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ABSTRACT OF DISSERTATION

SENSITIVITY OF ELECTRON-PROTON COINCIDENCE ASYMMETRIES IN
NEUTRON �-DECAY TO SCALAR AND TENSOR INTERACTIONS

We study the combined sensitivity of measurements of electron-proton coincidence
asymmetries in polarized neutron �-decay together with a measurement of the elec-
tron energy spectrum in unpolarized neutron �-decay to beyond Standard Model
(BSM) scalar and tensor interactions, via the appearance of such BSM physics in
the Fierz interference terms b and b⌫ . Whereas measurements of the electron energy
spectrum directly probe b, both the proton and neutrino asymmetries for which ex-
perimental results exist are not sensitive to b⌫ , but effectively to b� b⌫ . This results
in reduced sensitivity to BSM scalar and tensor physics as the dependencies of b⌫ and
b on scalar and tensor physics are similar. As a remedy, we demonstrate that ratios
of certain asymmetries are sensitive only to b⌫ , thus providing a new paradigm for di-
rectly accessing b⌫ . We find that with 1⇥109 events, a combined fit to our asymmetry
ratios and the spectrum yields sensitivity to b and b⌫ at the level of ⇠ 2⇥ 10�3.

KEYWORDS: Asymmetry, Sensitivity, Neutrons, Polarized, Tensor

Subash Chandra Nepal

September 2, 2020



SENSITIVITY OF ELECTRON-PROTON COINCIDENCE ASYMMETRIES IN
NEUTRON �-DECAY TO SCALAR AND TENSOR INTERACTIONS

By
Subash Chandra Nepal

Dr. Bradley Plaster

Director of Dissertation

Dr. Christopher Crawford

Director of Graduate Studies

September 2, 2020



ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor Dr. Bradley

Plaster, Physics and Astronomy Department at University of Kentucky, for his pa-

tience, motivation, enthusiasm and for the continuous support for the development

of this work. His relentless effort during the time of research helped me to complete

my thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Christopher Crawford, Prof. Michael Eides and Prof. Yang for their encouragement

and valuable suggestions to complete my work.

Special thanks to IT manager Mr. Vikram Gazula of Center for Computational

Sciences at University of Kentucky for his help in making optimal use of the Lipscomb

HPC Cluster throughout my computational work.

Also, I would like to extend my thanks to my colleagues in my lab, Dr. Michael

Brown, Lakshya Malhotra, Dr. Alina Aleksandrova, Brian Allegeier, Dr. Ryan Dadis-

man, Danielle Schaper, Abel Lorente Campos, Piya Amara Palamure, Jared Brew-

ington and Rashika Gupta for many useful discussions and support.

Finally, I am thankful to my entire family for supporting up to this point. I es-

pecially want to thank my loving wife Ganga as she experienced the difficult times

with two daughters Stuti and Sudipti during my research work. From the bottom of

my heart, I am thankful to my octogenarian mom Devi Nepal for encouraging me to

do the best. Last, but not the least, this work is dedicated in memory of my twin

brother the late Sanat Nepal who left his son Swaraj with me.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Standard Model (SM) . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Fundamental Particles in the SM . . . . . . . . . . . . . . . . 1
1.1.2 Neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Neutron �-decay . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Fermi Theory of �-Decay . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 �- Decay Selection Rules . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Parity Violation in Weak Interaction . . . . . . . . . . . . . . 7
1.2.3 First Experiment on Parity Violation . . . . . . . . . . . . . . 8
1.2.4 Two-Component Neutrino Theory . . . . . . . . . . . . . . . . 9
1.2.5 V � A Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.6 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Hadronic and Leptonic Currents . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Hadronic Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Angular Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 The Measurable �-Decay Parameters . . . . . . . . . . . . . . 18
1.4.2 Recoil Order Corrections . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Beyond Standard Model (BSM) . . . . . . . . . . . . . . . . . 21
1.4.4 Neutron Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Ultra Cold Neutron (UCN) . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.1 Trapping UCN . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 Fermi Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.3 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.4 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 2 Event Generator for Neutron �-Decay . . . . . . . . . . . . . . . . 26
2.1 Decay Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Proton Momentum . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Sampling Proton Events . . . . . . . . . . . . . . . . . . . . . 29

2.2 Electron Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Proton Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Antineutrino Energy Spectrum . . . . . . . . . . . . . . . . . . . . . 32
2.5 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



Chapter 3 Qij Spectra for Neutron �-Decay . . . . . . . . . . . . . . . . . . 34
3.1 INM Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Differential and Integral Asymmetries . . . . . . . . . . . . . . . . . . 40

3.2.1 Proton Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Electron Asymmetry . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Proton-Electron Asymmetry Ratio . . . . . . . . . . . . . . . 45

3.3 Electron-Proton Coincidence Asymmetries . . . . . . . . . . . . . . . 45
3.3.1 Neutrino Asymmetry . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Electron-Proton Tilde Asymmetry . . . . . . . . . . . . . . . . 46
3.3.3 New Coincidence Asymmetry ↵X . . . . . . . . . . . . . . . . 47
3.3.4 New Coincidence Asymmetry ↵R . . . . . . . . . . . . . . . . 48

3.4 Integral Asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 UCNB Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 UCNB Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Time of Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.4 Detection System . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.5 Experimental Concept . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Overview of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 Event Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.5 Event Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.6 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Simulation of UCNA Geometry . . . . . . . . . . . . . . . . . . . . . 63
5.2 Simulation of UCNB Geometry . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Qij spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Analysis of Event Generator . . . . . . . . . . . . . . . . . . . 66
5.2.3 Backscattering . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.4 Bremsstrahlung Effect Off . . . . . . . . . . . . . . . . . . . . 70

5.2.4.1 Reconstructed Qij Spectra . . . . . . . . . . . . . . . 70
5.2.5 Bremsstrahlung Effect On . . . . . . . . . . . . . . . . . . . . 71

5.2.5.1 Reconstructed Qij Spectra . . . . . . . . . . . . . . . 72
5.2.6 Distortions of Energy Spectra . . . . . . . . . . . . . . . . . . 74
5.2.7 Normalization for Coincidence Asymmetries . . . . . . . . . . 74
5.2.8 Sensitivity of rpe to b⌫ . . . . . . . . . . . . . . . . . . . . . . 75
5.2.9 Sensitivity of ↵x to b⌫ . . . . . . . . . . . . . . . . . . . . . . 76
5.2.10 Sensitivity of Combined Fit to b and b⌫ . . . . . . . . . . . . . 77
5.2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.1 Angular correlations in terms of coupling constants . . . . . . . . . . 80
A.2 Properties of Projection operator . . . . . . . . . . . . . . . . . . . . 80
A.3 Proton momentum calculations . . . . . . . . . . . . . . . . . . . . . 82
A.4 Analysis of Errors on Asymmetries . . . . . . . . . . . . . . . . . . . 83
A.5 UCNA Simulation and Events Types . . . . . . . . . . . . . . . . . . 89

A.5.1 Kinetic Energy Distribution . . . . . . . . . . . . . . . . . . . 89
A.5.2 Angular Distribution . . . . . . . . . . . . . . . . . . . . . . . 93
A.5.3 Angular distribution for No Endcaps (2012/2013 geometry) . . 97

A.6 Analysis of Event Generator . . . . . . . . . . . . . . . . . . . . . . . 97
A.6.1 Values for A0, B0 and � . . . . . . . . . . . . . . . . . . . . . 105

A.7 A0 and B0 calculations with no bremsstrahlung effects . . . . . . . . 108
A.8 A0 and B0 calculations with bremsstrahlung effects enabled . . . . . 115
A.9 Distortion of electron spectrum . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



LIST OF TABLES

1.1 Quarks and Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bilinear Invariants in Dirac Theory . . . . . . . . . . . . . . . . . . . . . 5
1.3 Discrete Symmetries and Ci, C 0

i . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Fermi Potentials of Some Materials . . . . . . . . . . . . . . . . . . . . . 23
1.5 Neutrino Asymmetry Parameter B0 . . . . . . . . . . . . . . . . . . . . . 25

4.1 All possible events in the four detectors system. . . . . . . . . . . . . . 61

5.1 Neutrino Asymmetry (bremsstrahlung off) . . . . . . . . . . . . . . . . . 71
5.2 Neutrino Asymmetry (bremsstrahlung on) . . . . . . . . . . . . . . . . . 73
5.3 Fractional change in the neutrino asymmetry. . . . . . . . . . . . . . . . 74

vii



LIST OF FIGURES

1.1 (a) �-decay spectrum. (b) The decay of a free neutron giving three par-
ticles, proton, electron and associated antineutrino and their direction
relative to the neutron spin. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Fermi’s analogy of four-fermion interaction to the electrodynamics [1]. . 5
1.3 (a) Schematic diagram of Wu’s experimental set up. (b) Data from Wu et

al. experiment [2] measuring the correlation between the emitted direction
of the electron from the decay of polarized 60Co. . . . . . . . . . . . . . . 9

1.4 (a) Neutron decay at quark level with two spectator quarks. The neutron
(udd) decays into the proton (udu) by emitting an electron and an associ-
ated antineutrino via a W� massive vector boson. (b) Neutron decay at
four fermion contact interaction level. . . . . . . . . . . . . . . . . . . . 13

1.5 Sketch of the classification of neutrons based on energy scale along with
the necessary steps taken to get ultracold neutrons (UCNs) from spallation
neutrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Electron energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Proton energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Antineutrino energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The shaded area is the region of the integral for Q++ under the constraint
r < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The shaded area is the region of the integral for Q++ under the constraint
r > 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 The shaded areas I, II and III are the three regions of the integral for Q+�
under the constraint r > 1. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 The shaded areas I and IV are the regions of the integral for Q+� under
the constraint r < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 The UCNB experiment modifies the UCNA superconducting spectrometer
(SCS) to include biasable detection systems and an open decay trap to
determine the proton and electron directions. . . . . . . . . . . . . . . . 51

4.2 The detector mount carries the detector, preamplifier electronics, liquid
nitrogen lines, and allows for high voltage bias up to 30 kV. The inner
stage is in vacuum and the outer stage is in air [3]. . . . . . . . . . . . . 55

4.3 Schematic diagram for the UCNB experimental setup [4]. . . . . . . . . 56
4.4 Schematic diagram for the UCNB simulation geometry. . . . . . . . . . 57

5.1 Detailed setup for the UCNA experiment [5]. . . . . . . . . . . . . . . . . 63
5.2 Schematic of event types in UCNA . . . . . . . . . . . . . . . . . . . . . 64
5.3 The theoretical Qij spectra. . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 (a) Illustration of Q++ (b) Illustration of Q+� [6] . . . . . . . . . . . . . 65

viii



5.5 Magnetic field profile along z-axis. . . . . . . . . . . . . . . . . . . . . . 68
5.6 Backscattering fraction (electron) as a function of the detector distance

(magnetic field B(z)) from the decay trap. . . . . . . . . . . . . . . . . . 69
5.7 Backscattering fraction (proton) as a function of the detector distance

(magnetic field B(z)) from the decay trap. . . . . . . . . . . . . . . . . . 69
5.8 Comparison of the total detected energy and the initial kinetic energy of

electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9 Reconstructed Qij spectra for the simulation with 1⇥ 109 events in which

the bremsstrahlung effects are disabled. . . . . . . . . . . . . . . . . . . 71
5.10 The bremsstrahlung (photon) spectrum. The inset plot shows the distri-

bution of the total detected electron kinetic energy (Sum KE) relative to
its initial kinetic energy (Te,0). . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Reconstructed Qij spectra for the simulation with 1⇥ 109 events in which
the bremsstrahlung effects are enabled. . . . . . . . . . . . . . . . . . . 73

5.12 One-sigma (68.3% CL) sensitivity of the asymmetry ratio rpe to b⌫ for
1⇥ 109 events as a function of the lower edge of an analysis energy window. 75

5.13 One-sigma (68.3% CL) sensitivity for an extraction of b⌫ from the integral
asymmetry h↵xi for 1 ⇥ 109 events as a function of the lower edge of an
analysis energy window. The upper edge of the window is fixed at 700
keV. We again include the 0 keV lower threshold as a statistical reference
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.14 Sensitivity of a combined fit to b and b⌫ . . . . . . . . . . . . . . . . . . 78

ix



Chapter 1 Introduction

The purpose of this dissertation work is to explain in detail the methods that can
be used to extract the �-decay parameter B (neutrino asymmetry) from a realistic
UCNB experiment using the Geant4 Simulation ToolKit. The first chapter starts with
a brief introduction to the standard model formalism and the fundamental particles.
It gives the detailed theory of �-decay and its measurable parameters. The end of
this chapter includes the motivation for carrying out a precision measurement of B in
free neutron �-decay and explores the sensitivity to beyond standard model (BSM)
scalar and tensor interactions.

1.1 The Standard Model (SM)

The Standard Model (SM) is a framework that describes the fundamental build-
ing blocks, or the particles of the universe and their interactions. Since its inception
in the 1970’s, the SM formalism was developed and has been subject to various ex-
perimental tests. In the SM, the particles are described by the theoretical framework
based on quantum field theory (QFT). According to QFT, every particle is an ex-
citation of a parent field, which itself is an object that has different values at every
location in space-time. These fields carry energy and momentum. Every particle
excitation of a particular field is identical. Consequently, SM describes the strong,
weak and electromagnetic interactions in terms of fields in space-time. It is the
unified theory of Electro-Weak Interaction and QCD (Quantum Chromodynamics).
The unified electromagnetic and weak interaction (Electro-Weak Interaction) is de-
scribed by gauge group SU(2)L ⇥ U(1)Y , while QCD is a non-abelian gauge theory,
with symmetry group SU(3)C . Hence, the corresponding gauge group of the SM is
SU(3)C ⇥ SU(2)L ⇥ U(1)Y which is a fundamental symmetry group of nature [7].
Although, at present, it is the most successful theory, it is not sufficient to account
for all observed phenomena in particle physics. As an example, it can not explain the
matter and anti-matter asymmetry (baryon asymmetry) of the universe [8]. Another
drawback of this formalism is failure to unify the gravitational interaction within its
symmetry group. Also, there are open questions on the origin of CP violation and
the existence of a number of free parameters.

1.1.1 Fundamental Particles in the SM

In general, particles are broadly classified according to their spin states. The
particles with half-integral spin are called fermions and those with integral spin are
called bosons. According to quantum mechanics, the wavefunctions for systems of
bosons are symmetric under interchange of any pair of bosons, while those for fermions
are antisymmetric under exchange. Suppose we have two particles located at positions

1



x1 and x2. A wave function  (x1, x2) of the particles is symmetric if

 (x1, x2) =  (x2, x1)

and antisymmetric if
 (x1, x2) = � (x2, x1)

The main consequence of antisymmetry is that the probability of finding two fermions
with identical spin occupying the same location in space is identically zero. This is
the Pauli Exclusion Principle. Unlike fermions, bosons have no such constraints and
any number of bosons can occupy the same space to form a state of matter called a
Bose-Einstein condensate (states of zero momentum).
As shown in the Table 1.1, fundamental fermions according to the SM are quarks

Table 1.1: Quarks and Leptons

Generation 1 2 3

Quarks
u c t
d s b

Leptons
⌫e ⌫µ ⌫⌧
⌫ µ ⌧

(q) and leptons (l). The quarks comes in six flavors as up(u), down(d), charm(c),
strange(s), top (t), and bottom (b). The masses of u and d quarks are about 2.2MeV/c2

and 4.7 MeV/c2 respectively. Similarly, other four quarks, c, s, t and b have their
masses nearly 1.28 GeV/c2, 0.096 GeV/c2, 173.1 GeV/c2 and 4.18 GeV/c2 respec-
tively [9]. The quarks in the top row of the table are called up-type quarks, and
each has electric charge, Q = +2

3e (e denotes the magnitude of the electron charge,
e = 1.6 ⇥ 10�19 C). The second row are called down-type quarks and have charge,
Q = �

1
3e. Quarks do not exist independently but they exist as hadrons (particles that

interact by the strong interaction). Mesons are a bound states of a quark-antiquark
pair (qq̄) . The heavier hadrons are called baryons and made up of three quarks (qqq).
Mesons are bosons, while the baryons are fermions. The color part of state functions
of baryons (qqq) is an SU(3) singlet, a completely antisymmetric state of three color
charges. Consequently, a baryon (qqq) has state function which is antisymmetric
under the interchange of any two equal-mass quarks (u and d quarks in the limit of
isospin symmetry) [9].

Similarly, there are six known lepton flavors which are either electrically charged
or neutral. The charged leptons are the electron (e), muon (µ), and tau (⌧), and each
has electric charge, Q = �e. These particles appear at the bottom of the table. The
mass of the electron is ⇠ 0.511 MeV/c2 and that of the muon is ⇠ 105.65 MeV/c2.
The heaviest of all leptons is the tau lepton and has mass ⇠ 1776.86 MeV/c2 [9].
Each charged lepton has an associated electrically neutral (Q = 0) particle called
the neutrino(⌫) and appears on the third row of the particle table (Table 1.1). The
columns of the table are groupings, typically known as generations. Hence, there are
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three generations of quarks and leptons which are ordered according to the mass hi-
erarchy. Even though neutrinos(⌫) fall in the three generations but their masses are
insignificant compared to other particles. Nevertheless, neutrino oscillation experi-
ments [10] shows that they have finite mass less than an ⇠ eV and the mass ordering
is maintained in three generations.

Apart from this, there are mediating particles that mediate the interactions among
the different fermions. These are vector and scalar bosons. The vector bosons are
spin-1 particles and consist of the photon (�), gluon (g), and W (W+, W� and
Z) bosons. Photons are the particles responsible for the electromagnetic force and
interact with all electrically charged particles. Gluons, on the other hand, bind quarks
together to make hadrons and mediate the strong force. The W and Z bosons mediate
a wide variety of interactions between and among quarks and leptons and are carriers
of the weak force. These bosons were discovered in 1983 by physicists at the Super
Proton Synchrotron located at CERN [11]. The photon, gluon, and Z bosons are
electrically neutral (Q = 0), while the W boson has electric charge (Q = ±e). The
photon and gluon are also massless particles, while the W and Z bosons are each
quite massive, having mass around 80.0 GeV/c2 and 91.0 GeV/c2 respectively [12].
As a result, the W and Z bosons have relatively short lifetimes ( ⇡ 3⇥ 10�25 s) and
mediate interactions only over short distances. As of today’s experimental limitations
on particle physics, we know there exists one scalar boson called the Higgs boson,
which was discovered in proton-proton collisions with the ATLAS detector at the
LHC [13] in 2012. It is electrically neutral and massive, with mass about 125 GeV/c2.
This boson is an excitation of the Higgs field, and plays a crucial role in imparting
mass to all fermions and the W and Z bosons. Hence, there are 12 fundamental
fermions and 4 fundamental bosons in the SM of elementary particles.

1.1.2 Neutron

After a brief description of the fundamental particles in SM, let us take a moment
to give a very brief introduction of the neutron, a particle discovered by Chadwick
in 1932 [14]. Since, most of my dissertation work is based on neutron �-decay, it is
important to look at some properties of the neutron. Neutron is a baryon composed
of three quarks ( one u and two d’s ) from the first generation. It is electrically
neutral and has mass ⇠ 1 GeV/c2. It has small electric dipole moment (EDM),
|dn| < 1.8 ⇥ 10�26 e cm (90% C.L.) ( [15], [16], [17]). The existence of a non-
zero neutron EDM would be the direct evidence of physics violating time-reversal
symmetry ( [18], [19], [20], [21], [22]). The proton is also a baryon and is composed of
three quarks (two u’s and one d) with net charge, Q = +e. The proton and neutron,
also called a nucleon have comparable masses.

1.1.3 Neutron �-decay

This dissertation work is mostly centered around the decay of free neutrons, a
semi-leptonic process (where leptons and quarks are involved) of the weak interaction,
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which violates parity. The neutron is a suitable baryon for such processes, because
studying neutron decay has the advantage of lacking a nuclear structure, compared
to nuclear �-decay, where the neutron is bound to the nucleus1. A free neutron is
unstable with an average life time of about 879.4±0.6 s [23]. Consequently, it decays
to a proton (p) and an electron (e) with the emission of an anti-neutrino (⌫̄e).

n ! p+ e� + ⌫̄e (1.1)

(a) (b)

Figure 1.1: (a) �-decay spectrum. (b) The decay of a free neutron giving three
particles, proton, electron and associated antineutrino and their direction relative to
the neutron spin.

In the decay of a free polarized neutron (Figure 1.1 (b)), the spin of the neutron
is correlated with the momenta of the decaying products. Therefore, a precise mea-
surement of these correlation coefficients allows detailed tests of the Standard Model
(SM) and physics beyond the Standard Model (BSM)( [24], [25], [26] ). The energy
spectrum is continuous from the conservation law of energy-momentum for the three-
body �-decay. The endpoint kinetic energy of electron (Te) is about 782 keV (see
Figure 1.1 (a)) and the maximum kinetic energy of proton (Tp) is about 751 eV .

