose solution containing dsRNA
at a concentration of 10 µg/µL, offered on parafilm in a 150
× 15mm Petri dish containing a moistened filter paper and
covered with an inverted transparent plastic cup (200mL).
There was one dsRNA-sucrose droplet for every two wasps
in each cup. In groups of 8–10 individuals, adult wasps were
exposed to the dsRNA treatments for 3 days; after day 4 they
were maintained on a sucrose only solution, lacking dsRNA.
Droplets were replenished every other day. Potassium arsenate
at 0.05 µg/µL was the positive control and the assay was
maintained at room temperature (26◦C +/−2◦C; 10:14 L:D)
for 11 days. The experiment was repeated three times for
S. galinae and twice for T. planipennisi. For T. planipennisi
only, a second assay testing a dsRNA concentration of 1
µg/µL was also evaluated and repeated three times. A one-
way analysis of variance (ANOVA) was used to evaluate
differences in mortality among EAB-specific dsRNAs and
the controls.

Because gene sequences for the classical biological
control parasitoids T. planipennisi and S. galinae are
not publicly available, we were not able to evaluate
parasitoids for gene expression following EAB-specific
dsRNA treatments.
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In silico Analyses
Using publicly available sequences, an in silico analysis was
performed to assess potential effects of the EAB-specific
dsRNAs on our selected NTOs. BLAST searches were
done using the NCBI nucleotide BLAST tool (BLASTn)
to compare orthologous hsp, shi, and rnp sequences of
EAB and each NTO. Alignments were analyzed to identify
exact 21 or greater nucleotide (nt) matches. When coding
sequences for a given species or a given gene were not
available, they were replaced by predicted sequences
derived from gene annotation of closely related species
(Table 1).

RESULTS AND DISCUSSION

Herbivore (Colorado Potato Beetle)
Mortality of second instar larvae exposed to EAB-specific
dsRNAs was <15% after 12 days, and did not differ among
treatments and the negative control (p= 0.94), whereas mortality

FIGURE 2 | Second instar CPB mortality after exposure to 10 µg of

EAB-specific dsRNAs targeting the genes hsp, shi, and rnp; 10 µg of dsGFP

was used as negative control and 10 µg/µL of dsACT was used as positive

control.

TABLE 1 | Number of ≥21 nucleotide matches of EAB dsRNAs relative to

sequences from selected NTOs.

EAB gene Non-target organism Data available No. ≥ 21 nt matches

Hsp Herbivore Coding sequence 0

Predator Not available - - -

Detritivore Not available - - -

Pollinator Coding sequence 0

Shi Herbivore Coding sequence 0

Predator Not available - - -

Detritivore Not available - - -

Pollinator Predicted sequence 2

rnp Herbivore Coding sequence 0

Predator Not available - - -

Detritivore Not available - - -

Pollinator Predicted sequence 1

in the positive control (dsACT) reached 80% by day 6 and
rose to 95% on day 8 (Figure 2). Our gene expression analysis
demonstrated a significant reduction in gene expression for our
positive control, dsACT, as expected, but there was no decrease
in the relative expression of hsp, shi, and rnp (Figure 3). Further,
our in silico analysis corroborates the findings of our bioassay and
gene expression analysis; there were no 21 nucleotide alignments
between the EAB sequences and the CPB coding sequences for
the genes hsp, shi, and rnp (Table 1). Together, these results
confirm that there are no adverse effects of EAB dsRNAs on
survival of CPB, our model herbivore.

Predator (Spotted Lady Beetle)
In our 20-days bioassay, mortality of larval C. maculata ranged
from 2.5 to 7.5% for the EAB dsRNA treatments and the negative
control, which did not differ (P = 0.37) (Figure 4A). On day 10,
∼97% of the insects reached the pupal stage in all EAB dsRNAs
treatments and the negative control, followed by adult emergence
of 97.5% for dsHSP, 94.5% for dsSHI, and dsRNP, and 92.5% for
dsGFP (Figure 4B). Larvae demonstrated a significant reduction
in gene expression after exposure to the positive control, ds-
vATPase in our gene expression analysis, but there was no
decrease in relative expression of hsp in our model predator
after exposure to EAB dsHSP (Figure 5). Additionally, the three
EAB gene sequences were queried against spotted lady beetle and
no similar sequences were found in the bioinformatics analysis
(Table 1). Our results indicate that lady beetle larval survival,
development, pupation, and adult emergence were unaffected by
ingestion of EAB dsRNAs.

