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ABSTRACT OF DISSERTATION 

 
 
 

CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF 
LIGNIN DERIVATIVES 

 
 

Due to the overuse of antibiotics in our society, there has been a steady rise in highly 
antimicrobial-resistant bacteria in the last decade. This has created a renewed interest in 
natural phenolic compounds for antimicrobial discovery amongst the scientific community. 
To this end, lignin is the most abundant naturally occurring phenolic polymer on earth and 
has already been known to have antimicrobial properties due to its polyphenolic structure. 
In addition, lignin is considered a major waste product for lignocellulosic biorefineries, 
and its valorization into value-added products will generate extra profit for a biorefinery, 
making biofuels less expensive, increasing their marketability as an alternative to fossil 
fuels.  However, the retention of lignin’s antimicrobial properties in different materials, as 
depolymerized products, or even the prediction of their antimicrobial properties is not well 
understood in the literature. 

Much work has utilized lignin as a functional polymer in a variety of composites 
and materials, but their antimicrobial properties have not been as widely explored. 
Therefore, ionic liquids were used in the facile preparation of cellulose-based hydrogels, 
and the addition of different lignocellulosic components (lignin and xylan) or the use of 
whole biomass (poplar and sorghum) were evaluated for their effects on hydrogel 
properties (mechanical and antimicrobial). The addition of both lignin and xylan improved 
hydrogel mechanical strength/stiffness, and lignin-containing hydrogels showed retained 
antimicrobial properties when screened against the target organism (Escherichia coli). 
Utilizing raw biomass provided increased mechanical strength (poplar), similar water 
retention abilities (poplar and sorghum), and retained antimicrobial properties (poplar). 
These results indicate that the different components of lignocellulose can be used to fine 
tune the properties of cellulose-based hydrogels and that lignin can confer its antimicrobial 
properties when incorporated into hydrogels.  

The antimicrobial properties of different lignin depolymerization products were 
explored using a reductive and oxidative depolymerization method to produce phenolic 
rich lignin-based bio-oils. Purified alkali-enzymatic corn stover lignin (AEL) was 
depolymerized by catalytic transfer hydrogenolysis using supercritical ethanol and a Ru/C 
catalyst, generating a bio-oil stream at high yields. Sequential extraction was used to 
fractionate the bio-oil into five fractions with different phenolic compositions using 



     
 

hexane, petroleum ether, chloroform, and ethyl acetate. Antimicrobial properties of the bio-
oils were screened against Gram-positive/negative bacteria and yeast by examining 
microbial growth inhibition. The monomers in the bio-oil fractions contained primarily 
alkylated phenols, hydrogenated hydroxycinnamic acid derivatives, syringol and guaiacol-
type lignins created from reductive cleavages of ether linkages. After sequential extraction, 
the lignin derived compounds were fractionated into groups depending on solvent polarity. 
Results suggest that the total monomer concentration and the presence of specific 
monomers (i.e., syringyl propane) may correlate to the antimicrobial activity of lignin 
depolymerization products, but the exact mode of action or antimicrobial activity caused 
by the complex mixtures of monomers and unidentified oligomers remains unclear.  

The same AEL lignin was depolymerized through oxidative procedures using 
peracetic acid, and its applications as an antibiotic replacement in the fuel ethanol industry 
were explored. The resulting bio-oil had a low degree of depolymerization that mostly 
produced unidentifiable lignin oligomers. Nonetheless, this bio-oil displayed highly 
selective antimicrobial properties, with up to 90% inhibition of commercially sampled 
lactic acid bacteria (LAB) at 4 mg/ml and no inhibition of yeast. Using the bio-oil (4 
mg/ml) as an alternative antibiotic treatment during simultaneous-saccharification and 
fermentation of raw corn starch showed an 8% increase in ethanol production at a yeast to 
LAB ratio of 1:100, compared to untreated contaminated controls. The ability of the bio-
oil to improve ethanol yields clearly shows its efficacy as an alternative antibiotic and that 
depending on depolymerization method lignin derivates can display a variety of useful 
antimicrobial properties/applications.  

The final study was the first attempt in the literature to predict the antimicrobial 
properties of lignin derivatives using quantitative structure−activity relationship (QSAR) 
models. First, the open-access database ChEMBL, with non-lignin specific compounds, 
was used to create datasets of compounds with MIC activity measurements against both B. 
subtilis and E. coli. Machine learning algorithms were used to develop the QSARs for the 
large ChEMBL datasets and were found to underpredict the antimicrobial activity of actual 
lignin compounds. Conversely, as metanalysis of the literature containing MIC data of 
lignin derivatives were used to build QSAR models with ordinary least square regressions 
(OLS). An accurate QSAR model for E. coli was not found, but a satisfactory model was 
obtained for the B. subtilis metanalysis dataset.  Molecular Operation Environment (MOE)-
type descriptors and the number of aliphatic carboxylic acid groups showed strong 
correlations to the MIC values (R2 of 0.759). Comparatively, an additional dataset was 
experimentally derived by screening 25 lignin monomers and three dimers against B. 
subtilis by measuring bacterial load difference (BLD).  This datasets QSAR, using OLS, 
found that MOE-type descriptors and the number of aromatic hydroxyl groups were better 
predictors of BLD (R2 of 0.831). Thus, the smaller datasets highlighted how the variability 
in antimicrobial measurements and the specific compounds used will impact the predictive 
nature of the resulting QSARs. Overall, this entire work provides critical knowledge and 
guidance on using lignin as an antimicrobial source in different industrial 
processes/products and the identification of lignin derivatives with enhanced activity.  
 
 
KEYWORDS: Biorefinery, Lignin, Depolymerization, Hydrogels, Quantitative Structure

−Activity Relationship, Machine Learning  
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CHAPTER 1. INTRODUCTION 

Lignin: origin, chemistry, and extraction  

Chemistry, Structure, and Sources of Lignocellulose 

Lignocellulosic biomass is produced most abundantly as a crop or residue from 

perennial herbaceous plants and woody crops. Forest residues and municipal organic 

wastes from agriculture and pulp/paper industries are other significant sources of biomass 

[1]. The primary polymers that comprise lignocellulosic biomass are located in the plant 

cell wall and are classified as cellulose, hemicellulose and lignin [2]. Total lignocellulosic 

dry matter consists of 30-50% cellulose, 20-40% hemicellulose, and 15-25% lignin [3], 

which varies depending on the lignocellulosic feedstock. The three major polymers of 

lignocellulose are intertwined together to form a complex structure used for plant rigidity, 

flexibility, and defense [4]. Table 1.1 summarizes the differences in chemical composition 

and structure of cellulose, hemicellulose, and lignin.  
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Table 1.1: Structure and chemical composition major polymers in plant cell walls, adapted 
from Chen [4] 
 Cellulose  Hemicellulose Lignin  
Subunits D-Pyran glucose 

unit 
D-Xylose, mannose, 
L-arabinose, 
galactose, 
glucuronic acid 

p-coumaryl (H), 
coniferyl (G), and 
sinapyl (S) alcohols 

Bonds between 
subunits  

β-1,4-Glycosidic 
bonds 

β-1,4-Glycosidic 
bonds in 
main chains; β-1.2-, 
β-1.3-, β-1.6-
glycosidic 
bonds in side chains 

Mostly β-O-4 (β-aryl 
ether), β−β (resinol), 
and β-5 
(phenylcoumaran) and 
other various C-C and 
ether bonds 

Bonds between 
three components 

Chemical bond with 
hemicellulose 
hydrogen bond with 
cellulose 

Chemical bond with 
lignin and hydrogen 
bond with cellulose  

Hydrogen bonding with 
cellulose/hemicellulose 
and chemical bonding 
with hemicellulose 

Composition Linear three-
dimensional with 
crystalline and 
amorphous region 

Three-dimensional, 
heterogenous 

Amorphous, nonlinear, 
heterogenous, three 
dimensional 

Degree of 
polymerization 

10,000 and above 100-200 ~4,000  

 

Cellulose is a linear polymer composed of glucose (C6 sugar) residues bonded by 

β-1,4-glycosidicbonds, with cellobiose as the basic coupling unit. This allows for 

cellulose’s structure to be a flat sheet that can be packed as several strands into crystallin 

fibrils [5]. Cellulose has the highest degree of polymerization compared to the other 

components of lignocellulose, which makes it less flexible and insoluble in most solvents 

[5]. Hemicellulose is a branched polymer comprised of C5 and C6 sugars that have acetyl, 

methyl, cinnamic, glucuronic and galacturonic acid functional groups that make up a 

variety of subunits: D-xylose, mannose, L-arabinose, galactose and glucuronic acid [4, 6]. 

Hemicelluloses are non-covalently bound to the surface of cellulose fibrils, acting as a 

matrix material holding them together [5, 7]. Hemicellulose and cellulose are both 
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carbohydrate polymers that have repeating units of monomers that form a linear and 

nonlinear three-dimensional structure, while lignin is an amorphous structure that is highly 

inhomogeneous and nonlinear.  

Lignin is an amorphous polyphenolic complex that is primarily composed of 

polymerized p-coumaryl (H), coniferyl (G), and sinapyl (S) alcohols [8]. These base units 

are randomly bonded together by ether linkages such as β-O-4, α-O-4, and 4-O-5, as well 

as condensed linkages (i.e. 5-5, β-β, β-5 and β-1) [9-11]. Figure 1.1 illustrates the main 

phenylpropanoid units of lignin and the variety of inter-unit linkages within lignin’s 

structure. β-O-4 (β-aryl ether) linkages are the most abundant and can account for more 

than 50% of all linkages [9]. Lignin is primarily bound to hemicellulose through chemical 

linkages on the galactose and arabinose residues on the side chains of hemicellulose 

molecules [4], with limited hydrogen bond interactions with cellulose. Lignin is produced 

as plant growth ceases and provides reinforcement of cellulose fibrils playing a crucial role 

in the structural integrity of the plant while also taking part in plant defense by deterring 

plant pathogens through its aromatic structure [12]. When examining the structure of 

lignocellulose, specific feedstocks have major differences in the amount of each of the 

three major polymers and the subunits in both lignin and hemicellulose. Therefore, 

lignocellulosic biomass has been classified into three categories that have similar 

lignocellulosic structures: hardwood, softwood, grasses.  
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Figure 1.1: The three phenylpropanoid units of lignin and their main inter-unit linkages: 
biphenyl (1), diphenly ether (2), dibenzyl ether (3), β–O–4 (4), β–5 (5), β–β (6) and β–1 
(7); taken from [13]. 
 

Table 1.2 illustrates the differences in cellulose, hemicellulose and lignin content 

between hardwoods, softwoods, and grasses. When comparing the two wood categories, 

we see hardwoods (i.e., oak and poplar) can have slightly higher cellulose and 

hemicellulose content compared to softwoods, but that softwoods (i.e., pine) have 

significantly greater lignin content. The hemicellulose fraction in hardwoods is primarily 

composed of xylose and xylan, where softwood contains mostly mannose [14].  Softwoods 

are considered more recalcitrant than hardwood to separate its lignocellulosic fractions 

because softwood lignin is present at higher percentages and is primarily composed of G 

lignin [15, 16]. Hardwood lignin contains high amounts of both G and S lignin subunits, 

which makes it less recalcitrant. Furthermore, grasses have the lowest lignin and cellulose 

content compared to softwood and hardwood, but it does have a very high amount of 
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hemicellulose. Grass hemicellulose is primarily composed of xylose subunits, and its lignin 

is derived of G, S and H subunits [15, 16]. By having such low lignin content and high 

hemicellulose content, grasses are widely used for biofuel production due to the milder 

conditions required to release its sugary fractions for fermentation purposes. The 

composition of the major feedstocks not only vary in their general classifications, but each 

plant species, and individual plant within a species has major differences. Nonetheless, 

understanding the general structure of cellulose, hemicellulose, and lignin and how they 

are bound together can help determine the processes by which lignocellulosic polymers are 

extracted and used to create more sustainable fuels, chemicals, and materials. 

Table 1.2: Lignocellulose composition of hardwoods, softwoods, and grasses; adapted 
from [17]. 
 Lignocellulose Composition (wt%) 
 Cellulose Hemicellulose Lignin 
Hardwoods  40-55 24-40 18-25 
Softwoods  45-50 25-35 25-35 
Grasses  25-40 35-50 10-30 

 

Lignin Extraction Methods   

The deposition of lignin on the surface of cellulose hinders the extraction of 

cellulose’s usable sugars and fibers for use in fuels, chemicals, and paper production. 

Therefore, the main goal of lignocellulosic biorefineries and the paper/pulping industry is 

to utilize a variety of pretreatment processes that allow for the separation of lignin from 

the usable polysaccharides in lignocellulose. Table 1.3 summarizes the more traditional 

extraction methods utilized by the paper/pulp and biorefinery industries.  
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Table 1.3: Traditional lignin extraction methods from paper/pulp and biorefinery 
industries [18].  

Lignin sources Lignin extraction 
methods  

Conditions and 
procedures Lignin features  References  

Lignin from pulp 
and paper industry 

Kraft Pulping  150~180 ℃, H2O, 
NaOH, Na2S 

Kraft lignin: 
oligomers with 
highly condensed 
structures 
and -HS group (1.5~ 
3wt% 
S), low purity. 

[19] 

Sulfite pulping  

140~170 ℃, H2O, 
sulfites (e.g. 
Na2SO3, NaHSO3, 
(NH4)2SO3, 
MgSO3, CaSO3). 

Lignosulfonate: 
oligomers 
with highly 
condensed 
structures and -SO3 
group 
(4~8 wt% S), low 
purity. 

[19] 

Soda pulping 
160~170 ℃, H2O, 
NaOH, 
(Anthraquinone). 

Soda lignin: sulfur-
free, 
oligomers, with low 
purity 

[20] 

Organosolv 
pulping 

100~110 ℃, H2O, 
Alcohol or 
alcohol/water 
mixtures. Formic 
acid, acetic acid, 
H2SO4 

Organosolv lignin: 
sulfur-free, 
with relatively high 
purity.  

[21] 

Lignin from 
biorefineries 

Dilute acid 
hydrolysis of 
biomass 

120°C ~300°C, H2O, 
0~5 wt.% 
HCl, H2SO4, H3PO4, 
or HF 

Lignin oligomers: 
with less condensed 
structures, partial 
preservation of β-O-4 
linkages. 

[22] 

Concentrated acid 
hydrolysis of 
biomass 

Two-step: 1) 20°C 
~30°C, H2O, 
concentrated mineral 
acid, e.g. 
72% H2SO4; 2) 121 
°C, diluted 
H2SO4 

Klason lignin: highly 
degraded oligomers 
with 
condensed structures. 

[23] 

Alkaline 
hydrolysis of 
biomass 

40°C ~160°C, H2O, 
NaOH, 
Ca(OH)2, ammonia. 

Lignin monomers 
and 
oligomers: with low 
condensation 
structures; N 
incorporation when 
ammonia 
was used. 

[24] 

Enzymatic 
hydrolysis of 
biomass 

30°C ~60°C, H2O, 
cellulase, 
hemicellulase, 
addition 
pretreatments (e.g. 
dilute acid, 

Enzymatic lignin 
residue: 
with less 
condensation 
structures and low 
purity, 

[25, 26] 
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steam explosion, 
ammonia fiber 
explosion). 

large variety. 

Steam explosion  0.69~4.83 MPa, 
160~260°C 

Condensed lignin 
structures [27] 

Ammonia fiber 
expansion 
(AFEX) 

100~150°C 
Acetylated lignin, 
highly degraded 
structures 

[28] 

 

The pulp and paper industry represents the most prevalent source of commercial 

technical lignins on the market. The processes developed by this industry rely on the 

removal of lignin to separate the cellulose fibers for use in the production of paper products. 

Kraft, sulfite, soda, and organosolv pulping work by fragmenting lignin polymers into 

smaller water or alkaline-soluble fragments that can be removed from the solid cellulose 

fibers [18]. These four techniques can produce either sulfur-containing or sulfur-free lignin. 

Both the kraft and sulfite pulping processes utilize HS- or SO32- nucleophiles to cleave the 

ether linkages in lignin. The resulting highly reactive lignin will repolymerize (condense) 

due the replacement of C-O bonds with stronger C-C bonds, which will lead to highly 

variable lignin intermediates and properties [20]. Additionally, the sulfides introduce a 

significant amount of sulfuric functional groups onto lignins surface [19]. Both of which 

significantly impede the subsequent valorization of lignin into downstream co-products. 

On the other hand, the soda and organosolv pulping processes produce sulfur-free lignins 

with less modified structures.  

The soda process is similar to krafting, but only involves the use of NaOH, and due 

to its weaker nucleophile (OH-) it generates a vinyl ether from lignin’s ether bonds instead 

of cleaving them [19]. Since annual plants (i.e. bagasse, straw, and hemp) are impregnated 

more easily than wood and have lower lignin content, they require less chemicals making 
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them the preferred feedstock for the soda processes [29]. This results in significantly lower 

lignin yields, but with less modified structure compared to the sulfur-containing lignins. 

Organosolv removes lignin by cleaving lignin-carbohydrate ether linkages and some inter-

unit ether linkages via a mixture of water, organic solvents (i.e. methanol, ethanol, and 

acetone), and either acid or base catalysts [20, 30]. The resulting lignin is of higher purity 

due to lower carbohydrates, ash, and no sulfur content compared to the other pulping 

methods. This makes organosolv a more preferred treatment for downstream lignin 

valorization technologies. While the paper/pulp industries want to utilize the cellulose from 

lignocellulose, biorefineries utilize all components of lignocellulose to produce renewable 

chemicals and fuels.  

Typical biorefinery models aim to pretreat lignocellulose by altering or removing 

structural and compositional impediments (lignin) to expose lignocellulosic 

polysaccharides to hydrolysis, in hopes of increasing the yield of fermentable sugars for 

fuel (ethanol) production. Because of the variations found in the different pretreatment 

chemistries and conditions, there will be significant effects to the structural and 

compositional properties of the extracted lignin, even among the same feedstocks. More 

traditional pretreatment techniques involve physical methods like steam explosion or 

thermochemical methods like acid or alkaline hydrolysis (Table 1.3).  Steam explosion 

involves high pressure and temperatures to expose the lignin to extraction with alkali or 

organic solvents, that has high levels of condensation [30]. Acid pretreatments aim to 

completely solubilize (>90%) hemicellulose, thereby exposing the cellulose to enzymatic 

hydrolysis [31]. Little lignin is removed from the cellulose solids during this process, so 

the purified lignin after enzymatic hydrolysis can contain large amounts of residual sugars. 
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In contrast, alkaline-based pretreatments primarily dissolve the lignin fractions with 

residual hemicellulose, exposing the solid cellulose to further enzymatic hydrolysis [24]. 

The resulting solubilized lignin can then be recovered in a more pure form (>95%) by 

performing acid-base precipitation, which removes most of the residual sugars [32].  While 

the above-mentioned pretreatment technologies are the traditional “standards” for 

biorefineries, more recent research has shown the usefulness of biological pretreatments 

and “green solvents” such as ionic liquids or deep eutectic solvents [33].  

 Biological pretreatment focuses on the use of microorganisms like white or brown-

rot fungi to selectively degrade lignin from lignocellulosic biomass, thereby reducing the 

severity of other pretreatment processes or increasing cellulose surface area for direct 

hydrolysis [3]. However, these microorganisms also utilize the polysaccharides for their 

own metabolism, so even though the use of thermochemical pretreatment can be avoided 

or reduced, there are more drastic losses to available sugars. Ionic liquids (ILs) are a 

category of molten salts at room temperature that offer several desirable features such as 

low-toxicity, no vapor pressure, strong polarity, reusability, and high stability as compared 

to other organic solvents [34]. Ionic liquids are often referend to as “designer solvents”, 

due the near infinite number of combinations of anions and cations that form ionic liquids 

[35]. In terms of biomass pretreatment, this means ionic liquids can be tuned to selectively 

dissolve and fractionate specific components of lignocellulose with reduced chemical 

modifications [36]. Despite ILs potential in preferentially extracting lignocellulosic 

components, there remain high solvent and processing costs associated with using ILs at 

industrial scales [37]. Therefore, this has resulted in research involving the use of deep 

eutectic solvents (DES) for lignin extraction. DES are a mixture of chemicals acting as 
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hydrogen bond acceptor (HBA) or hydrogen-bond donors (HBD). They offer a cheaper 

alternative to ILs with comparable lignin extraction yields and purity (>95%) at mild 

operating conditions [38]. While using DES provides low-molecular-weight lignin with 

retained native lignin activities [38], DES is not as tunable to dissolving all the different 

fractions of lignocellulose compared to ILs.  The pros and cons of each of the above 

pretreatment methods can be more extensively reviewed in other works [26, 36, 39-43]. 

No matter the pretreatment, the cost-effectiveness of lignocellulosic fuels still cannot 

compete with its fossil fuel counterparts. Therefore, the biorefinery model needs to 

incorporate lignin as a value-added product and commodity to make lignocellulosic fuels 

more cost-effective, as lignin’s natural aromatic structure has a plethora of industrial 

applications.  