1.2 Fermi Theory of �-Decay

In the early 1930’s, there were many attempts made to explain nuclear �-decay
which was assumed to be a two-body decay process. The �-spectrum for the two-
body decay (parent nucleus decaying to a daughter nucleus with emission of �-rays)
should give a discrete energy spectrum, but it is continuous. The difference in the
masses of the decaying nucleus and the products did not add up to the energy av-
eraged over the whole of the �-spectrum. At this point, Wolfgang Pauli (1930) took

1In a nuclear �-decay, it is not easy to study the correlations of momenta of various particle
emitted due to many body and finite size effects.
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Table 1.2: Bilinear Invariants in Dirac Theory

Operators Parity Transformation Number of Nonzero Elements
 ̄ Scalar (S) 1
 ̄�µ Vector (V ) 4
 ̄�µ⌫ Tensor (T ) 6
 ̄�µ�5 Axial Vector (A) 4
 ̄�5 Pseudoscalar (P ) 1

a bold step and suggested a three-body decay process to explain the �-spectrum,
introducing a third particle based on the energy-momentum conservation laws. This
‘third particle’ must have negligible mass, carry an intrinsic spin momentum 1

2~ and
at some point be capable of carrying all of the electron energy. It must not interact
electromagnetically, so it must be an electrically neutral particle. The introduction
of this particle explained the continuous energy spectrum of nuclear �-decay. Soon
after the discovery of the neutron by Chadwick in 1932 [14], this particle was named
‘neutrino’ by Fermi in reference to the neutral particle (neutron) that resides inside
the nucleus of an atom. Fermi developed the theory of �-decay based on the Pauli

Figure 1.2: Fermi’s analogy of four-fermion interaction to the electrodynamics [1].

neutrino hypothesis2. Analogous to the vector interaction in electrodynamics (see
Figure 1.2), Fermi considered the Hamiltonian [27] for �-decay as a vector-vector
interaction given by

H
�(x) = CV  ̄p(x)�µ n(x) ̄e(x)�

µ ⌫̄(x), (1.2)

where CV is the vector coupling constant and  (x)’s are the fields (Dirac fields)
associated with each particle. The quantity  ̄p(x)�µ n(x) is a vector current and the
Hamiltonian involves a current ⇥ current interaction. In the system of units with
~ = 1 and c = 1, the charge of an electron is dimensionless and the coupling constant
CV has a dimension of M�2 making it an effective coupling constant (Fermi Constant

2At that time the neutrino was only a hypothetical particle introduced to explain the continuous
energy spectrum in �-decay using the energy-momentum conservation laws. It was only in 1954 that
neutrinos were "discovered" when Cowan and Reines detected the emission of antineutrinos from
the nuclear reactor. Reines received the Nobel Prize in 1995 for this discovery.
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GF ). The form of the Hamiltonian proposed by Fermi is not sufficient to explain the
different types of nuclear �-decay and needs to be modified. In this Hamiltonian,
four fermions interact at one vertex, and all the vector currents are calculated at
the same point in space-time without consideration of force carriers. This is a four-
fermion contact interaction vertex governed by one coupling constant (GF ). The
theory successfully explains the continuous �-spectrum of the nuclei in which there is
no change in the spin angular momentum (�S = 0) and parity due to the vector ⇥

vector nature of the Fermi interaction. The nuclear �-decays involving the change in
spin angular momentum and parity are not allowed transitions according to this form
of Hamiltonian. In 1936, Gamow and Teller [28] predicted the spins of the decay
products of the 233Th nucleus accurately, in which they showed that the current
⇥ current interaction is equivalent to an axial vector (A) in the Fermi Hamiltonian.
Hence, the Fermi Hamiltonian given by Eqn.1.2 required some modification to include
all the possible bilinear convariants (Lorentz invariants) terms in Dirac theory. The
generalized Fermi Hamiltonian becomes,

H
�(x) =

X

i=S,V,T,A,P

Ci ̄p(x)Oi n(x) ̄e(x)O
i ⌫̄(x), (1.3)

where, Oi
⌘ (1, �µ, �µ⌫ , �µ�5, �5). The coefficients, Ci ⌘ (CS, CV , CT , CA, CP ) are the

coupling constants corresponding to each current in the Hamiltonian. More explicitly,
the Hamiltonian can be written as,

H
�(x) = CS ̄p(x) n(x) ̄e(x) ⌫̄(x) + CV  ̄p(x)�µ n(x) ̄e(x)�

µ ⌫̄(x)

+ CT  ̄p(x)�µ⌫ n(x) ̄e(x)�
µ⌫ ⌫̄(x) + CA ̄p(x)�µ�

5 n(x) ̄e(x)�
µ�5 ⌫̄(x)

+ CP  ̄p(x)�
5 n(x) ̄e(x)�

5 ⌫̄(x) (1.4)

This is a typical Hamiltonian which includes the currents of the forms S⇥S, V ⇥ V ,
T ⇥ T , A⇥ A and P ⇥ P and there is no mixing of different currents. This is still a
current ⇥ current theory similar to Eqn. 1.2 except with all bilinear invariants taken
into account.

1.2.1 �- Decay Selection Rules

When the nuclei undergo �-decay, most contributions come from transitions in
which electron and antineutrino are produced in S-states with orbital momenta equal
to zero. It follows from the vector nature of the Fermi Hamiltonian that the spins
and parities of the initial and final nuclei must be equal for allowed transitions. This
is called the Fermi selection rule, i.e

�J = Jf � Ji = 0,

�⇡ = ⇡f � ⇡i = 0,

where (Ji, ⇡i) and (Jf , ⇡f ) are the spin-parity of the initial and final nucleus. Thus,
under the Fermi selection rule, the electron and antineutrino are produced in a singlet
state with the net spin, �S = 0 which corresponds to scalar (S) and vector (V )
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interactions.
If the electron and antineutrino are produced in the triplet state (S = 1) in this case
for the allowed transition the total angular momentum of the final state is equal to
Jf = Ji ± 1 or Jf = Ji (for Ji = 0 the total final angular momentum is equal to 1).
This is called the Gamow-Teller selection rule [28], i.e,

�J = Jf � Ji = ±1, 0,

�⇡ = ⇡f � ⇡i = 0,

and the transition (0+ ! 0+ ) is forbidden. This transition corresponds to the axial
vector (A) and tensor (T ) interactions. Experimentally, all the nuclear �-decays were
found to satisfy the Fermi and Gamow-Teller (GT) transition rules. Hence, the Fermi
Hamiltonian for the �-decay given by Eqn. 1.4 must be modified to account for the
observed interactions.

1.2.2 Parity Violation in Weak Interaction

The fundamental discrete symmetries in the Standard Model are parity (P), charge
conjugation (C) and time-reversal (T). In the early 1950’s, these symmetries were
assumed to be separately conserved in all the interactions. Consequently, the two
particles ✓+ and ⌧+ were considered as distinct particles as they decay to give products
(two and three pions respectively), with opposite parities.

✓+ = ⇡+ + ⇡0

⌧+ = ⇡+ + ⇡+ + ⇡�

If parity is strictly conserved, then the two particles must be different. But, several
experiments showed that they have same mass and same lifetimes. It was only in
1956, Lee and Yang [29] proposed that there is no evidence of parity being conserved
in weak interactions. As a result, the (⌧ � ✓) puzzle was solved by allowing parity
violation in the two decay modes of the same particle, K+ meson. In the general Fermi
theory (see Eqn. 1.4), all the couplings are of types vector ⇥ vector and there are not
any admixture terms. This means that, each term in this Hamiltonian transforms
as a scalar under the parity operation. As an example, if we consider a term with
pseudoscalar ( �µ�5 ) current, the parity operation gives, � �µ�5 and the product
of these two terms transforms as a scalar. Overall, the Hamiltonian is strictly parity
conserving and not useful as it does not take into account parity violation in the weak
interaction. Hence, Lee and Yang [29] modified the Fermi Hamiltonian by writing
down the five usual types of currents and in addition to these they introduced the five
types of currents that conserved angular momentum but not parity. If parity is not
conserved in �-decay, the most general form of the Hamiltonian according to them
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can be written as,

H
�(x) =  ̄p(x) n(x)

⇣
CS ̄e(x) ⌫̄(x) + C 0

S ̄e(x)�
5 ⌫̄(x)

⌘

+  ̄p(x)�µ n(x)
⇣
CV  ̄e(x)�

µ ⌫̄(x) + C 0
V  ̄e(x)�

µ�5 ⌫̄(x)
⌘

+  ̄p(x)�µ⌫ n(x)
⇣
CT  ̄e(x)�

µ⌫ ⌫̄(x) + C 0
T  ̄e(x)�

µ⌫�5 ⌫̄(x)
⌘

+  ̄p(x)�µ�
5 n(x)

⇣
CA ̄e(x)�

µ�5 ⌫̄(x) + C 0
A ̄e(x)�

µ ⌫̄(x)
⌘

+  ̄p(x)�µ�
5 n(x)

⇣
CP  ̄e(x)�

5 ⌫̄(x) + C 0
P  ̄e(x) ⌫̄(x)

⌘
+ h.c. (1.5)

All of the coefficients Ci and C 0
i are real if time-reversal symmetry is preserved in

�-decay (see Table 1.3). This form of Hamiltonian still obeys the selection rules

Table 1.3: Discrete Symmetries and Ci, C 0
i

Symmetry Conditions for Violation
C (Re(Ci) 6= 0 and Re(C 0

i) 6= 0) or (Im(Ci) 6= 0 and Im(C 0
i) 6= 0)

P Ci 6= 0 and C 0
i 6= 0

T Im(Ci/Cj) 6= 0 or Im(C 0
i/Cj) 6= 0

(both Fermi and Gamow-Teller) because all the observables are proportional to |Ci|
2

and |C 0
i|
2 (there is no interference between parity-conserving and parity-violating

parts). The interference term CiC 0
i occurs only when a pseudoscalar is formed from

the experimentally measured quantities such as momentum and the spin (CiC 0
i ~p.~� ).

The presence of such a pseudoscalar term in the Hamiltonian is responsible for parity
violation. Lee and Yang worked out the number of possible ways to quantify parity
violation in the weak interactions. They also suggested polarized neutron �-decay as
a possible candidate to directly observe parity violation. The angular distribution of
emitted �-particles in such a decay is given by

I(✓)d✓ / (1 + ↵ cos(✓))d✓, (1.6)

They showed that the asymmetry ↵ is proportional to pseudoscalar ( CiC 0
i ) and if

↵ 6= 0, then it would prove parity violation in the weak interaction. Hence, one should
design an experiment that would give the intensity distribution as a function of angle
(✓) between the polarized decaying nucleus and the outgoing �-particle.

1.2.3 First Experiment on Parity Violation

Soon after the proposed experiments on parity violation in �-decay and other weak
interactions by Lee and Yang [29], Wu et al. worked out a setup to test it. They
considered the �-decay of polarized 60Co nucleus (a decay allowed by the Gamow-
Teller selection rule) for their experiment to study the potential asymmetry in the
�-ray emission.

60Co ! 60Ni+ e� + ⌫̄e
�J = 1, �⇡ = 0 (5+ ! 4+)
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(a) (b)

Figure 1.3: (a) Schematic diagram of Wu’s experimental set up. (b) Data from Wu
et al. experiment [2] measuring the correlation between the emitted direction of the
electron from the decay of polarized 60Co.

The experiment was designed so that 60Co nuclei initially polarized in either ±z
directions are allowed to decay in a cryostat and the intensities of the electron beam
emitted at angles ✓ and (⇡ � ✓) were measured (see Figure 1.3 (a)). In Figure 1.3
(b), the results of Wu et al.’s actual experiment [2] is shown. The plot shows, two
curves of normalized counting rates when the spin of the 60Co nuclei were oriented
anti-parallel with respect to the detector. The two curves indicate the parity violation
because the electrons are emitted preferentially in the direction opposite to the spin
of the nucleus. The spin relaxation time of 60Co nuclei exactly coincides with the
disappearance of the splitting of the two curves. These results prove unequivocally,
the violation of parity in �-decay which have pseudoscalar (~p.~�), tensor (T ) and axial
vector (A) terms in the Hamiltonian. After this pioneering experiment by Wu et
al. in the same year, Richard, Lederman and Weinrich [30] confirmed the violation
of parity from the experiment proposed by Lee and Yang. In this experiment, they
studied the the successive decay of ⇡+ mesons,

⇡+
! µ+ + ⌫µ

µ+
! e+ + ⌫e + ⌫̄µ

and measured the possibility of a non-zero correlation between polarization of the
subsequent decay products, µ+ and the electron momentum. The asymmetry be-
tween the decay of polarized muons and electrons was determined in the similar way
as Cobalt �-decay. They found a non-zero asymmetry value which is the absolute
proof of the parity violation in weak interactions. These were the most important
experiments which triggered the rapid progress in understanding of the underlying
nature of the weak interactions.

1.2.4 Two-Component Neutrino Theory

Soon after the discovery of parity violation in the �-decay process, Landau [31],
Salem [32], Lee and Yang [33] and Marshak [34] made enormous progress in un-

9



derstanding the theory of weak interactions. They proposed the theory of the two-
component neutrino. This theory is based on the assumption that the neutrino is
a massless particle and only left handed neutrinos appear in the Hamiltonian. As
we now know that neutrinos have negligibly small mass (from neutrino oscillation
experiments) different from zero and the theory is still incomplete. They came to
an idea of a possible connection of the violation of parity observed in �-decay and
other weak processes involving neutrinos. The neutrino field  ⌫(x) satisfies the Dirac
equation,

(i�µ@µ �m⌫) ⌫(x) = 0 (1.7)

where, m⌫ is the mass of the neutrino. The neutrino field can be expressed as a sum
of the two helicity states as

 ⌫(x) =  L
⌫ (x) +  R

⌫ (x), (1.8)

where,  L
⌫ (x) = 1

2(1 � �5) ⌫(x) and  R
⌫ (x) = 1

2(1 + �5) ⌫(x). Substituting these
helicity states into the Dirac equation and letting the mass of the neutrino be zero
(m⌫ = 0), the coupled equation becomes decoupled in the two states as  L

⌫ (x) or
 R
⌫ (x) given by

i�µ@µ 
L,R
⌫ (x) = 0 (1.9)

Hence, for m⌫ = 0, the neutrino field can either be left-handed ( L
⌫ (x)) or right-

handed (  R
⌫ (x)). Also under parity,  ⌫(x) transforms as

P ⌫(t, ~x)P = ⌘a�
0 ⌫(t,�~x) (1.10)

where ⌘a is some phase factor which is restricted by the condition that two successive
applications of the parity operator should retrieve observables to their original values.
This requires that the phase factor must satisfy ⌘2a = ±1. Finally, under the parity
operation, the two neutrino states transform as

P L,R
⌫ (x)P = ⌘a�

0 R,L
⌫ (x) (1.11)

Thus, parity is maximally violated in the process in which neutrinos are present and
only helicity states (left or right-handed neutrinos) take part in the weak interactions.
In 1958, Goldhaber and his collaborators [35], confirmed the two-component neutrino
theory and also measured the helicity of the emitted neutrino3. They found that,
only the left handed neutrinos take part in the weak interaction. This led to the
formulation of the universal V � A interaction in weak processes involving only left-
handed fermions.

3The neutrino helicity was obtained from the measurement of the circular polarization of �’s
produced in the chain of reactions

e� +152 Eu ! ⌫ +152 Sm⇤
!

152 Sm+ �

The circular polarization of �’s emitted in the direction of the 152Sm⇤ momentum is equal to the
helicity of the neutrino ( [35], [36]).
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1.2.5 V � A Interaction

After the discovery of parity violation by T.D Lee , Yang and Wu et al. [29], it
was found that these involve only the left-handed components of all fermion fields
including the massless neutrino field in the Hamiltonian of the weak interaction.
These left-handed fermions can be expressed as

 L(x) =
1

2
(1� �5) (x) = a (x) (1.12)

where a = 1
2 (1� �5) is a projection operator and �5 is a Dirac matrix. Soon after

the left-handedness of the fermion fields was proposed [29], Feynmann and Gell-
Mann developed a theory of weak interactions. They modified the weak interaction
Hamiltonian developed by Fermi [27] to a parity non-conserving one. The most
general Hamiltonian according to Fermi [25] for �-decay (Ref. Eqn. 1.2) is given by

H
�
I(x) =

X

i

Gi ̄
L
p (x)Oi 

L
n (x) ̄

L
e (x)O

i L
⌫̄ (x) + h.c. (1.13)

where the Gi’s are coupling constants to be discussed, the operators Oi’s are some
Lorentz invariant quantities and  p(x),  n(x),  e(x) and  ⌫̄(x) are proton, neutron,
electron and antineutrino fields respectively. It is clear that the Hamiltonian contains
only chiral fermionic fields. In this Hamiltonian, each bilinear term can be expressed
as

 ̄L
p (x)Oi 

L
n (x) =

h
 ̄p(x)a

i
Oi

h
a n(x)

i
=  ̄p(x)

h
aOia

i
 ̄n(x) =  ̄p(x)

h
O0

i

i
 n(x)

where O0
i = āOia is the chirality projected operator. In the case of QED, the operator

O0
i is simply given by a vector �µ, whereas in the weak interaction, the matrix elements

are restricted by left-handed fermions and the effective currents are to be evaluated
for all the possible bilinear covariants listed in the Table 1.2. Using the properties
of the projection operators and replacing Oi by S, V , A, P and T operators, the
effective coupling O0

i can be calculated (Ref. Appendix A.2). For vector(V ) and axial
vector (A) respectively, we get

O0
i = āOia = �µa (1.14)

and
O0

i = āOia = ��µa (1.15)

We see that for operators S, P and T , the contributions to the Hamiltonian are zero.
The effective current is nonzero only for V and A operators. The effective interaction
Hamiltonian of the �-decay becomes

H
�
I(x) =

GF
p
2
4 ̄L

p (x)�µ 
L
n (x) ̄

L
e (x)�

µ L
⌫̄ (x) + h.c..

=
GF
p
2
 ̄p(x)�µ(1� �5) n(x) ̄e(x)�

µ(1� �5) ⌫̄(x) + h.c.. (1.16)
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where GF is the Fermi constant. The numerical factors in the Hamiltonian are chosen
to make the expression analogous to the four-fermion contact interaction so that it
has only one universal coupling constant GF [37]. Thus, the charge-changing (CC)
weak interaction involves only (V � A) currents. The fact that only chiral fermions
take part in the weak interaction insists that only V � A currents exist and the
Hamiltonian does not conserve parity. The Eqn. 1.16 can be written as

H
�
I(x) =

GF
p
2
JµL

µ + h.c.. (1.17)

where, Jµ =  ̄p(x)�µ(1��5) n(x) and Lµ =  ̄e(x)�µ(1��5) ⌫̄(x) are called hadronic
and leptonic currents respectively.

1.2.6 Propagator

In 1935, Yukawa made his first attempt to explain the nature of nuclear forces
based on meson exchange between the nucleons 4 [38]. On the basis of his theory,
the weak interaction is mediated by an exchange of a massive boson between the two
involved currents at different points in space-time. When a free neutron decays at the
quark level, only one down (d) quark changes flavor to up quark (u) while the other
two quarks (spectator quarks) do not change flavor ( see Figure 1.4 (a) for Feynman
diagram). The interaction from quark vertex to the lepton vertex is mediated by the
vector boson (W�). From the view point of QFT, the propagator is given by

Dµ⌫(q
2) =

�i

q2 �M2
W

h
gµ⌫ �

qµq⌫
M2

W

i
(1.18)

where, gµ⌫ is a metric tensor, MW is the mass of the virtual W� boson and q is
the momentum transfer. According to this formalism, in the first step, one of the d
quarks of the neutron emits a virtual W� boson and itself transforms to a u quark.
Next, the virtual boson propagates from the vertex formed by an up quark (u) and
a down quark (d) to the weak vertex and subsequently decays to an electron and an
antineutrino.

The currents are calculated at two different points in space-time. The currents
are still a V �A type, but vector and axial components in the hadronic current have
different coupling constants than the corresponding leptonic current at the lepton
vertex. The mass of the W� boson is about 80 GeV and the momentum transfer
q is of the order 1 MeV so in the limit of low momentum transfer (q2 ! 0), the
propagator reduces to,

Dµ⌫ =
igµ⌫
M2

W

(1.19)

Thus, in the limit of large boson mass and low momentum transfer, the interaction
reduces to an effective four-fermion interaction (( see Figure 1.4 (b)). From this point
of view, Fermi theory is valid at low energy and is only an approximation. So, by

4At that time, neutrons and proton were considered as fundamental particles.
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(a) (b)

Figure 1.4: (a) Neutron decay at quark level with two spectator quarks. The neu-
tron (udd) decays into the proton (udu) by emitting an electron and an associated
antineutrino via a W� massive vector boson. (b) Neutron decay at four fermion
contact interaction level.

comparing the coupling strengths in the Hamiltonian given by Fermi theory, one can
make a connection between Fermi constant GF and weak coupling constant gw by,

GF
p
2
=
h gw
2
p
2MW

i2
(~c)3 (1.20)

The experimental value of the Fermi constant measured from the decay of muons is
GF = 1.16637 ⇥ 10�5 GeV �2 in natural units [9]. The actual processes involved in
the decay are quite complex and will be discussed in the next section.

1.3 Hadronic and Leptonic Currents

The interaction Hamiltonian for �-decay ( see Eqn. 1.17) , involves two currents
at two vertices. The current Jµ is the current evaluated at the quark vertex and the
current Lµ is evaluated at the lepton vertex in the decay process. These currents are
of the type V �A and have the same vector and axial vector coupling constants. The
only difference between them is, one corresponds to the hadron and other belongs
to the lepton. In the case of the leptonic current, equal relative strengths of the
vector and axial vector couplings allow parity to be violated maximally in the weak
interaction. This is not exactly the case with the hadronic current as the neutron and
proton are not fundamental particles. In the decay process of the neutron, only one
quark changes flavor in the background of the other two quarks (spectator quarks,
which do not take part in the interaction). Obviously, the relative strength of the
couplings between the vector and axial vector are completely different.

H
�
I(x) =

GF
p
2
 ̄p(x)(gV �µ + gA�µ�5) n(x) ̄e(x)�

µ(1� �5) ⌫̄(x) + h.c. (1.21)
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where, the new coupling constants gV and gA are called the vector and axial coupling
constants. For the leptonic case, gV = 1 and gA = �1, whereas in the case of hadronic
interaction, these values are different from 1 and �1 respectively. The presence of
these couplings � ⌘

gA
gV

6= �1 makes the hadronic part more complex. The complexity
gets even more severe due to the nature of the weak interaction among the quarks
through mixing matrix [39] which will be discussed later.

1.3.1 The CKM Matrix

The weak couplings between the three generations of quarks is not one to one,
rather they interact as an admixture of quark mass states through a unitary rotation
matrix. This idea of a mixing matrix was proposed by Kobayashi and Maskawa in
order to take into account of the weak interactions in the quarks sector. It was an
extension to the 2⇥ 2 matrix proposed by Cabibbo in 1974. Cabibbo was able to ex-
plain the mixing of just two quarks responsible for modification of hadronic currents
5 in terms of the Cabibbo angle ( [40], [41] [39] ). The Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix is defined as the transformation matrix from the weak to the
mass eigenstates of three generation of quarks [42].