Here we show that C. maculata second instar larvae are highly
susceptible to orally delivered dsRNAs, whereas previous studies
evaluating lady beetle response to dietary RNAi utilized neonates
(Haller et al., 2019) or first instar larvae (Bachman et al., 2013).
We found that ingestion of the positive control dsvATPase by
second instars triggered gene silencing and induced significant
mortality, but ingestion of the EAB-specific dsRNAs elicited
no response. Collectively, our results confirm that there are no
adverse effects of EAB dsRNAs on survival or gene expression in
our model predator.

FIGURE 3 | Transcript levels of the positive control act, hsp, shi, and rnp

genes in second instar CPB after 3 days feeding on 10 µg of EAB-specific

dsRNAs; 10 µg of dsGFP was used as control. Relative mRNA levels were

normalized using rp4 and rp18 as reference genes. Means ± SE (N = 4–5)

with asterisks indicate significant differences (t-test, one-tailed p < 0.05).
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FIGURE 4 | Spotted lady beetle (A) larval mortality after oral ingestion of EAB dsRNAs (10 µg) targeting the genes hsp, shi, and rnp; 10 µg of dsGFP was used as

negative control and 10 µg/µL of dsvATPase was used as positive control, and (B) subsequent adult emergence from day 12 until day 20.

FIGURE 5 | Transcript levels of the positive control vATPase, and hsp genes in

second instar larvae of spotted lady beetle after 3 days feeding on 10 µg of

EAB-specific dsRNAs; 10 µg of dsGFP was used as control. Relative mRNA

levels were normalized using 16s and 18s as reference genes. Means ± SE

(N = 4–5) with asterisks indicate significant differences (t-test, one-tailed

p < 0.05).

Detritivore (Eastern Subterranean Termite)
After 14 days, mortality of worker termites exposed to EAB
specific dsRNA was 4.5–11%, and did not differ among
treatments and the negative control (p = 0.89). After 4 days the
positive control (potassium arsenate) exhibited 50% mortality;
this increased to 86 and 98% on days 6 and 8, respectively
(Figure 6).

There was no significant decrease in mRNA levels of the hsp
gene after exposure to the EAB dsRNA in our gene expression
analysis (Figure 7); and the three EAB gene sequences were
queried against Eastern subterranean termite and no similar
sequences were found in the bioinformatics analysis (Table 1).

Termites are sensitive to ingested dsRNA and the RNAi
response in termites has been characterized (Zhou et al., 2008).
Although we used potassium arsenate as the positive control
rather than a termite-specific dsRNA, our results demonstrate

FIGURE 6 | Worker termite mortality after exposure to EAB-specific dsRNAs

(10 µg/cm2 ) targeting the genes hsp, shi, and rnp. 10 µg/cm2 of dsGFP was

used as negative control and 1% potassium arsenate solution was used as

positive control.

that the EAB dsRNAs had no impact on termite survival. This
is supported by the in silico analysis, and by the gene expression
study evaluating mRNA levels of the hsp gene.

Pollinator (European Honeybee)
Ten days after ingestion of dsRNAs, there were no differences
in adult honeybee mortality among dsRNA treatments
and the negative control; average mortality was 14% for
dsHSP, 23% for dsSHI, and 15% for dsRNP and dsGFP
(P = 0.83) (Figure 8A). Bees exposed to the potassium
arsenate control experienced 100% mortality within
24 h, confirming the efficacy of oral delivery. Following
evaluation of mortality on day 10, bees were kept for
an additional 20 days when all treatments reached 100%
mortality (P = 0.98) (Figure 8B). Our results indicate
no adverse impact of EAB dsRNAs on honeybee survival
and longevity; however, we did see substantial changes in
gene expression.
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FIGURE 7 | Relative expression of hsp gene in worker termites after 3 days

feeding on 10 µg/cm2 dsHSP; 10 µg/cm2 of dsGFP was used as control.

Relative mRNA levels were normalized using β-act and NADHdh as reference

genes.

Honeybees fed 10 µg per individual of dsHSP showed
a decrease in the mRNA levels of hsp (47%), shi (70%),
and rnp (75%) when compared to levels in honeybees fed
dsGFP (Figure 9A). Honeybees fed 10 µg per individual
of dsSHI also showed a decrease in the relative expression
of hsp (38%), shi (75%), and rnp (80%) (Figure 9B). The
treatment exposing bees to 10 µg per individual of dsRNP
resulted in a decrease in relative expression of shi (70%),
and rnp (80%) (Figure 9C), and bees exposed to 1 µg per
individual of both dsHSP+dsSHI also showed a decrease in
the relative expression of hsp (36%), shi (76%), and rnp (75%)
(Figure 10).

