
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Physiology Physiology 

2020 

CERAMIDE-ENRICHED EXTRACELLULAR VESICLES: A ROLE IN CERAMIDE-ENRICHED EXTRACELLULAR VESICLES: A ROLE IN 

ENHANCING AMYLOID-BETA NEUROTOXICITY AND ENHANCING AMYLOID-BETA NEUROTOXICITY AND 

MITOCHONDRIAL DAMAGE IN ALZHEIMER’S DISEASE MITOCHONDRIAL DAMAGE IN ALZHEIMER’S DISEASE 

Ahmed Elsherbini 
University of Kentucky, aelsherbini@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0002-8414-4348 
Digital Object Identifier: https://doi.org/10.13023/etd.2020.474 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Elsherbini, Ahmed, "CERAMIDE-ENRICHED EXTRACELLULAR VESICLES: A ROLE IN ENHANCING 
AMYLOID-BETA NEUROTOXICITY AND MITOCHONDRIAL DAMAGE IN ALZHEIMER’S DISEASE" (2020). 
Theses and Dissertations--Physiology. 49. 
https://uknowledge.uky.edu/physiology_etds/49 

This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/physiology_etds
https://uknowledge.uky.edu/physiology
https://orcid.org/0000-0002-8414-4348
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Ahmed Elsherbini, Student 

Dr. Erhard Bieberich, Major Professor 

Dr. Kenneth S. Campbell, Director of Graduate Studies 



     
 

 
 
 
 
 

CERAMIDE-ENRICHED EXTRACELLULAR VESICLES: A ROLE IN ENHANCING 
AMYLOID-BETA NEUROTOXICITY AND MITOCHONDRIAL DAMAGE IN 

ALZHEIMER’S DISEASE 

 
 
 
 
 

________________________________________ 
 

DISSERTATION 
________________________________________ 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Medicine 
at the University of Kentucky 

 
 

By 
Ahmed Elsherbini 

Lexington, Kentucky 
Director: Dr. Erhard Bieberich, Professor of Physiology 

Lexington, Kentucky 
2020 

 
 
 
 
 
 

Copyright © Ahmed Elsherbini 2020 
 https://orcid.org/0000-0002-8414-4348

https://orcid.org/0000-0002-8414-4348
https://orcid.org/0000-0002-8414-4348


     
 

 

 

 

 

 

 
ABSTRACT OF DISSERTATION 

 
 
 

CERAMIDE-ENRICHED EXTRACELLULAR VESICLES: A ROLE IN ENHANCING 
AMYLOID-BETA NEUROTOXICITY AND MITOCHONDRIAL DAMAGE IN 

ALZHEIMER’S DISEASE 
 

Alzheimer’s disease (AD) is an age-dependent, progressive, neurodegenerative 
disorder that is characterized clinically by the impairment of cognitive functions 
concomitant with behavioral and personality changes. AD is associated with distinct 
pathological hallmarks, namely, intracellular neurofibrillary tangles comprised of 
hyperphosphorylated tau protein, extracellular amyloid beta (Aβ) plaques, and marked 
brain atrophy.  Besides their main role as the core component of amyloid plaques, 
oligomeric Aβ have been shown to be neurotoxic. The exact mechanism of Aβ 
neurotoxicity is yet to be elucidated. 

  Recently, a pathogenic function of small extracellular vesicles- also known as 
exosomes- has been proposed, suggesting that exosomes can transfer pathogens between 
cells. One such pathogen that exploits this pathway is Aβ in Alzheimer’s disease, however, 
it is not known yet whether this Aβ/exosomes association would affect the neuronal toxicity 
of Aβ. 

Exosomes are nano-sized lipid vesicles that are formed by inward budding of late 
endosomes to form multi vesicular bodies (MVB) which fuse to the plasma membrane and 
release exosomes to the extracellular space. Exosomes serve as a means of intercellular 
communication due to their ability in carrying cargoes including microRNA (miRNA), 
messenger RNA (mRNA), proteins, and other biomolecules. There are several established 
pathways for exosomes biogenesis, one of which is triggered by the sphingolipid ceramide. 
Ceramide is a key molecule in sphingolipids metabolism and it is involved in several 
cellular processes such as proliferation, senescence and apoptosis. It has also been reported 
that ceramide levels are elevated in AD patients brain specimens. 

Exploiting the fact that exosomes can cross the blood brain barrier we therefore 
used serum derived exosomes to study the biophysical and biochemical characteristics of 
Alzheimer’s disease mouse model (5xFAD) and AD patients’ exosomes compared to wild 
type and healthy individuals. We found that serum from 5xFAD mice and AD patients 
contain a subpopulation of astrocyte-derived exosomes that are enriched with ceramide, 



     
 

particularly C16:0, C18:0, C20:0, 22:0, C24:0, and C24:1 ceramide species. This 
subpopulation (termed astrosomes) was shown to associated with Aβ and are prone to 
aggregation as confirmed by nanoparticle tracking and cluster analyses. To study the 
functional characteristics of these Aβ-associated astrosomes, we used Neuro-2a (N2a) 
cells, human iPS cell-derived neurons, and mouse primary cultured neurons as in vitro 
tissue culture models. When taken up by neurons, Aβ-associated astrosomes were 
specifically transported to mitochondria where they induced mitochondria clustering, 
evident by elevation of expression of the fission protein dynamin related protein1 (Drp1). 
Aβ-associated astrosomes, but not wild type or healthy control human exosomes, mediated 
binding of Aβ to voltage-dependent anion channel 1 (VDAC1), a gate keeper protein in the 
outer mitochondrial membrane that is involved in regulating passage of metabolites, 
nucleotides, and ions; it plays a crucial role in regulating apoptosis. This Aβ/VDAC1 
interaction leads to caspase activation and subsequently apoptosis. Interestingly, removing 
the ceramide-enriched astrosomes from the exosome pool using lipid-mediated affinity 
chromatography (LIMAC) mitigated that toxic effect on neurons. These results were 
replicated using brain derived exosomes. 

To investigate the in vivo significance of our in vitro results, we stereotaxically 
injected wild type mice (two weeks old) with 5xFAD or wild type brain derived exosomes 
(nine months old). We found that within two days, the injected exosomes were specifically 
taken up by neurons and transported to mitochondria. Consistent with our in vitro data 
using Aβ-associated astrosomes, the exosomes isolated from 5xFAD brain, but not those 
from wild type brain, induced complex formation of Aβ with VDAC1 and activation of 
caspase 3. 

To test that our observations hold true in physiological conditions, we generated a 
novel astrosome reporter mouse model. This was accomplished by crossing of Aldh1l1-
Cre/ERT with floxed CD63-GFP and 5xFAD mice (5XFAD xAldh1l1-Cre/ERTxCD63-
GFPfl/fl) which allows us to track astrosome uptake and their subsequent effects. As seen 
with the injected exosomes, we found that endogenous GFP-labeled astrosomes are taken 
up by neurons where they shuttle Aβ and induce mitotoxicity. 

In conclusion, our data show that association of Aβ to astrosomes in critical for Aβ 
neurotoxicity. Therefore, we discovered a novel mechanism by which Aβ induces AD 
neuropathology as well as potential pharmacological target. 
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CHAPTER 1.  INTRODUCTION   

1.1 Alzheimer’s Disease 

1.1.1 Background 

Dementia is a general term that encompasses a severe set of symptoms which can 

interfere with a person’s daily life and activities [1]. These symptoms include thinking and 

social abilities as well as changes in memory. Furthermore, dementia could result in a 

functional decline in memory, visual perception, language skills, self-management, 

problem solving, and one’s ability to focus or pay attention [2]. 

Dementia comprises a wide array of specific medical conditions, rather than one 

sole entity. There are several causes of dementia including vascular cognitive impairment, 

dementia with Lewy bodies, Frontotemporal dementia, and Parkinson's disease [2, 3]. 

Alzheimer’s disease (AD) accounts for 60-80% of all dementia cases [4]. Alois Alzheimer, 

a German psychiatrist, presented the first signature case of AD, in 1906, at the 37th 

convention of Southwestern German Psychiatrist [5]. The disease did not coin the name 

“Alzheimer’s” until 1910, when Emil Kraepelin, a coworker of Alois Alzheimer, named 

the disease after him in honor of his achievements. 

Despite the heterogeneity of AD symptoms among patients, the most common 

initial symptom is a gradual worsening ability to remember new information. Other 

common cognitive related symptoms include memory loss that results in daily life 

disturbance, struggle with words in speaking or writing, challenges in planning or solving 

problems, misplacing things and losing the ability to retrace steps, and not being able to 

complete familiar tasks at home, at work or at leisure[4, 6]. The list of symptoms can occur 

in unison with confusion, involving time and place, and difficulty understanding visual 
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images and spatial relationships. AD patients suffer from non-cognitive symptoms as well. 

These symptoms include, but are not limited to, decreased or poor judgment, sudden 

changes in mood and personality, trouble keeping up with social activities, increased 

anxiety, agitation, and sleep disturbances. 

With respect to diagnosis, there is currently no distinct test for Alzheimer’s disease. 

Rather, it takes a consultation between physicians and neurologists utilizing different 

approaches and methods to reach a diagnosis.  The patients’ medical and family history 

should be examined, as well as their psychiatric history and a history of cognitive and 

behavioral changes. Medical personnel should confer with family members or individuals 

close to the patient, to provide input on changes in thinking skills or behavior.  Cognitive 

tests along with physical and neurological examinations may be conducted as well. In 

order to affirm the diagnosis, the patient may undergo blood tests and brain imaging. 

Testing can rule out other potential causes of dementia symptoms, such as a tumor or 

particular vitamin deficiencies. Diagnosing Alzheimer’s disease requires a careful and 

comprehensive medical evaluation. Although physicians can almost always determine if a 

person has dementia, identifying the exact cause may pose some difficulty. Several days 

or weeks may be needed for the patient to complete the required tests and examinations 

and for the physician to interpret the results and make a diagnosis [6]. 

AD pathology is characterized by three distinct hallmarks: Extracellular amyloid 

(senile) plaques with amyloid beta (Aβ) protein being the main component, intracellular 

neurofibrillary tangles comprised of hyperphosphorylated tau protein, and noticeable 

neuronal loss [7]. 
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The pace of the disease, how fast it progresses, differs from one patient to another, 

much like the symptoms. While all patients experience similar symptoms, there are two 

well-established types of AD.  The first type is early-onset AD (EOAD) which is 

associated with progressive deposition of Aβ peptides in patients < 60 years of age, and it 

accounts for 1-5% of all AD cases [4, 8-11]. The second type is late-onset AD, which 

accounts for ≥ 95% of cases. Despite sharing the same pathophysiology, the etiology of 

EAOD and LOAD are different. While EOAD is mainly genetic, LOAD is more complex 

and multifactorial with several risk factors participating in the development of the disease, 

including genetic and environmental risk factors and most importantly aging [8]. 

The pathogenic Aβ is the product of proteolytic cleavage of Amyloid precursor 

protein (APP) [12]. APP is an integral membrane glycoprotein that is expressed in several 

tissues. The exact physiological role of APP is not clear, however, in the brain it is reported 

to contribute to neurite outgrowth, synaptic plasticity, and regulation of neuronal 

excitation. APP can be produced as several isoforms with a size ranging from 695 to 770 

amino acids [13]. APP695 represents the most abundant form of APP in the brain and it is 

produced mainly in neurons. The three enzymes responsible for cleavage of APP are alpha, 

beta and y-secretase. This process can happen in two ways: amyloidogenic or non-

amyloidogenic. Under normal non-amyloidogenic conditions (approximately 90% of APP 

cleavage)  α-secretase first cleaves APP within the Aβ-region releasing APPα from the cell 

surface and an 83-amino acid C-terminal fragment (CTF)–α. CTF- α  is further cleaved by 

γ-secretase into P3(3 KDa) and APP intracellular domain(AICD)[13, 14]. By contrast, the 

remaining 10% of APP is cleaved by amyloidogenic processing, which involves sequential 

cleavage of APP by β-secretase followed by γ-secretase. β-secretase cleavage results in 
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the formation of soluble APPβ and CTFβ, which is further processed by γ-secretase. 

Unlike the β-secretase processing site, which is precisely at amino acid 671 of APP, γ-

secretase cleavage is rather imprecise and could happen in multiple sites producing 

fragments of 43, 45, 46, 48, 49 and 51 amino acids. These fragments are further cleaved 

in endocytic compartments into 40 and 42- amino acid Aβ (Aβ40 and Aβ42), the two main 

forms of Aβ[15]. (Fig.1.1). 

The pathogenesis of AD is often attributed to the dynamics of production and 

clearance of Aβ, especially Aβ42. Hence, amyloid positron-emission tomography (PET) 

imagining as well as decreased levels of Aβ42 and/or Aβ42/Aβ40 ratio in cerebrospinal 

fluid (CSF) are recommended for diagnosis of AD [16]. 

On the other hand, neurofibrillary tangles (NFTs) are intraneuronal cytoplasmic 

bundles of paired, helically wound filaments comprised of hyperphosphorylated tau 

protein [17]. Under physiological conditions, tau modulates the stability of axonal 

microtubules [18]. Tau contains 85 phosphorylation sites and therefore it is not surprising 

that phosphorylation, at any of these sites, profoundly impacts its function. Under 

pathological conditions such as AD, tau becomes hyperphosphorylated, reducing its 

affinity for microtubules and destabilizing the cytoskeleton of the affected neuron [18]. 

Additionally, hyperphosphorylation of tau promotes aberrant assembly of tau into 

insoluble aggregates that induce synaptic dysfunction and neuronal cell death. 

 

 

 



5 
 

1.1.2 The Amyloid Cascade (amyloid beta) Hypothesis 

In 1984, George Glenner was the first to propose that a particular amyloidogenic 

protein accumulates in AD and could be the causative of the disease pathology[19]. 

However, it was in 1991 (Beyreuther & Masters; Hardy & Allsop;Selkoe) when the 

amyloid hypothesis idea was put forward and to this day remains the dominant model of 

AD pathogenesis[20-22]. The hypothesis proposes that the production and excessive 

accumulation of Aβ, both intracellularly and extracellularly, under different aggregation 

and physical states, instigate a pathological progression cascade leading to neurofibrillary 

tangles formation, synaptotoxicity, mitochondrial dysfunction, chronic neuroinflammation 

arising from aberrant activation of glial cells, and ultimately neurodegeneration and 

dementia. Despite the lack of consensus about this hypothesis, it remains one of the most 

extensively validated and compelling hypothesis of AD pathogenesis[23, 24]. 

Several lines of evidence support the Aβ hypothesis, most notably was the 

discovery that humans with trisomy 21 (Down’s syndrome) harbor 3 copies of APP and 

experience an increased risk for developing neuropathologically typical AD as they 

age[25]. In fact, almost all Down syndrome adults over the age of 40 exhibit 

neuropathology sufficient for an AD diagnosis.  The APP gene is located on chromosome 

21, indicating that Down’s syndrome patients develop typical Alzheimer neuropathology 

due to the over production of Aβ throughout their lives. Interestingly, patients with partial 

trisomy 21, with translocation involving only the distal part of chromosome 21 telomeric 

to the APP gene, develop Down Syndrome features but not AD. On the other hand, 

individuals presenting micro-duplicated APP gene but not the whole chromosome 21 
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develop EOAD but do not get Down syndrome, directly implicating overexpression of 

APP as a cause of Aβ deposition in adult life [26]. 

  Significant support for the Aβ hypothesis comes from the genetic mutations 

related to EOAD. Mutations in APP that happen within the Aβ sequence lead to the 

production of peptides that are characterized by high self-aggregation ability. Moreover, 

mutations in the genes encoding for active sites of the APP processing enzyme γ-secretase, 

presenilin 1 (PSEN1) or presenilin2 (PSEN2), alter the proteolytic cleavage of APP, 

resulting in overproduction of Aβ42 or Aβ43 peptides.  These mutations are estimated to 

be responsible of 71% of EAOD cases, however, that means they explain roughly 0.5 

percent of all AD cases given that EAOD accounts for only 1-5% of total AD cases [27, 

28]. Astonishingly, inheritance of a missense APP mutation (A673T) located at the second 

amino acid of the Aβ region results in constant reduction of APP cleavage by β-secretase 

[29, 30]. Carriers of this mutation show no sign of Amyloid plaques up to 100 years of 

age, and they have a lower risk of developing clinical AD. 

Apolipoprotein E (ApoE) is a lipid-transporter protein involved in the transport and 

metabolism of cholesterol and other lipids and is immunochemically colocalized with 

amyloid plaques, neurofibrillary tangles, and vascular amyloid deposits in AD [31]. Due 

to several single-nucleotide polymorphisms (SNPs), ApoE is found in three isoforms, ε2 

(cys112, cys158), ε3 (cys112, arg158), and ε4 (arg112, arg158) with frequencies of 8.4%, 

77.9%, and 13.7%, respectively. Despite being the most frequent allele, ε3 is believed to 

play no significant role in AD, while ε2 is known to be protective and ε4 is shown to be 

the strongest genetic risk factor in LOAD [31]. Frequency analysis of the three alleles 

among human populations exhibited robust association between ε4 allele and LOAD with 
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approximately 40% frequency of the ε4 allele. In a double transgenic mouse model of APP 

and hApoE, the clearance of Aβ is shown to be decreased by ApoE4 > E3 > E2 in a degree 

closely related to Aβ deposition in the brain [32]. Therefore, whether it is EOAD or LOAD, 

genetic risk factors support the amyloid hypothesis, either by promoting the amyloidogenic 

processing of APP or by disruption to Aβ clearance mechanisms. 

While the original amyloid hypotheses (cascade hypothesis) focused more on the 

senile plaques with respect to their potential toxicity and drug development, the field has 

shifted towards oligomeric amyloid beta(oAβ) as being the culprit initiating brain damage 

prior to AD progression. This notion was supported by the clinical observations that 

amyloid plaque load does not necessarily correlate with the cognitive status of the patients 

[33].  On the other hand, highly demented individuals carrying a distinct APP mutation, 

namely the Osaka mutation of APP E693, manifested higher levels of oAβ and other 

aspects of AD pathology without developing plaques [34-36]. 

Additionally, several studies showed that soluble oAβ, isolated for human AD 

brains,  led to impairment in synaptic plasticity in the entorhinal cortex and neocortex 

when injected into the brains of healthy rats[37].  Moreover, human oAβ can trigger tau 

hyperphosphorylation in primary cultured rat neurons[38]. 