Lignin Depolymerization and Fractionation 

The socio-economic impact of lignin valorization cannot be understated as creating 

value from lignin by utilizing it as a source of natural phenolics will generate extra profit 

for a biorefinery, making biofuels less expensive and increasing their marketability as an 

alternative to fossil fuels. Recently, a considerable amount of research has shown the 

variety of applications for using waste lignin’s natural phenolic structure to produce 

polymers, cement additives, resins, battery components, fuels and chemicals [44]. To 

produce most of these biochemicals from lignin, it is necessary to fragment the larger 

oligomeric structure of technical lignin into smaller compounds, known as 

depolymerization. The production of lignin monomers for use as a source of aromatic 

building blocks can help offer suitable alternatives to petroleum-derived aromatics that 

saturate the market [45]. To this end, it is important to understand methodologies for 
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depolymerizing lignin’s larger structure into usable monomers or oligomers that can help 

valorize lignin waste streams. Some of the most popularly reviewed depolymerization 

methods are pyrolysis, acid/base/metal catalyzed hydrolysis, hydrogenolysis and oxidation 

[9, 45, 46].  

Pyrolysis is a thermal treatment in the absence of oxygen, with or without catalysts. 

The products of pyrolysis are solid char, liquid oil and gases, and their yields depend on 

temperature and heating rates [47]. During pyrolysis of lignin, there is cleavage of the OH 

functional group in the aliphatic side chain, breakage of the alkyl side chain, and cleavage 

of aryl ether linkages between aromatic rings as temperatures increase [46]. This typically 

produces vinyl phenols, guaiacol, syringol, and catechol, but as temperatures exceed 500°C 

aromatic ring cracking can occur, reducing monomer yields [48]. Since pyrolysis is a 

highly complex reaction with low selectivity in the bonds it breaks, increased lignin 

condensation and repolymerization due to reactive phenolic monomers and free-radical 

reactions can further reduce bio-oil and monomer yields [49]. This degree of low selectivity 

is also pronounced in acid/base catalyzed hydrolysis of lignin. 

Base-catalyzed lignin hydrolysis is typically carried out utilizing NaOH at 

temperatures above 300°C and high pressure.  The main bond cleavage occurs on the aryl-

alkyl linkages which produces mostly catechol, syringol, and guaiacol monomers [50-52].  

Acid catalyzed hydrolysis utilizes formic acid and ethanol solutions at temperatures above 

300°C and high pressure, with methoxyphenols, catechol, and phenol produced as the 

major products due to β-O-4 cleavage [53, 54]. Alternatively, metallic catalyzed 

depolymerization has an advantage over both acid/base catalyzed depolymerization 

because it has a higher degree of selectivity to certain monomeric compounds and milder 
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reaction conditions that don’t require as high of pressure, temperature or pH [46].  Metallic 

catalyzed hydrolysis reactions can take place in ethanol, formic acid and water solutions 

with a variety of metal catalysts (i.e. Pt, Pd, Ni, Ru etc.) at temperatures between 100-

300°C [46].  The bonds targeted are C-O and C-C linkages, and while major products 

produced are dependent on catalyst and feedstocks, phenol, 4-proplyguaicol, guaiacol and 

pyrocatechol are primarily formed [55-57]. Even though metal catalyzed depolymerization 

has been shown to produce more selective lignin monomers under less severe conditions, 

other methods like hydrogenolysis have much higher total monomer yields.  

Hydrogenolysis has received increased attention due to its reductive bond cleavage 

of lignin linkages that are hydrogenated and less reactive, which can produce significantly 

higher monomer yields compared to pyrolysis or hydrolysis [58, 59]. While more 

traditional hydrogenolysis methods utilize H2 gas as a hydrogen donating source to cleave 

ether linkages [60], catalytic transfer hydrogenolysis (CTH) offers the use of inexpensive 

organic alcohols and catalysts to generate hydrogen molecules at lower temperatures and 

pressures [61]. A variety of hydrogen donating agents have been utilized (i.e. formic acid, 

methanol, ethanol, teralin, water, isopropyl alcohol, acetonitrile, and acetone) to 

depolymerize lignin substrates [62]. Hydrogenolysis produces a variety of phenolics with 

a preference in forming alkylated phenols and providing retention of C-C double bonds 

due to less radical development [57, 62]. Since the reaction conditions during 

hydrogenolysis are at high temperatures and pressures, like base/acid/metallic catalyzed 

hydrolysis, there remain issues with the energy intensiveness of the process. Thus, 

oxidative procedures that use even milder conditions may be more attractive.  
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Oxidative strategies for lignin depolymerization can offer a more economically 

feasible valorization scheme due to the already widely employed oxidative procedures in 

pulp bleaching [45]. This includes the use of oxygen, hydrogen peroxide, or peroxyacids 

at milder reaction conditions (below 200°C). However, oxidative procedures can also be 

less selective, prone to overoxidation, cause aromatic ring destruction, add complex 

functional groups, decrease product yield, and induce repolymerization of monomers due 

to free radical generation [45]. More recent literature has focused on peracetic acid as an 

oxidizer, due to its ability to cleave C-C and ether bonds, its higher monomer selectivity, 

rapid reactivity under mild conditions, and minimal side reaction and by-product formation 

[63-65]. Many of the compounds produced during oxidation of lignin are hydroxylated 

phenolics (i.e. dihydroxybenzenes) and phenolic acids (i.e. coumaric acid). In conclusion, 

each depolymerization method has its pros and cons, but to produce higher monomeric 

yields or have very mild reaction conditions, hydrogenolysis and oxidative procedures may 

be more useful in valorizing lignin into usable monomeric phenolics.  

Nevertheless, many of the above depolymerization methods will produce a highly 

complex mixture that can contain more than 300 different compounds, most of which are 

unidentifiable oligomers. Therefore, physicochemical techniques are used to separate high 

molecular weight chains from lower molecular weight fractions (i.e. monomers), known as 

fractionation. Separation methodologies are important as many of the applications using 

lignin phenolics will require high purity levels and even specific phenolics (i.e. 

pharmaceutical applications). Some of the most popular techniques are selective 

precipitation at varying pH, distillation, chromatography, and liquid-liquid extraction by 

partial suspension in organic solvents [66-73].  
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Alkaline extraction methods utilize strong alkaline solutions that react with phenols 

to form phenolates that precipitate out of raw solutions, and then mineral acids can be used 

to solubilize and purify the extracted phenolics [74-76].  This method does not have high 

specificity and is more so used to separate phenolics from other compounds such as 

residual sugars and furans. Alkaline extraction of pyrolysis liquids has also been shown to 

form amorphous residues and caustic soda precipitates that reduce recovery and creates 

additional waste streams [77, 78].  Distillation processes can help separate phenolics based 

on their boiling points, increasing specificity, but can result in significant losses due to 

degradation (22 wt%) [79, 80]. Chromatography and membrane filtration technologies can 

obtain incredibly high yields (87-93 wt%) of specific phenolics [79, 80], but their operating 

costs are extremely high. Liquid-liquid extraction (LLE) is a method of separating 

compounds based on their solubilities in two immiscible liquids. Due to its relatively low 

material cost and easy operation, LLE has become an attractive option for separating 

aromatic/phenolic compounds from lignocellulosic derived bio-oils. Previous work has 

shown good performance in extracting phenolic compounds from bio-oil utilizing solvents 

like chloroform, hexane and ethyl acetate individually and sequentially [66, 67]. They 

found that by using chloroform and ethyl acetate sequentially to extract compounds from 

pyrolytic oils created improved phenolic extraction yields compared to utilizing the 

solvents individually or using only non-polar solvents  [66]. Even though LLE can require 

large amounts of solvents, due to their volatility, they can easily be recovered and reused 

after drying. Therefore, even though LLE is the simpler of the fractionation methods, it 

offers great versatility and low operating costs that could be applied at large scales.  
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Lignin Antimicrobial Properties 

Due to the overuse of antibiotics in our society, there has been a steady rise in highly 

antimicrobial-resistant bacteria in the last decade. This has created a renewed interest in 

natural compounds for antimicrobial discovery amongst the scientific community [81, 82]. 

Plant-based phenolics have a wide spectrum of antimicrobial activity and a variety of ring 

scaffolds that makes them an ideal source of potential antimicrobial replacements [82, 83]. 

To this end, lignin is one of the most abundant naturally occurring sources of phenolic 

polymers on earth and is currently considered a major waste product in the paper and pulp 

industries and lignocellulosic biorefineries [44]. Therefore, utilizing lignin phenolics as a 

natural source of antimicrobials can help create new antibiotic replacements and facilitate 

the valorization of lignin. The following discussion will review the antimicrobial properties 

of lignin when used to create hydrogels/composites/materials, in its more natural polymeric 

state (technical lignin), and the monomers that can be formed after depolymerization.  

Lignin Polymers 

Hydrogels, Composites and Materials 

The randomly cross-linked network of reactive functional groups (i.e. methoxy and 

hydroxyl) that comprise lignin’s three-dimensional structure has allowed for its preparation 

into highly versatile materials. These materials are used as tissue engineering scaffolds, 

wound dressings, drug delivery systems, bio-sensors, adhesives, supercapacitors, bio-

plastics, slow-release fertilizes/herbicides, active food packaging, and absorbents [30, 84, 

85]. However, the literature is very inconsistent with its definition of lignin-based 

component materials, where “blends” and “composites” are often used interchangeably.  

Also, the true role of lignin as a matrix material, additive, filler, reinforcement, or bioactive 
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molecule is often unclear. Therefore, we will focus on hydrogels, films, fibers, and 

nanoparticles where lignin is attributed to its known antimicrobial properties. Table 1.4 

summarizes literature studies with lignin materials that have tested antimicrobial 

properties. Amongst the variety of lignin-based materials, hydrogels are one of the most 

widely researched [84, 86].  

Table 1.4: Antimicrobial activities of lignin composites [84]. MIC: minimum inhibitory 
concentration; MBC: minimum bactericidal concentration.  

Material Application Test 
Method 

Tested bacterial strains Results Reference Gram + Gram - 

Lignin model 
dehydrogenate 
polymer (DHP), 
alginate 
(Alg) 

Biomedical 
 MIC/MBC 

B. cereus 
L. 
Monocytog
enes 
M. flavus 
S. aureus 

E. cloacae 
E. coli 
P. aeruginosa 
S. enterica 

DHP: 
MICs of 
0.002–
0.90 
mg/mL 
and MBCs 
of 0.004–
1.25 mg/ 
mL 

[87] 

Lignin model 
dehydrogenate 
polymer (DHP), 
bacterial 
cellulose  

Biomedical MIC/MBC 

S. aureus 
L. 
Monocytog
enes 
S. 
typhimuriu
m 

P. aeruginosa 

DHP: 
MICs of 
0.22-0.88 
mg/mL 
and MBCs 
of 0.22-
0.88 mg/ 
mL 

[88] 

PVA/lignin/silv
er 
nanofibers 

Biomedical Agar well 
diffusion 

B. 
circulans E. coli 

Inhibition 
zone for 
E. coli: 
1.1 ± 
0.05 cm 
B. 
circulans 
1.3 ± 0.08 
cm 

[89] 

Chitosan and 
lignosulfonate 
nanoparticles 

Biomedical Turbidimet
ric 

S. aureus 
B. subtilis E. coli 

Bacterial 
growth 
decrease 

[90] 

Lignin, PVA 
nanocomposite 
fiber webs 

Biomedical 
or 
Packaging 

ASTM E 
2149-10 S. aureus E. coli 

99.9% 
reduction 
rate 
against S. 
aureus 

[91] 

Lignin 
decorated thin 
multi-walled 
carbon 

Biomedical Dilution 
method S. aureus - 

68.7% 
bacterial 
growth 
decrease 
after 

[92] 
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nanotubes in 
poly(vinyl 
alcohol) 
nanocomposites 

18 h 

Gelatin/lignin 
films Biomedical 

Dynamic 
shake flask 
method 
(ASTM E 
2149–
2010) 

B. subtilis - 

Excellent 
bacterial 
growth 
inhibition 

[93] 

Polyvinyl 
Alcohol, 
chitosan, lignin 
hydrogels 

Biomedical 
and 
packaging 

Optical 
density S. aureus E. coli 

E. coli > 
95% 
S. aureus 
> 
85% 
Cell 
reduction 
after 24 h 

[94] 

Artocarpus 
heterophyllus 
peel lignin, 
chitosan 
biocomposites 

Biomedical Disc 
diffusion - E. coli 

Klebsiella 

Inhibition 
zone 
for 
E. coli: 
~0.9 mm 
Klebsiella 
~1.1 mm 

[95] 

Cellulose-lignin 
beads Biomedical Plate count S. aureus  

Greater 
than 90% 
inhibition 

[96] 

Lignin 
nanoparticles Biomedical Optical 

density 

S. 
typhimuriu
m 

E. coli 
30-50% 
inhibition 
in growth 

[97] 

PLA films with 
lignin 
nanoparticles  

Packaging Plate 
counts - 

X. 
axonopodis 
X. arboricola 

Up to 2 
log units 
of 
inhibition 

[98] 

Lignin 
nanoparticles Agricultural Broth 

dilution - 

P. syringae 
X. 
axonopodis 
X. arboricola 

2-3 log 
units after 
24hrs of 
growth 

[99] 

 

Hydrogels are a three-dimensional hydrophilic network of polymers that are 

crosslinked to form a matrix that can swell with the absorption of water. To form a hydrogel 

the polymer chains are crosslinked together, this prevents dissolution in an aqueous 

environment, and the polymer chains must contain hydrophilic functional groups that bind 

with water causing swelling [100]. There are two main classifications for the formation of 

hydrogels: physical and chemical crosslinking [101]. Physical crosslinking involves ionic, 
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H-bonding, hydrophobic, hydrophilic, or molecular entanglements between polymer 

chains that are reversible. Chemical crosslinking involves permanent chemical bonds 

between the polymer chains that form the hydrogel matrix, which is usually performed by 

the addition of a crosslinking agent that links the polymer chains [102]. Hydrogels can also 

be made from a variety of materials that are generally classified as synthetic (acrylic 

polymers) or bio-polymer (protein, collagen, and plant material) based. Due to hydrogels 

variety of substrates and forms, they can be applied to many fields such as hygiene [103], 

agricultural water retention [104], CO2 capture [105], and biomedical materials (wound 

dressing, drug carriers, and tissue engineering) [106-108]. These fields utilize hydrogels 

because of their high-water absorbency and unique mechanical properties (elasticity and 

strength).  However, the increased use of hydrogels has highlighted the need for reducing 

problems associated with solubility, high crystallinity, biodegradability, unfavorable 

thermal properties, and unreacted toxic monomers and crosslinking agents [109].  

Therefore, there has been much attention in utilizing lignin as a hydrogel material source.  

Lignin-based hydrogels have been shown to improve water absorbency, mechanical 

properties, thermal stability, antioxidant potential,  and provide a functional mechanism for 

up-taking and releasing antibiotics, all while replacing synthetic materials [86, 110]. 

However, in terms of demonstrating lignin as the main antimicrobial component, very few 

studies have been performed, and often utilize lignin along with other components to create 

a synergistic antimicrobial mechanism. For example, lignin nanoparticle incorporated 

PVA/chitosan hydrogels showed significant reductions in the viability of both Escherichia 

coli and Staphylococcus aureus, which was attributed to a synergetic effect of lignin and 

chitosan [94]. Other works have utilized dehydrogenative polymer of coniferyl 
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alcohol(DHP), an enzymatically synthesized lignin model compound from coniferyl 

alcohol (CA), in hydrogels comprised of either alginate or bacterial cellulose [87, 88]. 

While these hydrogels do not use lignin as a structural feature, they do utilize a lignin 

derivate as a slow-release antimicrobial agent. These works represent a small fraction of 

the lignin-based hydrogel literature and signify a need for increased research/testing of 

lignin-based hydrogels for antimicrobial properties. Despite this lack in hydrogel research, 

there have been increased developments of lignin nanoparticles, fibers, and thin films with 

antimicrobial properties.  

Recent works have produced lignin nanoparticles from technical lignins that have 

been found to be effective antimicrobial agents for plant/fruit pathogens in solution, when 

fixed in active packaging, and as a pesticidal treatment on plants [98, 99, 111]. Nanofibers 

composed of polyvinyl alcohol (PVA)-Acacia wood lignin-silver nanoparticles and just 

PVA/lignin were developed through electrospinning and showed antimicrobial properties 

[91] [89]. The silver nanoparticle incorporated nanofibers showed inhibition to both 

Bacillus cirulans and E. coli, which was attributed to a synergistic effect of the 

polyphenolic subunits of lignin and the presence of silver nanoparticles [89]. On the other 

hand, the PVA/lignin fibers only showed inhibition against S. aureus and not E. coli [91]. 

Furthermore, active packaging was developed from different lignin sources to create 

hydroxypropylmethylcellulose (HPMC)-lignin thin films with or without chitosan. The 

film's antimicrobial activity against Gram-positive and negative bacteria had the following 

trend with different lignins: organosolv of softwood > kraft of softwood > organosolv of 

grass. All lignin-containing films showed up to 8 log reductions in growth for E. coli, S. 

aureus, B. thermosphacta, and P. fluorescens, and the addition of chitosan enhanced these 
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properties. Based on these outcomes, the antimicrobial lignin materials discussed here can 

be useful candidates for biomaterials, healthcare, food, and agricultural products. Yet, a 

prevalent trend in many of these materials is the use of synthetic and bio-based materials 

in conjunction (i.e. PVA and lignin), or the presence of multiple antimicrobial sources (i.e. 

chitosan, lignin and silver).  Thus, there remains gaps in the use of completely bio-based 

materials when using lignin for antimicrobial applications. Nonetheless, these materials 

have clearly showed the antimicrobial potential of lignin when incorporated in a 

functionalized material but purified technical lignins and their derivatives have shown 

greater antimicrobial properties on their own.  

Technical Lignins 

Due to lignin’s high phenolic content, much research has observed antimicrobial 

activity of technical lignins. Technical lignins are the direct by-products of the industrial 

processing of wood, energy corps, or agricultural residues (i.e. biorefineries or paper and 

pulp industries). Most of the earlier work focused on the use of lignin derived from the 

paper and pulp industry. This work tested softwood and hardwood lignin as well as 

oxidized lignins (organosolv, sulfite, and Kraft lignins) on a series of yeast (C. tropicalis, 

T. cutaneum, and C. albicans), of which the oxidized lignins had lower antimicrobial 

properties than the unmodified lignin [112]. Kraft lignin and spruce hydrolysis lignin were 

found to be an effective antimicrobial agent against various phytopathogenic bacteria at 

concentrations ranging from 0.25%-2% on nutrition media [113]. The same study found 

that modification with quaternary ammonium increased antibacterial properties and was 

arranged in the following order of increasing potential: Kraft lignin<quaternized hydrolysis 

lignin<quaternized Kraft lignin. Due to the antimicrobial properties found in Kraft lignin, 
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agricultural researchers have even utilized Kraft lignin as a dietary supplement in cattle 

and broiler chickens, which showed a prebiotic effect by increasing beneficial bacteria that 

helped improve weight gain [114].  

In terms of biorefinery lignins,  the black liquors derived from bagasse and cotton 

stalks were found to be effective against Gram-positive bacteria (B. subtilis and B. 

mycoides), but ineffective against E. coli and A. niger [115]. Comparatively, cotton stalk 

lignin derived from alkaline methods were found to have antimicrobial properties against 

both Gram-positive and negative bacteria (E. coli and B. pumilus) [116]. Sugarcane bagasse 

and lignin from oil palm have shown biological activities against Gram-negative bacteria 

including Klebsiella sp. [117], and E. coli/S. thyphirmurium [118]. Additionally, corn 

stover lignin extracts from ethanol production were found to be antimicrobial against 

Gram-positive bacteria (L. monocytogenes and S. aureus) and yeast (C. lipolytica), but not 

Gram-negative bacteria (E. coli O157:H7 and S. Enteritidis) or the bacteriophage MS2 

[119]. Food processing fungi (i.e. fermentation yeasts and A. niger) were also found to be 

inhibited by lignin produced from apple tree cutting residues [120]. Therefore, technical 

lignins’ antimicrobial activity depends on the lignin origin, extraction method, chemical 

structure, concentration, and the tested organisms.  

Moreover, studies have shown that by using successive ethanol-water fractionation 

of hydrolysis lignin, the antimicrobial activity can be concentrated by extracting the lower 

molecular weight fractions [121].  These lower molecular weight fractions were found to 

have lower MIC values for S. aureus, B. subtilis, E coli, and S. enterica compared to the 

larger molecular weight fractions and starting lignin. Collectively, this shows that the 
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highly heterogenous nature of technical lignin greatly impacts its antimicrobial potential, 

and that to increase its activity smaller units may need to be created.  