0

@
d0

s0

b0

1

A =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A

0

@
d
s
b

1

A = VCKM

0

@
d
s
b

1

A (1.22)

where the d, s, and b denote the mass eigenstates and the primed are the weak eigen-
states of the down, strange and bottom quarks respectively. The weak eigenstates of
quarks exist as pairs given by,

✓
u
d0

◆
,

✓
c
s0

◆
,

✓
t
b0

◆

The elements in the CKM matrix are in general complex numbers and are the funda-
mental parameters of the SM. The element of the CKM matrix, Vij, determines the
coupling of quark i to quark j and is responsible for modifying the hadronic currents.
The unitarity condition of the CKM-matrix requires that the matrix elements satisfy
the normalization condition

X

i

VijV
†
ik = �jk

X

j

VijV
†
kj = �ik

(1.23)

and the orthogonality condition
X

k

VikV
†
kj =

X

k

V †
ikVkj = 0 (1.24)

5The Cabibbo-hadronic current is Jµ = cos ✓CJµ(�S = 0) + sin ✓CJµ(�S = 1), �S is the
change in the strangeness of the quarks involved and sin ✓C ⇠ 0.225. At the quark level, this is
equivalent to replacing the d-quark field by the linear combination of d and s-quark fields: d(x) !
d0(x) = cos ✓Cd(x) + sin ✓Cs(x).
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The Standard Model insists that the mixing matrix is strictly unitary but it itself does
not provide any values of its elements [43]. These are to be determined experimentally.
Hence, precise measurements of these parameters is important and has been done
by studying the decay products of mesons and baryons that take into account the
quarks from all three generations. As an example, the most accurate determination
of Vud comes from superallowed (0+ ! 0+) nuclear �-decays, which are pure vector
transitions [44]. It can also be obtained from the measurement of the neutron lifetime
and from the measurement of the �-decay asymmetry of the free neutron ( [45],
[46]). William J. Marciano and Alberto Sirlin [47] used higher order perturbative
QCD results to obtain the value of Vud ⇠ 0.97377. Similarly, the other CKM-matrix
elements are determined from the semileptonic decays of respective mesons. If we
consider the first row of the mixing matrix, the unitary condition becomes

���Vud

���
2

+
���Vus

���
2

+
���Vub

���
2

= 1 (1.25)

Using the experimental values 6 of these matrix elements, the top-row unitarity con-
dition gives

���Vud

���
2

+
���Vus

���
2

+
���Vub

���
2

= 0.9994± 0.0005. (1.26)

So far, SM prediction on the properties of CKM matrix is not violated as the de-
viation from unity is quite small (<0.07%). Any deviation from unitarity would be
an indication of physics beyond the Standard Model. It is clear that, most of the
contributions to the unitarity come from Vud. It has to be measured as precisely as
possible compared to the other terms in the top-row of the mixing matrix.

The unitary matrix can be specified by four parameters7: three rotation angles
✓12, ✓13, ✓23 and one phase � as ( [48], [49] )

VCKM =

0

@
1 0 0
0 c23 V23

0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13e�i� 0 c13

1

A

0

@
c12 s12 0
�s12 c12 0
0 0 1

1

A (1.27)

where cij = cos(✓ij) and sij = sin(✓ij). The presence of phase � introduces CP
violation with three quark generations. For CP invariance, the matrix VCKM must
be real (� = 0). The CP violating phase can also be expressed in terms of the
Jarlskog invariant J [50] defined by

J = s21s2s3c1c2c3 sin(�) (1.28)

where, si = sin(✓i) and ci = cos(✓i). It is clear that CP (J = 0) is conserved if any of
the conditions: ✓i = 0, ✓i = ⇡/2, � = 0 and � = ⇡ is satisfied. With two generations

6
���Vud

��� = 0.97420± 0.00021,
���Vus

��� = 0.2243± 0.0005 and
���Vub

��� = (3.94± 0.36)⇥ 10�3

7The matrix VCKM can be specified by n2 parameters, one phase can be absorbed into the
definition of each of the 2n quarks minus the overall phase. So VCKM has n2

� (2n� 1) = (n� 1)2

parameters to be determined [43].
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of quarks, the mixing matrix becomes,

VCabibbo =

✓
cos(✓C) sin(✓C)
� sin(✓C) cos(✓C)

◆
(1.29)

in which case there is only one parameter, the Cabibbo angle ✓C and the 2⇥2 matrix
is always real and there is no CP violation [40]. The CKM matrix has another
representation in terms of � = sin(✓C) ⇠ 0.225 and the other three parameters,
maintaining the unitarity condition up to third order in � known as the Wolfenstein
parameterization [51]. One of the major objectives of the present work is to obtain
the value of the first element |Vud| of the mixing matrix from precision measurements
of the �-decay parameters of free neutrons.

1.3.2 Hadronic Matrix

The matrix element for �-decay is given by

M� =
GFVud
p
2

h p(p)|J
µ
| n(p)iLµ (1.30)

where, Vud is the first element of the CKM matrix. The leptonic current Lµ is given
by

Lµ =  ̄e(pe)�µ(1� �5) ⌫̄(p⌫) (1.31)

and the hadronic current can be expressed as

h p(p)|J
µ
| n(p)i = V µ

� Aµ (1.32)

where
V µ = h p(p)|�

µ
| n(p)i (1.33)

and
Aµ = h p(p)|�

µ�5| n(p)i (1.34)

In general, V and A are complicated functions due to strong interaction effects.
However, since V is one of the bilinear invariants in the Dirac theory, it must be
constructed from all the possible vectors available. With the same argument, A must
be constructed from all the axial vectors which are bilinear invariants. Since, all
currents in Jµ are constructed out of vectors and axial vectors, the matrix element
for the �-decay is either scalar or pseudoscalar. According to S. Gardner and Zhang
[52], applying the Lorentz and translational invariance, the nucleon weak current
h ̄p(p)|Jµ

| n(p)i has six non-vanishing terms given by

h p(p
0)|Jµ

| n(p)i =  ̄p(p
0)
h
f1(q

2)�µ � i
f2(q2)

M
�µ⌫q⌫ +

f3(q2)

M
qµ

+ g1(q
2)�µ�5 � i

g2(q2)

M
�µ⌫�5q⌫ +

g3(q2)

M
�5q

µ
i
 n(p)

(1.35)

where q = p � p0 is the momentum transfer from the neutron to the proton and M
is the mass of the neutron. The form factors f1, f2,f3, g1, g2 and g3 are arbitrary
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functions of q2. The form factors f1 and g1 correspond to the vector (gV ) and axial
(gA) coupling constants in the limit, q2 ! 0 (see Eqn. 1.21) that constitute the current
due to the weak interaction. The other form factors give the hadronic modification
to the weak interaction due to the presence of strong interaction. The form factors
f1 and g1 are the leading order terms associated with Fermi and GT transitions in
the �-decay.

The vector (V ) part of the weak interaction has close resemblance to the cur-
rent in the electromagnetic interaction (a vector interaction with conserved electric
charge). The electric charge which is same as the coupling constant in the electro-
magnetic interaction which is strictly conserved even in the strong interaction. In the
same way, it is assumed that the vector part of the weak interaction has a strictly
conserved coupling constant. This is known as the Conserved Vector Current (CVC)
hypothesis [53]. This means that the vector form factor gV can be taken to be unity.
The stronger form of the CVC hypothesis can be formulated in terms of isospin
in which the neutron and proton are two components of the same nucleon spinor,
 = (up, un)T ,  ̄ = (ūp, ūn) and using the Pauli’s matrices, ~⌧ = (⌧1, ⌧2, ⌧3), we can
write the electromagnetic and weak vector currents as

Jµ
em =

1

2
 ̄�µ(I + ⌧3) , V µ =

1

2
 ̄�µ(⌧1 + i⌧2) (1.36)

where Jµ
em = hūp|�µ|upi and V µ = hūp|�µ|uni are the hadronic current of the elec-

tromagnetic interaction and the vector current of the weak interaction respectively.
The isoscalar part of the electromagnetic current is conserved i.e, @µ( ̄�µ ) = 0 and
the rest of the isovector currents are assumed to be the different components of the
isospin current,

Iµi =
1

2
 ̄�µ⌧i (1.37)

and is conserved (@µIµi = 0). But in QCD, the Hamiltonian has the term proportional
to (mu �md)(ūu� d̄d) due to the presence of quarks and calculations [54] show that
@µI

µ
i / (mu � md)2 6= 0. Thus, the CVC hypothesis (isotriplet hypothesis) is true

only if the masses of the two quarks are comparable.
The form factor f2 is a weak magnetism contribution to the current. Assuming

the CVC hypothesis and in the limit q2 ! 0, f2(0) = (p � n)/2, where p and n
are the magnetic moments of the proton and neutron respectively. The form factor
g3 is the induced pseudoscalar term and its effect is that it produces a distortion on
the energy spectrum which is of the order m2

e/MEe ⇠ 10�4. The induced scalar form
factor f3 and induced tensor form factor g2 are called second-class currents (SCC) [55].
These form factors appear due to the violation of G-parity [56] in weak interactions.
G-parity is defined as the rotation by ⇡ around the 2-axis of isospin (I) space followed
by a charge conjugation (C).

G = Cei⇡I2 (1.38)

The G-parity is always conserved in the strong interaction, so if one assumes that
G-parity is also conserved in the weak interactions, the form factors f3 and g2 must
vanish in the hadronic current of the �-decay matrix element.
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1.4 Angular Correlation Coefficients

The couplings Ci and C 0
i in the general expression of the interaction Hamiltonian

given by Lee and Yang (see Eqn. 1.5) are to be evaluated in terms of measurable
parameters in �-decay. The expression for the differential decay rate for oriented
nuclei as a function of the emitted electron momentum, the neutrino momentum, and
the nuclear spin of the decaying nucleus was initially derived by Jackson, Treiman,
and Wyld ( [57] [58], [59] ) using the Hamiltonian suggested by Lee and Yang. They
obtained an expression for the decay rate of the oriented nucleus (allowed transition
�J = 0,±1), assuming that the momentum but not the spin of the outgoing electron
is observable, given by

d3�

dEed⌦ed⌦⌫
=

F (±Z,Ee)

2(2⇡)5
pe(E0 � Ee)

2

⇥ ⇠
n
1 + a

~pe.~p⌫
EeE⌫

+ b
me

Ee
+

h ~Ji

J
.
h
A
~pe
Ee

+B
~p⌫
E⌫

+D
~pe ⇥ ~p⌫
EeE⌫

i

+ c
h1
3

~pe.~p⌫
EeE⌫

�
(~pe.ĵ)(~p⌫ .ĵ)

EeE⌫

ihJ(J + 1)� 3h( ~J.ĵ)2i

J(2J � 1)

io
(1.39)

where F (±Z,Ee) is the Fermi function that takes into account of Coulomb correction
to the spectrum. E ’s and ~p ’s are the energies and momenta of the respective
particles. E0 is the endpoint energy of the electron. ~J is the spin of the decaying
nucleus and ĵ is the unit vector in the direction of ~J . The coefficients ⇠, a, b, c,
A, B and D depend on eight of the complex coupling constants Ci and C 0

i in the
interaction Hamiltonian. The constants (⇠, a, b, c, A, B and D) are functions of the
coupling constants and the matrix elements for both Fermi (MF ) and Gamow-Teller
(MGT ) transitions. The explicit expressions are given in the appendix A.1. In the
decay of free polarized neutrons, a spin-12 system, h( ~J.ĵ)2i = J(J + 1) and the decay
rate does not have the expression containing c. Also, D contains crossed terms of
the imaginary apart of the scalar and tensor coupling constants and vanishes if the
time reversal symmetry is not violated (see Table 1.3). The decay rate formula for
�-decay becomes simple in terms of angular correlations, given by

d3�

dEed⌦ed⌦⌫
=

F (±Z,Ee)

2(2⇡)5
pe(E0 � Ee)

2

⇥ ⇠
n
1 + a

~pe.~p⌫
EeE⌫

+ b
me

Ee
+

h ~Ji

J
.
h
A
~pe
Ee

+B
~p⌫
E⌫

+D
~pe ⇥ ~p⌫
EeE⌫

io
(1.40)

1.4.1 The Measurable �-Decay Parameters

The Fierz interference term (b) is one of the neutron �-decay parameters. A
non-zero value causes a distortion in the electron energy spectrum. In the standard
model, since the interaction is of the type (V � A), the scalar and tensor coupling
constants are absent, CS = 0 = C 0

S and CT = 0 = C 0
T giving b = 0 (see Eqn.17).
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Its nonzero value serves as a probe for possibility of beyond Standard Model physics
(BSM) in scalar and tensor interactions. It requires precision measurement of the
�-decay spectrum and so far its value is close to that predicted by the standard
model.

The other important parameter is the correlation between the electron momentum
and the spin of the neutron which is called the electron asymmetry A. The value of A
can be obtained from A⇠ and ⇠ for the neutron �-decay assuming a V �A interaction
so that (CV ) and axial (CA) coupling constants are real. In such simplification, the
Fermi matrix (MF ) and Gamow-Teller matrix ( MGT ) elements are given by [57]

|MF |
2 = 1, |MGT |

2 = 3, �J = 0, (
1

2

+

!
1

2

+

) (1.41)

From Eqn.17, we get

⇠ = 2|MF |
2C2

V + 2|MGT |
2C2

A = 2(C2
V + 3C2

A) (1.42)

and

A⇠ = 2
h
�

2

3
|MGT |

2C2
A � 2

1
p
3
|MGT ||MF |CVCA

i

= �4

✓
1

3
|MGT |

2C2
A +

1
p
3
|MGT ||MF |CVCA

◆

= �4(C2
A + CVCA) (1.43)

Thus, the electron asymmetry A, neglecting the recoil order terms becomes

A0 =
A⇠

⇠
=

�4(C2
A + CVCA)

2(C2
V + 3C2

A)
= �2

�(�+ 1)

1 + 3�2
(1.44)

where � = CA
CV

denotes the ratio of the axial to the vector coupling constants.
The term B is the angular correlation between the momentum of the neutron and

the emitted antineutrino and in the lowest order, B0 is given by

B0 = �2
�(1� �)

1 + 3�2
(1.45)

The term a is the angular correlation between the momentum of the emitted
electron and the antineutrino and is called the electron-antineutrino correlation. The
lowest order expression for a0 is given by

a0 =
1� �2

1 + 3�2
(1.46)

The Fierz interference term (b) is given by

b = ±

p
1� ↵2

1 + 3�2

h
Re

✓
CS + C 0

S

CV

◆
+ 3�2Re

✓
CT + C 0

T

CA

◆i
(1.47)
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where ↵ is the fine structure constant and the correlation coefficient D is given by

D = 2
Im(�)

1 + 3�2
(1.48)

The angular correlation coefficients A, B and a are collectively known as asymmetry
parameters of neutron �-decay and are related by

1 + A0 � B0 � a0 = 0, a0B0 � A0 � A2
0 = 0, a20 + A2

0 +B2
0 = 1 (1.49)

The pseudo-T-odd coefficient D is small and can be neglected. The decay rate
expression (see Eqn.1.40) does not contain the proton term explicitly. But, as it is
kinematically coupled to the electron and neutrino energies and momenta through
the conservation laws, one can write a relation between the correlation coefficients A0

and B0 and the proton asymmetry C given by

C = xC(A+B) = xC
4Re(�)

1 + 3�2

where, xC = 0.2484 is a kinematical factor [60].

1.4.2 Recoil Order Corrections

In unpolarized neutron �-decay, the differential distribution, neglecting terms be-
yond next-to-leading order in the recoil expansion but accounting for all six possible
form factors: f1, f2, f3, g1, g2 and g3, Gardner and Plaster [61] have shown the de-
pendence of asymmetries on the coupling constants. If the quantities are defined in
terms of dimensionless parameters:

✏ =

✓
me

Mn

◆2

, R =
E0

Mn
, x =

Ee

E0
, � =

gA
gV

> 0,

the expression for A can be written as

A(x) = A0 +
1

(1 + 3�2)2

n ✏

Rx

h
4�2(1� �)(1 + �+ 2f2) + 4�(1� �)(�g2 � f3)

i

+R
h2
3
[1 + �+ 2(f2 + g2)](3�

2 + 2�� 1)
i

+Rx
h2
3
(1 + �+ 2f2)(1� 5�� 9�2 � 3�3)

+
4

3
g2(1 + �+ 3�2 + 3�3)

io
(1.50)

In the absence of second class currents, f3 = g2 = 0, and A(x) returns to the SM
value A0. Similarly, the other parameter a has the energy dependence through the
second class currents.
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1.4.3 Beyond Standard Model (BSM)

Possible Beyond Standard Model (BSM) interactions include scalar (S) and ten-
sor (T) interactions. In the presence of S and T interactions, the Fierz interfer-
ence term (b) is nonzero. The connection between quark-level effective theory [62]
and nucleon-level effective theory proposed by Lee and Yang (coupling coefficients,
Ci, C 0

i 2 (V,A, S, T ) ) is given by

Ci =
GF
p
2
Vud C̃i

C̃V = gV (1 + ✏L + ✏R), (1.51)
C̃A = �gA(1 + ✏L � ✏R), (1.52)
C̃S = gS✏S,

C̃T = 4gT ✏T (1.53)

where the ✏ coefficients are the low-energy scalar and tensor coupling constants of the
quark-level effective theory and Ci = C 0

i, since only left-chiral neutrinos are present
in the low energy regime. As there is no interference between left and right-handed
neutrinos, so the right-handed currents contribute at second order to all observables.

In terms of the coupling constants of BSM parameters, the correlations at the
lowest order approximation are given by

A0 =
2�(1� �) + 2(4gT ✏T )2 + 2(gS✏S)(4gT ✏T )

1 + 3�2 + (gS✏S)2 + 3(4gT ✏T )2
(1.54)

a0 =
(1� �2)� (gs✏S)2 + (4gT ✏T )2

1 + 3�2 + (gS✏S)2 + 3(4gT ✏T )2
(1.55)

The expressions defined above return to the SM model prediction in the absence
of new physics. The effective Fierz interference term b and the effective energy-
dependent correlation coefficient B(Ee) according to Bhattacharya et al. [62] are
given by

bBSM =
2(gS✏S)� 6�(4gT ✏T )

1 + 3�2 + (gS✏S)2 + 3(4gT ✏T )2
(1.56)

bBSM
⌫ =

2gS✏S�� 8gT ✏T (1 + 2�)

1 + 3�2 + (gS✏S)2 + 3(4gT ✏T )2
(1.57)

b = bSM + bBSM

B(Ee) = B0 + c0 + c1
Ee

MN
+

me

Ee
(bSM⌫ + bBSM

⌫ ) (1.58)

where,

c0 = �
2�(�+ µV )

1 + 3�2
E0

MN
(1.59)
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c1 =
µV (1 + 3�) + �(5 + 7�)

1 + 3�2
(1.60)

In the above expression µV is difference between the magnetic moments of the proton
and neutron. MN is the mass of the nucleon. The term b⌫ is the coefficient of me

Ee

that appears in the energy dependent expression of B(Ee). The present work mainly
focuses on the study of the sensitivities of asymmetries (discussed in details in the
next chapter) towards b⌫ through the calculations of B(Ee).

1.4.4 Neutron Lifetime

An important observable in neutron �-decay is the lifetime of the neutron. The
lifetime of the neutron can be obtained using the matrix element given by Eqn. 1.30
after integrating over the entire allowable phase space for the decay.

1

⌧n
=

G2
Fm

5
e

2⇡3
V 2
ud(1 + 3�2)f(1 +RC) (1.61)

where f is the phase factor and (1+RC) accounts for the radiative corrections. When
GF , f and (1 +RC) values are combined the lifetime expression reduces to

⌧n =
4908.7(1.9)s

|Vud|
2(1 + 3�2)

(1.62)

A number of independent experiments are done with neutrons (cold or ultracold
neutrons ) to determine the lifetime ( [63], [64], [65], [66], [67], [68], [69], [70], [71]). As
an example, Serebrov et al. obtained the lifetime of neutron to be 878.5±0.7(stat)±
0.3(sys) s from the decay of gravitationally trapped ultracold neutrons ( [72], [73]).
The other methods involve the neutron beam method to determine the lifetime by
simply studying the decay of given population of neutrons as a function of time [74].
This is considered to be the most accurate value for the lifetime of neutron. The
neutron lifetime is very important because by knowing ⌧n and �, the first matrix
element of CKM mixing matrix Vud can be calculated which can be used for testing
the SM predictions that constrain the elements.

1.5 Ultra Cold Neutron (UCN)

When a spallation neutron from the source with kinetic energy of keV order
is moderated and down scattered to the kinetic energy less than 350 neV ( speed
⇠ 7 m/s), it is called an ultracold neutron (UCN) ( [75], [76]). In most experiments,
neutrons are produced by hitting a tungsten spallation target with 800 MeV protons.
The neutrons are reflected by beryllium (VF = 252 neV ) held at near liquid nitrogen
temperature, then moderated by a polyethylene layer to produce cold neutrons. The
cold neutrons then interact with solid deuterium (SD2) where downscattering occurs
to obtain UCN ( [77], [78]). These ultracold neutrons can be affected by gravity and
the magnetic field and can be stored in a container made up of suitable material.
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Figure 1.5: Sketch of the classification of neutrons based on energy scale along with
the necessary steps taken to get ultracold neutrons (UCNs) from spallation neutrons.

Table 1.4: Fermi Potentials of Some Materials

Elements VF (neV )
58Ni 335
Ni 252

Steel 189
Be 252
Fe 210
Cu 168
Al 64
H < 0
D > 0

1.5.1 Trapping UCN

Ultracold neutrons (UCNs) with kinetic energies less than the neutron optical
potential of well-chosen materials can be confined in a material “bottle” via total
internal reflections [79]. These neutrons can also be trapped using magnetic (Stern-
Gerlach force) and gravitational traps as they are affected by both of these fields.
The ability to manipulate UCN with material guides and bottles, magnetic fields,
and gravity can be useful for precision experiments with lower systematic errors than
in experiments performed with cold neutron beams [77].

