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ABSTRACT OF DISSERTATION

THE DIRECT SCATTERING MAP FOR THE INTERMEDIATE LONG WAVE
EQUATION

In the early 1980’s, Kodama, Ablowitz and Satsuma, together with Santini, Ablowitz
and Fokas, developed the formal inverse scattering theory of the Intermediate Long
Wave (ILW) equation and explored its connections with the Benjamin-Ono (BO) and
KdV equations. The ILW equation

ut +
1

δ
ux + 2uux + Tuxx = 0,

models the behavior of long internal gravitational waves in stratified fluids of depth
0 < δ <∞, where T is a singular operator which depends on the depth δ. In the limit
δ → 0, the ILW reduces to the Korteweg de Vries (KdV) equation, and in the limit
δ → ∞, the ILW (at least formally) reduces to the Benjamin-Ono (BO) equation.

While the KdV equation is very well understood, a rigorous analysis of inverse
scattering for the ILW equation remains to be accomplished. There is currently no
rigorous proof that the Inverse Scattering Transform outlined by Kodama et al. solves
the ILW, even for small data. In this dissertation, we seek to help ameliorate this
gap in knowledge by presenting a mathematically rigorous construction of the direct
scattering map for the ILW’s Inverse Scattering Transform.

KEYWORDS: Inverse Scattering Transform, Inverse Scattering, Intermediate Long
Wave Equation, Dispersive Waves, Diffeo-Integral Equations, Partial Differen-
tial Equations
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CHAPTER 1. INTRODUCTION

1.1 The Intermediate Long Wave Equation

The Intermediate Long Wave (ILW) equation

ut +
1

δ
ux + 2uux + Tuxx = 0,(1.1)

models the behavior of long internal gravitational waves in stratified fluid of depth

0 < δ <∞, where T denotes the singular integral operator given by

(Tf)(x) :=
1

2δ
p. v.

∫
R
coth

( π
2δ

(y − x)
)
f(y) dy,

and p. v. denotes the Cauchy principal value, p. v.
∫

dx = limε↘0

∫
|x|>ε

dx. In the

limit δ → 0, the ILW reduces to the Korteweg de Vries (KdV) equation, and under

the limit δ → ∞, Santini, Ablowitz and Fokas showed formally in their 1984 paper

[12] that the ILW equation reduces to the Benjamin-Ono (BO) equation. As such,

the ILW can be thought of as an intermediary between the two equations. While

the KdV equation is very well understood, understanding the BO equation is still an

area of active research.1 Given the ILW’s role as an intermediary between the two

equations, a mathematically rigorous understanding of the ILW is of great interest to

many mathematicians.

As discussed in the 2019 survey paper [14] by Jean-Claude Saut, the formal deriva-

tion of the ILW as a model for physical phenomenon was given by R. I. Joseph in [4].

Joseph based his derivation on the Whithan non-local equation derived by Gerald

Whitham in his 1967 paper [17]. The modern form of the ILW was introduced by T.

Kubota, D.R.S. Ko, and L.D. Dobbs in their 1978 paper [9]. Some atmospheric and

oceanic applications of the ILW can be found in the 1978 paper by D.R. Christie et
1For more on the BO equation, please see Allen Wu’s papers [18] and [19].
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al. [1], the 1980 S.A. Maslow and L.G. Redekopp paper [10], the 1981 C. Gary Koop

and Gerald Butler paper [8], and the 1984 N.N. Romanova paper [11].

1.2 Introduction to Inverse Scattering

First introduced in the late 1960’s and early 1970’s as a technique for studying the

Korteweg-de Vries (KdV) equation, the inverse scattering method has since been

adapted to find solutions to a number of other non-linear dispersive equations—

equations whose solutions model dispersive wave phenomenon. Since non-linear dis-

persive equations arise naturally in many fields of science and engineering as a means

to model the behavior of many important phenomenon, understanding non-linear

dispersive equations is a very active area of research. The inverse scattering method

has been very successful in solving certain types of non-linear dispersive equations.

The structure of the inverse scattering method can be thought of as a model for

how problem solving often works. When confronted with a difficult problem about

which very little is know, it is often helpful to find a way to relate that problem to

another problem which you know how to solve. So, by solving the related problem

and connecting its solution back to the original problem, you can find a solution for

the original problem. This process is essentially how the inverse scattering method

works.

For us in this dissertation, solving a non-linear dispersive equation means finding

a mathematically rigorous procedure by which if someone tells you what a non-linear

wave described by a particular non-linear dispersive equation looks like initially, you

can determine how that wave looks in the future. We use the term “initial data” to

refer to the initial state of a wave described by a given non-linear dispersive equation

and the term “solution” to refer to a formula which provides a description for what

the initial data looks like for each relevant time t. As mathematicians, our goal in

solving a non-linear dispersive equation is to not only describe a map (i.e. procedure

2



or function) which takes as input initial data for that non-linear dispersive equation

and returns as output the corresponding description for how that initial data evolves

in time, but to also understand this map deeply enough to be able to guarantee—at

least under certain conditions—this map actually works. Such a map is often referred

to as a solution map, as it provides the solution corresponding a given initial data

(i.e. a solution map maps initial data to solutions).

In the inverse scattering method, we use certain properties briefly described below

of given non-linear dispersive equation to construct a map D , called the “direct

scattering map,” which maps arbitrary initial data of the equation to the initial

data’s so-called “scattering data” describing certain physical properties of the initial

data. Using properties of the direct scattering map, we have tools to determine

how the scattering data changes in time. As demonstrated below in Figure 1.1,

by also constructing a second map I, called the “inverse scattering map” which

serves as the inverse for the direct scattering map —i.e. maps scattering data to

its corresponding initial data—we can then find a solution to a non-linear dispersive

equation by applying the inverse scattering map to the time dependent representation

of the scattering data.(
Initial data

u0(x) = u(x, t = 0)

) (
Scattering data
r(λ, t = 0)

)

u(x, t) = I
(
r(λ, t)

)
r(λ, t)

Time Evolution

Direct Scattering Map D

Inverse Scattering Map I

Figure 1.1: Diagram of the Inverse Scattering Method

The combination of the direct scattering map and its corresponding inverse scat-

tering map is called an Inverse Scattering Transform, or IST for short. As such, using

the Inverse Scattering Method to solve a given non-linear dispersive equation is often

3



referred to as solving that non-linear dispersive equation by its Inverse Scattering

Transform. Readers familiar with the method of solving linear partial differential

equations by the Fourier Transform may recognize the Inverse Scattering Method as

an analogous method for solving non-linear dispersive equations. However, an IST

differs from the Fourier Transform in one very key way: while the Fourier Transform

can be defined in a single set way that does not depend on the linear equation one

wishes to solve, the definition for an IST depends entirely on the non-linear dispersive

equation one hopes to solve using the Inverse Scattering Method. For this reason, the

crux of solving a non-linear dispersive equation using the Inverse Scattering Method

lies in the construction of that particular dispersive equation’s corresponding IST, and

proving that that IST is both well-defined and bi-Lipschitz continuous—i.e. both the

direct scattering map and the inverse scattering map for a given IST are Lipschitz

continuous.2 Bi-Lipschitz continuity is desired as a property of an IST as it helps to

ensure the solution map—i.e. map from initial data to the corresponding solution—is

continuous in initial data, and hence, in the language of the theory of partial differ-

ential equations, well-posed. In other words, proving that an IST for a particular

dispersive wave is Lipschitz continuous ensures that changing a given initial data

slightly results in a similarly small change in the solution.

One can create an IST for a given dispersive equation if the equation has what is

called a “Lax representation” of the equation. A Lax representation for a dispersive

equation is a pair of time dependent operators L, B parametrized by a function u(x, t)

which satisfy the identity

d

dt
L = BL− LB(1.2)

if and only if u solves the given equation. In the literature, such L and B are
2Informally, Lipschitz continuity is essentially the requirement that the distance between two

outputs of a given function or map is directly proportional to the distance between their correspond-
ing inputs. Mathematically, we say that for any two spaces Y and Z, a map f : Y → Z is Lipschitz
continuous if there exists some constant C > 0 so that ‖f(y1)− f(y2)‖Z ≤ C ‖y1 − y2‖Y for every
y1, y2 ∈ Y .

4



sometimes refered to as a “Lax pair.” Whenever L, B satisfy (1.2), one can show that

the spectrum of L is time invariant. As such, (1.2) further implies
κ(t) = κ(0)

∂

∂t
ψ = Bψ

(1.3)

for all κ, Ψ satisfying Lψ = κψ, and the given equation is said to be an isospectral

flow for the linear spectral problem Lψ = κψ. The linear spectral problem can be

therefore solved at arbitrary time t by first solving it for an initial time t0 (typically

t0 = 0) and using (1.3) to propagate in time. The model, then, for solving an

equation by the Inverse Scattering Method is to construct the direct scattering map

by solving linear spectral problem LΨ = κΨ for time t0, and then use the operator

B to propagate the scattering data in time. By constructing an inverse to the direct

scattering map (i.e. the corresponding inverse scattering map), one can then recover

a solution to the original dispersive equation from the time evolved scattering data.

1.3 Overview of the ILW Direct Scattering Map

While there are a series of papers from the late 1970’s and early 1980’s culminating in

a paper by Y. Kodama, M.J. Ablowitz and J. Satsuma [6] and a subsequent paper by

P.M. Santini, M.J. Ablowitz and A.S. Fokas [12] which formally describe the Inverse

Scattering Transform (IST) for the ILW, little research has been done to place the

Inverse Scattering Method for the ILW equation on a rigorous mathematical footing.

At the time of writing this dissertation, the author found no results in the literature

showing that the IST for the ILW equation is actually well-defined or bi-Lipschitz

continuous—even for small data.

As described in Section 1.2, using the Inverse Scattering Method to solve the ILW

entails constructing an invertible, bi-Lipschitz continuous map from initial data to

the corresponding scattering data in such a way that linearizes the flow—i.e. the

time dependence of the output of this map applied to initial data is determined

5



by a linear differential equation. The “forward direction” of this map which takes

initial data to scattering data is referred to as the “direct scattering map,” and its

inverse is referred to as the “inverse scattering map.” This distinction is made as

the process for constructing the direct scattering map for a given equation is often

very different from the process for constructing the corresponding inverse scattering

map. As previously mentioned, the combination of this direct scattering map with

the corresponding inverse scattering map and the linear differential equation used to

propagate the scattering data in time is called an Inverse Scattering Transform for

the ILW.

What allows us to construct an IST for the ILW is fact that the ILW is an

isospectral flow for the linear spectral problem

Lδ(Ψ) :=
1

i

∂

∂x
Ψ+ − ζ

(
Ψ+ −Ψ−) = uΨ+,(1.4)

which is a part of the Lax pair3

1

i

∂

∂x
Ψ+ − ζ

(
Ψ+ −Ψ−) = uΨ+(1.5a)

1

i

∂

∂t
Ψ± + 2i

(
ζ − 1

2δ

)
+Ψxx = [±iux − Tux + η] Ψ±,(1.5b)

where Ψ is a function analytic in the complex strip

Sδ := {z ∈ C : 0 < Im z < 2δ}

with respective lower and upper boundary values

Ψ+(x) := lim
y↘0

Ψ(x+ iy), and Ψ−(x) := lim
y↗2δ

Ψ(x+ iy),(1.6)

where we use the superscript notation f± throughout this dissertation to indicate

lower and upper boundary values as shown above of functions f analytic on the
3Please see the appendix titled Lax Representation for a comparison of (1.5) with the ILW Lax

pair typically given in the literature.
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complex strip Sδ. The spectral parameter ζ ∈ (0,∞) is itself parametrized by a

second spectral parameter λ ∈ R as

ζ(λ; δ) :=
λ

1− e−2δλ
,

where we use the notation f( · ; t1, . . . , tn) := ft1,...,tn to denote a family of functions

“indexed” in a (possibly) uncountable sense by t1, . . . , tn. The output of direct scat-

tering map D for the ILW is determined by the lower boundary values M+
1 , M+

e , N+
1 ,

N+
e of eigenfunctions M1, Me, N1, Ne of Lδ which satisfy the asymptotic conditions

given in (1.7). Such eigenfunctions are referred to in the literature as “Jost solutions,”

and, given their importance in the construction of the direct scattering map D , we

explicitly define Jost solutions as follows:

Definition 1.3.1 (Jost solutions). The Jost solutions M1, Me, N1, Ne are solutions

to the linear spectral problem (1.4) whose lower boundary values M+
1 , M+

e , N+
1 , N+

e

as defined in (1.6) obey the following asymptotic conditions

lim
x→−∞

〈x〉
(
M+

1 (x;λ, δ)− 1
)
= lim

x→∞
〈x〉
(
N+

1 (x;λ, δ)− 1
)
= 0(1.7a)

lim
x→−∞

〈x〉
(
M+

e (x;λ, δ)− eiλx
)
= lim

x→∞
〈x〉
(
N+

e (x;λ, δ)− eiλx
)
= 0,(1.7b)

where we use the notation 〈x〉 :=
√
1 + |x|2 to indicate a linear weight.

Additionally, we require the upper boundary values M−
( · ), N

−
( · ) (where ( · ) rep-

resents either the subscript 1 or e) of M( · ), N( · ) to have a decomposition

M−
1 − 1 =M

(1)
1 +M

(2)
1 and N−

1 − 1 = N
(1)
1 +N

(2)
1

M−
e − eiλx e−2δλ =M (1)

e +M (2)
e and N−

e − eiλx e−2δλ = N (1)
e +N (2)

e

satisfying

〈x〉1+υ
∣∣∣M (1)

( · )(x)
∣∣∣ ≲ 1 (for x� −1), 〈x〉1+υ

∣∣∣N (1)
( · )(x)

∣∣∣ ≲ 1 (for x� 1),

7



and

〈 · 〉τ M (2)
( · ), 〈 · 〉τ N (2)

( · ) ∈ L2(R)

for any υ ∈
(
0, 1

2

)
and τ ∈ [0, 1), where we use the notation a ≲ b to indicate a ≤ C b

for some constant C > 0.

For a given u(x), the corresponding output r = Du of direct scattering map is

given by r(λ; δ) = b(λ; δ)/a(λ; δ), where

b(λ) :=
i

1− 2δζ(−λ)

∫
R
e−iλxu(x)M+

1 (x;λ, δ) dx

a(λ) := 1 +
i

1− 2δζ(λ)

∫
R
u(x)M+

1 (x;λ, δ) dx.

In this dissertation, we prove the following result:

Theorem 1.3.2. For sufficiently small c0 > 0 the map

D : BX(0, c0) → L∞(R)

u 7→ r

is well-defined for all real λ, where X denotes the space 〈 · 〉−4 L2(R), and BX(0, c0) is

the ball in the space X about zero with radius c0.4 Further, D is Lipschitz continuous

as a map from BX(0, c0) to L∞((−∞, k] ∪ [k,∞)
)

for each fixed k > 0.5

A crucial first step to showing that D is well-defined is showing that for each

given u ∈ BX the corresponding Jost solutions both exist and are unique. To do so,

one uses the (formal) Green’s Functions GL and GR, given by

GL(z;λ, δ) = lim
ε↘0

1

2π

∫
R−iε

eizξ

ξ − ζ(λ) (1− e−2δξ)
dξ,

(
z ∈ Sδ

)
(1.8a)

4See Theorem 5.4.3 in Section 5.4 of Chapter 5.
5See Theorem 5.4.4 in Section 5.4 of Chapter 5.
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and

GR(z;λ, δ) = lim
ε↘0

1

2π

∫
R+iε

eizξ

ξ − ζ(λ) (1− e−2δξ)
dξ,

(
z ∈ Sδ

)
(1.8b)

to rewrite (1.4) with asymptotic conditions (1.7) as the integral equationsM+
1 (x;λ, δ)

M+
e (x;λ, δ)

 =

 1

eiλx

+

∫
R
G+

L(x− x′;λ, δ)u(x′)

M+
1 (x

′;λ, δ)

M+
e (x

′;λ, δ)

 dx′(1.9a)

N+
1 (x;λ, δ)

N+
e (x;λ, δ)

 =

 1

eiλx

+

∫
R
G+

R(x− x′;λ, δ)u(x′)

N+
1 (x

′;λ, λ)

N+
e (x

′;λ, λ)

 dx′,(1.9b)

where we again use the “+” superscript to indicate the lower boundary values of

functions analytic in the complex strip Sδ.

Formally, assuming that the solutions to equations (1.9) have analytic extensions

to the strip Sδ with upper boundary values M−
1 , M−

e , N−
1 , and N−

e , one can show

through a simply heuristic computation that solutions to the integral equations (1.9)

should satisfy the spectral problem (1.4) with asymptotic conditions (1.7). However,

as discussed in Section 2.2,the integrand of GL and GR has exactly two poles along

the real line as shown in —namely ξ = 0 and ξ = λ—and countably many poles in

the complex plane. Worse, the Fourier symbol p(ξ) of GL, GR does not belong to any

standard symbol class due to its radically different asymptotic behavior as ξ → −∞,

and ξ → +∞, respectively. As such, it is hardly obvious that GL and GR are even

remotely well defined as convolution operators. As such, before we can even begin

to prove that the direct scattering map D is well-defined, we require a thorough

understanding of the Green’s functions GL, GR as convolution operators—indeed,

such is the focus of Chapters 2 through 4 of this dissertation.

We begin our study of the Green’s functions GL, GR in Chapter 2 by analyzing the

properties of the lower boundary values G+
L , G+

R as functions. Using a combination of

a contour shift and several dyadic decompositions, we show that the boundary values

9



G+
L and G+

R can be represented as

G+
L(x;λ, δ) =


K+(x;λ, δ), x < 0

K+(x;λ, δ) + iα(λ; δ) + iβ(λ; δ) eiλ x, x > 0

(1.10)

where GL(z;λ, δ) = GR(−Re z + i Im z;λ, δ),

α(λ; δ) =
1

1− 2δλ(λ)
, β(λ; δ) =

1

1− 2δλ(−λ)e−2δλ
,

and the function K+ satisfies the properties

(i) K+(x) = O
(

e−π|x|

x

)
for |x| ≥ 1, and

(ii) |K+(x)| ≤ C + C log
(

1
|x|

)
for |x| < 1.

Our study of the boundary values G+
L , G+

R continues in Chapter 3 as we use 1.10

to understand the mapping properties of G+
L , G+

R as convolution operators. More

specifically, we study the operators TL,λ,u, TR,λ,u given by

TL,λ,uf := G+
L( · ;λ, δ) ∗ (uf) and TR,λ,uf := G+

R( · ;λ, δ) ∗ (uf)(1.11)

and show that the are bounded operators acting the space 〈 · 〉L∞(R) whose operator

norms depend only on the ‖u‖X and not on λ. We further show in Chapter 3 that for

every f ∈ 〈 · 〉L∞(R) and u ∈ X the operators TL,λ,u, TR,λ,u satisfy the asymptotic

behavior

lim
x→−∞

TL,λ,uf(x) = lim
x→−∞

TR,λ,uf(x) = 0

when real λ 6= 0, and

lim
x→−∞

〈x〉−1 TL,λ,uf(x) = lim
x→−∞

〈x〉−1 TR,λ,uf(x) = 0

for every λ ∈ R. That TL,λ,u, TR,λ,u satisfy the above limits is a property we use later

to prove solutions to the integral equations (1.9) satisfy the asymptotic conditions in

(1.7).
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The focus for our final chapter on the the Green’s functions, Chapter 4, is ana-

lytically extending G+
L , G+

R in the variable x to GL and GR defined on the complex

strip Sδ and showing that GL, GR have upper boundary values G−
L , G−

R. Analytically

extending G+
L , G+

R is important as it allows us to analytically extend the solutions

M+
1 , M+

e , N+
1 , N+

e to the integral equations 1.9, which is a prerequisite to showing

that solutions to the integral equations 1.9 are Jost solutions. While, extending G+
L ,

G+
R (as convolution operators) to the open strip Sδ is straight forward, showing the

existence of the upper boundaries G−
L , G−

R is considerably more involved, as it in-

volves working with a singular operator that is reminiscent of the Hilbert transform.

In fact, nearly the entirety of Chapter 4 is devoted to proving the existence (in an L2

sense) of G−
L and G−

R.

Our analysis of the Green’s functions in 2 through 4 allows us to finally prove

in Section 5.3 of Chapter 5 the equivalence of Jost solutions and solutions to the

integral equations (1.9). The big pay-off in proving this equivalence is that it allows

us to consider the Jost solutions as solutions to Volterra type integral equations

instead of an ordinary differential equation on a complex strip involving complex

boundary values. Being able to do so is invaluable as the theory of Volterra type

integral equations is far better understood (at least by this author) than the theory

of such complex ordinary differential equations. Indeed, it is precisely by treating the

Jost solutions as solutions to integral equations (1.9) that we are ultimately able in

Chapter 5 to prove that D is well-defined and, at least for real λ values away from

zero, D is also Lipschitz continuous.
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CHAPTER 2. GREEN’S FUNCTIONS: LOWER BOUNDARY

VALUES

2.1 Introduction

Proving the direct scattering map D for the Inverse Scattering Transform of the In-

termediate Long Wave equation is both well-defined and Lipschitz continous hinges

on our ability to reformulate the linear spectral problem (1.4) with prescribed asyp-

totic conditions (1.7) as the integral equations (1.9) and understand the behavior of

the solutions to (1.9). Both require a deep understanding of the properties of the

Green’s functions GL and GR defined in equation (1.8) of Section 1.3. Indeed, this is

the first of three chapters devoted solely to the study of GL and GR.

The focus of this chapter is to study the properties of the lower boundary values

G+
L and G+

R as functions on R, where the symbol R denotes the of all real numbers. In

particular, we use a contour shift to derive the alternate formulas (2.4) and (2.4b) for

G+
L and G+

R from Theorem 2.1.1 (Section 2.3), which we use to study the asymptotic

properties of G+
L , G+

R (Section 2.4) and the singularity both functions have at x = 0

(Section 2.4). We continue our study of the Green’s functions in Chapters 3 and 4

where we use our analyses from this chapter to first study mapping properties of G+
L ,

G+
R as convolution operators (Chapter 3), and then to prove that G+

L , G+
R extend

analytically in the variable x to the complex strip Sδ (Chapter 4).

We summarize the primary results of this chapter below in Theorems 2.1.1 and

2.1.2.

Theorem 2.1.1 (Green’s Function Representation). The Green’s functions given
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above in (1.8) can be written as

G+
L(x;λ, δ) =


K+(x;λ, δ) + i

[
α(λ; δ) + β(λ; δ)eiλx

]
χL(x) λ 6= 0

K+(x;λ, δ) + i
[
2
3
+ ix

δ

]
χL(x) λ = 0

(2.1a)

and

G+
R(x;λ, δ) =


K+(x;λ, δ)− i

[
α(λ; δ) + β(λ; δ)eiλx

]
χR(x) λ 6= 0

K+(x;λ, δ)− i
[
2
3
+ ix

δ

]
χR(x) λ = 0

(2.1b)

where χL := χ(0,∞) and χR := χ(−∞,0) respectively denote the characteristic functions

on the intervals (0,∞) and (−∞, 0),

α(λ; δ) :=
1

1− 2δζ
=

1− e2δλ

2δλe2δλ + 1− e2δλ
,

β(λ; δ) :=
1

1− 2δζ∗
=

1− e2δλ

1 + 2δλ− e2δλ
,

are respectively determined by the residues of the integrand of G+
L and G+

R at ξ = 0

and ξ = λ, ζ∗ is the non-linear reflection given by

ζ∗ := ζ(−λ) = ζ
(
− λ(ζ)

)
and

K+(x;λ, δ) :=
e−π|x|

2π

∫
R
eixξ

1

ξ − ζ(λ)
(
1− e−2ξδ

)
+ i sign(x)π

dξ

results from shifting the contour of integration for the integral in G+
L and G+

R.

Theorem 2.1.2. Suppose α, β, and K+ are as defined in Theorem 2.1.1. Then the

functions α and β satisfy the following properties

lim
λ→0

|α(λ; δ)| = lim
λ→0

|β(λ; δ)| = ∞,

and

lim
λ→0

[
α(λ; δ) + β(λ; δ)eixλ

]
=

2

3
+ i

x

δ
.(2.2)

13



Further, K+ is uniformly bounded in λ and

K+(x;λ, δ) =


C log+

(
1
|x|

)
+O(1), |x| < 1

O
(

e−π|x|

|x|

)
, |x| ≥ 1

(2.3)

for some constant C ∈ C, where C denotes the set of all complex numbers and log+

is the function defined by log+(x) := max
{
log(x), 0

}
.

Remark 1. An important and immediate consequence of Theorem 2.1.2 and our work

in Sections 2.4 and 2.5 is that K+ can be written as

K+(x;λ, δ) = e−π|x|k(x;λ, δ)

where k( · ;λ, δ) ∈ L2(R) and k is uniformly bounded in λ for all real λ. Unless

necessary to avoid confusion, we commonly write k(x;λ, δ) as k(x).

We begin this chapter by first motivating our choice of Green’s functions in Sec-

tion 2.2. Since we need to know the locations of the Green’s functions’ integrand

singularities to be able to both justify the contours of integration for the Green’s

functions and to justify the representation theorem above (Theorem 2.1.1), locating

these singularities is also a primary task for Section 2.2.

To simplify notation, throughout the remainder of this dissertation, we use nota-

tion

p(ξ;λ, δ) := ξ − ζ(λ)
(
1− e−2ξδ

)
,

where eiξx/p(ξ;λ, δ) is the integrand for G+
L and G+

R. Since it is occasionally more

useful to consider the Green’s functions as parameterized by ζ rather than λ, we

use the notation p(ξ;λ, δ) and p(ξ; ζ, δ) interchangeably. Further, we will not always

need to consider the affects of the parameters λ and δ in our subsequent analyses.

In such cases, we often use the shorter notation p(ξ) or p(ξ;λ) en lieu of the more

cumbersome p(ξ;λ, δ) or p(ξ; ζ, δ).
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As we see in Section 2.2, the only roots of p(ξ;λ, δ) in the complex strip

Rδ := {z ∈ C : − π/δ ≤ Im z ≤ π/δ}

are ξ = 0 and ξ = λ (provided λ 6= 0). As such, we may use analyticity to write G+
L

and G+
R as

G+
L(x;λ, δ) :=

1

2π

∫
ΓL

eiξx
1

p(ξ;λ, δ)
dξ

G+
R(x;λ, δ) :=

1

2π

∫
ΓR

eiξx
1

p(ξ;λ, δ)
dξ,

where the symbol ΓL is used to denote a contour from −∞ to ∞ along the real axis

which is deformed in small circular arcs around ξ = 0 and ξ = λ so that the contour

bypasses these two real roots of p from below (Figure 2.1a), and ΓR denotes the

corresponding contour which bypasses the roots ξ = 0 and ξ = λ from above (Figure

2.1b).

ξ = 0 ξ = λ

(a) ΓL Contour

ξ = 0 ξ = λ

(b) ΓR Contour

Figure 2.1: Contours of integration ΓL and ΓR for GL and GR.

Remark 2. Throughout this dissertation, we commonly use the symbol “⋆” as a place

holder for both L and R. For example, if we write “G⋆ (⋆ = L, or R) are a bounded as

a convolution operators,” then what we mean is that “both GL and GR are bounded

as convolution operators.” As a further example of how we use this notational con-

vention, please see the following two very important remarks.

Remark 3. When λ = 0, the function ζ(λ; δ) is technically undefined. However,

since limλ→0 ζ(λ; δ) =
1
2δ

, λ = 0 is a removable singularity of ζ. As such, we define

ζ(λ; δ) := 1
2δ

. Further, the case λ = 0 also corresponds to the case when the two

roots ξ = 0 and ξ = λ of the function p—which are simple when λ 6= 0—coalesce to
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form a single double zero of p. Under the caveat that we define ζ(0; δ) := 1
2δ

, a direct

computation shows that the residue of eixξ/p(ξ; 0, δ) at ξ = 0 is 2
3
+ ix

δ
—hence the

piecewise (in λ) definition of G+
L and G+

R in (2.1). Thus, even though the residue sum

R⋆(x;λ, δ) := i
[
α(λ; δ) + β(λ; δ)eiλx

]
χ⋆ (⋆ = L, or R)

is not technically defined at λ = 0, it nonetheless makes sense for us to agree on the

convention that

R⋆(x;λ = 0; δ) :=

[
i
2

3
− x

δ

]
χ⋆. (⋆ = L, or R)

Under this convention, (2.1) can be written slightly more succinctly as

G+
L(x;λ, δ) = K+(x;λ, δ) + RL(x;λ, δ)(2.4a)

G+
R(x;λ, δ) = K+(x;λ, δ)− RR(x;λ, δ).(2.4b)

Remark 4. Continuing to our discussion on the case of λ = 0 and the coalescing of

the Green’s function integrand poles ξ = 0, ξ = λ, under this scenario, we take the

contours Γ⋆ (⋆ = L, or R) such that they have only one circular deformation away

from the real line which allows them to bypass the single (double) pole at ξ = 0.

2.2 Motivation of the Green’s Functions

To motivate our choice of Green’s function for this linear spectral problem, suppose

there exists a function G satisfying Lδ(G
+)(x) = δ0(x), where δ0(x) denotes the Dirac

delta function (not to be confused with the parameter δ). Formally, by taking the

Fourier transform of both sides of Lδ(G
+)(x) = δ0(x), we have

1 = ξ Ĝ+ − ζ
(
Ĝ+ − Ĝ−

)
=
[
ξ − ζ

(
1− e−2δξ

) ]
Ĝ+ = p(ξ; ζ, δ) Ĝ+,
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where

p(ξ;λ, δ) = ξ − ζ
(
1− e−2δξ

)
=

(
ξ

1− e−2δξ
− ζ

)(
1− e−2δξ

)
=
(
ζ(ξ)− ζ(λ)

) (
1− e−2δξ

)
.