Considering how intricate AD pathogenesis is, oAβ has been implicated into a 

rather complex cellular system comprising continuous feedforward and feedback 

responses between neurons, glial cells, and vasculature. For example, oAβ has been shown 

to induce reactive oxygen species (ROS) in astrocytes leading to astrogliosis [39, 40]. oAβ 

has also been found to increase intracellular Ca++ levels in astrocytes within minutes of 

exposure [40]. Lastly, exposure of both neuron and astrocytes to oAβ leads to activation 
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of Ca++-sensing receptors, triggering both cell types to secrete nitric oxide (NO), and 

vascular endothelial growth factor A (VEGF-A), and Aβ42[41]. Astrocytic Aβ has been 

shown to be secreted encapsulated into extracellular vesicles (like exosomes), possibly 

contributing to the demise of neurons. 

 

1.1.3 Amyloid beta toxicity in Alzheimer’s Disease 

As mentioned earlier, Aβ42, in particular oAβ, is widely perceived as the most toxic 

factor in AD pathogenesis. A well-defined mechanism by which Aβ exerts its toxic effects 

is not yet clear, however, several groups have proposed potential mechanisms. 

One heavily studied mechanism is the effect of Aβ on neuronal synaptic plasticity 

[42-45]. Synaptic plasticity is an activity-dependent biological process in which neurons 

brings about changes in the strength and efficacy of synaptic transmission at preexisting 

synapses, and it is known to play a crucial role in memory and learning [46]. There are 

two major forms of synaptic plasticity: Long-term potentiation (LTP) which enforces the 

synaptic transmission, and long-term depression (LTD) which leads to reduction in 

synaptic function and transmission. α-amino-3-hydroxy5-methyl-isoxazole-4-propinonic 

acid receptors (AMPARs) and NMDA receptors (NMDARs) are two major ionotropic 

glutamate receptors that are involved in regulation of synaptic transmission. Regulation of 

LTP and LTD by both NMDARs and AMPARs involves endocytosis and trafficking of 

these receptors, that is, when stimulation of NMDR leads to post-synaptic increase in Ca2+ 

followed by signaling events ending in re-colocalization of new AMPARs to the plasma 

membrane[47, 48]. In part, Aβ causes synaptic dysfunction by disrupting glutamate levels 

through aberrant stimulation of NMDARs, which in turn results in desensitization of 
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NMDARs preventing the induction of LTP. In addition, high levels of Aβ have been 

associated with increased internalization of AMPAR, which promotes LTD [49-51]. 

Partial antagonists to NMDARs mitigate the Aβ-induced overstimulation to the receptors 

in primary neurons of mice and rats. This concept describes the possible mechanism of 

action of memantine, which is clinically prescribed for AD patients [52, 53].  Moreover, 

Aβ interacts with the cholinergic receptor α7 nAChR, and promotes NMDA receptors 

endocytosis and subsequently disrupts cholinergic neurotransmission [54-57]. 

Aβ has been shown to interact with other receptors as well. Such receptors include 

Ryanodine receptors, which are calcium-release channels, known to be localized in the 

soma, spines and proximal dendrites of neurons. Exposure to Aβ leads to enhanced 

expression and activity of ryanodine receptor 3 and ultimately intracellular Ca 2+ 

homeostasis disruption  [58, 59].   

The chemical characteristics of Aβ prompts it to directly interact with lipid 

membranes in aqueous environments, allowing for interaction with lipids, phospholipids, 

and membrane-bound proteins[60]. Several groups have reported that Aβ is able to self-

assemble within lipid bilayers, creating pore-like hollow structures of annular Aβ 

oligomers with a hydrophilic interior and hydrophobic exterior[61-64]. This could be due 

the detergent-like properties of Aβ, allowing it remove lipid molecules and destabilize 

membranes. Later, this pore-like morphology was confirmed using high-resolution atomic 

force microscopy and has been found in postmortem brain tissues of AD patients as 

well[61]. It has been proposed that these Aβ pores work as Ca2++ -sensitive ion channel, 

which might explain the Ca2++ influx in neurons leading to Ca2++ dyshomeostasis [64]. 
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This in turn might trigger mitochondrial dysfunction instigating a cascade of ROS and 

subsequently apoptosis[65, 66]. 

Aβ toxicity has also been traced to intracellular organelles either directly after 

internalization or as a consequence of initial cell surface interaction, one of these 

organelles are mitochondria[67-69]. In fact, a decrease in glucose metabolism was 

observed in areas associated with amyloid plaques, implicating Aβ in the process[70]. In 

addition, mitochondrial dysfunction was observed prior to the amyloid plaque 

deposition[71, 72]. 

As mentioned earlier, Aβ can penetrate lipid membranes, including mitochondrial 

membranes, and has been reported to disrupt the electron transport chains [73-76]. Aβ 

decreases the activity of the terminal enzyme in the electron transport chain cytochrome 

C, by interfering with its binding to cytochrome c oxidase [67, 77-80]. Another enzyme 

that is shown to be affected by Aβ is amyloid-binding alcohol dehydrogenase (ABAD), 

which is a multifunctional mitochondrial enzyme involved in energy production and is 

upregulated in AD [81, 82]. ABAD undergoes conformational changes when bound to Aβ, 

which prevents the enzyme from binding to NAD+, resulting in the loss of ABAD 

enzymatic activity [81]. 

Another form of the deleterious effect of Aβ on mitochondria is the direct 

dysregulation of mitochondrial fission and fusion [83, 84]. As the terms suggest, 

mitochondrial fusion means combining two mitochondria into one, while fission means 

dividing one into two [85, 86].  Fusion and fission are controlled dynamic processes that 

occur at a high frequency in response to cellular and mitochondrial conditions. 

Dysregulation of fission and fusion leads to either elongated misshapen mitochondria 
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(excessive fusion) or mitochondrial fragmentation (disproportionate fission). One key 

regulator of mitochondrial fission is the dynamin-like GTPase protein dynamin-related 

protein 1 (DRP1) [87-89]. It has been shown that Aβ activates DRP1 through S-

nitrosylation causing mitochondrial fragmentation and synaptic degeneration in AD [90]. 

Voltage-dependent anion channel 1 (VDAC1) also interacts with Aβ monomers 

and oligomers[91-93], and the block of those mitochondrial pores leads to mitochondrial 

dysfunction. VDAC1 is a mitochondrial gatekeeper located on the outer mitochondrial 

membrane that regulates the metabolic cross-talk between mitochondria and the rest of the 

cell[94, 95]. VDAC1 regulates the entry of metabolites into the mitochondria including 

malate, nucleotide, succinate, and NADH while allowing the release of hemes and other 

molecules outside of mitochondria. Under normal physiological conditions, VDAC1 is 

found in a dynamic equilibrium between monomeric and dimeric states. However, when 

VDAC1 is subjected to an insult, it assembles into a higher oligomeric structure, forming 

a channel. Those channels allow the passage of cytochrome C to the cytosol, ultimately 

leading to apoptosis[96-98]. 

  Recent evidence has implicated the VDAC1 in AD pathogenesis, evident by the 

demonstration that interactions between VDAC1, Aβ, and phosphorylated tau were shown 

to lead to mitochondrial dysfunction[99, 100]. In addition, Hippocampal extracts of AD 

transgenic mice showed increased levels of VDAC1 in the outer mitochondrial 

membranes. Higher expression levels of VDAC1 were demonstrated in the dystrophic 

neurites with Aβ deposits in the brains of both AβPP transgenic mice and AD post-mortem 

individuals, as well[101]. Lastly, soluble oligomeric Aβ is reported to cause apoptosis in 

neurons as a result of upregulation and oligomerization of VDAC1[102]. 
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1.2 Extracellular vesicles 

1.2.1 History and Background 

The phenomenon of cellular secretion of small vesicles was first reported in the late 

1960s, when Bonucci and Anderson noticed that chondrocytes secrete nanosized vesicles 

of ∼100 nm[103, 104]. During the same time period, another group showed that platelets 

secrete small vesicles as well, which they referred to as platelet dust[105]. These 

extracellular vesicles (EVs) were overlooked for two decades, but were then discovered to 

harbor cell specific proteins, genetic material and lipids that are delivered to other cells 

where they could alter diverse functions[106-109]. 

The first reported functional role of EVs came from the field of immunology. B 

lymphocytes secreted EVs and demonstrated a transfer of antigens, major 

histocompatibility peptide complexes that are recognized by T lymphocytes, suggesting a 

role of EVs in immune response induction[110]. Two years later, the same group 

demonstrated that dendritic cells secrete EVs bearing functional peptide complexes as well, 

which can trigger antitumor immune responses in mice, in vivo [111]. These results 

provided the groundwork for the popular concept that EVs could play an active role in 

intercellular communication, at least in the immune system. This hypothesis proved to hold 

true in several other systems as well. Another breakthrough took place in 2007 when Jan 

Lötvall and group members described the presence of microRNA (miRNA) inside these 

vesicles, leading to a surge in the number of studies and publications in the pursuing 

years[112]. 

The term “exosomes’ describes the intra luminal vesicles (ILVs) that originate in 

the multivesicular bodies (MVBs). This terminology is widely accepted; however, the word 

“exosomes” was not actually implemented until 1987[113]. Microvesicles are another 

well-studied, secreted vesicle[114, 115]. One notable difference between the two types of 
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EVs is the size. While exosomes, or small extra cellular vesicles, have a size range of ~40 

to 160 nm (with an average of ~100 nm) in diameter, the size of microvesicles usually is 

in the range of ~150-1000nm in diameter[116, 117]. This difference allows for the 

separation of the two types of vesicles via differential ultracentrifugation. In most cases, 

larger vesicles preferentially sediment at a relatively low g force (e.g., 30 min at 10,000 × 

g), while smaller vesicles need a higher g force (e.g., 90–120 min at 70,000–120,000 × g) 

to sediment. 

Another apparent difference between exosomes and microvesicles is that exosomes 

are specifically enriched with certain types of cell-specific proteins, lipids, and nucleic 

acids[118]. On the other hand, microvesicles are a smaller representation of the cells of 

origin, in terms of composition. Granted, there are other types of microvesicles reported in 

literature, such as apoptotic bodies and ectosomes, which are derived from cells undergoing 

apoptosis and plasma membrane shedding, respectively[119, 120]. Although apoptotic 

bodies, ectosomes and exosomes roughly share same size (typically 40–100 nm) they are 

essentially different species of vesicles. 

 
1.2.2 Biogenesis 

Exosomes are typically formed through a process that involves double invagination 

of the plasma membrane leading to the formation of multivesicular bodies (MVBs) that 

contain intraluminal vesicles (ILVs)[113]. This process was first observed during studies 

concerning elimination of transferrin receptor (TfR) from the plasma membrane of 

maturing reticulocytes[121]. The process of MVB biogenesis was shown to involve 

selective endocytosis of TfR from the plasma membrane, followed by budding of TfR from 

the endosomes’ membrane into the endosomal lumen, and then fusion of the MVBs with 

the plasma membrane. There are several routes that MVBs could take. While some MVBs 

fuse to the plasma membrane to release there ILVs (exosomes) into the extracellular milieu, 
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others fuse with lysosomes or autophagosomes for degradations, or contribute to 

specialized organelles generation such as Weibel-Palade bodies (endothelial cells), 

secretory granules (in mast cells), and melanosomes (in melanocytes)[122]. It is thought 

that the cholesterol level within MVBs plays a role it their fate, while cholesterol-rich 

MVBs are directed to the plasma membrane, alternatively, the cholesterol-poor MVBs 

favor the lysosome fusion fate[123]. 

In general, MVB biogenesis is driven by either endosomal sorting complexes 

required for transport machinery (ESCRT)-dependent and or ESCRT-independent 

pathways (Fig. 1.2)[124].  The ESCRT machinery consists of a distinct group of cytosolic 

protein complexes (ESCRT-0, -I, -II and -III). These complexes orchestrate the ILVs 

generation in a stepwise fashion. They are recruited to endosomes through interaction of 

ESCRT-0 and ESCRT-I with tagged, usually ubiquitylated, transmembrane proteins from 

microdomains in the endosomal membrane followed by recruitment of ESCRT- III. 

ESCRT-II is the last complex to engage in this process, and it is believed to be responsible 

for vesicles detachment and release. 

The ESCRT machinery participates in exosome biogenesis through other 

mechanisms as well, one of which involves the syndecan-syntenin-ALIX axis as recently 

described by Baietti et al[125]. They report that the syndecan heparan sulphate 

proteoglycans, with the help of their cytoplasmic adaptor syntenin, regulate endosomal 

biogenesis of exosomes. ALIX protein is known to be functionally important for the 

ESCRT machinery through interacting with several ESCRT proteins, like TSG101 and 

CHMP4. In their study, Baietti et al. showed that Syntenin binds directly to ALIX and 

triggers the intraluminal abscission of endosomal membranes. 

Several lines of evidence indicate an overlap between the autophagy pathway and 

exosome biogenesis and secretion[126-128]. This was predictable due to the verity that 

autophagy is a lysosomal-dependent degradation and recycling pathway, and it is plausible 

that autophagy shares some molecular machinery with exosomes biogenesis. In fact, it has 
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been recently shown that autophagy pathways secrete waste in endosomal-derived vesicles, 

resembling the exosome biogenesis process. Many proteins have been identified as key 

players in both autophagy and exosome production. A recent study by Gudbergsson and 

Johnsen compared a list of proteins involved in several autophagy pathways to that of EV 

protein database named Vesiclepedia[129]. The authors reported that nearly all autophagy 

key proteins have been identified in EV literature[130]. Noticeably, four of the autophagy-

related proteins were HSPA8, HSP90AA1, VCP, and Rab7A all of which are well 

recognized proteins in EV production processes. 

Another shared protein between autophagy and exosome biogenesis is the class III 

PI3K complex. This complex includes proteins such as Beclin-1, p150, VPS34, and other 

accessory proteins. PI3k exerts its regulatory role through the generation of PI (3)P via 

phosphatidyl inositide phosphorylation[131].  With the help of other proteins, namely 

ATG14L and UVRAG, PI (3)P regulates autophagosome maturation and endosome 

development, respectively[132]. 

The extensive mention of MVBs as the origin of exosomes in literature does not 

necessarily mean that endosomal budding is the only method for the generation of 

exosomes. Stephen J. Gould and others have shown in several reports that exosomes can 

be formed through direct budding from the plasma membrane[133-135]. Unfortunately, 

these are largely ignored by most models of exosome biogenesis, which conveys an 

endosome-only view of exosome biogenesis. This relatively new mechanism has been 

observed using techniques such as atomic force microscopy, electron microscopy, and 

cryo-electron microscopy. In addition, recent studies show the presence of deep 

invagination in the plasma membrane, that resembles MVBs, when using conventional 

transmission electron microscopy. These invaginations are called intracellular plasma 

membrane–connected compartments (IPMCs) and are shown to be continuous with the 

extracellular space through necks, allowing free passage of small-molecules and 

extracellular buffer while preventing the escape of vesicles. This process might explain the 
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enrichment of integral membrane proteins or proteins within lipid rafts of the plasma 

membrane and in the newly formed exosomes. 

 
1.2.3 Sphingolipids in Extracellular vesicle 

In ESCRT-independent manner, two enzymes involved in lipid metabolism have 

been shown to drive the formation of ILVs in in the lumen of MVBs. Phospholipase 

D2(PLD2) hydrolyzes phosphatidylcholine into phosphatidic acid (PA) at the inner leaflet 

of late endosome membranes[136]. The negative charge of PA drives the inward budding 

of ILVs inside MVBs. The second enzyme involved in ESCRT-independent exosomes 

biogenesis is neutral sphingomyelinase 2(nSMase2)[137]. nSMase2 hydrolyze 

sphingomyelin to produce ceramide[138], a cone-shaped sphingolipid that triggers 

spontaneous curvature of membranes leading to invagination and budding of exosomes 

into the late endosomes (MVBs). 

  Sphingolipids constitute a major component of membranes in eukaryotic 

cells[139]. The first sphingolipids were isolated from the brain in the late 19th century by 

Thudichum[140]. He then coined the term “sphingosin” after the Greek mythical creature, 

Sphinx, as they presented as enigmatic molecules. Sphingolipids are a very complex and 

diverse group of lipids comprised of hundreds of lipids[141-143]. In addition to being a 

part of cell membrane, sphingolipids are shown to be involved in the formation of 

structures called” lipid rafts”, roughly 50-200nm diameter microdomains that are enriched 

with certain sphingolipids and incorporate proteins, named raft-associated proteins 

(RAPs)[144-146]. The presence of RAPs within the lipid rafts implicates these 

microdomains in cell signaling integration. Ceramide is the core constituent of all complex 

sphingolipids and its structure consists of a sphingosine long-chain backbone linked to a 

fatty acid via an amide linkage[139, 147].  
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     In addition to exosome biogenesis, ceramide is a key player in various aspects 

of cellular processes including growth, survival, senescence, proliferation, and apoptosis. 

This functionality of ceramide qualifies it as a biologically active cell signaling lipid, along 

with other sphingolipids such as sphingosine 1 phosphate(S1P) and sphingosine [145].  

   Ceramide synthesis can occur via two distinct pathways; the anabolic (also known 

as de novo) and the catabolic (frequently referred to as salvage) pathways [148, 149] (Fig. 

1.3). The de novo pathway is initiated by the condensation of serine and palmitoyl-CoA to 

produce 3-ketodihydrosphinganine, catalyzed by the enzyme serine palmitoyl transferase 

(SPT). 3-ketodihydrosphinganine is then reduced to sphinganine (Dihydrosphingosine) 

through the enzymatic action of enzyme 3-ketodihydrosphingosine reductase. Sphinganine 

is N-acylated to dihydroceramides (DHCer) by ceramide synthases (CerS), a family of 

acyl-CoA transferases that controls the fatty acyl chain length. There are six established 

CerSs in mammalian cells, with CerS1 being the most abundant one in the brain(neurons), 

specifically attaching C18 fatty acyl CoA to the sphingoid base. Finally, ceramide 

formation is completed by the enzyme dihydroceramide desaturase through desaturation of 

the of DHCer, which introduces a 4,5-trans double bond at the sphinganine base of 

DHCer[138, 139].  

    On the other hand, the salvage pathway re-utilizes long chain sphingoid bases, 

mostly from sphingomyelin, to produce ceramide. Sphingomyelin represents the most 

abundant sphingolipid in cell membranes, subsequently playing a vital role in membrane 

fluidity and homeostasis. Sphingomyelin is a substrate for a family of enzymes called 

sphingomyelinases (SMases) which hydrolyze sphingomyelin into ceramide and 

phosphocholine. Five SMases have been identified in literature and they can be generally 

separated in to two groups, namely acid and neutral SMases, depending on their subcellular 

localization, pH optima, and cation requirements for enzymatic activity. It has been 

speculated that nSMase2, the brain specific form of SMases, is present in an inactive form 

under normal conditions. Upon stimulation with different extracellular factors and 
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intracellular processes, including tumor necrosis factor α (TNF-α), interleukin 1β/6, and 

oxidative stress, nSMase2 then moves to the plasma membrane where it facilitates 

ceramide production and the downstream effects[150]. In addition, nSMase2 has been 

shown to partake in pro-inflammatory cytokine signaling, implicating the enzyme in the 

progression of several neurodegenerative diseases[151, 152].  