Lignin Monomers and Depolymerization Products 

While a variety of technical lignins have had notable antimicrobial properties, 

lignin monomers and depolymerization products have been shown to have  greater 

antimicrobial properties compared to the larger and not well defined polyphenolic 

structures comprising technical lignins [122]. Early research involving S. cerevisiae, B. 

licheniformis, and A. niger found that wood lignin phenolic fragments containing a double 

bond in the α-, and β-positions of the side chain with a methyl group in γ-position have 

more antimicrobial properties than compounds containing oxygenated functional groups 

(i.e. -OH, -CO, -COOH) on the side chain [123]. An examination of lignin intermediates 

from the phenylpropanoid pathways comparing hydroxycinnamaldehydes, 

hydroxycinnamic acids and hydroxycinnamyl alcohols, had varying antibacterial (B. 

subtilis, E. coli and P. syringe) and antifungal (S. cerevisiae, S. pombe and S. roseus) 

properties. Hydroxycinnamaldehydes had the most notable antifungal and antibacterial 

activity, hydroxycinnamic acids displayed some antibacterial activity, and 

hydroxycinnamyl alcohols possessed little to no antimicrobial activity [124]. Greenberg, 

Dodds [125] found that naturally and synthetically produced phenolic monomers and 

dimers had antimicrobial properties against oral bacteria (S. mutans and F. nucleatum). 

Specifically, phenolics with C-C double bonds in the side chain (i.e. eugenol) had the 

greatest antimicrobial properties and that increasing alkyl chain length also corresponded 

to greater antimicrobial properties (i.e. 4-ethyphenol compared to 4-nonylphenol). Further 

research revolving around the antimicrobial properties of pyrolysis oils/acids, liquid 
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smoke, wood vinegars and plant extracts comprised of phenolic fragments (derived from 

lignin) have shown a variety of antimicrobial properties against bacteria, fungi, and molds 

as well [126-132].  

Pyrolysis oils, liquid smoke and wood vinegars are derived from the liquid fraction 

obtained from the incomplete combustion of wood and other lignocellulosic materials. 

These products have been used extensively in human history to preserve food by smoking 

and creating a protective barrier on wood for building applications [133, 134]. More 

recently, pyroligneous acid from the slow pyrolysis of hardwood has shown significant 

antimicrobial activity against multi-antibiotic resistant strains of E. coli, P. aeruginosa, S. 

aureus, Candida albicans and Cryptococcus neoformans, based on agar diffusion tests 

[128]. The pyrolysis oil from pine trees has also been shown to have antimicrobial 

properties against the foodborne pathogens, B. cereus and L. monocytogenese, at 

concentrations ranging from 500-1000 ug/ml [135]. The main antimicrobial components 

of these products have been attributed to phenolics, furans, formaldehyde, and organic 

acids. Wood vinegars from sapwood were found to have significant antimicrobial activity 

against Ralstonia solanacearum, Phytophthora capsici, Fusarium oxysporum, and Pythium 

splendens. This study even evaluated all the individual compounds found within the wood 

vinegar for antimicrobial properties. Their results showed that while organic acids (i.e. 

acetic acid) and alcohols (i.e. methanol) comprised most of the wood vinegar, that they had 

little to no antimicrobial activity compared to phenols and guaiacols [127]. The 

antimicrobial activity of furans and cyclic hydrocarbons were also found to be weaker than 

the tested phenolics. This work highlights the antimicrobial potential of lignin phenolics 

and how they contribute significantly to pyrolytic product's antimicrobial properties. 



24 
 

However, other studies have shown that the primary active components of pyrolytic oils 

were not phenolics. For example, a study found that pyrolytic bio-oils showed significant 

toxicity to insects (Leptinotarsa decemlineata, Trichoplusia ni, and Acyrthosiphon pisum),  

fungi (Pythium ultimum, Rhizoctonia solani, and Sclerotinia sclerotiorum), and bacteria 

(Clavibacter michiganensis subsp. michiganensis, Streptomyces scabies, and 

Xanthomonas campestris pv. vesicatoria), but that polycyclic aromatic hydrocarbons 

(PAHs) were the primary active component [136]. Nonetheless,  while these biomass-

derived extractives represent a complex mixture of compounds, these works have shown 

that guaiacol, syringol, hydroxycinnamate, and vanillin derived lignin phenolics provide a 

higher contribution to their antimicrobial properties [123, 127, 137]. 

Even though the above products utilize pyrolysis, a popular depolymerization 

method, they focus on using whole biomass and not just lignin, so the applicability of these 

products to a lignin valorization scheme may not be entirely comparable. Therefore, there 

exists a gap in the literature for using other depolymerization strategies employed for lignin 

valorization to produce lignin-based antimicrobial products. Moreover, while the above 

discussions have clearly illustrated the antimicrobial potential of lignin products, their 

exact mode of action is not well understood or studied.  

Mode of Action  

In general, it is believed that technical lignin’s mode of action centers around its 

hydroxyl function groups that interact with and damage cell membranes, causing leakage 

of intracellular components and cell death [60].  Hydroxyl groups on phenolics are known 

to promote electron movement in the membrane, acting as an electron exchanger that 

reduces the electron gradient across the membrane [138]. This causes a collapse of the 
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cell’s proton-driving force, a decrease of adenosine triphosphate (ATP) and ultimately cell 

death. While a membrane disruption type of mode of action is commonly reported for 

larger technical lignins, there is a much wider variety of mechanisms reported for 

monomeric phenolics.  

Phenolic monomers have been shown to have a variety of mode of actions involving 

the destabilization and permeability of cell membranes, enzyme inhibition from oxidized 

products through reaction with sulfhydryl groups, nonspecific interactions from the 

formation of reactive oxygen species that react with proteins, and inhibition of nucleic acid 

synthesis for both Gram-positive and negative bacteria [139-144]. Specifically, phenolics 

with increased hydrophobic characters, such as alkylated phenolics (i.e. carvacrol, thymol, 

and eugenol), alkyl gallates, and phenolic acids with alkyl esters (hydroxycinnamates), 

have been shown to interact directly with the outer membranes of bacteria [145-149]. This 

interaction disintegrates the lipopolysaccharides layer through the alteration of the 

dynamics of phospholipid chains and increases the permeability of cytoplasmic ATP and 

solutes, resulting in cell death [140]. Through this mode of action, these types of phenolics 

have been shown to have increased activity against Gram-negative bacteria compared to 

Gram-positive, due higher lipid content of Gram-negative cell walls [140, 150]. Their 

individual antimicrobial activities have also been shown to increase with the length of their 

alkyl chain [125, 148]. Furthermore, even though more polar hydroxybenzoic acids (i.e. 

gallic acid), have also shown similar modes of action to hydroxycinnamic acids by altering 

cell membrane structure and rigidity [140], the propenoid side chain of hydroxycinnamic 

acids increases their antimicrobial properties by facilitating transport through cell 

membranes [143, 151]. Conversely, increases in the hydroxylated function groups of 
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phenolics, which aids in quinone formation, provides increased reactivity with 

enzymes/amino acids and their subsequent inhibition [152]. Phenolics such as carvacrol 

have also been shown to have ionophoric activity by acting as a trans-membrane carrier of 

monovalent cations by exchanging its hydroxyl group for cationic salts (i.e. K+) [153].  

Therefore, while at the larger technical lignin level it seems hydroxyl groups are 

responsible for lignins mode of action, at the monomer level differences in function 

groups/structure can drastically change its mode of action and antimicrobial potential.  

This causes issues when considering the antimicrobial applications of lignin 

depolymerization products that are complex cocktails of monomers (<50% w/w) and larger 

oligomers. Due to the wide variety of structures present, it would be hard to predict what 

the active compounds are and what organism they would be most effective against, without 

intensive and time-consuming experimentation. Similar concerns would be faced when 

comparing different depolymerization strategies, as reductive processes tend to create 

lignin derivatives with alkyl functional groups (i.e. syringyl propane, 4-ethylphenol, and 

4-propylguaiacol), while oxidative procedures produce highly hydroxylated and acidic 

functional groups (i.e. hydroquinone, p-coumaric acid, and 2,6-dimethoxyhydroquinone).  

Thus, the use of predictive modeling could expedite the search for lignin derivatives with 

enhanced antimicrobial properties by simply examining their chemical structure and 

circumventing exhaustive experimental procedures.  

Predicting Phenolic Antimicrobial Activity  

Quantitative structure−activity relationship (QSAR) models are an indispensable 

tool in drug design and discovery. They work by finding relationships between the 
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variations in calculated molecular descriptors (properties) or fingerprints (functional 

groups) with the biological activity of a group of compounds so that the biological activity 

of new chemical entities can be assessed more quickly [154]. There has already been much 

work on utilizing QSAR models for predicting the antimicrobial properties of natural 

phenolics, but most of these studies are concerned with essential oils or flavonoids and not 

lignin specifically. Nonetheless, these studies have shown that the number and position of 

OH groups [155], the size and type of alkyl chains [125, 156], the presence of acetate or 

aldehyde groups [157], and the hydrophobic/amphiphilic character of the molecule 

contributes significantly to the antibacterial efficacy of natural phenolic compounds [158]. 

Even larger polyphenols (dimers, trimers, and tetramers) have been studied through 

QSARs, which found that number of hydroxyl groups, electronic/charge effects, and 

lipophilicity were the most common descriptors influencing their antimicrobial activity 

[159, 160]. While the general trends of the above studies may have some applicability to 

the compounds formed after lignin depolymerization, to date there has not been a complete 

study utilizing QSARs or other models to predict the antimicrobial activity of lignin. 

Therefore, this highlights a large gap in our knowledge and ability to truly understand the 

antimicrobial potential of lignin and its derivatives for future product development.  

Conclusions and Research Motivations 

 The potential of lignocellulosic biorefineries are hindered by its high operating 

costs and competition with fossil fuels, but the valorization of lignin could resolve the 

marketability of lignocellulosic based fuels/chemicals. Much research in recent years has 

focused on developing a variety of lignin valorization strategies. Additionally, the overuse 

of antimicrobials and spikes in the evolution of resistant organisms has renewed the search 
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for novel antimicrobials using natural phenolic compounds. Since lignin is considered a 

waste product from different industrial sectors and has a polyphenolic structure, lignin has 

the capacity to become a future source of natural antimicrobial agents. Even though lignin 

has been shown to have antimicrobial properties, there remain gaps in how it can be 

effectively incorporated into different materials, what specific lignin derivatives retain 

antimicrobial properties in materials, as depolymerization products, and which have 

increased activity.   

 Therefore, in the present study, we aim to explore how lignin-containing polymers 

and depolymerized lignin bio-oils can be utilized as antimicrobial agents. Specifically, we 

will examine how different lignocellulosic components (lignin and hemicellulose) affect 

the formation and properties of physically cross-linked cellulose-based hydrogels. Can 

whole biomass-based hydrogels be formed based on these results and if lignin will retain 

its antimicrobial properties when incorporated into these hydrogels. Due to the lack of 

knowledge in the antimicrobial properties of lignin depolymerization products, we will 

explore the use of a reductive and oxidative depolymerization method to produce 

antimicrobial lignin-based bio-oils. The reduction process of catalytic transfer 

hydrogenolysis (CTH) will be used to depolymerize lignin biorefinery waste into a 

phenolic rich bio-oil. The antimicrobial properties of this bio-oil and liquid-liquid extracted 

fractions will be examined to better understand the antimicrobial potential of different 

lignin derivatives. Furthermore, an oxidative depolymerization strategy using peracetic 

acid will be used on the same biorefinery lignin to create a bio-oil with antimicrobial 

applications in the fuel ethanol industry. Finally, quantitative structure−activity 

relationship (QSAR) models will be developed to predict the antimicrobial properties of 
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lignin derivatives. Therefore, expediting the search for highly active lignin phenolics in 

future depolymerization strategies. The hope of this research is to provide critical 

knowledge and guidance on using lignin as an antimicrobial source in different industrial 

processes/products and to identify lignin derivatives with enhanced activity.  

Chapter Organization 

The first chapter serves as a literature review.  

The second chapter explores the use of ionic liquids as solvents for creating physically 

crosslinked hydrogels from mixtures of cellulose, xylan and lignin to examine how each 

component affects hydrogel formation and its physical properties (i.e. mechanical strength 

and swelling kinetics). Whole biomass-based hydrogels were also formed from the same 

methods using sorghum bagasse and poplar wood. Additionally, the ability of lignin-

containing hydrogels to retain antimicrobial properties were examined. These physically 

cross-linked hydrogels, which are completely bio-based, were also compared to a 

synthetically chemically crosslinked hydrogel using epichlorohydrin as a crosslinking 

agent. This study provides insights into using lignocellulosic biomass for hydrogel 

production and how these novel hydrogels have tunable mechanical and antimicrobial 

properties as compared to chemically crosslinked cellulose hydrogels. 

The third chapter depolymerized biorefinery corn stover lignin by catalytic transfer 

hydrogenolysis (CTH) in supercritical ethanol with a Ru/C catalyst.  The lignin-derived 

bio-oil was then sequentially extracted utilizing hexane, petroleum ether, chloroform, and 

ethyl acetate as solvents in order of less polar to polar. Antimicrobial properties of the bio-

oils were screened against Gram-positive (Bacillus subtilis, Lactobacillus 
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amylovorus, and Staphylococcus epidermidis), Gram-negative (Escherichia coli) bacteria 

and yeast (Saccharomyces cerevisiae) by examining microbial growth inhibition. This 

study provides insights into using sequential extraction to fractionate lignin-derived 

compounds and correlations between the properties of the extracted compounds and their 

antimicrobial activity. 

The fourth chapter examined the unique properties of depolymerized corn stover 

lignin, from peracetic acid oxidation, to selectivity inhibit lactic acid bacteria (LAB) 

compared to fermentation yeast. We also examined the effects of the lignin bio-oil on 

enzyme function for both α-amylase and glucoamylase, determined the efficacy of using 

the lignin bio-oil as an antibiotic during the simultaneous saccharification and fermentation 

(SSF) of corn starch into fuel ethanol, and its ability to reduce contamination associated 

with LAB. This study shows the potential of using lignin depolymerization products as an 

antimicrobial replacement in industrial processes.  

The fifth chapter aimed to develop QSAR models for predicting the antimicrobial 

properties of lignin monomers and dimers. The objectives of this chapter were to: 1) 

determine if open-source libraries of bioactive compounds (not lignin specific) could be 

used in conjunction with machine learning algorithms to develop predictive QSARs for 

lignin specific compounds, 2) develop more traditional QSARS using ordinary least square 

(OLS) regressions using antimicrobial activity measurements for lignin monomers from a 

metanalysis of available literature, and 3) an experimentally derived dataset using 

commercially available lignin monomers and dimers with screened antimicrobial 

properties. This study is the first attempt at predicting the antimicrobial properties of lignin 

compounds using QSAR models. Overall the results from this study will provide insights 
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into using different types of databases (open access, metanalysis, experimentally derived, 

and lignin specific/non-specific) to develop QSAR models with the potential to predict the 

antibacterial activity of future lignin derivatives. 

The sixth chapter provides conclusionary statements regarding the full body of this 

work and insights into future work.  

 

 



 
 

CHAPTER 2. HYDROGELS DERIVED FROM LIGNOCELLULOSIC COMPOUNDS: 
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Abstract 

Hydrogels derived from lignocellulosic biomass and its constituent components 

have attracted growing interests due to the applications in agriculture, material, 

environment and biomedical fields. Some ionic liquids (i.e. 1-n-butyl-3-

methylimidazolium chloride ([C4C1im][Cl] and 1-ethyl-3-methylimidazolium acetate 

([C2C1im][OAc]) can solubilize all factions of lignocellulosic biomass, while generating 

hydrogel materials without additional chemical crosslinkers such as epichlorohydrin. The 

present study explored the use of ionic liquids as solvents for creating physically 

crosslinked hydrogels from mixtures of cellulose, xylan and lignin to examine how each 

component affects hydrogel formation. The chemical, physical and mechanical properties 

of generated hydrogels were characterized using FT-IR, SEM, XRD, compositional 

analysis, swelling kinetics, and stress-strain analysis then compared against a chemically 

crosslinked cellulose hydrogel. We further tested hydrogels formed directly from poplar 

wood and biomass sorghum and examined the antimicrobial properties of the lignin 

containing hydrogels.  The hydrogels with xylan had significantly higher elastic moduli at 

0.1 MPa compared to other hydrogels, while poplar-based hydrogel had the highest strain 

of 65.3% and a stress of 0.12 MPa prior to rupture. The biomass-based hydrogels exhibited 

swelling ratio comparable to the chemically crosslinked cellulose hydrogel. All lignin 

containing hydrogels, besides the sorghum hydrogel, resulted in an 80% reduction in E. 

coli colony growth, indicating retained antimicrobial activities. This study provides 

insights into using lignocellulosic biomass for hydrogel production and how these novel 

hydrogels have tunable mechanical and antimicrobial properties as compared to chemically 

crosslinked cellulose hydrogels. 
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Introduction 

Hydrogels are considered cross-linked polymeric materials that are resistant to 

dissolution and contain a large number of hydrophilic groups that allow for massive 

absorption of water molecules within its porous structure [102]. These cross-linked 

polymeric materials come in a variety of physical forms such as membranes, beads, and 

gels. Hydrogels can also be made from a variety of materials that are generally classified 

as synthetic (acrylic polymers) or biopolymer (protein, collagen, and plant material) based. 

Due to hydrogels variety of substrates and forms, they can be applied to many fields such 

as hygiene [103], agricultural water retention [104], CO2 capture [105], and biomedical 

materials (wound dressing, drug carriers, and tissue engineering) [106-108]. These fields 

utilize hydrogels because of their high-water absorbency and unique mechanical properties 

(elasticity and strength).  Due to the increasing environmental effects caused by the fossil 

fuel industry, it is important to examine biopolymer-based hydrogels. Specifically, 

biopolymer-based hydrogels have the advantageous properties of biocompatibility and 

biodegradability compared to synthetic based hydrogels. Biocompatibility and 

biodegradability aspects are favored by industries like agriculture that employ hydrogel’s 

swelling capabilities for water irrigation and retention purposes [102, 161]. However, some 

bio-based hydrogels may have loss of mechanical properties due to formation type [102], 

and thus researchers are taking great steps towards obtaining novel bio-based hydrogels 

that have improved mechanical properties while maintaining their biocompatibility.  

Lignocellulose is one of the most abundant renewable macromolecules on earth 

[162], and it is a great source of polymeric materials that can be used in hydrogel formation. 

All three of the major macromolecules found in lignocellulose (cellulose, hemicellulose, 
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and lignin) can be used to form hydrogels [163]. However, because cellulose is more 

abundant and has a large amount of hydroxyl groups that aid in the hydrogels structural 

properties [164], it can be seen as a more viable at industrial scales. Additionally, cellulose-

based hydrogels can be formed through both chemical and physical cross-linking methods. 

However, due to celluloses high crystallinity, it can be hard to find the proper solvents to 

dissolve cellulose, especially for physical cross-linking methodologies that rely on the non-

covalent interactions between polymeric backbones to form hydrogels [102]. Ionic liquids, 

which are a category of molten salts at room temperature, offer several desirable features, 

such as low-toxicity, no vapor pressure, strong polarity, high stability as compared to other 

organic solvents; they are reusable, and have a very high cellulose dissolution rate [34]. In 

addition, using ionic liquid as solvent can eliminate the needs of chemical cross linkers 

such as epichlorohydrin, glyoxal, silane, glutaraldehyde, sodium tetraborate etc., and thus 

simplify the hydrogel making process [102, 164] 

While cellulose provides a more viable polymeric backbone for hydrogel 

formation, the addition of both lignin and/or hemicellulose have been shown to increase 

mechanical strength [165], porosity [166, 167], and aid in release of polyphenols and lipase 

immobilization when used in cellulosic hydrogels [168, 169]. Thus, their addition can help 

combat losses in mechanical strength when making bio-based hydrogels. Furthermore, 

lignin has been found to have a high degree of antimicrobial properties due to the large 

number of polyphenolic compounds that comprise lignin’s structure [170]. These 

polyphenolic compounds can damage the cell membranes, causing lysis, of both gram 

positive and negative bacteria [122]. While the exact mechanism for cell lysis is not well 

understood, it is thought that the phenolic compounds in lignin can act as ionophores which 
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are known to increase the ion permeability of the cell membrane causing cell death [171, 

172]. In the literature, there are a variety of factors that have been found to affect the 

antimicrobial properties of lignin that include the concentration of lignin, the chemical 

structure of the lignin monomers/polymers being used, the origin of the extracted lignin, 

and the type of microorganisms tested [12, 122]. However, the antimicrobial properties of 

lignin-based hydrogels were not well understood. Raw biomass based hydrogels have also 

been shown to create novel hydrogels by utilizing the whole dissolved biomass as a source 

of polymeric material for the hydrogels formation [173-175].  There are gaps in the 

literature on how lignin plays a role in biomass hydrogels and if it can confer its 

antimicrobial properties. These antimicrobial properties would be integral to biocompatible 

hydrogels in the biomedical fields by helping reduce infections and agricultural fields by 

preventing premature degradation or aiding in biocontrol [176, 177]. The use of raw 

biomass is more environmentally friendly, as no energy is needed to fractionate 

lignocellulose into its individual components for hydrogel formation and a variety of 

feedstocks can be utilized.  