1.5.2 Fermi Potential

One of the most important properties of a UCN is that it can be trapped in a
container made up of special materials determined by their Fermi potential. The
Fermi potential is defined by the sum of delta functions seen by the neutron wave
packet when the wavelength is much larger than the atomic spacing of a material,

VF =
2⇡~2
mn

X

k

bk(~x� ~xk) (1.63)
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where, bk are the coherent neutron scattering lengths of the constituent nuclei and
mn is the mass of the nuclei. The sum over delta functions gives the mean scattering
length (b) for a material,

VF =
2⇡2

mn
nb (1.64)

Here, n is the number density of these nuclei in the material. The Fermi potentials,
VF , of some common materials used for trapping UCNs in the experiments are shown
in Table 1.4. In the case H and D the Fermi potentials are of opposite sign but
the magnitude is highly dependent on their densities [80]. This means that when
the energy of the incoming neutron wave packet is less than VF , the neutron will be
totally reflected from the walls of the material, although quantum mechanical tun-
neling effects comes in play and penetrates the material to a finite distance [81]. The
trapping of the UCN is not perfect and there is a loss of UCN through either neutron
capture or upscattering via interactions of the neutron with the nuclei in the mate-
rial [82]. Therefore, it is important to make a neutron-trap out of the material with
very high Fermi potential so that it can be guided to the experimental volume before
it decays. There are elements like hydrogen, which have negative Fermi potential
and cannot be used for trapping UCN as they are absorbed. Efficient transport of
ultracold neutrons requires guides with a high Fermi potential, low absorption and a
low diffuse reflection (non-specular reflection) probability. This allows backscattering
of the UCN and hence decreases the loss probability [79].

1.5.3 Gravity

The neutron is a particle with the mass of mn = 939.5654 MeV and in the
gravitational field of earth, the potential energy as a function of height (h) from the
earth is given by

VG = mngh ⇡ [102 (neV )m�1]h (1.65)

As the neutron obtained from the fission of heavy nuclei has the energy of the order
of MeV , the gravitational energy is insignificant for such neutron. However, UCN
which have the energy nearly 300 neV greatly affected by gravity. A slight change in
the height of the UCN from the bottom of the storage chamber makes a huge energy
difference of the UCN. Thus, a change in the height of UCN in the container can be
used for guiding and selecting the UCN of desired energy.

1.5.4 Magnetic Field

The neutron has the intrinsic magnetic moment of µN = �1.91304272 [9] which
is aligned opposite to its spin (�̂n) as indicated by the negative sign. The potential
energy of the neutron interacting with the magnetic field ( ~B) is given by

VB = �µN · ~B = µN �̂n · ~B ⇡ ±[60 (neV )T�1] �̂n · ~B (1.66)
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It is clear from this expression that if the spin of the neutron is parallel to the field, it
experiences a repulsive force from the potential whereas the neutron with an opposite
spin will feel an attractive force from the potential. The strength of the potential
shows that application of a magnetic field can be used as a spin filter for the UCN.

1.6 Motivation

The focus of this dissertation work is to explore ways to obtain the neutrino asym-
metry parameter B0 from several possible electron-proton coincidence asymmetries
that can be constructed in free neutron �-decay via the simulation of a realistic exper-
iment. The advancement in the technology to manipulate cold neutrons, triggered a
number of electron-proton coincidence experiments ( [6], [83] , [84], [85], [86], [87], [88]
) to determine B0. Table 1.5 shows the values of B0 so far measured [89] using cold
neutrons.

Table 1.5: Neutrino Asymmetry Parameter B0

B0 Group Year
0.9802(34)(36) Schumann et al. [6] 2007

0.967(6) Kreuz et al. [90] 2005
0.9876(4) Mostovoi et al. [88] 2001
0.9894(83) Kuznetsov et al. [91] 1998
1.00(5) Christensen et al. [84] 1970
0.995(34) Erozolimsky et al. [83] 1970

In all of the previous experiments, only B0 was extracted, without any attempts
thus far to extract the energy-dependent term b⌫ . Furthermore, the results in the
70’s have large uncertainties which were not taken into account. The values of B0

reported after 1990 are more or less in agreement with the SM predictions.
The measurement of the neutrino asymmetry B in free neutron �-decay is very

important because it has the term b⌫ as the coefficient in the energy dependence.
Hence, by measuring B precisely, one can extract b⌫ , the nonzero value of which
would indicate the possibility of the existence of scalar and tensor interactions in
the semi-leptonic decay of the neutron [92]. In this work, we investigate a number
of different experimental strategies for accessing b⌫ in electron-proton coincidence
experiments, and then assess the combined sensitivity of these asymmetries together
with a measurement of the electron energy spectrum to b and b⌫ . We show how
the construction of ratios of asymmetries permits a separation of b⌫ from b, thereby
increasing the sensitivity of an experiment with a fixed number of statistics to b⌫ .

Copyright c� Subash Chandra Nepal, 2020.
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Chapter 2 Event Generator for Neutron �-Decay

2.1 Decay Probability

In the determination of both a and B, the electron and proton momentum must be
measured simultaneously [93]. This makes it more difficult to design an experiment
to detect them, because the maximum proton energy is only 751 eV . But in the
case of the �-decay asymmetry parameter A, it requires a high degree of polarization
and precise determination of the electron momentum. The detection design for an
electron, as in UCNA experiment, is quite simple since its maximum kinetic energy
is about 782 keV . In order to correctly model the systematic effects in the study of
the �-decay parameters of interest, it important to have an accurate neutron event
generator that could give the correct energy and angular distributions of all the decay
products. We consider the decay probability of the free neutron as

d6�(~pe, ~p⌫)

d3ped3p⌫
= CF (Z,Ee)

h
1 + a

~pe.~p⌫
EeE⌫

+ b
me

Ee
+ ~�n.

✓
A
~pe
Ee

+B
~p⌫
E⌫

◆i
�(4)(pn � pe � p⌫)

(2.1)
where C is a constant, F (Z,Ee) is the Fermi function and a, b, A and B are correlation
coefficients. The time-odd term D is dropped in the above expression as its value
is zero in the SM and is not an observable parameter in the scope of the current
UCNB experiment. Also, ~pi(i = e, ⌫) are the momenta of the electron and the
associated antineutrino. The Fierz interference term b depends on the existence of
tensor or scalar contributions to the weak interaction and is therefore zero in the SM.
The Fermi function F (Z,Ee) distorts the electron energy spectrum due to Coulomb
effects on the final state wave function of the electron. The Coulomb effects for a
point nucleus ( [94], [95]), can be represented as

F (Z,Ee) =
���
 e(r)

 0(r)

���
2

= 2(1 + �)(2peR)2(��1)e⇡⌘

����(� + i⌘)
���
2

����(2� + 1)
���
2 (2.2)

where,  e(r) and  0(r) represent the perturbed and unperturbed wave functions of
the electron, respectively. �(x) is a gamma function, ⌘ = ±

↵Z
�e

(± denotes the cases
of �±-decay), � =

p
1� ↵2Z2, R is the radius of the nucleus in the units of ~2/(mec2)

and ↵ is the fine structure constant. In the case of electron with kinetic energy
Te = Ee�me > 5 keV , the following expression for the Coulomb correction is a good
approximation with relative error less than 0.01% [96].

F (Z,Ee) =
1X

n

an(↵Z)
n (2.3)
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where,

a0 = 1

a1 =
⇡

�e

a2 =
11

4
� �E � ln(2�eEeR) +

⇡2

3�2
e

a3 =
⇡

�e

h11
4

� �E � ln(2�eEeR)
i

(2.4)

Here, �e, the radius R of the nucleus and Euler’s constant �E are defined as

�e =
|~pe|

Ee
, R ⇡ 1 ⇡

0.01

4me
, �E = 0.57722. (2.5)

But, for an electron with kinetic energy Te = Ee � me < 1 keV , we can use the
non-relativistic expression for the Fermi function [94] at low energy given by

FNR(Z,Ee) = y
�
1� e�y

��1 (2.6)

where y = 2⇡↵Z
�e

for the �� decay. In the present analysis of the energy spectra for the
emitted particles in the �-decay where the energies of the particles ranges from zero
to maximum (about 782 keV ), the expansion of of Fermi function given by Eqn.2.3
up to order ↵3 was chosen in the event generator.

2.1.1 Proton Momentum

Since, in the experiment neutrinos are unobservable, the neutrino variables in
Eqn.2.1 must be replaced by the proton variables so that the decay expression can be
integrated with respect to the electron and proton momenta. Considering the mass
of the antineutrino to be zero, the momentum-energy conservation gives

~p⌫ = �(~pe + ~pp)

~p⌫ · ~pe = �~pe · (~pe + ~pp) = �(p2e + pepp cos ✓ep) (2.7)

and the energy of the massless antineutrino is given by

E⌫ = |~p⌫ | = |~pe + ~pp| =
q
p2e + 2pepp cos ✓ep + p2p (2.8)

where ✓ep is the angle between the direction of the outgoing electron and proton.
In order to calculate ✓ep, consider the unit vectors in (✓e,�e) and (✓p,�p) direction.
Then, the cosine of the angle between these unit vectors is given by

cos ✓ep = sin ✓e sin ✓p cos(�e � �p) + cos ✓e cos ✓p (2.9)
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Now, by substituting the antineutrino variables in Eqn.2.1 by the proton variables,
we obtain

d6�(~pe, ~pp)

d3ped3pp
= CF (Z,Ee)

h
1� a

p2e + pepp cos ✓ep
Ee(mn � Ee � Ep)

+ b
me

Ee

+ ~�n.

✓
A
~pe
Ee

� B
~pe + ~pp

mn � Ee � Ep

◆i
⇥ �(0)(mn � Ee � Ep � |~pe + ~pp|)

(2.10)

The integral over the proton’s momentum can be easily evaluated using the proper-
ties of the delta function and we get an equation for the magnitude of the proton
momentum as

mn � Ee � Ep � |~pe + ~pp| = 0

mn � Ee �

q
p2p +m2

p � |~pe + ~pp| = 0 (2.11)

Solving this quadratic equation ( see appendix A.3 for detailed derivation), we get
the magnitude of the proton momentum as

p±p (pe, Ee, ✓ep) =
�U ± S

2W
(2.12)

Using notation, cf = | cos ✓ep| and d = mn � Ee, the other variables U , S and W are
defined by

U = 4|~pe|cf (d
2 +m2

p � p2e),

S =
�
U2

� 4Wh
�1/2

,

W = 4
�
d2 � p2ec

2
f

�
,

h = 4(m2
n �m2

p)(Ee � Ecrit)(H � Ee) (2.13)

where Ecrit and H are given by

Ecrit =
1

2

✓
mn �mp +

m2
e

mn �mp

◆

H =
1

2

✓
mn +mp +

m2
e

mn +mp

◆
(2.14)

The Dalitz region of the (Ee, cf = cos ✓ep) distribution is constraint by [96]

�1  cf  (cf )Max(Ee)

(cf )Max(Ee) = +1 if Ee < Ecrit,

(cf )Max(Ee) = �

q
1� s2fm(Ee) if Ee > Ecrit (2.15)
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where,

sfm(Ee) =
mn

mp

E0 � Ee

|~pe|
(2.16)

Here, E0 is the endpoint energy for the electron and is given by

E0 = ��
�2

�m2
e

2mn
(2.17)

where, � = mn �mp

2.1.2 Sampling Proton Events

Consider a function f(x) defined by [87]

f(pp) = mn � Ee �

q
p2p +m2

p � |~pe + ~pp|

f 0(pp) =
pp
Ep

�
pp + pe cos ✓ep

mn � Ee �
p

p2p +m2
p

(2.18)

If p+p and p�p are the values of pp for the equations f(pp) = 0, then from the property
of the delta function, we can write

�(f(pp)) =
�(pp � p+p )

|f 0(p+p )|
+
�(pp � p�p )

|f 0(p�p )|
(2.19)

Making the substitution for the proton energy and using d3~pp = p2pdppd⌦p, the dis-
tribution function in terms of the proton and electron energy-momentum is given
by

W (~pe, ~pp) = fb � a
p2e + pep±p cos ✓ep

Ee(mn � Ee � E±
p )

+ A
pe cos ✓e

Ee
� B

pe cos ✓e + p±p cos ✓p
mn � Ee � E±

p

(2.20)

where fb = 1 + bme
Ee

. The decay probability as a function of electron energy and the
angular distribution of the proton and electron becomes

d5�(Ee,⌦e,⌦p)

dEed⌦ed⌦p
= CF (Z,Ee)

h
W (~pe, ~pp)(p

+
p )

2 �
(0)(pp � f(p+p ))

|f 0(p+p )|

+W (~pe, ~pp)(p
�
p )

2 �
(0)(pp � f(p�p ))

|f 0(p�p )|

i
Ee

p
E2

e �m2
e (2.21)

where

d⌦e = sin ✓ed✓ed�e

d⌦p = sin ✓pd✓pd�p

Looking at this decay rate, both the solutions for the proton momentum contribute
to the distribution function through the delta functions. Hence, we must be careful
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to consider the solutions because either of them are equally valid and choice depends
on the energy cut for the electron determined by Ecrit ⇠ 236 keV . The following two
cases arises in the selection of the proton events.

(I) Ee < Ecrit

When Ee < Ecrit then h < 0 which gives one of the roots pp < 0. This negative
root falls outside the ranges of the integration (not a valid solution) and can
be neglected. For such energy scale, only one of the roots gives the momentum
and energy of the proton event. In this case, only one term contributes in the
distribution function (see Eqn. 2.21) corresponding to the positive solution
(pp > 0).

(II) Ee > Ecrit

In this case, h > 0 and for the given value of ✓ep, both the roots ( p�p >
0, p+p > 0) give the valid momentum for the proton and will contribute to
the distribution function. In the distribution function, what matters is the
relative weights for the two valid proton momenta. The relative weights for
proton momenta p+p and p�p are defined as

W+ =
W (pe, p+p )

W (pe, p+p ) +W (pe, p�p )

W� =
W (pe, p�p )

W (pe, p+p ) +W (pe, p�p )

where, W� + W+ = 1. Using the random number generator that generates
numbers in the range [0, 1] which corresponds to [W�,W+], will allow us to
pick up either of the two proton momenta (p+p or p�p ) and determine the energy
(E+

p or E�
p ) for the proton event. We use Monte Carlo acceptance/rejection

method to accept these values or reject them and move on to the new values
for (Ee, ✓e, �e) and (✓p, �p).

2.2 Electron Energy Spectrum

The energy spectrum for the electron in the �-decay is given by

we(Ee) = F (Z,Ee)peEe(�� Ee)
2 (2.22)

d�

dEe
= we(Ee)

✓
1 + b

me

Ee

◆
(2.23)

The shape of the electron spectrum is modified by the Fierz interference term b and
the presence of the Fermi function. Figure 2.1 shows an electron spectrum in the
absence of Fierz term for the free neutron �-decay.
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Figure 2.1: Electron energy spectrum

2.3 Proton Energy Spectrum

The proton energy spectrum according to Gluck ( [60], [97]) is given by

wp(Ep) = mn
G2

F ⇠

4⇡3

h
Wp(Eemax, Ep)�Wp(Eemin, Ep)

i
(2.24)

WP (Ee, Ep) =
1

2
(1 + a)(��

2

3
Ee)E

2
e + amnEe(Ep � Epmax) + bmeEe(��

1

2
Ee)

(2.25)

where ⇠ is defined in appendix A.1. Unlike the electron energy spectrum, the pro-
ton spectrum is modified by the presence of both Fierz interference term b and the
electron-antineutrino asymmetry parameter a. Figure 2.2 shows a proton spectrum
for the free neutron �-decay. The maximum energy of the proton is given by

Epmax = mp +
�2

�m2
e

2mn
⇠ 751.0 eV (2.26)

and for the given proton momentum (kinetic energy), the minimum and maximum
energies for the electron are given by

Eemin =
1

2

✓
�� pp +

m2
e

�� pp

◆
(2.27)

Eemax =
1

2

✓
�+ pp +

m2
e

�+ pp

◆
(2.28)

The proton energy distribution is modified by Fermi function F (Z = 1, Ep) that
takes into account the Coulomb corrections of the proton recoil. For this, �e has to
be replaced by

�r = |� � (1� �2)vfcf | (2.29)
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Figure 2.2: Proton energy spectrum

where

�r = |~pp|/Ep, cf =
~pe · ~pp
|~pe||~pp|

= cos ✓ep (2.30)

2.4 Antineutrino Energy Spectrum

The energy spectrum for the antineutrino is not an observable unlike the electron
and proton spectra and must be calculated from the distribution functions for the
electron and proton. The spectral shape is determined by the shapes of proton and
electron spectra. The maximum energy of the electron antineutrino is the same that of
the electron end point energy (assuming massless antineutrino) of electron. Due to the
fact that the energy scale of proton (Tpmax ⇠ 751.0 eV ) is three orders of magnitude
smaller than the electron, the energy spectrum of antineutrino has maximum kinetic
energy equal to the endpoint energy of the electron. Figure 2.3 shows an antineutrino
spectrum for the free neutron �-decay.

2.5 Event Generation

In the generation of an event, we used Monte Carlo (MC) acceptance and rejection
to sample the electron energy. The sampled electron energy is next used to sample
the proton energy.

• Randomize ✓e in the interval [0, ⇡] and �e in the interval [0, 2⇡] and apply the
MC acceptance/rejection method to the electron distribution function in order
to select the electron momentum and the energy for that event.
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Figure 2.3: Antineutrino energy spectrum

• Randomize ✓p in the interval [0, ⇡] and �p in the interval [0, 2⇡] for the proton
with all the constraints discussed earlier.

• If the electron energy is greater than or equal to the critical energy, accept an
angle for which ✓ep is less than the maximum angle constrained by the energy
and momentum of an electron, else check again.

• If the electron energy is less than the critical energy, the positive momentum of
the proton is accepted.

• If the electron energy is greater than the critical energy, the MC method is used
to select the momentum of the proton for that event.

• Finally, use the MC method for the proton distribution function to sample the
proton energy.

After sampling the energy/ momentum of the electron and proton, we use con-
servation laws to obtain the energy/momentum of the antineutrino. These energy
and momentum of the particles serve as the input to the simulation described in the
present work.
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Chapter 3 Qij Spectra for Neutron �-Decay

The Qij are the angular part of the decay rate integrated over the angular variables
in the polarized neutron �-decay. The index i and j refer to the polarization of the
electron and proton relative to the neutron. Each indices can either have value +
or � depending on whether the particle is emitted parallel or anti-parallel to the
polarization of the neutron. Hence, we have four Qijs and their explicit expressions
are derived in the section to follow in the infinite nucleon mass (INM) approximation.

3.1 INM Approximation

The decay of free the neutron is a three body decay given by

n ! p+ e� + ⌫̄e

In the infinite nucleon mass (INM) approximation ( mn ! 1 and mp ! 1), the
energy balance condition gives [60]

mn
⇠= mp + (Te +me) + E⌫

E⌫ = (mn �mp)� Ee = �� Ee

In the INM limit, the total neutron �-decay rate can be written as

⇢ =
1

(4⇡)2

Z �

me

dEews(Ee)
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Z 2⇡

0

d�e
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�1

d(cos ✓⌫)

Z 2⇡

0

d�⌫D. (3.1)

where ws(Ee) and D are given by

ws(Ee) =
G2

FV
2
ud⇠

2⇡3
�eE
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eE

2
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G2
FV

2
ud⇠
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Ee

E2
e (�� Ee)

2 (3.2)

where

⇠ = 1 + 3g2A

and

D = 1 + b
me

Ee
+ a�e cos ✓e⌫ + PA�e cos ✓e + PB cos ✓⌫ + PD�e cos ✓? (3.3)

In the expression of ws(Ee), GF is the Fermi constant, Vud is the first element of the
Cabibbo-Kobayashi-Masakawa (CKM) mixing matrix ( see Eqn.1.22) and gA is the
axial coupling constant. Inside the expression D are various correlation coefficients
a, b, A, B and D known as asymmetry parameters of neutron �-decay and are
measured experimentally to various degrees of accuracy. P is the polarization and �e
is the velocity ve/c for an electron [98].

cos ✓? =
~s · (~pe ⇥ ~p⌫)

|~pe||~p⌫ |
(3.4)
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Taking the neutron spin ~s along ẑ, we have

cos ✓? / sẑ ·
h
(pe sin ✓e cos�ex̂+ pe sin ✓e sin�eŷ + pe cos ✓eẑ)

⇥(p⌫ sin ✓⌫ cos�⌫ x̂+ p⌫ sin ✓⌫ sin�⌫ ŷ + p⌫ cos ✓⌫ ẑ)
i

Also, we have

cos ✓e⌫ = p̂e · p̂⌫
= (sin ✓e cos�ex̂+ sin ✓e sin�eŷ + cos ✓eẑ) · (sin ✓⌫ cos�⌫ x̂+ sin ✓⌫ sin�⌫ ŷ + cos ✓⌫ ẑ)

And, under the azimuthal symmetry

hcos ✓?i =
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d�e

Z 2⇡
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d�⌫ cos ✓? = 0 (3.5)

Also, in the
R 2⇡

0 d�e and
R 2⇡

0 d�⌫ integrals of cos ✓e⌫ , only the cos ✓e cos ✓⌫ term sur-
vives! Hence, we have

⇢ =
(2⇡)2

(4⇡)2
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�
(3.6)

The integrals over d(cos ✓e) and d(cos ✓⌫) are constrained by momentum conservation:

~pp + ~pe + ~p⌫ = 0 (3.7)

This implies

~pp · ~s = �~s · (~pe + ~p⌫) = �(�eEep̂e + E⌫ p̂⌫) · sẑ = ��eEe cos ✓e � E⌫ cos ✓⌫

Now, the integrals in Eqn. 3.6 can be evaluated over the allowed regions of (cos ✓e, cos ✓⌫)
phase space.