    In general, alteration in ceramide (and other sphingolipids) levels or metabolism 

has been linked to numerous neurodegenerative diseases including epilepsy, Parkinson’s 

disease, Huntington’s disease, Gaucher’s disease, Krabbe’s disease, and AD[153-158]. 

Ceramide has been proven to have a multifaceted role in neurodegenerative diseases, 

especially AD. Due to advances in mass spectrometric methods, researchers were able to 

show that ceramide levels are elevated in the serum, cerebrospinal fluid (CSF), and brains 

tissues of AD patients[159-162]. In addition, plasma ceramide levels have been shown to 

directly correlate with brain hippocampal volume in late onset AD patients. 

    As a part of The Women’s Health and Aging Study ∥, Mielke and colleagues 

followed 99 cognitively normal older women for nine years in a prospective cohort study. 

They were able to show concrete relationship between higher baseline serum ceramide 

levels and the risk of developing dementia and AD, priming serum ceramide as a biomarker 

for preclinical AD. More specifically, researchers were able to narrow down certain 

ceramide species that are elevated in aging and AD, such as Cer16, Cer18, Cer20, Cer24, 

and Cer24:1[161]. 

   On a cellular level, endogenous ceramide within lipid rafts in the plasma 

membrane, as well as the ceramide analog C6-ceramide, were shown to directly increase 

the production of Aβ by stabilizing the β-site APP cleaving enzymes[163]. Moreover, 

exposure to Aβ activates nSMase 2 in vitro, which might be associated with facilitating Aβ 

aggregation and spreading given the role of nSMase 2/ceramide in exosomes 

production[164]. 
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  Concomitantly, Aβ can indirectly increase the production of ceramide through an 

oxidative stress-mediated mechanism[165, 166]. Exosomes formed through the nSMase 2 

pathway are being packaged with misfolded proteins, which might provide an efficient way 

for cellular uptake during different neurodegenerative diseases[167]. In fact, oligomeric α-

synuclein displayed higher levels of cellular uptake when associated with exosomes rather 

than its free form[168].  

   It is worth mentioning that all the previous reports pertaining the interplay 

between ceramide and Aβ have been conducted in neuronal cells. Recently, the same 

concept has been gathering interest in glial cell. First, ceramide has been shown to sensitize 

astrocytes to oxidative stress[169]. Human post-mortem tissues of frontotemporal lobar 

dementia (FTLD) demonstrated increased levels of ceramide in astrocytes as well, which 

correlated with the level of neuroinflammation[170]. In addition, treating primary 

astrocytes with oligomeric Aβ led to the release of ceramide enriched exosomes that cause 

apoptosis to recipient astrocytes[164].  

The presence of ceramide in several cellular membranes leads to the discovery of 

its role as a regulator of organelle functions and cellular transport. This role involves 

regulation of membrane curvature, fission and fusion, endocytosis, cellular transport, 

vesicular transport, as well as mitochondrial function[171-175]. Ceramide regulation of 

mitochondrial function is multifaceted, it could assist in protein transfer, interact with 

mitochondrial membrane proteins, or directly interact with the membrane lipid 

bilayer[176-179]. Excess ceramide that dysregulates mitochondrial function may originate 

from the upregulation of endogenous ceramide generation, from the endoplasmic 

reticulum, other organelles or the uptake of ceramide contained within “mobile lipid rafts” 

in exosomes. Ceramide has been reported to increase the mitochondrial outer membrane 

permeability through interactions with several kinases and phosphatases that govern the 

apoptosis process. For instance, elevated ceramide levels inhibit phosphoinositide-3-kinase 

(PI3K) and Akt/PBK signaling, which results in the activation of pro-apoptotic Bcl-2-
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family protein Bad[180]. In addition, coarse-grain molecular dynamics simulations showed 

that VDAC1 carries a ceramide binding site, directly implicating ceramide in 

mitochondrial apoptosis[181]. In model bilayers and isolated mitochondrial outer 

membranes, ceramide was found to form pores large enough to that allows the passage of 

cytochrome c[182].  

 

 
1.2.4 Exosomes in AD 

 
Exosomes were first implicated in AD as carriers of pathogenic proteins and 

causative of impaired neuronal function[183, 184]. Firstly, Aβ peptides were shown to 

accumulate in MVBs using electron microscopy on AD transgenic mouse models as well 

as human AD brain sections[185]. This was followed up a study showing colocalization 

between flotillin-1, the raft and exosomal marker, with Aβ in the lumen of MVBs.  

 In 2006, Rajendran and colleagues were first to show that β-cleavage of APP 

occurs in early endosomes[186]. That is followed by routing Aβ to MVBs in N2a and Hela 

cells. The same study estimated that a minute fraction of Aβ (<1%) is then secreted from 

cells to the extracellular space in association with exosomes. They also found that the 

ESCRT accessory protein Alix to accumulate in the plaques of AD patient brains, 

suggesting a role of exosomes in Aβ aggregation and plaque formation. Further evidence 

for the role of MVBs in APP metabolism came from the study on SY5Y neuroblastoma 

cells. Upon treatment of SY5Y cells with alkalizing drugs like chloroquine or bafilomycin 

A1, APP CTFs and amyloid intracellular domain (AICD) accumulate in MVBs prior to 

their secretion within exosomes[187]. Recently, the packaging of APP into exosomes has 
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been shown to be regulated by vesicle-associated proteins Alix and Syntenin-1[188]. 

Furthermore, APP-processing enzymes (β-secretase and γ-secretase components PS1 and 

presenilin-2) were shown to be secreted in exosomes, using Chinese hamster ovary (CHO) 

cells[189]. Same exosomes contained APP-CTFs and Aβ. More recently, a group in 

Sweden showed that intact exosomes and their cargo, including human AD brain oAβ, can 

be transferred from one neuron to another using a co-culture method that utilizes two 

different neuronal cell types[190]. The authors provided evidence that exosome uptake 

into neurons is an active process (dynamin dependent) and preincubation of cells with the 

endocytosis inhibitor dynasore leads to significant reduction in oAβ uptake, propagation, 

and subsequent toxicity. The previous studies not only implicate exosomes in spreading of 

Aβ, but also in facilitating APP cleavage into Aβ in the recipient neurons.  

   Tau, on the other hand, is known to spread in AD brain in a well-defined manner, 

from one region to another, with the uptake of pathological tau causing misfolded 

aggregations of monomeric tau in recipient cells[191-193]. This “prion like mechanism” 

of spreading led scientists to propose a role of exosomes in the propagation of tau. Indeed, 

tau phosphorylated at Thr-181(AT270) was found associated with exosomes in human 

CSF as well as M1C neuroblastoma cell cultures[194]. Notably, exosome-associated tau 

(relative to free tau) is elevated in CSF during mild AD, suggesting a role of exosomal tau 

secretion in the abnormal processing of tau, preceding cell death at later stages. The same 

authors took this study further by demonstrating that overexpression of human tau in 

neuroblastoma cells leads to recruiting mitochondrial proteins that are involved in 

axonogenesis relevant to neurodegeneration into the exosomal secretion pathway[195]. In 
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another overexpression study, tau was found to be secreted in association with membrane 

vesicles after reaching a threshold intracellular concentration level[196, 197].  

Asai and colleagues generated the most compelling study by demonstrating the role 

of exosomes in tau propagation[198]. Their in vivo study was the first to display the rather 

surprising role of microglial exosomes as tau spreads. Using two separate mouse models, 

the authors were able to show that microglia phagocytose tau was followed by exocytosis 

in association with exosomes. They continued to demonstrate that depletion of microglia 

through either i.c.v. infused clodronate liposomes or feeding the mice an inhibitor of 

colony stimulating factor 1 receptor (CSF1R) resulted in significant reduction in tau 

propagation. They also showed that inhibition of exosome synthesis significantly reduced 

tau propagation in vitro and in vivo. The implication of microglial EVs in spreading of 

toxic pathogens is further supported by a study showing that treating primary microglia 

with Aβ leads to the production of Aβ-containing macrovesicles that are neurotoxic in 

vitro [199]. Recently, one study linked Bridging Integrator 1 (BIN1), a major locus 

associated with LOAD, to the secretion of tau in exosomes [200]. It was reported that 

overexpression of BIN1 triggered the release of tau-associated exosomes and genetic 

deletion of the gene from microglia significantly reduced tau spreading in vivo.   

   Apart from being a carrier for several pathogens involved in AD and other 

neurodegenerative diseases, exosomes have also been shown to have neurotoxic effects 

relative to AD pathology. For instance, primary astrocytes treated with Aβ were shown to 

secrete exosomes that carry Aβ, enriched with ceramide, and harbor the pro-apoptosis 

prostate apoptosis response-4(PAR-4)[164]. These exosomes proved to induce apoptosis 

in recipient astrocytes. More recently, Ikezu’s group reported that activated human 
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astrocytes (treated with interleukin-1β) secrete exosomes with higher level of enrichment 

of integrins and major histocompatibility complex[201]. These exosomes lead to neurite 

fragmentation accompanied by a reduction in neuronal branching and firing, when they 

were added to primary cultured mouse cortical neurons. On subcellular level, exosomes 

from the CSF of late-onset AD or PS1 mutation-harboring cells were shown to impair 

Ca2+ handling and mitochondrial function in cultured neurons[202].   

    Despite the plethora of articles attributing toxic effect to exosomes, other 

beneficial roles of exosomes have also been reported.  The initial reports pertaining to the 

advantageous role of exosomes in AD came in a series of publications from Yuyama and 

colleagues, describing an exosome dependent Aβ clearance[203]. The authors utilized a 

transwell co-culture system of human APP-transfected N2a cells and microglial BV2 cells 

to show that microglia engulf neuronal exosomes containing Aβ, which participates in the 

clearance of the peptide and reducing its pathology. They followed up with an in vivo study 

two years later where they continuously infused neuronal exosomes intracranially into 

transgenic AD mouse brains for two weeks using osmotic pumps[204]. They were able to 

demonstrate that exosomes injections decreased the levels of Aβ and ameliorated its 

toxicity with respect to synaptic density reduction in hippocampus of four month-old mice. 

They reported similar findings in 12 months old transgenic mice, as well. Of note, the 

exosomes used in these studies came from normal wild type neurons or neuroblastoma cell 

lines and the exact mechanism of the protective role of these exosomes remains elusive.   

Another example of the beneficial role of exosomes in AD came from a separate in vivo 

study using Intracerebroventricularly (i.c.v) infusion of N2a cells or human cerebrospinal 

fluid derived exosomes. These exosomes were shown to abrogate the synaptotoxic effects 
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(disruption of long-term potentiation) of both synthetic and AD brain-derived Aβ. In this 

study, Aβ peptides were shown to be sequestered by exosomes with the help of exosomal 

surface proteins including cellular prion protein (PrPC)[205]. Additionally, human 

umbilical cord mesenchymal stem cells (huc-MSC)-derived exosomes proved to exhibit 

preventive effects when injected into double transgenic mouse model of 

AD(APP/PS1)[206]. These exosomes helped abrogating neuroinflammation through 

altering the levels of expression of pro- and anti-inflammatory cytokines. The effect of 

these exosomes extended to enhance spatial learning and memory function in addition to 

reducing the amyloid plaques load in the cortex and hippocampus on the injected animals.  

 

   Since exosomes are capable of carrying proteins as cargo, it is not surprising that 

several groups reported the presence of Aβ degrading enzymes in exosomes, representing 

another potential protective role of exosomes in AD[207-210]. Some of the enzymes 

reported were found in the last-mentioned study since the authors reported upregulated 

levels of insulin-degrading enzyme (IDE) and neprilysin in the exosomes. Others reported 

the presence of metalloproteinases and endothelin-converting enzymes, both have Aβ-

degrading capabilities, in association with exosomes.  

    Being biological entities, exosomes are known to freely cross the blood brain 

barrier (BBB) in both directions[211-213]. This unique capability posed exosomes as an 

exciting drug delivery method. In addition, the presence of exosomes in peripheral 

circulation allowed researchers to capture them, away from the brain, and study their 

content and cargo aiming to find unique exosomal biomarkers relative to 

neurodegenerative diseases, making them a potential diagnostic tool.  
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   Exosomes contain constituents of their cells of origin, which turns them into 

biomarkers for the secreting cells. Utilizing this concept, efforts have been made to enrich 

for exosomes from distinct brain cells, especially neurons and astrocytes. In the context of 

AD, it does not come to surprise that the first thought after targets were the major culprits 

in AD pathophysiology, namely Aβ, tau, and p-tau. Precisely the Aβ1-42/1-40 ratio, T -

tau and p -tau are being already used as biomarkers in CSF-based neurochemical diagnosis, 

and the same molecules have been identified in serum exosomes[214, 215]. Fiandaca and 

colleagues reported that neuronal exosomes enriched from the blood of AD patients 

showed significantly higher levels of Aβ1-42, total tau, p-tau181, and p-tau 396 compared 

to the controls[215]. The levels of these candidates were higher in preclinical individuals 

up to ten years prior to the clinical onset of AD. Similar results were reported by another 

group, claiming that plasma exosomes from AD patient significantly differed from healthy 

control based on their morphology, content, and count which might provide a basis for 

early diagnosis of AD[216]. In a recent elegant study, a new technology termed amplified 

plasmonic exosome (APEX) was developed to Subtype blood exosome-bound Aβ in 

relation to cells of origin. The authors found that plasma neuronal exosomes favor binding 

to prefibrillar Aβ, specially Aβ1-42. Analyzing these exosomes with APEX presented a 

precise correlation to the amyloid plaque load in AD patients with higher sensitivity than 

positron emission topography (PET), especially in early stages of AD[217].  

   Although Astrocyte-derived exosomes (ADE) are reported to be present at lower 

levels in plasma compared to neuronal ones (NDE), they contain a higher amounts of APP-

derived metabolites (including Aβ1-42) and APP-processing enzymes like BACE-1 in 

addition to p-tau[218]. This observation allows ADE to distinguish AD patients from the 
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study controls. Recently, the components of the complement system have been identified 

in plasma astrocytes-derived exosomes, implicating ADE in inflammation and 

neurodegeneration in AD[219, 220] 

 

 

1.3 5xFAD transgenic mouse model 

In this work, we use the AD mouse model called 5xFAD. This terminology stems 

from the fact that these mice express a total of five AD related mutations. Three of the 

mutations are human APP which are the Florida (I716V), Swedish (K670N/M671L), and 

London (V717I) while the other two are pertaining PSEN1, namely M146L and L286V. 

These genes are regulated by the neural-specific Thy1 promoter, which might explain why 

females produce more Aβ than males, probably due to an estrogen response element in the 

Thy1 promoter used to drive transgene expression. 5xFAD mice recapitulate the AD 

phenotype in several aspects. Intraneural Aβ begins to appear as early as 1.5 months of 

age while senile plaques are observed at two months of age[221]. BACE1 increases in 

these mice in an age-dependent manner, as well. Gliosis has been reported to accompany 

plaque deposition in two month old mice. Senile plaques are observed firstly in the 

subiculum and layer V of the cortex, pathology then appears in the cortex and hippocampus 

by six months of age[221]. Older mice show plaques in the brainstem, thalamus, and 

olfactory bulb. By four months, synaptic degeneration commences, which is determined 

by the decrease in presynaptic markers synaptophysin and syntaxin throughout the entire 

brain. Post synaptic markers begin to decline by nine months. Lastly, multiple regions of 

brain exhibit neuronal loss which starts in areas with severe plaque depositions at about 

six months of age. 
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Figure1.1: Overview of APP processing. In the non-amyloidogenic pathway, α-secretase 
cleaves APP creating sAPPα and CTFα, which is subsequently cleaved by γ-secretase into 
P3 and AICD. In the amyloidogenic pathway, APP is first processed by β-secretase, where 
sAPPβ is released, followed by cleavage of the CTFβ by γ-secretase to release Aβ. 
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Figure 1.2:  Overview of exosome biogenesis mechanisms involving MVBs and 
IMPCs.  Early endosomes mature into multivesicular bodies (MVBs), which are late 
endocytic compartments containing intraluminal vesicles (ILVs). Fusion of MVBs with the 
plasma membrane results in the release of ILVs into the extracellular space as exosomes. 
Other vesicles can be shed from the cell by direct budding from the plasma membrane (e.g. 
microvesicles and IPMC derived vesicles). Multiple machineries are involved in the 
biogenesis of ILVs, and thus of exosomes, such as ESCRT components, tetraspanins, and 
lipids.  
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Figure 1.3: Overview of sphingolipid metabolism and related enzymes. 
The de novo biosynthetic pathway is initiated in the endoplasmic reticulum by the action 
of serine palmitoyltransferase (SPT). Generation of ceramides happens after several 
enzymatic reactions. Ceramides are then incorporated into various complex sphingolipids 
(predominantly in the Golgi) including ceramide-1-phosphate (C1P), sphingomyelin or 
glycoceramides. In sphingolipid catabolic pathways, mostly in lysosomes, sphingomyelin 
(also glycosphingolipids and ceramide-1-phosphate) are hydrolyzed, resulting in the 
formation of ceramide. Ceramide can then be deacylated to generate sphingosine, which in 
turn is phosphorylated to sphingosine-1-phosphate (S1P). 
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CHAPTER 2. ASSOCIATION OF AΒ WITH CERAMIDE-ENRICHED                
ASTROSOMES MEDIATES AΒ NEUROTOXICITY 

2.1 Introduction 

Aβ plaque deposits and tau neurofibrillary tangle formation are hallmarks of AD 

[222, 223]. However, it is still controversial which of the two factors is critical for neuronal 

dysfunction and death, ultimately leading to cognitive decline and demise of the patient. 

Most of the previous studies assumed that the buildup of Aβ or tau by themselves induces 

neurotoxicity[44, 224, 225] . This assumption, however, was in stark contrast to 

observations in AD mouse models and patients showing significant buildup of plaques and 

tangles without obvious neuronal cell death[223]. We hypothesized that neuro- toxicity of 

Aβ is mediated by its interaction with an unknown factor. Based on our previous studies 

showing that Aβ associates with astrocyte-derived exosomes (here termed astrosomes), we 

tested if this interaction mediates neurotoxicity of Aβ[164, 226]. 