In this investigation, a simple and convenient physical crosslinking method for 

preparing cellulose-based hydrogels with the aid of ionic liquids was compared with known 

methods of cellulose based hydrogel formation using NaOH/Urea as a solvent with the aid 

of a chemical crosslinker. The effects of lignin and xylan were also examined in the 

formation of cellulose hydrogels to see the effects on mechanical strength and 

antimicrobial properties. Additionally, novel lignocellulosic biomass-based hydrogels 

were synthesized by directly solubilizing biomass (sorghum, and poplar) in an ionic liquid, 

and then they were compared to the pure cellulose-based hydrogels.  
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Materials and Methods  

Materials  

Microcrystalline cellulose (MCC, Avicel), Kraft lignin, xylan from beechwood, 

and 1-butyl-3-methylimidazolium chloride ([C4C1im][Cl], 99% pure) were purchased from 

Sigma-Aldrich. Hybrid poplar and biomass sorghum bagasse samples were provided by 

the Idaho National Laboratory, U.S. Department of Energy (Idaho Falls, ID).  Both biomass 

types were ground by a Wiley mill to pass through 1 mm screen and kept at room 

temperature before use. 

The IL, 1-ethyl-3-methylimidazolium acetate [C2C1im][OAc] was prepared by 

mixing 30% 1-ethyl-3-methylimidazolium methyl carbonate in methanol, purchased from 

Proionic, VTU Holding GmbH, in equal parts (on molar basis) with acetic acid drop-wise 

for 24h, then heating in a rotary evaporator at 70°C for 4h while rotating at 65 rpm. The 

resulting IL was further dried in a vacuum oven at 26°C for 3 days or until use.  

Cholinium lysinate [Ch][Lys] was synthesized according to a method described 

elsewhere (Sun et al., 2014), where 1 mole equivalent of choline hydroxide was added to 

1.2 equivalents of L-lysine at 4°C and stirred for 48hrs in the dark. Then the excess water 

was removed in a vacuum oven at 55°C, and the excess lysine removed with a solution of 

acetonitrile-methanol (9:1, v/v) through precipitation and centrifugation. The supernatant 

was then concentrated using a rotary evaporated and dried (<5% water content) in a 

vacuum oven for 48 hr at 70°C.  

The deep eutectic solvents (DES) choline chloride-ethylene glycol and choline 

chloride-acetic acid were prepared by mixing choline chloride with either acetic acid or 

ethylene glycol in its solid state in a mass ratio of 1:2, followed by heating them at 65°C 
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for 2h in an oil bath as previously reported [178]. The solid mixture was stirred until no 

solid particles were left, leading to final transparent liquid; the mixture was cooled down 

in a desiccator for further use.  

Solubility of Lignocellulose in Solvents  

The ILs and DESs along with deionized (DI) water and 1:1 ethanol-water solution 

were examined for their ability to dissolve lignocellulosic compounds. Either MCC, xylan, 

or Kraft lignin was added to the solvent stepwise at a ratio of 1%(w/v) every 30 min with 

stirring every 10 min at 100°C until particles remained undissolved. A small sample of the 

mixture was plated on a microscope slide with a cover slip and the undissolved particles 

were examined visually either by naked eye or under a microscope if necessary. The 

solubility of each compound was recorded as the highest concentration until which 

undissolved particles were seen in the mixture. 

Fabrication of Hydrogels 

The fabrication of IL based hydrogels was accomplished via the following 

procedure. Firstly, a certain amount of MCC, xylan, or Kraft lignin was dissolved in the 

IL, [C2C1im][OAc], at 80 °C for 30 min or until full dissolution with stirring every five 

minutes. For biomass based hydrogel formation, a certain amount of biomass was added to 

[C2C1im][OAc] at 140°C for 4h with constant stirring. The following concentrations and 

combinations of cellulose, lignin, xylan, and biomass (in % w/v on dry basis) were added 

to the IL:  1) 4% cellulose; 2) 4% cellulose and 2% xylan; 3) 4% cellulose and 2% Kraft 

lignin; 4) 4% cellulose, 2% xylan and 2% Kraft lignin; 5) 4% ground poplar; and 6) 4% 

ground sorghum. 
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The resulting hydrogel solutions were then cast in a mold and immersed in a bath 

with 1:1 (v/v) ethanol-water solution for 24 h. Next, the cast hydrogels were immersed in 

a new batch of 1:1 (v/v) ethanol-water solution for 24 h, and then in pure DI water solution 

for two additional times with a duration of 24 h each to remove any residual ILs. The 

resulting hydrogels were then stored in DI water until further analysis.  

The fabrication of hydrogels using NaOH/Urea as a solvent was performed 

following a pre-established method [179].  In brief, an aqueous solution consisted of 60 

g/L NaOH and 40 g/L urea was filtered through a glass fiber filter (1.2 μm) to be used as 

solvent of cellulose. The cellulose solution was prepared by dispersing 4g of MCC into 

100 g of solvent, stirred for 5min and then stored in a refrigerator (-18°C) for 12 h to allow 

full dissolution. The frozen solid was thawed and stirred extensively at room temperature 

for 4 h. Next, 5ml of epichlorohydrin was added dropwise to the thawed cellulose solution, 

and the mixture was stirred at 25 °C for 1 h. Then, the mixture was cast into a mold and 

heated at 50 °C for 20 h. The resulting hydrogels were then immersed in a DI water bath 

that was changed after 24 hrs for a total of 4 times, and then stored in DI water until 

analysis.   

Characterization 

Water swollen hydrogel samples were freeze dried using a FreeZone 6 liter console 

freeze dry system (Labconco, Kansas City, MO) at -50°C under 0.1-0.2 mBar vacuum for 

24 hrs. Structural carbohydrates and lignin composition of raw sorghum, poplar, and freeze 

dried hydrogel samples were determined by a two-step acidolysis method according to 

NREL laboratory analytical procedure [180]. The sugar concentration was analyzed by 
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HPLC (Ultimate 3000, Dionex Corporation, Sunnyvale, CA) equipped with a refractive 

index detector and using a Bio-Rad Aminex HPX-87H column and guard assembly.  

The freeze-dried hydrogels were characterized by Fourier Transform Infrared 

Spectroscopy (FTIR) using a Thermo Nicolet Nexus 870 ESP ATR–FTIR spectrometer. 

The samples were pressed to 12 psi under a spring-loaded jack onto the  attenuated total 

reflection crystal (ATR), and analyzed using an average of 64 scans between 400 and 4000 

cm-1 with a resolution of 1.928 cm-1. The raw FTIR spectra were then normalized and 

baseline corrected using Omnic 6.1a software and compared in the range 800-2000 cm-1. 

The morphologies of the freeze-dried hydrogels were observed using scanning 

electron microscope (SEM) with a FEI Quanta 250 FEG instrument (Hillsboro, Oregon). 

The instrument operated at SE mode under low vacuum with beam accelerating voltages 

of 2kV after samples were sputter-coated in gold.  

X-ray powder diffraction (XRD) patterns of raw MCC, freeze-dried hydrogels 

made of MCC (C), poplar (P), and sorghum (S) using IL, and freeze-dried hydrogels (N/U-

C) using NaOH/Urea  were attained using a Bruker D8 X-ray powder diffractometer 

(Billerica, MA). The freeze-dried hydrogel sample was ground using a blender and then 

0.5 g of the sample was pressed under 17 MPa for 30s into a 40 mm wafer. Scans were 

collected at a speed of 1° min-1 in the 2θ range between 10° and 40°. The crystallinity index 

(CI) was calculated using a method described previously [181]. Where CI was defined as 

the ratio between the intensity of the crystalline peak (I002-IAM) and the total intensity (I002).  
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Swelling Kinetics  

The swelling kinetics of hydrogels reflecting the water holding capacity was 

measured according to the following procedure [164]: the hydrogels were freeze-dried 

under -50°C for 24h and accurately weighed as md; the dry hydrogel samples were soaked 

in excess of DI water at room temperature and weighed at 20 min time intervals for 2 h to 

monitor the swelling. The surface of hydrogels was wiped off with filter papers to remove 

the excess water and the weight of the swollen samples was recorded as ms. The swelling 

ratio (SR) of the hydrogels was determined using the following equation: SR = (ms-md)/md. 

The swelling test was repeated three times for all samples and the averages values were 

recorded. 

Antimicrobial Properties  

The antimicrobial properties of prepared hydrogels were measured by examining 

their effects on E. coli (NRRL-409, obtained from the ARS Culture Collection) growth 

using colony counting. Colony counting of E. coli was performed by growing a 10-13 serial 

dilution of an E. coli stock inoculum on the hydrogel cast in a 35mm petri plate and a 

control tryptone yeast-extract glucose (TGY) agar plate. Each hydrogel was soaked in 

sterile TGY liquid growth medium for 12 h prior to inoculation. The extra medium solution 

was wiped off using sterile cheese cloth. Hydrogels and control plates were then inoculated 

with 50 μl of the of E. coli inoculum using a colony spreader, and incubated at 37°C for 24 

hrs. After incubation, the number of E. coli colonies were counted. Subsequently, the E. 

coli colony number of hydrogel samples and the control plates (in triplicates) were 

compared using one-way ANOVA and Tukey’s pairwise test in SigmaPlot (Systat 

Software Inc., San Jose, CA).  
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Mechanical Properties 

The mechanical properties of the hydrogels were tested by the compressive stress-

strain measurement using a TA.XT plus Texture Analyzer (Texture Technologies Corp. 

and Stable Micro Systems, Ltd, Hamilton, MA). Hydrogels were cast into a 24 flat bottom 

well plate that created cylindrical hydrogels with average diameter of 9 mm and height of 

7 mm. The gels were set on the lower plate of the texture analyzer and then compressed 

using a 25 mm cylindrical plexi-glass load cell, with a loading strain of 80% at a 

compression rate of 1 mm/sec. The strain is defined as the change in the thickness divided 

by the thickness of the sample at the free-standing state. The stress is defined as the force 

divided by the area of the samples vertical to the direction of the force. The elastic modulus, 

E, was calculated from the average slope of the initial linear portion from the stress-strain 

curve, generally within the stress percent range of 0-10% [182]. 

Results and Discussion  

Solubility of Lignocellulosic Compounds in Various Solvents  

Since cellulosic based hydrogels are of interest due to their sustainable nature, we 

examined a variety of solvents to assess their ability to dissolve all factions of 

lignocellulose to determine the most viable solvent for our study. Specifically, we aimed 

to examine solvents that could give cellulose hydrogels with an amorphous structure, which 

is beneficial in hydrogel formation (Shen et al., 2015). We first examined three commonly 

used ILs, [C2C1im][OAc], [C4C1im][Cl], and [Ch][Lys] because of their use as 

pretreatments agents to deconstruct lignocellulose for subsequent hydrolysis and 

fermentation of cellulose sugars (Brandt et al., 2013; Liu et al., 2017; Sun et al., 2014). 
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Results show that both imidazolium ILs dissolved high amounts of each lignocellulosic 

faction with [C2C1im][OAc] had the greatest ability to dissolve cellulose, xylan and Kraft 

lignin at values greater than 30% w/v (Table 2.1).  [Ch][Lys] exhibited high solubility on 

Kraft lignin (~26%) while much lower solubility on cellulose and xylan, consistent with 

previous report that [Ch][Lys] selectively solubilize lignin component in cellulosic 

biomass [183, 184].  

Table 2.1: Solubility measurements for various solvents dissolving the three factions of 
lignocellulose at 100°C *. 
Solvent  Cellulose %(w/v) Xylan %(w/v) Kraft Lignin %(w/v) 

Water <1 ~1 <1 

1:1 Ethanol: water <1 <1 <1 

[C2C1im][OAc] >30 >30 >30 

[C4C1im][Cl] ~15 ~17 ~26 

[Ch][Lys] ~6 ~7 ~20 

[ChCl][ethylene glycol] <1 ~1 >30 

[ChCl][acetic acid]  <1 ~1 >30 

*Solubility of the main components in lignocellulose in various solvents at 100°C. 
Cellulose is microcrystalline cellulose, xylan was derived from beech wood.   
[C2C1im][OAc] = 1-ethyl-3-methylimidazolium acetate, [C4C1im][Cl] = 1-n-butyl-3-
methylimidazolium chloride, [Ch][Lys] = Cholinium Lysinate, and ChCl = choline 
chloride.    
 

Deep eutectic solvents (DES) have received increasing attention recently as a new 

class of agents for biomass deconstruction and subsequent lignin extraction [178, 185-187]. 

As a eutectic mixture of two or more hydrogen-bond donors (HBD) and hydrogen-bond 

acceptors (HBA), DES shares some similar solvent characteristics of ionic liquids (ILs). 

However, DES can be prepared at high purity by simple mixing, thus avoiding tedious 
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purification and dehydration steps in synthesis of ILs [186, 188].  These characteristics 

make DES a promising candidate for multiple applications including biomass 

deconstruction. We examined two DESs, [ChCl][ethylene glycol] and [ChCl][acetic acid]) 

(both at 1:2 ratio) for their ability to dissolve lignocellulosic factions. These DESs have 

been tested  in the fractionation of lignocellulose for biofuel production [189, 190]. From 

Table 2.1, the two tested DESs did not effectively dissolve MCC or xylan, but it did 

dissolve large amounts of Kraft lignin which is congruent with literature [190]. In this 

study, the IL [C2C1im][OAc] was chosen for further test because it can dissolve the largest 

amounts of each part of lignocellulose, which will benefit our goal of creating cellulosic 

based hydrogels that can retain lignin and its antimicrobial properties.  

Compositional Analysis  

Compositional analysis was performed on all hydrogel samples to determine final 

glucan, xylan, and lignin contents after gel formation, which can be found in Table 2.2. 

When examining the xylan and lignin content in the C+X, C+L, and C+X+L hydrogels, 

two times more xylan than Kraft lignin is present despite xylan and Kraft lignin being 

added at the same concentration during hydrogel formation. This suggests that the Kraft 

lignin did not bind as much as xylan to the cellulosic hydrogel during formation and the 

free portion was consequently washed away during the washing process, which was 

visually confirmed as initial baths were brown in color. For the biomass-based hydrogels, 

sorghum gel had a higher xylan composition than poplar gel; while poplar gel had a higher 

cellulose and lignin content than sorghum gel, which correlates to the lignin and xylan 

compositions in the raw biomass. However, in both the sorghum and poplar-based 

hydrogels the composition of xylan did not severely decrease compared to the raw biomass, 
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but the amount of lignin in both hydrogels was about half as much compared to the raw 

biomass. This coincides with the observations found in the MCC hydrogels as the lignin 

content was smaller than xylan content and the initial washing baths were brown in color, 

which further suggests that lignin does not bind as well to cellulosic hydrogels as xylan 

and the unbound portion is washed away.  

Table 2.2: Chemical composition of dried raw biomass and hydrogel samples#. 
Sample Glucan % Xylan % Lignin % Others % 

Raw sorghum* 34.8 20.4 16.0 28.7 

Raw poplar* 43.8 13.3 25.7 17.2 

C 83.6 ± 2.8
a
 0.0 0.0 16.4 

C+X 75.1 ± 0.7
ab

 14.5 ± 0.8
a
 0.0 10.4 

C+L 83.7 ± 1.6
a
 0.0 8.4 ± 1.5

a
 7.9 

C+X+L 70.8 ± 1.1
bc

 12.3 ± 0.3
a
 8.5 ± 2.3

a
 8.4 

N/U-C 44.8 ± 1.1
d
 0.0 0.0 55.2 

S 50.3 ± 2.6
d
 20.3 ± 1.4b 8.8 ± 0.3

a
 20.6 

P  73.2 ± 3.8
ac

 13.4 ± 0.8
a
 11.9 ± 0.8

a
 1.5 

*Chemical composition adapted from (“Bioenergy Feedstock Library,” 2017).  
#Letter difference indicate differences at 95% confidence where values are mean ± SE 
(n=3), using one-way ANOVAs and Tukey’s pairwise comparisons 
 
Structure and Morphology of Hydrogels 

The structural and chemical changes of the hydrogels were investigated by FTIR 

using characteristic peaks associated with lignin and carbohydrates, which are shown in 

Figure 2.1A. The peak at 900 cm−1 represents the amorphous cellulose [191], and can be 

seen to have a high intensity in all hydrogels samples, which is greater in intensity than the 

pure MCC FTIR spectra found in Figure 2.1B. Conversely, the peak at 1098 cm−1 refers 

to C-O vibration of the crystalline region in cellulose [191], and can be seen to have a very 
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low intensity in all hydrogel samples when compared to the pure MCC sample in Figure 

2.1B. This increase in amorphous cellulose and decrease in crystalline cellulose in the 

hydrogels, indicating a decrease in crystallinity index, is also supported by the XRD data 

found in Figure 2.4. The peaks at 1329 cm−1 and 1510 cm−1 represent the syringyl and 

guaiacyl condensed lignin and aromatic skeleton of lignin [191], respectively; only the 

hydrogels formed with the presence of lignin (C+L, C+X+L, S, and P) exhibited a peak at 

these wavenumbers, which indicates the retention of lignin after solidification of the 

hydrogels [168]. When examining the peak at 1056 cm−1, which represents the C-O 

stretching in cellulose and hemicellulose [191], only the hydrogels containing 

hemicellulose/xylan (C+X, C+X+L, S, and P) had a relatively intense peak at that 

wavenumber. This increase in intensity indicated the presence of hemicellulose in those 

hydrogels during their formation. Even though not all hydrogels contained hemicellulose 

(xylan), they all exhibited an intense peak at 1375 cm−1, which represents the C-H 

deformation of cellulose and hemicellulose [191].  Additionally, when examining the FTIR 

spectra for pure [C2C1im][OAc] the characteristic peaks at 1378 cm−1 and 1567 cm−1, 

ascribed to the symmetric and asymmetric O-C-O stretches of the acetic anion [192], were 

not present in any of the hydrogel samples, thus supporting the complete removal of the IL 

from the hydrogels during washing. Taken together, these results clearly indicate that all 

hydrogels were primarily comprised of cellulose, and when lignin and hemicellulose were 

present in the hydrogels formation, they were retained upon solidification.  
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Figure 2.1: FTIR spectra for A) freeze-dried hydrogels made of MCC (C), MCC and xylan 
hydrogel (C+X), MCC and Kraft lignin hydrogel (C+L), MCC with xylan and Kraft lignin 
hydrogel (C+X+L), NaOH/Urea based MCC hydrogel (N/U-C), sorghum hydrogel (S), and 
poplar hydrogel (P); B) FTIR spectra for raw MCC, xylan, Kraft lignin, and 
[C2C1im][OAc].   

The morphological properties of all hydrogels were evaluated using SEM, as shown 

in Figure 2.2. The figure shows that all hydrogels formed a porous structure with various 

pore sizes, which are spherical in nature. Examining the N/U-C hydrogel, we saw larger 

(A) 

(B) 



49 
 

pore sizes compared to the other hydrogels, which could be attributed to its higher water 

retention (Figure 2.4) that caused the expansion of the pores [193]. Comparatively, the 

C+X, C+L, C+X+L, sorghum (S), and poplar (P) hydrogels presented much more 

compacted honeycomb like structures, compared to larger pores of MCC hydrogel (C), 

which may be contributed to the addition of other lignocellulosic compounds that filled the 

pores of the cellulosic hydrogel [164]. Furthermore, this homogeneous porous architecture 

of the hydrogels with added lignocellulosic compounds suggest good miscibility between 

the cellulose and xylan and/or lignin [193].  

 

Figure 2.2: SEM images of the cross section of freeze-dried hydrogels: MCC (C), MCC 
and xylan hydrogel (C+X), MCC and Kraft lignin hydrogel (C+L), MCC with xylan and 
Kraft lignin hydrogel (C+X+L), NaOH/Urea based MCC hydrogel (N/U-C), sorghum 
hydrogel (S), and poplar hydrogel (P). 
 

Crystallinity 

XRD studies were performed on the MCC hydrogel (C), the sorghum hydrogel (S), 

poplar hydrogel (P), the N/U-C hydrogel, and MCC to reveal their crystallization 

behaviors. The XRD patterns shown in Figure 2.3. for MCC, reveals a large diffraction 

peak at 2θ=22.6° relative to (020) crystal faces of cellulose I and diffraction peaks at 
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2θ=15.5, 20.5, and 34.5° were corresponded to (110), (101), and (004) crystal faces, 

respectively [194]. The MCC showed a CI of 78.2%. However, in both the MCC hydrogel 

and the N/U-C hydrogel we see that all three of the MCC peaks disappear and that a flat 

and wide diffraction peak appeared instead at 2θ=21° (Figure 2.3). This implies that when 

the hydrogels were formed the crystallinity of the cellulose changed from crystalline  

(cellulose I) to a more amorphous pattern because the new diffraction peak at 2θ=21° 

belongs to the (020) crystal faces of cellulose II [164, 194]. This coincided with a 

significant decrease in the CI for the MCC hydrogel, 24.1%, and for the N/U-C hydrogel 

at 30.1%. For the poplar hydrogel we saw two diffraction peaks for (020) and (110) crystal 

face that appeared flat and wide at 2θ=21 and 17°, respectively. These changes attributed 

to a more amorphous cellulose structure in the poplar hydrogel with a very low CI of only 

16.41%. The sorghum hydrogel contained one flat and wide peak at 2θ=21° corresponding 

to the (020) crystal face (Figure 2.3). This suggests that the sorghum hydrogel also had an 

amorphous structure with a decrease in its CI 36.84% when compared to MCC. 

Additionally, it can be seen that the sorghum hydrogel had an intense unknown peak at 

2θ=26.8°, which was similarly found in other studies that examined the XRD patters of 

sorghum [195, 196], but the cause of the peak was not explained.  
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Figure 2.3: XRD patterns and the calculated crystallinity index (CI) of MCC, MCC 
hydrogel (C), NaOH/Urea based MCC hydrogel (N/U-C), sorghum hydrogel (S), and 
poplar hydrogel (P). 
 