Consider the case in which both an electron and a proton are emitted parallel to
the neutron polarization, the decay rate (⇢++) can be calculated in the allowed region
of phase space. For this, we have ~pe · ~s > 0 and ~pp · ~s > 0

~pp · ~s = ��eEe cos ✓e � E⌫ cos ✓⌫ > 0 =) ��eEe cos ✓e > E⌫ cos ✓⌫

=) cos ✓⌫ <
��eEe

E⌫
cos ✓e < 0 =) cos ✓⌫ < �r cos ✓e < 0

where, r ⌘ �eEe

E⌫
� 0. Hence,
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� (3.8)
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⌘
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where,
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The region of integrals are constrained by r. There are two expressions for Q++

Figure 3.1: The shaded area is the region of the integral for Q++ under the constraint
r < 1.

depending on the energy scale r < 1 and r > 1. If r < 1 then �r cos ✓e > �1, we get
(refer to Figure 3.1),
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If r > 1, then �r cos ✓e > �1 which gives cos ✓e < 1
r (refer Figure 3.2), we can write,
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Figure 3.2: The shaded area is the region of the integral for Q++ under the constraint
r > 1.

Qr>1
++ =

Z 1/r

0

d(cos ✓e)

Z �r cos ✓e)

�1

d(cos ✓⌫)

⇥


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

Qr>1
++ =

1

2r


(1 + b

me

Ee
)�

1

4r
a�e +

1

3r
PA�e �

2

3
PB

�
(3.13)

Since the polarization of Q++ is P , the polarization of Q�� is �P . Thus, Q++ and
Q�� are related to each other as Q�� = Q++(P ! �P ). Hence, for the two regions,
we get

Qr<1
�� = (1 + b

me

Ee
)(1�

r

2
) +

1

4
a�e(

r2

2
� 1)�

1

2
PA�e(1�

2r

3
)�

1

2
PB(

r2

3
� 1)

(3.14)

Qr>1
�� =

1

2r


(1 + b

me

Ee
)�

1

4r
a�e �

1

3r
PA�e +

2

3
PB

�
(3.15)

Next, we consider ⇢+� in which ~p ·~s > 0 and ~pp ·~s < 0. Also, we assume only protons
with the longitudinal kinetic energies Tz = (ppz)2

2mp
� u can be detected where, ppz is

the proton longitudinal momentum. So now we need to calculate

Q+� =

Z

u

d(cos ✓e)d(cos ✓⌫)


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

(3.16)
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The region of the integration is defined by cos ✓e > 0 and

~pp · ~s = ppz = ��eEe cos ✓e � E⌫ cos ✓⌫  �
p

2mpu

=) E⌫ cos ✓⌫  �
p

2mpu+ �eEe cos ✓e

=) cos ✓⌫ �

p
2mpu

E⌫
�
�eEe

E⌫
cos ✓e

=) cos ✓⌫ �

p
2mpu

E⌫
� r cos ✓e

So cos ✓⌫ 2 [
p

2mpu

E⌫
� r cos ✓e,+1] and also we have cos ✓e > 0 for this case.

Again, we have two case for u > 0:
a. if

p
2mpu

E⌫
�r cos ✓e > �1, the limit on the d(cos ✓⌫) integral is from (

p
2mpu

E⌫
�r cos ✓e)

to +1.
b. if

p
2mpu

E⌫
� r cos ✓e < �1, the limit on the d(cos ✓⌫) integral is from �1 to +1.

If u = 0, we have the constraint on d(cos ✓⌫) but for cos ✓e > 0, there is no con-
straint on cos ✓⌫ , hence

~pp · ~s = ppz = ��eEe cos ✓e � E⌫ cos ✓⌫ < 0

=) E⌫ cos ✓⌫ < �eEe cos ✓e =) cos ✓⌫ > �
�eEe

E⌫
cos ✓e

=) cos ✓⌫ > �r cos ✓e > �r

So cos ✓e 2 [0, 1] and r > 1 or r < 1. Suppose r > 1 , then cos ✓⌫ > �r cos ✓e will
always be satisfied, but cos ✓⌫ 2 [�1,+1]. Thus, for r > 1 the integral over d(cos ✓e)
and d(cos ✓⌫) in the three regions of the phase space (see Figure 3.3) gives Qr>1

+� as

Qr>1
+� = I + II + III (3.17)

where,

I =

Z 1

0

d(cos ✓e)

Z 1

0

d(cos ✓⌫)


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

(3.18)

II =

Z 1/r

0

d(cos ✓e)

Z 0

�r cos ✓e

d(cos ✓⌫)


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

(3.19)

and

III =

Z 0

1/r

d(cos ✓e)

Z 0

�1

d(cos ✓⌫)


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

(3.20)
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Figure 3.3: The shaded areas I, II and III are the three regions of the integral for
Q+� under the constraint r > 1.

If r < 1, the integral over d(cos ✓e) and d(cos ✓⌫) in the two regions of the phase space
(see Figure 3.4) gives Qr<1

+� as

Qr<1
+� = I + IV (3.21)

where,

IV =

Z 1

0

d(cos ✓e)

Z 0

�r cos ✓e

d(cos ✓⌫)


1 + b

me

Ee
+ a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫

�

(3.22)

The calculation of the integrals gives

I = (1 + b
me

Ee
) +

1

4
a�e +

1

2
PA�e +

1

2
PB

II =
1

2r
(1 + b

me

Ee
)�

1

8r2
a�e +

1

3r2
PA�e �

1

6r
PB

III = (1 + b
me

Ee
)(1�

1

r
)�

1

4
a�e(1�

1

r2
) +

1

2
PA�e(1�

1

r2
)�

1

2
PB(1�

1

r
)

IV = (1 + b
me

Ee
)
r

2
�

1

8
a�er

2 +
1

3
PA�er �

1

3
PBr2

(3.23)

Putting these together from Eqn.3.23, we get

Qr>1
+� = (1 + b

me

Ee
)(2�

1

2r
) +

1

8r2
a�e +

1

2
PA�e(2�

1

3r2
) +

1

3r
PB (3.24)
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Figure 3.4: The shaded areas I and IV are the regions of the integral for Q+� under
the constraint r < 1.

and

Qr<1
+� = (1 + b

me

Ee
)(1 +

r

2
) +

1

4
a�e(1�

r2

2
) +

1

2
PA�e(1 +

2r

3
) +

1

2
PB(1�

r2

3
)

(3.25)

Introducing fb = 1+bme
Ee

, the relationship among the Qij’s can be simply be expressed
as

Q�+ = 2fb � PA�e �Q�� (3.26)

and

Q+� = 2fb + PA�e �Q++ (3.27)

irrespective of whether r < 1 or r > 1 .

3.2 Differential and Integral Asymmetries

3.2.1 Proton Asymmetry

The proton asymmetry ↵p is defined by the following expression

↵p =
⇢p� � ⇢p+
⇢p� + ⇢p+

(3.28)

where ⇢p+ and ⇢p� are the decay rates of the proton events for ~pp · ~s > 0 and ~pp · ~s < 0
respectively. These ⇢’s are calculated by integrating over the electron energy Ee and
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are different from the Q’s which are integrals only over the angular variables [60].
The decay rates for the proton are given by

⇢p+ = ⇢++ � ⇢�� + ⇢e�
⇢p� = ⇢�� � ⇢++ + ⇢e+

(3.29)

where
⇢e± =

1

4

Z �

me

dEews(Ee)[2fb ± PA�e] (3.30)

⇢++ =
1

4

Z �

me

dEews(Ee)

Z +1

0

d(cos ✓e)

Z max(�1,�r cos ✓e)

�1

d(cos ✓⌫)

⇥ [fb + a�e cos ✓e cos ✓⌫ + PA�e cos ✓e + PB cos ✓⌫ ] (3.31)

and using ⇢�� = ⇢++[P ! �P ], we get

⇢�� =
1

4

Z �

me

dEews(Ee)

Z 1

0

d(cos ✓e)

Z max(�1,�r cos ✓e)

�1

d(cos ✓⌫)

⇥ [fb + a�e cos ✓e cos ✓⌫ � PA�e cos ✓e � PB cos ✓⌫ ] (3.32)

Hence

⇢p+ =
1

4

Z �

me

dEews(Ee)

Z 1

0

d(cos ✓e)

Z max(�1,�r cos ✓e)

�1

d(cos ✓⌫)

⇥

h
2PA�e cos ✓e + 2PB cos ✓⌫

i
+

1

4

Z �

me

dEews(Ee)
h
2fb � PA�e

i

=
1

4

Z �

me

dEews(Ee)

2

6642fb � PA�e + 2PA�e

Z 1

0

d(cos ✓e)

Z max(�1,�r cos ✓e)

�1

d(cos ✓⌫) cos ✓⌫
| {z }

I

3

775

+
1

4

Z �

me

dEews(Ee)

2

6642PB

Z 1

0

d(cos ✓e)

Z max(�1,�r cos ✓e)

�1

d(cos ✓⌫) cos ✓⌫
| {z }

II

3

775 (3.33)

Consider the case when r < 1 =) r cos ✓e > �1 and for r < 1(see Figure 3.1), we
have

⇢p+ =
1

4

Z �

me

dEews(Ee)


2fb � PA�e + 2PA�e

Z 1

0

d(cos ✓e)

Z �r cos ✓e

�1

d(cos ✓⌫) cos ✓e

�

+
1

4

Z �

me

dEews(Ee)


2PB

Z 1

0

d(cos ✓e)

Z �r cos ✓e

�1

d(cos ✓⌫) cos ✓⌫

�
(3.34)
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=
1

4

Z �

me

dEews(Ee)


2fb � PA�e + PA�e(1�

2r

3
) + PB(

r2

3
� 1)

�

(3.35)

Referring to the same Figure 3.1, and integrating over the shaded region, we get

⇢p� =
1

4

Z �

me

dEews(Ee)

Z 1

0

d(cos ✓e)

Z �r cos ✓e

�1

d(cos ✓⌫)

⇥

h
� 2PA�e cos ✓e � 2PB cos ✓⌫

i
+

1

4

Z �

me

dEews(Ee)
h
2fb + PA�e

i
(3.36)

=
1

4

Z �

me

dEews(Ee)


2fb + PA�e � PA�e(1�

2r

3
)� PB(

r2

3
� 1)

�

(3.37)

For the other case of r > 1, which requires that �r cos ✓e > �1 (see Figure 3.1), we
have

⇢p+ =
1

4

Z �

me

dEews(Ee)

"
2fb � PA�e + 2PA�e

Z 1/r

0

d(cos ✓e)

Z �r cos ✓e

�1

d(cos ✓⌫) cos ✓e

#

+
1

4

Z �

me

dEews(Ee)

"
2PB

Z 1/r

0

d(cos ✓e)

Z �r cos ✓e

�1

d(cos ✓⌫) cos ✓⌫

#
(3.38)

=
1

4

Z �

me

dEews(Ee)


2fb � PA�e + 2PA�e(

1

6r2
) + PB(

�2

3r
)

�

(3.39)

Similarly, we get

⇢p� =
1

4

Z �

me

dEews(Ee)


2fb + PA�e � 2PA�e(

1

6r2
) + PB(

2

3r
)

�

(3.40)

Hence, the proton asymmetry ↵p for r < 1 is given by (see Eqn.3.28)

↵r<1
p =

1
4

R �

me
dEews(Ee)

h
2r
3 PA�e + PB(1� r2

3 )
i

1
4

R �

me
dEews(Ee) [2fb]

=

R �

me
dEews(Ee)

h
2r
3 PA�e + PB(1� r2

3 )
i

R �

me
dEews(Ee) [2fb]

(3.41)
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And the proton asymmetry ↵p for r > 1 is given by

↵r�1
p =

1
4

R �

me
dEews(Ee)

⇥
(1� 1

3r2 )PA�e +
2
3rPB

⇤

1
4

R �

me
dEews(Ee) [2fb]

=

R �

me
dEews(Ee)

⇥
(1� 1

3r2 )PA�e +
2
3rPB

⇤
R �

me
dEews(Ee) [2fb]

(3.42)

This is the integral (integrated over the electron energy Ee) expression for the proton
asymmetry. The first single-particle proton asymmetry denoted by Cexp, differential
in electron energy is defined as [6]

Cexp =
(Q+� +Q��)� (Q++ +Q�+)

(Q+� +Q��) + (Q++ +Q�+)

=
(2fb + PA�e �Q++ +Q��)� (Q++ + 2fb � PA�e �Q��)

(2fb + PA�e �Q++ +Q��) + (Q++ + 2fb � PA�e �Q��)

=
1

2fb
[(Q�� �Q++) + PA�e]

Using the expressions of (Q���Q++) for the two cases with r < 1 and r > 1, we get

Cr<1
exp =

1

2fb


2r

3
PA�e + PB(1�

r2

3
)

�
(3.43)

And

Cr�1
exp =

1

2fb


(1�

1

3r2
)PA�e +

2

3r
PB

�
(3.44)

These are the differential form of the proton asymmetries which are the integrand of
the integral asymmetries ↵p. Thus, we can write the proton asymmetry as a function
of electron energy as

↵p(Ee) =
Qp

� �Qp
+

Qp
� +Qp

+

, (3.45)

where Qp
� = Q+� +Q�� and Qp

+ = Q++ +Q�+. From this, it follows that

↵p(Ee) =

8
>>>>>>>><

>>>>>>>>:

P

2r

3
A�e +B

✓
1�

r2

3

◆

2fb
, r < 1,

P

A�e

✓
1�

1

3r2

◆
+

2

3r
B

2fb
, r � 1.

(3.46)

This represents the asymmetry in the number of protons emitted parallel and anti-
parallel to the neutron spin as a function of the electron energy. It is also clear that
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all dependence on b⌫ (via B) is restricted to the numerator, whereas all dependence
on b (via fb = 1 + bme

Ee
) is restricted to the denominator only. If b = 0, then we can

determine the value of b⌫ from the value of B using the proton asymmetry ↵p setting
the polarization of the neutron to be P = ±1. The sign of the proton asymmetry ↵p

is given by the corresponding sign of P . The correlation coefficients A and B can be
taken to be constant for the lowest order approximation whereas �e and r depend on
electron energy given by

�e(Ee) =
pe
Ee

=

p
E2

e �m2
e

Ee
=

p
T 2
e + 2Teme

Te +me

r(Ee) =
�eEe

�� Ee
=

�e(Te +me)

�� (Te +me)
=

p
T 2
e + 2Teme

�� (Te +me)

(3.47)

where Te = Ee � me is the kinetic energy of the electron. With endpoint kinetic
energy of �� decay spectrum (Temax = 782 keV ), the Qij’s are separated into two
regions (r < 1, r � 1) by r(Ee) such that r = 1 corresponds to Te = 236 keV .
With fb = 1 and P = 1 and from the electron energy dependent Qij-spectra, one can
obtain the number of protons emitted in the hemisphere parallel (Np

+ / Qp
+) or anti

parallel (Np
� / Qe

�) to the neutron spin direction and use the Eqn.3.46 to obtain B
through ↵p(Ee) given by

B(Ee) =

8
>>><

>>>:

6↵p � 2rA�e
3� r2

, r < 1,

6r2↵p � A�e
�
3r2 � 1)

2r
, r � 1.

(3.48)

In the zeroth order approximation A = A0, hence one can determine the value of
B(Ee) as a function of the electron energy. A differential fit to B(Ee) can be used to
obtain the lowest order Standard Model (SM) value of B0.

3.2.2 Electron Asymmetry

The differential electron asymmetry ↵e as a function of electron energy is defined
as

↵e(Ee) =
Qe

� �Qe
+

Qe
� +Qe

+

(3.49)

where Qe
� = Q�+ + Q�� and Qe

+ = Q++ + Q+�. Substituting the expressions from
Eqn.3.26 and Eqn.3.27, we get

↵e(Ee) = �
1

2fb
PA�e (3.50)

From this, it follows that all of the dependence on b (via fb) is restricted to the
denominator. Again, when b = 0, direct determination of the value of the correlation
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coefficient A can be performed by a differential analysis of the electron energy (Ee)
dependent electron asymmetry ↵e from the �-decay spectrum using

A(Ee) = �2
↵e(Ee)

�e(Ee)
(3.51)

where P = 1. Thus, from the electron energy dependent Qij-spectra, one can obtain
the number of electrons emitted in the hemisphere in parallel (N e

+ / Qe
+) or against

(N e
� / Qe

�) the neutron spin direction and use the Eqn.3.51 to obtain A through
↵e(Ee).

3.2.3 Proton-Electron Asymmetry Ratio

Dividing each of the expressions in Eqn.3.46 by that given by Eqn.3.50, we im-
mediately obtain the ratio rpe of the proton and electron asymmetries as

rpe(Ee) =
↵p(Ee)

↵e(Ee)
=

8
>>>><

>>>>:

�
2

3
r �

1

�e

✓
1�

r2

3

◆
B

A
, r < 1,

�

✓
1�

1

3r2

◆
�

2

3r

1

�e

B

A
, r � 1

(3.52)

This ratio rpe is sensitive only to b⌫ (via B) because all dependence on the Fierz
term b (via fb) cancels in the ratio. Also, the polarization term automatically goes
away. This opens up an avenue to measure B irrespective of the neutron polarization.
Therefore, a simultaneous measurement of ↵p(Ee) and ↵e(Ee) in the same apparatus
will permit an extraction of b⌫ via their ratio rpe. The expression for B in terms of
ratio then becomes

B(Ee) =

8
>>><

>>>:

A�e
r2 � 3

(3rpe + 2r), r < 1,

1

2
A�er

✓
1

r2
� 3rpe � 3

◆
, r � 1

(3.53)

Hence, a determination of the value of B can be performed by a differential analysis
of the electron energy (Ee) dependent proton-electron asymmetry ratio rpe from the
Qij-spectra.

3.3 Electron-Proton Coincidence Asymmetries

3.3.1 Neutrino Asymmetry

The differential neutrino asymmetry ↵ep(Ee), is defined as [60]

↵ep(Ee) =
Q�� �Q++

Q�� +Q++
(3.54)
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Substituting the expressions for Q�� and Q++ from the earlier derivation, we get

↵ep(Ee) =

8
>>>><

>>>>:

�
4P

3

[A�e(3� 2r) + B(r2 � 3)]

[4fb(2� r) + a�e(r2 � 2)]
, r < 1,

4P

3

(�A�e + 2rB)

(4rfb � a�e)
, r � 1,

(3.55)

Although this asymmetry is quite sensitive to B, it offers less sensitivity to b⌫ or b.
The reason for this can be seen explicitly in Eqn. 3.55, where one sees b⌫ (b) appears
in the numerator (denominator), leading to significantly reduced sensitivity due to
their similar dependence on scalar and tensor physics. The expression for B with
P = 1 and fb = 1 in terms of the neutrino asymmetry becomes

B(Ee) =

8
>>><

>>>:

3
4↵ep [(8� 4r) + a�e(r2 � 2)]� A�e(2r � 3)

3� r2
, r < 1,

3
4↵ep(4r � a�e) + A�e

2r
, r � 1,

(3.56)

Hence, with the given values of the correlation coefficients (a and A), direct determi-
nation of the value of B can be performed by a differential analysis of the electron
energy (Ee) dependent neutrino asymmetry ↵ep from the Qij-spectra.

3.3.2 Electron-Proton Tilde Asymmetry

Another differential asymmetry proposed in Ref. [60] is the electron-proton tilde
asymmetry ( e↵ep) and is defined as

e↵ep(Ee) =
Q+� �Q�+

Q+� +Q�+
(3.57)

Substituting the expressions for Q+� and Q�+ and following some simplification, we
get

e↵ep(Ee) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

P

A�e

✓
1 +

2r

3

◆
� B

✓
r2

3
� 1

◆

fb(2 + r)�
1

2

✓
r2

2
� 1

◆
a�e

, r < 1,

P

✓
2�

1

3r2

◆
A�e +

2

3r
B

✓
4�

1

r

◆
fb +

1

4r2
a�e

, r � 1,

(3.58)

As noted in Ref. [60], this asymmetry offers sensitivity to B (and, hence, b⌫) at low
energies (note the 2/3r suppression factor on B for r > 1 higher energies), and is useful
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for extracting a value of �. Compared to ↵ep, e↵ep(Ee) offers improved sensitivity to
BSM physics. The expression for B with P = 1 and fb = 1 in terms of electron-proton
tilde asymmetry becomes

B(Ee) =

8
>>><

>>>:

1
(r2�3)

h
A�e (3 + 2r)� 3

4e↵ep (8 + 4r � (r2 � 2)a�e)
i
, r < 1,

3r
2


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✓
4�

1

r
+

1

4r2
a�e

◆
�

✓
2�

1

3r2

◆
A�e

�
, r � 1,

(3.59)

Thus, direct determination of the value of B can be done with the given values of
the correlation coefficients (a and A), by a differential analysis of the electron energy
(Ee) dependent tilde asymmetry e↵ep from the Qij-spectra.

3.3.3 New Coincidence Asymmetry ↵X

The first of the new coincidence differential asymmetry ↵x(Ee) is defined as

↵x(Ee) =
Q�� �Q++

Q+� �Q�+
(3.60)

Substituting the expressions for Qij in terms of angular correlation coefficients, we
get

↵x(Ee) =

8
>>>>>>>>>>>><
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+
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B
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1

6r2

◆
+

4

3
B

, r � 1

(3.61)

It is clear that ↵x(Ee) does not depend on b and can be exploited to extract the
value of B given the value of the correlation A. More explicitly, B as a function of
↵x(Ee) can be written as
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(3.62)

Hence, given the value of the correlation coefficient (A), direct determination of the
value of B can be performed by a differential analysis of the electron energy (Ee)
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dependent coincidence asymmetry ↵x(Ee) from the Qij-spectra.
Note: We can also construct a new coincidence differential asymmetry ↵y(Ee) defined
by

↵y(Ee) =
Q�� �Q++

Q+� +Q�+
(3.63)

Putting the expressions for Qij in terms of angular correlation coefficients, we get
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It is clear that ↵y(Ee) depend on b via fb and b⌫ via B along with the dependence
on A and a. In principle, we can use this asymmetry to obtain the B but it is not
possible to separate out b from b⌫ . Hence, this is the least sensitive asymmetry among
others to the BSM physics.

3.3.4 New Coincidence Asymmetry ↵R

The differential asymmetry ↵R(Ee), is constructed such that it is independent of
b and depends on b⌫ via B and is defined as

↵R(Ee) =
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Substituting the expressions for Qij’s in terms of angular correlation coefficients, we
get

↵R(Ee) =
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It is clear that ↵R(Ee) also does not depend on b and can be used to obtain the value
of B given the value of the angular correlations A and a. More explicitly, B as a
function of ↵R(Ee) with P = 1 can be written as
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Hence, given the value of angular correlation coefficients (A and a), direct determi-
nation of the value of B can be determined by a differential analysis of the electron
energy (Ee) dependent coincidence asymmetry ↵R(Ee) from the Qij-spectra.