Exosomes are generated as intraluminal vesicles of multivesicular endosomes and 

secreted as a type of extracellular vesicles by a large variety of cells and tissues[106, 227, 

228]. Exosomes are deemed to serve as carriers for the intercellular transport of micro 

RNAs and some proteins. Although their size of 100 nm favors a high membrane surface-

to-volume ratio, the role of membrane lipids in exosomes remains largely un- 

explored[229, 230]. Our laboratory discovered that the sphingolipid ceramide is enriched 

in the membrane of astrosomes[164]. We also showed that ceramide mediates association 

of Aβ with astrosomes and that this association leads to astrosome aggregation in vitro, a  

process we suggested to nucleate amyloid plaques in AD brain [226]. However, we do not 

know if amyloid plaque nucleation is the only or even main function of astrosomes. Recent 

studies demonstrated that Aβ-associated exosomes cross the blood-brain-barrier and are 
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detectable in serum from AD mice and patients[189, 215, 231]. In fact, exosomes purified 

from patient serum are proposed as AD biomarkers that are detectable up to a decade prior 

to clinical symptoms of cognitive decline[215]. While a proportion of serum exosomes is 

clearly derived from brain, composition and function of these exosomes remains largely 

unknown. 

In the current study using mass spectrometry and anti-ceramide antibody, we found 

that a proportion of serum-derived serum exosomes is enriched with the same ceramide 

species previously detected in astrosomes isolated from primary astrocyte culture[226]. 

We also isolated exosomes from wild type and 5xFAD brain tissue and confirmed the 

astrocytic origin and Aβ association of tissue and serum-derived exosomes by testing for 

the presence of the astrocyte marker glial fibrillary acidic protein (GFAP) and Aβ. Aβ-

associated astrosomes were taken up by neural cells and specifically transported to 

mitochondria, thereby inducing mitochondrial damage and caspase activation. Most 

importantly, the concentration of Aβ associated with astrosomes inducing damage was 

several orders of magnitude lower than required when using Aβ without astrosomes. Aβ- 

associated astrosomes induced formation of a pro- apoptotic complex between Aβ and 

voltage-dependent anion channel 1 (VDAC1), the main ADP/ATP transporter in the outer 

mitochondrial membrane[232, 233]. These results suggest that astrosomes are the 

unknown factor mediating neurotoxicity of Aβ by inducing mitochondrial damage and 

apoptosis. Our data also indicate that Aβ-associated exosomes may comprise a novel 

pharmacological target for AD therapy. 

 

 



32 
 

2.2 Methods 

Cell cultures: The N2a cell line was obtained from ATCC (CCL-131™). The cells were 

grown to 90% confluence at 37 °C and 5% CO2 atmosphere in Dulbecco’s modified 

Eagle’s medium (DMEM) (Gibco, Invitrogen, CA, USA) supplemented with 10% fetal 

bovine serum (FBS) on 100 mm plates (Corning, MA, USA). For immunocytochemistry 

analyses, cells were seeded on poly-L-lysine (Milipore- Sigma, Montana, USA) coated 

cover slips at 10,000 cells/cover slip. Cells were gradually deprived of serum to allow for 

differentiation into neuron-like cells. Incubation with exosomes was always performed 

under serum-free conditions. 

          Primary neurons were isolated from E16.5-P0 mouse cortices following 30 min 

trypsinization and trituration with a flame-polished Pasteur pipet.  Neurons were plated on 

polyethylene imine coated T-25 flasks as previously described[226] and maintained 7 days 

in Neurobasal medium with B27 supplement (Life Technologies) prior to incubation with 

exosomes. To cultivate human induced pluripotent stem (iPS) cell-derived neuroprogenitor 

(NP) cells, the ReNcell VM Human NP cell line was obtained from Millipore (Temecula, 

CA, USA, Cat# SCC008). Cells were maintained according to the supplier’s protocol. 

Briefly, cells were expanded on laminin- coated 100 mm tissue culture dishes (Corning) in 

ReNcell NSC maintenance medium (Millipore) supplemented with 20 ng/mL fibroblast 

growth factor–2 (FGF-2) and 20 ng/mL epidermal growth factor (EGF) (Milli- pore). The 

medium was changed daily during the maintenance period. The cells were passaged once 

a week using Accutase (Millipore). Cells were then differentiated by seeding them at 

around 60% confluency on freshly laminin-coated dishes and growing overnight in the 
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presence of growth factors, followed by withdrawal of growth factors. The media were 

replaced every other day up to 10 days during the differentiation period. 

Serum exosome isolation, quantification, and labeling: All experiments using mice were 

carried out according to an Animal Use Protocol approved by the Institutional Animal Care 

and Use Committee at University of Kentucky. Sera were isolated from freshly obtained 

mouse blood. Human exosomes were isolated from sera obtained from the University of 

Kentucky Alzheimer Disease Center. 

             Mouse blood was drawn through heart puncture and was allowed to clot at room 

temperature for 30 min.  Blood was then centrifuged at 1800 x g for 10 min at 4 °C. The 

clear upper layer was transferred to a fresh tube and centrifuged at 3000 x g for 15 min to 

pellet residual blood cells. Exosomes were extracted using ExoQuick exosome solution 

(EXOQ; System Biosciences, Inc., Mountain View, CA, USA) according to the 

manufacturer’s protocol. Briefly, 250 μl aliquots of serum were treated with 67 μl of 

ExoQuick exosome solution, followed by incubation for 60 min at 4 °C to precipitate total 

exosomes. Tubes were then centrifuged at 1500 x g for 30 min. Each exosome pellet was 

resuspended in 100 μl of PBS with 1X Halt™ Protease Inhibitor Cocktail (Thermo Fisher, 

Massachusetts, USA). In   certain   experiments   exosomes   were   labeled with PKH67 

Green Fluorescent Dye using the Green Fluorescent Cell Linker Kit for General Cell 

Membrane Labelling (Sigma-Aldrich) according to the manufacturer’s protocol. Briefly, 

ExoQuick pellets were resuspended in PBS, 1 ml of Diluent C (CGLDIL, Sigma-Aldrich) 

was then added to each sample. As a control, 1 ml of Diluent C after adding the same 

volume of PBS was used. Next, 4 μl of PKH67 dye was added to 1 ml of Diluent C then 

mixed with the exosomes and the control, PKH67/Diluent C mixture was ultra-centrifuged 
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before being added to samples. The samples were allowed to incubate < 5 min on a rotor 

plate. One ml of 1% BSA was then added to bind excess dye. Samples were ultra-

centrifuged at 110, 000 xg for 70 min, washed and centrifuged again. For exosome 

quantification, nanoparticle tracking analysis (NTA) with the ZetaView PMX110 (Particle 

Metrix) was used. Briefly, exosomes were resuspended in PBS. Two ml of appropriately 

diluted samples were injected into the ZetaView cell. The instrument was set to obtain 

NTA measurements at 11 positions, two cycles at each position. During acquisition, 

temperature was set to 23 °C, camera sensitivity to 82, 30 frames/s, and shutter speed to 

250. Polystyrene beads (100 nm) were used for instrument calibration. For exosome 

incubation with ceramide analogs N-oleoyl serinol (S18 or bis palmitoyl ethanolamine 

(B16) the exosomes prepared from 5xFAD or control   serum   were   incubated   at 37 °C 

for 16 h with 50 μM S18 or B16. In addition to the ExoQuick exosome isolation method, 

we used the Exoeasy Maxi kit (Qiagen, Germany) to isolate exosomes from sera following 

the manufacturer’s protocol. Briefly, sera were diluted with an equal volume of distilled 

water to reduce viscosity and they were passed through a 0.45 μm filter to remove larger 

particles. 1 volume of Exoeasy binding buffer (XBP) was then added to 1 volume of 

sample. Sample/ XBP mix was added onto the Exoeasy spin column and centrifuged at 500 

x g for 1 min. Flow-through was discarded and the columns were placed back into the same 

collection tube. Ten ml Exoeasy washing buffer (XWP) were then added to columns, 

followed by centrifugation at 500 x g for 5 min to remove residual buffer from the column. 

Flow-through together with the collection tube were discarded. Spin columns were 

transferred to fresh collection tubes. Four hundred μl of elution buffer were added to the 
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membrane and incubated for 1 min, followed by centrifugation at 500 x g for 5 min to 

collect the eluate. 

Brain exosome isolation: This method is a modification to the protocol described by 

Miltenyi Biotic for isolation and cultivation of astrocytes from adult mouse brain utilizing 

gentleMACS Octo Dissociator. Briefly, mice were anesthetized using isoflurane inhalation 

in a chamber followed by perfusion of the whole body with cold 1x PBS to remove blood- 

derived exosomes from the brain. Mice brains were collected, washed with 1x PBS and cut 

into eight sagittal slices using sterile scalpel in a petri dish. Brain slices were then 

transferred to C tubes containing enzymatic dissociation buffer. C tubes were tightly closed 

and attached upside down onto the sleeves of the gentleMACS Octo Dissociator with 

Heaters, Program 37C_ABDK_01 being used. Samples were resuspended and applied to a 

MACS SmartStrainer (70 μm) placed on a 50 mL tube. 10 mL of cold D-PBS were applied 

onto the MACS SmartStrainer (70 μm). Cell suspensions were centrifuged at 300×g for 10 

min at 4 °C, supernatants were carefully transferred to a fresh tube to proceed with exosome 

isolation. Supernatants were centrifuged at 2000×g for 10 min followed by 10,000×g for 

30–40 min then passed through a 0.45 μm filter before following the Exoeasy exosome 

isolation protocol as described above. 

Immunocytochemistry: N2a, primary cultured neurons, or human neuroprogenitor cells 

were seeded on poly-L-lysine coated cover slips at a density of 25,000 cells/cover slip. N2a 

cells were allowed to differentiate by gradual serum deprivation[234]. Two days prior to 

exosome incubation, exosome-free FBS (EXO-FBS - System Biosciences, Mountain 

View, CA, USA) was used to supplement the media. Cells were then incubated with 

exosomes and washed three times with PBS, followed by fixation with 4% p-formaldehyde 
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containing 0.5% glutaraldehyde in PBS for 15 min at room temperature. Permeabilization 

was performed by incubation with 0.2% Triton X-100 in PBS for 5 min at room 

temperature. Non-specific binding sites were blocked with 3% ovalbumin/PBS for 1 h at 

37 °C. Cells were then incubated with primary antibodies at 4 °C overnight. The next day, 

cells were washed with PBS and incubated with secondary antibodies diluted 1: 300 in 

0.1% ovalbumin/PBS for 2 h at 37 °C. Secondary antibodies were Cy2-conjugated donkey 

anti-mouse IgM, Alexa Fluor 546-conjugated donkey anti-rabbit IgG, and Alexa Fluor 647-

conjugated goat anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA). After 

washing, cover slips were mounted using Fluoroshield supplemented with DAPI (Sigma-

Aldrich) to visualize the nuclei. We used the following primary antibodies: anti-ceramide 

rabbit IgG (1:100, our laboratory), anti- flotillin-2 mouse IgG (1:300 BD Biosciences, 

California, USA, 610383), anti-amyloid-beta mouse IgG 4G8 clone (1:200 Biolegends, 

California, USA, SIG-39220), beta amyloid recombinant rabbit monoclonal antibody 

(H31L21, Thermo Fisher), anti-GFAP mouse IgG (1:500, abcam, Cambridge, MA, USA, 

ab10062), anti-Tom 20 rabbit IgG (1200, Santa Cruz, sc-11415), anti-VDAC1 rabbit IgG 

(1500, Abcam, ab15895). Fluorescence microscopy was performed using Eclipse Ti2-E 

inverted microscope system (Nikon, New York, USA). Images were processed using 

Nikon NIS-Elements software equipped with a 3D deconvolution program. Pearson’s 

correlation coefficient for two fluorescence channels in overlays was used to assess the 

degree of colocalization.  

Proximity ligation assay: Cells were grown and treated as described above in the protocol 

for immunocytochemistry. Non-specific binding sites were blocked with Duolink PLA 

blocking solution (Sigma-Aldrich) for 1 h at 37 °C. The primary antibodies used were; 
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anti-Aβ mouse IgG (1:500 4G8, Biolegends, California, USA, SIG-39220), anti-VDAC1 

rabbit IgG (1:1000 abcam, Cambridge, MA, USA, ab34726) Secondary PLA probes: anti-

mouse MINUS affinity-purified donkey anti-mouse IgG (H + L) and anti-rabbit PLUS 

affinity-purified donkey anti-rabbit IgG (H + L) were diluted 1:5 in antibody diluent buffer 

and samples incubated for 1 h at 37 °C followed by ligation and amplification steps as 

described in the manufacturer’s protocol (Duolink, Sigma-Aldrich). Cover slips were 

mounted using Fluoroshield supplemented with DAPI (Sigma-Aldrich) to visualize the 

nuclei. Images obtained with secondary antibody only were used as negative controls 

representing the background intensity in a laser channel. ImageJ software 

(https://imagej.nih.gov/ij/) was used to analyze the pictures. Two channels (DAPI and 

TRITC) were separated to analyze nuclear staining (DAPI) of the images separately from 

the TRITC channel associated with the PLA dots. Firstly, threshold was set in order to 

identify nucleus and to allow for binary conversion (black and white). Morphological 

function was used to separate touching nuclei. Nuclei were counted and added to the region 

of interest (ROI) where the appropriate minimum and maximum pixel area sizes were set. 

In the other channel, the number of dots (PLA signals) in each cell as identified by labeling 

of nuclei was calculated with the “Measure” command from the ROI manager using single 

point as an output type.  

 Isolation of mitochondria: N2a cells were seeded on 100 mm dishes at 35–40% of density, 

followed by incubation with wild type or 5xFAD serum exosomes. Sixteen hours later, 

cells were harvested and washed twice with ice-cold PBS. Cell pellets were then transferred 

into a Dounce homogenizer and disrupted with 2 ml of ice-cold mitochondria extrac- tion 

buffer [10 mM HEPES, 125 mM sucrose, 0.01% BSA, 250 mM mannitol, 10 mM EGTA, 
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and protease inhibitors (pH 7.2)]. The homogenates were transferred into a centrifuge tube 

and cell debris pelleted at 700 x g    at 4 °C for 10 min to enrich for mitochondria. Following 

centrifugation under same conditions, supernatants were transferred to a new ice-cold tube, 

and then mitochondria pelleted at 10,000 x g for 15 min at 4 °C. The mitochondrial pellet 

was resuspended in 1 ml of lipid binding buffer [20 mM Tris-HCl, 150 mM NaCl, 1 mM 

EDTA (pH 7.5), and 1% digitonin, supplemented with protein inhibitor cocktail (Roche)]. 

Complete lysis of mitochondrial membranes was achieved by sonication. Removal of 

insoluble debris was achieved by centrifugation at 10,000 x g for 15 min at 4 °C. The 

protein concentration in the supernatants from untreated cells and treated cells was 

determined using Bio-rad RC DC™ Protein Assay.  

FLICA and cytotoxicity assay: The FLICA 660 Poly Caspase Assay Kit 

(ImmunoChemistry Technologies, Minnesota, USA) was used to determine the presence 

of early caspase activation. This in vitro assay employs the fluorescent inhibitor probe 660-

VAD-FMK to label active caspase enzymes in living cells. N2a cells (0.25–1·105) were 

incubated with exosomes (0.5–1x104 exosomes/cell) for 6 h at 37 °C. The cells were 

washed twice with PBS and resus- pended in RPMI medium with 10% FBS before staining 

with 30 × FAM-VAD-FMK for 30 min at 37 °C. Cells were washed with 1 x apoptosis 

wash buffer prior to being fixed with 4% paraformaldehyde supplemented with 0.5% 

glutaraldehyde. The assay was then followed by PLA as described above. 

For LDH cytotoxicity assays, N2a cells were seeded at a density of 5000 cells/well on 96-

well plates in complete culture medium and were allowed to grow to adequate confluency. 

One day before incubation with exosomes, media were replaced with 2% EV-depleted FBS 

and kept overnight. Cells were treated for 12 h with 1 x 104 exosomes /cell. LDH release 



39 
 

was detected using the CyQUANT™ LDH Cytotoxicity Assay (Thermo Fisher Scientific, 

Waltham, MA, USA) according to the manufacturer’s protocol.   

Western blot and dot blot: For Western blot analysis, samples were mixed with an equal 

volume of 2X Laemmli sample buffer. Samples were resolved by SDS gel electrophoresis 

on polyacrylamide gels and transferred to nitrocellulose membrane (Hybond ECL, 

Amersham Biosciences, UK). Non-specific binding sites were blocked with 5% fat-free 

dry milk in PBS containing 0.05% Tween-20 followed by overnight incubation with 

primary antibodies. For exosome characterization we used CD9, CD63, CD81 rabbit 

antibodies from ExoAb Antibody Kit (System Biosciences, Inc., Mountain View, CA, 

USA) after dilution to 1:1000. The following primary antibodies were used for 

immmunolabeling on Western blots: anti-flotillin-2 mouse IgG (1:1000, BD Biosciences, 

California, USA, 610383), anti-cleaved caspase-3 rabbit IgG (Cell Signaling, Danvers, 

MA, USA, #9664), anti-VDAC1 goat poly- clonal IgG (1: 200, Santa Cruz Biotechnology, 

Inc., CA, USA), anti-Drp-1 mouse IgG1 kappa light chain (Santa Cruz, Dallas, TX, USA, 

sc-271,583). Signals were detected using either pico or femto chemiluminescent (ECL) 

horseradish peroxidase (HRP) substrate (Thermo Fisher, Massachusetts, USA). Blot 

images were developed using Azure c600 system (Azure Biosystems, California, USA). 

Exosome immune capturing on beads: affinity purification using ceramide beads 

Twenty μL of protein A sepharose conjugated magnetic beads were pre-blocked with FcR 

Blocking Reagent (MACS, Miltenyi Biotec) for 1 h at room temperature. After 3-times 

washing with lipid biding buffer [20 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA (pH 7.5)], 

either anti-ceramide rabbit IgG or control non-specific rabbit IgG were immobilized on the 

beads in 1% BSA. Approximately 2 μg were added to each sample and the reaction kept 
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mixing overnight on a rotary plate. Next day, beads were washed 3-times and diluted 

exosome samples were added and allowed to incubate with the beads for 2 h at room 

temperature. Beads were then collected using magnetic columns and washed 3-times with 

deter- gent free lipid binding buffer. The beads were incubated with an adequate volume 

of 2x sample Laemmli buffer, heated at 90 °C for 10 min and processed for immunoblot 

labeling of GFAP. Aliquots of the flow through were used for dot blots determining Aβ 

content and the residual sample processed for Western blot using 4 x sample Laemmli 

buffer. Equal volumes of the samples were then applied to each well for Western blot 

analysis. 4 μL were used for dot blot with the flow through of each sample.    

Mass spectrometric analysis of lipids: Exosomes prepared from serum were taken up in 

water and ceramide species were quantified in the sphingolipidomic (LC-MS/MS) analysis 

core facility at the Medical University of South Carolina, Charleston, SC. The lipid 

concentration was normalized to lipid phosphate and exosome number.  