Swelling Properties and Mechanical Properties 

The swelling kinetics of all hydrogels are shown in Figure 2.4, where all IL-MCC 

based hydrogels are seen to have similar swelling properties compared to the N/U-C and 

biomass based hydrogels. For example, the MCC, C+X, C+L, and C+X+L hydrogels using 

IL as a solvent showed approximately the same swelling ratio of ~120% at the 2hr time 

point. This supports that the addition of xylan and Kraft lignin to MCC hydrogels has no 

effect on their ability to absorb water. However, the poplar, sorghum, and NaOH/Urea 

based MCC hydrogels did show higher swelling ratios at 1065, 1155, and 1430%, 

respectively. These increases could be because the N/U-C hydrogel had the largest pore 

sizes that were less densely distributed (Figure 2.2), which has been shown to correlate to 

higher swelling ratios [197]. Additionally, since the biomass based hydrogels have less 

cellulose content (Table 2.2) compared to MCC based hydrogels, they will have less 
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diffusion resistance and a less compacted cellulose network that will cause the increase in 

swelling ratio [164, 198].  

Figure 2.4: Swelling kinetics of freeze-dried MCC hydrogel (C), MCC and xylan hydrogel 
(C+X), MCC and Kraft lignin hydrogel (C+L), MCC with xylan and Kraft lignin hydrogel 
(C+X+L), NaOH/Urea based MCC hydrogel (N/U-C), sorghum hydrogel (S), and poplar 
hydrogel (P). 
 

To assess the mechanical strength of the hydrogels, compressive force stress-strain 

curves for all hydrogels were measured (Figure 2.5A) and their elastic moduli calculated 

(Figure 2.5B). The MCC hydrogel (C) was seen to be relatively brittle and non-elastic as 

it had a low compressive strength with a minimal strain of 22% prior to rupture. When 

examining its elastic modulus (Figure 2.5B), we see that it is low but not significantly 

different from the other hydrogels besides the C+X hydrogel. For the C+X hydrogel, the 

compressive strength of rupture increased dramatically from 0.034 MPa in the MCC 

hydrogel to 0.075 MPa, but the elasticity did not change as they both broke at a strain of 

~22%. This dramatic increase in strength was also seen in Lopez-Sanchez et al., (2015), 
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who suggested that the xylan crosslinks are less resistance to compression compared to 

cellulose, thus enabling the cellulose crosslinks to compact on each other increasing the 

density and compression strength of the network. The elastic modulus of the C+X hydrogel 

also supports its strength as it had a significantly higher elastic modulus at 0.1 MPa 

compared to all other hydrogels besides the C+L hydrogel. This indicates a highly stiff 

composite that requires high loads to elastically deform its structure. The N/U-C hydrogel 

was seen to have a higher compressive strength at 0.078 MPa and elasticity at a strain of 

56% prior to rupture, compared to the MCC hydrogel. This increase in compressive 

strength and elasticity compared to the MCC hydrogel may be due to the chemical 

crosslinking method used to make the N/U-C, which has been found to increase mechanical 

properties of hydrogels [199]. While the N/U-C hydrogel’s elastic modulus was not 

significantly lower than any of the hydrogels, it is considerably low at 0.006 MPa, which 

supports its highly elastic and rubber like features (Figure 2.5B).  
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Figure 2.5: A) Compressive stress-strain curves and B) calculated elastic moduli of MCC 
hydrogel (C), MCC and xylan hydrogel (C+X), MCC and Kraft lignin hydrogel (C+L), 
MCC with xylan and Kraft lignin hydrogel (C+X+L), NaOH/Urea based MCC hydrogel 
(N/U-C), sorghum hydrogel (S), and poplar hydrogel (P). Letters in B indicate differences 
at 95% confidence where values are mean ± SE (n=3), using one-way ANOVAs and 
Tukey’s pairwise comparisons.   

When Kraft lignin was added to the MCC hydrogel (C+L), the strength of the 

hydrogel did not change, but the elasticity increased to a strain of 40%. Additionally, the 

elastic modulus of the C+L hydrogel was comparable to the C+X hydrogel, which indicates 

(A) 

(B) 
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a higher stiffness due to the presence of lignin.  With the addition of both Kraft lignin and 

xylan (C+X+L), the elasticity is seen to increase to a strain of 52%, but strength decreased 

as seen by a compressive strength of 0.025 MPa at rupture and a low stiffness with an 

elastic modulus of only 0.026 MPa. The work by Nakasone and Kobayashi [200] shows 

that increasing lignin content subsequently increases the strength and elasticity of cellulosic 

hydrogels by reinforcing the cellulosic network, which supports our results with increase 

in elasticity in both the C+L and C+X+L hydrogels. For the sorghum-based hydrogel that 

had both xylan and lignin, we observed a higher compressive strength at a stress of 0.0493 

MPa, but a lower elasticity at a strain of 41.2% compared to the C+X+L hydrogel. This 

increase in strength could be due to the higher composition of xylan in the sorghum 

hydrogel (Table 2.2). When examining the poplar-based hydrogel, the largest compressive 

strength at 0.123 MPa and strain of 65% at rupture were observed, representing a highly 

elastic and strong material despite having a similar elastic modulus to the other hydrogels. 

The improvement in strength and elasticity of the poplar hydrogel is likely due to the higher 

cellulose and slightly higher lignin content as compared to the other hydrogels (Table 2.2), 

which was shown to significantly reinforce and strengthen the cellulosic network [200].  

Taking together, results from the present study suggest that adding lignin and/or 

xylan to cellulosic hydrogels led to significant changes in their mechanical properties. 

While the mechanical properties of these cellulosic hydrogels are weak compared to some 

cellulose hydrogels, those properties might fit applications in the biomedical field such as 

cartilage replacement [182]. It also noted that mechanical properties of the physically 

crosslinked hydrogels appear rather alike polyacrylic hydrogels than the chemically 

crosslinked N/U-C hydrogel [201]. Results also suggest that by altering the ratios of xylan 
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and lignin to cellulose one can potentially fine-tune the mechanical properties of cellulosic 

hydrogels [202]. It is also possible to use chemical crosslinkers when preparing the 

physically crosslinked hydrogels, especially in view of improving the mechanical 

properties of the hydrogels. However, the physical crosslinking conditions (temperature 

and pH, etc.) did not appear suitable for chemical crosslinkers [203]. As our focus is to 

create physically crosslinked hydrogels using ionic liquid without utilizing chemical 

crosslinkers, using chemical crosslinkers along with physical crosslinking methods may 

warrant future study. 

Antimicrobial Properties   

To assess antimicrobial properties of the prepared hydrogels, E. coli (NRRL-409, 

obtained from the ARS Culture Collection) was inoculated on the hydrogels (presoaked 

with TGY medium) and the colonies were counted after 48 hour cultivation. E. coli colony 

counts for the MCC hydrogel, C+X hydrogel, N/U-C hydrogel, sorghum hydrogel were 

not significantly different when compared to the TGY agar plate (control), suggesting no 

antimicrobial properties in those hydrogels (Figure 2.6). However, E. coli colony counts 

for the C+L hydrogel, C+X+L hydrogel, and poplar hydrogel were significantly lower than 

the control, N/U-C hydrogel, and MCC hydrogel (Figure 2.6). This suggests the addition 

of lignin to the MCC based hydrogels does offer some antimicrobial activity. When 

examining the lignin monomer ratios (S:G:H) in the sorghum (33:63:4) and poplar 

(54:46:0) (“Bioenergy Feedstock Library,” 2017), we see that sorghum has a higher ratio 

of G-lignin (coniferyl alcohol), which according to previous work [123] has a higher 

amount of antimicrobial properties due to the presence of a double bond in the Cα=Cβ 

position of the side chain and a methyl group in the 𝛾𝛾 position. However, these lignin 
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monomer ratios are for the raw biomass and Varanasi, Singh [204] has shown that ILs can 

preferentially degrade certain lignin monomers depending on the biomass during 

treatment, which will change the type of lignin moieties present that can confer 

antimicrobial properties. Thus, the differences in antimicrobial activity of sorghum and 

poplar hydrogels may be due to the differences in the lignin moieties present after gel 

formation.  Additionally, Kraft lignin supplemented to the MCC hydrogels may have 

underwent a higher degree of depolymerization than the lignin derived from the sorghum, 

leading to increasing amount of phenolic fragments necessary for microbial inhibition 

[122], and Kraft lignin in free solution has already been shown to have antimicrobial 

properties towards gram-negative bacteria in previous research (Cazacu et al., 2013). 

Therefore, the results support that lignin can retain its antimicrobial properties when 

introduced into a cellulosic hydrogel, and that depending on the biomass source, native 

lignin in the biomass can also be a source of antimicrobial activity. As the antimicrobial 

mechanism of lignin derived compounds is still not well understood, further research 

should be performed to identify the lignin moieties present in the hydrogels based on 

factors like molecular weight, distribution of functional groups, and inter-unit linkages to 

determine the exact source of the antimicrobial properties from lignin present in the 

hydrogels.  
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Figure 2.6: E. coli colonies counted after growing on MCC hydrogel (C), MCC and xylan 
hydrogel (C+X), MCC and Kraft lignin hydrogel (C+L), MCC with xylan and Kraft lignin 
hydrogel (C+X+L), NaOH/Urea based MCC hydrogel (N/U-C), sorghum hydrogel (S), 
poplar hydrogel (P), and bacterial growth agar (control). Letters indicate differences at 95% 
confidence where values are mean ± SE (n=3), using one-way ANOVAs and Tukey’s 
pairwise comparisons. 

Conclusions  

The potential of using ILs and lignocellulose for hydrogel formation was evaluated. 

The addition of both lignin and xylan to the cellulose-based hydrogel improved its 

mechanical strength and stiffness, despite still having less elastic strength than the known 

cellulose chemical crosslinker method, and lignin did provide retained antimicrobial 

properties. Conversely, utilizing raw biomass provided increased mechanical strength 

(poplar), similar water retention abilities (poplar and sorghum), and retained antimicrobial 

properties (poplar) when compared to the cellulose chemical crosslinker method. 

Collectively, results from this study demonstrated the potential of using ionic liquids to 

make physically crosslinked hydrogels directly from lignocellulosic biomass with 

increased mechanical and antimicrobial properties. Developing biodegradable and 
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antimicrobial hydrogels from lignocellulosic biomass may lead to potential applications in 

biomedicine and agriculture. Future research will improve properties of the and hydrogels 

and include a wider variety of feedstocks used for biomass-based hydrogels formation.  
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Abstract 

Converting lignin to value added products at high yields provides an avenue for 

making ethanol biorefineries more profitable while reducing the carbon footprint of 

products generally derived from petroleum. In this study, corn stover lignin was 

depolymerized by catalytic transfer hydrogenolysis (CTH) in supercritical ethanol with a 

Ru/C catalyst.  The lignin derived bio-oil was then sequentially extracted utilizing hexane, 

petroleum ether, chloroform and ethyl acetate as solvents in order of less polar to polar and 

the subsequent bio-oils were characterized using GPC, GC/MS and HSQC NMR. Results 

show lignin derived compounds were sequentially extracted into groups depending on the 

solvent polarity. Antimicrobial properties of the bio-oils were screened against gram-

positive (Bacillus subtilis, Lactobacillus amylovorus, and Staphylococcus epidermidis), 

gram-negative (Escherichia coli) bacteria and yeast (Saccharomyces cerevisiae) by 

examining microbial growth inhibition. Results show that CTH derived bio-oils inhibited 

all tested organisms at concentrations less than 3 mg/mL. Total monomer concentration 

and the presence of specific monomers (i.e. syringyl propane) showed correlations to 

antimicrobial activity, likely due to cell death or membrane damage. This study provides 

insights into using sequential extraction to fractionate lignin-derived compounds and 

correlations between the properties of the extracted compounds and their antimicrobial 

activity. 

Keywords: Antimicrobial, Catalytic Transfer Hydrogenolysis, Depolymerization, Lignin, 

Liquid-Liquid Extraction, Bio-oil 
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Introduction  

Lignocellulosic biomass has become a promising feedstock to circumvent issues 

associated with the exploitation of fossil fuels for energy and chemical production. In a 

biorefinery, lignocellulose (which is mainly comprised of cellulose, hemicellulose, and 

lignin) is fractionated using thermochemical or biochemical methods. Cellulose and 

hemicelluloses can be used to create bio-fuels like ethanol or bio-products like plastics, 

while lignin is considered a waste product and is most often combusted for heat generation 

[205]. While this helps reduce the need for fossil fuels in heat generation at a biorefinery, 

it does not significantly increase the profitability of a biorefinery. Recently, a considerable 

amount of research has shown the variety of applications for using waste lignin’s natural 

phenolic structure to produce polymers, cement additives, resins, battery components, fuels 

and chemicals [44]. The socio-economic impact of lignin valorization cannot be 

understated as creating value from lignin by utilizing it as a source of natural phenolics will 

generate extra profit for a biorefinery, making biofuels less expensive, increasing their 

marketability as an alternative to fossil fuels.  

Currently, overuse of antibiotic agents has become a growing problem facing our 

society. Because of this, there has been a recent spike in the evolution of antibiotic resistant 

organisms and a need for researchers to develop new antimicrobials. There are increasing 

research efforts in examining lignin derived phenolic compounds for their antimicrobial 

properties [206]. The native lignin in plants has been considered to play a notable role in 

the plant defense by providing antimicrobial, antifungal, antiviral, antioxidant, insecticidal 

and antifeeding properties [12]. Lignin’s source of antimicrobial properties are due to the 

phenolic subunits that comprise lignin’s polyphenolic structure [170]. These polyphenolic 
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compounds are thought to act as ionophores that increase ion permeability in the cell 

causing cell death or damage the cell membranes of both gram positive and negative 

bacteria causing cell lysis [122, 171, 172]. Based on literature, lignin concentration, the 

structure of lignin phenolic subunits, and origin of the extracted lignin are drivers affecting 

its antimicrobial properties, that also depend on the microorganism being tested [12, 122, 

207]. While a variety of technical lignins (e.g. from the Kraft and organosolv processes) 

exhibited notable antimicrobial properties, lignin model monomers have been shown to 

have a greater antimicrobial affect compared to the larger and not well defined 

polyphenolic structures comprising technical lignins [123]. Thus, to increase the 

effectiveness and selectivity of antimicrobial properties, it is necessary to depolymerize 

polyphenolic structure in the extracted lignin into smaller units. 

Since lignin is a randomly linked polyphenolic polymer containing ether linkages 

such as β-O-4, α-O-4, and 4-O-5, as well as condensed linkages (i.e. 5-5, β-β, β-5 and β-

1), lignin is highly recalcitrant toward selective depolymerization making it difficult for 

effective valorization into low molecular weight phenolics [9, 45]. A variety of 

thermochemical methods have been employed to depolymerize lignin into fractions 

containing high amounts of monomeric phenolics, including pyrolysis [49, 208], 

hydrolysis [209, 210], and hydrogenolysis [9, 211]. However, pyrolysis and hydrolysis 

methods lead to increased lignin condensation and repolymerization due to reactive 

phenolic monomers and free-radical reactions that reduces bio-oil and monomer yields [49, 

210]. Hydrogenolysis, on the other hand, operates via reductive bond cleavage of lignin 

linkages, generating hydrogenated and less reactive compounds [58, 59]. While more 

traditional hydrogenolysis methods utilize H2 gas as a hydrogen donor to cleave ether 
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linkages, catalytic transfer hydrogenolysis (CTH) uses inexpensive organic alcohols to 

generate hydrogen molecules on the surface of catalysts while also serving as a solvent for 

the depolymerization products [58, 61]. While a variety of hydrogen donating agents have 

been utilized (i.e. formic acid, methanol, ethanol, water, isopropyl alcohol, acetonitrile, and 

acetone) to depolymerize lignin substrates [62], ethanol at its supercritical state has been 

found to produce less solid residues, facilitate higher biomass conversion, and act as a 

capping agent that reduces phenolic monomer repolymerization [212, 213].  

To find a better use of the key lignin derived compounds, it is necessary to 

investigate a separation method that can selectively recover an individual compound or a 

group of specific compounds at low cost. Liquid-liquid extraction (LLE) is a method of 

separating compounds based on their solubilities in two immiscible liquids. Due to its 

relatively low material cost and easy operation, LLE has become an attractive option for 

separating aromatic/phenolic compounds from lignocellulosic derived bio-oils; especially 

when compared to chromatography or membrane filtration [68-73]. Previous work has 

shown good performance in extracting phenolic compounds from bio-oil utilizing solvents 

like chloroform, hexane and ethyl acetate individually and sequentially [66, 67]. They 

found that by using chloroform and ethyl acetate sequentially to extract compounds from 

pyrolytic oils created improved phenolic extraction yields compared to utilizing the 

solvents individually or using only non-polar solvents  [66]. However, because chloroform 

and ethyl acetate are both polar, the use of additional non-polar solvents in the sequential 

extraction process could further improve specificity.  

In this study, we aim to use CTH to depolymerize alkali enzymatic corn stover 

(AEL, a representative lignin stream from the biorefinery) producing a bio-oil with high 
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monomeric phenol content and then test its antimicrobial activity against a variety of 

microorganisms. The objectives of this study are to: 1) characterize the raw bio-oil from 

CTH of AEL; 2) sequentially extract compounds from the raw bio-oil in aqueous phase by 

utilizing solvents from low to high polarity; 3) characterize the sequentially extracted 

fractions; and 4) quantify the antimicrobial activity of the raw bio-oil and sequential 

extraction fractions against gram-positive (Bacillus subtilis, Lactobacillus amylovorus, and 

Staphylococcus epidermidis), gram-negative bacteria (Escherichia coli) and yeast 

(Saccharomyces cerevisiae). The results from this study provide insights into the types of 

lignin derived compounds that confer antimicrobial activity and compounds that can be 

preferentially extracted from lignin bio-oil using a simple LLE method. 

Experimental Section 

Alkali-enzymatic lignin purification and analysis  

Corn stover was pretreated at the National Renewable Energy Laboratory (NREL) 

using 70 kg NaOH/ ton of corn stover with 1:12 solid: liquid ratio loading at 92°C for 2 h. 

The lignin residue was produced after disk refining (200 kwh/ODMT) using a 36 inch disk 

refiner (Sprout Waldon) at Andritz pilot plant (Springfield, OH) and enzymatic hydrolysis 

(48 mg CTec2 and 12 mg HTec2 per gram of cellulose for 36 hour) [214].  The enzymatic 

hydrolysis residue (namely alkali enzymatic lignin, AEL) was then centrifuged to reduce 

the water content to approximately 20% solids. The received residual lignin was stored at 

-40°C until use. Following a previously reported lignin precipitation method [32], we 

further purified the AEL to remove the residual carbohydrates. In short, the aqueous AEL 

slurry was brought to pH 12.5 (~5:1 AEL to 2M NaOH), then the solution was centrifuged 



66 
 

at 4000 rpm for 10 min to remove the solids containing undissolved carbohydrates. Then 

the lignin was precipitated from the filtrate by decreasing the pH to 3.0 with 2 M H2SO4, 

centrifuged at 4000 rpm for 10 min to remove filtrate, and washed three times with 70°C 

DI water. The resulting lignin was then freeze-dried using FreeZone 6-liter console freeze 

dry system (Labconco, Kansas City, MO) at -50°C under 0.1-0.2 mBar vacuum for 72 hr.   

Structural carbohydrates and lignin content of the received AEL and purified lignin 

samples were determined by compositional analysis according to an NREL laboratory 

analytical procedure [180]. The sugar concentration was determined by HPLC (Ultimate 

3000, Dionex Corporation, Sunnyvale, CA, US) equipped with a refractive index detector 

and using a Bio-Rad Aminex HPX-87H column and guard cartridge assembly.  

Catalytic transfer hydrogenolysis (CTH) 

CTH was performed using a Parr Reactor (Parr Instruments, Series 4560 Mini 

Reactor, Moline, IL) at a set temperature of 270±5 °C for 1 h under a N2 atmosphere and 

stirring speed set at 600 rpm. Purified AEL was loaded at a lignin-to-catalyst-to-solvent 

mass ratio of 2:1:30 [59], utilizing ethanol as solvent and 5% Ru/C as the catalyst.  In a 

typical reaction, 1 g of lignin was loaded with 0.5 g of Ru/C (dry weight) and 30 g of 

ethanol during each hydrogenolysis reaction. When the reaction completed, forced air was 

used to cool the reactor to about 100 °C and followed by an ice bath to further cool the 

reactor to room temperature. All contents in the reactor were transferred out by rinsing with 

ethanol, and the liquid and solids were separated by centrifuging at 4000 rpm for 10 min. 

Solid fraction and a subsample of liquid fraction were dried in a vacuum oven at 60°C for 

24-48 h to remove the solvent for mass balance and recovery of lignin derived oil-like 
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compounds (named bio-oil hereafter). The percent bio-oil, solid, and gas yields by weight 

were calculated as percentage of the loaded lignin sample[58]. 