However, this approach is somewhat problematic, given that the function p has roots

ξ = 0 and ξ = λ along the real line. So, instead defining a single Green’s function

for the spectral problem (A.6a) based on taking the inverse Fourier transform of 1/p,

we instead define two different Green’s functions G+
L and G+

R based on taking two

different “Fourier inverse like” transforms of 1/p for which the respective contours of

integration avoids the roots of p. Specifically,

G+
L(x;λ, δ) :=

1

2π

∫
ΓL

eiξx
1

p(ξ;λ, δ)
dξ

G+
R(x;λ, δ) :=

1

2π

∫
ΓR

eiξx
1

p(ξ;λ, δ)
dξ

where the contour ΓL bypasses the roots ξ = 0 and ξ = λ from below, and the contour

ΓR bypasses the roots ξ = 0 and ξ = λ from above, as mentioned in the previous

section.

Since p(ξ;λ) can be rewritten as

p(ξ;λ) =

(
ξ

1− e−2ξδ
− ζ(λ)

)(
1− e−2ξδ

)
=
(
ζ(ξ)− ζ(λ)

) (
1− e−2ξδ

)
,

it is easy to check that both ξ = 0 and ξ = λ are roots of p. In the remainder of this

section, we argue that these are the only roots of p in the strip

Rδ :=
{
z ∈ C : − π

δ
≤ Im z ≤ π

δ

}
as is defined in the Introduction of this chapter. That is, we show that the equation

ξ − ζ(λ) + ζ(λ)e−2ξδ = 0(2.5)
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has exactly two solutions (in ξ) for ξ ∈ Rδ. With a little algebraic manipulation,

equation (2.5) can be rewritten as

(
2δξ − 2δ ζ(λ)

)
e2δξ−2δ ζ(λ) = −2δ ζ(λ) e−2δ ζ(λ).(2.6)

In order to “solve” (2.6), recall that the Lambert W function (which we henceforth

refer to only as W ) is defined to be the multivalued “inverse” of the function zez. So,

to determine the number of solutions (2.6) has for ξ ∈ Rδ, we need to specify which

branches of W are appropriate to apply to both sides of (2.6) given our restriction

on ξ.

The following discussion of the branches of the complex W function is heavily

inspired by Section 4 from the 1996 R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J.

Jeffery and D.E. Knuth paper [2]. As is the case with the standard complex exponen-

tial and logarithmic functions, to define the branches of W , the canonical approach is

to make a branch cut along the negative real axis of the range of zez, and determine

which curves in the range of W are mapped to the branch cut (i.e. the negative real

axis).

To do so, set
z := wew w := W (z)

:= x+ iy := t+ is.

Then, using Euler’s formula to simply the equation

(x+ iy) = (t+ is)et+is

and taking real and imaginary parts, we obtain the system
x = et (t cos s− s sin s)

y = et (t sin s+ s cos s) .

So, if y = 0, then either s = 0 or t = −s cot s. Further, x < 0 if and only if

t cos s− s sin s < 0. Now, since t = −s cot s has asymptotes at s = kπ (k ∈ Z\{0}),

18



and the function t cos s− s sin s has no roots, the inequality t cos s− s sin s < 0 holds

precisely on the intervals( ⋃
−k∈N

(
(2k + 1)π, 2kπ

))
∪ (−π, π) ∪

(⋃
k∈N

(
2kπ, (2k + 1)

)

As such, the only curves the function zez maps to the negative real axis are

γk(s) := −s cot s+ is, k ∈ Z,

whose respective domains are given by

domain γk(s) :=



(
(2k + 1)π, 2kπ

)
, −k ∈ N

(−π, π), k = 0(
2kπ, (2k + 1)π

)
, k ∈ N

and the curve whose graph is

(−∞,−1) ∪ {γ0(s) + is : − π < s ≤ 0}.

As such, these curves form the boundary values between the ranges of the different

branches of W . In particular, the ranges for the the principle branch W0 and the

W−1 and W1 branches are shown below in Figure 2.2.

Rew = t

Imw = s

W0

W−1

W1

W2

W−2 −3π

−2π

−1π

1π

2π

3π

−1

Figure 2.2: Ranges for the W±2, W±1, and W0 branches of the W function.
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Since the map w 7→ wew takes w = −1 to z = −e−1, on pages 17 and 18 in [2],

Corless et al. proposetaking the branch cut which defines the principle branch of W

along {z ∈ C : −∞ < z ≤ −e−1}, and taking all other branch cuts along the entire

negative Re z-axis. They further take all branch cuts in such a way that the branch

cuts are closed “on the top,” as shown in Figures 2.3 and 2.4.

Re z = x

Im z = y

Rew = t

Imw = s

w = W (z)

z = wew

W0

W1

W−1

−1π

1π

−1−1
e

Figure 2.3: W0 Branch Cut

Re z = x

Im z = y

Rew = t

Imw = s
w = W (z)

z = wew −3π

−2π

−1π

1π

2π

3πW2

W−2

Figure 2.4: Wk (k 6= 0) Branch Cuts

Corless et al. further argue in [2] that each branch Wk : C → ranWk is bijective,

which allows us to solve equation (2.6) and find

ξ =
1

2δ
Wk

(
− 2δζ(λ)

)
+ ζ(λ), k ∈ ζ.

Consequently, the only roots of p(ξ, λ) which could have a chance of living in Rδ are

those corresponding to the W−1, W0, and W1 branches. Now, if ξ = 0, then

Wk

(
− 2δζ(λ)

)
= −2δζ(λ).
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Since ζ is a positive, strictly increasing function with ζ(0) = 1/(2δ), if λ < 0, then

−1 < −2δζ(λ) < 0, and if λ ≥ 0, then −2δζ(λ) ≤ −1. In other words, if λ < 0 the

ξ = 0 root of p corresponds to the W0 branch, but if λ ≥ 0, then it corresponds to

the W−1 branch.

On the other hand, if ξ = λ, then

Wk

(
− 2δζ(λ)

)
= 2δλ− 2δζ(λ).

Let g(λ) := 2δλ− 2δζ(λ). Note that
0 < ζ ′(λ) < 1

2
, for λ < 0

ζ ′(0) = 1
2
,

1
2
< ζ ′(λ) < 1, for λ > 0

which implies g is a strictly increasing function. Moreover, since limλ→∞ g(λ) = 0

and g(0) = −1, we see that
2δλ− 2δζ(λ) < −1, λ < 0

2δλ− 2δζ(λ) = −1, λ = 0

−1 < 2δλ− 2δζ(λ) < 0, λ > 0

Therefore, if λ < 0 then the ξ = λ zero of p corresponds to the W−1 branch, but if

λ ≥ 0, it corresponds to the W0. Moreover, given that −2δζ(λ) lies on the negative

real axis and hence on the branch cut used for Wk, k 6= 0, each value of 2δξ−2δζ(λ) =

Wk

(
− 2δζ(λ)

)
(k 6= 0) lies on the boundary between the respective ranges of the W

branches. In particular, given that the strip
{
z : −2π ≤ Im z ≤ 2π

}
does not contain

any part of the boundary between ranW−2 and ranW−1 or any part of the boundary

between ranW1 and ranW2, this strip contains exactly two values of W
(
− 2δζ(λ)

)
.

Since

Rδ =
1

2δ

{
z : − 2π ≤ Im z ≤ 2π

}
+ ζ(λ),

the strip Rδ contains exactly two roots of p—precisely as claimed.
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2.3 Green’s Function Contour Shift

Now that we know the integrand for G+
L , G+

R has exactly two poles in a strip about

the real line, we are now able to use contour shifts to derive representation formulas

for G+
L and G+

R which we use to study the mapping properties of these operators.

To simplify our analyses, we first note that G+
L and G+

R have the useful scaling (in

δ) and conjugate properties shown in Proposition 2.3.1.

Proposition 2.3.1. The Green’s Functions G+
L and G+

R satisfy the following identi-

ties:

(i) G+
⋆ (x;λ, δ) = G+

⋆ (x/δ; δλ, 1)

(ii) G+
R(x;λ, δ) = G+

L(−x;λ, δ),

where, as mentioned in Remark 2, we use the ⋆ in the notation in G+
⋆ is a stand-in

for either L, or R. That is, both G+
L and G+

R satisfy identity (i).

Proof. To prove (i), observe that

ζ(ξ; δ) =
ξeδξ

eδξ − e−δξ
= δ−1 δξeδξ

eδξ − e−δξ
= δ−1ζ(δξ; 1).

As such

p(ξ;λ, δ) =
(
ζ(ξ;λ)− ζ(λ)

) (
1− e−2δξ

)
= δ−1p(δξ; δλ, 1).(2.7)

Recalling that G+
⋆ can be written in the form

G+
L(x;λ, δ) =

1

2π

∫
R−i0

eixξ

p(ξ, λ; δ)
dξ, G+

R(x;λ, δ) =
1

2π

∫
R+i0

eixξ

p(ξ, λ; δ)
dξ,

where we use the convention that ( · ± i0) implies a limit involving ( · ± iε) as ε↘ 0,

equation 2.7 implies that the Green’s Functions G+
⋆ satisfy scaling identity (i), as

1

2π

∫
R∓i0

ei(
x
δ )(δξ)

p(ξ, λ; δ)
dξ =

1

2π
δ

∫
R∓i0

ei(
x
δ )(δξ)

p(δξ, δλ; 1)
dξ =

1

2π

∫
R∓i0

ei(
x
δ )ξ

p(ξ, δλ; 1)
dξ.
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Further, the computation

G+
R(x;λ, δ) =

1

2π

∫
R+i0

ei(−x)ξ

p(ξ, λ)
dξ =

1

2π

∫
R−i0

ei(−x)ξ

p(ξ, λ)
dξ = G+

L(−x;λ, δ),

verifies identity (ii) and completes this proof.

Remark 5. In Chapter 4, we show that G+
⋆ (⋆ = L, or R) has an analytical extension

G⋆ to the strip

Sδ = {z ∈ C : 0 < Im z < 2δ}

with upper boundary value G−
⋆ . Since the arguments in the above proof still hold

when x is replaced with x+ iy, (x ∈ R and 0 < y < 2δ), we take without proof that

the functions G⋆ satisfy the corresponding identities

(i) G⋆(z;λ, δ) = G⋆(z/δ; δλ, 1)

(ii) GR(x+ iy;λ, δ) = GL(−x+ iy;λ, δ),

for z ∈ Sδ, x ∈ R, and 0 < y < 2δ.

Remark 6. Proposition 2.3.1 in conjunction with Remark 5 allows us to focus our anal-

ysis on GL(z;λ, 1) on its boundary values G∓
L(x;λ, 1) and deduce the corresponding

results for GL(z;λ, δ) and GR(z;λ, δ). As such, unless otherwise explicitly stated, we

take δ = 1 throughout the remainder of this dissertation and commonly suppress the

δ dependence of the functions we analyze. For example, we will often write G+
L(x) or

G+
L(x;λ) instead of G+

L(x;λ, δ).

The discussion that follows is based on integrating eixξ/p(ξ) around the contour

shown in Figure 2.5 under the assumption that λ 6= 0. Recalling from Section 2.2

that the only roots of p contained in the strip

S1 =
{
ξ ∈ C : − π ≤ Im ξ ≤ π

}
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are ξ = 0 and ξ = λ, integrating eixξ/p(ξ) around such a contour is allowed. In the

case where λ = 0, then the contours shown in Figure 2.5 contain a single circular arc

arround the pole at ξ = 0.

The function eixξ has an analytic continuation to the upper complex ξ plane for

x > 0 and an analytic continuation to the lower complex ξ plane when x < 0. So,

for fixed ε > 0 with ε < min{λ/2, π}, define the counter-clockwise oriented contours

Γ(R, ε, x, λ) as shown below in Figure 2.5 and note that the integrand of G+
L(x, λ, 1)

is analytic along Γ(R, ε, x, λ).

Re ξ

Im ξ

ε ε

−R Rλ

−π

(a) The contour Γ(R, ε, x, λ) for x < 0

Re ξ

Im ξ

ε ε−R R

λ

π

(b) The contour Γ(R, ε, x, λ) for x > 0

Figure 2.5: Contours for shifting the contour of integration for GL off of the real line.

By the reverse triangle inequality,

|p(ξ)| ≥
∣∣∣|ξ| − ζ(λ)

∣∣1− e−2ξ
∣∣ ∣∣∣.

Since ∣∣1− e−2ξ
∣∣2 = (1− e−2ξ

) (
1− e−2ξ

)
= 1− 2Re e−2ξ + e−4Re ξ,

and

Re e−2ξ = e∓2R cos(−2y)

for ξ = ±R + iy (y ∈ R), we find

lim
R→∞

∣∣p(±R + iy)
∣∣ ≥ lim

R→∞

∣∣∣√R2 + y2 − ζ(λ)
(
1− e∓2R cos(−2y) + e∓4R

) 1
2

∣∣∣ = ∞.

Thus,

lim
R→∞

∣∣∣∣ eix(±R+iy)

p(±R + iy)

∣∣∣∣ = 0,(2.8)
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which implies that the contributions of the sides of Γ(R, ε, x, λ) to the overall value

of the integral
∫

Γ
eixξ/p(ξ) dξ goes to zero as we take R → ∞. Cauchy’s theorem in

conjunction with (2.8) consequently tell us that

G+
L(x;λ) =



1

2π

∫
R−iπ

eixξ

p(ξ)
dξ, x < 0

i Resξ=0

(
eixξ

p(ξ)

)
+ i Resξ=λ

(
eixξ

p(ξ)

)
1

2π

∫
R+iπ

eixξ

p(ξ)
dξ, x > 0

(2.9)

where

Resξ=0

(
eixξ

p(ξ)

)
=

1− e2λ

2λe2λ + 1− e2λ
, and Resξ=λ

(
eixξ

p(ξ)

)
=

1− e2λ

1 + 2λ− e2λ
eixλ.

We claim that

K+(x;λ) :=
e−π|x|

2π

∫
R
eixξ

1

p(ξ;λ, 1) + iπ sign(x)
dξ =

1

2π

∫
R+iπ sign(x)

eixξ

p(ξ;λ, 1)
dξ.

Indeed, the claim follows from (2.10) and

eix(ξ+iπ sign(x)) = e−π x sign(x) eixξ = e−π|x| eixξ.

By defining for λ 6= 0,

α(λ) := Resξ=0

(
eixξ

p(ξ)

)
and β(λ) := e−ixλ Resξ=λ

(
eixξ

p(ξ)

)
,

noting that

Resξ=0

(
eixξ

p(ξ)

)
=

2

3
+ ix

when λ = 0, and repeating the arguments given this section for G+
R, equations 2.4

follow. Simple but tedious computations verify that α and β satisfy the limits from

Theorem 2.1.2.
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2.4 Asymptotics of K+

A cursory inspection of the integrand of G+
⋆ (⋆ = L, or R) indicates that G+

⋆ behavior

differs wildly for x ∈ R near zero, and |x| > c, where c > 0 is any fixed constant.

While 1/p(ξ) decays roughly exponentially as ξ → −∞, the fact that 1/p(ξ) decays

as 1/ξ for ξ � 1 means the oscillatory term eixξ in the integrand of G+
⋆ is imperative

for the contour integral in G+
⋆ of eixξ/p(ξ) to even have a chance for convergence.

In this section we study the “nice” case of |x| > 1 and show that not only does the

integral in G+
⋆ converge in this scenario, it is rapidly decaying (as long as x stays

away from zero). In the Section 2.5, we study the behavior of G+
⋆ for x near zero and

show G+
⋆ has at worst a log type singularity at x = 0. Taken together, the results

from this section combined with the results from Section 2.5 constitute a proof of

Theorem 2.1.2 from the introduction of this chapter.

Key to the analysis in both this section and Section 2.5 are the representation

formulas (2.4) proven in Section 2.3. In particular, (2.4) allows us to reduce our

analyses to a thorough study of K+

To understand the properties of K+, we study the convergence of the integral∫
Σsign(x)

eixξ

p(ξ)
dξ,

where Σsign(x) := R + i sign(x)π. Let Σ
(
R, sign(x)

)
denote the contour (−R,R) +

i sign(x)π. Recall that p(ξ) can be written as

p(ξ) = ξ − ζ(λ)
(
1− e−2ξ

)
,

which implies p′(ξ) = 1− 2ζ(λ) e−2ξ. In which case∫
Σ
(
R, sign(x)

) eixξ

p(ξ)
dξ =

eixξ

p(ξ)

∣∣∣∣R+i sign(x)π

−R+i sign(x)π

− 1

ix

∫
Σ
(
R, sign(x)

) eixξ p′(ξ)(
p(ξ)

)2 dξ.
Now

p′(t± iπ) = 1− 2ζ(λ)e−2te∓2πi = 1− 2ζ(λ)e−2t = p′(t), t ∈ R.
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Further

ζ(t± iπ)− ζ(λ) =
t

1− e−2t
− ζ(λ)± iπ

1− e−2t
= ζ(t)− ζ(λ)± iπ

1− e−2t
, t ∈ R,

which implies

p(t± iπ) =
(
ζ(t± iπ)− ζ(λ)

) (
1− e−2t

)
(2.10)

=
(
ζ(t)− ζ(λ)

) (
1− e−2t

)
± iπ = p(t)± iπ.

Combining the two calculations above, we see that

1

ix

∫
Σ
(
R, sign(x)

) eixξ p′(ξ)(
p(ξ)

)2 dξ = e−|x|π

ix

∫ R

−R

eixt
p′(t)(

p(t) + i sign(x)π
)2 dt.

Thus,

lim
R→∞

1∣∣p(±R + i sign(x)π
)∣∣ = 0

and, formally, ∣∣∣∣∣∣∣
∫

Σsign(x)

eixξ

p(ξ)
dξ

∣∣∣∣∣∣∣ ≤
e−|x|π

|x|

∫
R

|p′(t)|
p(t)2 + π2

dt,(2.11)

where we proceed to establish the convergence of the integral on the right-hand side

of (2.11). Note that p′(t) = 0 only when t = 1
4
ln
(
ζ(λ)

)
. Further, given p′′(t) =

4ζ(λ) e−2t > 0 for all real t,

|p′(t)| =


−p′(t), t < t0

p′(t), t ≥ t0,

where t0 := 1
4
ln
(
ζ(λ)

)
. Given this fact, we now proceed to evaluate the integral on

the right-hand side of (2.11) through u-substitution by setting u = p(t). Observe

that ∫
p′(t)

p(t)2 + π2
dt =

∫
1

u2 + π2
=

1

π
arctan

(u
π

)
+ C =

1

π
arctan

(
p(t)

π

)
+ C.(2.12)
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So, for R > |t0|,∫ t0

−R

|p′(t)|
p(t)2 + π2

dt = −
∫ t0

−R

p′(t)

p(t)2 + π2
= − 1

π

[
arctan

(
p(t0)

π

)
− arctan

(
p(−R)
π

)]
,

and ∫ R

t0

|p′(t)|
p(t)2 + π2

dt =
1

π

[
arctan

(
p(R)

π

)
− arctan

(
p(t0)

π

)]
.

Now

lim
R→∞

p(±R) = lim
R→∞

[
±R− ζ(λ)

(
1− e∓2R

)]
= ∞,

which implies that

lim
R→∞

∫ R

−R

|p′(t)|
p(t)2 + π2

dt = lim
R→∞

(∫ t0

−R

|p′(t)|
p(t)2 + π2

dt+

∫ R

t0

|p′(t)|
p(t)2 + π2

dt

)
=

1

π

[
lim
R→∞

arctan

(
p(R)

π

)
+ lim

R→∞
arctan

(
p(−R)
π

)
− 2 arctan

(
p(t0)

π

)]
= 1− 2

π
arctan

(
p(t0)

π

)
Since

p(t0) =
1

4
ln ζ(λ)− ζ(λ) +

(
ζ(λ)

) 1
2 ,

p(t0) → −∞ as λ→ ±∞, and

lim
λ→±∞

∫
R

|p′(t)|
p(t)2 + π2

dt = 2.

Putting everything together, we see that

K+(x;λ) = O
(
e−|x|π

|x|

)
(2.13)

for |x| ≥ 1.

2.5 Green’s Function Singularity near x = 0

As we continue our analysis of K+, recall that our ultimate goal for this section is to

finish the proof of Theorem 2.1.2. To determine the properties of G+
⋆ (⋆ = L, or R)
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near x, it suffices to analyze the integrability of K+ for small |x|. The discussion that

follows within this section is based on the unpublished notes of Prof. Allen Wu.

We take without loss of generality 0 < x < 1 and consider the integral

Kζ(x) :=

∫
R

eixξ

ξ − ζ (1− e−2ξ) + iπ
dξ

for the three cases 0 < ζ < ζ0, ζ0 ≤ ζ ≤ ζ1 and ζ > ζ1, where ζ0 > 1 is chosen

sufficiently small, and ζ1 � 1 is chosen sufficiently large. In each of these three cases,

we perform a dyadic decomposition on Kζ(x) so that

Kζ(x) =
∑
q

Kq(x),(2.14)

where

Kq(x) :=

∫
R

eixξχ (2−qxξ)

ξ − ζ (1− e−2ξ) + iπ
dξ.

and χ is an even, smooth function with compact support near |ξ| = 1 so that∑
q

χ(2−qξ) = 1 for ξ 6= 0.

The main result of our analyses is summarized in Theorem 2.5.1. Though, the

three major cases in the proof of Theorem 2.5.1 are shown in the proofs of Lemmas

2.5.2 through 2.5.3.

Theorem 2.5.1. Suppose |x| < 1. Then

|Kζ(x)| ≤ C + C
∣∣ log |x|∣∣(2.15)

for all ζ > 0.

Proof. Since analogous results to Lemmas 2.5.2 through 2.5.4 also hold for −1 < x <

0, Theorem 2.5.1 is an immediate consequence of these three lemmas.

Lemma 2.5.2. For ζ0 := ζ(λ0) and λ0 chosen sufficiently small that

1− λ

λ+ 1

e−2e−2λ − 1

e−2λ − 1
>

1

2
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and

1− λ

λ− 1

e2e−2λ − 1

e−2λ − 1
< −1

whenever λ < λ0, the bound (2.15) holds for all 0 < ζ < ζ0 and 0 < x < 1.

Proof. Notice that χ (2−qxξ) is non-zero only for |2−qxξ| ≈ 1. Thus, for 2−qxξ ∈

suppχ, |ξ| ≈ 2q/x. For a given ζ = ζ(λ) and x, there are at most five values of q for

which
1

2
<

|ξ|
|λ|

< 2 and |ξ| ≈ 2q

x

We first estimate Kq for these values of q as follows.

Observe that 1− e−2ξ

ξ
is a positive, decreasing function. If ξ > λ+ 1, then

ξ − ζ
(
1− e−2ξ

)
ξ

= 1− λ

ξ

1− e−2ξ

1− e−2λ
> 1− λ

λ+ 1

e−2e−2λ − 1

e−2λ − 1
>

1

2
.

It follows that

∣∣ξ − ζ
(
1− e−2ξ

)∣∣ > 1

2
|ξ|(2.16)

when ξ > λ+ 1.

On the other hand, if ξ < λ− 1,

ξ − ζ
(
1− e−2ξ

)
ξ

= 1− λ

ξ

1− e−2ξ

1− e−2λ
< 1− λ

λ− 1

e2e−2λ − 1

e−2λ − 1
< −1.(2.17)

Thus, it follows from (2.16) and (2.17) that

∣∣ξ − ζ
(
1− e−2ξ

)∣∣ > 1

2
|ξ|

when |ξ − λ| > 1. Thus

|Kq(x)| ≤ C + C

∫
|ξ−λ|>1

χ(2−qxξ)

|ξ|+ π
dξ ≤ C + C

∫
R

χ(2−qxξ)

|ξ|+ π
dξ ≤ C.(2.18)

For the remainder of this proof, we assume |ξ| < 1

2
|λ|, or |ξ| > 2|λ|. In particular,

we have |ξ − λ| > 1 and
∣∣ξ − ζ

(
1− e−2ξ

)∣∣ > 1

2
|ξ|.
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Next, we focus all all those q’s satisfying 2q ≲ x. For such q’s,

|Kq(x)| ≤
∫
R

χ (2−qxξ)

π
dξ ≤ C2qx.(2.19)

The sum of these terms are bounded by

∑
2q≤x

C2q/x ≤ C.

We now focus on all those q’s satisfying x ≲ 2q ≲ 1. For such q’s,

|Kq(x)| ≤ C

∫
R

χ (2−qxξ)

|ξ|
dξ ≤ C.(2.20)

The sum of these terms gives

C
∑

x≲2q≲1

1 ≤ C| log x|.(2.21)

Lastly, we consider the Kq terms for which q ≳ 1. For these values of q, we

integrate by parts and ignore a factor of i to get

Kq(x) = K1q(x) +K2q(x)

= 2−q

∫
R

eixξ

ξ − ζ(1− e−2ξ) + iπ
χ′(2−qxξ) dξ

+

∫
R

1

x
eixξχ

(
2−qxξ

) [ 1

ξ − ζ(1− e−2ξ) + iπ

]′
dξ.

Observe that

|K1q(x)| ≤ C2−q

∫
R

|χ′(2−qxξ)|
|ξ|

dξ ≤ 22−q.(2.22)

We can compute K2p and write it as

2−q

∫
R
χ
(
2−qxξ

) 1

[ξ − ζ (1− e−2ξ) + iπ]2
1

x
dξ(2.23)

Using the condition 2−qx|ξ| ≈ 1 whenever 2−qxξ ∈ suppχ, we bound (2.23) by

2−q

∫
R
χ
(
2−qxξ

) ∣∣∣∣ ξ(1− 2ζe−2ξ)

[ξ − ζ (1− e−2ξ) + iπ]2

∣∣∣∣ dξ(2.24)
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Let us first assume |ξ| < 1

2
|λ|. In this case, we obviously have |ξ − λ| > 1 and∣∣ξ − ζ

(
1− e−2ξ

)∣∣ ≥ 1

2
. Furthermore, we claim that

∣∣ζe−2ξ
∣∣ ≤ C. In fact, for s =

ξ − λ/2 > 0, we have∣∣ζe−2ξ
∣∣ ≤ C +

∣∣ζ (1− e−2ξ
)∣∣ ≤ C

∣∣∣∣ λ

1− e−2λ

(
1− e−2(λ/2+s

)∣∣∣∣ ≤ C + C
∣∣λeλe−2s

∣∣ ≤ C.

Since λ < λ0 is sufficiently negative, (2.24) is bounded by

C2−q

∫
R
χ
(
2−qxξ

) ∣∣∣∣ ξξ2
∣∣∣∣ dξ ≤ 2−q.(2.25)

Finally, we assume |ξ| > 2|λ|. The part of ξ that is positive is obviously bounded

by C2−q. We focus on the part of ξ such that ξ < 2λ. Since for this part ξ−λ < −1,

with the similar estimates above, we claim that

−ζ(1− e−2ξ) > −2ξ.(2.26)

We further claim that ∣∣∣∣ ξ

ζ(1− e−2ξ)

∣∣∣∣ ≤ C

|ξ|
.

In fact, for s = 2λ− ξ > 0, we have∣∣∣∣ ξ

ζ(1− e−2ξ)

∣∣∣∣ ≤ ∣∣∣∣1− e−2λ

λ

(2λ− s)2

1− e−2(2λ−s)

∣∣∣∣
≤ C

∣∣∣∣e2λe−2s

(
4λ− 4s+

s2

λ

)∣∣∣∣
≤ C.

Again, remembering that λ < λ0 is sufficiently negative, with the estimates above we

see that (2.24) is bounded by

C2−q

∫
R
χ
(
2−qxξ

) |ξ (1− 2ζe−2ξ
)

|ζ (1− e−2ξ)|2
dξ ≤ C2−q

∫
R
χ
(
2−qxξ

) 1

|ξ|
dξ

≤ C2−q.

In summary, we have |Kq(x)| ≤ C2−q for 2q ≳ 1 whose the sum gives
∑
2q≳1

C2−q.

Combining all the above estimates, we get the desired result.
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Lemma 2.5.3. Let ξ0 > 1 be sufficiently large that

1

2
<

1− e−2ξ − 2ξe−2ξ

(1− e−2ξ)2
< 2

for ξ > ξ0 and let 1 > ξ0. Then, the estimate (2.15) holds for all for all 0 < x < 1

and ζ > ζ1 := ζ(λ1).

Proof. By the mean value theorem,

ξ

1− e−2ξ
− λ

1− e−2λ
=

1− e−2ξ − 2ξe−2ξ(
1− e−2ξ

)2
∣∣∣∣∣
ξ=θ

.(2.27)

Here θ is between ξ and λ. Let χξ0+(ξ) be a smooth cutoff function that is 1 for

ξ > ξ0 + 1 and 0 for ξ ≤ ξ0, with gradient bounded by 2. We write

Kζ(x) = K1ζ(x) +K2ζ(x)

:=

∫
R

eixξ
(
1− ξξ0+(ξ)

)
ξ − ζ

(
1− e−2ξ

)
+ iπ

dξ +

∫
R

eixξ
(
ξξ0+(ξ)

ξ − ζ
(
1− e−2ξ

)
+ iπ

dξ

Take some λ1 > ξ0 and estimate K1ζ by

|K1ζ(ξ)| ≤ C +

∫ −1

−∞

1(
e−2ξ − 1

) (
ζ − ξ

1−e−2ξ

) dξ

≤ C +
1

ζ(λ1)− ζ(−1)

∫ −1

−∞

1

e−2ξ − 1
dξ.

To estimate K2ζ , we take a dyadic decomposition

K1ζ(ξ) =
∑
q

Kq(x) =
∑
q

∫
R

eixξχξ0+(ξ)

ξ − ζ
(
1− e−2ξ

)
+ iπ

χ
(
e−qx(ξ − λ)

)
dξ.

for 2q ≳ x, |Kq(x)| ≤ C2q/x. These terms sum to C. For x ≲ 2q ≲ 1, we notice that

since ξ, λ ≥ ξ0,∣∣ξ − ζ
(
1− e−2ξ

)∣∣ = ∣∣∣∣(1− e−2ξ
)( ξ

1− e−2ξ
− λ

1− e−2λ

)∣∣∣∣ ≈ ∣∣ξ − λ
∣∣.