Statistical analysis: Clustering analyses were performed with Particle Explorer V2.1.4 

(Particle Metrix Inc., Germany) using the following features (1. Particle size 2. Position 3. 

Area std. 4. Mean intensity std. 5. Trajectory total distance, std. speed, track time, med- 

speed, and max-speed). For the lipid analysis, results were analyzed with Two-way 

ANOVA using ceramide species and genetic background as two independent factors. The 

effect of exosomes from two sources (e.g., wild type and 5xFAD) with unequal sample 

sizes or unknown variances were analyzed by unpaired t-test with Welch’s correction. 

When multiple comparisons affected by a potential baseline shift in each sample (e.g., mass 

spectrometric analysis of ceramide species) were analyzed, we used the Bonferroni 

correction on One-way ANOVA, a statistical test typically applied to mass spectrometric 
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analyses to exclude false positives. Other tests such as One-way ANOVA with Student-

Newman-Keuls (SNK) post hoc test or Tukey correction for comparison of multiple means 

were applied when used for similar analyses as described in literature. Results showing p 

< 0.05 were reported as statistically significant. All statistical analysis was done on Graph-

pad prism software.       

 

 

2.3 Results  

2.3.1 5xFAD mouse and AD patient serum contains exosomes enriched with ceramide 
and derived from astrocytes (astrosomes) 

 

          Several studies showed that exosomes cross the blood- brain-barrier (BBB) 

carrying toxic and misfolded protein of CNS origin[215, 235]. These studies also showed 

that purification of exosomes from serum or plasma allows characterization of exosomes 

from different cell types in the brain, including astrocytes. We used polymer precipitation 

and membrane affinity chromatography to isolate exosomes from sera of transgenic mouse 

model of AD and AD patients as these isolation methods were shown to give consistent 

results when used with plasma or serum[108, 236, 237]. Due to the limitations in 

availability of AD patient serum, we first focused on characterization of exosomes 

prepared from serum of the transgenic mouse model of AD (5xFAD) and wild type 

littermates with identical genetic background (C57Bl/6). 5xFAD mice overexpress 

presenilins (PS1) with two FAD mutations (M146L and L286V) as well as amyloid 

precursor protein (APP) with three FAD mutations (V717I, I716V, and 

K670N/M671L)[221]. Nanoparticle tracker analyses (NTA, Zetaview) and cluster 
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analyses software (Particle Explorer, Particle Metrix, Mebane, NC) showed that the 

number of exosomes in wild type and 5xFAD serum from 9 months old mice was similar 

(8.47x1011 +/− 3.6x1010 exosomes/250 μl serum vs. 9.14x1011 +/− 5.1x1010 

exosomes/250 μl serum, N = 6). While the majority of exosomes from wild type serum 

was composed of a homogenous population of vesicles with medium size of 100 nm (Fig. 

2.1a), exosomes from 5xFAD serum contained an additional vesicle population of larger 

size accounting for 37 +/- 4% of the total population, indicating aggregate formation (Fig. 

2.1b). Immunoblot analysis was used to validate the presence of exosomal markers such 

as tetraspanin proteins (CD63, C9, and CD81 as well as raft and exosome- associated 

proteins flotillin-1 and flotillin-2, and the astrocyte marker GFAP (Fig. 2.1c).  

        Lipid analysis using mass spectrometry (LC-MS/MS) showed that 5xFAD exosomes 

were enriched with ceramide (4.3 pmoles total ceramide/1011 5xFAD serum exosomes vs. 

2.2 pmoles/1011 wild type serum exosomes), particularly C16:0, C18:0, C20:0, 22:0, 

C24:0, and C24:1 ceramide (Fig. 2.1d and e, N = 3).  Normalization to lipid phosphate 

(Fig. 1d) as well as particle count (Fig. 2.1e) showed similar enrichment, confirming that 

the ceramide composition was representative for the exosome population in serum. We 

also determined ceramide composition and GFAP association of exosomes in serum from 

AD patients. Consistent with the results obtained with mouse serum, the number of 

exosomes in serum from healthy controls and AD patients was similar (2.05x1011 +/− 

5.1x109 exosomes/250 μl serum vs. 1.85x1011 +/− 6.2x109 exosomes/250 μl serum. N = 

3). There was a population of larger particles which appeared to be similar to that     in 

5xFAD serum (Fig. 2.11A). Fig. 2.11b shows that the levels of some of the ceramide specie 

(C16:0,    C18:0, C18:1,  C20:0,    and  C20:1 ceramide) were increased in AD patient 
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exosomes, while others   (C22:0   and   C24:0   ceramide) were not.  This difference in the 

ceramide profiles between the 5xFAD mouse and AD patient serum exosomes could be 

due to differences in the activity of ceramide synthases (CerS) in mice vs. patients. The 

GFAP level associated with serum exosomes from AD patients was comparable to that of 

healthy controls (Fig. 2.11C). It is possible that characteristics such as exosome enrichment 

with GFAP are more profound with 5xFAD serum exosomes because of the severe AD 

pathology phenotype that may not be completely comparable to that of late onset AD 

patients. Therefore, our results suggest that the main difference between 5xFAD and AD 

serum exosomes to those from wild type and human controls is a proportion of exosomes 

enriched with particular ceramides. 

 

2.3.2 Serum astrosomes are associated with Aβ and sensitive to novel ceramide analogs 

            To further characterize the proportion of ceramide- enriched exosomes, we used 

anti-ceramide rabbit IgG immobilized on protein A sepharose beads to separate ceramide-

enriched exosomes from other exosome populations in serum. Figure 2.2a shows that 

GFAP labeling was only found with exosomes bound to the beads, while exosomes in the 

flow through were GFAP negative. Control rabbit IgG did not bind any serum-derived 

exosomes confirming specificity of the binding reaction for ceramide-enriched astrosomes. 

Wild type serum also contained astrosomes retained by anti-ceramide antibody, however, 

at lower concentration as indicated by weaker immunolabeling for GFAP. NTA analysis 

showed that retention by anti-ceramide beads reduced the number of exosomes by 2.3+/− 

0.3% from wild type and 9.2+/− 0.8% (N = 3) from 5xFAD serum indicating that the 
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proportion of ceramide-enriched astrosomes in 5xFAD serum is ≃ 4-fold higher than that 

in wild type serum.  

         Next, we tested if ceramide-enriched exosomes in serum were associated with Aβ by 

determining the amount of Aβ retained on anti-ceramide beads vs. that in flow through. 

Immunolabeling using dot blots showed that only the flow through of beads with control 

IgG contained Aβ42, while amyloid peptide was retained on anti-ceramide beads (Fig. 

2.2b). Consistent with immunolabeling for GFAP, the amount of Aβ was 2.2-fold higher 

in 5xFAD serum than that from wild type mice (not shown). Since ceramide-enriched 

exosomes were associated with GFAP as well as Aβ we concluded that 5xFAD serum 

contained a proportion of astrosomes enriched with ceramide and associated with Aβ.  

          Enrichment of astrosomes with ceramide suggested that this lipid participates in 

association of Aβ to astrosomes. This hypothesis is consistent with our previous studies 

showing that anti-ceramide IgG prevented aggregation of exosomes induced by incubation 

with Aβ. Figure 2.2c shows that incubation with anti- ceramide IgG abolished the 

proportion of larger sized vesicles in the preparation of 5xFAD exosomes, similar to the 

effect of anti-ceramide antibody on aggregation of Aβ-associated astrosomes derived from 

cell culture media. We also found reduction of vesicle size by 17% (N = 4) when adding 

the novel ceramide analog N-oleoyl serinol (S18) but not N-palmitoyl bisethanolamine 

(B16, structures are shown in Fig. 2.11 D) to 5xFAD exosomes, suggesting that S18 is a 

ceramide mimic that disrupts Aβ association and aggregation of astrosomes, probably by 

interfering with the ceramide- mediated binding of Aβ to astrosomes. 
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2.3.3 Astrosomes are taken up by neural cells and transport Aβ and ceramide to 
mitochondria. 

          To test if serum-derived exosomes are up taken by neural cells, we incubated 

neuronally differentiated N2a cells, a mouse neuroblastoma cell line, with exosomes 

labeled with the fluorescent membrane-binding dye PKH67. N2a cells were used as an in 

vitro model since neuroblastoma cells are an established model for neuronal uptake and 

biological activity of exosomes[238, 239]. Key results were then confirmed using primary 

cultured neurons. Fig. 2.12A-C shows that both, wild type and 5xFAD serum-derived 

exosomes labeled with PKH67 are taken up by N2a cells and primary cultured neurons. 

Cells incubated with wild type serum-derived exosomes were labeled for ceramide, but 

not or only weakly for GFAP (Fig. 2.3a and c), while cells incubated with 5xFAD serum 

exosomes were colabeled for ceramide and GFAP (Fig. 2.3b and c). Since there were no 

or only few cells that showed increased ceramide signals without being colabeled for 

GFAP, our data demonstrate that N2a cells effectively take up ceramide-enriched 

astrosomes.  

         Next, we tested whether astrosomes transported Aβ into N2a cells. Using 

immunocytochemistry, we detected Aβ signals in N2a cells incubated with 5xFAD 

exosomes but not with those from wild type serum (Fig. 2.3d and e). The Aβ signal 

colocalized with labeling for flotillin-2 (arrows in Fig. 2.3e), suggesting that astrosomes 

delivered Aβ into N2a cells. To further confirm the validity of these results, we used a 

proximity ligation assay (PLA) for complex formation between ceramide and Aβ in 

membrane dye PKH67-labeled exosomes taken up by N2a cells[240, 241]. Fig. 2.13A-D 

shows that PLA signals colocalized with PKH67 labeling and were only observed in cells 

incubated with 5xFAD exosomes. 
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          We then tested if serum exosomes from AD patients showed similar uptake 

characteristics as 5xFAD exosomes. N2a cells incubated with AD patient exosomes 

showed colocalization of ceramide and flotillin-2 (Fig. 2.4b). While endogenous ceramide 

and flotillin-2 were detectable in exosome-treated cells, we lowered the pertinent 

fluorescence signals to that of background to specifically monitor ceramide and flotillin-2 

contributed by exosomes. Cells incubated with exosomes from healthy controls showed 

ceramide and flotillin-2 and ceramide labeling, however, at much lower intensity than cells 

incubate with AD exosomes (Fig. 2.4a). These results indicated that exosomes from human 

serum, particularly when derived from AD patients, were taken up and transported 

ceramide into cells. 

          Several studies showed that mitochondria are affected by Aβ[42, 242, 243]. 

Using immunocytochemistry for Aβ and Tom-20, we showed that Aβ was labeled in 

mitochondria of hippocampal tissue from AD patients (arrows in Fig. 2.14A), suggesting 

that Aβ is transported to mitochondria in AD brain. To investigate exosome-mediated 

transport of Aβ, we first tested if 5xFAD serum-derived exosomes are transported to 

mitochondria. Figure 2.5a, b and e show that the exosome marker flotillin-2 colocalized 

with the mitochondrion marker Tom-20 in 5xFAD exosome-incubated N2a cells. The 

flotillin fluorescence signal was analyzed after subtracting intrinsic signals, thereby 

eliminating the possibility that the colocalization resulted from the fluorescence signal of 

endogenous flotillin with mitochondria. Colabeling and Pearson’s coefficient for 

colocalization were significantly, but only moderately (about 20%) lower when exosomes 

from wild type serum were used (Fig. 2.5b and e), suggesting that transport of exosomes 

to mitochondria is not critically dependent on Aβ association.  
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        We then tested if serum-derived exosomes from AD patients and healthy 

controls matched for sex, age, and body matrix index (BMI) transported Aβ to 

mitochondria in neurons differentiated from human iPS cells. Figure 2.5d and f shows that 

Aβ colocalized with Tom-20 in AD patient exosome-treated N2a cells, while there was no 

Aβ signal detectable when cells were incubated with serum exosomes from healthy 

controls (Fig. 2.5c and f). AD patient exosomes labeled with Vybrant CM diI also 

colocalized with Aβ and Tom-20, demonstrating that exosomes effectively transported Aβ 

to mitochondria (Fig. 2.5g). Mitochondria appeared to be clustered, suggesting that uptake 

of AD patient-derived exosomes led to mitochondrial damage in neurons. 

 

2.3.4 Astrosomes induce Aβ-VDAC1 complex formation, which activates caspases 

           Our observation that 5xFAD mouse and AD patient serum exosomes 

induced clustering of mitochondria in N2a cells and primary cultured neurons prompted 

us to investigate if Aβ-associated astrosomes are neurotoxic by inducing mitochondrial 

damage. To test if astrosomes themselves were neurotoxic we analyzed mitochondrial 

clustering and fragmentation of neuronal processes, and performed TUNEL assays after 

incubation of primary cultured neurons from mouse brain with astrosomes, Aβ, and Aβ 

pre-incubated with astrosomes (Fig. 2.6a-f). The number of TUNEL positive cells was 

increased by 2.6-fold (Fig. 2.6f) when cells were incubated with Aβ- associated 

astrosomes, concurrent with mitochondrial clustering (arrows in Fig. 2.6e) and 5.9-fold 

enhanced fragmentation of neuronal processes (Fig. 2.6c) as determined by β-tubulin 

labeling. This result showed that astrosomes themselves were only marginally toxic, but 

they significantly enhanced neurotoxicity of Aβ.  
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         Mitochondrial dysfunction is known to be a critical factor in induction of 

neurotoxicity leading to neurodegeneration in AD[244-246]. One of the previously 

described targets for Aβ is mitochondrial voltage-dependent anion channel 1 (VDAC1), a 

mitochondrial gatekeeper for ADP/ATP and calcium localized in the outer mitochondrial 

membrane[232, 233]. We tested if astrosome-associated Aβ interacted with VDAC1 and 

induced mitochondrial dysfunction. PLAs using antibodies to VDAC1 and Aβ showed a 

6-fold in- crease in the number of signals indicating complex formation between VDAC1 

and Aβ when N2a cells were incubated with exosomes from 5xFAD serum as compared 

to those from wild type serum (Fig. 2.7a-c). PLA signals were clustered (arrows in Fig. 

2.7b) consistent with mitochondrial clustering induced by Aβ-associated astrosomes. 

Mitochondrial damage was confirmed by upregulation of the fission protein Drp-1 in 

mitochondria isolated from N2a cells incubated with 5xFAD serum exosomes (Fig. 2.7d). 

Figure 2.7e and f shows that in N2a cells and primary cultured neurons incubated with 

exosomes from 5xFAD mice or AD patient serum, PLA signals were colocalized with 

Tom-20, concurrent with mitochondrial clustering. These results confirm that astrosome-

associated Aβ formed complexes with mitochondrial VDAC1 and leads to mitochondrial 

damage. PLA signals for VDAC1-Aβ complexes were also found in the vicinity of 

amyloid plaques of AD brain tissue, suggesting that VDAC1-Aβ complex formation 

contributes to AD pathology in vivo (Fig. 2.14B). 

          Since 5xFAD mouse and AD patient serum exosomes transported ceramide 

into cells (Figs. 2.3b and 2.4b) we tested if VDAC1-Aβ complex formation was 

colocalized with ceramide. Figure 8a-c shows that in primary cultured neurons incubated 

with 5xFAD serum exosomes (Fig. 2.8b) or AD patient exosomes (Fig. 2.8c), PLA signals 
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for formation of complexes of VDAC1 with Aβ were colocalized with ceramide (arrows). 

Neurons incubated with wild type serum exosomes showed no or only a few PLA signals 

and they were not colocalized with ceramide (Fig. 2.8a). This result suggested that 

VDAC1-Aβ complex formation was associated with ceramide derived from exosomes. 

        Next, we tested if exosome-mediated VDAC1-Aβ complex formation led to 

activation of caspase 3, a hallmark of neurotoxicity and apoptosis. Figure 2.9a and b shows 

that in N2a cells incubated with AD patient serum (Fig. 2.9a) or 5xFAD mouse serum (Fig. 

2.9b) exosomes, PLA signals for VDAC1-Aβ complexes were colocalized with labeling 

for activation of caspases (FLICA assays), suggesting induction of apoptosis.  

         Activation of caspases was confirmed by immunoblot analysis for cleaved 

caspase 3 (Fig. 2.9d and e). Since the Aβ content of 5xFAD serum exosomes was 

approximately 25 pg Aβ42/1012 exosomes (calculations based on ELISA data, not shown), 

and 1 x 104 exosomes/cell were added to 1 x 105 cells in 1 ml of medium, the apparent Aβ 

concentration was 5 fmoles/l, which is several orders of magnitude less than what is 

commonly used in Aβ neurotoxicity assays. VDAC1-Aβ complex formation concurrent 

with caspase 3 activation was confirmed with 5xFAD serum exosomes and primary 

cultured neurons (Fig. 2.9c), suggesting that association of Aβ to ceramide-enriched 

exosomes enhances Aβ neurotoxicity by inducing mitochondrial damage and caspase 3 

activation. 

         Finally, we compared neurotoxicity of 5xFAD serum exosomes with those 

from mouse brain tissue before and after removal of ceramide-enriched astrosomes using 

pull down with anti-ceramide antibody. Exosomes were isolated from brain tissue after 

perfusion with PBS to rule out any contamination with serum exosomes. Analyses using 
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NTA showed that brain tissue-derived exosomes from wild type and 5xFAD mice were 

similar in number (1.5 × 109 exosomes/mg wild type vs. 1.6 × 109 exosomes/mg 5xFAD 

brain tissue) and size distribution (Fig. 2.10a). Normalized to exosome number, the wild 

type and 5xFAD exosomes contained comparable levels of exosome markers, however, 

GFAP levels were higher in 5xFAD exosomes indicative of a higher proportion of 

astrosomes in 5xFAD brain tissue (Fig. 2.10b).   