Sequential extraction  

The liquid fraction collected from CTH was diluted with water to a water-ethanol 

ratio of 80:20 v/v, before sequential extraction procedures. Four solvents in order of least 

polar to most polar (hexane, petroleum ether, chloroform, and ethyl acetate) were used for 

sequential extraction based on previous studies [66, 215]. Each solvent was added to the 

bio-oil ethanol and water mixture (BOEW) at a 1:1 ratio and vigorously shaken for 15 min. 

The immiscible layers were separated via centrifugation at 4000 rpm for 5 min, then the 

solvent was removed and replaced by the next solvent in the order described above and in 

Figure 3.1. As a result, a total of five fractions were obtained from the sequential extraction 

process, one from each solvent and an additional fraction that consisted of the water-

ethanol mixture with residuals bio-oil not extracted by the solvents. All five fractions were 

then evaporated under vacuum at 60°C for 48 h to obtain the dry bio-oil. The percent bio-

oil recovery from each fraction was calculated by dividing the mass of dried bio-oil from 

each individual fraction by the total mass of all fractions combined, which would equate to 

the total raw bio-oil mass.   
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Figure 3.1: Sequential extraction flow chart (BOEW is bio-oil ethanol and water mixture). 
 

Characterization of lignin derived bio-oil fractions 

The weight-average molecular weight (Mw) and the number-average molecular 

weight (Mn) of the lignin sample, raw bio-oil, and sequential extraction fractions were 

determined using gel permeation chromatography (GPC) [216]. An Ultimate3000 HPLC 

system equipped with an Ultraviolet (UV) detector and Mixed-D PLgel column (5 μm 

particle size, 300 mm x 7.5 mm i.d., linear molecular weight range of 200 to 400,000 Da, 

Polymer Laboratories, Amherst, MA) was utilized. Separation was accomplished in a 

mobile phase of tetrahydrofuran (THF) at a flow rate of 0.5 mL min-1, at 50°C. Elution 

profiles of materials were monitored at UV absorbance of 280 nm and calibrated using low 

molecular weight polystyrene standards (Product No. 48937, Sigma-Aldrich). 

Polydispersity Index (PDI) was calculated using the equation: PDI= Mw/Mn [216]. The 

molecular weight distributions of the larger oligomers in each bio-oil fractions were further 

elucidated utilizing matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF MS) method based on a previously published protocol [217].  

The raw and sequentially-extracted bio-oils were dissolved in ethanol and identified 

and quantified by GC/MS using an Agilent 7890B GC coupled 5977B MS with an Frontier 
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Lab Ultra Alloy-5, (60 m × 0.32 mm) capillary column. The GC was equipped with a two-

way splitter which directed the gas stream separated from column into both MS and flame 

ionization detector (FID). The MS detector was used for compound identification and peak 

identification was performed via NIST MS spectra library matching, while The FID 

detector was used for compound quantification. Quantification of monomers was 

conducted based on FID peak area by using guaiacol (C6), vanillin (C6C1), syringaldehyde 

(C6C2) and 4-propylphenol (C6C3) (Sigma Aldrich, St. Louis, MO, USA) as standards to 

convert peak area into concentration. These compounds were chosen as representative 

compounds where each response factor was used according to the origin and/or the number 

of carbons in the phenolic monomers identified [58, 218]. The temperature program started 

at 40 °C with a holding time of 6 min and increased to 240 °C at 4 °C min-1 with a holding 

time of 7 min, finally the temperature was raised to 280 °C at 20 °C min-1 with a holding 

time of 8 min. Helium was used as a carrier gas with a flow rate of 1.2 mL min-1. 

Approximately 100 mg lignin sample was dissolved in DMSO-d6/pyridine-d5 (4:1) 

or DMSO-d6 under mild heat and sonication in an NMR tube until a homogeneous mixture 

was obtained.  NMR spectra were acquired on a 500 MHz JEOL ECZR (Peabody, MA, 

USA) NMR spectrometer equipped with a 5-mm Royal Probe.  The central DMSO solvent 

peak was used as an internal reference (δC 39.5, δH 2.5 ppm).  The 1H–13C correlation 

experiment was an HSQC experiment (JEOL pulse sequence ‘hsqc_edit_dec_en’) with 

25% non-uniform sampling (NUS).  HSQC experiments were carried out using the 

following parameters: acquired from 11 to -1 ppm in f2 (1H) with 1024 data points 

(acquisition time 136 ms), 220 to 0 ppm in f1 (13C) with 64 increments (rebuilt to 256 with 

NUS) and 192 scans with a 1.5 second interscan delay.  In all cases, processing used typical 
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sine bell (90o) in f2 and squared sine-bell (90o) in f1 (first point 0.5).  Mestrelab 

MestreNova 14.0 (Mac version) software was used for volume integration of contours in 

HSQC plots, and quantification of lignin linkages using methods described by previous 

work [219].  Spectra are displayed in absolute value mode and color coded (in Adobe 

Illustrator CC 2019) using literature reference standards[220]. 

Microbial cultivation  

USDA Agricultural Research Service Culture Collection (NRRL) provided the 

Escherichia coli (NRRL B-409), Lactobacillus amylovorus (B-4540), Saccharomyces 

cerevisiae (NRRL Y-567), Staphylococcus epidermidis (NRRL B-4268), and Bacillus 

subtilis (B-354) strains. Each microbe was grown on the recommended liquid media by 

NRRL with E. coli using TGY media (tryptone 5 g/L, yeast extract 5 g/L, glucose 1 g/L, 

dipotassium phosphate 1 g/L), L. amylovorus using M.R.S broth (Oxoid, CM0359), S. 

cerevisiae using YPD media (Fisher BioReagentsTM, BP2469), S. epidermidis using 

nutrient broth (BD DifcoTM, 234000), and B. subtilis using LB broth (Fisher 

BioReagentsTM, BP9723). Frozen cultures were prepared by first growing each microbe in 

liquid culture at 180 rpm shaking speed for 12 h at 37°C, besides S. cerevisiae which was 

grown at 32°C. These cultures were pelletized via centrifugation and washed with sterile 

media, then 500 μL of the washed cultures were added to 500 μL of sterilized 50% glycerol 

in a 2 mL cryovial and frozen at -80°C until use.  

Antimicrobial assay  

Frozen cultures of each microbe were first revived by adding cryovial contents to 

liquid media and allowing them to grow for 12 h at 180 rpm shaking speed and the 

respective incubation temperature above. Afterwards the cells were pelletized, washed, and 
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resuspended in fresh liquid media. To test for the bio-oil and sequential extraction 

fractions’ antimicrobial properties, each microbe culture was cultivated in 48-well plates 

(flat-bottom polystyrene with clear bottom and sides, Corning Inc.) at preset bio-oil 

loadings and the optical density at 600 nm (OD600) was monitored for 30 h with time points 

taken at 0, 6, 10, 18, and 30 h.  These time points were found to represent key points of 

microbial growth curves based on our preliminary tests. All wells were brought to an OD600 

of 0.2 prior to growth, and the lignin derived bio-oils were tested at 0.5, 1.0, 1.5, 2.0, 2.5, 

3, and 4 mg/mL concentrations. The bio-oil fractions were first dissolved in ethanol as 

stock solutions and then added to the culture media such that all cultures had a final ethanol 

concentration of 5% (v/v). Two controls were used, one having the 5% ethanol 

concentration, and the other having just microbes and media. All samples and controls were 

performed in triplicate, so OD600 values for each time point represent the average of three 

replicates.  To determine how the bio-oils affected microbial growth, the percent change in 

OD600 of the ethanol control during the exponential phase of growth was compared to the 

growth of the bio-oils at their different concentrations. This resulted in the average percent 

decrease in growth (degree of inhibition) for each bio-oil at each concentration, with the 

formula described in Eq. 1:  

Degree of Inhibition (%) = �1 −
Avg Max OD600 − Avg Min OD600 of Growth with Biooil

Avg Max OD600 − Avg Min OD600 of Ethanol Control
� ∗ 100 

  (1) 

Data was reported as the maximum concentration of each oil to have a degree of inhibition 

value of ≥ 90%, which represents little to no growth compared to the control.  
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Cell membrane integrity assay and microscopy 

B. subtilis and E. coli were used as representative Gram-positive and negative 

bacteria to determine if cell membrane damage occurred in the presence of lignin derived 

bio-oils.  The cells were incubated with 5% ethanol as control or with 4 mg/mL of raw bio-

oil for 5 h prior to staining with LIVE/DEAD Bac Light Bacterial Viability Kit L7012 

(Invitrogen, CA) in a 48 well plate (flat-bottom polystyrene with clear bottom and sides, 

Corning Inc.) at 37°C. The kit used a combination of green (SYTO9) and red (propidium 

iodide) fluorescent nuclear stains. SYTO9 is a green fluorescent dye that can penetrate cell 

membranes freely and bind to nucleic acids, while propidium iodide (PI) is a red 

fluorescence dye that can only penetrate damaged membranes. The penetration of PI causes 

displacement of SYTO9 due to its higher affinity for nucleic acids and the resulting 

damaged cell will fluoresce red instead of green [221]. Green fluorescence, indicating live 

cells, was measured at Excitation/Emission (Ex/Em) wavelengths of 485 nm/530 nm while 

red fluorescence, indicting dead membrane-damaged cells, was measured at 485 nm/630 

nm using a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, CA). For 

fluorescence imaging, the stained cells were wet mounted and imaged immediately after 

staining using a Leica SD6000 spinning disk confocal microscope (Leica Microsystems, 

Wetzlar, Germany) equipped with 488 and 561 nm laser sources.  

Results and Discussion  

Mass balance  

A mass balance was conducted to determine the percentage of lignin derived bio-

oil, residual solids, and gas products produced during CTH of the AEL. Table 3.1 shows 
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the mass percentages of each fraction after CTH, and while the oil and solid yields were 

directly measured, the gas fraction was estimated by percent difference from the total bio-

oil and solid yields. The bio-oil yield after CTH of AEL was found to be 49.21 ± 1.70 wt% 

of starting lignin, the solid yield was 28.84 ± 1.20%, and the gas yield was 21.95 ± 2.90%. 

The raw bio-oil yield seen here is higher than the yield (39.4± 3.5%) reported by Zhou, 

Sharma [59]. Even though the same hydrogen donor solvent, catalyst, and temperature 

were used by Zhou and coworkers, the chemical composition, purity and structure of the 

lignin source (a commercial alkali lignin) were not fully characterized [59]. The purity of 

the AEL used in this study (after utilizing precipitation methods for purification) was 

estimated to be 95.11 ± 0.18% with 3.62 ± 0.16% glucan and 1.27± 0.03% xylan. The 

presence of glucan and xylan can suppress metal catalysts and inhibit lignin 

depolymerization during hydrodeoxygenation and CTH [215, 222]. Therefore, AEL’s high 

purity and/or less condensed nature as confirmed by NMR likely support the high bio-oil 

yield obtained in this study. 

The mass balance for bio-oils in the sequentially extracted fractions (SEF) are also 

shown in Table 3.1. Chloroform and hexane were found to extract the greatest amount of 

the bio-oils at 50.70 ± 6.01 wt% and 25.98 ± 6.62%, respectively; while petroleum ether 

(8.56 ± 2.88%), ethyl acetate (5.81 ± 3.17%), and the leftover water fraction (8.95 ± 0.31%) 

extracted considerably less products, based on total extracted bio-oil weight.  Even though 

hexane and petroleum ether, both non-polar, have similar polarity [223], since hexane was 

used first for extraction, less products with an affinity for non-polar solvents were available 

for extraction using petroleum ether. Similarly, since chloroform was the first polar solvent 

used there would be less products left to be extracted by ethyl acetate, even though ethyl 
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acetate has been found to be a superior solvent for lignin based bio-oils containing similar 

depolymerization products [63, 66]. Therefore, the first solvent used in each change in 

polarity during sequential extraction had the highest percentage of products extracted, 

which is similar to what Dodge, et al. [215] found during sequential extraction of bio-oil 

derived from CTH of unpurified alkali lignin.  

Table 3.1: Mass balance of raw CTH products and bio-oil yields from each SEF 
 

 

Molecular weight distributions 

By examining the weight-average (Mw) and number-average (Mn) molecular 

weight, as well as the polydispersity index (PDI) of the AEL, the raw bio-oil, and the SEFs, 

we can gain insight on changes in the molecular weight distributions (MWD) of lignin 

during CTH and sequential extraction. Figure 3.2 shows the GPC chromatograms of the 

AEL and bio-oil fractions and Table 3.2 summarizes the Mw, Mn, and PDI values.  It is 

evident from the GPC chromatograms that MWD curves of all bio-oil fractions shifted to 

the right (i.e., lower MW) compared to that of the unreacted AEL (Figure 3.2). The Mw of 

AEL was 3745±344 g/mol; whereas the Mw of the raw bio-oil after CTH was 755±51 

g/mol, which indicates a high degree of depolymerization of the lignin into lower MW 

compounds. When examining the SEFs, the Mw of the hexane and petroleum ether 

fractions were lower than that of the raw bio-oil, while both the chloroform and ethyl 

 Fraction Average wt% 
Raw CTH Products Bio-oil 49.21 ± 1.70 
 Solid 28.84 ± 1.20 
 Gas 21.95 ± 2.90 
Sequential Extraction  
Bio-oil Yields Hexane 25.98 ± 6.62 
 Petroleum Ether 8.56 ± 2.88 
 Chloroform 50.70 ± 6.01 
 Ethyl Acetate 5.81 ± 3.17 
 Water  8.95 ± 0.31 
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acetate fractions were not significantly different from the raw bio-oil. This indicates the 

more polar solvents extracted compounds with higher molecular weights, which correlates 

to the polar solvents extracting the greatest number of compounds based on weight 

combined (i.e., chloroform). Even though the Mw and Mn of the SEFs increase with 

polarity, the PDI’s of the raw and SEF’s remain low in the 1.8-1.9 range, suggesting 

compounds with similar MW’s are extracted in each fraction. The leftover water fraction 

had a low Mw of 573±28 g/mol, which correlate to a higher percentage of low molecular 

weight compounds that may have a higher affinity and distribution coefficient for water 

than the other solvents (i.e., residual carbohydrates and/or phenolics with carboxylic acids) 

[66].   

Table 3.2: The molecular weight distribution of AEL and lignin bio-oils derived from CTH 
and each SEF.  Letters indicate differences at 95% confidence where values are mean±SE 
(n=3), using unpaired T-tests 

Source Mw (g/mol) Mn (g/mol) Polydispersity index (PDI) 

Corn Stover Lignin (AEL) 3745±344 A 910±113 A 4.2±0.3 A 

Raw bio-oil 755±51 B 426±56 B 1.8±0.12 B 

Hexane 544±34 C 322±24 C 1.7±0.1 B 

Petroleum Ether 629±43 C 382±23 BC 1.7±0.1 B 

Chloroform 829±63 B 446±35 BC 1.9±0.1 B 

Ethyl Acetate 924±70 B 480±38 B 1.9±0.1 B 

Water  573±28 C 328±22 C 1.7±0.04 B 
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Figure 3.2: GPC spectra of purified AEL and bio-oils derived from CTH and each SEF. 

MALDI-TOF has a higher sensitivity than GPC, especially for lower molecular 

weight compounds, since the mass to charge ratio of the ions correspond directly to the 

molar mass of the analyte [224]. Therefore, it is more typically used to identity the mass 

distribution of lignin depolymerization products, where GPC is used for larger technical 

lignins [225]. To this end, MALDI-TOF experiments were performed to better identify the 

distribution of lignin-based monomers, dimers, and trimers in the raw bio-oil and SEFs.  

MALDI spectra are provided in Supplemental Figure 3.S1, where monomers are 

identified below 300 m/z, dimers from 300-450 m/z, and trimers around 500 m/z [217].  

The raw bio-oil, hexane, petroleum ether, and leftover water fractions have a larger amount 

of high intensity peaks within the monomer and dimer region compared to the other SEFs, 

which supports their lower Mw distributions in the GPC results (Table 3.2).  

Comparatively, the chloroform and ethyl acetate fractions have more peaks in the dimer to 
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trimer region and above, which supports their higher molecular weights. Furthermore, 

since the MALDI-TOF results corroborate the GPC results and our previous observation 

that polar solvents tend to extract higher molecular weight compounds. While the GPC and 

MALDI-TOF MS results provide a general trend on the size distribution of compounds in 

the raw bio-oil and SEFs, GC/MS and HSQC NMR were performed to identify the specific 

monomers and structures formed after CTH of AEL and better understand the specific 

reductive depolymerization that took place.  

GC/MS and 1H-13C HSQC NMR characterization  

The GC/MS analyses for the raw and SEF bio-oils are summarized in Figure 3.3. 

Since some SEFs had greater than 30 identifiable compounds, Figure 3.3 only shows 

compounds that accounted for greater than 0.5 wt% of the bio-oil in question, while 

Supplemental Table 3.S1 shows all identified compounds and their yields. The raw bio-oil 

and hexane fractions have the highest percentage of detectable monomers (32.44 and 36.57 

wt%, respectively), in terms of the total bio-oil fraction’s weight. This implies that bio-oil 

derived from CTH of AEL is mostly comprised of higher MW nonvolatile molecules (other 

than monomers), as evidenced by the GPC and MALDI results shown in Table 3.2 and 

Supplemental Figure 3.S1.   



78 
 

 

Figure 3.3: GC/MS identifiable monomers for raw bio-oil and SEFs, with total wt% of 
monomers in each bio-oil (only monomers representing > 0.5 wt% of the bio-oil fraction 
were included unless the total weight of other compounds was greater than 50% of total 
monomers).  

[a] 19 represents the proportion of compounds not shown, see Supplemental Table 3.S1.   

 

The GC/MS analysis revealed that the major monomeric phenolics in the raw bio-

oil were phenolics with alkyl side chains (e.g. syringyl propane, 4-ethyl-phenol, 4-

propylguaiacol, etc.) that comprised more than 25 wt% of the bio-oil. Those phenolic 

compounds are likely products from reductive cleavage of β-O-4 linkages and Cα/Cβ or 

Cβ/Cγ bonds during CTH of lignin [57, 62, 212]. Other major monomers were 

hydroxycinnamic acid derivatives such as methyl-4-hydroxyhydrocinnamate (3.04 wt%), 

and ethyl-β-(4-hydroxy-3-methoxy-phenyl)-propionate (0.78 wt%). Hydroxycinnamic 
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acids (i.e., ferulic and p-coumaric acid) are bound by ether, ester, C-C and β-O-4 linkages 

[226, 227], and their cleavage results in the liberation of hydroxycinnamic acid derivatives. 

After the hydroxycinnamic acids are liberated during CTH they can be hydrogenated to 

remove the double bond in the α, β positions of the side chain, or further decarboxylated to 

produce the alkylated phenolics and hydroxycinnamic acid derivates as identified in the 

raw bio-oil [226].  

Additionally, since there was a presence of carboxylated phenolics like methyl-4-

hydroxyhydrocinnamate  and vanillin derivatives this indicates a lack of complete 

decarboxylation occurring, which is seen more often in reducing atmospheres (hydrogen) 

compared to the inert (nitrogen) atmosphere used in this study [212]. While other works 

have identified phenolics that maintained the C-C double bond in the α, β, or γ positions 

[226, 228], we only identified two compounds (2,6-dimethoxy-4-(2-propenyl)-phenol and 

eugenol) that combined only accounted for 0.3% of total bio-oil weight (Supplemental 

Table 3.S1). Because unsaturated C-C double bonds on side chain are highly reactive, 

promote lignin repolymerization, and are prone to hydrogenation [229], these compounds 

were only present at very low concentrations. To further elucidate the reductive chemistry 

performed by CTH of AEL, HSQC NMR was performed on the AEL and subsequent raw 

bio-oil after CTH.  

HSQC NMR of the AEL displayed very few types of linkages present, however a 

small amount of β-O-4 can be seen (Figure 3.4). Despite its smaller presence, the 

integration ratio of β-O-4 to aromatics (S, G, H subunits) was found to be 27%, using the 

quantitative methods described by Wen et al [219]. This value represents a semiquantitative 

measure of the amount of monomeric phenolics that can be released from AEL after 
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depolymerization of β-O-4 linkages. Additionally, this assumes complete release of 

monomers via breaking β-O-4  bonds which, of course, may not be attainable given that 

the inter-unit linkages may not be an end group or part of two consecutive β-O-4  bonds. 

Comparatively, our results indicate that CTH of AEL produced monomer yields of 15.96 

wt% based on the weight of lignin. Therefore, CTH released a little more than half of the 

available monomers from β-O-4 cleavage, since we do not expect to cleave 100% of 

linkages during CTH or produce all available monomers, these results are as anticipated. 