3.4 Integral Asymmetries

The integral asymmetries, corresponding to the proton asymmetry ↵p and electron
asymmetry ↵e are defined by

h↵pi =

Z
dEe ws(Ee) (Q

p
�)�

Z
dEe ws(Ee) (Q

p
+)

Z
dEe ws(Ee) (Q

p
�) +

Z
dEe ws(Ee) (Q

p
+)

, (3.68)
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where the integrals are over some prescribed energy range. Under the integral
technique, one would extract the asymmetries from the numbers of counts within
some energy range, and then compare the resulting ratio of integral asymmetries,
rpe = h↵pi/h↵ei, to the value the ratio would assume under the Standard Model (i.e.,
b⌫ = 0). In contrast to the differential fitting technique, one would not perform a
direct fit for any evidence of BSM physics, but would instead, under a global analysis
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of other neutron �-decay observables, search for a pull on the observed value from
that expected under the Standard Model.

The integral asymmetry corresponding to ↵ep is given by

h↵epi =

Z
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Z
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Z
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. (3.70)

where the integrals are over some prescribed energy range. Using the integral expres-
sion, we can determine asymmetry the h↵epi from the numbers of counts within some
energy range of the Qij-spectra.

Similarly, the integral asymmetry corresponding to e↵ep is given by

he↵epi =
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as usual, the integrals are over some specified energy range. Again using this integral
technique, we can extract the asymmetry he↵epi from the numbers of counts within
some energy range of the Qij-spectra.

Another integral asymmetry corresponding to the asymmetry ↵x can be con-
structed as usual and is given by

h↵xi =
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Z
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Z
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Z
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where the integrals are over some specified energy interval. We can extract the new
coincidence asymmetry h↵xi from the numbers of counts within some specified energy
range of the Q-spectra.

The integral approach is the usual way to extract the asymmetries and by do-
ing the global analysis of the other neutron �-decay observable one can obtain the
observed value as demanded by the Standard Model. Also, it should be noted that
while implementing the integral techniques for analysis of �-decay parameters, one
must take into account of the change in the functional form of the Qij’s at r = 1.
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Chapter 4 Simulation

4.1 UCNB Experiment

UCNB aims to measure the antineutrino asymmetry B between the neutron spin
and the emitted antineutrino momentum with better than 0.1 % precision using ul-
tracold neutrons. The experiment is designed to utilize polarized ultracold neutrons
(UCN) at the Los Alamos Neutron Science Center (LANSCE) UCN facility ( [3], [77]).
UCNB will be carried out with ultracold neutrons at the Ultracold Neutron Source
at Los Alamos National Laboratory. The UCNB collaboration has developed a sig-
nificantly advanced detection system over earlier approaches. The most important
challenges in this experiment is the coincident detection of electrons and recoil pro-
tons by the detector system. In general, the requirements for detection of protons
include very low noise and a thin entrance window in addition to the accelerating
potential. Also in order to determine the electron energy, the detector must have
sufficient thickness to fully stop the electron and a very thin dead layer to limit the
corrections needed for energy loss and backscattering. The antineutrinos emitted in

Figure 4.1: The UCNB experiment modifies the UCNA superconducting spectrometer
(SCS) to include biasable detection systems and an open decay trap to determine the
proton and electron directions.

the decay process of UCN are not directly detected as they do not interact with the
detector due their infinite penetrating power. Hence, in the experiment, the infor-
mation about the neutrino direction/momentum is determined from the proton and
electron directions/momenta. The UCNB experiment is performed using a modified
version of the UCNA apparatus (Fig. 4.1) [99]. In both the experiments, silicon is
used as the detector material and uses magnetic field to guide the electrically charged
particles.
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4.1.1 UCNB Geometry

The experimental concept and design according to the UCNB and Nab collabora-
tors [3], is the modification of the Ultracold Neutron Asymmetry (UCNA) experiment.
The UCNB experimental geometry consist of a hollow cylindrical copper decay trap of
length ⇠ 3.0 m. The radius of the decay trap is about 12.7 cm and this diamond-like
carbon-coated copper guide is located inside the 1 T superconducting spectrometer
(SCS) magnet, with identical detectors at either end. In the case of UCNA, thin
Beryllium coated Mylar foils are used at the ends of the guide to completely trap
UCN but allowing electrons to pass through. But in the UCNB experiment, copper
end caps with 3.8 cm diameter central holes are used to allow the protons of energy
< 800 eV within the viewing area of the detector to escape, while still partially trap-
ping UCN. A TPX Polymethylpentene 1 tube is installed between the decay trap and
the detection system. The purpose of TPX tube is to absorb UCN and reduce decays
in the magnetic field expansion region. The detectors are located in the homogeneous
0.6 T region in the magnetic field expansion region.

The main idea is that the decay of the polarized UCN gives two charged particles
which are guided by the magnetic field to one of the two detectors located at ±Z
directions. The detectors are biased to �30 kV to accelerate the protons with enough
energy to be detected. The number of coincident events N ep = (N++, N��) permits
an extraction of the asymmetry according to

B(Exp)(Ee) =
N��(Ee)�N++(Ee)

N��(Ee) +N++(Ee)
(4.1)

This experimental asymmetry is a function of neutrino asymmetry parameter, B,
electron asymmetry, A electron-neutrino asymmetry, a and the electron energy, Ee.
Using the other experimentally determined values, the magnitude of B can be ex-
tracted to the level of 0.1 % [100] from the current experimental set up.

4.1.2 Magnetic field

The general requirements for the magnetic field within the decay trap is that it
must be aligned with the axis of the decay trap to define the axis of polarization.
The field also needs to be strong enough to confine the cyclotron radius of the decay
products (electrons and protons) as they spiral toward the detectors without inter-
acting with the walls of the decay trap. The field has to be uniform so that decaying
particles will not be reflected during their motion toward the detectors. The cyclotron
(Larmor) radius (ri) of a relativistic charged (qi) particle of mass (mi) gyrating in a
uniform magnetic field, B is given by

ri =
pi?
|qi|B

= �i
mivi?
|qi|B

(4.2)

where, i = (e, p) corresponds to electron and proton respectively and

�i =
1q

1�
v2i
c2
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Here, pi? is the component of the momentum perpendicular to the direction of the
magnetic field. In general, from Eqn. 4.2, the Larmor radius for proton seems to be
larger than that for an electron due to the large difference in the masses. But, it is
the perpendicular component of the momentum that determines the radius. Since,
in the decay of free neutrons, the momentum of the two particles are comparable
so their Larmor radii for a given magnetic field are similar. Hence, the strength of
magnetic field which will be able to confine an electron will confine a proton, too.
The strength of the magnetic field in the region of the decay trap is 1 T and from the
end of the decay trap to the detector is the field expansion from 1 T to 0.6 T. Also,
we know from J. D. Jackson [101], the flux through the spiral of the particles around
the uniform magnetic field is an adiabatic invariant, that is

Br2i ⇠
p2i?
B

The momentum of the particle can be written as

pi =
q

p2i|| + p2i?

A charged particle emitted with momentum pi,0 = (p2i||,0 + p2i?,0)
1/2 where pi||,0(pi?,0)

is the initial transverse (longitudinal) momentum component, in some field B0 will
be reflected from the field regions B if

B > Bcrit ⌘
p2i,0
p2i?,0

B0 (4.3)

The pitch angle of the gyrating particle in the field is given by

✓i = cos�1

✓
pi||
pi

◆
(4.4)

The particle emitted with the large pitch angle near the local field minimum will be
trapped. Hence, the magnetic field inside the decay trap must be extremely uniform
to minimize particle localization instead of spiralling toward the detectors. So by
decreasing the pitch angle, we can decrease the probability of backscattering of the
particles drastically. Under the adiabatic condition, the pitch angle depends on the
local field value B(z) and the starting angle ✓1 at field B1 (at z = z0) is given by

sin ✓(z) =

s
B(z)

B1
sin ✓0 (4.5)

But, under the adiabatic transport condition, the Larmor radius of the particle (both
electron and proton ) about the magnetic field along the z-direction increases in going
from a uniform field (B1) to the field expansion region of the detectors which is given
by

r(z) =

s
B1

B(z)
r0 (4.6)
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In the case of the UCNB spectrometer, the fields are B1 = 1 T and B(z) = 0.6 T
so the pitch angle and Larmor radius at the location of the two silicon detectors are
given by

sin ✓(z) =
p

0.6 sin ✓0, r(z) =
1

p
0.6

r0 (4.7)

It is for this reason that the silicon detector disks have larger radii as compared to
the exit radii of the two ends of the decay trap.

4.1.3 Time of Flight

The time of flight (ti) of a relativistic charged particle (electron or proton) in a
uniform magnetic field B depends on the energy Ei, and its polar emission angle ✓i
relative to the axis z of the magnetic field and is given by [102]

ti =
z0

vi cos ✓i
=

z0
�i cos ✓i

(4.8)

where, as usual i = (e, p) and z0 is the distance of the detector from the point origin
of an electron or proton event. With c = 1, �i = vi and is given by

�i =
pi
Ei

=

p
E2

i �m2
i

Ei
(4.9)

Solving for Ei, we get

Ei = mi
ti cos ✓ip

t2i cos
2 ✓i � z20

(4.10)

and the kinetic energy (Ti) of the particle as a function of time of flight ti and emission
angle ✓i is given by

Ti = mi

 
ti cos ✓ip

t2i cos
2 ✓i � z20

� 1

!
(4.11)

However, for the the non-uniform field as in the case of the UCNB experiment, the
time of flight of the particle is given by

ti =

Z z2

z1

dz

�i cos ✓i
=

1

�i

Z z2

z1

dzq
1� B2(z)

B2
1

sin2 ✓0
(4.12)

Hence, the difference in the time of flight for the electron and proton comes from the
difference in the �i and can be used to distinguish between the electron and proton
events [103].
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Figure 4.2: The detector mount carries the detector, preamplifier electronics, liquid
nitrogen lines, and allows for high voltage bias up to 30 kV. The inner stage is in
vacuum and the outer stage is in air [3].

4.1.4 Detection System

The detector system is shown in Fig. 4.2. The detection system consists of highly
segmented silicon detectors about 2 mm thick. The active area has a diameter of
about 11.5 cm and a thin front dead layer of about 100 nm thick. A dead layer
is a silicon layer created by the rectifying junction through which charged particles
must pass to be detected [3]. The front junction for the active area is created by
a shallow boron implant to give a reduced dead layer, while the periphery has a
deep implant to ensure good contact [3]. The junction face is metallized with a 300
nm thick, square aluminum grid to improve charge collection. The detector system
carries the detector, preamplifier electronics, liquid nitrogen lines, and allows for high
voltage bias up to 30 kV for the detection of proton. The main problem in the
experiment is the detection of protons due to their low energies as compared to the
electron detection. The efficiency of detecting protons is further made worse due to
the presence of the dead layer which has to be penetrated in order to be detected.
Since most of the proton events are lost in the dead layer, it becomes harder to
perform electron-proton coincidence experiment. A particle interacting with this
layer will lose its energy without detection and therefore it is important to minimize
the thickness of the dead layer [104]. This is one of the main issues in detector
development for the this experiment where the dead layer must be thin enough to
detect low energy protons ( [104], [105]). Nevertheless, using suitable biasing of the
detector to accelerate proton helps enormously to overcome the dead layer enough to
be detected by the silicon detectors. The main principle involved in the identification
of proton and electron events is their time of flight measurements from the energy vs.
timing spectra of the coincidence events [106].

4.1.5 Experimental Concept

The UCNB experimental concept according to W. S. Wilburn et al. is shown in
the Fig.4.3 [4]. UCNs produced by the LANSCE source pass through a polarizing
magnet and spin flipper and then enter the decay volume located inside a spectrometer
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magnet. Similar to the UCNA experiment [107], the neutrons are initially polarized
using the ±60 neV/T potential. The UCN pass through the 6 T prepolarizing magnet
and then through the 7 T primary AFP (Adiabatic Fast Passage) polarizing magnet.
Neutrons with spin aligned to the field (the magnetic moment of the neutron is
negative and so is anti-parallel to the spin) see a repulsive potential of 420 neV from
the 7 T magnet, so all the UCNs in this spin states get reflected. The opposite
spin states sees an attractive potential and is transmitted, thus producing completely
polarized UCNs beyond the AFP magnet. At this point, the neutrons pass through
the AFP spin flipper. If the spin flipper is on, the spins undergo a ⇡ spin-flip before
entering into the decay volume, and when off, the spins remain in the same state
that was selected by the AFP magnet. The polarizer produces a neutron polarization

Figure 4.3: Schematic diagram for the UCNB experimental setup [4].

about ⇠ 0.99, and the spin flipper can reverse the neutrons polarization direction
with an efficiency � 0.997. This will allow to cancel the systematic effects related to
differences in the detector efficiencies. The electrons and protons obtained from the
decay of the UCNs are confined to spiral about the magnetic field of 1 T until they
reach the silicon detectors. In order to avoid back scattering the magnetic field as in
the UCNA spectrometer can be implemented here. Since the end point energy of the
proton is very small ⇠ 0.751 keV, it is not possible to detect, so an electric potential
of 30 keV is applied outside the decay trap to accelerate the proton to be detected by
the silicon detectors. The proton and electron events are detected at different times
in the detectors from which coincidence events are determined. The experimental
proton asymmetry as a function of the electron energy can be determined using Eqn.
4.1 and B can be extracted [90].

56



4.2 Overview of Simulation

The present work is the simulation of the UCNB experiment to determine the
value of the neutrino-asymmetry B very precisely. The energy scale for electron,
0�800.0MeV is about thousand times higher than for the proton which is 0�751.0 eV
[108]. Furthermore, applying energy-momentum conservation laws to the three body
decay process, the energy and the momentum of the emitted antineutrinos can be
reconstructed. In general, all the physics process are accounted and are tractable
within simulation. GEANT4 (GEometry ANd Tracking 4) is an object-oriented
Monte Carlo simulation toolkit that has been developed by a worldwide collaboration
of scientists [109]. It simulates the passage of particles through matter. The GEANT4
simulation [98] for the realistic UCNB geometry gives the detailed analysis of the
decay process through particle tracking irrespective of the energy scale of the involved
particles.

4.2.1 Geometry

The geometry of the simulation consists of a decay trap and a detector system.
The decay trap is a 3.0 m long copper cylinder with inner and outer radius 6.5 cm
and 7.0 cm respectively so that the thickness of the copper tube is 5.0 mm. The
origin of the coordinate system coincides with the center of the copper cylinder with
the z-axis along the cylindrical axis such that the ends of the tube lie at coordinates
(0, 0,±1.5) m. Two silicon disks each of radii 8.0 cm and thickness 2.0 mm are placed

Figure 4.4: Schematic diagram for the UCNB simulation geometry.

on either sides of the cylindrical axis at (0, 0,±2.2) m. Each of these disks has dead
layers of thickness 80.0 nm and the axis of these disks coincides with the axis of the
cylinder. The decay trap is placed in a uniform magnetic field of 1.0 T along the axis.
This field extends from z = �1.5 m to z = 1.5 m. The magnetic field drops to 0.6
T at the detector location such that the field gradient between the end of the decay
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trap to the detector is @B
@z = �

4
7 T/m. The detectors in this geometry are labelled

as Silicon Disk1(S1), Dead Layer1 (D1), Silicon Disk2 (S2) and Dead Layer2 (D2) as
shown in the figure 4.4. The medium inside the decay trap and outside the detector
system is a vacuum. This makes the geometry simple as there are only five places (
four detectors and a decay trap) for the particles to deposit energy. The events are
generated uniformly within the cylindrical volume of radius 6.5 cm and length, l = 3
m.

4.2.2 Magnetic Field

The input geometry into the Geant4 simulation is taken directly from UCNA with
a slight modification to meet the requirement for UCNB experiment as stated in the
earlier sections of this chapter. Also, in the simulation any other differences in the
geometry is also incorporated in the detector construction. The magnetic field is
assumed to be perfectly uniform along the axis of the decay trap. This is done to
save the computational time. In the real experiment, the magnetic field profile in
side the spectrometer is not flat [5]. The magnitude of the field is 1 T in the decay
trap with the field expansion to 0.6 T at the detector locations on either sides of the
decay trap.

The magnetic field is passed to the simulation as a set of discrete Bz values along
the z-axis of the spectrometer. The continuous field profile on the z-axis is then
interpolated between consecutive zi locations using the respective Bz(zi) values by a
half-wave of a cosine function [110] given by

Bz(z) =
Bz(zi) + Bz(zi+1)

2
+

Bz(zi)� Bz(zi+1)

2
cos

✓
z � zi

zi+1 � zi
⇡

◆
(4.13)

where zi < zi+1. Now the magnetic field is taken to be azimuthally symmetric
(B� = 0) so that, we have

~B(r, z) = Br(r, z)r̂ +Bz(r, z)ẑ (4.14)

From Maxwell’s equations, the radial component of the magnetic field can be calcu-
lated as

r · ~B(r, z) =
1

r

@(rBr)

@r
+
@(Bz)

@z
= 0 (4.15)

Br = �
1

r

Z ✓
@(Bz)

@z

◆
rdr (4.16)

This leads to the expression for the radial field as

Br(r, z) =
⇡r

4

Bz(zi)� Bz(zi+1)

zi+1 � zi
sin

✓
z � zi

zi+1 � zi
⇡

◆
(4.17)

The field in the Geant4 simulation is implemented using a six component electro-
magnetic field ( ~B, ~E) in which the first three components correspond to the magnetic
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field and the remaining three components represent the electric field.

~B(r, z) = Bxx̂+Byŷ +Bz ẑ

~E(r, z) = Exx̂+ Eyŷ + Ez ẑ

These fields are implemented in the simulation through the G4ElectroMagneticField
class available in the package.

4.2.3 Physical Processes

The physical processes involved in the Geant4 simulation depend on the particle
types. The most common particles are photons, electrons, positrons, muons and
hadrons. The particles undergo only certain physical processes. For example, physical
processes related to photon are [98]:

1. Pair production

2. Compton collision

3. Photo-electric effect

4. Photo-fission of heavy elements

5. Rayleigh effect

For the electron/positron pair, the physical processes involved that account for
energy losses in the medium are:

1. Multiple scattering

2. Ionization and delta ray production

3. Bremsstrahlung

4. Annihilation of positron

5. Generation of cherenkov radiation and scintillation light

6. Synchroton radiation

7. Transition radiation

Similarly, for the muon and hadron, the physical processes involved which account
for various energy losses in the medium are:

1. Decay

2. Multiple scattering

3. Ionization and delta ray production
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4. Ionization by heavy ions

5. Bremsstrahlung

6. Direct electron/positron pair production

7. Nuclear interaction

8. Generation of cherenkov radiation and scintillation light

9. Elastic and inelastic scattering

10. Particle induced X-ray emission

11. Atomic relaxation

The physics (processes) are implemented through the Geant4 Physics List. Physics
List is an object that specifies all the particles that will be used in the simulation
application [98]. It provides a very flexible way to set up the physics environment
including the specification of the particle used in the simulation and the physics as-
sociated with each particle. Failure to use relevant particles and physics interactions
could lead to poor simulation results. Geant4 does not provide the physics by default
because there are many different approximations and models to describe the same
interaction. Also, computational time is a real issue. Some users may want a less
accurate but significantly faster model for a given interaction while others need the
most accurate description. Furthermore, there is probably not any simulation ap-
plication that would require all the particles and all their possible interactions that
Geant4 can provide. The physics provided by Geant4 are:

1. Electromagnetic (EM) physics

2. Weak interaction physics

3. Hadronic physics

4. Parameterized or "fast simulation" physics

Hence, one must have a good understanding of the physics required to properly
describe the given problem. Also, depending upon the energy scale, the physics
must be implemented carefully. As an example, in the decay of the free neutron, the
simulation uses all of the relevant physics such as EM, Weak interaction and Hadronic
physics.

4.2.4 Event Types

The sensitive detectors in the GEANT4 simulation are Silicon Disk1 (S1), Dead
Layer1 (D1), Silicon Disk2 (S2) and Dead Layer2 (D2). The proton and electron
after spiralling in the magnetic field deposit their energies in these detectors. Some
of the events which fail to deposit energy in these detectors might deposit energy in
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the decay trap. These events are considered lost events and do not contribute to the
detected energy spectrum. The only useful events for analysis are the events which
encounter any of the detectors including dead layers. In the present simulation, the
low energy scale is much lower than 1 eV which allows the proton to be propagated in
the magnetic field and to be detected by the detectors. This condition was imposed
in the simulation by setting the low energy cuts.

The number of sensitive detectors is four, hence there are 24 = 16 (C(n, r) with
r = 0, 1, 2, 3, 4 and n = 4) possible types of events for each proton and electron
to deposit their energy completely. In order to do that, we make use of Boolean
variables in which a "0" state represents the situation that the particle does not
deposit sufficient energy on a particular detector and "1" state stands for the situation
when the particle deposits sufficient energy to be detected in a particular detector.
Table 4.1 show all the possibilities of the four detectors events that register a hit or
no hit. Direct events are those events which are detected only on one side. This

Table 4.1: All possible events in the four detectors system.