Our gene expression analysis demonstrated silencing of
genes other than the targets, even at dsRNA concentrations
an order of magnitude lower than previously used (1 µg per
individual of dsHSP+dsSHI). However, these reductions in
expression of hsp, shi, and rnp did not affect honeybee survival.
One potential explanation for this is that, following exposure
to a single high concentration of dsRNA, oversaturation of
RNAi machinery may affect the insect immune response, but
this oversaturation and the effects of silencing genes other
than the target is not detectable in acute toxicity bioassays
(Auer and Frederick, 2009; USEPA, 2013). Vélez et al. (2016),
detected transient gene silencing in honeybees when comparing
mRNA levels 48 and 96 h after dsRNA exposure. However,
we evaluated gene expression only at a single time point
(72 h after exposure), and so are unable to detect potential
transient effects.

Using the NCBI nucleotide BLAST tool (BLASTn), our
in silico evaluation identified continuous matches of > 21
nucleotides for shi and rnp in honeybees when queried
against the honeybee predicted sequences available (Table 1).
However, the presence of sequence homologies between the
dsRNA and the genome of an organism does not necessarily

FIGURE 8 | Worker honeybees <24 h after emergence were exposed to

EAB-specific dsRNAs targeting the genes hsp, shi, and rnp at a concentration

of 10 µg per individual; 10 µg per individual of dsGFP was used as negative

control and 0.05 µg/µL of potassium arsenate was used as positive control.

Adult mortality (A) after 10 days, and (B) over the 30-days assay.

indicate sensitivity of that organism (Romeis and Widmer,
2020). Pan et al. (2016) identified six 21nt long matches
between dsRNA targeting the vATPase A in D. virgifera and
the springtail Sinella curviseta (Collembola: Entomobryidae),
yet the springtail was not adversely affected in laboratory
feeding assays. In our study, silencing genes other than
the target indicates that the RNAi response was not a
sequence-specific event, but a generalized immune response
to dsRNA, leading Mendelsohn et al. (2020) to suggest
that the use of bioinformatics may have limited value in
assessing off-target effects due to interspecific variation in RNAi
machinery and variability in environmental exposure across
different organisms.

Classical Biological Control Agents
Two concentrations of EAB-specific dsRNAs, 1 µg/µL and
10 µg/µL, were evaluated for T. planipennisi, and there
were no differences in parasite mortality between the dsRNA
concentrations. Wasps exposed to dsRNA at the higher
concentration (10 µg/µL) experienced 25% mortality for dsHSP,
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FIGURE 9 | Relative expression of the genes hsp, shi, and rnp in worker

honeybees after 3 days feeding on 10 µg per individual of (A) dsHSP, (B)

dsSHI, and (C) dsRNP; 10 µg per individual of dsGFP was used as control.

Relative mRNA levels were normalized using act and rp49 as reference genes.

Means ± SE (N = 5) with asterisks indicate significant differences (t-test,

one-tailed p < 0.05).

5% for dsSHI, 9% for dsRNP, and 15% for dsGFP after 11
days, but there were no differences among dsRNA treatments
(Figure 11A). Tetrastichus planipennisi exposed to the lower
concentration (1 µg/µL) experienced 7% mortality for dsHSP,
12% for dsSHI, 10% for dsRNP, and 16% for dsGFP; again,
there were no differences among treatments (Figure 11B).
Mortality of S. galinae exposed to dsRNAs at a concentration
of 10 µg/µL was 12% for dsHSP, 14% for dsSHI, 12%
for dsRNP, and 9% for dsGFP (Figure 11C), again with no
differences among treatments. Our results suggest that EAB
dsRNAs have no impact on the survival of these classical
biological control agents, but because of the lack of genetic
sequences for the biological control species, a full evaluation is
not possible.

FIGURE 10 | Transcript levels of hsp, shi, and rnp genes in worker bees after

3 days feeding on 1 µg per individual of combined dsRNAs (500 ng/individual

each dsHSP and dsSHI) 10 µg per individual dsGFP was used as control.

Relative mRNA levels were normalized using act and rp49 as reference genes.

Means ± SE (N = 5) with asterisks indicate significant differences (t-test,

one-tailed p < 0.05).