More prevalent in the AEL were cross-peaks that correspond to p-coumarate (pCA) and 

ferulic acid (FA). These cross-peaks, along with those corresponding to the β-O-4 linkage, 

were noticeably absent after CTH. This is unsurprising given that CTH should cleave the 

Cβ-O bond in the lignin β-O-4 linkage [57, 62, 212]. Moreover, alkyl phenols are known 

to be produced from CTH of lignin with Ru/C [218]. This is reflected in the HSQC by the 

significantly increased number of CH2 (red) and CH3 (gold) cross-peaks in the CTH lignin 

and the absence of double bonds at the Cα/Cβ or Cβ/Cγ positions. Even more so, there were 

direct cross peaks associated with syringyl propane, which was found to account for over 

13 wt% of the raw bio-oil.  The aromatic region of the NMR for the raw bio-oil compared 

to AEL, also displays cross peaks consistent with reduced structures of pCA (H-pCA2/6 and 

H-pCA3/5), however, the exact functionality of the alkyl chain is not easily revealed with 

HSQC. Overall, HSQC NMR data supports the monomers found in the GC/MS data and 

the reductive chemistry that occurs during CTH, as described above.  
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Figure 3.4: 1H-13C HSQC NMR of AEL and raw bio-oil derived from CTH. The structures 
of lignin compositional units and side-chain linkages were coded with colors corresponding 
to the cross peaks in the spectra. 
 

Many of the same compounds found in the raw bio-oil were found in the SEFs. 

However, because the SEFs concentrated specific fractions of the raw bio-oil, there were a 

few new compounds found that were at too low of a concentration to be detected in the raw 

bio-oil. The SEFs had decreasing extraction efficiency of identifiable monomers with 

increasing polarity and order of extraction with the following values: hexane 36.57 wt%, 

petroleum ether 24.65 wt%, chloroform 14.24 wt%, ethyl acetate 5.04 wt%, and the 

leftover water fraction retaining 0.81 wt% (Figure 3.3). This also coincides with the GPC 

data, which indicated a gradual increase in the average MW in the order of extraction. It is 

surprising that chloroform extracted only 14.24 wt% of identifiable monomers, despite 

extracting over 50 wt% of the total raw bio-oil and having 30 identifiable monomers 

(Supplemental Table 3.S1). It is possible that there were no residual monomers present at 
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high enough concentrations to extract since chloroform was the third solvent used during 

sequential extraction. This is further supported by the fact that most of the chloroform’s 

extracted monomers were vanillin derivatives (i.e., ethyl homovanillate and homovanillyl 

alcohol), which were found to account for less than 0.5% of total raw bio-oil’s weight 

(Supplemental Table 3.S1). Additionally, the MALDI-TOF spectra for the chloroform 

fraction showed a much larger presence of peaks associated with dimers, trimers, and even 

larger oligomers compared to monomers, suggesting that the oligomers from the raw bio-

oil were more easily extracted by polar solvents. Even though other works have shown 

chloroform and ethyl acetate have the greatest total extraction efficiency of phenolics in 

lignin based bio-oils when used individually [66, 67, 230], the use of sequential extraction 

here limits the concentration of monomeric compounds after each step.  

The hexane and petroleum ether SEF’s were primarily composed of alkylated 

phenolics (i.e., syringyl propane, 4-ethylphenol, and 4-propylguiacol), which can be 

attributed to the alkylated side chains with increasing affinity to the nonpolar solvents. 

Furthermore, results show that syringyl propane accounts for 26.77% and 16.57% of 

hexane and petroleum ethers total bio-oil weight, respectively, suggesting that compounds 

with alkylated or non-polar side chains can be preferentially extracted with the non-polar 

solvents used in this study.  Similarly, chloroform and ethyl acetate SEF’s contained large 

amounts of phenolics with increased oxygenated functional groups (i.e., ethyl 

homovanillate and homovanillyl alcohol) that would have a higher affinity for polar 

solvents. The leftover water fraction had four identifiable phenolic monomers that 

accounted for only 0.81 wt% of its weight (Figure 3.3), indicating that sequential liquid-

liquid extraction can effectively remove almost all the bio-oil from the aqueous phase. 
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While the data is not reported here, low concentrations (small peaks) of sugar derivatives 

(e.g. glucose, xylose, mannose etc.) were identified in GC/MS spectra of the water fraction. 

Those sugar derivatives likely come from the residual cellulose and hemicellulose present 

in the AEL, and the lack of identifiable phenolics further suggests that the water fraction 

may contain mostly residual carbohydrate derivatives. Collectively, results from this study 

support that lignin based phenolics can be preferentially separated based on polarity during 

sequential extraction.  

When examining the mass balance and the monomer yields together, our data 

indicates a net loss of total monomers after extraction. Given the mass balance percentages 

in Table 3.1 and total monomer percentages in Figure 3.3, when summing the total 

monomer content in the SEFs there should only be 19.19 wt% of monomers in the raw bio-

oil. This is different from the 32.44 wt% of monomers reported for the raw bio-oil (Figure 

3.3), which represents a ~40% reduction. The apparent loss of monomers can be attributed 

to phenolic degradation, repolymerization, or evaporation as a result of removing the 

solvent during the drying step. Previous studies comparing drying methods of plant 

extracts/oils have reported losses in total phenolics when drying under vacuum or at 

temperatures above 40°C [231, 232]. Since the bio-oil fractions were dried in a vacuum 

oven at 60°C, this could explain the loss of monomers.  Furthermore, due to the highly 

reactive nature of the lignin monomers after depolymerization, lignin condensation could 

be another reason causing the loss of monomeric phenolics [233-236].  Despite the recent 

work on preventing lignin condensation during thermochemical lignin decomposition and 

bio-oil aging [233, 234], these efforts are out of the scope of this study. Future investigation 
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is warranted to look at the stability of the recovered bio-oil fractions and methods to prevent 

lignin condensation. 

Similar level of mass losses was seen in individual monomers probably caused by 

the drying and condensation reactions as well. For example, the raw bio-oil was comprised 

of 13.12% w/w of syringyl propane and when adding up all the SEF’s syringyl propane 

content, in terms of their extraction efficiency, there would be 8.39% w/w of syringyl 

propane in the raw bio-oil. This equates to a 35% reduction, which is comparable to the 

40% w/w reduction in total monomers described above. However, other monomers such 

as 4-ethylphenol, 4-propylguaciol, and methyl 4-hydroxyhydrocinnamate experienced a 

much larger reduction in weight at around 75-85%. Since they accounted for a much lower 

percentage of the raw bio-oils weight compared to syringyl propane (<5% individually), 

weight loss of those compounds may reflect into greater % reductions. Therefore, further 

investigations will need to optimize the drying stages after bio-oil recovery to maximize 

and create more consistent monomer yields.  

Antimicrobial activity  

The raw bio-oil and SEFs were tested for antimicrobial properties against Gram-

positive bacteria (B. subtilis, L. amylovorus, and S. epidermidis), Gram-negative bacterium 

(E. coli), and yeast (S. cerevisiae) by examining differences in growth measured as OD600. 

These microorganisms were chosen because they represent important production strains 

(S. cerevisiae) or contamination organisms involved in the corn ethanol biorefinery (L. 

amylovorus), medical (S. epidermidis) and food processing (B. subtilis) environments 

where antimicrobials are commonly needed [237-239].   
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Figure 3.5 shows a heat map of the degree of inhibition of the raw bio-oil at 

different concentrations against all tested organisms. Except for the lactobacillus species, 

the raw bio-oil was effective at inhibiting all microbes for >90% reduction in growth at 

concentrations ≤ 3 mg/mL.  L. amylovorus did show ~70% reduction of growth at 2-2.5 

mg/mL. Since the authors noticed a slight emulsion being formed at higher bio-oil 

concentrations (3-4 mg/ml) in the MRS broth culturing the lactobacillus, they attribute the 

apparent decrease in activity to the emulsion being read in the OD600 values compared to 

actual microbial growth. Nonetheless, the raw bio-oil was effective at inhibiting the other 

microorganisms, especially against the yeast and other Gram-positive bacteria (B. subtilis 

and S. epidermidis) at lower concentrations compared to the Gram-negative bacterium (E. 

coli). Other studies have also determined that Gram-positive bacteria are more susceptible 

to phenolics derived from plant extracts and wood vinegars, due to the absence of an outer 

membrane of lipoprotein and lipopolysaccharides that regulate access of antimicrobials 

into the underlying cell structure [127, 240]. Based on the GC/MS data, the raw bio-oil at 

concentrations of 1.5-3 mg/mL would contain ~0.4-0.9 mg/mL of monomeric phenolics; 

while previous work on wood vinegars have shown that phenolic content as low as 0.06-

0.32 mg/mL can inhibit growth of Gram-positives and even some fungi [127]. This clearly 

illustrates the importance that monomers may have on the antimicrobial properties of the 

raw bio-oil.  
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Figure 3.5: Heat map showing the percent reduction in growth for all microorganisms 
tested against different concentrations of raw bio-oil. Letters indicate differences at 95% 
confidence where values are mean±SE (n=3), using one-way ANOVAs and Tukey’s 
pairwise comparisons. Percent reduction in growth for all other SEFs can be found in 
Supplemental Table 3.S2. 
 

Figure 3.6 summarizes the raw bio-oil and SEF’s antimicrobial activity by 

illustrating the concentrations of bio-oil that inhibited microbial growth by ≥ 90%. In 

general, the SEFs show a decrease in antimicrobial activity with a decrease in total 

identifiable monomers. For example, hexane has the highest percentage of monomers 

(36.57 wt%) compared to all other SEFs and it showed complete inhibition of all organisms 

at concentrations ≤ 3 mg/mL (Figure 3.6). However, the chloroform fraction, which had 

significantly less monomers, shows inhibition at lower concentrations than the hexane 

fraction against L. amylovorus and B. subtilis. Since chloroform extracted the largest 

amount of the bio-oils weight and contains a larger percentage of oligomers, its 

antimicrobial activity may be driven by oligomers compared to monomers. Similarly, the 

ethyl acetate fraction showed a ≥ 90% reduction in S. epidermidis growth at 0.5 mg/ml, 

which is lower than hexane, but the other organisms appear more tolerant to the ethyl 

acetate fraction with only 40%-75% reduction in growth even at the highest bio-oil 

concentration of 4 mg/ml. This could indicate the unidentifiable compounds are causing a 

species-specific interaction against S. epidermidis. Meanwhile, the water fraction showed 

no inhibition at 4 mg/mL against B. subtilis, S. cerevisiae, and L. amylovorus, but did have 
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a 57% reduction in growth for E. coli and 60% for S. epidermidis. The loss of antimicrobial 

activity for the water fraction in most of the organisms could be due to its extremely low 

phenolic content (0.81%) and presence of residual sugars.   

In a previous study, we tested monensin as a model antibiotic. Monensin has been 

shown to have selectivity inhibition against L. amylovorus but does not inhibit the growth 

of S. cerevisiae (Oliva Neto, Lima et al. 2014). Our test revealed that monensin at the 

lowest concentrations of 0.0004 mg/mL completely inhibits the growth of L. amylovorus 

but has minimal effect on S. cerevisiae and E. coli (Supplemental Figure 3.S2).  Since the 

traditional antibiotics are used at a much lower concentration for microbial inhibition, we 

do not believe that it is directly comparable to bio-oils tested in this study at the mg/ml 

level. 
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Figure 3.6: Raw bio-oil and SEF concentrations causing greater than 90% inhibition 
compared to the control (NI = no inhibition, and percent values are degree of inhibition at 
highest concentration tested). All percent reduction in growth values at every bio-oil 
concentration tested for the raw bio-oil and SEFs can be found in Supplemental Table 
3.S2. 
 

There is a general trend that monomer yields seem to be a driver of antimicrobial 

properties in the bio-oils. For example, when comparing the raw bio-oil with the hexane 

and petroleum ether fractions there is a direct correlation to syringyl propane content and 

antimicrobial activity against the bacteria.  The hexane fraction has a syringyl propane 

content of 26.77 wt% of bio-oil, petroleum ether 16.57%, and the raw bio-oil 13.12% 

(Figure 3.3), so syringyl propane content is in the following order: hexane>petroleum 

ether>raw bio-oil. Against each bacterium, the minimum bio-oil concentration causing ≥ 

90% reduction in growth is lowest in hexane and highest in the raw bio-oil, which follows 

the same trend as syringyl propane content. Based on this observation, syringyl propane 

was synthesized and tested against each microorganism for antimicrobial properties at the 
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same concentrations as the bio-oils. Supplemental Table 3.S3 shows the percent 

inhibition values for syringyl propane with a methods section describing its synthesis. It 

can be seen that syringyl propane was effective at inhibiting 100% of growth for each 

microorganism at concentrations less than 4 mg/ml. Specifically, S. epidermidis, S. 

cerevisiae, and L. amylovorus were affected the greatest as they were completely inhibited 

at 1-1.5 mg/ml, whereas B. subtilis and E.coli were completely inhibited at 3 and 4 mg/ml, 

respectively. This data illustrates that syringyl propane has significant antimicrobial 

properties, but the concentration of syringyl propane in each bio-oil fraction at an overall 

bio-oil concentration that completely inhibited each microorganism is still much lower than 

the concentration when syringyl propane was tested alone. For example, B. subtilis was 

inhibited at a concentration of 1 mg/ml by the hexane fraction that contains  ~ 0.26 mg/ml 

of syringyl propane  based on GC/MS results, but pure syringyl propane needs to be at a 

concentration of 3 mg/ml to completely inhibit B. subtilis. Thus, it is believed that the 

synergism between the mixture of compounds identified and unidentified could still be a 

major driver for the bio-oils antimicrobial properties.  

On the other hand, the chloroform and ethyl acetate fractions did not contain a large 

concentration of syringyl propane, but they did clearly show a larger distribution of dimers, 

trimers, and larger oligomers in their MALDI spectra compared to the other SEFs, albeit 

unquantified or identified, so these larger oligomers could also be a driver and source of 

these bio-oils antimicrobial activity. Furthermore, despite the fact that many of the 

monomers present were individually at lower concentrations than previously reported to 

having antimicrobial activity [125, 127, 128, 137, 241], previous work has shown that 

when mixing phenolics at low concentrations their activity was higher than the individual 
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monomers, which suggests the existence of positive synergism when multiple phenolics 

are present [242]. Therefore, these data illustrate that each bio-oil is a complex and diverse 

cocktail of monomers and unidentified or quantified oligomers, so there may be unknown 

synergisms or reactions occurring with the microorganisms that drive the antimicrobial 

activity seen here than just individual monomers. To this end, future work should examine 

various mixtures of the identifiable monomers found here, at low concentrations, to 

elucidate their antimicrobial interactions. With the absence of larger oligomers, these types 

of experiments could determine the true importance of the unidentified oligomers and 

interactions of model monomers in these bio-oil’s antimicrobial properties.   

In order to infer the mode of action of the raw bio-oil, representative Gram-negative 

(E. coli) and Gram-positive (B. subtilis) bacteria were grown in the presence of raw bio-oil 

and assessed for potential membrane damage by staining with SYTO9 and propidium 

iodide (PI). SYTO9 is a green fluorescent dye that penetrates cell membranes freely and 

has moderate affinity to their nucleic acids, while propidium iodide is a red fluorescence 

dye that can only penetrate damaged membranes and due to its higher affinity for nucleic 

acids it can displace the weaker bound SYTO9 dye causing the damaged cell to show a 

strong red fluorescence instead [221]. Therefore, cells that fluoresce green (SYTO9) 

represent live cells without membrane damage and cells that fluoresce red (PI) can be 

considered membrane damaged or dead. Figure 3.7 (A-D) shows images of the bacterial 

cells stained with PI and SYTO9 after growing for 5 h at 37ºC with and without raw bio-

oil (4 mg/ml). Additionally, Figure 3.7 (E-F) shows the ratio of SYTO9/PI fluorescence, 

representing the ratio of live cells to membrane damaged/dead cells, for both E. coli and B. 

subtills incubated with varying concentrations of raw bio-oil for 5 h at 37ºC.  
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Figure 3.7: Fluorescence (red and green) images of E. coli (A,B) and B. subtilis (C,D) 
grown without bio-oil (A,C) and with 4 mg/mL of raw bio-oil (B,D) for 5h at 37ºC stained 
using SYTO9 (green) and propidium iodide (PI, red). (E,F) SYTO9/PI fluorescence ratios 
for E. coli and B. subtilis treated with varying concentration of raw bio-oil which indicates 
the ratio of live/dead or undamaged/membrane-damaged cells. Letters on the bars indicate 
differences at 95% confidence where values are mean±SE (n=3), using one-way ANOVAs 
and Tukey’s pairwise comparisons. 

The data show a statistically significant decrease in SYTO9/PI ratio comparing the 

control with cells in the presence of raw bio-oil, where the ratio decreased from ~4.5 and 

7.4 (control) to 0.6 and 0.5 (at bio-oil concentration of 4 mg/ml) for E. coli and B. subtills, 

respectively. This along with the microscopic imaging clearly shows a significant increase 

in the proportion of cells that fluoresce red and are assumed to have PI-permeable 

membranes primarily due to death or damaged membranes [221]. Lignin derivatives have 

been thought to directly cause cell membrane damage or have ionophoric activity that 

ultimately results in cell lysis and death [122, 243]. However, since both Gram-negative 
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and positive bacterial cells have increases in PI stained cells when exposed to the raw bio-

oil, this suggests that the outer membranes of Gram-negatives that can confer insensitivity 

to ionophores were not sufficient in providing defense to the bio-oils [171, 244]. 

Subsequently, this indicates that the raw bio-oil does not have an ionophoric mode of action 

but could have a non-specific physical interaction with the bacterial membranes that results 

in membrane permeability (morphological), physical damage, or direct cell death [245, 

246]. Furthermore, the cells of both Gram-negative and positive bacteria showed a greater 

amount of cells stained with PI compared to SYTO9 at high bio-oil concentrations, 

suggesting that the bio-oil displays more bactericidal activity than bacteriostatic activity 

[247], due to the direct cell death caused by cell membrane damage compared to just 

inhibiting cell growth. Therefore, in summary, these results suggest total monomer 

concentration and the presence of specific monomers (i.e., syringyl propane) show 

correlations to antimicrobial activity, but the exact mode of action remains unclear and the 

antimicrobial activity of unidentified or quantified oligomers/compounds remains to be 

further investigated.  

From an applications standpoint, the bio-oil and SEFs show a very general 

antimicrobial action that is not specific to either Gram-negative or positive bacteria, nor 

fungi (yeast). This would exclude them from being used in highly specific antimicrobial 

roles, such as preventing contamination in ethanol fermentation. Compared to traditional 

antibiotics like ampicillin, kanamycin, monensin, and virginiamycin, which are needed at 

the ppm level to completely inhibit microbial growth, the bio-oils tested here may not be 

suitable for commercial applications based on the high concentrations needed for microbial 

inhibition.  Additionally, to be considered for medical or food related uses, further work in 
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using non-toxic extraction solvents and catalysts must be done, and the bio-oils must be 

examined for damage and mutagenic effects on mammalian cells. Despite these 

shortcomings, this study still provides insights into the general antimicrobial properties of 

lignin derived compounds that could guide future developments.    

Conclusions  

Purified alkali-enzymatic corn stover lignin (AEL) was depolymerized by catalytic 

transfer hydrogenolysis using supercritical ethanol and a Ru/C catalyst, generating a bio-

oil stream at high yields. Sequential extraction using hexane, petroleum ether, chloroform, 

and ethyl acetate extracted the raw bio-oil into 5 fractions at 50.7-5.8 wt% yields of total 

bio-oil in the order of chloroform > hexane > petroleum ether ≈ water > ethyl acetate. 

Extraction efficiency followed the trend that the first solvent used in each change in 

polarity during sequential extraction had the highest percentage of products extracted. 

Molecular weights of the raw bio-oil and sequential extraction fractions (SEF) were much 

lower than the purified AEL, demonstrating depolymerization of lignin into low molecular 

weight products. The monomers in the bio-oil fractions contained primarily alkylated 

phenols, hydrogenated hydroxycinnamic acid derivatives, syringol and guaiacol-type 

lignins. Results suggest that the total monomer concentration and the presence of specific 

monomers (i.e., syringyl propane) may correlate to the antimicrobial activity, but the exact 

mode of action or antimicrobial activity caused by the complex mixtures of monomers and 

unidentified oligomers remains unclear. This study provides insights into the types of lignin 

derived compounds that confer antimicrobial activity and that compounds can be 

preferentially extracted from lignin bio-oils using LLE method. 
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Supplemental Information 

 

Figure 3.S1:  DHAP/Li+ MALDI spectrum (0–2000 m/z) of the raw bio-oil (B) and SEFs 
(C-G), compared to the background spectra of the matrix (A), DHAP/Li+ MALDI 
spectrum (0–2000 m/z) of the raw bio-oil (B) and SEFs (C-G), compared to the background 
spectra of the matrix (A).