Thus

|Kq(x)| ≤ C

∫
R

1

|ξ − λ|
χ
(
2−qx(ξ − λ)

)
dξ ≤ C,
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which implies ∑
x≲2q≲1

|Kq(x)| ≤ C| log x|.

For 2q ≳ 1, we integrate Kp by parts to obtain∫
R
eixξ

χ
(
2−qx(ξ − λ)

)
ξ − ζ

(
1− e−2ξ

)
+ iπ

χξ0+(ξ)
′

x
dξ dξ(2.28)

+ 2−q

∫
R

eixξχξ0+

ξ − ζ
(
1− e−2ξ

)
+ iπ

χ′
ξ0+

(ξ)

x
dξχ′(2−qx(ξ − λ)

)
dξ(2.29)

−
∫
R
eixξχξ0+(ξ)

1− 2ζe−2ξ(
ξ − ζ

(
1− e−2ξ

)
+ iπ

)2 χ
(
2−qx(ξ − λ))

x
dξ(2.30)

Noticing the condition 1
x
≈ 2−q|ξ − λ|, (2.28) is bounded by

C2−q

∫
R

|ξ − λ|
|ξ − λ|

|χ′
ξ0+

(ξ)| dξ ≤ C2−q.

(2.29) is bounded by

C2−q

∫
R

|χ′(2−qx(ξ − λ))|
|ξ − λ|

dξ ≤ C2−q.

(2.30) is bounded by

C2−q

∫
R
χξ0+(ξ)

|1− 2ζe−2ξ|
|ξ − λ|

χ(2−qx(ξ − λ)) dξ

≤ C2−q

∫
R

χ(2−qx(ξ − λ))

|ξ − λ|
dξ + C2−q

∫ ∞

0

λe−2λe−2(ξ−λ)

|ξ − λ|
χ(2−qx(ξ − λ)) dξ

≤ C2−q + C2−qλe−2λ

∫ ∞

−2−qxλ

e−ξ2q+1/x

|ξ|
χ(ξ) dξ

≤ C2−q + C2−qλe−2λ

∫ 0

−2−qxλ

e−ξ2q+1/x

|ξ|
χ(ξ) dξ

(2.31)

Let’s say χ is supported between 1
2

and 2, then the integral in (2.31) is nonzero only

when 2−qxλ ≥ 1
2
. If 1

2
≤ 2−qxλ ≤ 2, the integral in (2.31) is bounded by

C

∫ 0

−2−qxλ

e−ξ2q+1/x dξ ≤ C2−(q+1)xe2λ.

34



Thus (2.31) is bounded by

C2−q + C2−qλ2−(q+1)x ≤ C2−q.

If 2−qxλ ≥ 2, the integral in (2.31) is bounded by

C

∫ 0

−2

e−ξ2q+1/x dξ ≤ C2−(q+1)xe2 · 2q+1/x.

Thus (2.31) is bounded by

C2−q + C2−q λe−2λ

(2q+1/x)e−2 · 2q+1/x
≤ C2−q.

The last step above follows from the condition 2q+1/x ≤ λ, and the fact that λe−2λ

is decreasing for λ > 1
2
.

Therefore, the sum
∑
2q≳1

|Kq(x)| ≤ C. As a consequence,

|Kζ(x)| ≤ C + C| log x|

for all ζ > ζ1, and 0 < x < 1.

Lemma 2.5.4. Inequality (2.15) holds for every ζ between ζ0 and ζ1, where ζ0 and

ζ1 are as respectively defined in the statements of Lemmas 2.5.2 and 2.5.3.

Proof. Now that we have the uniform estimates on Gζ for ζ < ζ0 = ζ(λ0) and

ζ > ζ1 = ζ(λ1), we can fill the gap ζ0 < ζ < ζ1. We take the dyadic sum∑
q

Kq(x) =
∑
q

∫
R

eixξχ (2−qxξ)
(
1− χλ0λ1(ξ)

)
ξ − ζ (1− e−2ξ) + iπ

dξ.(2.32)

Notice we have cut off a piece from λ0 − 1 to 2ζ1 by the cutoff function χλ0λ1(ξ). Of

course, the piece that’s cut off is uniformly bounded. Observe that for ξ < λ0 − 1

and ζ > ζ0, ∣∣ξ − ζ
(
1− e−2ξ

)∣∣ = ∣∣(1− e−2ξ
) (
ζ(ξ)− ζ

)∣∣ ≥ Ce−2ξ,

while for ξ > 2ζ1 and ζ < ζ1,∣∣ξ − ζ
(
1− e−2ξ

)∣∣ ≈ |ξ|, 2ζe−2ξ <
1

2
.

A similar argument as above gives the uniform estimates.
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CHAPTER 3. GREENS FUNCTIONS: MAPPING PROPERTIES

3.1 Introduction

One of the consequences of (2.2) along with (1.8) is that G+
⋆ (x;λ) (⋆ = L, or R) grows

linearly as a function of x ∈ R when λ = 0. This fact aligns with intuition, since the

two simple poles ξ = 0 and ξ = λ of 1/p coalesce into a single double pole as λ→ 0.

Since r is a function of λ, in order to prove the direct scattering map D : u 7→ r is well-

defined and Lipschitz continuous, we need estimates on the solutions to the integral

equations (1.9)—and hence estimates on the Green’s functions—which are uniform

in λ. This will allow us to obtain similarly uniform estimates on the scattering data

derived from the Jost solutions. Given the linear growth of G+
⋆ as λ → 0, in order

to obtain λ-independent estimates while studying the mapping properties of G+
⋆ , we

commonly work over polynomially weighted Lp (1 ≤ p ≤ ∞) weighted spaces defined

in definitions 3.1.1 and 3.1.2. In order to avoid introducing poles when weighting by

the reciprical of a polynomial, we introduce the notation 〈x〉 :=
√
1 + x2 to represent

a linear weight.

Definition 3.1.1 (Lp,s). For 1 < p < ∞ and s ∈ (−∞,∞), we define Lp,s(R) to be

the space of all measurable functions f with the property that 〈 · 〉s f ∈ Lp(R), and

associate with Lp,s(R) the norm ‖ · ‖Lp,s given by

‖f‖Lp,s :=

(∫
R
〈x〉sp |f(x)|p

)1/p

.

for each f ∈ Lp,s(R).

Remark 7. In accordance with the notation used in [3], we use Lp,∞ to denote the

space weak-Lp. The space Lp,∞ should be thought of completely seperately from Lp,s

and should not be considered as a limit (in s) of Lp,s spaces. For a definition of Lp,∞,

please see the appendix titled “Harmonic Analysis Results.”
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Definition 3.1.2 (〈 · 〉s Lp). Let 1 < p ≤ ∞. Then we use the notation 〈 · 〉s Lp(R)

to indicate the collection of measurable functions f with 〈 · 〉−s f ∈ Lp(). Specifically,

〈 · 〉s Lp(R) :=
{
〈 · 〉s f : f ∈ Lp(R)

}
.

The norm ‖ · ‖⟨ · ⟩Lp on the space 〈 · 〉Lp(R) is defined by ‖f‖⟨ · ⟩Lp := ‖ 〈 · 〉−p f‖Lp .

Remark 8. Since we commonly work in the space 〈 · 〉L∞(R), it is worth highlighting

the fact that 〈 · 〉L∞(R) is the collection of all measurable functions f for which 〈 · 〉 f

is essentially bounded. That is,

‖f‖⟨ · ⟩L∞ = ess sup
x∈R

| 〈x〉−1 f(x)|

is finite for all f ∈ 〈 · 〉L∞(R).

Remark 9. In cases involving functions of multiple variables or parameters, we some-

times use a subscript in conjunction with function space notation to avoid confusion.

For example, f ∈ Lp
ξ(R) indicates that the function f is Lp integrable with respect

to the variable ξ.

In addition to considering the mapping properties of G+
⋆ , we also consider in this

chapter the related operators T⋆,λ,u (commonly denoted as T⋆ or T⋆,λ, for short) given

by

T⋆,λ,uf(x) :=
[
G+

⋆ ( · ;λ)
]
∗ (u f)(x),

(
⋆ = L, or R

)
(3.1)

as the integral equations (1.9) can be reformulated as 1

eiλx

 = (I − TL,λ,u)

M+
1 (x;λ, δ)

M+
e (x;λ, δ)

(3.2a)

 1

eiλx

 = (I − TR,λ,u)

N+
1 (x;λ, δ)

N+
e (x;λ, δ)

(3.2b)
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In considering a space of potentials u, we need to compensate for the logarithmic

singularity of G+
⋆ at x = 0 as well as the linear growth (in x) of G+

⋆ . In particular,

the linear growth of the sum of the residue terms of G+
⋆ for λ = 0 forces us to

allow solutions to (3.2) which grow at most linearly (i.e. are 〈 · 〉L∞.) As we see in

Proposition 3.2.2, requiring 〈 · 〉2 u is L1 and also requiring that the convolution of

〈 · 〉 u with log+

(
1
|x|

)
be essentially bounded ensures that T⋆,λ is a bounded operator

on 〈 · 〉L∞(R) for all real λ. However, in order to ensure that solutions to (3.2)

satisfy the asymptotic conditions imposed on the Jost solutions—necessary to prove

the equivalence of the Jost solutions and solutions to (3.2)—we need u to satisfy the

even stronger decay condition that 〈 · 〉3 u is L1. Please see Section 5.3 for why such

strong decay is needed.

In proving the equivalence of Jost solutions and solutions to the integral equations

3.2 in Section 5.3, we also need the upper boundary values of solutions to the integral

equations 1.9 to exist in an L2 sense. For reasons that become apparent in Sections

4.4 and 4.5, doing so also requires u to be L2 integrable. Keeping our entire list of

desired properties for u in mind, we select the space X of potentials u as follows:

Definition 3.1.3. Denote by X the space of all measurable functions u for which

‖u‖X :=
∥∥〈 · 〉4 u∥∥

L2

is finite. That is, X = 〈 · 〉−4 L2(R) = L2,4(R).

Remark 10. To see that u ∈ X actually has all of the required properties, we first

note that by the Cauchy-Schwarz inequality,

∥∥〈 · 〉3 u∥∥
L1 =

〈
〈 · 〉−1 , 〈 · 〉4 u

〉
L2 =

∥∥〈 · 〉−1
∥∥
L2

∥∥〈 · 〉4 u∥∥
L2 <∞,

where we use 〈 · , · 〉L2 to denote the L2 inner product. Hence, u ∈ X implies

u ∈ L1,2(R). A similar use of the Cauchy-Schwarz inequality also shows that the

convolution of log+
(

1
|x|

)
with 〈 · 〉u is bounded by 4‖u‖X for all x ∈ R.
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We explore in Section 3.2 the boundedness and asymptotic properties of G+
⋆ and

T⋆ needed to that the direct scattering map D is both well-defined and Lipschitz

continuous. In Section 3.3 we continue our exploration of the mapping properties of

both G⋆ and T⋆ by considering their continuity and differentiability in λ, which we

use while verifying the Lipschitz continuity of D .

3.2 Boundedness as a Convolution Operator

As a warm-up, we begin our study of the Green’s functions mapping properties by

studying in Proposition 3.2.1 the mapping properties of G+
L , G+

R as convolution op-

erators under the constraint λ 6= 0.

Proposition 3.2.1. For each fixed λ ∈ R\{0}, G+
⋆ (⋆ = L, or R) are bounded as

convolution operators from L1(R) ∩ Lp (1 < p ≤ 2) with

‖G+
⋆ ∗ f‖L∞ ≲λ ‖f‖L1∩Lp ,

where the implied constant depends on λ when |λ| < 1. Further,

lim
x→−∞

(
G+

L ∗ f
)
(x) = lim

x→+∞

(
G+

R ∗ f
)
(x) = 0(3.3)

whenever the spectral parameter λ is both real and non-zero.

Proof. From our previous work in Section 2.3 proving Theorem 2.1.1, we have

G+
L(x;λ, δ) = K+(x;λ) +

[
iα(λ) + iβ(λ) eixλ

]
χ+(x)(3.4)

and

G+
R(x;λ, δ) = K+(x;λ)−

[
iα(λ) + iβ(λ) eixλ

]
χ−(x)(3.5)

where

K+(x;λ) :=
e−π|x|

2π

∫
R
eixξ

1

p(ξ;λ) + iπ sign(x)
dξ.
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and χ− := χ(−∞,0), χ+ := χ(0,∞) denote the respective characteristic functions on

the open intervals (−∞, 0), (0,∞). Although the integral for K+ is conditionally

convergent, it avoids zeros of the symbol p, and may be understood through the

Lq theory of the Fourier transform, since the integrand belongs to Lq for any q > 1.

Moreover, it follows from the Hausdorff-Young inequality and dominated convergence

that limh→0 ‖K( · + h)+ −K+‖Lq′ = 0 for any q ∈ (1, 2]. As a consequence, the

convolutions

G+
L( · ;λ) ∗ f(x) =

∫
R
G+

L(x− x′, λ)f(x′) dx′(3.6)

=

∫ x

−∞
K+(x− x′, λ)f(x′) dx′ +

∫ ∞

x

K+(x− x′, λ)f(x′) dx′

+ iα(λ)

∫ x

−∞
f(x′) dx′ + iβ(λ)eiλx

∫ x

−∞
e−iλx′

f(x′) dx′,

and

G+
R( · ;λ) ∗ f(x) =

∫ x

−∞
K+(x− x′, λ)f(x′) dx′ +

∫ ∞

x

K+(x− x′, λ)f(x′) dx′(3.7)

− iα(λ)

∫ ∞

x

f(x′) dx′ − iβ(λ)eiλx
∫ ∞

x

e−iλx′
f(x′) dx′,

define bounded continuous functions for any f ∈ L1(R) ∩ Lp(R) for any p ∈ (1, 2]

with

(3.8)
∥∥G+

⋆ ∗ f
∥∥
L∞(R) ≲λ ‖f‖L1∩Lp .

For f ∈ C∞
0 (R), it is easy to see that

lim
x→−∞

α(λ)

∫ x

−∞
f(x′) dx′ + β(λ)eiλx

∫ x

−∞
e−iλx′

f(x′) dx′ = 0

and

lim
x→∞

α(λ)

∫ ∞

x

f(x′) dx′ + β(λ)eiλx
∫ ∞

x

e−iλx′
f(x′) dx′ = 0.

Further, the Dominated Convergence Theorem implies

lim
x→±∞

K+ ∗ f(x) = lim
x→±∞

∫
R
K+(x− x′)f(x′) dx = 0,
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as |K+(x′)f(x− x′)| ≤ ‖f‖L∞|K+(x)| ∈ L1
x(R), and K+(x) = O

(
e−|x|) for |x| ≥ 1.

It now follows from a density argument and (3.8) that if p ∈ (1, 2], then

(3.9) lim
x→−∞

(
G+

L ∗ f
)
(x) = lim

x→+∞

(
G+

R ∗ f
)
(x) = 0

for any f ∈ L1(R) ∩ Lp(R).

We now turn our focus towards the operators T⋆,λ,u (⋆ = L, or R). In Proposition

3.2.2 we prove that as an operator on the space 〈 · 〉L∞(R), the operators T⋆,λ,u are

uniformly bounded in λ, whose operator norms depend only on the norm of their

corresponding potential u. As a reminder, the function space for potentials u is

X := L2,4(R) = 〈 · 〉−4 L2(R). Beginning in Proposition 3.2.2, we also introduce

the notation Y ý to denote a map from Y into Y , and the notation ‖ · ‖Y→Z to

denote the implied operator norm for an operator which maps from Y to Z. Thus,

the notation ‖ · ‖⟨ · ⟩L∞ý used in Equation (3.10) of Proposition 3.2.2 denotes the

operator norm for an operator which maps from the space 〈 · 〉L∞(R) into itself.

Proposition 3.2.2. Consider the operators T⋆,λ,u (⋆ = L, or R) given by

(
T⋆,λ,uf

)
(x) :=

∫
R
G+

⋆ (x− x′;λ)u(x′)f(x′) dx′.

For every u ∈ X, operators T⋆,λ,u : 〈 · 〉L∞(R) → 〈 · 〉L∞(R) are bounded uniformly

in λ ∈ R with

‖T⋆,λ,u‖⟨ · ⟩L∞ý ≲ ‖u‖X .(3.10)

Proof. To simplify notation, we write T⋆ instead of T⋆,λ,u throughout this proof. We

begin by noting that

|T⋆f(x)| =
∣∣∣∣∫

R
G+

⋆ (x− x′;λ)
(
u(x′) 〈x′〉

)(
〈x′〉−1

f(x′)
)
dx′
∣∣∣∣

≤ ‖f‖⟨ · ⟩L∞

∫
R

∣∣G+
⋆ (x− x′;λ)

∣∣ 〈x′〉 |u(x′)| dx′.
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Hence

‖T⋆‖⟨ · ⟩L∞ý ≤ sup
x∈R

〈x〉−1

∫
R

∣∣G+
⋆ (x− x′;λ)

∣∣ 〈x′〉 |u(x′)| dx′.(3.11)

Recall from Theorem 2.1.1 that

G+
L(x;λ) = K+(x;λ) +

[
iα(λ) + iβ(λ)eixλ

]
χL(x)(3.12a)

G+
R(x;λ) = K+(x;λ)−

[
iα(λ) + iβ(λ)eixλ

]
χR(x)(3.12b)

where we define χL := χR+ , χR := χR− , and χR+ , χR− respectively denote the char-

acteristic functions on the intervals (0,∞) and (−∞, 0). According to Theorem 2.1.2

lim
λ→0

α(λ) + β(λ) eixλ =
2

3
+ ix,

which implies that for sufficiently small ε > 0,

∣∣α(λ) + β(λ) eixλ
∣∣ ≲ε


1, |λ| ≥ ε

1 + |x|, |λ| < ε

(3.13)

Further, since Theorem 2.1.2 also states that

|K+(x− x′;λ)| ≲ 1 + log+

(
1

|x− x′|

)
we see from (3.12) that

|G+
⋆ (x− x′;λ)| ≲ 1 + |x− x′|+ log+(1/|x− x′|)(3.14)

where the implied constant is λ independent.

Thus, the operator norm of T⋆ is bounded by

sup
x∈R

〈x〉−1

∫
R

[
1 + |x− x′|+ log+

(
1

|x− x′|

)]
〈x′〉 |u(x′)| dx′.(3.15)

To estimate (3.15), first note that since 〈x〉 ≥ 1 for x ∈ R, we have 〈x′〉 〈x〉−1 ≤ 〈x′〉.

Further,

〈x〉−1 |x− x′| = |x− x′|
〈x〉 〈x′〉

〈x〉2 ≲ 〈x′〉2 .
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and, lastly, 〈x〉−1 〈x′〉 ≲ 1 whenever |x− x′| ≤ 1. As such,

‖T⋆‖⟨ · ⟩L∞ý ≲
∫
R
〈x′〉 |u(x′)| dx′

+ ess sup
x∈R

∫
|x−x′|≤1

log

(
1

|x− x′|

)
|u(x′)| dx′

≲ ‖u‖X ,

by Remark 10.

If we don’t need to worry about non-zero λ, then we can improve Proposition

3.2.2 slightly by proving that T⋆,λ,u is actually a bounded operator on (unweighted)

essentially bounded, measurable functions. We do this next in Proposition 3.2.3.

Proposition 3.2.3. For real λ 6= 0 and u ∈ X, the operators T⋆,λ,u (⋆ = L, or R)

map from L∞(R) to L∞(R) with

‖T⋆‖L∞→L∞ ≲λ ‖u‖X ,(3.16)

where the implied constant depends on λ.

Proof. By repeating our work in the proof of Proposition 3.2.2, we obtain the following

estimate

‖T⋆f‖L∞ ≲λ ‖ 〈x〉u‖L1‖f‖⟨x⟩L∞(3.17)

+

[
ess sup

x∈R

(∫
|x−x′|≤1

log

(
1

|x− x′|

)
〈x′〉 |u(x′)| dy

)]
,

which holds for λ ∈ (−∞, 0) ∪ (0,∞). Since |〈x〉 u(x)| ≤
∣∣〈x〉2 u(x)∣∣, we see that

‖ 〈x〉u‖L1 ≤ ‖u‖X . Hence, Proposition 3.2.3 follows from (3.17).

Proposition 3.2.4. The operators T⋆,λ,u satisfy the asymptotic conditions

lim
x→−∞

〈x〉TL,λ,uf(x) = lim
x→+∞

〈x〉TR,λ,uf(x) = 0(3.18)

for every real λ, u ∈ X and f ∈ 〈 · 〉L∞(R). Alternatively stated, the limits

lim
x→−∞

TL,λ,uf(x), and lim
x→+∞

TR,λ,uf(x)
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converge to zero faster than 1/x.

Proof. We prove TL satisfies asymptotic conditions (3.18) noting that the correspond-

ing proof for TR is similar. Since G+
L experiences linear growth for |x| � 1 only when

λ = 0 and is otherwise bounded for large |x|, we consider the λ = 0 case first.

Recall from Remark 1 in Section 2.1 that the function K+(x;λ) can be written in

the form

K+(x;λ) = e−π|x|k(x;λ)(3.19)

where k( · ;λ) ∈ L2(R) for all real λ, and k is uniformly bounded in λ. Consequently,

TL,0,uf(x) =

∫ x

−∞

(
i
2

3
− (x− x′)

)
u(x′)f(x′) dx′

+

∫
R
e−π|x−x′|u(x′)f(x′) dx′,

which implies

|TL,0,uf(x)| ≲ I1 + I2,

where

I1(x) :=

∫
R
〈x− x′〉 |u(x′)| 〈x′〉 dx′

I2(x) :=

∫
R
〈x− x′〉−2 |k(x− x′)||u(x′)| 〈x′〉 dx′,

where we use the fact that f ∈ 〈 · 〉L∞(R) to estimate f ≲ 〈 · 〉 and note that that

e−π|x| ≲ 〈x〉−N for all whole numbers N (in I2, we select N = 2).

To bound I1, we assume x < 0 and note that this implies 〈x′〉 ≥ 〈x〉 and 〈x′〉−1 ≤

〈x〉−1 since the function 〈 · 〉 is strictly decreasing on the interval (∞, 0). Further, it

is straightforward to show that 〈x− x′〉 ≤ 〈x〉+ 〈x′〉 ≤ 2 〈x′〉 ≲ 〈x′〉. Hence

|I1(x)| ≲
∫ x

−∞

(
〈x′〉2 〈x′〉−3

)(
〈x′〉3 |u(x′)|

)
dx′ ≲ 〈x〉−1

∥∥〈 · 〉3 u∥∥
L1 .
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Since the Dominated Convergence Theorem implies that the integral of 〈 · 〉3 |u|χ(−∞,x)

goes to zero as x→ −∞, we see that

lim
x→−∞

〈x〉 I1(x) = 0.

Similarly,

|I2(x)| ≲ 〈x〉−2

∫ x

−∞

〈x〉2

〈x− x′〉2 〈x′〉2
|k(x− x′)| 〈x′〉2 |u(x′)| dx′(3.20)

≲ 〈x〉−2 ‖k‖L2 ‖u‖L2,2 ,

as
〈x〉

〈x− x′〉 〈x′〉
≤ 1

〈x− x′〉
≤ 1

when x < 0 and x′ < x. Estimate (3.20) therefore implies

lim
x→−∞

〈x〉 I2(x) = lim
x→−∞

〈x〉 I1(x) = 0,

which in turn implies TL,0,uf(x) satifies the asymptotic condition (3.18)

Since the sum of the residue terms in G+
L is bounded (in x) for all fixed λ 6= 0, a

slight modification of the above argument shows that TL,λ,uf(x) also satisfies (3.18)

when λ 6= 0.

3.3 λ-Differentiability

We begin this section by proving a useful variant of Young’s inequality (Technical

Lemma 3.3.1) that we use in a number of proofs in this dissertation. We then prove

that that the operators T⋆,λ,u are continuous in the spectral parameter λ (Proposition

3.3.2). The remainder of this section the focuses on proving the λ-differentiability of

G+
⋆ . We direclty use the results from all four propositions in this section in proving

that the Jost solution boundary M+
1 is differentiable in λ, and hence has a lineariza-

tion in λ. The λ linearization of M+
1 is ultimately used in the proof that the direct

scattering map D is Lipschitz continuous.
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Since the proof of the λ-continuity of T⋆,λ,u calls Technical Lemma 3.3.1, we start

with the proof of that lemma.

Technical Lemma 3.3.1. For f ∈ 〈 · 〉s L1(R) and 〈 · 〉s g ∈ L∞(R) the inequality

‖f ∗ g‖⟨ · ⟩sL∞ ≤ ‖f‖⟨ · ⟩sL1‖ 〈 · 〉s g‖L∞(3.21)

holds for s ≥ 0. Alternatively, if 〈 · 〉s f ∈ L1(R) and g ∈ 〈 · 〉s L∞(R) the estimate

‖f ∗ g‖⟨ · ⟩sL∞ ≤ ‖〈 · 〉s f‖L1 ‖g‖⟨ · ⟩sL∞(3.22)

holds instead for s ≥ 0.

Proof. It is straightforward to show that

〈x′〉
〈x− x′〉 〈x〉

≤ 1,

for all x, x′ ∈ R, as(
〈x′〉

〈x− x′〉 〈x〉

)2

=
1 + (x′)2

1 + (x− x′)2 + x2 + x2(x− x′)2
≤ 1 + (x′)2

1 + (x′)2
.

As such, we find for s > 0

‖f ∗ g‖⟨ · ⟩sL∞ = sup
x∈R

〈x〉−s

∫
R

∣∣f(x′) g(x− x′)
∣∣ dx′

= sup
x∈R

∫
R

∣∣∣[ 〈x′〉−s
f(x′)

][
〈x− x′〉 g(x− x′)

]∣∣∣ ( 〈x′〉
〈x− x′〉 〈x〉

)s

dx′

≤
∥∥[ 〈 · 〉−s f

]
∗
[
〈 · 〉s g

]∥∥
L∞

≤ ‖f‖⟨ · ⟩sL1‖ 〈 · 〉s g‖L∞

by Minkowski’s integral inequality [3, Theorem 1.2.10]. If s = 0, then (3.21) automat-

ically holds by [3, Theorem 1.2.10]. An analogous argument also verifies (3.22).

Proposition 3.3.2. For u ∈ X ∩ 〈 · 〉−2 L∞(R), the operator T⋆,λ,u : 〈 · 〉L∞(R) →

〈 · 〉L∞(R) given by

T⋆,λ,u : f 7→
[
G+

⋆ (·;λ)
]
∗ (u f)
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is continuous in the parameter λ ∈ R in the sense the limit

lim
h→0

‖T⋆,λ+h,u − T⋆,λ,u‖⟨ · ⟩L∞ý = 0

holds pointwise for each fixed λ ∈ R.

Proof. To simplify notation, let T⋆,λ,u be denoted by Tλ. Then, we see from Technical

Lemma 3.3.1 that

‖(Tλ+h − Tλ)f‖⟨ · ⟩L∞ =
∥∥[G+

⋆ ( · , λ+ h)−G+
⋆ ( · , λ)

]
∗ uf

∥∥
⟨ · ⟩L∞(3.23)

≤
∥∥G+

⋆ ( · , λ+ h)−G+
⋆ ( · , λ)

∥∥
⟨ · ⟩L∞ ‖〈 · 〉 uf‖L∞

for all f ∈ 〈 · 〉L∞(R) as u ∈ X ∩ 〈 · 〉−2 L∞(R) implies 〈 · 〉u f ∈ 〈 · 〉L∞(R). Noting

that the argument in the proof of Proposition 3.3.3 (which does not depend on this

Proposition) implies

lim
h→∞

∥∥G+
⋆ ( · , λ+ h)−G+

⋆ ( · , λ)
∥∥
⟨ · ⟩L∞ = 0,(3.24)

Proposition 3.3.2 follows from (3.23) and (3.24).

Remark 11. The notation in proofs of Propositions 3.3.3 through 3.3.5 can get unnec-

essarily complicated. To avoid this, in these proof we use the notation G(x, λ) and

G(λ) as stand-ins for G+
⋆ (x;λ).

Proposition 3.3.3. For each fixed x 6= 0 and λ ∈ R, the Green’s function boundary

G+
⋆ (⋆ = L, or R) is differentiable in the spectral parameter λ, and

∂

∂λ
G+

⋆ (x;λ) =
1

2π

∫
Γ⋆

eixξ
(
∂

∂λ

1

p(ξ;λ)

)
dξ.

Remark 12. Since
∂

∂λ

1

p(ξ;λ)
=

ζ ′(λ)(
ξ − ζ(λ)

(
1− e−2ξ

))2 ,
the function ∂

∂λ
1

p(ξ;λ)
decays exponentially to zero as ξ → −∞, and, for ξ > 0, decays

like 1/ξ2. As such, the integral ∫
Γ⋆

(
∂

∂λ

1

p(ξ;λ)

)
dξ.
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converges absolutely.

Proof of Proposition 3.3.3. In accordance with Remark 11, we write G+
⋆ (x;λ) as ei-

ther G(x, λ) or as G(λ). We further define Gh to be the difference quotient

Gh :=
G(λ+ h)−G(λ)

h
.

and seek to prove that limh→0Gh converges. For |h| > 0 sufficiently small, we may

assume by analyticity that G(λ) and G(λ+ h) share the same contour of integration

Γ. If λ = 0, the contour Γ runs along with a single small semi-circular detour below

the real axis to avoid passing through ξ = 0 and ξ = h. In which case

Gh(λ) =
1

2π

∫
Γ

eixξ
1

h

[
1

p(ξ;λ+ h)
− 1

p(ξ;λ)

]
dξ =

∫
Γ

eixξ
(

1

pλ(ξ)

)
h

dξ,

where we define (
1

pλ(ξ)

)
h

:=
1

h

[
1

p(ξ;λ+ h)
− 1

p(ξ;λ)

]
as the difference quotient of 1/p with respect to λ. Since(

1

pλ(ξ)

)
h

=
1

h

[
ζ(λ+ h)− ζ(h)

](
1− e−2ξ

)
p(ξ;λ+ h) p(ξ;λ)

decays exponentially as ξ → −∞ and decays as 1/ξ2 for positive ξ,(
1

pλ(ξ)

)
h

∈ L1(Γ)

for each fixed h 6= 0. Further, using the continuity of ζ and the reverse triangle

inequality, we also have∣∣∣∣( 1

pλ(ξ)

)
h

∣∣∣∣ ≲λ

∣∣1− e−2ξ
∣∣

|ξ|
∣∣ξ − ζ(λ)

(
1− e−2ξ

)∣∣ =: ι(ξ).