         Next, we tested if brain tissue-derived exosomes showed similar effects on 

neuronal apoptosis as serum exosomes. Results of the FLICA assay (Fig. 2.10c) show that 

induction of apoptosis by incubation with 5xFAD brain exosomes (0.5 × 104 

exosomes/cell) was about 3- fold higher than that with wild type brain exosomes, 

consistent with data obtained with exosomes from serum (Fig. 2.9). When testing 

cytotoxicity using a CyQuant assay we found that normalized on the same number of 

exosomes used per cell (1x104 exosomes/cell) toxicity of exosomes from 5xFAD brain 

was 4-fold higher than that from wild type brain and 3.5-fold higher than that from 5xFAD 

serum exosomes. This result shows that the number of neurotoxic exosomes is highly 

elevated in 5xFAD brain and that serum exosomes represent a portion of brain exosomes 

with increased neurotoxicity. When we removed the portion of ceramide-enriched 

exosomes from 5xFAD and wild type brain tissue and serum, cytotoxicity dropped by half, 

demonstrating that enhancement of Aβ neurotoxicity is mediated by enrichment of Aβ-

associated astrosomes with ceramide. 
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Figure 2.1: 5xFAD serum-derived exosomes are enriched with ceramide and 
associated with GFAP.  (a-b) Cluster analysis of wild type (WT) and 5xFAD serum-
derived exosomes after Nano Particle Tracking analysis showing a population of larger 
exosomes in 5xFAD serum. N = 3 (c) Immunoblot of exosome markers CD9, CD63, CD81, 
flotillin-1, and flotillin-2, demonstrating higher amounts of GFAP in 5xFAD exosomes 
compared to WT exosomes. d-e Ceramide species profile determined using LC-MS/MS of 
WT and 5xFAD serum-derived exosomes and normalized to lipid phosphate content (d) 
and to exosome count (e) Asterisks denote significance (p < 0.05) after Two-way ANOVA 
followed by Bonferroni correction (N = 3). 
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Figure 2.2: 5xFAD serum astrosomes associated with Aβ form aggregates, which is 
reduced by the novel ceramide analog S18. (A) Gel electrophoresis after immune 
capturing of exosomes on beads using either ceramide antibody or control IgG and probing 
with anti-GFAP antibody. Blot is representative of the results from three independent 
experiments. (B) Dot blot against Aβ using flow through for the same experiment. (C) Size 
distribution of wild type (WT), 5xFAD, and 5xFAD exosomes treated with anti-ceramide 
IgG. (D) Size distribution of WT, 5xFAD, and 5xFADexosomes treated with the novel 
ceramide analog S18. Particle diameter of each sample is represented as ±SEM, two-way 
ANOVA, *p < 0.05. N = 4 
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Figure 2.3: 5xFAD serum contains Aβ-associated astrosomes that are taken up by 
neural cells. Representative images of N2a cells incubated with exosomes isolated from 
wild type (WT) (a, d) or 5xFAD serum (b, e)and coimmunolabeled with antibodies against 
GFAP and ceramide (a, b) orflotillin-2 and Aβ (d, e). Arrows point at cells with uptake of 
Aβ-associated exosomes. The Pearson’s correlation coefficient was calculated to compare 
colocalization of GFAP and ceramide (c) or flotillin-2 and Aβ signals (f) in WT (open bar) 
and 5xFAD (closed bar). Welch’s t-test, *p < 0.05. N = 6 
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Figure 2.4: Serum-derived exosomes from AD patients transport ceramide into cells. 
Immunofluorescence images of N2a cells incubated with either (a)healthy control or (b) 
AD patient serum-derived exosomes labeled with anti-ceramide and flotillin-2 antibodies. 
(c) fluorescence intensities for the ceramide signal. N = 6. Student t-test with Welch’s 
correction, *p < 0.05, **p < 0.01. 
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Figure 2.5: Serum-derived exosomes from 5xFAD mice and AD patients’ shuttle Aβ 
to mitochondria in N2a cells and neurons. Immunofluorescence images of N2a cells 
incubated with either (a) wild type or (b) 5xFAD serum-derived exosomes and then labeled 
with flotillin-2 and Tom-20 antibodies. (e)Pearson’s correlation coefficient for 
colocalization of flotillin-2 and Tom-20. N = 6. Student t-test with Welch’s correction. *p 
< 0.05. c, d Neurons differentiated from human iPS cells and incubated with control healthy 
human (c) or AD patient exosomes (d) showing that only AD patient exosomes shuttle Aβ 
to mitochondria in neurons (arrows). f Pearson’s correlation coefficient for colocalization 
of Aβ with Tom-20. N = 6. Student t-test with Welch’s correction. **p < 0.01. g as in d, 
but additional labeling of AD patient exosomes with Vybrant CM diI showing 
mitochondrial clustering (arrows) induced by Aβ-associated exosomes. Bottom image 
shows detail of (g) 
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Figure 2.6: Neurotoxic effect of Aβ42/astrosome complexes on primary neuronal 
cultures. Representative single-focal-plane images of β-tubulin and Tom-20 labeling 
obtained with control (a), Aβ42 (b), astrosome (d), or Aβ42/astrosome-incubated (e) 
primary cultured mouse neuron. Arrows indicate mitochondrial clusters. c Average 
normalized density of β-tubulin labeling reveals that the greatest loss occurs in cultures 
treated with Aβ42/astrosome complexes. N = 6. One-way ANOVA with Student-Newman-
Keuls (SNK) post hoc test). ***p < 0.001, **p < 0.005, *p < 0.05). f TUNEL assay detected 
a 2.6-fold increase in neuronal cell death when Aβ42 and astrosomes were combined (N = 
4. One-way ANOVA with SNK post hoc test) 
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Figure 2.7: Aβ-associated exosomes mediate complex formation between VDAC1 and 
Aβ and induce mitochondrial damage. a, b Representative immunofluorescence images 
of N2a cells incubated with wild type exosomes (a) or 5xFAD exosomes (b) showing 
increased number of PLA signals in cells incubated with 5xFAD exosomes. Right panels 
show detail from left panel (frame). Each red dot denotes complex formation between Aβ 
and mitochondrial VDAC1. Arrows indicate PLA signals in mitochondrial clusters (c) 
Calculation and comparison of average PLA signals per cell between wild type and 5xFAD 
incubations, six images for each condition. Student t-test followed by Welch’s correction. 
N = 6. p <0.001 (d) Western blot of mitochondrial protein from N2a cells using antibody 
against Drp-1 and VDAC1 as a reference protein. e, f Colocalization between PLA signals 
for VDAC1-Aβ complexes and mitochondrial marker Tom-20 labeling in N2a cells and 
primary cultured neurons incubated with 5xFAD serum exosomes (e) and AD patient 
serum exosomes (f). 
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  Figure 2.8: Exosome-induced VDAC1-Aβ complex formation is associated with 
ceramide. Representative immunofluorescence images for PLA signals fromVDAC1-Aβ 
complexes and ceramide in primary cultured neurons incubated with wild type mouse 
exosomes (a), 5xFAD mouse exosomes (b), or human AD patient serum-derived exosomes 
(c). Images in right panel are details at higher magnification (frames in left panel) with 
arrows pointing at PLA signals colocalized with ceramide 
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Figure 2.9: 5xFAD and human AD patient serum-derived exosomes trigger apoptosis 
in cells induced by interaction between mitochondrial VDAC1 and Aβ.  Representative 
immunofluorescence images of N2a cells incubated with (a) AD patient exosomes or (b) 
5xFAD mouse serum-derived exosomes. FLICA assays were followed by PLAs for 
VDAC1-Aβ complex formation. Images show that cells with VDAC1-Aβ complexes 
undergo apoptosis(arrows). c Primary cultured neurons incubated with 5xFAD serum 
exosomes followed by FLICA assays and PLAs. Arrows indicate neurons colabeled for 
VDAC1-Aβ complexes and caspase 3 activation. These cells show pyknic nuclei 
(condensed DAPI labeling) indicative of apoptosis. (d)Western blot with N2a cell lysate 
immunolabeled for cleaved caspase 3 using GAPDH as a reference protein. Blot is 
representative of three independent experiments. e Relative fold expression of cleaved 
caspase 3 normalized to GAPDH. One-way ANOVA followed by Tukey correction. N = 
3. **p < 0.001 
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Figure 2.10: Ceramide-enriched 5xFAD brain tissue and serum exosomes are 
neurotoxic. (a) Cluster analysis of wild type (WT) and 5xFAD brain tissue derived 
exosomes after Nano Particle Tracking analysis. N = 3 (b) Immunoblot of exosome 
markers flotillin-1, Alix-1, CD9, and GFAP, demonstrating higher amounts of GFAP in 
5xFAD exosomes compared to WT exosomes. c FLICA assay shows 3-fold increased rate 
of apoptosis induction (cells with activated caspase 3) after incubation for 12 h of N2a cells 
with 5xFAD brain tissue exosomes compared to WT exosomes .N = 15, Student t-test with 
Welch’s correction p < 0.005. d Cytotoxicity (CyQuant) assay shows reduction of 
neurotoxicity after depletion of ceramide-enriched exosomes. N = 7, Multiple Student t-
test with Welch’s correction p < 0.05. 
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Figure 2.11: Serum-derived exosomes from AD patients are enriched with ceramide. 
(A) Size distribution (Zetaview NTA analysis) of human serum exosomes. (B) Ceramide 
species profile using lipid mass spectrometry (LC-MS/MS) of AD patient serum-derived 
exosomes normalized to phosphate content. (C) Immunoblot for exosome markers CD63 
and Flotillin-1 showing equal protein expression levels of GFAP in AD and healthy control 
individuals. (D) Structures of ceramide analogs S18 and B16. 
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Figure 2.12: Serum derived exosomes from WT and 5xFAD mice are taken up by N2a 
cells. Representative fluorescence microscopy images of PKH67-labeled exosomes from 
wild type (A) and 5xFAD (B) mice showing their uptake by N2a cells and primary cultured 
neurons (C, wild type; D, 5xFAD exosomes). 
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Figure 2.13: 5xFAD exosomes retained complex formation between Aβ and ceramide 
after uptake into N2a cells. Either wild type (A) or 5xFAD (B, C, D) serum-derived 
exosomes were labeled with PKH67 dye and then then used for incubation of N2a cells. 
PLA shows complex formation between Aβ and ceramide only with 5xFAD exosomes. C 
is similar to B at higher magnification. D is detail (frame) from C. 
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Figure 2.14: Interaction between Aβ and mitochondrial via VDAC1 in human brain. 
(A) Representative flouresence image of human brain section showing colocalization of 
Aβ with mitochondrial Tom20 aroung amyloid plaque (arrows). (B) PLA using antibodies 
against Aβ and mitochondrial VDAC1 showing complex formation in cells surrounding 
amyloid plaque. 
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2.4 Discussion  

     While accumulation of Aβ is a hallmark in human AD, its causal role in 

neurotoxicity and cognitive decline is persistently elusive. Other factors such as tau, 

bacterial or viral infection, insulin resistance, and neuroinflammation are invoked in AD, 

and yet none of these factors was proven critical in the onset of the disease or 

neurodegeneration[247-249]. Probably the most likely explanation for AD 

pathophysiology is a multifactorial cascade of events with any of these factors initiating 

or amplifying each other during the course of the disease. This multifactor hypothesis 

implies that each factor is necessary, but not sufficient to initiate AD or cause 

neurotoxicity. The idea that Aβ or tau require additional factors critical to mediate or 

enhance their neurotoxicity is not surprising. Many studies showed that Aβ and tau 

concentrations used to induce neuronal damage or death in vitro are often orders of 

magnitude higher than those found in vivo[16, 250, 251].  In addition, Aβ and tau 

concentrations or plaque and tangle size in vivo are often not correlated with the extent of 

neurodegeneration or cognitive decline[16]. Recently, extracellular vehicles (EVs), 

exosomes or microvesicles, were proposed as carrier for transport and uptake of Aβ and 

tau into neurons[190, 202]. However, it is not clear how this uptake may lead to 

neurodegeneration in AD. In this study, we show for the first time that exosomes are not 

only carrier for Aβ, but also sensitize neurons to Aβ toxicity. Several studies showed that 

plasma or serum from AD mice and patients contains exosomes that are associated with 

Aβ, demonstrating that Aβ-associated exosomes crossed the blood brain barrier 

(BBB)[217, 252]. In AD patients, about 23% of these exosomes were found to be derived 

from astrocytes, while the remainder was from neurons. Association of astrocyte-derived 
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exosomes (termed astrosomes in the current study) with Aβ42 was shown to be several- 

fold higher than that of neurons, suggesting that the primary source of Aβ-associated 

exosomes are astrocytes[253]. It was not investigated, however, if Aβ-associated 

astrosomes were enriched with ceramide or taken up by cells and involved in the 

pathophysiology of AD. Using a method developed in our laboratory, lipid-mediated 

affinity chromatography (LIMAC) of vesicles with anti-ceramide antibody[254], we 

showed for the first time that astrosomes from serum  were ceramide-enriched and 

associated with Aβ. Nano- particle tracking analysis (Zetaview) of LIMAC fractions 

showed that 9.2% of serum-derived exosomes were Aβ- associated astrosomes, while the 

remainder  (not  bound by anti-ceramide antibody) were only weakly labeled for GFAP 

and likely of neuronal origin. The Aβ content in these vesicles was approximately 25 pg 

Aβ42/1012 exosomes, which corresponded to 250 μl of serum (5xFAD mice). Mass 

spectrometric (LC-MS/MS) analysis of serum-derived exosomes showed enrichment with 

ceramide species similar to those found in exosomes released by primary cultures of 

astrocytes in vitro[164]. This data prompted us to hypothesize that serum- derived 

astrosomes associated with Aβ by a mechanism similar to that previously published for in 

vitro generated astrosomes. 

In previous studies, we showed that anti-ceramide antibody prevented association 

of Aβ42 with in vitro generated astrosomes [226]. We concluded that ceramide was critical 

for binding of Aβ42 to astrosomes, by either directly interacting with it or facilitating 

interaction of Aβ with other components of the vesicle membrane. In this study, we tested 

a novel concept using ceramide analogs originally developed in our laboratory to disrupt 

binding of Aβ to astrosomes[255]. The novel ceramide analog N-oleoyl serinol (S18) 
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reduced the average diameter of exosomes from 5xFAD mice. This result suggests that 

S18-treated exosomes are less prone to aggregation, and probably, association of Aβ with 

exosomes is resolved. 

To date, only a few studies addressed a potential function of Aβ-associated 

exosomes in AD. It was shown that exosomes can spread amyloid between neurons and 

that uptake of EVs isolated from the cerebrospinal fluid or plasma of AD patients impairs 

mitochondrial respiratory function and induces caspase activation [190, 202]. However, it 

was not shown that Aβ-associated astrosomes are ceramide-enriched, transported to 

mitochondria, and mediate Aβ-binding to a critical mitochondrial protein. Our previous 

studies suggested that Aβ-associated astrosomes induce nucleation of amyloid plaques and 

critically participate in neurodegeneration [256]. However, consistent with other reports 

showing that neurotoxicity is not directly correlated with plaque size, we hypothesized that 

Aβ-associated astrosomes mediate neurotoxicity by a mechanism distinct from plaque 

formation. The results using exosomes from serum of 5xFAD mice and AD patients show 

that Aβ-associated astrosomes are transported to mitochondria. This is demonstrated by 

colabeling of Aβ and ceramide with Tom-20 in cells that are also positive for GFAP and 

flotillin 2 when exposed to serum exosomes from 5xFAD mice or AD patients, but not 

from wild type mice or healthy controls. These cells show mitochondrial damage as 

documented by clustering of mitochondria and increased levels of the mitochondrial 

fission protein Drp-1. Our data is consistent with that from previous studies reporting that 

the level of Drp-1 is elevated in AD brain and neurons exposed to Aβ in vitro [257, 258]. 

In our previous studies, we showed that Aβ exposure leads to mitochondrial malformation 

and dysregulation of VDAC1, the main ADP/ATP transporter in the outer mitochondrial 
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membrane the level of which is elevated in AD[92, 101, 241, 259]. Our data is consistent 

with that from previous studies reporting that Aβ binds to VDAC1 and induces formation 

of a pro-apoptotic pore [260]. Using cortical protein lysates from AD patient and AD 

mouse model brains, it was shown by co-immunoprecipitation assay that Aβ binds to 

mitochondrial VDAC1[99]. However, none of the previous studies investigated the effect 

of Aβ-associated exosomes on VDAC1 and its interaction with Aβ. 

To test the role of Aβ-associated exosomes in the interaction of VDAC1 with Aβ 

we performed proximity ligation assays (PLAs) after exposure of N2a cells and neurons 

to exosomes from 5xFAD mice and AD patients as well as wild type mice and healthy 

controls. Our results show that exosomes from 5xFAD mouse or AD patient serum lead to 

PLA signals indicating formation of a complex between VDAC1 and Aβ. Therefore, we 

concluded that Aβ-associated exosomes induced or mediated complex formation be- tween 

VDAC1 and Aβ. Currently, we are investigating the mechanism by which exosomes 

induce this complex formation. Figure 2.11 shows a model for endocytotic uptake and 

interaction with VDAC1 at mitochondria mediated by Aβ-associated astrosomes. Aβ-

associated astrosomes may either be endocytosed as vesicles or first fuse with the plasma 

membrane. In both cases, Aβ (red in Fig. 2.11) remains associated with ceramide (green 

in Fig. 2.11), probably in the form of ceramide-rich platforms, a type of lipid rafts enriched 

with ceramide[144]. The persistent association with ceramide explains why Aβ and 

ceramide remain colabeled after uptake of Aβ-associated exosomes into N2a cells and 

neurons. Next, Aβ is shuttled to mitochondria, which is probably mediated by vesicular 

transport, either by Aβ-associated endosomes or other types of vesicular compartments 

such as aberrant autophagosomes[228, 261-263]. Finally, Aβ is imported into 
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mitochondria to interact with VDAC1, which induces a pro-apoptotic pore that leads to 

release of cytochrome c and activation of caspases [260]. While interaction of Aβ with 

VDAC1 and formation of the pro-apoptotic pore was reported, the role of ceramide and 

exosomes in this process has not yet been investigated. 

Ceramide was invoked in neuronal Aβ release and formation or secretion of 

exosomes from astrocytes[226, 229, 256, 264]. Our studies showed that ceramide is 

instrumental for interaction of Aβ with astrosomes. In the novel mechanism depicted in 

Fig. 2.11, ceramide may critically participate in several steps of uptake, transport, and 

mitotoxicity of Aβ. Firstly, association of Aβ with ceramide in the astrosomal membrane 

may induce a specific Aβ isoform or aggregate promoting endocytosis. This hypothesis is 

consistent with our observation that a proportion of exosomes from serum of 5xFAD mice 

or AD patients form aggregates. Secondly, ceramide may critically participate in neuronal 

endocytosis and transport of Aβ to mitochondria. In numerous studies, it was shown that 

fluorescently labeled ceramide was taken up by endocytosis and then transported to 

specific compartments, mainly the Golgi apparatus[265-267]. Albeit the reason for Golgi 

accumulation is unclear, other studies support the idea that ceramide guides transport of 

endosomes to specific compartments, which may include those interacting with 

mitochondria[268, 269]. It should be noted that our previous studies showed that uptake 

of Aβ42 by glial cells is reduced by at least 50% when associated with exosomes, 

suggesting that uptake of Aβ-associated exosomes as observed in our current study is 

specific for neurons and potentially mediated by ceramide[256]. Thirdly, ceramide may 

participate in import of Aβ into mitochondria, e.g., by fusing Aβ-associated astrosomes to 

the outer mitochondrial membrane, and binding to VDAC1. Interaction of either ceramide 
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or Aβ with VDAC1 was demonstrated by several studies from our and other 

laboratories[91, 99, 100, 241]. Alternatively, membranes closely associated with the outer 

mitochondrial membrane such as mitochondria-associated membranes (MAMs) may take 

part in the interaction of Aβ with VDAC1. Fourthly, ceramide may facilitate formation of 

a pro-apoptotic pore that is associated with the VDAC1-Aβ complex. VDAC1 oligomers 

as well as ceramide channels were reported to partake in pro-apoptotic pores at 

mitochondria[97, 270], however, the involvement of Aβ- associated and ceramide-

enriched exosomes in formation of these pores was not discussed yet. Our observation that 

VDAC1-Aβ complexes are colocalized with ceramide at mitochondria suggests a novel 

mechanism by which association of VDAC1 with ceramide and Aβ induces or facilitates 

pro-apoptotic pore formation. Finally, since association o Aβ with exosomes is remarkably 

stable and persists during passage through the BBB into the blood stream, the proportion 

of Aβ-associated exosomes may participate in systemic distribution and potentially, 

reuptake of Aβ and its spreading throughout the brain. 