SYNTHESIS

Sequence-specific gene silencing can suppress genes that are
critical for insect survival or development, suggesting that
dsRNAs can be used to develop pest control products that
trigger the RNAi pathway, selectively targeting the pest
species and reducing the likelihood of adversely affecting
NTOs (Bachman et al., 2013). In addition to its efficacy,
application of RNAi technology for insect control has the added
advantage of extreme specificity to the target insect or to
closely related species (Whyard et al., 2009). Characterization
of the spectrum of activity for an insecticidal dsRNA should
evaluate key species or guilds representing different ecological
functions (Romeis et al., 2008). Our study evaluated the
toxicity of dsRNAs targeting the genes hsp, shi, and rnp in
the emerald ash borer, a highly destructive, invasive, tree
killing pest, on model insects representing the herbivore,
predator, detritivore, and pollinator guilds. In addition, we
evaluated dsRNAs targeting the same genes for toxicity to the
classical biological control agents currently deployed for EAB
population management.

Safety protocols dictate that exposures used for toxicity
studies with non-target arthropods must exceed the maximum
amount of dsRNA expected to be available in the environment
(EFSA European Food Safety Authority, 2014). Previous studies
demonstrated that adult EAB experiences significant gene
silencing and mortality when exposed to ash leaves treated
with dsRNA solution at 70 ng/µl (Pampolini et al., 2020). In
the present study, our model NTOs were exposed to EAB
dsRNAs in diets at concentrations ∼140 times higher than
that inducing mortality in EAB delivered topically on plant
foliage. The experimental diets in our study incorporated
dsRNAs at 10 µg/µL (CPB, lady beetle, and classical biological
control agents), 10 µg/cm2 (termites), and 10 ug per individual
(honeybees) to evaluate non-target effects in representatives
from six insect families (Chrysomelidae, Coccinellidae,
Rhinotermitidae, Apidae, Eulophidae, Braconidae) in three
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FIGURE 11 | Mortality of classical biological control agents: T. planipennisi

exposed to dsRNAs at (A) 1 µg/µL (P = 0.66) and (B) 10 µg/µL (P = 0.20);

results did not differ between the two concentrations (two tailed t-test p >

0.05). Mortality of (C) S. galinae exposed to the EAB dsRNAs at 10 µg/µL

(P = 0.91).

orders (Coleoptera, Blattodea, and Hymenoptera), representing
five functional guilds (herbivore, predator, detritivore,
pollinator, parasitoid).

The efficiency of RNAi varies significantly among insect
orders, but coleopterans are highly sensitive to ingested
dsRNA (Joga et al., 2016), and our target species, emerald
ash borer, is a coleopteran. Survival of the two additional
coleopterans evaluated in this study were unaffected by
ingestion of EAB-specific dsRNAs (Figures 2, 4A), and we
found no differences in gene expression. Additionally, there
were no sublethal effects on lady beetle larval development
(Figure 4B).

Following ingestion of EAB-specific dsRNAs, our gene
expression analysis demonstrated a reduction in expression of
the honeybee genes hsp, shi, and rnp, but these did not affect
adult survival. The responses we observed may be attributable
to a generalized immune response to dsRNAs in honeybees.
Previous studies evaluating off-target effects caused by dsRNA
in honeybees (Jarosch and Moritz, 2012; Nunes et al., 2013)
evaluated the expression of insect-specific genes after exposure
to dsRNA targeting the gene gfp, which has no known honeybee
homolog; they observed non-target effects characterized by
the downregulation or upregulation of genes associated with
a variety of biological processes. In general, dsRNAs can be
recognized as a viral infection, culminating in the activation
of immune genes, RNAi pathway, siRNA production and
consequent off-target effects (Nunes et al., 2013). Vélez et al.
(2016) conducted a toxicity assay to identify non-target effects of
dsRNA targeting the Diabrotica virgifera virgifera gene vATPase
in honeybees; our findings are similar to their results, with some
effects on gene expression, but no effects on honeybee survival
or longevity.

Importantly, we demonstrate no negative effects of the
EAB-specific dsRNAs on survival of the classical biological
control agents currently deployed for EAB management in the
US. Our mortality assays with T. planipennisi and S. galinae
showed no effects on parasitoid survival, regardless of the
dsRNA concentration.

Overall, our results suggest no adverse effects of the
RNAi strategy targeting EAB genes on the survival
of the selected non-target organisms we evaluated.
Additional research characterizing sub-lethal effects of
dsRNA on the NTOs, and the persistence and fate of
the molecule in the environment are needed; however,
in our preliminary risk assessment study we identified
high specificity for the target insect of the dsRNAs
developed for EAB management. These results represent
an important step to move this technology forward to a
deployment stage.

Our study provides additional data demonstrating the
feasibility of utilizing novel alternatives for EAB management
that are ecofriendly and do not threaten the environment or
beneficial and non-target organisms.
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