Since ι is continuous in ξ on Γ and ι(ξ) = O(1/ξ2) for large |ξ|, one application of

the Dominated Convergence Theorem completes this proof.

Proposition 3.3.4. The partial derivative ∂
∂λ
G+

⋆ (⋆ = L, or R) of the Green’s func-

tion boundary value G+
⋆ lies in 〈x〉s L1

x(R) for s > 3 and all λ ∈ R. If λ ∈ R and

λ 6= 0, then ∂
∂λ
G+

⋆ ∈ 〈x〉s L1
x(R) for s > 2.

48



Proof. Define

g(ξ;λ) := eixξ
∂

∂λ

1

p
,

Through direct computation, one can show

Resξ=0 g =
2e2λ

(
e2λ − 2λ− 1

)(
1− e2λ + 2λe2λ

)2 ,(3.25)

Resξ=λ g =
2e2λ − 2− 4λe2λ + i

[
x− 2xe2λ + xe4λ + 2xλ− 2xλe2λ

](
e2λ − 2λ− 1

)2 eixλ,(3.26)

and

lim
λ→0

[
Resξ=0 g +Resξ=λ g

]
= −1

2
x2 + i

1

3
x.(3.27)

In particular, equations (3.25), (3.26), and (3.27) imply

∣∣Resξ=0 g
∣∣ ≲λ 1,

∣∣Resξ=λ g
∣∣ ≲λ |x|,

lim
λ→0

[
Resξ=0 g +Resξ=λ g

]
= O(x2)

(3.28)

Further, on our work in the proof of Lemma 3.3.3 also implies that

∂

∂λ

1

p
∈ L1

ξ(R± iπ).(3.29)

As such, after applying the contour shift demonstrated in Figure 2.5 to the contour

of integration for ∂
∂λ
G+

L , Lemma 3.3.4 is an immediate consequence of (3.28) and

(3.29).

Proposition 3.3.5. The difference quotient

Gh(x;λ) :=
G+

L(x;λ+ h)−G+
L(x;λ)

h

converges to ∂
∂λ
G+

L in 〈x〉s L1
x(R) for s > 3 and all real λ. If λ is real and non-zero,

then this convergence happens in 〈x〉s L1
x(R) for s > 2.

49



Proof. Direct computation yields the following results

Resξ=0

[
eixξ

(
1

pλ(ξ)

)
h

]
=

2e2λ
(
h e2(λ+h) + λ− e2h(λ+ h)

)
h
(
1 + e2λ(2λ− 1)

)(
1 + e2(λ+h)(2λ+2h−1)

)
Resξ=λ

[
eixξ

(
1

pλ(ξ)

)
h

]
= −1

h

e2λ − 1

e2λ − 2λ− 1
eixλ

Resξ=λ+h

[
eixξ

(
1

pλ(ξ)

)
h

]
=

1

h

e2(λ+h) − 1

e2(λ+h) − 2(λ+ h)− 1
eix(λ+h)

As such, through further direct computation, we find the limits

lim
h→0

Resξ=0

{(
eixξ

∂

∂λ

1

pλ(ξ)

)
− Resξ=0

[
eixξ

(
1

pλ(ξ)

)
h

]}
= 0,

and

lim
h→0

Resξ=λ


(
eixξ

∂

∂λ

1

pλ(ξ)

)
−

∑
k∈{λ,λ+h}

Resξ=k

[
eixξ

(
1

pλ(ξ)

)
h

] = 0

hold pointwise for each x ∈ R. Thus, since
(

1
pλ(ξ)

)
h
∈ L1

ξ(R± iπ) implies by Fourier

theory that
∫
R±iπ

eixξ
(

1
pλ(ξ)

)
h
dξ is continuous and bounded (in x ∈ R), we may com-

plete this proof by doing a contour shift and then applying Dominated Convergence

to
∫
R 〈x〉

−s Gh(x) dx.

50



CHAPTER 4. GREEN’S FUNCTIONS: ANALYTIC CONTINUATION

4.1 Introduction

In order to work with the integral equations (1.9) instead of the the linear spectral

problem (with prescribed asymptotics) (1.4), we need to know that the two are equiv-

alent in the sense that solutions to one solve the other and vise versa. As we explore

further in Chapter 5, doing so requires us to first understand the analytic properties

of the Green’s functions G+
⋆ (⋆ = L, or R), taken as convolution operators, where we

use G+
⋆ in accordance with Remark 2 as a shorthand to refer to both G+

L and G+
R.

Specifically, we need to show the existence of functions G⋆(z = x+ iy;λ) analytic in

the strip {z ∈ C : 0 < Im z < 2} with respective lower and upper boundary values

G+
⋆ and G−

⋆ . As we see in Section 4.2, showing that G+
⋆ taken as a convolution opera-

tor extends analytically (in x) to the strip {z ∈ C : 0 < Im z < 2} is straightforward.

However, proving the existence of an upper boundary value G−
⋆ defined along the line

Im z = 2 is much more delicate and is the primary focus of this chapter. Indeed, the

principle result of this chapter is summarized in the theorem below:

Theorem 4.1.1. The Green’s Functions G+
⋆ (⋆ = L, or R) extend to functions G⋆

analytic on the strip S1 = {z ∈ C : 0 < Im z < 2}. For f ∈ L1(R) ∩ Lp(R)

(1 < p ≤ 2), the limit

lim
y↗2

G+
⋆ ( · + iy) ∗ f = G−

⋆ ∗ f(4.1)

converges both pointwise almost everywhere (a.e.) and in Lp,1 for all real λ. If λ 6= 0,

then the limit (4.1) converges pointwise a.e. and in Lp. Moreover, G−
⋆ is a bounded
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convolution type operator on Lp given by

G−
L ∗ f(x) = C( · , 2) ∗ f(x) + Ef(x)− 1

2
f(x)(4.2a)

+ i α(λ)

∫ x

−∞
f(x′) dx′ + i β(λ) eiλx e−2λ

∫ x

−∞
eiλx

′
f(x′) dx′

=

[
C( · , 2) + RL( · + i2;λ)

]
︸ ︷︷ ︸

continuous operator

∗f(x) +
[
E − 1

2

]
︸ ︷︷ ︸

singular operator

f(x)

G−
R ∗ f(x) = C( · , 2) ∗ f(x) + Ef(x)− 1

2
f(x)(4.2b)

− i α(λ)

∫ x

−∞
f(x′) dx′ − i β(λ) eiλx e−2λ

∫ x

−∞
eiλx

′
f(x′) dx′

=

[
C( · , 2)− RR( · + i2;λ)

]
︸ ︷︷ ︸

continuous operator

∗f(x) +
[
E − 1

2

]
︸ ︷︷ ︸

singular operator

f(x)

where

Ef(x) :=
1

2πi
p. v.

∫
R

e−π|x−x′|

x− x′
f(x′) dx′,

the convolution operator C is defined as

C(x, y) :=
1

2π
e−π|x| e− sign(x) iπy

∫
R
eixξρ

(
ξ, y, sign(x)

)
dξ,(4.3)

for

ρ
(
ξ, y, sign(x);λ

)
:=



e−yξ

p(ξ;λ) + sign(x)iπ
, ξ > 0

1

ζ(λ)

(
ζ(λ)− ξ − sign(x) iπ

)
e(2−y)ξ

p(ξ;λ) + sign(x) iπ
, ξ < 0.

(4.4)

and

R⋆(x+ iy;λ) := i
[
α(λ) + β(λ)eiλxe−λy

]
χ⋆(4.5)

is the convolution operator defined in Remark 3 from Chapter 2.

Remark 13. As we see in Section 4.2, the effect of choosing the function space for f

as L1(R)∩Lp(R) for p ∈ (1, 2] is to ensure that ‖G⋆( · + iy)∗f‖L∞ ≲ ‖f‖L1∩Lp . That
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is, for fixed y ∈ (0, 2), the convolution operator G⋆( · + iy) is a bounded operator

from L1(R) ∩ Lp(R) into L∞(R).

Given its resemblance to the Hilbert transform, we often refer to E in this docu-

ment as the exponentially weighted Hilbert transform. Equation (4.2a) results from

decomposing the operator K from equations (4.7) and (4.8) into a convolution opera-

tor R which is well behaived under the limit y ↗ 2 plus a singular Cauchy transform

like operator. The later is resposible for the Ef(x)− 1
2
f(x) term in equation (4.2a).

In Chapter 5 as we show the equivalence of the linear spectral problem and the

integral equations (1.9), we repeatedly make use of the fact that G−
L can be decom-

posed as indicated in (4.2)—as a continuous operator plus a singular operator. More

specifically, if M is a function analytic on the complex S1 with a lower boundary

value M+ ∈ 〈 · 〉L∞(R) so that

M(x+ iy) =M0(x) +GL( · + iy) ∗
(
uM+

)
(x),

for some sufficiently reasonable forcing function M0 and some u ∈ X, then, as a

consequence of Theorem 4.1.1, we may decompose M as M(z) = Mc(z) + Ms(z),

where Mc(z) has the continuous upper boundary value M−
c (x) given by

M−
c (x) =M−

0 (x) +

[
C( · , 2) + RR( · + i2;λ)

]
∗
[
uM+

c

]
(x)

and Ms(z) has a “singular” upper boundary value M−
s (x) only in L2 sense which is

given by

M−
s (x) =

[
E − 1

2

] [
uM+

c

]
(x).

Of course, a function N analytic on S1 with an analogous property involving GR (i.e.

N = N0 + GR ∗ uN) will also have the same sort of decomposition based on (4.2b).

This property is the motivation for property (iv) in Definition 5.3.1.

As a final (informal) remark, throughout this chapter—and particularly in Sec-

tions 4.4 and 4.5—we repeatedly make use of results found in Loukas Grafakos’ book
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Classical Fourier Analysis ([3]). In the appendix titled Harmonic Analysis Results,

we provide statements of these results without proof.

4.2 Analytic Extension to the Strip

A natural candidate for the analytic extension of G⋆ to the open strip S1 = {z ∈

C : 0 < Im z < 2} is

(4.6) G⋆(x+ iy) :=
1

2π

∫
Γ⋆

eixξ
e−yξ

ξ − ζ (1− e−2ξ)
dξ, (⋆ = L, or R)

which is a convergent integral for 0 < y < 2 owing to the new factor e−yξ. A

straightforward argument with the dominated convergence theorem shows that G⋆(z)

is continuous on the open strip S1. It then follows from Morera’s theorem and (4.6)

that G⋆(z) is analytic in z.

Next we consider convolution of G⋆( · + iy) with L1 functions. Since the integral

(4.6) is absolutely convergent for y in compact subintervals of (0, 2), it follows that

for any f ∈ L1(R), G⋆( · + iy) ∗ f obeys the uniform in λ bound

‖G⋆( · + iy;λ) ∗ f‖⟨ · ⟩L∞ ≲ y ‖f‖L1

where the implied constant has the same uniformity. Another application of Morera’s

theorem shows that, for any f ∈ C∞
0 (R), the convolution G⋆( · + iy) ∗ f defines an

analytic function of z in S1. Finally let f ∈ L1(R) ∩ Lp(R) for some p ∈ (1, 2],

and let {fn}n∈N be a sequence from C∞
0 (R) converging to f in L1 ∩ Lp. Then

(G⋆( · + iy) ∗ fn) (x) converges uniformly to (G⋆( · + iy) ∗ f) (x) on compact subsets

of S1, so G⋆( · + iy) ∗ f is also analytic in S1.

It remains to show that G⋆ as a convolution operator has an upper boundary

value G−
⋆ and to obtain an effective formula for G−

⋆ . Using the “boxcar” contour in
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Figure 2.5 again we can compute

GL(x+ iy;λ) = K(x+ iy;λ) + i
[
α(λ) + β(λ)eiλxe−λy

]
χL(x)(4.7a)

= K(x+ iy;λ) + RL(x+ iy;λ)

GR(x+ iy;λ) = K(x+ iy;λ)− i
[
α(λ) + β(λ)eiλxe−λy

]
χR(x)(4.7b)

= K(x+ iy;λ)− RR(x+ iy;λ)

Here

(4.8) K(x+ iy;λ) :=
e−π|x| exp

(
− iπy sign(x)

)
2π

∫
R
eixξ

e−yξ

p(ξ;λ) + iπ sign(x)
dξ

is defined by a convergent integral for y ∈ (0, 2), so that K(x + iy) is actually a

bounded continuous function. We can now study boundary values for the convolution

of GL( · + iy) with a function on the line as y ↗ 2. Note that

K(x+ iy;λ) =
1

2π

∫
Σsign(x)

ei(x+iy)ξ

p(ξ)
dξ,

where Σsign(x) is the contour defined at the beginning of Subsection 2.4, as

i(x+ iy)
(
ξ + iπ sign(x)

)
=
(
ixξ − yξ

)
+
(
− πx sign(x)− iπy sign(x)

)
.

In our analysis of this limit, we first claim that for any f ∈ L1 ∩ Lp (1 < p ≤ 2),
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we can rewrite the convolutions G⋆ ∗ f as

(
GL( · + iy) ∗ f

)
(x) = iα(λ)

∫ x

−∞
f(x′) dx′(4.9a)

+ iβ(λ) eiλxe−λy

∫ x

−∞
e−iλx′

f(x′) dx′

+

∫
R
C(x− x′, y)f(x′) dx′

+
e−iπy

2πi

∫ x

−∞
e−π|x−x′| 1

(x− x′)− i(2− y)
f(x′) dx′

+
eiπy

2πi

∫ ∞

x

e−π|x−x′| 1

(x− x′)− i(2− y)
f(x′) dx′

(
GR( · + iy) ∗ f

)
(x) = iα(λ)

∫ x

−∞
f(x′) dx′(4.9b)

+ iβ(λ) eiλxe−λy

∫ x

−∞
e−iλx′

f(x′) dx′

+

∫
R
C(x− x′, y)f(x′) dx′

+
e−iπy

2πi

∫ x

−∞
e−π|x−x′| 1

(x− x′)− i(2− y)
f(x′) dx′

+
eiπy

2πi

∫ ∞

x

e−π|x−x′| 1

(x− x′)− i(2− y)
f(x′) dx′

where C is as defined in equations (4.3) and (4.4) above. Indeed, one can see directly

from (4.7)

(
GL( · + iy) ∗ f

)
(x) =

(
K( · + iy) ∗ f

)
(x) + RL( · + iy) ∗ f(

GR( · + iy) ∗ f
)
(x) =

(
K( · + iy) ∗ f

)
(x) + RR( · + iy) ∗ f.

Further, since

(
K( · + iy) ∗ f

)
(x) =

e−iπy

2πi

∫ x

−∞

(
e−π|x−x′|

∫
R
eixξ

e−yξ

p(ξ;λ) + iπ
dξ

)
f(x′) dx′

+
eiπy

2πi

∫ ∞

x

(
e−π|x−x′|

∫
R
eixξ

e−yξ

p(ξ;λ)− iπ
dξ

)
f(x′) dx′
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the identity

e−yξ

p(ξ, λ)± iπ
=

1

ζ(λ)
e(2−y)ξχR−(ξ) + ρ

(
ξ, y,±1;λ

)
,(4.10)

where χR− denotes the characteristic function of (−∞, 0), along with the Fourier

identity ∫
R
eixξ

1

ζ(λ)
e(2−y)ξχR−(ξ) dξ =

1

ix+ (2− y)

imply equations (4.9) hold.

To verify identity (4.10) note that

ζ =
(
− ζ + ζ e−2ξ + ζ)e2ξ

=
[
ξ − ζ

(
1− e−2ξ

)
± iπ − ξ ∓ iπ

]
e2ξ,

which implies

1

ζ
e(2−y)ξ +

1

ζ

(
ζ − ξ ∓ iπ

)
e(2−y)ξ

ξ − ζ(1− e2ξ)± iπ

=
1

ζ

{[
ξ − ζ

(
1− e−2ξ

)
± iπ − ξ ∓ iπ

]
e2ξ
} e−yξ

p(ξ;λ)± iπ

=
e−yξ

p(ξ;λ)± iπ
,

as claimed.

By introducing the notation

(Eεf) (x) :=
e−iπ(2−ε)

2πi

∫ x

−∞

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

+
eiπ(2−ε)

2πi

∫ ∞

x

e−π|x−x′|

(x− x′)− iε
f(x′) dx′,

equation (4.9) can be rewritten more simply as

(
GL( · + iy) ∗ f

)
(x) =

[
C( · , y) + RL( · + iy)

]
∗ f(x) + E(2−y)f(x)(4.11a) (

GR( · + iy) ∗ f
)
(x) =

[
C( · , y)− RR( · + iy)

]
∗ f(x) + E(2−y)f(x)(4.11b)
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Since the integrands of the residue terms

RL( · + iy) ∗ f(x) = iα

∫ x

−∞
f(x′) dx′ + iβ(λ) eλ(ix−y)

∫ x

−∞
e−iλx′

f(x′) dx′

RR( · + iy) ∗ f(x) = iα

∫ x

−∞
f(x′) dx′ + iβ(λ) eλ(ix−y)

∫ ∞

x

e−iλx′
f(x′) dx′

in (4.11) do not involve y, they are certainly well behaved under the limit y ↗ 2.

Further, the purpose of decomposing the convolution operator GL as shown in (4.11)

is to isolate the singularity that results under the limit y ↗ 2. Indeed, a cursory

inspection of the convolution operator C leads one to believe that it is well behaved

under this limit, which is something we discuss further in Section 4.3.

The E(2−y)f(x) terms in (4.11) captures the singular portion of K under the y ↗ 2

limit. Understanding the behavior of these terms under this limit involves much more

delicate analysis and is the subject of Sections 4.4 and 4.5.

Remark 14. That R⋆ grows linearly for λ = 0 is the single reason why we can only

guarantee the limit (4.1) converges as an Lp limit for functions with sufficient decay

(i.e. Lp,1) and not for all Lp functions when λ = 0.

4.3 The Continuous Limit

With a little work, it is straightforward to observe that ρ decays exponentially as

|ξ| → ∞. So, since ρ is also bounded, the exponential decay of ρ means that ρ

is certainly in L1(R) and thus qρ ∈ L∞(R). While the singularity of ρ at ξ = 0

means that it is very unlikely ρ is L1, the exponential factor e−π| · | in C( · , y), where

2π C(x, y) = eπ|x|e−i sign(x)π y ρ(x) does make C an L1 function for all y ∈ [0, 2]. As

such, proving the Lp convergence of C( · , y) ∗ f to C( · , 2) ∗ f as y ↗ 2 boils down to

using just two tools: [3, Theorem 1.2.10]1 and the Dominated Convergence Theorem.

Proving the pointwise (a.e.) convergence of this limit comprises using uniform (in y)
1See the appendix titled “Harmonic Analysis Results.”
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estimates on C and a density argument. We do all of this in the proof of the following

result.

Theorem 4.3.1. For f ∈ Lp(R) with 1 < p <∞, the limit

lim
y↗2

(
C( · , y) ∗ f)(x) =

(
C( · , 2) ∗ f)(x)(4.12)

holds both as a pointwise a.e. limit and as an Lp limit.

Proof. Recall that

C(x, y) :=
1

2π
e−π|x| e− sign(x) iπy

∫
R
eixξρ

(
ξ, y, sign(x)

)
dξ

=
1

2π
e−π|x| e− sign(x) iπyρ

(
x, y, sign(x)

)
and

ρ
(
ξ, y, sign(x);λ

)
:=



e−yξ

p(ξ;λ) + sign(x)iπ
, ξ > 0

1

λ

(
λ− ξ − sign(x) iπ

)
e(2−y)ξ

p(ξ;λ) + sign(x) iπ
, ξ < 0.

As such, for each x ∈ R,

2π|C(x, y)− C(x, 2)|(4.13)

≤ e−π|x|
∣∣∣e− sign(x) iπy − e− sign(x) 2iπ

∣∣∣ ∫
R

∣∣ρ(ξ, y, sign(x))∣∣ dξ
+ eπ|x|e− sign(x) 2iπ

∫
R

∣∣∣ρ(ξ, y, sign(x))− ρ
(
ξ, 2, sign(x)

)∣∣∣ dξ
Now

∣∣ρ(ξ, y, sign(x);λ)∣∣ =

(
p(ξ)2 + π2

)− 1
2 e−yξ, ξ > 0

1
λ

(
(λ−ξ)2+π2

p(ξ)2+π2

) 1
2
e(2−y)ξ, ξ < 0

Hence ∂
∂y
|r| < 0 for ξ > 0 and ∂

∂y
|r| > 0 for ξ < 0, which implies∣∣ρ(ξ, y, sign(x);λ)∣∣

≤
∣∣ρ(ξ, y = 1, sign(x);λ

)∣∣χR+ +
∣∣ρ(ξ, y = 2, sign(x);λ

)∣∣χR− ∈ L1(R),
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as
∣∣ρ(ξ, y = 1, sign(x);λ

)∣∣χR+ decays according to O
(
e−ξ
)

as ξ → +∞ and
∣∣ρ(ξ, y =

2, sign(x);λ
)∣∣χR− decays according to O

(
e−2ξ

)
as ξ → −∞. Thus,∫

R

∣∣ρ(ξ, y, sign(x))∣∣ dξ ≤ C

where C > 0 is some constant independent of y, and DCT =⇒∫
R

∣∣∣ρ(ξ, y, sign(x))− ρ
(
ξ, 2, sign(x)

)∣∣∣ dξ → 0

as y ↗ 2, which, by (4.13), means |C(x, y) − C(x, 2)| → 0 as y ↗ 2 for each fixed

x ∈ R. Moreover, since e−π|x|ρ(x) is dominated by an L1 function that is independent

of y, the Dominated Convergence Theorem further implies

‖C(x, y)− C(x, 2)‖L1 → 0

as y ↗ 2. Thus, by [3, Theorem 1.2.10]∥∥(C( · , y)− C( · , 2)
)
∗ f
∥∥
Lp ≤ ‖C( · , y)− C( · , 2)‖L1‖f‖Lp(4.14)

which implies the limit (4.12) holds as an Lp limit.

For pointwise limit, first take h ∈ L1(R) ∩ L∞(R). Then∣∣(C( · , y)− C( · , 2)
)
∗ h
∣∣ ≤ ‖h‖L∞‖C( · , y)− C( · , 2)‖L1 → 0,

by our previous work.

We use a density argument to finish this proof. For f ∈ Lp(R) with p ≥ 1, we

may approximate f by a bounded function g ∈ Lp(R) ∩ L∞(R) so that

‖f − g‖Lp < rp,

where 0 < r � 1 is some arbitrarily small number. By Chebyshev’s inequality and

[3, Theorem 1.2.10],

m
({
x ∈ R :

(
C( · , y)− C( · , 2)

)
∗ (f − g)(x) > r

})
(4.15)

≤ 1

rp
∥∥(C( · , y)− C( · , 2)

)
∗ (f − g)

∥∥
Lp

≤ ‖C( · , y)− C( · , 2)‖L1 ,
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where m( · ) denotes the Lebesgue measure on R. Given

∣∣(C( · , y)− C( · , 2)
)
∗ f(x)

∣∣
≤
∣∣(C( · , y)− C( · , 2)

)
∗ (f − g)(x)

∣∣+ ∣∣(C( · , y)− C( · , 2)
)
∗ g(x)

∣∣,
pointwise a.e. convergence follows, as (4.15) implies

(
C( · , y)− C( · , 2)

)
∗ (f − g)(x)

converges pointwise a.e. to zero.

4.4 Exponential Cauchy Transform

As mentioned at the end of Section 4.2, the crux of proving Theorem 4.1.1 involves

analyzing the behavior of the E(2−y)f(x) terms in (4.11), which we write here as

(Eεf) (x) :=
e−iπ(2−ε)

2πi

∫ x

−∞

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

+
eiπ(2−ε)

2πi

∫ ∞

x

e−π|x−x′|

(x− x′)− iε
f(x′) dx′,

for ε = 2 − y. The exponential coefficient in front of each integral in the above

definition of Eεf(x) add undesirable complexity to analyzing Eεf(x). As such, we

introduce the exponentially weighted Cauchy Transform Eε defined by

(Eεf) (x) :=
1

2πi

∫
R

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

=
1

2πi

∫
R
e−π|x−x′| (x− x′ + iε)

(x− x′)2 − ε2
f(x′) dx′

In Lemma 4.4.2, we establish that Eε and Eε share the same pointwise i.e. and Lp

limits (as ε ↘ 0). In the remainder of this section we therefore focus our attention

on the exponentially weighted Cauchy transform Eε. In particular, we prove the

following theorem:

Theorem 4.4.1. For f ∈ Lp(R) with 1 < p <∞, the limit

lim
ε↘0

Eεf(x) = Ef(x)− 1

2
f(x)

holds both as a pointwise a.e. limit and as an Lp limit.
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In the process of proving Theorem 4.4.1, we assume that the exponentially weighted

Hilbert transform E is a bounded linear operator on Lp(R)—a fact that we later prove

in Section 4.5. The boundedness of E in conjunction with Theorem 4.4, Theorem

4.3.1 and equation (4.2a) verify the existence and boundedness of the Lp operators

G−
⋆ .

Lemma 4.4.2. For f ∈ Lp(R), the limit

(
Eε − Eε

)
f(x) → 0(4.16)

holds pointwise a.e. and in Lp for p ≥ 1.

Proof. We begin by proving the Lp convergence. With that goal in mind, we rewrite

(Eε − Eε) (f)(x) as

2πi
(
Eε − Eε

)(
f(x)

)
=
(
1− e−iπ(2−ε)

) ∫ x

−∞

e−π|x−x′|

(x− x′)− iε
f(x′) dx′(4.17)

+
(
1− eiπ(2−ε)

) ∫ ∞

x

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

=

((
1− e−iπ(2−ε)

) e−π| · |

( · )− iε
χR+

)
∗ f

+

((
1− eiπ(2−ε)

) e−π| · |

( · )− iε
χR−

)
∗ f,

where χR± respectively denote the characteristic functions for the negative and posi-

tive real half-lines, and use Theorem 1.2.10 from [3], which states that the Lp operator

norm of a convolution operator is less than or equal to the L1 norm of its kernel. In-

deed, ∥∥∥∥ e−π| · |

( · )− iε
χR−

∥∥∥∥
L1(R)

≤
∫ −1

−∞
e−π|x| dx+

∫ 0

−1

1√
x2 + ε2

dx

≤ 1− e−π

π
+ log

[
x+

√
x2 + ε2

]0
−1

=
1− e−π

π
+ log(ε)− log

(√
1 + ε2 − 1

)
,
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from which it follows that∥∥∥∥(1− eiπ(2−ε)
) e−π| · |

( · )− iε
χR−

∥∥∥∥
L1(R)

→ 0, as ε→ 0.(4.18)

A similar argument shows that∥∥∥∥(1− e−iπ(2−ε)
) e−π| · |

( · )− iε
χR+

∥∥∥∥
L1(R)

→ 0, as ε→ 0.(4.19)

Thus, it follows from [3, Theorem 1.2.10] and Equations (4.18) and (4.19), (4.17) that∥∥(Eε − Eε
)
f
∥∥
Lp(R) ≤

1

2π
‖Eε − Eε‖L1(R) ‖f‖Lp(R) → 0

as ε → 0, where Eε − Eε on the right-hand side of the above inequality is used to

denote the kernel of the convolution operator Eε − Eε.

To prove pointwise a.e. convergence, we prove the result for bounded functions

and use Chebyshev’s inequality to extend by density. Let h ∈ Lp(R) ∩ L∞(R), for

p ≥ 1 Using Euler’s formula, it is easy to see that

2πi
(
Eε − Eε

)
h(x) =

[
1− cos

(
π(2− ε)

)] ∫
R

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

+ i sin
(
π(2− ε)

) ∫ x

−∞

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

− i sin
(
π(2− ε)

) ∫ ∞

x

e−π|x−x′|

(x− x′)− iε
h(x′) dx′.

Now, ∣∣∣∣sin (π(2− ε)
) ∫ x

−∞

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣
=

∣∣∣∣sin (π(2− ε)
)(∫ x−1

∞
+

∫ x

x−1

)
e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣
≤
∣∣sin (π(2− ε)

)∣∣(C + C

∫ x

x−1

dx′√
(x− x′)2 + ε2

)

≤
∣∣sin (π(2− ε)

)∣∣ (C + C log |ε|+ C log
∣∣∣−1 +

√
12 + ε2

∣∣∣)
and ∣∣∣∣sin (π(2− ε)

) ∫ ∞

x

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣
≤
∣∣sin (π(2− ε)

)∣∣ (C + C log
∣∣∣1 +√

12 + ε2
∣∣∣+ C log |ε|

)
,
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where the constants above depend only on the L∞ norm of h. It therefore follows

from an application of L’Hôpital’s rule that

lim
ε→0

∣∣∣∣[1− cos
(
π(2− ε)

)] ∫
R

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣ = 0

lim
ε→0

∣∣∣∣sin (π(2− ε)
) ∫ x

−∞

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣ = 0

lim
ε→0

∣∣∣∣sin (π(2− ε)
) ∫ ∞

x

e−π|x−x′|

(x− x′)− iε
h(x′) dx′

∣∣∣∣ = 0,

which implies

lim
ε→0

(
Eε − Eε)h(x) = 0,

for every h ∈ Lp(R) ∩ L∞(R) (p ≥ 1) and x ∈ R. The result therefore follows from

a density argument analogous to the one given at the end of the proof for Theorem

4.3.1.

The first piece to proving Theorem 4.4 is establishing that it holds for sufficiently

“nice” functions. We do this next in Lemma 4.4.3.

Lemma 4.4.3. Let f ∈ S (R) and use E to denote the operator given by

Ef(x) =
1

2πi
p. v.