Detectors at +z Detectors at �z
Number S1 D1 D2 S2 Energy Deposition in

1 0 0 0 0 Decay Trap
2 1 1 1 1 All
3 1 0 0 0 S1

4 0 1 0 0 D1

5 0 0 1 0 D2

6 0 0 0 1 S2

7 1 1 0 0 S1, D1

8 1 0 1 0 S1, D2

9 1 0 0 1 S1, S2

10 0 1 1 0 D1, D2

11 0 0 1 1 D2, S2

12 0 1 0 1 D1, S2

13 1 1 1 0 S1, D1, D2

14 1 1 0 1 S1, D1, S2

15 0 1 1 1 D1, D2, S2

16 1 0 1 1 S1, D2, S2

means that if the events generated with momenta in the +z direction are detected
in the detectors at +z or vice versa, we called the direct events. For example, the
events which deposit energy only in the detectors S1 or D1 located at +z direction
are the direct events. There are six possible types of direct events as shown in the
Table 4.1. All the events except the direct events which are detected on both sides (
detectors at ±z) are called the backscattering events. The backscattering events (see
Table 4.1) include four two-detector events (8, 9, 10, 12), four three-detector events
(13, 14, 15, 16) and one four-detector event (2). In total, there are nine possible types
of backscattering events with the four detector system.
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4.2.5 Event Sorting

The charged particles (electron or proton) spiral about the magnetic field and
hit the detectors. If the particle loses all of its energy, it will not be backscattered.
However, if it fails to deposit all the energy, then it spirals back and forth multiple
times until all of its energy is exhausted. In the simulation, we are interested in
isolating the events on the basis of the experimentally measurable variables. In the
experiment, electron and proton events are observed at different times due to the
difference in the time of flight. The electron events are detected earlier than the slowly
gyrating proton. For this reason, the times for all the hits for both the particles in
the detectors are recorded. The time of flight for the particle is defined as the time
taken by the particle to be detected in the detector, starting from the origin of the
event. The first nonzero time of flight of the particle gives the actual direction of the
motion relative to the axis of neutron polarization. This is useful for sorting out the
electron and proton events detected on either detectors placed on ±z direction.

4.2.6 Input and Output

The input needed for the Geant4 simulation has been mostly discussed in the ear-
lier section. The geometry is build and implemented in the G4DectectorConstruction
class available in the package. In particular, the most important input to the sim-
ulation is the event generator itself which samples the proton and electron mo-
menta/energies based on the physics involved in the decay of free neutron. An event
is specified by its origin vertex (x0, y0, z0), its kinetic energy (T0) and the direction
of the momentum (p̂x, p̂y, p̂z) vector. In the case of the two particle event generator,
each of the particles are described by the vertex, kinetic energy and momentum di-
rection before being incorporated into the Geant4 simulation [98]. The following are
the output of the simulation:

• The initial kinetic energies for all the decay products.

• The event vertices (x0, y0, z0).

• The energy depositions in the detectors, S1, D1, D2 and S2.

• The angles relative to the direction of magnetic field.

• The time of flights to each detectors.

• The (x, y, z) positions of hits on each detectors.

• The energy and momentum of bremsstrahlung photons.

The output listed above represents the minimal variables required for the analysis of
the Qij spectra.
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Chapter 5 Results

5.1 Simulation of UCNA Geometry

In the beginning of my research on neutron �-decay, GEANT4 simulation of
UCNA experiments for the 2011/2012 and 2012/2013 geometries were carried out.
The two geometries were different on the basis of the material used for the caps (thin
foil) at two ends of the UCNA spectrometer (see Figure 5.1). The end caps are used
to prevent the loss of UCNs and also to control the backscattering ( [111], [112]).

Figure 5.1: Detailed setup for the UCNA experiment [5].

The results obtained from the simulations were first analyzed based on the types
of the events. The events in UCNA are classified as Type 0, Type 1, Type 2/3 and
Type 4 [56]. On the basis of which detector components trigger, we classify events
into those that do not backscatter (Type 0) and those that are backscatter (Types
1, 2, and 3). A schematic of the different types of UCNA events is shown in Figure
5.2. Type 0 events are a combination of the “no backscattering” and “missed” events.
They trigger one scintillator and one Multi Wire Proportional Chamber (MWPC) on
the same side. Type 1 events are backscattering events that trigger both scintillators
and both MWPCs. Type 2/3 events consist of events that backscatter and trigger
both MWPCs, but only trigger a single scintillator. The remaining events are called
Type 4 which are missed or the lost events.
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Figure 5.2: Schematic of event types in UCNA

Given the geometry in hand, three parallel simulations were done: with endcaps,
without endcaps and annular endcaps. The results of the simulations were then an-
alyzed. We have studied the kinetic energy distributions (see appendix A.5.1) and
the angular distributions (see appendix A.5.2) of the direct events and the backscat-
ter events. The analysis show that the backscattering decreases in the case of with:
endcaps as compared to that of without-endcaps case. Also, Type 0 events dominate
over all other event types. We also analyzed the event types for the UCNA geome-
try 2012/2013 with no endcaps [113]. The angular distribution of the events under
different radius cuts are shown in the appendix A.5.3. In the plots shown, the small-
est event radius of 0.5 cm was taken and incremented by 0.5 cm. These plots show
the fractions of the different events types in each regions of the radial distribution
of the events. Since the distribution is proportional to the area of the cylindrical
cross-section, the fraction of Type 0 events gets larger as the event radius becomes
larger.

5.2 Simulation of UCNB Geometry

5.2.1 Qij spectra

The Qij spectra as discussed in Chapter 5 are shown in the Figure 5.3. These en-
ergy spectra and the probabilities of the events with different Qij are different. As an
example, the probability that both an electron and a proton with spins aligned with
neutron be emitted is the least compared to all other cases. The analytical expres-
sions corresponding to these spectra are related to the �-decay parameters. Hence,
by constructing various asymmetries, we can extract different correlation coefficients
in neutron �-decay. The main task of the present simulation is to reconstruct the Qij
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Figure 5.3: The theoretical Qij spectra.

from the experimentally observed variables. In the UCNB experiment, the observ-
ables are the time of flight and the energy deposition in the respective detectors for
the electron and proton events. Using these variables, we were able to reconstruct
the Qij. We can visualize Q++ and Q+� geometrically in which the spin of neutron
divides the space into two hemisphere (see Figure 5.4 ) [6]. Figure 5.4 (a) shows a
scenario when electron and proton are emitted in the same hemisphere (momenta of
electron and proton are oriented into the hemisphere parallel to the neutron spin).
The antineutrino is restricted to the opposite hemisphere due to momentum conserva-
tion. Similarly, Figure 5.4 (b) [6] shows another scenario when an electron and proton

(a) (b)

Figure 5.4: (a) Illustration of Q++ (b) Illustration of Q+� [6]
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are emitted in opposite hemispheres (momenta of electron and proton are oriented
into the hemisphere parallel to the neutron spin). This provides more possibilities
for the direction of emitted antineutrino. As the antineutrino cannot be detected
easily, we have to deduce its emission direction from a coincident measurement of
the electron and proton momenta emitted into the two hemispheres defined by the
neutron spin.

5.2.2 Analysis of Event Generator

Prior to the implementation of the event generator (see Chapter 2) into the
Geant4 simulation, it was made a standalone code. The input values of the �-decay
asymmetry parameters were taken from the Standard Model expression in terms of
� = �1.2701 [97] such that

A0 = �2
�(�+ 1)

1 + 3�2
= �0.1174,

B0 = �2
�(1� �)

1 + 3�2
= 0.9875,

a0 =
1� �2

1 + 3�2
= �0.1051.

and b = 0. The results of the event generator were analyzed. We were able to
construct the Qij spectra based on the initial angular distribution of the electron and
proton events. Thereafter, using the various asymmetries described in the Chapter 3,
we were able to reproduce all the input �-decay parameters (A0 and B0) within one
sigma. The statistical errors in A0, B0 and � were in perfect agreement with Glück’s
results [60]. The variation of � with respect to A and B were also in agreement with
those stated in this paper.

d�

dA
= 2.6,

and

d�

dB
= 13.4

The electron asymmetry A0 is obtained by fitting an energy dependent electron asym-
metry A(Ee) (see Eqn.3.51) using the fit function given by

A(E) = A0

h
1 + Aµm

✓
A1W0 + A2

Ee

me
+ A3

me

Ee

◆i
, (5.1)
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where Aµm, A1, A2 and A3 are constants defined in terms of � as

Aµm =
�+ µ

Mn�(1� �)(1 + 3�2)
,

A1 = �2 +
2

3
��

1

3
,

A2 = ��3 � 3�2 �
5

2
�+

1

3
,

A3 = 2�2(1� �).

In the fit function, W0 = mn � mp and µ = µp � µn is the difference between the
magnetic moments of proton and neutron. With A0 as a fit parameter [114], we were
able to extract A0. However, in order to extract B0, a single parameter function
(see Eqn. 1.58) was fitted to the values of B obtained from different asymmetries
defined in Chapter 3. The results of the simulation with the event generator are
shown in Appendix A.6 (see Figure A.41 and Figure A.42). Also, we performed 10
independent simulations each with 1 ⇥ 108 events. We constructed Qijs for each of
these 10 independent results and extracted the value of A0. According to Glück [60],
one-sigma deviation error in A0 and � are given respectively by

�A =
2.7
p
N

�� =
7

p
N

(5.2)

For each of the 10 independent simulations with 0.1 billion events, the error in A0

is found to be 2.7 ⇥ 10�4 and the corresponding error in � is found to be 7 ⇥ 10�4.
Furthermore, we have also used the proton asymmetry (↵p) (see Eqn. 3.48) to extract
the value of the neutrino asymmetry correlation coefficient (B0). With the same
analysis of the Qij spectra, we have used the asymmetry ↵ep (see Eqn. 3.56) and ↵̃ep

(see Eqn. 3.59) to extract the values of B0. The values of A0, B0 and � for the 10
independent simulations each with 1 ⇥ 108 events are tabulated in Appendix A.6.1.
Also, the plots to extract the values of A0 and B0 are shown in Appendix A.6. The
results show that the calculated values are in agreement with the corresponding input
values within one sigma deviation.

5.2.3 Backscattering

The electron-proton event generator was incorporated into the Geant4 to simulate
the UCNB experiment and the outputs were analyzed. The backscatter (BS) events
are defined as the events which deposit energy on both the detectors (Disk1 and
Disk2). In the simulation, the total events directed towards each detectors were
obtained making cuts on the direction of the initial electron and proton events.

The total of five independent simulations with the detectors placed at five different
positions from the center of the spectrometer (decay trap) were carried out. The
magnetic field between the decay trap and the detector was given by the sinusoidal
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Figure 5.5: Magnetic field profile along z-axis.

interpolation of the field from 1.5 m to 2.2 m. Hence, changing the detector positions
changes the magnetic field such that field decreases as the distance increases. The
magnetic field B(z) at the detector position z can be calculated using

B(z) = 0.8 + 0.2 cos

✓
(z � 1.5)⇡

0.7

◆
(5.3)

where values of B(z) at 1.5 m and 2.2 m are 1.0 T and 0.6 T respectively. Figure 5.5
shows the magnetic field profile along z-axis between z = 1.5 m and z = 2.2 m, the
center of the decay trap being at z = 0.0 m.

The fraction of the backscatter events decreases as the magnetic field at the de-
tector position decreases (see Figure 5.5). In other words, the backscattering depends
on the magnetic field at the detector location (see Eqn.5.3). As the magnetic field
decreases, the fraction of the backscattering events increases. This is quite obvious
because the scattering probability depends on the pitch angle. The pitch angle for
an electron or a proton travelling from the region of the higher magnetic field to the
lower field becomes larger and hence the probability of scattering decreases.

Figure 5.6 shows that the backscattering decreases as the detector is moved away
from the center of the decay trap for electron events. Also, the fraction of the
backscattering events from either of the Disk1 or Disk2 at the given positions show
the same trend. Figure 5.12 shows that the backscattering decreases as the detector
is moved away from the center of the decay trap for proton events. It is clear that the
backscattering from either of the Disk1 or Disk2 are not symmetrical. Also, at the
given position of the detector, the probability of backscattering for the proton events
is higher than the corresponding probability for the electron events.
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Figure 5.6: Backscattering fraction (electron) as a function of the detector distance
(magnetic field B(z)) from the decay trap.

Figure 5.7: Backscattering fraction (proton) as a function of the detector distance
(magnetic field B(z)) from the decay trap.
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5.2.4 Bremsstrahlung Effect Off

We carried out the Geant4 simulation with the bremsstrahlung effect disabled so
that no photons are emitted during the interactions of the electron with materials.
This was implemented by inactivating the electron bremsstrahlung. Hence, the sum
of the energies deposited in all the detectors should be equal to the total initial kinetic
energies of the electrons. Figure 5.8 shows the two dimensional distribution of the

Figure 5.8: Comparison of the total detected energy and the initial kinetic energy of
electron.

total detected energy to the initial kinetic energy of the electron. Within the event
radius of 4.2 cm, there is no bremsstrahlung effect. All the electron events lie on the
straight line with the gradient equal to one, showing that the detected total energies
for each of the events is equal to the corresponding initial energies for those events.

5.2.4.1 Reconstructed Qij Spectra

The reconstructed Qij spectra are the distributions as a function of the detected
electron energy. If both the electron and the proton are detected in the +z-direction,
we assign the event to Q++. Similarly, all the other distributions are obtained based
on which side the particles are first detected based on the time of flights. Figure 5.8
shows the reconstructed Qij spectra used for the analysis of the asymmetry parame-
ters. On the x-axis is the sum of the electron energies detected in the Silicon Disk1,
Silicon Disk2, Dead Layer1 and Dead Layer2.

These spectra were used to calculate all the asymmetries defined in Chapter 3.
Using these asymmetries, the neutrino asymmetry B0 was calculated in the two dis-
tinct regions of the spectra (r < 1 and r > 1). Table 5.1 summarizes the results of
the calculations. The statistical errors on B0 were calculated using the expressions
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derived in Appendix A.4. The values of B0 obtained with the given asymmetry agree
with the input value within one sigma. Appendix A.7 shows the neutrino asymmetry
B as a function of the detected electron energy. The value of the electron asymmetry
was obtained to be �0.1172(3) which agrees with the input value within 1.0 sigma.
The number of sigma deviations for B0 is calculated using

� =
Binput � Bcalculated

�B

where, �B is the statistical error in the calculated value of B0.

Figure 5.9: Reconstructed Qij spectra for the simulation with 1⇥109 events in which
the bremsstrahlung effects are disabled.

Table 5.1: Neutrino Asymmetry (bremsstrahlung off)

Asymmetry r < 1 � r > 1 �
↵p 0.98808(34) 1.67109 0.98699(63) 0.82366
↵ep 0.98750(17) 0.04 0.98740(48) 0.222
↵̃ep 0.98704(34) �1.35742 0.98814(63) 1.00299
rpe 0.98743(40) �0.180991 0.98747(39) 0.09689
↵x 0.98743(12) �0.658075 0.98748(12) �0.22496
↵R 0.98803(40) 1.31471 0.98777(39) 0.686367

5.2.5 Bremsstrahlung Effect On

Next, we carried out the Geant4 simulation with the bremsstrahlung effects en-
abled so that an electron can also lose energy via emission of a photon. This effect
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was implemented by activating the electron bremsstrahlung in the simulation. Hence,
the difference between the total initial kinetic energy of the electron and the ener-
gies deposited in all the detectors must be equal to the energy carried away by the
bremsstrahlung photons. Figure 5.10 shows the bremsstrahlung (photon) spectrum
from the simulation with 1⇥ 109 events. The inset plot shows the distribution of the
total detected electron kinetic energy (Sum KE) relative to its initial kinetic energy
(Te,0). The bremsstrahlung effect is shown by the events below the 45� line. This
effect from the proton was not important in our simulation (at least under the energy
scale of the proton emitted from the decay of the free neutron). Also, as the proton
is about 2000 times more massive than an electron, bremsstrahlung effects are highly
suppressed.
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Figure 5.10: The bremsstrahlung (photon) spectrum. The inset plot shows the dis-
tribution of the total detected electron kinetic energy (Sum KE) relative to its initial
kinetic energy (Te,0).

5.2.5.1 Reconstructed Qij Spectra

We used the total detected energy of the electron and time of flights of the electron
and proton for sorting out the events and reconstructing the Qij spectra. Figure 5.11
shows these spectra as a function of the detected electron energy. These are the Qij’s
with the bremsstrahlung effects turned on. Comparison of these spectra with those
with the bremsstrahlung effects tuned off, reveals a slight distortion.

For this case also, the spectra were analyzed to obtain all the asymmetries defined
in Chapter 3. Using these asymmetries, neutrino asymmetry B0 were calculated in
the two distinct regions of the spectra (r < 1 and r > 1). Appendix A.8 shows
the neutrino asymmetry B as a function of the detected electron energy and Table
5.2 summarizes the results of the calculations. The statistical errors on B0 were
calculated using the expressions derived in Appendix A.4. The values of B0 obtained
with the given asymmetry agree with the input value within one sigma deviation.
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The value of the electron asymmetry was obtained to be �0.11740(8) which agrees
with the input value within 1.1 sigma (see Appendix A.8 for the fitted plot).

Figure 5.11: Reconstructed Qij spectra for the simulation with 1⇥109 events in which
the bremsstrahlung effects are enabled.

Table 5.2: Neutrino Asymmetry (bremsstrahlung on)

Asymmetry r < 1 � r > 1 �
↵p 0.98750(18) 0.03 0.98760(52) �0.10
↵ep 0.98780(18) 1.6 0.98760(53) �0.17
↵̃ep 0.98762(10) 1.08602 0.98759(19) 0.437602
rpe 0.98804(34) 1.55074 0.98791(63) 0.641134
↵x 0.9876(14) 0.06 0.98750(81) 0.01
↵R 0.98740(34) �0.271818 0.98790(73) 1.02411
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5.2.6 Distortions of Energy Spectra

The energy depositions by the electron in all the detectors were analyzed for the
case with the bremsstrahlung effects enabled and the other with the effect disabled
(see Appendix A.9 for the figure). Using the asymmetries described in Chapter
3, values of B were calculated. Table 5.3 shows that the fractional change in the
computed values of the neutrino asymmetry B for the two cases in the two regions
of the spectrum with r < 1 and r > 1. It is clear that the bremsstrahlung effects are
not significant in the determination of the �-decay parameters.

Table 5.3: Fractional change in the neutrino asymmetry.

|BNoBrem � BBrem|/(BNoBrem)
Asymmetry r < 1 r > 1

↵p 0.00059(39) 0.00062(83)
↵ep 0.00030(25) 0.00020(72)
↵̃ep 0.00059(36) 0.00056(67)
rpe 0.00061(53) 0.00045(74)
↵x 0.00018(14) 0.00002(81)
↵R 0.00064(53) 0.00013(83)

5.2.7 Normalization for Coincidence Asymmetries

For measurements of single-particle asymmetries, such as the proton and electron
asymmetries ↵p and ↵e, these single-particle asymmetries can be constructed from
a super ratio, rp,e, of the (proton or electron) spectral counts Q1p,2p,1e,2e

± in the two
detectors (1 or 2) for the two neutron spin states (+ or �), under which differences in
the two detectors’ efficiencies and the neutron flux or density for the two spin states
largely cancel to first order. Here, it does not matter if the detection efficiencies for
electrons vs. protons are different.

On the other hand, electron-proton coincidence asymmetries are sensitive to any
such differences in the detection efficiencies for electrons vs. protons. However, these
issues can be mitigated in the following manner, which we illustrate using the example
of the differential neutrino asymmetry, ↵ep(Ee), defined previously in Eq. 3.54 to
be ↵ep(Ee) = (Q�� � Q++)/(Q�� + Q++). If we assume that the proton detection
efficiency is nominally 100%, any sensitivity to the electron detector efficiency cancels
if the Q�� and Q++ are extracted from the same detector (detector 1 or 2), meaning
↵ep is extracted only from (Q1

��, Q
1
++) or (Q2

��, Q
2
++). (This assumes the experiment

has the ability to toggle the neutron spin state.) However, there remains the problem
of the normalization for the two spin states. This can be accomplished by using the
total number of protons detected in the two detectors for the particular spin state,
N tot,p

± = N1,p
± +N2,p

± , as an absolute measure of the total number of neutron decays in
the experimental apparatus for the two spin states, such that the asymmetry is then
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calculated as

↵ep(Ee) =

Q1
��

N tot,p
�

�
Q1

++

N tot,p
+

Q1
��

N tot,p
�

+
Q1

++

N tot,p
+

. (5.4)

5.2.8 Sensitivity of rpe to b⌫

In order to study the the sensitivity of asymmetry ratio rpe to b⌫ , first the neu-
trino asymmetry B and the corresponding statistical error were calculated from the
asymmetry ratio rpe. The asymmetry ratio itself was obtained from the reconstructed
Qij’s. The values of B were then fitted with the function

B(Ee) = B0 + c0 + c1
Ee

MN
+

me

Ee
b⌫ (5.5)

with b⌫ as a free parameter. The constant B0, C0 and c1 are known constants in
terms of � and µ [62] (see Eqns. 1.58, Eqn. 1.59 and Eqn. 1.60). Using the TMinuit
minimization routine, we obtained the error in b⌫ at 68.3% CL.

Figure 5.12: One-sigma (68.3% CL) sensitivity of the asymmetry ratio rpe to b⌫ for
1⇥ 109 events as a function of the lower edge of an analysis energy window.

We assessed the sensitivity of this asymmetry ratio, rpe(Ee) ⌘ ↵p(Ee)/↵e(Ee), to
b⌫ by performing a differential fit, with one free parameter b⌫ , to our Monte Carlo
data set consisting of 1 ⇥ 109 events. These results are summarized in Figure 5.12,

75



Lower Edge of Energy Window [keV]
0 100 200 300 400 500 600 700

ν
 t

o
 b

〉
x

α〈
S

e
n

s
it

iv
it

y
 o

f 

-310

-210

-110

Figure 5.13: One-sigma (68.3% CL) sensitivity for an extraction of b⌫ from the integral
asymmetry h↵xi for 1⇥109 events as a function of the lower edge of an analysis energy
window. The upper edge of the window is fixed at 700 keV. We again include the 0
keV lower threshold as a statistical reference point.

where we have plotted the one-sigma (i.e., 68.3% CL) sensitivity of rpe to b⌫ as a
function of the lower edge of the energy window. As can be seen there, at this level of
statistics our asymmetry ratio technique offers the potential to probe b⌫ to the level
of 3.3 ⇥ 10�3 over our baseline 100–750 keV energy window. In this plot, the upper
edge of the window is fixed at 750 keV. Although achieving a lower threshold of 0
keV will not be possible, we include this as a reference point for the statistical error.