Our data show that 5xFAD brain-derived and ceramide-enriched exosomes are 

neurotoxic and serum contains a proportion of these exosomes crossing the BBB. 

However, it is conceivable that these exosomes acquire additional toxic factors during their 

passage through the blood stream. Therefore, Aβ-associated exosomes in serum may not 

only be a biomarker and “window” to the brain, but actively participate in spreading AD 

pathology and contributing to Aβ neurotoxicity after reuptake into the brain. While we 

utilized serum-derived exosomes in our in vitro experiments to elucidate the proposed 

mechanism, studies are planned to further test the significance of ceramide-enriched 

exosomes for Aβ neurotoxicity in vivo. These studies will address the function of different 
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ceramide species in neurotoxicity, particularly when comparing 5xFAD mice with AD 

patients and the in vivo significance of systemic distribution and reuptake of Aβ-associated 

astrosomes. Here we present for the first time experimental evidence for our hypothesis 

that ceramide and Aβ act synergistically to target VDAC1 and induce caspase activation, 

ultimately leading to neuronal malfunction and apoptosis. Therefore, Aβ-associated 

astrosomes assisting in Aβ uptake, transport, and mitotoxicity are a novel key factor in 

sensitizing neurons to Aβ and a potential pharmacological target to prevent 

neurodegeneration in AD. 

Current pharmacological approaches exclusively aim at interfering with ceramide 

generation using inhibitors for enzymes in ceramide metabolism [226, 270-272].  The most 

prominent example is GW4869, an inhibitor for neutral sphingomyelinase 2 (nSMase2) 

we have shown to reduce plaque formation and improve cognition in male 5xFAD mice 

[226]. We previously reported that the nSMase2- deficient 5XFAD mice (fro;5XFAD) 

showed a reduced number of brain exosomes, ceramide levels, glial activation, total Aβ42 

and plaque burden, and improved recognition in a fear-conditioned learning task]. In future 

studies, we will specifically address the function of astrocyte-derived exosomes in Aβ 

neurotoxicity by including mice with astrocyte-specific deletion of nSMase2 as well as 

knockouts of individual ceramide synthases. 

While enzyme inhibitors are promising as lead compounds interfering with 

ceramide metabolism in AD, alternative pharmacological approaches targeting ceramide 

but not depending on enzyme inhibition may offer additional benefits. About 20 years ago, 

our laboratory designed and synthesized novel ceramide analogs of the β-hydroxy 

alkylamine type, particularly N-oleoyl serinol [273] (S18) that do not inhibit ceramide 
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generation, but interfere with binding of ceramide to its protein interaction partners such 

as atypical protein kinase C λ/ξ [273]. These analogs were shown to be non-toxic to normal 

cells, but induce apoptosis in cancer cells[255]. We hypothesized that novel ceramide 

analogs may also interfere with binding of Aβ to ceramide in astrosomes, thereby 

providing a novel therapeutic approach preventing astrosome-mediated spreading and 

uptake of Aβ, and sensitization of neurons to Aβ. Our data with S18 obliterating exosome 

aggregates in 5xFAD serum support this hypothesis, which will also be investigated in our 

future research. In summary, our data show for the first time that astrosomes sensitize 

neurons to Aβ and suggest that interfering with binding of Aβ to astrosomes using novel 

ceramide analogs may provide a novel therapeutic strategy for treating AD. 
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Figure 1.15: Potential mechanism of neurotoxicity induced by Aβ-associated 
astrosomes. Aβ secreted by neurons (red) binds to ceramide-enriched exosomes secreted 
by astrocytes (astrosomes, green). Aβ-associated astrosomes are endocytosed by neurons 
and transported to mitochondria. The vesicles fuse with the outer mitochondrial membrane 
and mediate binding of Aβ to VDAC1. A pro-apoptotic pore, probably associated with 
ceramide, is formed which leads to activation of caspases and induction of neuronal cell 
death 
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CHAPTER 3. IN VIVO EVIDENCE OF EXOSOME-MEDIATED AΒ 
NEUROTOXICITY 

3.1 Introduction 

              Alzheimer’s disease (AD) is the most prevalent form of dementia in elderly 

patients[274]. Amyloid beta (Aβ) is one of the most studied contributors to AD pathology, 

however, the intracellular toxicity mechanism of Aβ is not clear yet. Recently, a wealth of 

publications has demonstrated ways by which exosomes could participate in the pathology 

of AD either in a protective manner or as a facilitator for plaque deposition and shuttling 

of misfolded protein[184, 190, 203, 275, 276]. In our recent work, we showed that serum 

from the transgenic mouse model of familial AD (5xFAD) and AD patients as well as 

5xFAD brain-derived exosomes contains exosomes that are associated with Aβ. The 

association with exosomes was shown to substantially enhance Aβ neurotoxicity in AD. 

When taken up by neurons in vitro, these Aβ-associated exosomes were transported to 

mitochondria, induced mitochondrial clustering, and upregulated the fission protein Drp-

1. Aβ-associated exosomes mediated binding of Aβ to voltage-dependent anion channel 

1(VDAC1) and subsequently, caspase activation. Aβ-associated exosomes also induced 

neurite fragmentation and neuronal cell death. However, despite solid and convincing 

results, our study lacked the in vivo component. Here, we aim to augment the significance 

of our previous experiments by adding in vivo data that confirms our previous results. 

              Exosome secretion from multiple CNS cell types has been well established in 

vitro, besides, the detection of exosomal markers from human cerebrospinal fluid (CSF) 

samples indicates that active secretion of these exosomes in the CNS. However, exosome 

signaling in situ in the CNS remains essentially unexplored. Aiming to investigate that in 

the context of AD, we first injected brain-derived exosomes from nine months old 5xFAD 
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mice into the hippocampus of 3 weeks old mice. Second, we generated an astrocyte-

specific exosome reporter mouse that secrete GFP labeled exosomes from astrocytes. This 

tool allows us to visualize and track the exosomes secreted from astrocytes aiming to 

understand their dynamics and elucidate their role in AD pathology.  

 

3.2 Methods 

Animals: The CD63-GFPf/f knock-in mice were obtained from Dr. Yongjie Yang in Tufts 

University School of Medicine[277]. ALDH1l1-CreERT transgenic, (#031008), WT mice 

(C57 BL6 background), and 5xFAD (#34848) were obtained from The Jackson 

Laboratory. CD63-GFPf/f and ALDH1l1-CreERT mice were bred to generate ALDH1l1-

CreERTCD63-GFPf/+ mice. ALDH1l1-CreERTCD63-GFPf/+ mice were then bred with 

CD63-GFPf/f to generate ALDH1l1-CreERTCD63-GFPf/f mice which was bred with 

5xFAD mice. Breeding continued until 5xFAD-ALDH1l1-CreERT-CD63-GFPf/f mice 

were generated. Mice were kept on a 12 h light/dark cycle with food and water ad libitum. 

Animal protocols used in this study has been approved by the University of Kentucky 

IACUC committee. 

 

Drug administration: 4-hydroxytamoxifen (4-OHT) (Sigma) was prepared at 5 mg/mL in 

Corn oil at was given to animal at a concentration of 20mg/kg. 4-OHT was given 

intraperitoneal for 5 consecutive days. Mice were kept on heating pads for 30 min after 

injections. Mice were sacrificed two weeks after the last injections. 
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Brain exosome isolation: Nine months old 5xFAD mice were anesthetized using isoflurane 

inhalation in a chamber followed by perfusion of the whole body with cold 1x PBS using 

Watson-Marlow pump to remove blood- derived exosomes from the brain. Mice brains 

were collected, washed with 1x PBS and cut into eight sagittal slices using sterile scalpel 

in a petri dish. Brain slices were then transferred to C tubes containing enzymatic 

dissociation buffer. C tubes were tightly closed and attached upside down onto the sleeves 

of the gentleMACS Octo dissociator with Heaters, Program 37C_ABDK_01 being used. 

Samples were resuspended and applied to a MACS SmartStrainer (70 μm) placed on a 50 

mL tube. 10 mL of cold D-PBS were applied onto the MACS SmartStrainer (70 μm). Cell 

suspensions were centrifuged at 300×g for 10 min at 4 °C, supernatants were carefully 

transferred to a fresh tube and supplemented with cocktail protease inhibitor (Halt™ 

Protease Inhibitor Cocktail, Thermo Scientific) to proceed with exosome isolation. 

Supernatants were centrifuged at 2000×g for 10 min followed by 10,000×g for 30–40 min 

then passed through a 0.45 μm filter before following the Exoeasy exosome isolation 

protocol following the manufacturers steps. 

 

Tissue preparation and sectioning: Two weeks after the last 4-OHT injection and 48 hours 

after injection of labeled exosomes, recipient mice were euthanized, decapitated, and 

brains were collected.  Brains were fixed in 4% paraformaldehyde overnight, then brains 

were moved to 15 mL conical tubes containing 30% sucrose. After the brains sank to the 

bottom of the tubes, they were collected, dried, and immersed in O.C.T compound in 

freezing molds. Bains were then slow-frozen using isopentane and liquid nitrogen. First, 

liquidnitrogen was put in a styrofoam box. Isopentane (Fisher Scientific, Cat#O3551-4) 
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was poured in a metal canister to a height of 2” and the metal canister was put into the 

liquid nitrogen. The two liquids were allowed to equilibrate for 10 minutes, then freezing 

molds containing tissues in O.C.T were immersed half-way until evenly frozen. Frozen 

blocks were kept in dry ice before transfer to -80 °C. Blocks were sectioned using Leica 

cryostat (CM1510, Leica) at temperature of -20 °C and thickness of 12-15ϻm, eight 

sections were obtained from each injected mouse around site of injection. 

 

Immunohistochemistry: Sections were retrieved from -20 °C and allowed to dry for 15-30 

min. Hydrophobic marker was used to encircle the sections, before rehydrating them in 

PBS. Sections were fixed with 4%PFA at 4°C for 10 min, then washed with PBS twice for 

5 min. Blocking was done in 3% BSA in PBS for 30 min at room temperature, followed 

by primary antibody incubation for 2h at room temperature in incubation buffer (0.3% 

BSA in PBS) overnight at 4°C. Primary antibodies used were: anti-cleaved caspase-3 

rabbit IgG (Cell Signaling, Danvers, MA, USA, #9664), anti-Tom 20 rabbit IgG (1200, 

Santa Cruz, sc-11415), anti-GFAP mouse IgG (1:500, abcam, Cambridge, MA, USA, 

ab10062). Sections were then washed 3x for 10 min with PBS, PBS-T, PBS. Secondary 

antibody incubation was done at room temperature for 1h in 0.3% BSA in PBS. Sections 

were washed 3x for 10 min each, and mounted with Fluoroshield™ with DAPI (F6057, 

Millipore-Sigma) or stained with NeuroTrace™ (N21479- Thermo Scientific). 

NeuroTrace™ was allowed to warm to room temperature, vortexed briefly, and then 

briefly centrifuged to deposit the DMSO at the bottom.  Slides were soaked for 10 minutes 

in PBS + 0.1% Triton X-100, followed by two rinses in PBS, 5 min each. NeuroTrace was 

diluted 1:100 in PBS.   200- 250 uL were applied to each section. Slide were incubated at 
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room temperature for 60 min. NeuroTrace was removed and sections were washed for 10 

minutes in PBS + 0.1% Triton X-100, followed by soaking in PBS twice for 5 min. 

 

Proximity ligation assay: Tissues were prepared as mentioned earlier and incubated with 

primary antibodies overnight at 4°C. The primary antibodies used were: anti-Aβ mouse 

IgG (1:500 4G8, Biolegends, California, USA, SIG-39220), anti-VDAC1 rabbit IgG 

(1:1000 abcam, Cambridge, MA, USA, ab34726). Secondary PLA probes: anti-mouse 

MINUS affinity-purified donkey anti-mouse IgG (H + L) and anti-rabbit PLUS affinity-

purified donkey anti-rabbit IgG (H + L) were diluted 1:5 in antibody diluent buffer and 

samples incubated for 1 h at 37 °C followed by ligation and amplification steps as 

described in the manufacturer’s protocol (Duolink, Sigma-Aldrich). Sections were 

mounted using Fluoroshield supplemented with DAPI (Sigma-Aldrich) to visualize the 

nuclei. 
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3.3 Results 

         Firstly, labeled 5xFAD exosomes are taken up by neurons in WT mouse brain 

as denoted by the presence of Vybrant Cm DiI labeled exosomes inside Neurotrace 

positive cells (Fig. 3.1c). Interestingly, WT exosomes were taken up to a lesser extent (Fig. 

3.1b). Next, we labeled brain sections for both the mitochondrial protein Tom-20 and 

Neurotrace to investigate the shuttling of exosomes to mitochondria as determined in our 

in vitro experiments. As expected, we found solid colocalization between 5xFAD-derived 

and labeled exosomes and Tom-20 inside neurons (Fig. 3.2a), which was also detectable 

with WT exosomes, but to a lesser extent. In order to investigate the subsequent 

mechanism of this interaction between mitochondria and exosomes, we performed 

proximity ligation assay using antibodies against Aβ and Voltage-dependent anion channel 

1 (VDAC1), the main ADP/ATP transporter in the outer mitochondrial membrane. We 

found positive signals (denoted by green dots) inside neurons of brains injected with 

5xFAD exosomes, but not in the brains injected with WT exosomes (Fig. 3.3a, b), 

suggesting that Aβ was shuttled via these exosomes to neurons and associated with 

mitochondrial VDAC1. Moreover, the association of 5xFAD exosomes and Aβ lead to 

caspase activation in neurons as demonstrated by the presence of cleaved-caspase signal 

in neurons that took up 5xFAD exosomes, which was not observed when injecting WT 

exosomes (Fig. 3.3c, d). 

   Using our astrocyte-specific exosomes reporter mouse, we show the first in-situ 

evidence that CD63 positive exosomes are secreted from astrocytes (Fig.3.4). Similar to 

the injected exosomes, these exosomes are taken up by neurons, which provide a clear 

evidence of communication between astrocytes and neurons via exosomes (Fig.3.5). The 
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astrocytes-derived exosomes also associate with mitochondria as noted by colocalization 

between the exosomal endogenous GFP and mitochondrial Tom-20 (Fig. 3.5). 

Interestingly, a subpopulation of the astrocyte-derived exosomes shuttled Aβ to neurons, 

confirming our in vitro as well as injected 5xFAD data. 

In conjunction with our previous data, these results demonstrate the relevance of 

exosomes in Aβ induced neurotoxicity in vivo, suggesting that disruption of Aβ association 

of exosomes offers a new therapeutic approach to AD. 

 

Figure 3.1: 5xFAD exosomes are taken up by WT neurons in vivo. (a) A schematic 
diagram of the experimental design. Exosomes isolated from brains of 5xFAD mice were 
first labeled with lipid-binding dye Vybrant CM DiI before being injected intracranially 
into wild type (WT) mice. Forty-eight hours post-injection, mice were sacrificed, and 
brains were collected and prepared for cryo-sectioning. (b, c) Representative 
immunocytochemistry images of sections of brains injected with (b) WT exosomes and (c) 
5xFAD exosomes showing that FAD exosomes are internalized by WT neurons, insert is 
a higher magnification of the selected ROI 
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Figure 3.2: 5xFAD exosomes associate with neuronal mitochondria: (a) Representative 
confocal images of brain section showing that FAD exosomes (red) are colocalized with 
Tom-20 (green) inside neurons (blue). Insert is a 3D rendering of the selected ROI. 
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Figure 3.3: 5xFAD exosomes associate with neuronal mitochondria VDAC1 leading 
to caspase activation. Representative photomicrographs of (a) WT exosomes and (b) 
5xFAD exosomes injected in brains of WT mice showing PLA complex formation (green) 
inside neurons (blue) in brains injected with 5xFAD exosomes. (c) WT exosomes injection 
showing no caspase activation, while (d) shows 5xFAD exosome- injected brains showing 
positive cleaved caspase-3 signals (green) colocalized with labeled exosomes (red). 
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Figure 3.4: In situ illustration of astrocyte-secreted exosomes internalized into 
neurons. Representative confocal images of the CD63-GFP+ (green) secreted from 
astrocytes (red) and being taken up by nearby neurons(blue). 
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Figure 3.5: Astrocyte-secreted exosomes associate with mitochondria inside neurons. 
(a)Representative confocal image and 3D rendering(b) showing colocalization between the 
CD63-GFP+ (green) secreted from astrocytes (red) and Tom-20 (red) inside neurons. 
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Figure 3.6: In situ evidence that astrocyte-secreted exosomes shuttle Aβ to neurons. 
(a)Representative confocal images showing colocalization between Aβ(red) and the 
astrocytes-secreted exosomes (green) in close proximity to senile plaque(a) or in plaque-
free region (b). 
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CHAPTER 4. DISCUSSION 

 

During the past two decades, only one drug has been approved for Alzheimer’s 

treatment, which is the NMDA antagonist memantine[278].Numerous potential drugs and 

clinical trials have failed, leaving AD patients with only four valid treatments. So far, 

nearly all clinical trials are directed to a single aspect of the disease. These aspects include 

but are not limited to; fluctuations between removing or preventing aggregation of Aβ, 

inhibiting BACE, induction of ketosis, Serotonin reuptake inhibition and tau stabilizing. 

To date, none of these sole targets are able to give a complete resolution to the AD 

pathology. This is mainly because AD is not a simple disease with one target, but rather a 

complex multifactorial disease involving different cell types and numerous feedback and 

forward mechanisms throughout its progression, not to mention the enclosed environment 

where it occurs, adding an extra layer of complexity to the disease. 