∫
R

f(x′)e−π|x−x′|

x− x′
dx′,

where we use S (R) to denote the space of all Schwartz class functions on R. Then,

for each x ∈ R the following pointwise limit holds

lim
ε→0

Eεf(x) = Ef(x)− 1

2
f(x).

Proof. We follow Terence Tao’s proof of the Plemelj formulae [16]. As in Tao’s proof,

we use translation invariance to take x = 0 and reduce the proof to showing

lim
ε→0

1

2πi

∫
R

f(x′)e−π|x′|

−x′ − iε
dx′ +

1

2
f(0)− 1

2πi

∫
|x′|>ε

f(x′)e−π|x′|

−x′
dx′ = 0

By multiplying by 2πi and introducing the change of variables x′ = εw, we further

reduce the proof to showing

lim
ε→0

∫
R
f(εw)e−πε|w|

(
1

−w − i
−
χ|w|>1

−w

)
dw − πif(0) = 0,(4.20)
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where χ|w|>1 denotes the characteristic function on the set |w| > 1. As Tao notes,

direct computation yields∫
R

(
1

−w − i
−
χ|w|>1

−w

)
dw = πi.

Thus, (4.20) can be rewritten as

lim
ε→0

∫
R

(
f(εw)e−πε|w| + f(0)

)( 1

−w − i
−
χ|w|>1

−w

)
dw = 0.(4.21)

Since (4.21) holds by Dominated Convergence, the result follows.

Remark 15. E is a bounded operator on Lp(R) for 1 < p < ∞—which is something

we show in subsection 4.5 after discussing the pointwise and Lp convergence of Eε.

Taking our lead from Lemma 4.4.3, we decompose Eε as

(Eεf)(x) = (Eε ∗ f)(x)−
1

2
(Pε ∗ f)(x),(4.22)

where

Eε(y) :=
1

2πi

y

y2 + ε2
e−π|y|, and Pε(y) :=

1

π

ε

y2 + ε2
e−π|y|.

We define the truncated exponentially weighted Hilbert transform E(ε) by

(
E(ε)f

)
(x) :=

1

2πi

∫
|y|≥ε

e−π|y|

y
f(x− y) dy,

and note that by definition

(Ef)(x) := lim
ε↘0

(
E(ε)f

)
(x)

for f ∈ S (R).

Remark 16. Before continuing, it is worth taking a brief respite to consider our strat-

egy for the analysis which follows. In (4.22), we break Eε into its (effective) real and

imaginary parts Eε and Pε (which should both be thought of as convolution opera-

tors), respectively, and show they respectively converge both a.e. and in Lp to the
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exponentially waited Hilbert transform and the identity operator. Doing the former

involves first showing that the convolution operator Eε and the truncated exponen-

tially weighted Hilbert transform E(ε) (when applied to an Lp function) share the

same pointwise a.e. and Lp limits (see Theorem 4.4.5. We then show that pointwise

a.e. and Lp limits E(ε)f → Ef are actually well defined for general Lp functions f .

Since Pε is essentially the Poisson kernel with an exponential weight, it is the

easier of the two operators to understand. As such, we first turn our attention to

understanding its pointwise a.e. and Lp limits.

Theorem 4.4.4. The limit Pε ∗ f → f (ε ↘ 0) converges pointwise a.e. and in Lp

for f ∈ Lp(R), p ≥ 1.

Proof. Let Pε(y) = 1
π

ε
y2+ε2

denote the Poisson kernel. Since the family Pε is an

approximate identity, to prove Theorem 4.4.4 it suffices by [3, Theorem 1.2.19] to

consider the pointwise a.e. and Lp limits of
(
Pε − Pε

)
∗ f .]

Since,

Pε − Pε =
1

π

ε

y2 + ε2
(
1− e−π|y|)

is radially symmetric and non-negative, to compute the L1 norm of Pε−Pε, it suffices

to integrate Pε − Pε on the half-line (0,∞). Using integration by parts, we find∫ ∞

0

(Pε − Pε) dy =
1

π

(
1− e−π

)
arctan

(y
ε

)∣∣∣∣∞
0

−
∫ ∞

0

arctan
(y
ε

)
e−πy dy.

Hence, by Dominated Convergence,

lim
ε→0

∫ ∞

0

(Pε − Pε) dy = 0,

which implies ‖Pε − Pε‖L1 → 0 as ε↘ 0. As such, an argument analogous to the one

in the proof of Lemma 4.4.2 allows us to complete this proof.

Following the method employed in the proofs of [3, Theorem 4.1.12, Theorem

5.1.5] to study the Hilbert transform, we show that E(ε) converges a.e. and in Lp to
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E and Eε ∗ f − E(ε)(f) → 0 a.e. and in Lp. In doing so, we use [3, Theorem 1.2.21]

and [3, Corollary 2.1.19], whose statements can be found in the Harmonic Analysis

Results appendix.

Theorem 4.4.5. Let 1 < p <∞. For any f ∈ Lp(R), we have

Eε ∗ f − E(ε)(f) → 0

in Lp and almost everywhere as ε→ 0.

Proof. Let

Qε(y) = e−π|y| ε−1ψ(y/ε),

where

ψ(t) =



t

t2 + 1
− 1

t
, |t| ≥ 1

t

t2 + 1
, |t| < 11.

As noted in [3], the function ψ has integral zero with a radially decreasing majorant

Ψ given by

Ψ(t) =



t

t2 + 1
, |t| ≥ 1

1, |t| < 1.

Moreover, since the calculation

ε−1ψ
(y
ε

)
= ε−1

(
y
ε(

y
ε

)2
+ 12

− ε
χ|y|≥ε

y

)
=

y

y2 + ε2
−
χ|y|≥ε

y

implies

Eε ∗ f − E(ε)(f) =
1

2πi
Qε ∗ f,

the result follows from Theorem [3, Theorem 1.2.21] and Corollary [3, Corollary

2.1.19] (with c = 0).
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To prove the Lp and pointwise a.e. convergence of the convolution operator Eε to

the exponentially weighted Hilbert transform E, it remains to show that E(ε) con-

verges to E. We do so in Theorem 4.4.9. However, we must first establish the Cotlar

type inequality in Lemma 4.4.6 for the maximal operator E∗ :=
(
E(ε)

)∗ associated

with the with exponential Cauchy transform
{
E(ε)

}
, as we use this result in the proof

of Theorem 4.4.9.

Lemma 4.4.6 (Cotlar Type Inequality). Let E∗ given by

E∗f(x) :=
(
E(ε)

)∗
f(x) := sup

ε>0

{∣∣E(ε)f(x)
∣∣} .

denote the maximal operator associated with the operator family
{
E(ε)

}
. If f ∈ S (R),

then

E∗f(x) ≤MEf(x) + CMf(x),(4.23)

where C is independent of f and M denotes the Hardy-Littlewood maximal operator

defined by

Mf(x) = sup
r>0

{
1

B(0, r)

∫
B(0,r)

|f(x− x′)| dx′
}
.

In our proof of Lemma 4.4.6 we use the standard analysis result presented in

Proposition 4.4.7.

Proposition 4.4.7. Suppose f ∈ L1
loc(Rn), where L1

loc denotes the space of all locally

L1 integrable functions on R. If ϕ : Rn → R is nonnegative, radial, radially decreasing,

and integrable, then

sup
ε>0

{|ϕε ∗ f(x)|} ≤ ‖ϕ‖1Mf(x),(4.24)

where ϕε(x) :=
1
ε
ϕ
(
x
ε

)
.

Proof of Proposition 4.4.7. We first show (4.24) holds for simple functions, then ex-

tend (4.24) to arbitrary functions ϕ satisfying the the hypotheses of Proposition 4.4.7

by density using the Monotone Convergence Theorem.
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We are now ready to prove Lemma 4.4.6:

Proof of Lemma 4.4.6. It suffices to show

|E(ε)f(x)| ≤MEf(x) + CMf(x)

for every ε > 0. Choose ϕ ∈ S (R) satisfying the hypotheses of Proposition 4.4.7 so

that ‖ϕ‖1 = 1 and suppϕ =
(
−1

2
, 1
2

)
. We decompose χ{| · |>ε}

e−π| · |

( · ) (the integrand of

the truncated exponentially weighted Hilbert transform) as

χ{| · |>ε}
e−π| · |

( · )
= Eϕε +

(
e−π| · |

( · )
χ{| · |>ε} − Eϕε

)
.(4.25)

Thus, by taking the convolution of both sides of (4.25) with f , we find

|E(ε)f(x)| ≤ 1

2π
|(Eϕε) ∗ f(x)|+

1

2π

∣∣∣∣e−π| · |

( · )
χ{| · |>ε} − Eϕε

∣∣∣∣ ∗ |f |(x).(4.26)

Note that by using two applications of Fubini’s Theorem in conjunction with two

applications of Dominated Convergence, one can show (Eϕε) ∗ f(x) = ϕε ∗ (Ef)(x).

As such, we therefore see from Proposition 4.4.7 that first term on the right-hand

side of (4.26) satisfies
1

2π
|(Eϕε) ∗ f(x)| ≤MEf(x).

As we consider the second term in the right-hand side of (4.26), we initially take

ε = 1 and examine the case | · | < 1 and | · | ≥ 1 separately. Assume |w| ≥ 1 and

observe that ∣∣∣∣e−π|w|

w
− Eϕ(w)

∣∣∣∣ =
∣∣∣∣∣e−π|w|

w
−
∫ 1

2

− 1
2

ϕ(x′)
e−π|w−x′|

w − x′
dx′

∣∣∣∣∣
≤
∫ 1

2

− 1
2

ϕ(x′)

∣∣∣∣e−π|w|

w
− e−π|w−x′|

w − x′

∣∣∣∣ dx′.
Since x′ ∈ suppϕ only when |x′| ≤ 1

2
, we have∣∣∣e−π|w|(w − x′)− e−π|w−x′|(w)

∣∣∣ ≤ 2|w|g(w) + e−π|w||x′|,
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where

g(w) =


e−π|w+ 1

2 |, w ≥ 0

e−π|w− 1
2 |, w < 0.

Hence ∣∣∣∣e−π|w|

w
− e−π|w−x′|

w − x′

∣∣∣∣ ≤ 2|w| g(w) + e−π|w||x′|
|w| |w − x′|

.

Further,
|w|

|w − x′|
≤ |w|∣∣w − 1

2
sign(w)

∣∣ ≤ 2,

which implies
1

|w||w − x′|
≤ 2

w2
,

and ∣∣∣∣e−π|w|

w
− e−π|w−x′|

w − x′

∣∣∣∣ ≤ (4|w|g(w)
w2

+
2e−π|w||x′|

w2

)
.

As such,∣∣∣∣ e−π|w|

w − iε
− Eϕε(w)

∣∣∣∣ ≤ ∫ 1
2

− 1
2

ϕ(x′)

(
4|w|g(w)

w2
+

2e−π|w||x′|
w2

)
dx′ ≤ 4|w|g(u) + e−π|w|

w2
≤ C

w2
,

for |w| ≥ 1.

On the other hand, for |w| < 1,∣∣∣∣e−π|w|

w
χ|w|>1 − Eϕ(w)

∣∣∣∣ = ∣∣− Eϕ(w)
∣∣

=

∣∣∣∣∣p. v.
∫ 1

2

− 1
2

ϕ(w − x′)

x′
e−π|x′| dx′

∣∣∣∣∣
=

∣∣∣∣∣p. v.
∫ 1

2

− 1
2

ϕ(w − x′)− ϕ(w)

x′
e−π|x′| dx′

∣∣∣∣∣
≤ C‖ϕ′‖L∞

= C,

as

p. v.

∫ 1
2

− 1
2

ϕ(w)

x′
e−π|x′| dx = 0.
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Combining the two cases, it follows from Proposition 4.4.7∣∣∣∣e−π| · |

( · )
− Eϕ

∣∣∣∣ ∗ |f |(x) ≤ CMf(x).(4.27)

Finally, to verify that (4.27) holds for arbitrary ε (0 < ε < 1), we use a dilation

argument. Define h and g by

h(w, ε) :=

∣∣∣∣e−π|w|

w
χ|w|>ε − Eϕε(w)

∣∣∣∣ , and g(w) :=

∣∣∣∣e−π|w|

w

∣∣∣∣ χ|w|>1 + |Eϕ(w)| .

Then

gε(w) =
1

ε
g
(w
ε

)
=

∣∣∣∣e−π|w/ε|

w

∣∣∣∣ χ|w|>ε + |Eϕε(w)| .

For f ∈ S (R) and f ε(x) := f(εx),

g ∗ f ε
(
ε−1x

)
=

∫
R
f(εy) g

(
ε−1x− y

)
dy

=

∫
R
f(y)ε−1g

(
ε−1x− ε−1y

)
dy

= gε ∗ f(x),

and

Mf ε(x) = sup
1

|B(0, r)|

∫
B(0,r)

|f(εx− εy)| dy

= sup
1

|B(0, εr)|

∫
B(0,εr)

|f(εx− εy)| dy

=Mf(εx).

Hence, by (4.27)

h( · , ε) ∗ |f |(x) ≤ gε ∗ |f |(x) = g ∗ |f ε|(ε−1x) ≤ CMf ε(ε−1x) = CMf(x),

from which the result follows.

One final tool we need to prove Theorem 4.4.9 is Theorem 2.1.14 from [3], which

we present without proof below in Theorem 4.4.8
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Theorem 4.4.8 (Theorem 2.1.14 from [3]). Let (X,µ) and (Y, ν) be measure spaces

and let 0 < p, q < ∞. Suppose for every ε > 0, Tε is a linear operator defined

on LP (X, ν) with values in the set of measurable functions on Y , and D is a dense

subspace of Lp(X). Define a sublinear operator

T ∗(f)(x) := sup
ε>0

|Tε(f)(x)| .

Suppose that for some B > 0 and all f ∈ Lp(X) we have

‖T ∗(f)‖Lq,∞ ≤ B‖f‖Lp

and that for all f ∈ D

lim
ε→0

Tε(f) = T (f)(4.28)

exists and is finite ν-a.e. (and defines a linear operator on D). Then for all functions

f in Lp(X) the limit (4.28) exists and is finite ν-a.e., and defines a linear operator

T on Lp(X) (uniquely extending T defined on D) that satisfies

‖T (f)‖Lq,∞ ≤ B‖f‖Lp .

Theorem 4.4.9. For all p (1 < p < ∞) there exists a constant Cp depending only

on p such that

‖E∗f‖Lp ≤ Cp‖f‖Lp , ∀f ∈ Lp(R).(4.29)

Moreover, for all f ∈ Lp(R), E(ε)f converges to Ef pointwise a.e. and in Lp.

Proof. Inequality (4.29) is an immediate consequence of Lemma 4.4.6, Theorem 4.5.4

from Subsection 4.5, of the fact that convergence holds for Schwartz class functions,

and of Theorem 4.4.8. The Lp convergences follows from the almost every point-

wise convergence and the dominated convergence theorem combined with the Cotlar

inequality (4.23).
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4.5 Boundedness of the Exponentially Weighted Hilbert Transform

Proving that the exponentially weighted Hilbert transform E is bounded on Lp(R)

for 1 < p <∞ is a multistep process in which we first compute the Fourier multiplier

of E (Lemma 4.5.1), use the Fourier multiplier of E to show that E is strong type

(2, 2) (Theorem 4.5.2), prove E is weak type (1, 1) (Theorem 4.5.3), and then use

these results to ultimately prove E is strong type (p, p) for p > 1 (Theorem 4.5.4).

Note that an operator is said to be weak type (p, q) if it is a bounded operator from

Lp to weak-Lq (i.e. Lq,∞) and strong type (p, q) if it is a bounded operator from Lp

to Lq. For a defintion of the space Lp,∞, please see the “Harmonic Analysis Results”

appendix.

Lemma 4.5.1. The Exponentially weighted Hilbert transform E has Fourier multi-

plier

mE(ξ) =
1

π
arctan(ξ/π).

Proof. In order to compute the Fourier multiplier of E, it suffices to compute the

Fourier transform of the function x−1e−π|x|, which is 2πi times the convolution kernel

of E. Letting θ denote the Heaviside function, we write x−1e−π|x| as

eπ|x|

x
=
eπ x

x
θ(−x) + e−π x

x
θ(x),(4.30)

and compute the Fourier transform of two terms on the right-hand side of (4.30)

separately. By further splitting eπ x

x
θ(−x) into even and odd parts, we obtain

F
(
eπ( · )

( · )
θ(− · )

)
= F (c)

(
eπ( · )θ(− · )− e−π( · )θ( · )

2( · )

)
(ξ)(4.31)

+ iF (s)

(
eπ( · )θ(− · ) + e−π( · )θ( · )

2( · )

)
(ξ),
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where F (c) and F (s) respectively denote the Fourier cosine and Fourier sine transfor-

mations. Direct computation yields

F (c)

(
eπ( · )θ(− · )− e−π( · )θ( · )

2( · )

)
(ξ) =

1

π

∫ ∞

0

eπ xθ(−x)− e−π xθ(x)

2x
cos(ξx) dx

=
1

2

(
log(ξ2 + π2) + 2γ

)
and

F (s)

(
eπ( · )θ(− · ) + e−π( · )θ( · )

2( · )

)
(ξ) =

1

2π

∫ ∞

0

eπ xθ(−x) + e−π xθ(x)

2x
sin(ξx) dx

=
1

2

(
arctan(ξ/π)

)
,

where γ denotes the Euler-Mascheroni constant, which implies

F
(
eπ( · )

( · )
θ(− · )

)
(ξ) = γ +

1

2
log(ξ2 + π2) + i arctan(ξ/π).(4.32)

A similar computation also shows

F
(
e−π( · )

( · )
θ( · )

)
(ξ) = −γ − 1

2
log(ξ2 + π2) + i arctan(ξ/π),(4.33)

from which the result follows.

Theorem 4.5.2. E is strong type (2, 2).

Proof. This result is an immediate consequence of Lemma 4.5.1, Plancherel’s Theo-

rem, and the density of S (R) in L2(R).

Theorem 4.5.3. E is weak type (1, 1). That is, E is a bounded operator from L1(R)

into L1,∞(R), where L1,∞ denotes weak L1.

Proof. Fix Λ > 0, let f be Schwartz class, and assume without loss of generality

that f ∈ S (R) is real-valued and nonnegative (otherwise, we can decompose f in

the appropriate pieces). Let {Ij} be the sequence sequence of dyadic intervals in the
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Calderón-Zygmund decomposition of f at height Λ. For Ω :=
⋃

j Ij, define

g(x) :=


f(x), x /∈ Ω

1

|Ij|

∫
Ij

f, x ∈ Ij

, and b(x) :=
∑
j

bj(x),(4.34)

where

bj(x) =

(
f(x)− 1

|Ij|

∫
Ij

f

)
χIj(x).

Note that f = g + b and

g(x) ≤ 2Λ ∀x ∈ R.(4.35)

To show that Eg and Eb are well defined, it suffices to bound dEg(Λ) and dEb(Λ) in

terms of only Λ and ‖f‖1, where the notation

dh(Λ) :=
∣∣{x ∈ R : |f(x)| > Λ

}∣∣
is used to denote the distributional function of a function h. Using Chebyshev’s

inequality, the L2 boundedness of E found in Theorem 4.5.3 and equations (4.35)

and (4.34), we find

dEg(Λ) ≤
1

Λ2

∫
R
Eg(x)2 dx(4.36)

≤ C

Λ2

∫
R
g(x)2 dx

≤ C

Λ2

∫
R
g(x) dx

=
C

Λ2

(∫
Ω

g +

∫
R\Ω

g

)
≤ C

Λ
‖f‖1.

On the other hand, for Eb, let Ω∗ =
⋃

j 2Ij. Using the Calderón-Zygmund Cov-

ering Lemma and Chebyshev’s inequality we find

dEb(Λ) ≤ |Ω∗|+ |{x /∈ Ω∗ : |Eb(x)| > Λ}| ≤ 2

Λ
‖f‖1 +

1

Λ

∫
R\Ω∗

|Eb(x)| dx.(4.37)
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So, to show that Eb is well defined, we need to bound the integral on the right hand

side of the above inequality by ‖f‖1. To that end, note that if x /∈ Ω∗, then for each

j, x /∈ 2Ij and

Ebj(x) =
1

2π
p.v.

∫
R

e−π|x−x′|

x− x′
bj(x

′) dx′ =
1

2π

∫
Ij

e−π|x−x′|

x− x′
bj(x

′) dx <∞,

as supp bj ⊆ Ij. Since E is a tempered distribution (Lemma 4.5.1) and f ∈ S (R)

means that Ef ∈ L2(R) and, hence
∑

j Ebj converges to Eb in the L2 norm, it follows

that

|Eb(x)| ≤
∑
j

|Ebj(x)| a.e.

As such, proving Eb is well defined reduces to showing∫
R\Ω∗

∑
j

|Ebj(x)| dx ≤ C‖f‖1.(4.38)

If we let cj denote the center of Ij, then, for x /∈ Ω∗, since bj has zero average∣∣∣∣∣
∫
Ij

e−π|x−x′|

x− x′
bj(x

′) dx′

∣∣∣∣∣ =
∣∣∣∣∣
∫
Ij

e−π|x−x′|
(
bj(x

′)

x− x′
− bj(x

′)

x− cj

)
dx′

∣∣∣∣∣
≤
∫
Ij

e−π|x−x′|
∣∣∣∣ bj(x′)(x′ − cj)

(x− x′)(x− cj)

∣∣∣∣ dx′
≤
∫
Ij

|bj(x′)|
|Ij|

(x− cj)2
dx′

as |x− x′| ≥ |x− cj|/2 and |x′ − cj| ≤ |Ij|/2. Moreover,∫
R\Ω∗

|Ij|
(x− cj)2

dx′ ≤
∫
R\Ij

|Ij|
(x− cj)2

dx′ ≤ 4,(4.39)

and so, by Fubini’s Theorem,∑
j

∫
R\Ω∗

|Ebj(x)| dx ≤ 1

2π

∑
j

∫
R\Ω∗

∣∣∣∣∣
∫
Ij

e−π|x−x′| bj(x
′)

x− x′
dx′

∣∣∣∣∣ dx(4.40)

≤ 1

2π

∑
j

∫
R\Ω∗

∫
Ij

|bj(x′)|
|Ij|

(x− cj)2
dx′ dx

≤ 2

π

∑
j

∫
Ij

|bj(x′)| dx′

≤ 4

π
‖f‖1.
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Putting everything together, we find

dEf (Λ) ≤ dEg

(
Λ

2

)
+ dEb

(
Λ

2

)
≤ C

Λ
‖f‖1,(4.41)

where C > 0 is independent of Λ and f . Since f is Schwartz class, we can therefore

extend the inequality (4.41) to L1 via density to conclude that E is weak (1,1).

Theorem 4.5.4. The operator E is strong type (p, p) for p > 1.

Proof. Theorems 4.5.2 and 4.5.3 in conjunction with the Marcinkiewicz Interpolation

Theorem [3, Theorem 1.3.2] immediately imply that E is strong type (p, p) for p ∈

(1, 2]. As such, it remains only to show that E is strong type (p, p) for p > 2.

Let E ′ denote the adjoint of E. By density, we need only consider f ∈ S (R). Fix

p > 2 and let q denote its Hölder Conjugate. Note that the map

g 7→
∫
R
Efḡ =: 〈Ef, g〉

is a linear functional on Lq with norm ‖Ef‖p. As such, we see by Hölder’s inequality

that

‖Ef‖p = sup
∥g∥q=1

|〈Ef, g〉|

= sup
∥g∥q=1

|〈f, E ′g〉|

≤ ‖f‖p‖E‖q

≤ C‖f‖p,

as p > 2 implies 1 < q < 2, which means E is strong type (q, q), and Theorem 5 from

Chapter VII.3 of [20] implies ‖E‖q = ‖E ′‖q.

77



CHAPTER 5. JOST SOLUTIONS & THE DIRECT SCATTERING

MAP

5.1 Introduction

Following our deep dive into the properties of the Green’s functions, let us take a

brief respite to see where we are in the process of understanding the direct map for

the Intermediate Long Wave equation Inverse Scattering Transform. In Section 1.3

we introduced the notion of a Jost Solution, which we now repeat for reference:

Definition 5.1.1 (Jost solutions). Recall the linear spectral problem

Lδ(Ψ) :=
1

i

∂

∂x
Ψ+ − ζ

(
Ψ+ −Ψ−) = uΨ+,(5.1)

The Jost solutions M1, Me, N1, Ne are solutions to the linear spectral problem (5.1)

whose lower boundary values M+
1 , M+

e , N+
1 , N+

e as defined in (1.6) obey the following

asymptotic conditions

lim
x→−∞

〈x〉
(
M+

1 (x;λ, δ)− 1
)
= lim

x→∞
〈x〉
(
N+

1 (x;λ, δ)− 1
)
= 0(5.2a)

lim
x→−∞

〈x〉
(
M+

e (x;λ, δ)− eiλx
)
= lim

x→∞
〈x〉
(
N+

e (x;λ, δ)− eiλx
)
= 0(5.2b)

.

Additionally, we require the upper boundary values M−
( · ), N

−
( · ) (where ( · ) rep-

resents either the subscript 1 or e) of M( · ), N( · ) to have a decomposition

M−
1 − 1 =M

(1)
1 +M

(2)
1 and N−

1 − 1 = N
(1)
1 +N

(2)
1

M−
e − eiλx e−2δλ =M (1)

e +M (2)
e and N−

e − eiλx e−2δλ = N (1)
e +N (2)

e

satisfying

〈x〉1+υ
∣∣∣M (1)

( · )(x)
∣∣∣ ≲ 1 (for x� −1), 〈x〉1+υ

∣∣∣N (1)
( · )(x)

∣∣∣ ≲ 1 (for x� 1),
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and

〈 · 〉τ M (2)
( · ), 〈 · 〉τ N (2)

( · ) ∈ L2(R)

for any υ ∈
(
0, 1

2

)
and τ ∈ [0, 1).

The direct scattering map D maps u to the reflection coefficient r(λ) := b(λ)/a(λ)

where a and b are determined by the following formulas involving the boundary value

M+
1 of the Jost solution M1

a(λ) = 1 + iα(λ)

∫
R
u(x)M+

1 (x;λ, δ, u) dx(5.3a)

b(λ) = iβ(λ)

∫
R
e−iλx u(x)M+

1 (x;λ, δ, u) dx,(5.3b)

where we have written the Jost solutions as functions of u in order to explicitly

highlight the dependence of the Jost solutions on the eigenfunction u. The goal of

this chapter is to both prove that D is well-defined and Lipschitz continuous for

|λ| > 1.

As we see from (5.3), proving that D is well defined requires the Jost solutions to

exist and be unique. Further, in order to prove that D is Lipschitz continuous, we

need to establish that the four maps from u to each of the four Jost solutions M1,

Me, N1, and Ne are themselves Lipschitz as maps from BX(0, c0) to 〈 · 〉L∞(R). As is

common practice in the inverse scattering world, to prove these desired results we seek

to reformulate (5.1) with asymptotic conditions (5.2) as a set of integral equations

that are easier to analyze. This approach is relevant in our case given the limited

theory about partial differential equations involving functions analytic in a complex

strip and the functions’ lower and upper boundary values along the corresponding

boundary values of the strip.

Following our analysis of GL and GR in Chapters 2 and 4 we are almost now in a

position to prove (under the right hypotheses) the equivalence of the Jost solutions
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and solutions to the following integral equationsM+
1 (x; ζ, δ)

M+
e (x; ζ, δ)

 =

 1

eiλx

+

∫
R
GL(x− x′; ζ, δ)u(x′)

M+
1 (x

′; ζ, δ)

M+
e (x

′; ζ, δ)

 dx′(5.4a)

N+
1 (x; ζ, δ)

N+
e (x; ζ, δ)

 =

 1

eiλx

+

∫
R
GR(x− x′; ζ, δ)u(x′)

N+
1 (x

′; ζ, λ)

N+
e (x

′; ζ, λ)

 dx′.(5.4b)

In Section 5.3 we prove this equivalence. We begin by presenting the framework

we use to prove this equivalence, followed by proving in Subsection 5.3.1 that Jost

solutions solve the corresponding integral equations (5.4). We prove solutions to (5.4)

are Jost solutions in the following subsection, Section 5.3.2. However, for reasons that

are made obvious in Section 5.3, prior to proving the equivalence of Jost solutions

and solutions to (5.4), we do need several results about both the existence of solutions

of solutions to (5.4) and the continuity of maps from u to (5.4) solutions. For this

reason, we begin this chapter by studying the (5.4) solutions in Section 5.2, and

note that because we prove in Section 5.3 the equivalence of Jost solutions and the

solutions to the integral equations (5.4), the results proven in Section 5.2 about the

existence and uniqueness (5.4) solutions applies to Jost solutions.

The final section of this chapter, Section 5.4, is the rasion d’être of this disserta-

tion, in that after 102 pages of diligent mathematical exploration, we arrive at our

study of the ILW direct scattering map. We begin Section 5.4 by verifying the so-

called “scattering equations” which are instrumental in the formulation of the ILW

inverse scattering map. We then prove that as a map from BX(0, c0) to L∞
λ (R) the

direct scattering map D is well-defined (Theorem 5.4.3), where BX(0, c0) in the space

X of radius c0 and c0 is chosen according to our work in Section 5.2 to ensure the

existence of the Jost solutions. In the remainder of Section 5.4, we turn our atten-

tion towards understanding the Lipschitz continuity properties of D . Specifically, we

prove that as a map from BX(0, c0) to L∞
λ

(
(−∞, k] ∩ [k,∞)

)
, the direct scattering
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map D is Lipschitz continous for all k > 0 (Theorem 5.4.4). As an almost immediate

consequence of our proof of Theorem 5.4.4, we also prove Corollary 5.4.5, which holds

that for every u ∈ BX(0, c0) with the property that∫
R
uM+

1 (x;λ = 0) dx 6= 0,

there is a neighborhood N (u) in BX(0, c0) about u for which the map D : N (u) →

L∞
λ (R) is Lipschitz continuous.