5.2.9 Sensitivity of ↵x to b⌫

We see that ↵x(Ee) also does not depend on b; however, in contrast to ↵R, h↵xi

offers greater sensitivity to b⌫ . As shown in Fig. 5.13, h↵xi would provide sensitiv-
ity to b⌫ at the level of 3.3 ⇥ 10�3 over our baseline 100–700 keV energy window.
This sensitivity is very similar to that of our rpe = ↵p/↵e asymmetry ratio method;
however, the sensitivity of h↵xi degrades significantly above ⇠ 500 keV for the same
reason as for ↵R. However, if the lower edge of the energy window is 200 keV, we see
that ↵x offers another promising avenue for accessing b⌫ . Note also because ↵x(Ee)
is independent of the polarization P , the ratio A/B can be determined in a manner
that is independent of the polarization.
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5.2.10 Sensitivity of Combined Fit to b and b⌫.

Finally, we study the sensitivity of a combined fit to the electron energy spec-
trum (in unpolarized �-decay) (see Eqn.3.2), the energy dependence of ↵e(Ee) (see
Eqn. 3.50), and the energy dependence of the asymmetry ratio rpe (see Eqn. 3.52).
Here, the observables are the four independent Q±± spectra, and if �, b, b⌫ , and a
normalization for the spectrum are treated as (unbounded) fit parameters, with 109

events such a fit over the 100–700 keV baseline energy window would determine � to
0.13% (equivalent to, e.g., a ⇠ 0.5% stand-alone measurement of A), b to the level of
2.2⇥10�3, and b⌫ to 1.2⇥10�2. The sensitivity to b and b⌫ as a function of the lower
edge of the energy window is summarized in the top panel of Fig. 5.14. However,
as previously noted, we can exploit the b and b⌫ “degeneracy” and parametrize b as
b = b⌫ + x, where x is constrained to the range of [�0.0005, 0.0003] (at 68.3% CL).
If we then carry out a fit in which �, b, and the normalization for the spectrum are
treated as (unbounded) fit parameter, but x is treated as a bounded fit parameter,
the resulting sensitivity to b⌫ increases significantly. Such a constrained fit over the
100–700 keV baseline energy window would then determine � to 0.09%, and both b
and b⌫ to 2.2⇥ 10�3. The resulting sensitivity to b and b⌫ for other energy windows
is shown in the bottom panel of Figure 5.14. The top panel of Figure 5.14(a) shows
one-sigma (68.3% CL) sensitivity for 1 ⇥ 109 events to b and b⌫ from a combined fit
to the electron energy spectrum, ↵e(Ee), and the asymmetry ratio rpe(Ee) with �, b,
b⌫ , and a normalization for the spectrum as free parameters. Bottom panel Figure
5.14(b) shows one-sigma (68.3% CL) sensitivity for 1 ⇥ 109 events from a combined
fit to the same observables, but with b parametrized as b = b⌫+x, with x bounded by
current constraints on scalar and tensor physics. Note that only one curve is shown
here, as the sensitivities to b and b⌫ are similar. We again include the 0 keV lower
threshold in both plots as a statistical reference point.

5.2.11 Summary

Correlation coefficients (A, B and a) in the decay of polarized neutrons relate
the neutron spin and momenta of the decay products. Their determination with
high precision is important to check the Standard Model of Particle Physics and
to search for the possibility of physics beyond the SM. Within the framework of
this thesis, we have calculated the neutrino asymmetry B, the correlation between
the neutron spin and the neutrino momentum, using the electron-proton coincidence
asymmetries described in Chapter 3. We also compared the Qij spectra and the
resulting asymmetries for the bremsstrahlung enabled vs. disabled cases, and found
that asymmetries for these two cases generally agreed to better than one sigma.

Furthermore, we have studied the sensitivity of a number of different experimental
asymmetries which can be constructed from measurements of electron-proton coinci-
dences in polarized neutron �-decay to the Fierz interference terms b and b⌫ . We have
also identified several methods by which b⌫ can be isolated, notably via the construc-
tion of asymmetry ratios. We have shown that with 1⇥ 109 �-decay events, it will be
possible to simultaneously determine � to 0.09 % and the Fierz terms to the level of
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Figure 5.14: Sensitivity of a combined fit to b and b⌫
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⇠ 2⇥10�3; this sensitivity goal is certainly within the statistical reach of ongoing and
future experiments. With the strategies we have proposed for constructing experi-
mental observables and addressing experimental systematic issues, the next round of
neutron �-decay experiments (such as the UCNB experiment) holds the potential to
probe BSM scalar and tensor interactions at energy scales competitive with the reach
of the Large Hadron Collider.

Copyright c� Subash Chandra Nepal, 2020.
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Appendix

A.1 Angular correlations in terms of coupling constants

With �JJ 0 and �JJ 0 defined as [57]

�JJ 0 =

8
<

:

1, J ! J 0 = J � 1
1

J+1 , J ! J 0 = J
�1
J+1 , J ! J 0 = J + 1

and

�JJ 0 =

8
><

>:

1, J ! J 0 = J � 1

�
(2J�1)
J+1 , J ! J 0 = J

J(2J�1)
(J+1)(2J+3) , J ! J 0 = J + 1,

we get the following relations for the correlation coefficients in the �-decay [57]:
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A.2 Properties of Projection operator

The Dirac matrices �µ (µ = 0, 1, 2, 3) satisfy the relations:

�µ�⌫ + �⌫�µ = 2gµ⌫ , (18)
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where g00 = 1 , gii = �1 and for µ 6= ⌫, we have gµ⌫ = 0 . The matrix �5 is defined
through (Weyl Representation)

�5 = i�0�1�2�3. (19)

�0 =

✓
0 �1
�1 0

◆
, �k =

✓
0 �k

��k 0

◆
(20)

(21)

It satisfies the relations

�µ�5 + �5�
µ = 0 (22)

�5�5 = 1. (23)

Sixteen matrices 1, �µ, �µ⌫ = i
2(�

µ�⌫ � �⌫�µ), �µ�5 and �5 form a complete system
of 4⇥ 4 matrices. The projection operator has the following useful properties:
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āa =
1

4
(1 + �5) (1� �5) =

1

4

�
1� (�5)

2
�
= 0 (27)
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A.3 Proton momentum calculations

With usual notations, the momentum of the proton is given by the solution of the
following equation

mn � Ee �

q
p2p +m2

p � |~pe + ~pp| = 0

mn � Ee �

q
p2p +m2

p �

q
p2e + 2pepp cos ✓ep + p2p = 0 (36)

Writing cf = cos ✓ep and d = mn � Ee, the above equation can be written as
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p � p2e. After squaring both sides and rearranging, we get
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Hence, the two roots of the equation can be expressed as
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Also, Ecrit and H are defined as
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The expression for h can be expressed in terms of two other expression that depends
on the masses of the three particles involved in the decay process. Consider an
expression of the form
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Since h0 = h, we can write the expression for h as

h = 4(m2
n �m2

p)(Ee � Ecrit)(H � Ee) (45)

The critical energy Ecrit ⇠ 236 KeV and for Ee < Ecrit, we get h < 0.

A.4 Analysis of Errors on Asymmetries

In terms of Qij’s, the proton asymmetry is given by

↵p =
(Q+� +Q��)� (Q++ +Q�+)
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The error in ↵p is given by

�(↵p) =

s✓
@↵p

@Qp
�

◆2

(�Qp
�)2 +

✓
@↵p

@Qp
+

◆2

(�Qp
+)2 (47)

where,

@↵p

@Qp
�
=

2Qp
+

(Qp
� +Qp

+)2
(48)

@↵p

@Qp
+

=
�2Qp

�
(Qp

� +Qp
+)2

(49)

83



and

�Qp
� =

q
Qp
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+

Again, from the expression for B calculated from the proton asymmetry ↵p (Ref.
Eqn. 3.48 ), we get
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Hence, the error in B calculated from the proton asymmetry ↵p is given by
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where, correlation coefficients A is replaced by the lowest order value A0 set by
Standard Model.

For the error in the electron asymmetry, we have
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The error in the electron asymmetry can be obtained using the same technique
as used for ↵p as
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The corresponding error in A can be calculated from (Ref. Eqn. 3.51 )
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The ratio of the two asymmetries is given by
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The corresponding statistical error is given by
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Also, from the expression for B calculated from the asymmetry ratio rpe (Ref.
Eqn. 3.53 ) , we get
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Hence, the error in B calculated from the asymmetry ratio rpe is given by
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Here, the correlation coefficients A is replaced by the lowest order value A0 set by
Standard Model.

The error in the neutrino asymmetry ↵ep, defined as

↵ep(Ee) =
Q�� �Q++

Q�� +Q++
(61)

is given by

�(↵ep) =

s✓
@↵ep

@Q��

◆2

(�Q��)2 +

✓
@↵ep

@Q++

◆2

(�Q++)2 (62)

where,

@↵ep

@Q��
=

2Q++

(Q�� +Q++)2
(63)

@↵ep

@Q++
=

�2Q��

(Q�� +Q++)2
(64)

and

�Q�� =
p

Q��, �Q++ =
p

Q++

Also, from the expression of B in terms of ↵ep (Ref. Eqn.3.56 ), we get
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The statistical error in the calculated value of B is given by
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where, the correlation coefficients a and A are replaced by the lowest order value a0
and A0 respectively.

The error in electron-proton tilde asymmetry e↵ep which is defined as
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Again, from the expression of B obtained from asymmetry e↵ep (Ref. Eqn.3.59 ), we
get
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Hence, the error in the calculated value of B is given by
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Here also, the correlation coefficients a and A are replaced by the lowest order value
a0 and A0 respectively.

The error in the first new coincidence differential asymmetry ↵x(Ee) defined as

↵x(Ee) =
Q�� �Q++

Q+� �Q�+
(73)
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is given by
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Again, from the functional form of B in terms of ↵x (Ref. Eqn.3.61 ), we get
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The statistical error in the calculated value of B is then given by
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Here also, the correlation coefficient A are replaced by the lowest order value A0.
The asymmetry ↵R for r < 1 and r � 1 are defined by
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The error in ↵R is given by
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with
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For simplicity, the two expressions for ↵R can be rewritten as
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where, for r < 1, f1 and f2 are given by
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The derivatives @↵R
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The statistical error in the asymmetry ↵R for both the cases can be obtained by
substituting the corresponding expressions of f1, f2, N and D in the above formula.
Also, from the expression for B (Ref. Eqn.3.67 ), we get
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The statistical error in the calculated value of B is given by

�(B) =
���
✓
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◆

a,A

����(↵R) (86)

In the above error analysis, the correlation coefficient a is replaced by the lowest order
value a0.

It should be noted that in general, the correlation coefficient B depends explicitly
on the values of ↵, A and a apart from the implicit dependence on the electron
energy Ee of r(Ee) and �e(Ee). In order to calculate the lowest order value of B
and its statistical error, we strictly assume that A and a are replaced by lowest order
Standard Model values given in terms of � = �1.2701 [97], [115] defined by

A0 = �
2�(1 + �)

1 + 3�2
, a0 =

1� �2

1 + 3�2
(87)

If these were not the cases, we must take into account of the statistical errors on both
A and a in the analysis of the errors in B.
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A.5 UCNA Simulation and Events Types

In UCNA geometry, the events are generated uniformly in the cylindrical volume
such that any event is specified by (R0,�0, z0). This is also called the initial vertex
in which �0 takes the values from 0 to 2⇡ and z is constrained by the length of the
cylinder. R0 is the radius of the cylinder where the events are uniformly distributed.
In the case of the geometry with the Annular Endcaps, R0 is given by

R0 =
Rmax
p
2

where, Rmax = 6.2 cm is the maximum radius of the event distribution inside a
cylindrical decay trap.

A.5.1 Kinetic Energy Distribution

Figure A.15: Kinetic energy distribution with Endcaps 2011/2012
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Figure A.16: Kinetic energy distribution with No Endcaps 2011/2012

Figure A.17: Kinetic energy distribution with Annular Endcaps 2011/2012
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Figure A.18: Kinetic energy distribution with Endcaps 2012/2013

Figure A.19: Kinetic energy distribution with No Endcaps 2012/2013
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Figure A.20: Kinetic energy distribution with Annular Endcaps 2012/2013
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A.5.2 Angular Distribution

Figure A.21: Angular distribution for the events with Endcaps 2011/12

Figure A.22: Angular distribution for the events with No Endcaps 2011/12
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Figure A.23: Angular distribution for the events with Annular Endcaps 2011/12

Figure A.24: Angular distribution for the events with Annular Endcaps (less than
R0) 2011/12
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Figure A.25: Angular distribution for the events with Endcaps 2012/13

Figure A.26: Angular distribution for the events with No Endcaps 2012/13
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Figure A.27: Angular distribution for the events with Annular Endcaps 2012/13

Figure A.28: Angular distribution for the events with Annular Endcaps (greater than
R0) 2012/13
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A.5.3 Angular distribution for No Endcaps (2012/2013 geometry)

Figure A.29: Angular distribution for the events within the radius cut, 0.0 < R0 < 0.5
cm

Figure A.30: Angular distribution for the events within the radius cut, 0.5 < R0 < 1.0
cm

A.6 Analysis of Event Generator
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Figure A.31: Angular distribution for the events within the radius cut, 1.0 < R0 < 1.5
cm

Figure A.32: Angular distribution for the events within the radius cut, 1.5 < R0 < 2.0
cm
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Figure A.33: Angular distribution for the events within the radius cut, 2.0 < R0 < 2.5
cm

Figure A.34: Angular distribution for the events within the radius cut, 2.5 < R0 < 3.0
cm
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Figure A.35: Angular distribution for the events within the radius cut, 3.0 < R0 < 3.5
cm

Figure A.36: Angular distribution for the events within the radius cut, 3.5 < R0 < 4.0
cm
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Figure A.37: Angular distribution for the events within the radius cut, 4.0 < R0 < 4.5
cm

Figure A.38: Angular distribution for the events within the radius cut, 4.5 < R0 < 5.0
cm
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Figure A.39: Angular distribution for the events within the radius cut, 5.0 < R0 < 5.5
cm

Figure A.40: Angular distribution for the events within the radius cut, 5.5 < R0 < 6.0
cm
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Figure A.41: Electron asymmetry A0
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Figure A.42: B0 obtained from ↵p(first row), ↵ep (second row) and ↵̃ep(third row) for r < 1 and r > 1 cases.
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A.6.1 Values for A0, B0 and �

The number of sigma deviations for the quantity X ( where X = A0 or B0) is
calculated using

�X =
|Xinput �Xcalculated|

�X

INPUT PARAMETERS:
� = �1.2701
a0 = �0.105002
A0 = �0.117495
B0 = 0.987506

Table A.4: Calculations of A0 and �

Simulation A0 �A0 � �� d�/dA �A
1 �0.117636 0.000268337 �1.27048 0.000717429 2.67361 0.5254590
2 �0.117482 0.000268332 �1.27007 0.000717090 2.67240 0.0484474
3 �0.117353 0.000268343 �1.26972 0.000716847 2.67138 0.5291730
4 �0.117347 0.000268340 �1.26970 0.000716827 2.67134 0.5515390
5 �0.117454 0.000268345 �1.26999 0.000717066 2.67218 0.1527880
6 �0.117381 0.000268335 �1.26980 0.000716885 2.67160 0.4248420
7 �0.117585 0.000268340 �1.27034 0.000717329 2.67321 0.3353950
8 �0.117589 0.000268341 �1.27035 0.000717340 2.67324 0.3503010
9 �0.117696 0.000268341 �1.27064 0.000717566 2.67408 0.7490470
10 �0.117298 0.000268344 �1.26957 0.000716734 2.67095 0.7341320

Table A.5: Calculations of B0 and � from ↵p for (r < 1.0)

Simulation B0 �B0 � d� d�/dB �B
1 0.987596 0.000341218 �1.26893 0.00448672 13.1491 0.263761
2 0.987879 0.000341222 �1.26519 0.00451627 13.2356 1.093130
3 0.987977 0.000341182 �1.26390 0.00452624 13.2663 1.380490
4 0.987370 0.000341227 �1.27189 0.00446412 13.0971 0.398562
5 0.987420 0.000341209 �1.27124 0.00446885 13.0971 0.252045
6 0.988332 0.000341213 �1.25917 0.00456598 13.3816 2.420780
7 0.987937 0.000341190 �1.26443 0.00452204 13.2537 1.263230
8 0.988140 0.000341157 �1.26173 0.00454370 13.3185 1.858380
9 0.987997 0.000341157 �1.26363 0.00452807 13.2727 1.439220
10 0.987637 0.000341183 �1.26839 0.00449046 13.1614 0.383958
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Table A.6: Calculations of B0 and � and from ↵p for (r > 1.0)

Simulation B0 �B0 � d� d�/dB �B
1 0.988676 0.000630928 -1.25454 0.00851710 13.4993 1.854410
2 0.988584 0.000630880 -1.25578 0.00849621 13.4672 1.708720
3 0.987992 0.000630941 -1.26370 0.00837328 13.2711 0.770278
4 0.988462 0.000630909 -1.25742 0.00847019 13.4254 1.515270
5 0.989343 0.000630897 -1.24546 0.00867242 13.7462 2.911730
6 0.988397 0.000630818 -1.25830 0.00845510 13.4034 1.412450
7 0.987999 0.000630931 -1.26360 0.00837454 13.2733 0.781385
8 0.987933 0.000630950 -1.26448 0.00836165 13.2525 0.676757
9 0.988182 0.000630931 -1.26117 0.00841168 13.3322 1.071430
10 0.988980 0.000630952 -1.25042 0.00858639 13.6086 2.336150

Table A.7: Calculations of B0 and � from ↵ep for (r < 1.0)

Simulation B0 �B0 � d� d�/dB �B
1 0.988234 0.000456337 -1.26048 0.00609173 13.3492 1.595310
2 0.987885 0.000456494 -1.26511 0.00604281 13.2374 0.830241
3 0.987887 0.000456316 -1.26509 0.00604074 13.2381 0.834948
4 0.987246 0.000456570 -1.27351 0.00595684 13.0469 0.569464
5 0.987863 0.000456421 -1.26541 0.00603872 13.2306 0.782173
6 0.988356 0.000456334 -1.25884 0.00611014 13.3896 1.862670
7 0.987726 0.000456553 -1.26722 0.00602120 13.1884 0.481872
8 0.988072 0.000456384 -1.26263 0.00606835 13.2966 1.240180
9 0.988397 0.000456312 -1.25830 0.00611613 13.4034 1.952610
10 0.987883 0.000456452 -1.26514 0.00604197 13.2368 0.825936

Table A.8: Calculations of B0 and � from ↵ep for (r > 1.0)

Simulation B0 �B0 � d� d�/dB �B
1 0.988153 0.000401987 -1.26156 0.00535556 13.3227 1.6095000
2 0.988192 0.000401962 -1.26104 0.00536033 13.3354 1.7066300
3 0.987715 0.000402189 -1.26736 0.00530288 13.1850 0.5196560
4 0.987520 0.000402121 -1.26993 0.00527844 13.1265 0.0348154
5 0.988890 0.000401723 -1.25165 0.00545368 13.5757 3.4451600
6 0.987703 0.000402061 -1.26752 0.00529972 13.1814 0.4899750
7 0.988542 0.000401822 -1.25635 0.00540560 13.4527 2.5782600
8 0.988494 0.000401889 -1.25699 0.00539989 13.4363 2.4583900
9 0.988124 0.000401945 -1.26194 0.00535123 13.3133 1.5375200
10 0.987806 0.000402068 -1.26616 0.00531250 13.2129 0.7461420
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Table A.9: Calculations of B0 and � from ↵̃ep for (r < 1.0)

Simulation B0 �B0 � d� d�/dB �B
1 0.987126 0.000566888 -1.27508 0.00737694 13.0130 0.670326
2 0.987710 0.000566961 -1.26743 0.00747454 13.1835 0.359813
3 0.987839 0.000566899 -1.26572 0.00749618 13.2231 0.587406
4 0.987661 0.000566780 -1.26807 0.00746374 13.1687 0.273475
5 0.987066 0.000566843 -1.27586 0.00736687 12.9963 0.776229
6 0.988253 0.000566959 -1.26022 0.00757198 13.3554 1.317560
7 0.988185 0.000566783 -1.26113 0.00755700 13.3331 1.197990
8 0.988315 0.000566784 -1.25939 0.00758128 13.3760 1.427350
9 0.987686 0.000566810 -1.26774 0.00746842 13.1762 0.317567
10 0.987568 0.000566799 -1.26930 0.00744817 13.1408 0.109386

Table A.10: Calculations of B0 and � from ↵̃ep for (r > 1.0))

Simulation B0 �B0 � d� d�/dB �B
1 0.989055 0.00115800 �1.24940 0.0157910 13.6364 1.337650
2 0.989097 0.00115792 �1.24883 0.0158080 13.6521 1.374020
3 0.988412 0.00115799 �1.25809 0.0155268 13.4084 0.782390
4 0.988632 0.00115807 �1.25514 0.0156153 13.4839 0.972307
5 0.989526 0.00115804 �1.24294 0.0160025 13.8186 1.744330
6 0.988997 0.00115781 �1.25019 0.0157635 13.6149 1.287780
7 0.987052 0.00115807 �1.27604 0.0150461 12.9924 0.392032
8 0.987288 0.00115807 �1.27296 0.0151232 13.0589 0.188244
9 0.988069 0.00115799 �1.26267 0.0153962 13.2956 0.486187
10 0.989925 0.00115808 �1.23739 0.0161949 13.9843 2.088800
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A.7 A0 and B0 calculations with no bremsstrahlung effects

Figure A.43: Electron asymmetry A as a function of electron energy.
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Figure A.44: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵p.
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Figure A.45: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵ep.
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Figure A.46: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
e↵ep.
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Figure A.47: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
rep.
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Figure A.48: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵x.
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Figure A.49: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵R.

114



A.8 A0 and B0 calculations with bremsstrahlung effects enabled

Figure A.50: Electron asymmetry A as a function of electron energy.
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Figure A.51: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵p.
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Figure A.52: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵ep.
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Figure A.53: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
e↵ep.
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Figure A.54: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
rep.
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Figure A.55: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵x.
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Figure A.56: Neutrino asymmetry B as a function of electron energy for the regions r < 1 (left) and r > 1(right) obtained from
↵R.
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A.9 Distortion of electron spectrum

Figure A.57: Distortion in the electron energy spectrum.
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