Astrocytes represents the most abundant glial cells in the central nervous 

system[279]. Under normal physiological conditions, they play key roles in brain 

development and function. Through their extended processes, astrocytes can contact other 

glial cells, synapses, and blood vessels which allow them to participate in several aspects 

of synapses maturation and formation, release and uptake of neurotransmitters, trophic 

factors production, and control of neuronal survival. Astrocytes were initially thought of 

as a homogenous population of cells, however, a wealth of reports indicated high levels of 

astrocyte’s heterogenicity, both functionally and morphologically. Astrocyte’s 
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heterogenicity could be observed localized to a certain area of the brain or generalized 

across brain regions[280]. 

There are two major subtypes of astrocytes: fibrous and protoplasmic. The fibrous 

astrocytes are normally prevalent within white matter and are characterized by smaller 

body size and less branches compared to protoplasmic astrocytes, allowing them to make 

contact with nodes of Ranvier aiding in maintaining homeostasis. The protoplasmic 

astrocytes are the most prevalent astrocytes in the grey matter. Their cell bodies are 

ramified, allowing them to interact with several synapses simultaneously and they are 

mostly found in the cerebral cortex and hippocampus[281]. 

In the context of AD, the likelihood of astrocytes involvement in the disease 

pathology was reported by Alios Alzheimer when he described the association between 

senile plaques and glial cells in brain tissues. However, the AD research field has focused 

primarily on Aβ and tau, while the glia research only gained momentum thanks to the 

recent GWAS discovery of several risk loci in genes related to the innate immune system, 

as well as the recent report implicating astrocytes and microglia in synaptic activity 

modulation and pruning.  In AD brain samples, senile plaques are decorated with reactive 

astrocytes and activated microglia, however, the role of reactive astrocytes stirred 

controversy.  Upon exposure to several stimuli, including Aβ in AD, astrocytes acquire a 

reactive or activatedphonotype. This activation state is manifested through hypertrophy of 

cellular processes, elevated GFAP expression, release of cytokines and interleukins, and 

increased exosomes secretion[282]. Similar to macrophages, activated astrocytes seems to 

be polarized into two phenotypes: A1 and A2. While A2 are viewed as protective reactive 

astrocytes known to secrete neuroprotective cytokines, A1 represents the neurotoxic 
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phenotype that lost their protective capacities and are known to upregulate a number of 

proinflammatory genes that have been reported to be destructive to synapses[282]. It is 

widely accepted that in AD and other neurodegenerative diseases that A1 astrocytes are 

the most abundant form, prompting researchers to study the toxic effect of those astrocytes 

in different diseases. 

    Recently, extracellular vesicles and exosomes, in particular, have emerged as 

contributors to the progression of disease, tools of analysis, and potential therapeutic 

targets[276]. Several groups reported exosomes to be transporters of Aβ, and this complex 

has been shown to be up taken by neurons as well as crossing the blood brain barrier. 

Astrocytes derived exosomes have emerged as a recent area of interest for many groups, 

given the crosstalk, direct and indirect interactions between different cells types in the 

brain, astrocytes-derived exosomes seemed a good candidate to study their participation 

in the disease pathology. 

Within this perspective, our group was among the first to describe that reactive 

astrocytes’ increased exosomes secretion upon exposure to Aβ. First, Wang et al. described 

the secretion of ceramide-rich exosomes from primary cultured astrocytes when 

challenged with Aβ. Not only that these exosomes were toxic to recipient astrocytes, but 

they also carried the prostate apoptotic protein 4 (PAR-4), however, this effect was not 

tested on neurons[164]. Next, astrocyte-derived exosomes were shown to promote Aβ 

aggregation in vivo and in vitro. This aggregation was diminished when ceramide antibody 

was added to the mixture. In vivo, chemical and genetic inhibition of nSMase2 lead to the 

reduction of exosome secretion, concomitant with the reduction of total Aβ and senile 



89 
 

plaques numbers, connecting ceramide-enriched exosomes to Aβ transfer and 

aggregation[226, 256]. 

Clearly, transferring Aβ to other cells or plaques and being toxic to recipient 

astrocytes are two distinct attributes of astrocyte-derived exosomes. With regards to Aβ, 

the previous understanding was that astrocytes-derived exosomes exert their harmful effect 

through inhibiting the uptake of Aβ by glial cells, leading to decreased clearance and 

facilitating Aβ aggregation. However, given the growing notion fueled by several reports 

that the size and number of amyloid plaques does not necessarily correlate with cognition 

deterioration in aging AD patient, we hypothesized that astrocytes-derived exosomes are 

mediators of the Aβ toxicity rather than merely adding them to the plaques. 

In our first aim, we were concerned with the biophysical and biochemical 

characteristics attributed to 5xFAD exosomes compared to the WT littermates. As 

mentioned earlier, exosomes have the capability to freely cross the BBB. Knowing this, 

we used serum derived exosomes as a window to the brain. 

The first difference we noticed was in the mean diameter of 5xFAD exosomes 

compared to the WT exosomes. While running Zetaview analysis, 5xFAD exosomes size 

distribution curves presented a distinct “shoulder”-containing patterns that were 

notobserved in the WT samples. Further clustering analysis identified an additional 

population in the 5xFAD exosomes with relatively higher diameter that was not present in 

the WT samples. The presence of this additional subpopulation means either that those 

exosomes are simply larger in diameter or they are more prone to aggregation. The 

difference in diameter lead us to question the lipid composition of the 5xFAD as a driving 

factor for such difference. Indeed, mass spectrometry revealed a significant enrichment in 
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certain ceramide species in the 5xFAD compared to the WT exosomes including C18:0, 

C24:0 and C24:1. The enrichment of these specific ceramide species in 5xFAD serum 

derived exosomes goes in line with other reports linking the higher levels of these species 

to several aspects of aging and neurodegenerative disease[153]. The ceramide enrichment 

was also observed in AD patients’ serum derived exosomes compared to healthy control. 

While total ceramide levels were higher in both 5xFAD exosomes and AD patients’ 

exosomes, the elevated ceramide species showed some discrepancies between 5xFAD and 

human samples. One explanation for that could be different levels of activity of certain 

ceramide synthases between the two biological systems. Since we are interested in the 

ceramide enriched exosomes, we used a lipid-mediated affinity chromatography (LIMAC) 

technique with anti-ceramide antibody in order to separate ceramide-enriched exosomes 

from the exosome’s pools. Using that method, we showed for the first time that astrocytes 

derived exosomes are enriched in ceramide and carry Aβ as cargo. This supports our 

previous in vitro findings that ceramide is essential for the binding of Aβ to astrocytes-

derived exosomes. Microscopy techniques using N2a cells as well as primary culture 

neurons, incubated with either 5xFAD and AD patients’ serum exosomes, confirmed that 

astrocytes-derived exosomes are enriched in ceramide and shuttle Aβ into neurons. 

As mentioned in chapter 1, the association between Aβ, and exosomes in general, 

has been reported by several groups[183, 190, 203, 208, 276, 283]. Similarly, the presence 

of Aβ in astrocytes-derived exosomes either in vitro or from AD patient’s serum/plasma 

has previously been described as well[214, 215, 218-220]. However, the biological 

functions of the astrocytes-derived Aβ-harboring exosomes have not yet been clarified yet.  

Taking our study further, we aimed to investigate the intracellular target of our astrocytes-



91 
 

derived exosomes inside neurons. One of the target organelles was mitochondria, since our 

group previously showed that cultured astrocytes when treated with Aβ secrete astrocytes-

derived exosomes that induce apoptosis in recipient astrocytes. While studying the 

colocalization between astrocytes-derived exosomes and mitochondria, we noticed that 

5xFAD astrocytes-derived exosomes caused mitochondrial clustering in N2a cells, this 

observation was absent in WT treated cells. Following up on that, we reported elevated 

levels of expression of DRP1, a key protein in regulating mitochondria fission. High levels 

of DRP1 indicated excessive mitochondrial fission, leading to mitochondria fragmentation 

that renders mitochondria dysfunctional. We next show that Aβ, carried on 5xFAD 

astrocytes-derived exosomes, directly interacts with mitochondrial VDAC1 using 

proximity ligation assay. This was concomitant with upregulation of cleaved caspase and 

subsequently induction of apoptosis, which presents a potential mechanism by which 

astrocytes-derived exosomes enhance the neurotoxicity of Aβ in AD. 

    One area of significance pertaining to this dissertation work stems from its 

potential to solve a huge dilemma in the AD research field while conducting Aβ-induced 

toxicity experiments. The exact identity of the most toxic form of Aβ is not known yet, 

presenting a significant knowledge gap in the field.  A multitude of Aβ forms have been 

described in literature, and due to their heterogeneity and metastability, it is elusive which 

ones are relevant to AD pathology and which are simply experimental artifacts[284, 285]. 

This lack of information has unfavorable consequences in many areas. First, it is 

almost unachievable to predict which target is being engaged by antibody-directed 

therapeutics. Second, it is impossible to interpret data and compare results between 

different groups knowing that there is not a set of commonly agreed-upon experimental 
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conditions using the same form of toxic Aβ. The third aspect is concerning the 

concentration at which Aβ is used in toxicity experiments. Several studies provided 

different mechanisms of Aβ-influenced neuronal toxicity, however, the used Aβ 

concentrations are significantly higher than the reported physiologic levels of Aβ in AD 

patients’ CSF[286, 287]. Interestingly, the astrocytes-derived exosomes - associated Aβ 

concentrations used in our experiments are within the femtomolar range as indicated by 

ELISA assay. That concentration is an order of magnitude lower than what is reported in 

literature, indicating a significant contribution to astrocytes-derived exosomes in 

sensitizing neurons to the harmful effect of Aβ. In addition, astrocytes-derived exosomes 

-associated Aβ provides a physiologically relevant form of the peptide that is subjected to 

minimal experimental alterations, if any, promoting this complex as a potential target for 

research and therapeutics. 

The colocalization between astrocytes-derived exosomes-bound Aβ with 

mitochondrial marker and the direct interaction with VDAC1 raises a few questions. The 

first inquiry is regarding the way by which astrocytes-derived exosomes enter the cells. 

Several methods of exosome uptake have been reported, including simple diffusion, 

pinocytosis, micropinocytosis and clathrin dependent endocytosis[288, 289]. While this 

study did not touch on the mechanism of exosomes uptake, another group investigated that 

feature with respect to neuronal exosomes carrying Aβ in vitro. They report that the 

chemical drug dynasore lead to decreased uptake of exosomes and their Aβ cargo. That 

indicates the mechanism is dynamin dependent endocytosis, at least in SY5Y cells[190]. 

The next question which needs to be answered, is the mechanism by which astrocytes-

derived exosomes are shuttled and directed to mitochondria specifically. As with the 



93 
 

uptake of exosomes, the exact route of them in a cell is not an elucidated subject yet. 

Several groups studied the effect on exosomes after being taken up via certain 

mechanisms. For example, exosomes that are taken up through phagocytosis and 

micropinocytosis are doomed to be cleared without having any effect on the recipient cells. 

However, exosomes can trigger a cellular response in case of raft-mediated endocytosis, 

fusion and juxtacrine or soluble signaling[290]. While that might narrow down the 

potential method of uptake and subsequent route of astrocytes-derived exosomes in 

neurons, more detailed mechanism needs to be clarified as to how these exosomes end up 

in direct interaction with mitochondria. 

In addition, while we do show direct association between Aβ in exosomes and 

VDAC1, the precise mechanism is not exactly known yet. VDAC1 regulates a variety of 

cell functions and could be affected by a myriad of compounds, molecules and miRNAs. 

We show that apoptosis is the end result of the Aβ/VDAC1 interaction, however, more 

work needs to be done to further delineate the exact mechanism of this effect. 

In that regard, ceramide may influence several aspects of our proposed mechanism. 

The enrichment of ceramide in the astrosomal membranes might play a role in conferring 

stability to these vesicles, leading to the facilitation of their binding or uptake in neurons. 

Also, the presence of ceramide within lipid raft might aid in the uptake process of Aβ as 

well. This synergestic effect of ceramide could occur by direct interaction with Aβ or 

facilitating its interaction with other components of the vesicle membrane, resulting in 

stabilizing the Aβ or inducing a specific Aβ isoforms that favor cell interaction. Moreover, 

ceramide might actively participate in neuronal endocytosis and transport of Aβ to 

mitochondria, given ceramide’s ability to bind to several proteins that help directing it to 
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specific cellular compartment. Lastly, Due to the knowledge that ceramide interacts with 

VDAC1, it is conceivable that ceramide might strengthen the interaction between Aβ and 

VDAC1 or act as a facilitator and/or stabilizer for that binding. 

Aiming to tackle some of these questions, we used a novel ceramide analog, 

particularly N-oleoyl serinol (S18), to interfere with the binding of Aβ to astrocytes-

derived exosomes. The S18 ceramide analog reduced the average diameter of exosomes 

from 5xFAD mice. In addition, pre-incubation of 5xFAD exosomes with S18, prior to 

neuronal treatment, led to significantly lower PLA signals of VDAC1/Aβ complex. This 

suggests that S18 rendered the 5xFAD less prone to aggregation, judging by the decreased 

mean diameter of the treated vesicles. Coupled with fewer PLA signals of VDAC1/Aβ 

complex, these results indicate that S18 seemingly resolved the association of Aβ with 

astrocytes-derived exosomes. 

While exosomes have been extensively studied from biological fluids, isolation of 

exosomes from the brain tissue is fairly recent. Levy group took the lead in establishing 

methods of isolating exosomes from brain tissues, a procedure that is continuously being 

modified as it is adopted by other groups[291]. However, those methods utilize 

homogenization of tissues and filtration methods that have the potential of compromising 

the extracellular environment with intracellular vesicles and exosome-like molecules in 

addition to the drawback of the after mentioned procedures being lengthy and technically 

challenging. In this work, we have taken a critical approach to isolation of exosomes from 

the brain’s extracellular space. As described in section 2, we achieved that utilizing gentle 

dissociation of brain tissue using programmed instrumentation (GentleMax, Miltenyi 

Biotec) in order to avoid the presence of unwanted contaminants in our preparations.  After 
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removing the cells, we subject the diluted extracellular fluid to a series of centrifugations 

followed by filtration before carrying exosome isolation using the commercially available 

ExoEasy kit. At this stage, we provide a new method for exosome isolation from either 

fresh or frozen brains, which is reliable, easy to carry out, and not time consuming. More 

importantly, this method preserves the integrity of exosomes and their carried cargo as 

confirmed via characterization of their size, morphology, and protein content. 

Using this method, we isolated exosomes from 5xFAD and WT littermates’ brains 

and repeated our experiments to study whether brain-derived exosomes would act 

similarly as serum derived exosomes. As expected, we found that 5xFAD exosomes 

showed higher levels of expression of GFAP and are significantly more toxic compared to 

WT ones. 5xFAD brain exosomes were shown to be apoptotic to neurons using FLICA 

assay, which detects early caspase activation in live cells. Interestingly, the toxicity of 

5xFAD exosome was greatly mitigated when ceramide-enriched exosomes were pulled 

down and removed from the exosomes pool, reinforcing the idea that ceramide is essential 

for the harmful effect of exosomes. 

Of note, we chose to use 5xFAD mouse model due to its progressive production of 

Aβ at early age. However, this mouse model lacks one significant physiologic hallmark of 

AD, namely the neurofibrillary tangles. Ptau is known to be spread via exosomes and is 

also known to target astrocytes, therefore a mouse model expressing ptau alongside Aβ 

might give a more comprehensive idea about the astrocytes-derived exosomes 

participation in AD pathology. 

       In addition, in our experiments we used total brain-derived exosomes and 

serum-derived exosomes from transgenic mice and AD patients. While we followed 
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different approaches to discern the astrocytes-derived exosomes part, it might be more 

helpful to use exosomes exclusively from astrocytes. While there are reported protocols to 

immune capture those desired exosomes from particular cell types including astrocytes, 

the problem relies in the yield and the starting material needed for each experiment[218]. 

So far, immunocapturing exosomes from a single cell type from in vivo origin has been 

used in downstream studies concerning nucleic acid determination or proteomic analysis. 

Functional studies require higher numbers of exosomes given the heterogeneity of the 

effect on neurons, which is important to be noted. 

The second aim was to test the neurotoxicity of the Aβ/ astrocytes-derived 

exosomes complex with respect to their uptake into neuron and intracellular toxicity 

mechanisms, which we already touched upon in chapter 2. Taking that aim further, we 

studied the in vivo relevance of our findings that we observed in vitro. Labeled 5xFAD 

brain derived exosomes were injected into the hippocampus of two week old WT mice. 

5xFAD brain derived exosomes were shown to be preferentially taken up by neurons, 

where they associate with mitochondrial VDAC1 and initiate apoptosis. This data 

significantly corroborates the in vitro studies, however it does not delineate the origin of 

the up taken exosomes. 

Aiming to visualize the endogenous exosome transfer from astrocytes to neurons, 

we generated a triple transgenic mouse model that secretes GFP-labeled exosomes 

exclusively from astrocytes, which allows us to track them and their uptake. As with the 

injected exosomes, we found GFP-labeled exosomes inside nearby neurons and around 

amyloid plaques. We also found that they associate with amyloid beta and colocalize with 

mitochondria. To our knowledge, this work provides the first in vivo evidence of the 
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transport of Aβ from astrocytes to neurons via exosome, adding a new layer of complexity 

to the AD pathology given the neuroprotective roles attributed to astrocytes in normal 

conditions.  The significance of these finding relies on the facts the astrocytes are the most 

abundant cell types in the brain. Even the slightest contribution to the spreading of the 

most toxic form of Aβ could significantly exacerbate the pathology of the disease. This 

finding is in accordance with new reports implicating astrocytes in the metabolism and 

generation of Aβ. 

    Questions may arise concerning the origin of the Aβ associated exosomes. While 

we focus on astrocytes derived exosomes in this work, it is not to be excluded that other 

cell types in the brain secrete exosomes that can associate with Aβ. In fact, most of the 

publication regarding Aβ association with exosomes are done in neuronal cultures. Similar 

to the distinct cargo depending on the originating cell type, the fate of exosomes and their 

uptake by different cell types seems to be governed by their donor cells. For instance, 

microglia derived exosomes are thought to play a protective role when it comes to Aβ 

handling[292]. Exosomes from microglia mainly bind to Aβ and aid in the clearance of 

the peptide, preventing its uptake by neurons. In addition, the specificity of astrocytes-

derived exosomes uptake by neurons has been independently shown by separate groups 

utilizing in vitro models[293]. That prompted us to build on our group’s previous work, 

proposing astrocytes-derived exosomes as the main toxic exosomes in the brain. 

  In conclusion, irrespective of the inherent limitations of our study, our data 

advocate that the Aβ/ astrocytes-derived exosomes association is a viable target for 

treatment of AD to suppress the Aβ-induced toxicity. 
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