While we have not yet found a proof that D is Lipschitz continuous uniformly in

the parameter λ for all real λ (which is necessary as the scattering data are functions

of λ), we do discuss the regimes under which we are currently able to prove that D

is Lipschitz continuous.

A final remark as we set off on the ultimate leg of our mathematical peregrination

within this dissertation: given the δ-dilation property satisfied by both GL and GR,

throughout the remainder of this Chapter, we again take δ = 1 noting that the more

general case of δ > 0 arbitrary follows from this dilation property and the results

contained within this chapter.

5.2 Existence and Continuity of Jost Solutions

Proposition 5.2.1 (Existence and Uniqueness of Jost Solutions). There is a c0 > 0

so that for real valued measurable functions u ∈ X with ‖u‖X < c0 and any λ ∈ R,

integral equations (5.4) are uniquely solvable in 〈 · 〉L∞(R). If λ 6= 0 these solutions

are essentially bounded (i.e. L∞).

Proof. Consider the operators T⋆,λ,u (⋆ = L, or R) given by

(
T⋆,λ,uf

)
(x) :=

∫
R
G+

⋆ (x− x′;λ)u(x′)f(x′) dx′.
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Unless necessary to avoid confusion, we write T⋆ instead of T⋆,λ,u. The integral equa-

tions (5.4) can be written in terms of T⋆ as 1

eixλ

 = (I − TL)

M+
1

M+
e

(5.5a)

 1

eixλ

 = (I − TR)

N+
1

N+
e

(5.5b)

As such, our task is to invert the operators (I − T⋆) on the appropriate spaces,

which we do via Neumann series. Indeed, Proposition 3.2.2 implies that we may

choose c0 > 0 independently of λ ∈ R so that

‖T⋆‖⟨ · ⟩L∞ý <
1

2
(5.6)

whenever ‖u‖X < c0. Since the Jost solutions are the same as the solutions to (5.5),

estimate (5.6) allows us to conclude that the Jost solutions exist and are unique for

u ∈ BX(0, c0) := {u ∈ X : ‖u‖X < c0}.

Further, an analogous argument involving Proposition 3.2.3 also allows us to con-

clude that the Jost solutions are essentially bounded for each fixed real λ 6= 0.

Lemma 5.2.2 (Continuity in u). Let c0 > 0 be the same as in Proposition 5.2.1.

Denote by M1(x;λ, u), . . . , Ne(x;λ, u) the Jost solutions M1, . . . , Ne corresponding to

the potential u. Then the maps

u 7→M+
1 ( · ;λ, u), u 7→M+

e ( · ;λ, u),

u 7→ N+
1 ( · ;λ, u), u 7→ N+

e ( · ;λ, u),

from the open ball BX(0, c0) into 〈 · 〉L∞(R) are Lipschitz continuous with Lipschitz

constant uniform in λ ∈ R.

Proof. We prove the Lipschitz continuity for the map u 7→M+
1 and note that analo-

gous arguments are sufficient to prove continuity for the remaining maps.
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By the second resolvent formula,

M+
1 (x;λ, u1)−M+

1 (x;λ, u2) =
[
(1− TL,λ,u1)

−1 − (1− TL,λ,u2)
−1
]
1

(5.7)

= (1− TL,λ,u1)
−1G+

L( · ;λ) ∗
[
(u1 − u2)M1( · ;λ, u2)

]
Thus, we see from (3.10) that

∥∥M+
1 (x;λ, u1)−M+

1 (x;λ, u2)
∥∥
⟨ · ⟩L∞

≤
∥∥ (1− TL,λ,u1)

−1
∥∥
⟨ · ⟩L∞ý

‖TL,λ,u1−u2‖⟨ · ⟩L∞ý
‖M1( · ;λ, u2)‖

≲ ‖u1 − u2‖X ,(5.8)

as

∥∥ (1− TL,λ,u1)
−1
∥∥
⟨ · ⟩L∞ý

≤
∑
n≥0

1

2n
= 2

by Neumann series expansion. For λ 6= 0, the estimate

∥∥M+
1 (x;λ, u1)−M+

1 (x;λ, u2)
∥∥
L∞ ≲ ‖u1 − u2‖X

also follows from (5.7).

Proposition 5.2.3. Let c0 > 0 be the same as in Proposition 5.2.1. Then the maps

u 7→ uM+
1 ( · ;λ, u), u 7→ uM+

e ( · ;λ, u),

u 7→ uN+
1 ( · ;λ, u), u 7→ uN+

e ( · ;λ, u),

from the open ball BX(0, c0) into L1,1(R) are Lipschitz continuous with Lipschitz

constant uniform in λ ∈ R.

Proof. As usual, we prove Proposition 5.2.3 for the map u 7→ uM+
1 and note similar

arguments prove that the remaining maps are Lipschitz.

First note that uM+
1 ∈ L1,1(R) as

‖uM+
1 ‖L1,1 =

∥∥ (〈 · 〉−1M+
1

)
(〈 · 〉2 u)

∥∥
L1 ≤ ‖M+

1 ‖⟨ · ⟩L∞‖u‖X .
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Choose any u1, u2 ∈ BX(0, c0). Since the map BX(0, c0) 3 u 7→ M+
1 ∈ 〈 · 〉L∞(R) is

Lipschitz (uniformly in λ) by Lemma 5.2.2,∥∥M+
1 ( · ;λ, u1)

∥∥
⟨ · ⟩L∞ =

∥∥M+
1 ( · ;λ, u1)− 0

∥∥
⟨ · ⟩L∞ ≲ ‖u1 − 0‖X < c0

where the implied constant is the Lipschitz constant for the map u 7→M+
1 . We then

have ∥∥u1M1(·;λ, u1)− u2M1(·;λ, u2)
∥∥
L1,1

=

∫
R
〈x〉
∣∣u1(x)M+

1 (x;λ, u1)− u2(x)M
+
1 (x;λ, u1)

∣∣ dx
+

∫
R
〈x〉
∣∣u2(x)M+

1 (x;λ, u1)− u2(x)M
+
1 (x;λ, u2)

∣∣ dx
≤
∫
R

(
〈x〉−1

∣∣M+
1 (x;λ, u1)

∣∣) ( 〈x〉2 ∣∣u1(x)− u2(x)
∣∣) dx

+

∫
R

(
〈x〉−1

∣∣M+
1 (x;λ, u1)−M+

1 (x;λ, u2)
∣∣) ( 〈x〉2 u2(x)) dx

≤ ‖M+
1 ( · ;λ, u1)‖⟨ · ⟩L∞

∥∥(u1 − u2) 〈 · 〉2
∥∥
L1

+
∥∥u2 〈 · 〉2∥∥L1 ‖M+

1 ( · ;λ, u1)−M+
1 ( · ;λ, u2)‖⟨ · ⟩L∞

≲ ‖u1 − u2‖X ,

where the implied constant is independent of λ and u.

Remark 17. Note that since L1,1(R) ⊂ L1(R), Proposition 5.2.3 also implies that the

maps involved are also Lipschitz continuous, when considered as maps from BX(0, c0)

into L1(R).

Lemma 5.2.4. For fixed x ∈ R, the Jost solution boundary value M+
1 is continuous

in λ.

Proof. Define

Mh :=M+
1 ( · ;λ+ h)−M+

1 ( · ;λ),

and denote by Tλ the convolution operator given by

Tλf := G+
L( · ;λ) ∗ (u f).
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To show M+
1 is continuous in λ, it suffices to show ‖Mh‖⟨x⟩L∞

x
→ 0 as h→ 0. Recalling

that M(λ) = 1 + TλM(λ), we see that

Mh = Tλ+hM(λ+ h)− TλM(λ)

=
(
Tλ+h − Tλ

)
M(λ+ h)− TλMh

which implies that

Mh =
(
1− Tλ

)−1(
Tλ+h − Tλ

)
M(λ+ h),(5.9)

as I − Tλ is invertible on 〈 · 〉L∞(R). Since

∥∥(Tλ+h − Tλ
)
M(λ+ h)

∥∥
⟨x⟩L∞

x
≤ ‖Tλ+h − Tλ‖⟨x⟩L∞

x ý‖M(λ+ h)‖⟨x⟩L∞
x
,

the λ-continuity of Tλ follows from the continuity of
(
I−Tλ

)−1 and Lemma 3.3.2.

5.3 Equivalence of Integral Equation Solutions and Jost Solutions

In order to prove the equivalence of the Jost solutions and solutions to the integral

equations (5.4), we need to define what doing so actually means. To that end, we

respectively define explicitly what a Jost solution is (Definition 5.3.1) or what it

means for a function to solve the linear spectral problem reformulated as integral

equations equations (Definition 5.3.2).

Remark 18. In this chapter we prove that the Jost solution M1 solves (1.9) and

vise versa in the sense of Definitions 5.3.1 and 5.3.2 and note that the proofs of

the analogous results for Me, N1 and Ne are similar. Definitions 5.3.1 and 5.3.2 are

written accordingly, and, throughout this section, we write M en lieu of M1.

Unless stated otherwise, in the remainder of this section we take u ∈ BX(0, c0)

where c0 is chosen according to Proposition 5.2.1 to ensure that the integral equations

(5.4) are uniquely solvable. For M+ ∈ L∞(R), u ∈ X implies uM ∈ L2(R) and the

solution map u 7→M for (1.9) is continuous from L2 to L∞.
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Definition 5.3.1 (Analytic Weak Jost Solution). Fix λ ∈ R. We say that a function

M analytic on the strip

S1 = {z ∈ C : 0 < Im z < 2}

with respective lower and upper boundary values M+, M− solves the linear spectral

problem

L1(M)(x) :=
1

i

∂M+

∂x
(x)− ζ

(
M+(x)−M−(x)

)
= u(x)M+(x)(5.10)

with M+(x) → 1 as x→ −∞ if

(i) M satisfies the following asymptotic conditions:

(a) Lower boundary value asymptotic condition:

limx→−∞ 〈x〉 (M+(x)− 1) = 0

(b) Upper boundary value asymptotic condition:

There exist M1, M2 so that

M−(x)− 1 =M1(x) +M2(x),

where

〈x〉1+υ |M1(x)| ≲ 1

as x→ −∞ and

〈 · 〉τ M2 ∈ L2(R)

for any υ ∈
(
0, 1

2

)
and τ ∈ [0, 1).

(ii) M+ ∈ 〈 · 〉L∞(R). If λ 6= 0, then M+ ∈ L∞(R).

(iii) M is continuous in 0 ≤ Im z ≤ 2− ε for any 0 < ε < 2.

(iv) There is a decomposition M(z) =Mc(z) +Ms(z) for 0 < Im z < 2 so that
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(a) Mc extends to a continuous function on the closure S1 of S1 with

lim
x→−∞
x∈R

Mc(x+ 2i) = 1

(b) The estimates

‖Ms( · + iy)‖L∞ ≤ (2− y)−1/2, sup
0≤y<2

‖Ms( · + iy)‖L2 <∞

hold. Moreover, Ms has an L2 boundary value M−
s (x) := limε↘0Ms

(
·

+i(2− ε)
)

on Im z = 2 with Ms(x+ iy) →M−
s (x) for almost every x.

(v) Defining M−(x) = Mc(x + 2i) + Ms(x + 2i), the differential equation (5.10)

holds in the weak sense, testing against ϕ ∈ C∞
0 (R).

Definition 5.3.2 (Associated Integral Equation Solution). Fix λ ∈ R and u ∈ X.

A function M+(x;λ, u) ∈ 〈 · 〉L∞
x (R) solves the integral form of the linear spectral

problem if the identity

M+(x) = 1 +G+
L ∗ (uM+)(x)(5.11)

holds for almost every x ∈ R.

As discussed following the statement of Theorem 4.1.1, In breaking up M into

Mc and Ms in Definition 5.3.1, we are decomposing M into a piece which has a

continuous upper boundary value and a piece which exists only in an L2 sense. The

inspiration for this decomposition stems from the similar way we can decompose G⋆

(⋆ = L, or R) hinted at in Theorem 4.1.1.

In Section 5.3.2, we use the following property of functions analytic on the complex

strip S1.

Proposition 5.3.3. Suppose F is analytic in the open strip S1 and that |F (x+ iy)| ≲

(2− y)−1/2 for y ∈ [0, 2). Suppose further that F = F1 + F2 where

(i) F1 is bounded and continuous on the closure S1, and
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(ii) for any ε ∈ (0, 2), F2 is bounded and continuous on R× [0, 2− ε), the estimate

sup
0<y<2

‖F2( · + iy)‖L2 <∞

holds, and there is a function F2( · + 2i) so that F ( · + iy) → F2( · + 2i) in

L2(R) as y ↗ 2.

Denote by F+ the boundary value F1(x + i0) + F2(x + i0) and by F− the boundary

value F1

(
x+ (2i− 0i)

)
+F2

(
x+ (2i− 0i)

)
, where 2i− 0i is the implied limit (2− ε)i

as ε↘ 0. Then, as distributions in D′(R),

(
FF+

)
(ξ) = e2ξ

(
FF−)(ξ).

Proof. Let γ denote the contour shown in red in Figure 5.1, where R > 0 and 0 <

ε < 1.

Re z

Im z

Im z

−R R

Im z = ε

Im z = 2− ε

Figure 5.1: Contour of integration for proof of Proposition 5.3.3

Since F (z) is analytic in the interior of the strip S1, the integral of e−iξxF (z)

around the contour γ is zero for all appropriate R and ε. Thus, taking ε ↘ 0 for a

fixed R > 0 yields

I1 − I3 = I4 − I2,(5.12)
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where

I1 :=

∫ R

−R

e−iξxF+(x) dx

I2 := i

∫ 2

0

e−iξRe−tξF (R + it) dt

I3 := e2ξ
∫ R

−R

e−iξxF−(x) dx

I4 := i

∫ 2

0

eiξRe−tξF (−R + it) dt

correspond to the four straight segments of γ. We claim I2 and I4 converge to zero

as distributions as R → ∞. Indeed, for ϕ(ξ) ∈ C∞
0 (R),∫

R
ϕ(ξ)I2(ξ) dξ = i

∫ 2

0

(∫
R
ϕ(ξ)e−iξRe−tξ dξ

)
F (R + it) dt

Since ϕ is compactly supported, using integration by parts on the interior integral

above yields ∫
R
ϕ(ξ)e−iξRe−tξ dξ =

1

iR

∫
R
eiξR

(
ϕ′(ξ) e−tξ − t ϕ(ξ) e−tξ

)
dξ,

which implies ∣∣∣∣∫
R
ϕ(ξ)I2(ξ) dξ

∣∣∣∣ ≤ 1

R

∫
R
e−tξ

(
|ϕ′(ξ)|+ 2|ϕ(ξ)

)
dξ(5.13)

Using the hypothesis |F (x + iy)| ≲ (2 − y)−1/2 in conjunction with estimate (5.13)

allows us to conclude that the integral of I2 with ϕ is bounded (up to a positive

constant) by the integral

1

R

∫ 2

0

(2−R)−1/2

∫
R
eiξR

(
ϕ′(ξ) e−tξ − t ϕ(ξ) e−tξ

)
dξ,(5.14)

which vanishes in the limit R → ∞ due to the compact support of ϕ. The same

argument with R replaced by −R also shows I4 also vanishes (as a distribution) in

the R → ∞ limit. It therefore follows from (5.12) that∫
R
ϕ(ξ)

[(
FF+

)
(ξ)− e2ξ

(
FF−)(ξ)] dξ = lim

R→∞

∫
R
(I1 − I3)ϕ(ξ) dξ = 0

as claimed.
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5.3.1 Jost Solutions Solve the Integral Equations

In this subsection we prove that Jost solutions also solve the corresponding integral

equation, as respectively defined in Definitions 5.3.1 and 5.3.2. We do so in two

phases: first for λ 6= 0 (Lemma 5.3.4), and then for λ = 0 (Lemma 5.3.5).

Lemma 5.3.4. A Jost solution M satisfying Definition 5.3.1 also solves the associated

integral equation 5.11 in the sense of Definition 5.3.2 whenever λ ∈ R\{0}.

Proof. Proposition 5.3.3 implies M̂− = e−2ξM̂+. Moreover, M̂+ is a tempered distri-

bution by the hypothesis of Definition 5.3.1 which means that e2ξM̂− is also tempered.

Taking the distribution Fourier transform of both sides of (5.10) we consequently find

ûM+ = ξM̂+ − ζ
(
M̂+ − M̂−

)
(5.15)

=
(
ξ − ζ(1− e−2ξ)

)
M̂+

= p(ξ)M̂+

in the sense of distributions in D′(R). To avoid the zeros of the symbol p, we rewrite

(5.15) as

p(ξ − iε)M̂+ = [p(ξ − iε)− p(ξ)]M̂+ + ûM+(5.16)

for 0 < ε� 1 and introduce the approximate Green’s function

Gε
L(x;λ) =

1

2π

∫
R
eixξ

1

p(ξ − iε)
dξ.(5.17)

Using the contour shift R− iε 7→ R+ i sign(x)π in our work from Section 2.3 to prove

(2.4a) shows that

Gε
L(x;λ) =


K+(x;λ) + i

[
α(λ) + β(λ)eiλx

]
e−εx χL(x) λ 6= 0

K+(x;λ) + i
[
2
3
+ ix

]
e−εx χL(x) λ = 0

(5.18)

where K+ is as defined in Theorem 2.1.1

K+(x) =
e−π|x|

2π

∫
R
eixξ

1

p(ξ) + i sign(x)π
dξ.
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An immediate consequence of (2.4a) and (5.18) is that

G+
L(x;λ)−Gε

L(x;λ) = i
[
α(λ) + β(λ)eixλ

](
1− e−εx

)
χ(0,∞).

Hence, we see from (3.13) that

∣∣ (G+
L −Gε

L

)
∗ f(x)

∣∣ ≲ ∫ x

−∞

[
1− e−ε(x−x′)

]
|f(x′)| dx′.(5.19)

for real λ 6= 0.

The distribution identity 1̂ = 2πδ0 (where δ0 denotes a Dirac delta-function cen-

tered at ξ = 0) allows us “subtract 1” from both sides of (5.16) to obtain

p(ξ − iε)(M̂+ − 1)(ξ) + 2π p(ξ − iε) δ0

= [p(ξ − iε)− p(ξ)](M̂+ − 1)(ξ) + 2π p(ξ − iε) δ0 + ûM+

Dividing both sides by p(ξ − iξ)—since it has no zeros for ξ ∈ R—we have

(M̂+ − 1)(ξ) =
p(ξ − iε)− p(ξ)

p(ξ − iε)
(M̂+ − 1)(ξ) +

1

p(ξ − iε)
ûM+.(5.20)

We therefore see from (5.20) that in order to verify that M+ satisfies definition 5.3.2,

it suffices to prove that the following two limits

lim
ε↘0

F−1

[
1

p(ξ − iε)
ûM+

]
(x) = G+

L ∗ (uM)(x)(5.21a)

and

lim
ε↘0

F−1

[
p(ξ − iε)− p(ξ)

p(ξ − iε)
(M̂+ − 1)(ξ)

]
(x) = 0(5.21b)

hold for a.e. x.

Since uM+ ∈ L1(R), (5.21a) follows from estimate (5.19) and the Dominated

Convergence Theorem.

To verify (5.21b), first note that

p(ξ − iε)− p(ξ)

p(ξ − iε)
=

−iε+ ζe−2ξ (1− e2iε)

p(ξ − iε)
,
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which means it suffices to prove

lim
ε↘0

εF−1

[
1

p(ξ − iε)
(M̂+ − 1)(ξ)

]
(x) = 0(5.22a)

and

lim
ε↘0

(1− e2iε)F−1

[
e−2ξ

p(ξ − iε)
(M̂+ − 1)(ξ)

]
(x) = 0.(5.22b)

From the definition of Gε
L and (5.18) we see that

F−1

[
1

p(ξ − iε)
(M̂+ − 1)(ξ)

]
(x) = Gε

L ∗ (M+ − 1)

and

Gε
L ∗ (M+ − 1)(x) = iα(λ)

∫ x

−∞
e−ε(x−x′)

(
M+(x′)− 1

)
dx′

+ iβ(λ)

∫ x

−∞
eiλ(x−x′)e−ε(x−x′)

(
M+(x′)− 1

)
dx′

+

(∫ x

−∞
K+(x− x′) +

∫ ∞

x

K+(x− x′)

)(
M+(x′)− 1

)
dx′

Thus, since eiλ(x−x′) is a unitary phase (i.e. has complex modulus 1), in order to

verify (5.22a), we need to show that

lim
ε↘0

ε

∫ x

−∞
e−ε(x−x′)|M+(x′)− 1| dx′ = 0(5.23a)

and

lim
ε↘0

ε

∫
R
K+(x− x′)

(
M+(x′)− 1

)
dx′ = 0.(5.23b)

To prove (5.23a), we choose an arbitrary ε′ > 0, split the integral
∫ x

−∞ into
∫ x−L

−∞ +
∫ x

x−L
,

and use the fact that M+(x) → 0 as x→ −∞ to choose L > 0 sufficiently large that

|M+(x′)− 1| < ε′/2 for x′ < x− L. Then, since∫ x−L

−∞
e−ε(x−x′) dx′ =

∫ −L

−∞
eεt dt <

∫ 0

−∞
eεt dt =

1

ε
,

where t = x′ − x, we have

ε

∫ x−L

−∞
e−ε(x−x′)|M(x′)− 1| dx′ < ε′

2
ε

∫ x−L

−∞
e−ε(x−x′) dx′ <

ε′

2
.(5.24)
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Now, since M+ is continuous, M+ − 1 is bounded by ε′/2 on (∞, x − L), and

[x − L, x] is compact, there exists a constant Cx > 0 depending only on x so that

supx′≤x−L |M+(x′)− 1| ≤ Cx. Set δ′ := ε′

2LCx
. For all ε < δ′, we have

ε

∫ x

x−L

e−ε(x−x′)|M(x′)− 1| dx′ ≤ εCx

∫ 0

−L

eεx
′
dx′ <

ε′

2
,(5.25)

as eεx′ ≤ 1 for x′ ≤ 0 implies
∫ 0

−L
eεx

′
dx′ ≤ L. Limit (5.23a) follows from (5.24) and

(5.25).

Since we proved that K+ ∈ S(R) in Section 2.4 and therefore in L1(R), limit

(5.22b) is an immediate consequence of Definition 5.3.1(ii) which states that M+ ∈

L∞(R).

Lastly, to complete the proof that M+ satisfies Definition 5.3.2, we now verify

limit (5.22b). To do so, observe that it suffices by the Taylor expansion of 1− e2iε to

verify the (slightly) simpler limit

lim
ε↘0

εF−1

[
e−2ξ

p(ξ − iε)
(M̂+ − 1)(ξ)

]
(x) = 0,(5.26)

We use Proposition 5.3.3 and Definition 5.3.1(v) to rewrite (5.26) as

lim
ε↘0

εF−1

[
1

p(ξ − iε)
(M̂− − 1)(ξ)

]
(x)(5.27)

= lim
ε↘0

εF−1

[
1

p(ξ − iε)
(M̂−

c − 1)(ξ)

]
(x)

+ lim
ε↘0

εF−1

[
1

p(ξ − iε)
(M̂−

s )(ξ)

]
(x)

An analogous argument to the one employed to verify (5.22a) shows

lim
ε↘0

εF−1

[
1

p(ξ − iε)
(M̂−

c − 1)(ξ)

]
(x) = 0.

To analyze the second right-hand term, we again appeal to the representation (5.18).

The “pole terms” in (5.18) give two terms which can be estimated by

ε

∫ x

−∞
e−ε(x−x′)|M−

s (x
′)| dx′
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which is O
(
ε1/2
)

by the Schwartz inequality. To control the integrals involving K±,

we again use the L2 bound on M−
s to show that the integrals∫

R
|K±(x− x′)||M−

s (x
′)| dx

converge, and hence the corresponding terms are O (ε).

We now finish our proof that Jost solutions solve the associated integral equation

by considering the case where λ = 0.

Lemma 5.3.5. Let λ = 0 and suppose M is a Jost solution in accordance with

Definition 5.3.1. Then M is a solution for 5.11 as specified in Definition 5.3.2.

Proof. As in the proof of Lemma 5.3.4, we begin with the distribution identity

p(ξ;λ)M̂+ = ûM+, which may be rewritten as

p(ξ, λ)M̂+ − 1 = ûM+,

since p(0;λ) = 0. Mimicking our proof of Lemma 5.3.4, we write

p(ξ − iε)M̂+ − 1 = [p(ξ − iε)− p(ξ)] M̂+ − 1 + ûM+,

where here and in what follows we write p(ξ) for p(ξ;λ = 0) since λ = 0 is fixed

throughout. Dividing we get

(5.28) M̂+ − 1 =
p(ξ − iε)− p(ξ)

p(ξ − iε)
M̂+ − 1 +

ûM+

p(ξ − iε)
.

We wish to show that, on taking inverse Fourier transforms and taking ε ↘ 0, we

obtain

M+(x)− 1 = GL ∗ (uM+).

Recalling the definition the approximate Green’s function

Gε
L(x) =

1

2π

∫
eixξ

p(ξ − iε)
dξ
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from Equation 5.17 in the proof of Lemma 5.3.4, we note that

(5.29) Gε
L(x) = i

(
2

3
+ ix

)
e−εxχL(x) + e−π|x|k(x),

where k(x) is as defined in Remark 1.

Thus the inverse Fourier transform of the second right-hand term in (5.28) is given

by

F−1

(
ûM

p(ξ − iε)

)
(x) = i

∫ x

−∞

(
2

3
+ i(x− x′)

)
e−ε(x−x′)u(x′)M(x′) dx′

+

∫
R
e−π|x−x′|k(x− x′)u(x′)M(x′) dx′.

It follows by dominated convergence that this expression approaches GL ∗ (uM)(x)

pointwise as ε↘ 0 as u ∈ L2,4(R) implies u ∈ L1,1(R) ∩ L2(R).

It remains to show that the first term vanishes pointwise as ε↘ 0. We write

F−1

(
p(ξ − iε)− p(ξ)

p(ξ − iε)
M̂+ − 1

)
= iεGε

L ∗ (M+ − 1)

− 1

2

(
e2iε − 1

)
Gε

L ∗ (M− − 1)

where we used M̂− = e−2ξM̂+. The goal is to use the asymptotic behavior of M+

and M− as x → −∞ to show that these terms vanish as ε ↘ 0. Due to the linear

growth of the Green’s function we need a more stringent rate of decay for M+ − 1

and M− − 1 as x→ −∞ to control convolution with the pole term in Gε
L.

First we consider

iεGε
L ∗ (M+ − 1)(x) = −ε

∫ x

−∞

(
2

3
+ i(x− x′)

)
e−εx

(
M+(x′)− 1

)
dx′

+ iε

∫
e−π|x−x′|k(x− x′)

(
M+(x′)− 1

)
dx′

We use equation (5.29) and asymptotic condition (a) from property 5.3.1 of Definition

5.3.1. The second right-hand integral is bounded by ε times∫
R
〈x− x′〉−2 |k(x− x′)| 〈x′〉 dx′ ≲ 〈x〉

∫
R
〈x− x′〉−1 |k(x− x′)| dx′ ≲ 〈x〉 ‖k‖L2
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and so goes to zero pointwise as ε ↘ 0. Let H(x) = 〈x〉
(
M+(x) − 1

)
. The first

right-hand integral is bounded by

ε

∫ x

−∞
〈x− x′〉 e−ε(x−x′) 〈x′〉−1 |H(x′)| dx′ ≲ ε

∫ x

−∞
e−ε(x−x′) |H(x′)| dx′

=

∫ ∞

0

e−Ξ |H(x− Ξ/ε)| dΞ

which goes to 0 as ε↘ 0 by dominated convergence since limx→−∞H(x) = 0, where

we used the substitution Ξ = ε(x− x′) in the above integral.

We seek to carry out an analogous estimate for the term involving M−. We will

use equation (5.29) and asymptotic condition (b) from property 5.3.1 of Definition

5.3.1. Since e2iε − 1 is of order ε, it suffices to show that ε |Gε
L ∗ (M− − 1)(x)| =

o(1) as ε ↘ 0, where we use the “little oh” notation f = o(g) to indicate that

lim y → af(y)
g(y)

= 0 (in this case y = ε and a = 0). We have

ε |(Gε
L ∗ (M1))(x)| ≲ ε

∫ x

−∞
〈x− x′〉 e−εx′ 〈x′〉−1−υ

dx′

≲
∫ x

−∞
εe−ε(x−x′) 〈x′〉−υ

dx′

=

∫
0

∞e−Ξ 〈x− Ξ/ε〉−υ dΞ

which goes to zero as ε ↘ 0 by dominated convergence. We leave the second term,

involving k(x− x′), as an exercise to the reader.

Finally

ε |(Gε
L(M2))(x)| ≲ ε

∫ x

−∞
e−ε(x−x′) 〈x− x′〉 〈x′〉−1−υ

g(x′) dx′,

where g ∈ L2. By the Cauchy-Schwarz inequality and the fact that 〈x− x′〉 〈x′〉−1 is

bounded for x′ < x < 0 we again get an ε
1
2 estimate which suffices for the purpose.

We conclude that, for u ∈ L1,2+υ ∩ L2,2 ⊃ X, the Jost solution M the satisfying

asymptotic conditions 5.3.1 from Definition 5.3.1 solves the corresponding integral

equation.
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5.3.2 Integral Equation Solutions are Jost Solutions

We continue in this subsection with our discussion of the equivalence of the linear

spectral problem with prescribed asymptotics its corresponding integral equation re-

formulation by turning our attention to showing that the analytic continuation M to

the strip S1 of a function M+ satisfying Definition 5.3.2 satisfies Definition 5.3.1.

From Proposition 3.2.4 and our work in Chapter 4, we already know that any

function M+ satisfying Definition 5.3.2 has an analytic continuation to the complex

strip S1 which satisfies part (a) of property 5.3.1, and property 5.3.1 and property

5.3.1 of Definition 5.3.1. As such, our task in this section is to first show that the

boundary value M− satisfies property 5.3.1, which we do in Lemma 5.3.6. We then

show in Lemma 5.3.7 M has decomposition satisfying property 5.3.1, and prove in

5.3.8 that M satisfies property 5.3.1—that is, M weakly solves (5.10).

Lemma 5.3.6. Suppose then M+ satisfies Definition 5.3.2 and denote by M the

analytic continuation of M+ to the complex strip S1. The upper boundary value M−

of M satisfies asymptotic condition (b) of property 5.3.1 from Definition 5.3.1. That

is, there exist M1, M2 so that

M−(x)− 1 =M1(x) +M2(x),

where

〈x〉1+υ |M1(x)| ≲ 1

as x→ −∞ and

〈 · 〉τ M2 ∈ L2(R)

for any υ ∈ (0, 1] and τ ∈ [0, 1).

Proof. Recall from Equation (4.2a) of Theorem 4.2 in Section 4.1 that

M−(x)− 1 = GL( · ;λ)− ∗
[
uM+

]
(x)

=

[
C( · , 2) + RL( · + i2;λ)

]
∗
[
uM+

]
(x) +

[
E − 1

2

] [
uM+

]
(x)
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Define

I1(x;λ) := C( · , 2) ∗
[
uM+

]
(x)

I2(x;λ) := RL( · + i2;λ) ∗
[
uM+

]
(x)

I3(x;λ) :=

[
E − 1

2

] [
uM+

]
(x),

and set

M1(x;λ) := I1(x;λ) + I2(x;λ), and M2(x;λ) :=

[
E − 1

2

] [
uM+

]
(x).

A result of Fefferman-Stein from the theory of Calderón-Zygmund operators with

Muckenhaupt Ap weights holds that Calderón-Zygmund operators are bounded be-

tween Lp(ω dx) if 1 < p < ∞ and ω ∈ Ap. Since | · |ι is an A2-weight in R1 for any

ι ∈ [0, 1) and the exponentially weighted Hilbert trasnform is a Calderón-Zygmund

operator, we have that∫
R
(1 + |x|)2ι |(Ef)(x)|2 dx ≲ι

∫
R
(1 + |x|)2ι|f(x)|2 dx

for any ι ∈ [0, 1). Hence, since u ∈ L2,4(R) implies uM+ ∈ L2,τ (R) for τ ∈ [0, 3], we

conclude that E(uM+) ∈ L2,τ (R) and thus M2 ∈ L2,τ (R) for τ ∈ [0, 1).

Since

C(x, 2) =
e−π|x|

2π

∫
R
eixξρ

(
ξ, 2, sign(x)

)
dx,

where ρ is absolutely integrable in ξ, it is easy to see that C( · , 2) is bounded by a

Schwartz class function. As such, a simple application of Dominated Convergence

implies 〈x〉1+υ I1(x;λ) → 0 as x→ −∞ for each λ ∈ R.

For I2, we note that RL grows linearly only when λ = 0 and is otherwise bounded.

As such, we verify that 〈x〉1+υ I2(x;λ = 0) is bounded for υ ∈ (0, 1] and x < 0 and

note that the corresponding result for λ 6= 0 follows. Now

I2(x;λ = 0) =

∫ x

−∞

(
i
2

3
− (x− x′)

)
u(x′)M+(x′) dx.
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Assuming x < 0, then 〈x′〉 ≥ 〈x〉, 〈x〉−1 ≥ 〈x′〉−1, and

〈x− x′〉 ≤ 〈x〉+ 〈x′〉 ≲ 〈x′〉

whenever x′ ≤ x. Consequently,

|I2(x;λ = 0)| ≲
∫ x

−∞
〈x− x′〉 |u(x′)|

∣∣M+(x′)
∣∣ dx′

≲ 〈x〉−1−υ

∫ x

−∞
〈x′〉2+υ |u(x′)| 〈x′〉

(
〈x′〉−1 ∣∣M+(x′)

∣∣) dx′

≲ 〈x〉−1−υ
∥∥M+

∥∥
⟨ · ⟩L∞ ‖u‖⟨ · ⟩3+υL1 ,

where ‖u‖⟨ · ⟩3+υL1 <∞ as

‖u‖⟨ · ⟩3+υL1 =

∣∣∣∣∫
R
〈x〉−1+υ 〈x〉4 u(x) dx

∣∣∣∣ ≤ ∥∥〈 · 〉−1+υ
∥∥
L2

∥∥〈 · 〉4 u∥∥
L2 ,

and −1+υ < −1
2

implies 〈 · 〉−1+υ ∈ L2(R). It therefore follows that 〈x〉1+υ |M1(x)| ≲

1 for x < 0.

Lemma 5.3.7. Suppose then M+ satisfies Definition 5.3.2. Then its analytic con-

tinuation M to the complex strip S1 satisfies property 5.3.1 of Definition 5.3.1. That

is, there is a decomposition M(z) =Mc(z) +Ms(z) for 0 < Im z < 2 so that

(a) Mc extends to a continuous function on the closure S1 of S1 with

lim
x→−∞
x∈R

Mc(x+ 2i) = 1

(b) The estimates

‖Ms( · + iy)‖L∞ ≤ (2− y)−1/2, sup
0≤y<2

‖Ms( · + iy)‖L2 <∞

hold. Moreover, Ms has an L2 boundary value M−
s (x) := limε↘0Ms

(
· +i(2−ε)

)
on Im z = 2 with Ms(x+ iy) →M−

s (x) for almost every x.

Proof. Recalling the discussion following Theorem 4.1.1, we note that

M(z) =Mc(z) +Ms(z),
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where

Mc(x+ iy) := 1 +
[
C( · , y) + RL( · + iy;λ)

]
∗
[
uM+

]
(x)

and

Ms(x+ iy) := E2−y

[
uM+

]
(x).

That Mc(x + i2) is continous for x ∈ R follows from our work in Sections 4.2 and

4.3. Further, since C(x, 2) is bounded by Schwartz class function, it is easy to show

through direct computation that C( · , 2) ∗ [uM+](x) → 0 as |x| → ∞. By following

the proof of Proposition 3.2.4, one can also easily show that RL( · +i2;λ)∗[uM+] → 0

as x → −∞ for every real λ, which implies Mc(x + i2) → 1 as x → −∞. Lastly,

the convergence of Mr(x + iy) to M−
r (x) and the estimates on ‖Ms( · + iy)‖L∞ and

sup0≤y<2 ‖Ms( · + iy)‖L2 are all consequences of our analyses in Sections 4.4 and

4.5.

Lemma 5.3.8. The analytic continuation M of a solution M+ of integral equation

form of the linear spectral problem as defined by Definition 5.3.2 also satisfies property

5.3.1 of Definition 5.3.1 and is therefore a Jost solution.

Proof. To prove that the solution M of (5.3.2) solves (5.10) in the sense of Definition

5.3.1 we first consider the case u ∈ C∞
0 (R). It is not difficult to see that if u ∈ C∞

0 (R),

M is also C∞. By Laurent Schwartz’s formulation of the Paley-Wiener Theorem [15],

the function ûM+ is entire and rapidly decaying in ξ for Im ξ bounded. Thus we

may compute

M+(x)− 1 =

∫
ΓL

eiξx

p(ξ)
ûM+(ξ) dξ

where the right-hand side makes sense owing to the analyticity of ûM . We also have

M(x+ iy)− 1 =

∫
ΓL

eiξxe−yξ

p(ξ)
ûM+(ξ) dξ
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from which it follows that

1

i

∂M+

∂x
(x)− ζ(M+(x)−M−(x)) =

∫
ΓL

eiξxûM+(ξ) dξ = u(x)M+(x)

for each x, where we used analyticity of ûM+ to deform the contour from ΓL to R.

Now let u ∈ X and let {un} be a sequence from C∞
0 (R) with un → u in X. Let

Mn be the corresponding solution of (5.11) for u = un. For any φ ∈ C∞
0 (R) we have

1

i

〈
φ′, M+

n

〉
− ζ

〈
φ, M+

n −M−
n

〉
−
〈
φ, unM

+
n

〉
= 0.(5.30)

As un → u in X it follows that Mn →M in L∞, hence unMn → uM in L1,2. To show

that M is a weak solution, that is, M satisfies (5.30), it suffices to show that for any

φ ∈ C∞
0 (R), the differences

〈
φ′, M+ −M+

n

〉
,
〈
φ, (M± −M±

n )
〉
,
〈
φ, uM+ − unM

+
n

〉
all converge to zero as n→ ∞. Note that

∣∣〈φ′, M+ −M+
n

〉∣∣ = ∣∣∣∣∫
R
ϕ′(M+ −M+

n

)
dx

∣∣∣∣
≤
∥∥M+ −M+

n

∥∥
⟨ · ⟩L∞ ‖〈 · 〉ϕ′‖L1 .

Since ϕ′ ∈ C∞
0 implies ‖〈 · 〉ϕ′‖L1 and the map BX(0, c0) 3 u 7→ M ∈ 〈 · 〉L∞(R) is

Lipschitz by Lemma 5.2.2, it follows that

lim
n→∞

〈
φ′, M+ −M+

n

〉
= 0.

A similar argument also shows that

lim
n→∞

〈
φ, (M+ −M+

n )
〉
= 0

The Lipschitz continuity of the map BX(0, c0) 3 u 7→ uM ∈ L1(R) (Lemma 5.2.3) in

conjunction with the fact that ϕ is bounded again implies

lim
n→∞

〈
φ, uM+ − unM

+
n

〉
= 0.
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To prove 〈φ, (M− −M−
n )〉 → 0 as n→ ∞, we recall that

[
M−(x;λ)−M−

n (x;λ)
]
=
[
M−

c (x;λ)−
(
M−

n

)
c
(x;λ)

]
+
[
M−

s (x;λ)−
(
M−

n

)
s
(x;λ)

]
where

M−
c (x;λ)−

(
M−

n

)
c
(x;λ) =

[
C( · , 2) + RL( · + i2, λ)

]
∗
[
uM+ − unM

+
n ](x)(5.31)

and

M−
s (x;λ)−

(
M−

n

)
s
(x;λ)(5.32)

= E
[
uM+( · ;λ)− unM

+
n ( · ;λ)

]
(x)− 1

2

[
uM+(x;λ)− unM

+
n (x;λ)

]
(5.33)

Hence, using the fact that ϕ ∈ C∞
0 (R) implies 〈 · 〉ϕ ∈ L1 and estimate (3.22) from

Technical Lemma 3.3.1 we find for all λ ∈ R

〈
ϕ, M−

c −
(
M−

n

)
c

〉
≤ ‖〈 · 〉ϕ‖L1

∥∥M−
c −

(
M−

n

)
c

∥∥
⟨ · ⟩L∞

≤ ‖〈 · 〉ϕ‖L1

∥∥M+ −M+
n

∥∥
L1,1 ‖C( · , 2) + RL( · + i2)‖⟨ · ⟩L∞

Again appealing to Lemma 5.2.3 we conclude,

lim
n→∞

〈
ϕ, M−

c −
(
M−

n

)
c

〉
= 0.

Lastly, to prove

lim
n→∞

〈
ϕ, M−

s −
(
M−

n

)
s

〉
= 0,

we can use the 〈 · 〉L∞ convergence of M+
n to M+, the X-convergence of un to u, and

dominated convergence to show that the right-hand side of (5.32) goes to zero in L2

as n→ ∞, and, by passing to a subsequence, goes to zero almost everywhere.
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5.4 The Direct Scattering Map

We now have the tools we need to prove that the direct scattering map is well-

defined as a map from BX(0, c0) to L∞(R) and Lipschitz continuous as a map from

BX(0, c0) to L∞(R\(−k, k)) (for any k > 0). As a warm-up exercise, we first verify

in Proposition 5.4.1 the validity of the scattering equations first presented (without

proof) in [6], which are key to the construction of the inverse scattering map for the

ILW. Following Proposition 5.4.1, we turn our attention to proving that the direct

scattering map is well-defined (Lemma 5.4.2 and Theorem 5.4.3), and wrap up this

dissertation with results on the Lipschitz continuity of the direct scattering map

(Theorem 5.2.1 and Corollary 5.4.5).

Proposition 5.4.1 (Scattering Equations). Suppose that u satisfies the hypotheses

of Proposition 5.2.1. Let

a(λ) := 1 + iα(λ)

∫
R
u(x)M+

1 (x;λ, u) dx(5.34a)

b(λ) = iβ(λ)

∫
R
e−ixλ u(x)M+

1 (x;λ, u) dx(5.34b)

ă(λ) := 1 + α(λ)

∫
R
u(x)N1(x;λ, u) dx(5.35a)

b̆(λ) = iβ(λ)

∫
R
e−ixλ u(x)N1(x;λ, u) dx(5.35b)

For λ ∈ R\{0},

M1(x;λ) = a(λ)N1(x;λ) + b(λ)Ne(x;λ)(5.36)

N1(x;λ) = ă(λ)M1(x;λ) + b̆(λ)Me(x;λ)(5.37)

Proof. An immediate consequence of formulas (2.4) is the jump relation1

G+
L −G+

R = iα(λ) + iβ(λ)eiλx.(5.38)

1This jump relation can also be proven by taking a contour around the real axis. For details,
please see Appendix 3: Jump Relation.

103



Under the jump relation (5.38), the integral equation (5.4a) for M+
1 becomes

M+
1 (x;λ) = 1 +

∫
R
G+

L(x− x′;λ)u(x′)M+
1 (x

′) dx′(5.39)

= 1 +

∫
R

(
iα(λ) + iβ(λ) eiλ(x−x′)

)
u(x′)M+

1 (x
′) dx

=

(
1 + iα(λ)

∫
R
u(x′)M+

1 (x
′;λ) dx

)
+ iβ(λ) eiλx

∫
R
e−iλx′

(x′)M+
1 (x

′;λ) dx

+

∫
R
G+

R(x− x′;λ)u(x′)M+
1 (x

′) dx′

= a(λ) + b(λ) eiλx +G+
R( · ;λ) ∗

[
uM+

1 ( · ;λ)
]
.

Recalling from Proposition 3.2.4 that limx→∞G+
R ∗ uM+

1 (x) = 0, we see that M+
1

satisfies the asymptotic condition

lim
x→+∞

∣∣M+
1 (x;λ)− a(λ)− b(λ)eiλx

∣∣ = 0.(5.40)

The simple computation

G+
R ∗
[
u(aN1 + bNe)

]
= aG+

R ∗ (uN1) + bG+
R ∗ (uNe)

= a(N1 − 1) + b(Ne − eiλx)

= aN1 + bNe − a− b eiλx

shows that aN1 + bNe is a solution to (5.39). Further, since aN1 + bNe also satisfies

(5.40) as limx→+∞ |N1 − 1| = limx→+∞ |Ne − eixλ| = 0, equation (5.36) follows from

the uniqueness of Jost solutions. Equation (5.37) is verified analogously.

While perhaps not immediately apparent, the significance of the following lemma,

Lemma 5.4.2, is that it allows us to conclude that the reflection coefficient r(λ) =

b(λ)/a(λ) is bounded in λ. That is, r ∈ L∞
λ (R), which is the final piece we need

to prove that the ILW direct scattering map D : BX(0, c0) 3 u 7→ r ∈ L∞
λ (R) is

well-defined.
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Lemma 5.4.2. For λ 6= 0, the functions a and b defined in Proposition 5.4.1 satisfy

the equation

∣∣a(λ)∣∣2 = 1 +
2ζ(−λ)− 1

1− 2ζ(λ)

∣∣b(λ)∣∣2.(5.41)

The following proof is taken from the unpublished notes of Professor Allen Wu.

Proof. In this proof, we use the identity

〈
G+

L( · ;λ) ∗ f, g
〉
=
〈
f, G+

L( · ;λ) ∗ g
〉

+ iα(λ) 〈f, 1〉 〈1, g〉+ iβ(λ)
〈
f, ei( · )λ

〉 〈
ei( · )λ, g

〉
which follows from Proposition 2.3.1 identity (ii) and the jump relation (5.38) as

G+
L(x;λ) = G+

R(−x;λ) = G+
L(−x;λ)− iα(λ)− iβ(λ) e−iλx.

Using M+
1 = 1 +G+

L( · ;λ) ∗ uM1 we compute

〈
M+

1 , uM
+
1

〉
=
〈
1 +G+

L( · ;λ) ∗ uM
+
1 , uM

+
1

〉
=
〈
1, uM+

1

〉
+
〈
uM+

1 , G
+
L( · ;λ) ∗ uM

+
1

〉
+ iα(λ)|

〈
uM+

1 , 1
〉
|2 + iβ(λ)|

〈
uM+

1 , e
i( · )λ〉 |2

=
〈
1, uM+

1

〉
+
〈
uM+

1 , M
+
1 − 1

〉
+ iα(λ)|

〈
uM+

1 , 1
〉
|2 + iβ(λ)|

〈
uM+

1 , e
i( · )λ〉 |2

Since u is real, we have
〈
M+

1 , uM
+
1

〉
=
〈
uM+

1 , M
+
1

〉
and

0 =
〈
uM+

1 , 1
〉
−
〈
uM+

1 , 1
〉
+ iα(λ)

∣∣〈uM+
1 , 1

〉∣∣2 + iβ(λ)
∣∣〈uM+

1 , e
i( · )λ〉∣∣2 .

Identity 5.41 then follows, as
〈
uM+

1 , 1
〉
= 1

i
a−1
α(λ)

,
〈
uM+

1 , e
i( · )λ〉 = 1

i
b

β(λ)
, α(λ) =

1
1−2ζ(λ)

, and β(λ) = 1
1−2ζ(−λ)

.

While Lemma 5.4.2 holds only for λ 6= 0, we can nonetheless use Lemma 5.4.2

to show that the r remains bounded near λ = 0 and is therefore at least essentially

bounded and hence in L∞
λ .
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Theorem 5.4.3. Let r(λ) := b(λ)/a(λ). The direct scattering map D given by

D : BX(0, c0) → L∞
λ (R)

u 7→ r

is well-defined.

Proof. Since M+
1 and N+

1 exist and are unique for each u ∈ BX(0, c0), the map

u 7→ r is well-defined as a function. Moreover, it is easy to check that 1−2ζ(λ)
2ζ(−λ)−1

is both

positive and uniformly bounded in λ for all real λ 6= 0, which means that (5.41) and

Lemma 5.4.2 implies both that |a(λ)| ≥ 1 for all λ 6= 0 and, as a consequence∣∣∣∣ b(λ)a(λ)

∣∣∣∣2 = 1− 2ζ(λ)

2ζ(−λ)− 1

[
1−

∣∣∣∣ 1

a(λ)

∣∣∣∣2
]
.

Since |a(λ)| → ∞ as λ→ 0 and a simple computation shows that

lim
λ→0

1− 2ζ(λ)

2ζ(−λ)− 1
= 1,

r = b/a is at least essentially bounded near λ = 0. Moreover, since

lim
λ→−∞

1− 2ζ(λ)

2ζ(−λ)− 1
= 0,(5.42)

we need only prove r(λ) stays bounded for large positive λ. Indeed, a straight forward

computation shows

lim
λ→+∞

|β(λ)| = 1, and lim
λ→+∞

α(λ) = 0.(5.43)

Recalling that

a(λ) := 1 + iα(λ)

∫
R
u(x)M+

1 (x;λ, u) dx

b(λ) = iβ(λ)

∫
R
e−ixλ u(x)M+

1 (x;λ, u) dx,

we see that ∣∣∣∣ b(λ)a(λ)

∣∣∣∣ ≲ ∥∥uM+
1 ( · ;λ)

∥∥
L1 ≤

∥∥M+
1 ( · ;λ)

∥∥
⟨ · ⟩L∞ ‖u‖L1,1
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for λ � 1. Given M+
1 = (1− TL,λ,u)

−1 1 and the operator TL,λ,u is bounded uni-

formly in λ—in fact, ‖TL,λ,u‖⟨ · ⟩L∞ý
< 1

2
—we conclude by Neumann series that∥∥M+

1 ( · ;λ)
∥∥
⟨ · ⟩L∞ is also uniformly bounded in λ. The result therefore follows.

While, we do not yet have a proof that the ILW direct scattering map is Lipschitz

as a map from BX(0, c0) into L∞
λ , we are able to prove that it is Lipschitz in more

restrictive regimes.

Theorem 5.4.4. For c0 > 0 from Proposition 5.2.1 and for all fixed k > 0, the ILW

direct scattering map

D : BX(0, c0) 3 u 7→ r ∈ L∞
λ

(
(−∞,−k] ∪ [k,∞)

)
is Lipschitz continuous with Lipschitz constant depending on k.

Proof. Let u1, u2 ∈ BX(0, c0) be arbitrary and respectively denote by r1 = b1/a1,

r2 = b2/a2 the corresponding ILW direct scattering map D outputs. Since |a1(λ)| ≥ 1

for all λ ∈ R by Lemma 5.4.2, we find∣∣∣∣ b1a1 − b2
a2

∣∣∣∣ ≤ ∣∣∣∣ b1a1 − b2
a1

∣∣∣∣+ ∣∣∣∣ b2a1 − b2
a2

∣∣∣∣(5.44)

=
1

|a1|
|b1 − b2|+

1

|a1|

∣∣∣∣ b2a2
∣∣∣∣ |a1 − a2| .

Proposition 5.2.3 implies the map u 7→ uM+
1 is Lipschitz as a map into L1

x. As such,

1

|a1|
|b1 − b2| =

|β(λ)|
|a1(λ)|

∣∣∣∣∫
R
eixλ
(
u1(x)M

+
1 (x;λ, u1)− u2(x)M

+
1 (x;λ, u2)

)
dx

∣∣∣∣(5.45)

≤ |β(λ)|
|a1(λ)|

∥∥u1M+
1 ( · ;λ, u1)− u2M

+
1 ( · ;λ, u2)

∥∥
L1

≲ |β(λ)|
|a1(λ)|

‖u1 − u2‖X ,

where the implied constant is uniform in λ. Similarly,

|a1 − a2| ≤ |α(λ)|
∥∥u1M+

1 ( · ;λ, u1)− u2M
+
1 ( · ;λ, u2)

∥∥
L1(5.46)

≲ |α(λ)| ‖u1 − u2‖X ,
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where the implied constant is again uniform in λ. Now, the proof of Theorem 5.4.3

implies that the term
1

|a1|

∣∣∣∣ b2a2
∣∣∣∣ |a1 − a2|

is bounded for |λ| > 0. Through direct computation, it is straightforward to show

lim
λ→−∞

|α(λ)| = lim
λ→+∞

|β(λ)| = 1,

lim
λ→+∞

|α(λ)| = lim
λ→−∞

|β(λ)| = 0,

which implies |α(λ)| and |β(λ)| are bounded for |λ| � 1. Further, since α and β

have exactly one singularity, namely λ = 0, we conclude by estimates (5.44) through

(5.46) that

‖r1 − r2‖L∞
λ
≲k ‖u1 − u2‖X(5.47)

as |a1| ≥ 1 for λ 6= 0, where the implied constant depends on k but is otherwise

independent of λ.

Remark 19. The difficulty in extending Theorem 5.4.4 to all values of real λ is due to

the possibility of the implied constant in (5.47) “blowing-up” as k → 0—especially

when either
∫
R u1M

+
1 (x;λ = 0, u1) dx or

∫
R u2M

+
1 (x;λ = 0, u2) dx are zero. To see

why this is so, note that

α(λ)

a(λ)
=

α(λ)

1 + α(λ)
∫
R uM

+
1 (x;λ) dx

=
1

1
α(λ)

+
∫
R uM

+
1 (x;λ) dx,

and
β(λ)

a(λ)
=

β(λ)

1 + α(λ)
∫
R uM

+
1 (x;λ) dx

=
1

1
β(λ)

+ α(λ)
β(λ)

∫
R uM

+
1 (x;λ) dx.

which means
α(λ)

a(λ)
,
β(λ)

a(λ)
∼ O

(
1∫

R uM
+
1 (x;λ) dx

)
for |λ| � 1, as limλ→0 α(λ)/β(λ) = 1. Thus, if either

∫
R u1M

+
1 (x;λ = 0, u1) dx or∫

R u2M
+
1 (x;λ = 0, u2) dx are zero, then the approach in the proof of Theorem 5.4.4

fails miserably for |λ| that is not controlled below.
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In light of Remark 19, we obtain the following easy “extension” of Theorem 5.4.4,

which emphasizes the challenge in actually extending Theorem 5.4.4 to all real values

of λ.

Corollary 5.4.5. For every u ∈ BX(0, c0) with the property that∫
R
uM+

1 (x;λ = 0, u) dx 6= 0,

there is a neighborhood N (u) in BX(0, c0) about u for which the map D : N (u) 7→

L∞
λ (R) is Lipschitz continuous.

Proof. Fix ε > 0 so that
∣∣∫

R uM
+
1 (x;λ = 0, u) dx

∣∣ > 2ε Using the Lipschitz continuity

of the map BX(0, c0) 3 w(x) → w(x)M+
1 (x;λ,w) ∈ L1

x(R), we may choose Nε(u) so

that every w in N (u) satisfies∣∣∣∣∫
R
w(x)M+

1 (x;λ = 0, w) dx

∣∣∣∣ ≥ ε.

Then, Corollary 5.4.5 follows from the proof of Theorem 5.4.4, Remark 19, and the

Dominated Convergence Theorem.

The following lemma, Lemma 5.4.6, was developed as part of an, as yet, unsuc-

cessful bid to extend Theorem 5.4.4 to all real r. We include this lemma here in the

hopes that it may eventually be useful in completing the proof that the ILW direct

scattering map is Lipschitz continuous.

Lemma 5.4.6. For u ∈ X ∩ 〈x〉−5 L∞
x (R), the Jost solution boundary value M+

1 has

the following 〈x〉4 L∞
x (R) linear approximation in λ centered at λ = 0

M+
1 (x;λ, u) =M (0)(x;u) + λM (1)(x;u) + o(λ),(5.48)

where M (0)(x;u) =M+
1 (x;λ = 0, u) and M (1) is (∂M+

1 /∂λ)(x; 0)

Proof. It suffices to prove that M+
1 has an 〈x〉4 L∞(R) derivative in λ at λ = 0. To

do so, we define Mh as the difference quotient

Mh(λ;x) :=
M+

1 (x;λ+ h)−M+
1 (x;λ)

h
.
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In order to simplify notation, throughout the rest of this proof, we denote G+
L by

G, M+
1 by M , and suppress x dependency. That is, G(λ) := G+

L(x;λ) and M(λ) :=

M+
1 (x;λ). Please note that while not explicitly indicated by the notation in this

proof, all convolutions are with respect to the variable x.

By linearity of convolution operators

Mh(λ;x) =
G(λ+ h) ∗

[
uM(λ+ h)

]
−G(λ) ∗

[
uM(λ)

]
h

=

[
G(λ+ h)−G(λ)

]
∗
[
uM(λ+ h)

]
−G(λ) ∗

{
u
[
M(λ+ h)−M(λ)

]}
h

=

(
G(λ+ h)−G(λ)

h

)
∗
[
uM(λ+ h)

]
−G(λ) ∗

[
uMh(λ)

]
Define Gh to be the difference quotient Gh = 1

h

[
G(λ+h)−G(λ)

]
and let Tλ denote the

operator given by Tλf = G(λ)∗(u f). Since, as we see in the proof of Proposition 5.2.1,

I+Tλ is invertible, the following formula for Mh follows from the above computation:

Mh(λ) := (I + Tλ)
−1
(
Gh ∗ uM(λ+ h)

)
.(5.49)

Given the continuity of (I + Tλ)
−1, equation (5.49) implies that M+

1 is differentiable

in λ (λ ∈ R) if and only if the limit

lim
h→0

Gh ∗ uM(λ+ h)

holds pointwise for each x ∈ R.

Since a natural candidate for the limit of Gh∗uM(λ+h) as h→ 0 is
(

∂
∂λ
G
)
∗(uM),

note that

Gh ∗
(
uM(λ+ h)

)
−
(
∂

∂λ
G

)
∗
(
uM(λ)

)
(5.50)

=

(
Gh −

∂

∂λ
G

)
∗
(
uM(λ+ h)

)
+

(
∂

∂λ
G

)
∗ u
(
M(λ+ h)−M(λ)

)
.

By Technical Lemma 3.3.1,∥∥∥∥(Gh −
∂

∂λ
G

)
∗
(
uM(λ+ h)

)∥∥∥∥
⟨x⟩4L∞

x

≤
∥∥∥∥Gh −

∂

∂λ
G

∥∥∥∥
⟨x⟩4L1

x

∥∥〈 · 〉4 uM(λ+ h)
∥∥
L∞
x
.
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Hence

lim
h→∞

∥∥∥∥(Gh −
∂

∂λ
G

)
∗
(
uM(λ+ h)

)∥∥∥∥
⟨x⟩4L∞

x

= 0,(5.51)

as

∥∥〈 · 〉4 uM(λ+ h)
∥∥
L∞
x
= ess sup

x∈R

(
〈x〉−1M

)(
〈x〉5 u

)
≤ ‖M‖⟨x⟩L∞

x
‖u‖⟨x⟩−5L∞

x
.

Similarly, ∥∥∥∥( ∂

∂λ
G

)
∗ u
(
M(λ+ h)−M(λ)

)∥∥∥∥
⟨x⟩4L∞

x

≤
∥∥∥∥ ∂∂λG

∥∥∥∥
⟨x⟩4L1

∥∥〈 · 〉4 u[M(λ+ h)−M(λ)
]∥∥

L∞
x

≤
∥∥∥∥ ∂∂λG

∥∥∥∥
⟨x⟩4L1

‖u‖⟨x⟩−5L∞
x
‖M(λ+ h)−M(λ)‖⟨x⟩L∞

x

Hence, by Lemma 5.2.4, we also find

lim
h→∞

∥∥∥∥( ∂

∂λ
G

)
∗ u
(
M(λ+ h)−M(λ)

)∥∥∥∥
⟨x⟩4L∞

x

= 0,(5.52)

from which the result follows.
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APPENDIX 1. LAX REPRESENTATION

The observant reader may notice that our choice of Lax pair for the ILW differs from

Lax pair typically given in the literature. Indeed, the Lax Pair for the ILW given in

[13] and [6] is as follows:

1

i

∂

∂x
ψ+ + µ1ψ

+ + µ2ψ
− = uψ+(A.1a)

1

i

∂

∂t
ψ±
t − 2i(µ1 + 1/2δ)ψ±

x − ψ±
xx = [∓iux − Tux + ν]ψ±,(A.1b)

where, in our notation, µ1 and µ2 are given in terms of the the spectral parameter λ

as

µ1 = −1

2
λ coth(λδ) and µ2 =

1

2
λ csch(λδ),

and ν is an arbitrary constant.

In order to see how the above Lax pair from the liturature compares with (1.5), we

consider the function ψ as a function defined along the line L := {z ∈ C : Im z = δ}

whose analytic extension to the complex strip S := {z ∈ C : 0 < Im z < 2δ} has

boundary values ψ±. That is, if Ψ denotes the analytic extension of ψ to S, then we

define ψ(x) := Ψ(x+ iδ) (x ∈ R) and note that

ψ+ = lim
y↘0

Ψ(x+ iy) and ψ− = lim
y↗2δ

Ψ(x+ iy)

In order to simplify notation, throughout the remainder of these notes, we shall

associate ψ with its analytic extension Ψ centered along the line L, so that ψ(x) =

Ψ(x + iδ). We further use the notation ψ±(x) := ψ(x ∓ iδ) := limy↗δ ψ(x ∓ iy), as

demonstrated below in the following diagram:

ψ−

ψ+

Im z = 2δ

L

Im z = 0
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Using ψ, we define a new function w by w(z) = e−iλz/2ψ(z), where λ is the

parameter for µ1 and µ2. Plugging ψ±(x) = e±δλ/2eiλx/2w±(x) into (A.1a) yields

iw+
x − λ

2
w+ + (u− µ1)w

+ = µ2e
−λδw−

which, after rearrangement, becomes

iw+
x + (−λ/2− µ1)w

+ − µ2e
−λδw− = −uw+.

Now

−λ/2− µ1 = λ/2 coth(λδ)− λ

=
λ

2

(
eλδ + e−kδ

eλδ − eλδ
− 1

)
=
λ

2

(
2e−λδ

eλδ − e−λδ

)
=

1

2
e−λδλ csch(λδ)

= e−λδµ2

=
λ

1− e−2λδ
,

which implies

iw+
x + ζ

(
w+ − w−) = −uw+,(A.2)

where ζ := ζ(λ) = λ
1−e−2λδ is as defined earlier in theses notes. Given that the steps

from (A.1a) to (A.2) are reversible, it follows that (A.1a) and (A.2) are equivalent.

Now, since

ŵ(ξ) =

∫
R
e−iξxw(x) dx =

∫
R
e−iξxeiλx/2ψ(x) dx =

∫
R
e−i(ξ−λ/2)xψ(x) dx = ψ̂(ξ−λ/2),

we see from the Fourier Inversion Theorem that

w(x) =
1

2π

∫
R
eiξxψ̂(ξ − λ/2) dξ =

1

2π

∫
R
eiξxŵ(ξ) dξ,(A.3)
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where we use w(x) (as opposed to w(z)) to denote the restriction of w to the line L.

Thus, the boundary values for w. The boundary values w± of w are therefore given

by

w±(x) = w(x∓ iδ) =
1

2π

∫
R
eiξxe±δξ ŵ(ξ) dξ.

That is,

w±(x) = F−1
(
e±δ( · )ŵ( · )

)
(x),

which implies

ŵ+(ξ) = e2δξ ŵ−(ξ).(A.4)

We further see from (A.3) that

F
(
w( · − iδ + iy)

)
(ξ) = e−(y−δ)ξ ŵ(ξ) = e−yξ ŵ+(ξ).

In particular, if Ψ(z) := w(z + iδ), then

F
(
Ψ( · + iy)

)
(ξ) = e−yξ Ψ̂+(ξ),(A.5)

where Ψ+(x) := limy↘0Ψ(x+ iy). Using an analogous argument for A.1b, we rewrite

(A.1) as

Lδ(Ψ) :=
1

i

∂

∂x
Ψ+ − ζ(Ψ+ −Ψ−) = uΨ+(A.6a)

1

i

∂

∂t
Ψ± + 2i

(
ζ − 1

2δ

)
+Ψxx = [±iux − Tux + η] Ψ±,(A.6b)

where ηδ(λ, δ, ν) = λ
(
ζ − 1

2δ

)
+
(
λ
2

)2
+ ν, and ζ can be thought of as another spectral

parameter parametrized by λ ∈ R so that

ζ(λ) =
λ

1− e−2δλ
.

Stated in another way, the ILW is an isospectral flow for the linear spectral problem

(A.6a).

115



APPENDIX 2. JUMP RELATION

In this appendix we present an alternate proof of the jump relation (5.38) which does

not utlize the formulas (2.4).

We begin by considering the integral∫
γ

eixξ

ξ − ζ(λ; δ) (1− e−2δξ)
dξ

taken over the counterclockwise contour γ shown below

Re ξ

Im ξ

γ

−R R−i/R

i/R

where

ζ(λ; δ) =
λ

1− e−λδ
= λ

eλδ

eλδ − e−λδ
=

1

2
λeλδ cschλδ.

To simplify notation, define

f(ξ) := f(ξ, x;λ, δ) :=
eixξ

ξ − ζ(λ) (1− e−2δξ)
.

Since

|f(±R+iy)| =
∣∣∣∣ e±ixRe−xy

±R + iy + ζ(λ) e∓2δRe−2iyδ − ζ(λ)

∣∣∣∣ ≤ e−xy

|R2 + y2 + ζ(λ) e∓2δR − ζ(λ)|
→ 0,

as R → ∞, it follows that

lim
R→∞

∫
γ

f(ξ) dξ = lim
R→∞

∫ R+i/R

−R+i/R

f(ξ) dξ+ lim
R→∞

∫ R−i/R

−R−i/R

f(ξ) dξ = 2π
(
G+(x)−G−(x)

)
.

Thus, since

Resξ=0 f = − e2δλ − 1

2δλe2δλ − e2δλ + 1
,

and

Resξ=λ f =

(
e2δλ − 1

)
eiλx

e2δλ − 2δλ− 1
,
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we see from Cauchy’s Residue Theorem that

G+
L(x)−G+

R(x) =
i
(
e2δλ − 1

)
eiλx

e2δλ − 2δλ− 1
− ie2δλ − 1

2δλe2δλ − e2δλ + 1
(A.7)

= iα(λ; δ) + iβ(λ; δ)eiλx,

where

α(λ; δ) :=
1− e−2δλ

1− e−2δλ − 2δλ
, and β(λ; δ) :=

1− e−2δλ

1− 2δ − e−2δλ
.

In the limit λ→ 0 (i.e. the pole at ξ = λ collapses to the pole at ξ = 0), we find

lim
λ→0

G+
L(x)−G+

R(x) = −x
δ
+ i

2

3
.
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APPENDIX 3. HARMONIC ANALYSIS RESULTS

In Sections 4.4 and 4.5 we use multiple results from Grafakos’ book Classical Fourier

Analysis. Statements of these results are given without proof in this appendix. The

theorem, corollary and definition numbering within this appendix is consistent with

the numbering found in [3]. Unless otherwise stated, throughout this appendix G is

assumed to be a locally compact group, and λ an invarniant Haar measure on G.

Definition 1.1.1 (Distribution function). Let X be a measurable space and let µ be

a positive, not necessarily finite, measure on X. For f a measurable function on X,

the distribution function of f is the function df defined on [0,∞) as follows:

df (α) = µ
(
{x ∈ X : |f(x)| > α}

)
Definition 1.1.5 (Weak Lp). Let X be a measurable space and let µ be a positive,

not necessarily finite, measure on X. For 0 < p < ∞, the space weak Lp(X,µ) is

defined as the set of all µ-measurable functions f such that

‖f‖Lp,∞ = inf

{
C > 0 : df (α) ≤

Cp

αp
for all α > 0

}
= sup{γ df (γ)1/p : γ > 0}

is finite. The space weak-L∞(X,µ) is by definition L∞(X,µ). The weak Lp spaces

are denoted by Lp,∞(X,µ).

Theorem 1.2.10 (Minkowski’s inequality). Let 1 ≤ p ≤ ∞. For f in Lp(G) and g

in L1(G) we have that g ∗ f exists λ-a.e. and satisfies

‖g ∗ f‖Lp(G) ≤ ‖g‖L1(G)‖f‖Lp(G).

Definition 1.2.15 (Approximate Identity). An approximate identity (as ε → 0) is

a family of L1(G) function kε with the following three properties:

(i) There exists a constant c > 0 such that ‖kε‖L1(G) ≤ c for all ε > 0.
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(ii)
∫
G
kε dλ(x) = 1 for all ε > 0.

(iii) For any neighborhood V of the identity element e of the group G we have∫
V c |kε(x)| dλ(x) → 0 as ε→ 0.

Theorem 1.2.19. Let kε be an approximate identity on a locally compact group G

with left Haar measure λ.

(1) If f lies in Lp(G) for 1 ≤ p <∞, then ‖kε ∗ f − f‖ → 0 as ε→ 0.

(2) Let f be a function in L∞(G) that is uniformly continuous on a subset K of G,

in the sense that for all δ > 0, there is a neighborhood V of the identity element

such that for all x ∈ K and y ∈ V whe have |f(y−1x) − f(x)| < δ. Then we

have that ‖kε ∗ f − f‖L∞(K) → 0 as ε → 0. In particular, if f is bounded and

continous at a point x0 ∈ G, then (kε ∗ f)(x0) → f(x0) as ε→ 0.

Theorem 1.2.21. Let kε be a family of functions on a locally compact group G that

satisfies properties (i) and (iii) of Definition 1.2.15 and also∫
G

kε(x) dλ(x) = a

for some fixed a ∈ C for all ε > 0. Let f ∈ Lp(G) for some 1 ≤ p ≤ ∞.

(a) If 1 ≤ p <∞, then ‖kε ∗ f − af‖Lp(G) → 0 as ε→ 0.

(b) If p = ∞ and f is uniformly continuous on a subset K of G, in the sense that

for any δ > 0 there is a neighborhood V of the identity element in G such that

supx∈G supy∈V |f(y−1x)− f(x)| ≤ δ, then we have that ‖kε ∗ f − af‖L∞(K) → 0

as ε→ 0.

Definition 2.1.9. Given a function g on Rn and ε > 0, we denote by gε the fullowing

function:

gε(x) = ε−ng(ε−1x).
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The following theorem involves the Hardy-Littlewood maximal function M (f)

which Grafakos defines as

M (f) := sup
ε>0

1

vn εn

∫
Rn

|f(x− y)|χB(0,1)

(y
ε

)
dy

= sup
ε>0

(|f | ∗ kε)(x),

where vn denotes the volume of the unit ball B(0, 1) and k := v−1
n χB(0,1).

Theorem 2.1.10. Let k ≥ 0 be a function [0,∞) that is continuous except at a finite

number of points. Suppose that K(x) = k(|x|) is an integrable function on Rn that

satisfies

K(x) ≥ K(y), whenever |x| ≤ |y|,

i.e., k is decreasing. Then the following estimate is true:

sup
ε>0

(|f | ∗Kε)(x) ≤ ‖K‖L1M (f)(x)(A.8)

for all locally integrable functions f on Rn.

Grafakos defines the term radially decreasing majorant in the following re-

mark.

Remark 2.1.11. Theorem 2.1.10 can be generalized as follows. If K is an L1 function

on Rn such that |K(x)| ≤ k0(|x|) = K0(x), where k0 is nonnegative decreasing

function on [0,∞) that is continuous except at a finiate number of points, then

(A.8) holds with ‖K‖L1 replaced by ‖K0‖L1 . Such K0 is called a radially decreasing

majorant of K.

Theorem 2.1.14. Let (X,µ), (Y, ν) be measurable spaces and let 0 < p < ∞, 0 <

q < ∞. Suppose that D is a dense subspace of Lp(X,µ), Tε is a linear operator that

maps Lp(X,µ) into a subspace of measurable functions, which are defined everywhere

on Y . For y ∈ Y , define a sublinear operator

T∗(f)(y) = sup
ε>0

|Tε(f)(y)|
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and assume that T∗(f) is µ-measurable for any f ∈ Lp(X,µ). Suppose that for some

B > 0 and for al f ∈ Lp(X) we have

‖T∗(f)‖Lq,∞ ≤ B‖f‖Lp

and that for all f ∈ D,

lim
ε→0

Tε(f) = T (f)

exists and is finite ν-a.e. (and defines a linear operator on D). Then for all functions

f in Lp(X,µ) the limit above exists and is finite ν-a.e., and defines a linear operator

T on Lp(X) (uniquely extending T defined on D) that satisfies

‖T (f)‖Lq,∞ ≤ B‖f‖Lp

for all functions f in Lp(X).

Corollary 2.1.19 (Differentiation theorem for approximate identities). Let K be

a function on Rn that has an integrable radially decreasing majorant. Let c =∫
Rn K(x) dx. Then for all f ∈ Lp(Rn) and 1 ≤ p <∞,(

f ∗Kε

)
(x) → cf(x)

for almost all x ∈ Rn as ε→ 0.

Proposition 2.2.16 (Hausedorff-Young inequality). For every function f in Lp(Rn)

we have the estimate ∥∥∥f̂∥∥∥
Lq

≤ ‖f‖Lp

whenever 1 ≤ p ≤ 2 and q := p
p−1

denotes the Hölder conjugate of p.

Theorem 5.1.5. Let 1 ≤ p <∞. For any f ∈ Lp(R) we have

f ∗Qε −H(ε)(f) → 0

in Lp and almost everywhere as ε→ 0. Moreover, for ϕ ∈ S (R) we have

Fϕ(x+ iy) =
i

π

∫ +∞

−∞

ϕ(t)

x+ iy − t
dt→ ϕ(x) + iH(ϕ)(x)
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as y ↗ 0 for all x ∈ R.

Theorem 5.1.12. There exists a constant C such that for all 1 < p <∞ we have

‖H(∗)(f)‖Lp ≤ Cmax
(
p, (p− 1)−2

)
‖f‖Lp .
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APPENDIX 4. NOTATION INDEX

Fundamental Notation

Symbol Meaning Ref.

:= defined to be; for example a := b means “a is defined to be

b”

p.1

p. v. Cauchy principle value; given by

p. v.

∫
R
f(x) dx := lim

ε↘0

∫
|x|>ε

f(x) dx

p.1

a.e. abbreviation for almost everywhere p.51

R the set of all real numbers p.12

C the set of all complex numbers p.14

Z the set of all integers

χA characteristic function on a set A; given by

χA(x) :=


1, x ∈ A

0, otherwise

p.13

m( · ) Lebesgue measure on R p.61

F , ˆ( · ) Fourier transform defined as

f̂(ξ) := (Ff) (ξ) =
∫
R
e−ixξf(x) dx

p.16

F−1, ˇ( · ) inverse Fourier transform defined as

ǧ(x) :=
(
F−1g

)
(x) =

1

2π

∫
R
eixξg(ξ) dξ

p.16

S (R) space of all Schwartz class functions on R p.64

Continued on next page
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Fundamental Notation – Continued from previous page

Symbol Meaning Ref.

Resz=c f complex residue of a function f at the pole z = c p.25

( · ± i0) implied limit of ( · ± iε) as ε↘ 0 p.22

f+ lower boundary f+(x) := limy↘0 f(x+ iy) of a function f

analytic on Sδ, where x, y ∈ R

p.6

f− upper boundary f−(x) := limy↗0 f(x+ i2y) of a function f

analytic on Sδ, where x, y ∈ R

p.6

≲ q ≲ s means there exists some fixed constant C so that

q ≤ C s; the constant C is commonly referred to as “the

implied constant”

p.8

≲k q ≲ s means there exists some constant C := C(k)

depending only on the parameter k so that q ≤ C s; the

constant C is commonly referred as “the implied constant”

p.39

log+ t the function given by max
{
0, log(t)

}
p.14

〈x〉 short-hand notation for
(
1 + |x|2

)1/2 p.7

Lp,s(R) space of measurable functions with

‖f‖Lp,s :=

(∫
R
〈x〉sp |f(x)|p

)1/p

<∞

p.36

〈 · 〉L∞(R)

space of measurable functions with

‖f‖⟨ · ⟩L∞ := ess sup
x∈R

∣∣〈x〉−1 f(x)
∣∣ <∞

p.37

BY (y0, r) the open ball {y ∈ Y : ‖y − y0‖Y < r} in the metric space

Y with radius r centered at y0 ∈ Y

p.8

Y → Z a map from a space Y to a space Z p.41

Continued on next page
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Fundamental Notation – Continued from previous page

Symbol Meaning Ref.

Y ý a map from a space Y into itself p.41

‖ · ‖Y→Z the induced operator norm for an operator with domain Y

and co-domain Z

p.41
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Chapter 1 Notation

Symbol Meaning Ref.

δ depth of stratified fluids—typically taken to be δ = 1 p.1

Sδ the complex strip {z ∈ C : 0 < Im z < 2δ} p.6

f+ lower boundary f+(x) := limy↘0 f(x+ iy) of a function f

analytic on Sδ, where x, y ∈ R

p.6

f− upper boundary f−(x) := limy↗0 f(x+ i2y) of a function f

analytic on Sδ, where x, y ∈ R

p.6

Lδ operator on functions analytic in the complex strip Sδ; given

by

Lδ(Ψ) :=
1

i

∂

∂x
Ψ+ − ζ

(
Ψ+ −Ψ−) = uΨ+

p.6

λ a spectral parameter for the linear spectral problem (1.4) p.7

ζ a spectral parameter for (1.4) commonly parameterized by λ

as ζ(λ; δ) = λ

1− e−2δλ

p.7

λ(ζ) inverse of the map λ→ ζ(λ) p.7

〈x〉 short-hand notation for
(
1 + |x|2

)1/2 p.7

BY (y0, r) the open ball {y ∈ Y : ‖y − y0‖Y < r} in the metric space

Y with radius r centered at y0 ∈ Y

p.8

M1, Me,

N1, Ne

depending on context, either Jost solutions or analytic

extensions of solutions to the integral equations (1.9)

p.7,

p.9

M+
1 , M+

e ,

N+
1 , N+

e

depending on context, either solutions to the integral

equations (1.9) or lower boundary values of the Jost

solutions

p.9,

p.7

Continued on next page
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Chapter 1 Notation – Continued from previous page

Symbol Meaning Ref.

r(λ; δ) reflection coefficent; given by

r(λ; δ) =
b(λ; δ)

a(λ; δ)
,

where

b(λ) :=
i

1− 2δζ(−λ)

∫
R
e−iλxu(x)M+

1 (x;λ, δ) dx

a(λ) := 1 +
i

1− 2δζ(λ)

∫
R
u(x)M+

1 (x;λ, δ) dx

p.8

D the direct scattering map for the Intermediate Long Wave

(ILW) equation; maps ILW initial data u to the

corresponding reflection coefficient r

p.8

GL, GR formal Green’s functions corresponding to the linear

spectral problem (1.4)

p.8,

p.9

α(λ; δ) residue of eizξ/p(ξ) at the ξ = 0 pole; given by

α(λ; δ) =
1

1− 2δζ(λ; δ)

p.10

β(λ; δ) eizλ times the residue of eizξ/p(ξ) at the ξ = λ pole; given by

α(λ; δ) =
1

1− 2δζ(−λ; δ)

p.10

K+ non-residue term resulting from shifting the integration

contours of G+
L and G+

R

p.10

Continued on next page
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Symbol Meaning Ref.

T⋆,λ,u bounded operators on 〈 · 〉L∞(R) given by

T⋆,λ,uf(x) :=
[
G+

⋆ ( · ;λ)
]
∗ (u f)(x),

where ⋆ = L or R

p.10
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Chapter 2 Notation

Symbol Meaning Ref.

D the direct scattering map for the Intermediate Long Wave

(ILW) equation; maps ILW initial data u to the

corresponding reflection coefficient r

p.8

⋆ used as a placeholder for both L and R; for example, if a

statement contains the notation “G⋆ (⋆ = L, or R),” then it

is equally true (or not true) for both GL and GR

p.15

f+ lower boundary f+(x) := limy↘0 f(x+ iy) of a function f

analytic on Sδ, where x, y ∈ R

p.6

f− upper boundary f−(x) := limy↗0 f(x+ i2y) of a function f

analytic on Sδ, where x, y ∈ R

p.6

δ depth of stratified fluids—typically taken to be δ = 1 p.1

λ a spectral parameter for the linear spectral problem (1.4) p.7

ζ a spectral parameter for (1.4) commonly parameterized by λ

as ζ(λ; δ) = λ

1− e−2δλ

p.7

λ(ζ) inverse of the map λ→ ζ(λ) p.7

ζ∗ nonlinear reflection ζ
(
− λ(ζ)

)
p.13

G+
⋆ lower boundary value of the Greens’ function whose contour

of integration is Γ⋆; given by

G+
⋆ (x;λ, δ) :=

1

2π

∫
Γ⋆

eixξ
1

p(ξ;λ, δ)
dξ

p.15

ΓL contour along the real line which bypasses the roots of p

from below

p.15

Continued on next page
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Symbol Meaning Ref.

ΓR contour along the real line which bypasses the roots of p

from above

p.15

p Fourier symbol of the Green’s functions; given by

p(ξ;λ, δ) = ξ − ζ(λ)
(
1− e−2δξ

)
and commonly denoted as p(ξ;λ, δ), p(ξ; ζ, δ), p(ξ;λ),

p(ξ; ζ), and p(ξ).

p.14

Resz=c f complex residue of a function f at the pole z = c p.25

α(λ; δ) residue of eizξ/p(ξ) at the ξ = 0 pole; given by

α(λ; δ) =
1

1− 2δζ(λ; δ)

p.13

β(λ; δ) eizλ times the residue of eizξ/p(ξ) at the ξ = λ pole; given by

β(λ; δ) =
1

1− 2δζ(−λ; δ)

p.13

K+ non-residue term resulting from shifting the integration

contours of G+
L and G+

R

p.13

log+ t the function given by max
{
0, log(t)

}
p.14

Rδ the complex strip {z ∈ C : − π/δ ≤ Im z ≤ π/δ} about the

real line

p.15

R⋆ sum residues of eizξ/p(ξ) at the ξ = 0 and ξ = λ poles p.16

δc Dirac delta-function centered at x = c p.16

Wk kth branch (k ∈ Z) of the complex Lambert W function p.18

Σc the integration contour R+ ic π p.26

Continued on next page
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Symbol Meaning Ref.

Σ(R, c) the integration contour (−R,R) + ic π, where R > 0 and

(−R,R) := {x ∈ R : −R < x < R}

p.26

Kζ the integral function given by

Kζ(x) :=

∫
R

eixξ

ξ − ζ (1− e−2ξ) + iπ
dξ

p.29

Kq the integral function given by

Kq(x) :=

∫
R

eixξχ (2−qxξ)

ξ − ζ (1− e−2ξ) + iπ
dξ

p.29
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Chapter 3 Notation

Symbol Meaning Ref.

〈x〉 short-hand notation for
(
1 + |x|2

)1/2 p.36

Lp,s(R) space of measurable functions with

‖f‖Lp,s :=

(∫
R
〈x〉sp |f(x)|p

)1/p

<∞

p.36

〈 · 〉L∞(R)

space of measurable functions with

‖f‖⟨ · ⟩L∞ := ess sup
x∈R

∣∣〈x〉−1 f(x)
∣∣

finite

p.37

Lp
ξ(R) space of measurable functions which are Lp integrable with

respect to the variable ξ; similar subscript notation is used

for other function spaces

p.37

⋆ used as a placeholder for both L and R; for example, if a

statement contains the notation “G⋆ (⋆ = L, or R),” then it

is equally true (or not true) for both GL and GR

p.15

T⋆,λ,u bounded operator on 〈 · 〉L∞(R) given by

T⋆,λ,uf(x) :=
[
G+

⋆ ( · ;λ)
]
∗ (u f)(x)

based on context, T⋆,λ,u is sometimes denoted by T⋆, T⋆,λ, or

Tλ

p.37

X space of potentials u with
∥∥〈 · 〉4 u∥∥

L2 <∞ p.38

≲k q ≲ s means there exists some constant C := C(k)

depending only on the parameter k so that q ≤ C s; the

constant C is commonly referred as “the implied constant”

p.39

Continued on next page
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Symbol Meaning Ref.

χ± the characteristic functions χ− := χ(−∞,0), χ+ := χ(0,∞) on

the respective intervals (−∞, 0) and (0,∞)

p.40

G as specified in Remark 11, G(x, λ) and G(λ) are

occasionally used to as shorthand notations for G+
⋆ (x;λ)

p.47

Gh(λ) the difference quotient of G+
⋆ with respect to λ; given by

Gh(λ) :=
G(λ+ h)−G(λ)

h

p.48

(
1

pλ(ξ)

)
h

the difference quotient of 1/p with respect to λ;(
1

pλ(ξ)

)
h

:=
1

h

[
1

p(ξ;λ+ h)
− 1

p(ξ;λ)

] p.48

Resz=c f complex residue of a function f at the pole z = c p.49
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Chapter 4 Notation

Symbol Meaning Ref.

Sδ the complex strip about the real axis defined by

S1 := {z ∈ C : 0 < Im z < 2}

p.51

G⋆ analytic continuation of G+
⋆ to the analytic strip S1 p.51

G−
⋆ the upper boundary value of G⋆ defined as a distribution in

that

G−
⋆ ∗ f = lim

y↗2
G+

⋆ ( · + iy) ∗ f

for f ∈ L1(R) ∩ Lp(R) (1 < p ≤ 2)

p.51

K analytic continuation of K+ to the S1 p.51

C a portion of K whose limit as y ↗ 2 is a continuous limit

operator; given by

C(x, y) :=
1

2π
e−π|x| e− sign(x) iπy

∫
R
eixξρ

(
ξ, y, sign(x)

)
dξ,

where x ∈ R and y ∈ [0, 2]

p.52

ρ a function given by

ρ
(
ξ, y, c;λ

)
:=



e−yξ

p(ξ;λ) + i c π
, ξ > 0

1

ζ(λ)

(
ζ(λ)− ξ − c iπ

)
e(2−y)ξ

p(ξ;λ) + i c π
, ξ < 0.

p.52

R⋆ sum residues of eizξ/p(ξ) at the ξ = 0 and ξ = λ poles p.52

Continued on next page
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Symbol Meaning Ref.

Eε a family of convolution operators given by

(Eεf) (x) :=
e−iπ(2−ε)

2πi

∫ x

−∞

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

+
eiπ(2−ε)

2πi

∫ ∞

x

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

p.57

Eε exponentially weighted Cauchy transform; given by

Eεf(x) :=
1

2πi

∫
R

e−π|x−x′|

(x− x′)− iε
f(x′) dx′

p.61

E exponentially weighted Hilbert Transform; given by

Ef(x) :=
1

2πi
p. v.

∫
R

e−π|x−x′|

x− x′
f(x′) dx′,

where p. v.
∫
( · ) dµ denotes a principle value integral.

p.52

S (R) space of all Schwartz class functions on R p.64

Eε, Pε two families of convolution operators given by

Eε(y) :=
1

2πi

y

y2 + ε2
e−π|y|, and Pε(y) :=

1

π

ε

y2 + ε2
e−π|y|

p.65

E(ε) truncated exponentially weighted Hilbert Transform; given

by

E(ε)f(x) :=
1

2πi

∫
|x′|≥ε

e−π|x′|

x′
f(x− x′) dx′

by definition, (Ef)(x) = limε↘0E
(ε)f(x)

p.65

Pε Poisson kernel; given by Pε(y) =
1
π

ε
y2+ε2

p.66

Continued on next page
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Symbol Meaning Ref.

E∗ the maximal operator associated with the Cauchy transform

Eε; given by

E∗f(x) := (Eε)
∗ f(x) := sup

ε>0
{|Eεf(x)|} .

p.68

M The Hardy-Littlewood maximal operator; given by

Mf(x) = sup
r>0

{
1

B(0, r)

∫
B(0,r)

|f(x− x′)| dx′
}
.

p.68

mE Fourier multiplier for the exponentially weighted Hilbert

transform; given by

mE(ξ) =
1

π
arctan(ξ/π)

p.73

Lp,∞ weak Lp space; also denoted weak-Lp p.118
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Chapter 5 Notation

Symbol Meaning Ref.

M1, Me,

N1, Ne

depending on context, either Jost solutions or analytic

extensions of solutions to the integral equations (5.4)

p.78,

p.80

X space of potentials u with
∥∥〈 · 〉4 u∥∥

L2 <∞ p.38

c0 a strictly positive constant chosen in Proposition 5.2.1 to

ensure the existence and uniqueness of Jost solutions for

every potential u ∈ X with ‖u‖X < c0

p.81

T⋆,λ,u bounded operator on 〈 · 〉L∞(R) given by

T⋆,λ,uf(x) :=
[
G+

⋆ ( · ;λ)
]
∗ (u f)(x)

based on context, T⋆,λ,u is sometimes denoted by T⋆, T⋆,λ, or

Tλ

p.81

a, b, ă, b̆ coefficients for the scattering equations (5.36) and (5.37);

given by

a(λ) := 1 + iα(λ)

∫
R
u(x)M+

1 (x;λ, u) dx

b(λ) = iβ(λ)

∫
R
e−ixλ u(x)M+

1 (x;λ, u) dx

ă(λ) := 1 + α(λ)

∫
R
u(x)N1(x;λ, u) dx

b̆(λ) = iβ(λ)

∫
R
e−ixλ u(x)N1(x;λ, u) dx

p.103

α(λ; δ) residue of eizξ/p(ξ) at the ξ = 0 pole; given by

α(λ; δ) =
1

1− 2δζ(λ; δ)

p.13

Continued on next page
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Symbol Meaning Ref.

β(λ; δ) eizλ times the residue of eizξ/p(ξ) at the ξ = λ pole; given by

α(λ; δ) =
1

1− 2δζ(−λ; δ)

p.13

D direct scattering map for the ILW; given by

D : BX(0, c0) 3 u 7→ r ∈ L∞
λ (R)

p.104

r reflection coefficient; given by r(λ) = b(λ)/a(λ) p.104
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