 

Table 3.S1: List of compounds in raw bio-oil and sequentially extracted fractions identified by 
GC-MS and their yields based on wt% of the bio-oil fraction 

Fraction 
Numeric 
ID from 
Figure 3 

Compound Yield 
(wt%) 

Raw Bio-
Oil 1 Syringyl propane 13.12 

 2 4-ethyl-phenol 4.63 
 3 4-propylguaiacol 4.62 
 4 Methyl 4-hydroxyhydrocinnamate 3.04 
 5 4-ethylguaiacol 2.70 
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 6 Ethyl-β-(4-hydroxy-3-methoxy-phenyl)-
propionate 0.78 

 7 2,6-dimethoxy-4-ethylphenol 0.66 
 8 Creosol 0.61 
 19 p-Cresol 0.31 
 19 Homovanillyl alcohol 0.30 
 19 Syringol 0.28 
 19 1-Propanone, 1-(2,4-dimethoxyphenyl)- 0.22 
 19 Guaicol 0.22 
 19 Ethyl vanillate 0.21 
 19 4-propyl-phenol 0.18 
 19 4-Allylsyringol 0.16 
 19 Eugenol 0.14 
 19 Phenol 0.12 
 19 Ethyl homovanillate 0.11 
  Total 32.44 

Hexane 1 Syringyl propane 26.77 
 3 4-propylguaiacol 3.93 
 2 4-ethyl-phenol 1.36 
 7 2,6-dimethoxy-4-ethylphenol 1.29 
 6 Ethyl-β-(4-hydroxy-3-methoxy-phenyl)-

propionate 0.87 
 5 4-ethylguaiacol 0.63 
 9 2,5-Dimethoxybenzyl alcohol 0.57 
 19 Methyl 4-hydroxyhydrocinnamate 0.39 
 19 4-methoxy-propylbenzene 0.27 
 19 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol 0.15 
 19 1-Propanone, 1-(2,4-dimethoxyphenyl)- 0.13 
 19 4-propyl-phenol 0.10 
 19 Syringol 0.06 
 19 3-(1,1-dimethylethyl)-4-methoxy-phenol 0.05 
  Total 24.65 

Petroleum 
Ether 1 Syringyl propane 16.57 

 4 Methyl 4-hydroxyhydrocinnamate 2.43 
 6 Ethyl-β-(4-hydroxy-3-methoxy-phenyl)-

propionate 1.91 
 7 2,6-dimethoxy-4-ethylphenol 0.81 
 10 2-methyl-5-(1-methylethyl)-phenol 0.49 
 19 Homovanillyl alcohol 0.45 
 19 3-ethoxy-2-hydroxy-benzaldehyde 0.31 
 19 1,2,4-Trimethoxybenzene 0.31 
 19 3,4,5-Trimethoxyphenylacetic acid 0.23 
 19 Ethyl vanillate 0.23 
 19 Ethyl homovanillate 0.22 
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 19 4-propylguaiacol 0.22 
 19 4-Allylsyringol 0.19 
 19 3-(3-Methoxyphenyl)propionic acid ethyl ester 0.12 
 19 4-ethyl-phenol 0.06 
 19 4-propylguaiacol 0.06 
 19 Syringol 0.02 
 19 4-Ethylguaiacol 0.01 
 19 4-propyl-phenol 0.01 
 19 4-butyl-phenol 0.01 
 19 2-ethyl-4,5-dimethyl-phenol 0.01 
  Total 24.65 

Chloroform 11 Ethyl homovanillate 4.68 
 12 Homovanillyl alcohol 4.34 
 13 Ethyl vanillate 0.80 
 14 Dihydromethyleugenol 0.59 
 5 4-ethyl-phenol 0.58 
 15 (3,4-Dimethoxyphenyl)-methoxymethanol 0.53 
 19 Syringol 0.47 
 19 1,2,4-Trimethoxybenzene 0.40 
 19 4-Allylsyringol 0.28 
 19 2,6-dimethoxy-4-ethylphenol 0.24 
 19 Benzeneacetic acid, 4-hydroxy-, ethyl ester 0.17 
 19 Ethyl-β-(4-hydroxy-3-methoxy-phenyl)-

propionate 0.11 
 19 3-hydroxy-4-methoxy-benzaldehyde 0.10 
 19 3,4-Diethoxyphenylacetic acid 0.10 
 19 3,4,5-Trimethoxyphenylacetic acid 0.09 
 19 Syringyl propane 0.08 
 19 Methyl (3,4-dimethoxyphenyl)(hydroxy)acetate 0.08 
 19 Apocynin 0.08 
 19 3-ethoxy-2-hydroxy-benzaldehyde 0.07 
 19 5-methoxy-2,3-dimethyl-phenol 0.07 
 19 4-hydroxy-3-methoxy-Phenylacetylformic acid 0.07 
 19 Methyl-(2-hydoxy-3-ethoxy-benzyl)ether 0.07 
 19 4-Ethylguaiacol 0.06 
 19 Dihydroeugenol 0.05 
 19 p-Cresol 0.04 
 19 Methyl 4-hydroxyhydrocinnamate 0.03 
 19 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone 0.02 
 19 3-Methoxy-5-methylphenol 0.02 
 19 3-Methylguaiacol 0.01 
 19 2-propyl-phenol 0.01 
  Total 14.24 

Ethyl 
Acetate 16 Methyl 4-hydroxyhydrocinnamate 1.78 



98 
 

 12 Homovanillyl alcohol 0.52 
 1 Syringyl propane 0.50 
 13 Ethyl vanillate 0.36 
 17 β-(4-Hydroxy-3-methoxyphenyl)propionic acid 0.30 
 15 (3,4-Dimethoxyphenyl)-methoxymethanol 0.27 
 19 3,5-Dimethoxy-4-hydroxyphenylacetic acid 0.22 
 19 Ethyl-β-(4-hydroxy-3-methoxy-phenyl)-

propionate 0.15 
 19 1,2-Dimethoxy-4-n-propylbenzene 0.14 
 19 Dihydroeugenol 0.09 
 19 1,2,4-Trimethoxybenzene 0.08 
 19 Vanillin 0.08 
 19 2,6-dimethoxy-4-ethylphenol 0.07 
 19 Homovanillyl alcohol 0.07 
 19 4-Allylsyringol 0.06 
 19 Apocynin 0.05 
 19 4-ethyl-phenol 0.05 
 19 3-(p-Hydroxyphenyl)-1-propanol 0.05 
 19 Syringol 0.05 
 19 Ethyl homovanillate 0.04 
 19 Homovanillic acid 0.03 
 19 Phenyl Vinyl Ether 0.02 
 19 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone 0.02 
 19 4-Ethylguaiacol 0.02 
 19 Tyrosol 0.01 
 19 1-ethoxy-2-methoxy-4-methylbenzene 0.01 
  Total 5.04 

Water 17 β-(4-Hydroxy-3-methoxyphenyl)propionic acid 0.35 
 4 Methyl 4-hydroxyhydrocinnamate 0.20 
 18 Tyrosol 0.18 
 14 Homovanillyl alcohol 0.08 

  Total 0.81 
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Table 3.S2: Percent reduction of growth for microorganisms tested against different concentrations of the raw bio-oil and SEFs. Letters 
indicate differences at 95% confidence where values are mean±SE (n=3), using one-way ANOVAs and Tukey’s pairwise comparisons 
across the different concentrations for each microorganism. 

  Percent Reduction in Growth 
  Bio-oil Concentration (mg/ml) 

Fraction Organism 0.5 1 1.5 2 2.5 3 4 
Raw B. subtilis 47.14±3.04A 71.36±3.90AB 84.97±15.03BC 100C 100C 100C 100C 

 E. coli 49.65±4.95A 50.13±3.52A 46.93±0.59A 72.60±1.27B 53.46±1.94A 100C 100C 

 S. 
epidermidis 41.75±3.86A 38.89±7.42A 47.77±10.32AB 65.85±2.35BC 79.86±4.84C 100D 100D 

 S. cerevisiae 41.18±5.03A 69.27±4.18B 68.99±12.06B 100C 100C 100C 100C 
 L. 

amylovorus 5.59±1.88A 15.65±2.57A 41.27±5.32B 64.70±3.49C 69.90±1.95C 59.43±5.45BC 57.33±6.31BC 

Hexane B. subtilis 87.47±3.30A 98.23±1.77B 100B 100B 100B 100B 100B 
 E. coli 19.77±2.98A 62.55±3.35B 80.92±4.97C 88.15±3.20CD 100D 100D 100D 
 S. 

epidermidis 37.20±12.60A 85.99±1.02B 100B 100B 100B 100B 100B 
 S. cerevisiae 11.42±5.96A 72.60±3.64B 90.91±3.41CD 85.04±1.71D 98.75±1.25C 100C 100C 
 L. 

amylovorus NI 5.44±1.62A 27.60±3.92B 55.32±2.57C 57.13±7.93C 100D 100D 

Petroleum 
Ether B. subtilis 24.50±6.50A 85.38±3.10B 100B 100B 100B 100B 100B 
 E. coli 23.35±10.90A 21.84±8.52A 28.71±5.11A 65.74±9.08B 100B 100B 100B 
 S. cerevisiae 17.52±3.93A 32.69±3.92AB 50.53±3.49B 74.02±0.65C 82.89±2.76C 85.03±5.26C 100D 

 S. 
epidermidis 67.48±7.56A 54.25±0.34A 52.58±4.48A 94.59±5.41B 100B 100B 100B 

 L. 
amylovorus NI 24.04±3.54AB 54.64±2.21AB 55.49±6.38AB 65.91±11.68AB 62.54±11.29AB 89.70±6.54B 

Chloroform B. subtilis 89.47±2.72A 86.65±4.12A 92.06±1.63A 89.09±2.57A 93.84±1.36A 88.32±2.34A 93.69±2.26A 
 E. coli 42.07±7.94A 54.36±3.51AB 57.21±3.67AB 64.94±4.07B 97.11±2.50C 100C 100C 

 S. cerevisiae 20.62±6.92A 38.35±9.77AB 32.11±5.96AB 28.69±6.82A 41.00±7.31AB 62.02±6.82B 100C 
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 S. 
epidermidis 46.53±4.53A 66.57±3.50AB 57.61±4.33AB 68.23±2.94AB 69.33±0.69AB 78.49±8.94BC 100C 

 L. 
amylovorus NI 24.69±5.76B 58.35±4.31C 77.94±3.29D 88.61±3.75DE 93.50±4.47DE 100E 

Ethyl 
Acetate B. subtilis 26.04±2.12A 22.80±4.14A 40.06±3.98AB 39.11±9.27A 26.22±7.86A 33.14±3.14A 70.28±3.18B 

 E. coli 12.12±7.90A 12.52±6.43A 46.21±3.30AB 68.88±19.81B 63.35±5.96B 72.68±3.71B 73.98±0.83B 

 S. cerevisiae NI 5.16±0.40A 33.53±1.00B 41.02±0.12BC 37.73±1.47B 40.67±6.23BC 59.21±6.08C 

 S. 
epidermidis 78.24±8.73A 89.33±3.04A 89.77±8.27A 100A 100A 100A 100A 

 L. 
amylovorus 6.27±2.44A 27.63±2.83B 53.16±2.61CD 40.95±3.51BC 57.64±3.46D 43.68±3.84BCD 44.26±1.21CD 

Water B. subtilis NI NI NI NI NI NI NI 
 E. coli 11.00±4.26A 7.06±1.40A 35.31±5.59B 18.23±2.34AC 34.84±1.08BC 53.86±0.90D 42.46±1.79BD 

 S. cerevisiae NI NI NI NI NI NI NI 

 S. 
epidermidis NI NI NI  16.16±2.12A 42.77±2.17B 83.79±1.61C 100.00±0.00D 

 L. 
amylovorus NI NI NI NI NI NI NI 
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Table 3.S3.3: Percent reduction of growth for microorganisms tested against different concentrations of pure syringyl propane. Letters 
indicate differences at 95% confidence where values are mean±SE (n=3), using one-way ANOVAs and Tukey’s pairwise comparisons 
across the different concentrations for each microorganism. 

 

Synthesis of syringyl propane:  

The synthesis method was adopted from Lundevall et. al. [248]with minor changes: 

4-Allyl-2,6-dimethoxyphenol (1mmol) was dissolved in 5mL methanol in a 10 mL round bottom flask. Cobalt sulfate heptahydrate 
(1mmol, 281mg) was dissolved in 0.7 mL water and added to the solution. The reaction mixture was cooled to 0 °C using an ice 
bath and NaBH4  (4mmol, 151mg) was gradually added to the solution. Post addition, the reaction mixture was removed from the ice 
bath and was stirred for an additional 5 more minutes at room temperature. The solution was filtered and washed twice with 10 mL 
ethyl acetate. The filtrate was extracted with water and ethyl acetate (three times) and the organic phase was collected, combined and 
dried over sodium sulfate. After evaporation of the solvent, 128 mg syringyl propane was obtained (95 % pure by GC-MS) as a clear 
liquid. A QExactive mass spectrometer was used to obtain high resolution accuratemass electrospray mass spectrum of the product 
as a lithum cation adduct that showed an observed m/z 203.1242 consistent with [C11H16O3+Li+]+ (expected m/z 203.1254, ∆ppm -
5.7247). 

 

 

 Percent Reduction in Growth 
 Syringyl Propane Concentration (mg/ml) 

Organism 0.5 1 1.5 2 2.5 3 4 

B. subtilis 18.41±0.81A 
48.07±1.24 B 62.59±3.95 C 60.82±4.07 C 74.78±1.23D 100 E 100E 

E. coli 22.79±1.71 A 52.14±3.71 B 69.38±2.26 C 70.33±1.43 C 71.05±6.65 C 79.76±3.95 C 100 E 
S. epidermidis 19.06±4.16 A 100 B 100 B 100 B 100 B 100 B 100 B 
S. cerevisiae 18.42±4.19 A 82.61±4.08 B 100 C 100 C 100 C 100 C 100 C 
L. amylovorus 25.58±2.08 A 100 B 100 B 100 B 100 B 100 B 100 B 
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Figure 3.S2: Heat map showing the percent difference in growth for microorganisms tested 
against different concentrations of monensin, adapted from Dodge, et al. [215] 
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CHAPTER 4. CONTROLLING BACTERIAL CONTAMINATION DURING FUEL 

ETHANOL FERMENTATION BY UTILIZING THERMOCHEMICALLY 

DEPOLYMERIZED LIGNIN BIO-OILS 
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Abstract 

Lactic acid bacteria (LAB) are the most problematic contamination source during 

fuel ethanol fermentation, which can contribute to significant losses in ethanol yields. 

While fermentation facilities attempt to prevent contamination through extensive sanitation 

practices, the most effective contamination preventatives are antibiotics that selectivity 

inhibits the LAB. However, due to the overuse of these antibiotics, there is an increased 

incidence of antibiotic-resistant bacterial strains. Since lignin is a polyphenolic complex 

derived of phenolic subunits that can confer antimicrobial properties, with potential 

ionophoric modes of action (i.e. selective inhibition of Gram-positives), this study aims to 

depolymerize lignin oxidatively into a bio-oil with selective antimicrobial properties that 

can replace antibiotics in fuel ethanol fermentation. Oxidative depolymerization of corn 

stover lignin with peracetic acid saw over 35% conversion to bio-oil yields and 

demonstrated up to 90% inhibition of commercially sampled LAB at 4 mg/ml with no 

inhibition against fermentation yeast. The highly selective antimicrobial properties of the 

bio-oil are attributed to an ionophoric or membrane damaging mode of action that results 

in cell death, based on fluorescent staining. No inhibition of enzymatic activity for α-

amylase or glucoamylase was also observed. Using the bio-oil (4 mg/ml) as an alternative 

antibiotic treatment during SSF of raw corn starch showed an increase in ethanol 

production as bacterial contamination increased. At the highest contamination ratio of 

1:100 yeast to lactobacillus, the bio-oil increased ethanol production by 8% compared to 

the contamination control. This study illustrates the efficacy of using a lignin bio-oil as an 

antibiotic replacement during fuel ethanol fermentation to reduce contamination by LAB.  
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Introduction  

The U.S. alone produces over 16 billion gallons of fuel ethanol each year and 

because fuel ethanol is primarily produced from the fermentation of corn, anything that 

limits yeast viability will cause significant economic losses (Energy Information 

Administration). Since fuel ethanol fermentations are not produced under completely 

aseptic conditions, chronic and acute bacterial contaminations can occur [249, 250]. Lactic 

acid bacteria (LAB) are considered to be the most problematic due to their production of 

by-products such lactic acids, polysaccharides and gummy biofilms that reduce yeast 

viability [251, 252]. Furthermore, LAB proliferation in fermentation reactors [250], 

consumes essential micronutrients and sugar required for optimal yeast growth and ethanol 

production. Therefore, these bacterial contaminations reduce ethanol yields and can result 

in “stuck” fermentations that cause costly shutdowns of facilities for cleaning [253]. While 

fermentation facilities attempt to prevent contamination through extensive sanitation 

practices, there are so many reservoirs of bacterial contamination that one of the most 

effective contamination preventatives is antibiotics [251, 253].  

Virginiamycin is one of the most commonly used antibiotics in fuel ethanol 

production in the U.S. [254]. However, due to the overuse of antibiotics, there is an 

increased incidence of antibiotic-resistant LAB strains isolated from dry-grind ethanol 

plants [255].  These antibiotics have been shown to persist in downstream coproducts like 

distillers’ grains [255, 256], which is becoming a major concern for consumers of livestock 

that are fed the dietary supplement. Therefore, efforts in the development of new 

antimicrobial agents with good biodegradability and high selectivity against LAB are 

needed to circumvent these issues.  
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Lignin is one of the most abundant naturally occurring sources of phenolic 

polymers on earth and is currently considered a major waste product in the paper and pulp 

industries and industrial lignocellulosic biorefineries [44]. Since lignin is a polyphenolic 

complex, much research has shown that its phenolic subunits can confer antimicrobial 

properties [122, 207]. Lignin’s antimicrobial properties are dictated by the source of the 

lignin, its extraction methods, and chemical structure (i.e. monomers, oligomers and 

functional groups) [12, 122]. Nonetheless, it is believed that lignin phenolics can increase 

the ion permeability of cell membranes in microorganisms through ionophoric activity, 

causing cell lysis [171, 172]. Since ionophores are highly selective against Gram-positive 

bacteria compared to eukaryotes or Gram-negatives that have outer membranes that confer 

insensitivity to ionophores, lignin phenolics with similar selective antimicrobial properties 

would be ideal for selectively inhibiting LAB in fermentation systems.  Additionally, while 

a variety of technical lignins (i.e. Kraft lignin and organosolv lignin) have had notable 

antimicrobial properties, smaller depolymerized lignin oligomers and phenolic monomers 

are noted for increased antimicrobial activity [123]. Therefore, if a lignin depolymerization 

product can show highly selective antimicrobial activity, then that product can serve as an 

alternative to traditional antibiotics while simultaneously valorizing lignin waste streams.  

Some of the most popularly studied depolymerization methods are pyrolysis, 

acid/base/metal catalyzed hydrolysis, hydrogenolysis and oxidation [9, 45, 46]. However, 

pyrolysis and hydrolysis are characterized by increased condensation and repolymerization 

reactions that significantly reduce bio-oil yields [49, 210], and while catalytic transfer 

hydrogenolysis provides increased bio-oil yields and more stable compounds it has energy 

intensive reactions that occur at high pressure and temperatures ranging from 200-300°C 
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[9, 59, 62]. On the other hand, oxidative procedures utilizing oxygen, hydrogen peroxide, 

or peroxyacids can be performed at significantly lower reaction temperatures (24-100°C)  

while still producing relatively high monomer yields [64]. More recent literature has 

focused on peracetic acid as an oxidizer due to its ability to cleave C-C and ether bonds, 

its higher monomer selectivity, high oil yields (18-22% w/w), and the fact that it is 

considered an environmentally benign oxidant [94, 95]. To that end, peracetic acid 

represents a viable lignin depolymerization strategy that could be low cost due to mild 

reaction conditions while maintaining high product yields.  

Therefore, the main objective of this study is to utilize peracetic acid to 

depolymerize lignin and examine the resulting bio-oils antimicrobial activity for use in a 

fuel ethanol fermentation environment. Specifically, the goals are to 1) depolymerize 

alkali-treated corn stover lignin from an ethanol biorefinery into a low molecular weight 

bio-oil by utilizing mild oxidative procedures with peracetic acid, 2) test the antimicrobial 

properties of the lignin bio-oil on yeast and LAB, 3) examine the effects of the lignin bio-

oil on enzyme function for both α-amylase and glucoamylase, and 4) determine the efficacy 

of using the lignin bio-oil as an antibiotic during the simultaneous saccharification and 

fermentation (SSF) of corn starch to reduce contamination by LAB. The results from this 

study provide insights into using depolymerized lignin derivatives as an antibiotic 

replacement for reducing contamination during fuel ethanol fermentation.  
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Experimental Methods 

Lignin Purification 

Corn stover was pretreated at the National Renewable Energy Laboratory (NREL) 

using 0.1g NaOH/ g biomass with 15% solid loading at 80°C for 2 hrs. The lignin residue 

(alkaline enzymatic lignin - AEL) was collected after enzymatic hydrolysis of the 

pretreated corn stover and fermentation and further purified to remove remaining 

carbohydrates by a precipitation method [32]. The resulting lignin was then freeze-dried 

using FreeZone 6-liter console freeze dry system (Labconco, Kansas City, MO), at -50°C 

under 0.1-0.2 mBar vacuum for 72 hrs.   

Structural carbohydrates and lignin composition of the resulting purified AEL 

samples were determined by compositional analysis according to an NREL laboratory 

analytical procedure [180]. The sugar concentration was determined by HPLC (Ultimate 

3000, Dionex Corporation, Sunnyvale, CA, US) equipped with a refractive index detector 

and using a Bio-Rad Aminex HPX-87H column and guard assembly.  

Oxidative Depolymerization of Lignin 

Oxidative depolymerization was carried out by following the procedures in an 

earlier study by Ma, Guo [63]. In short, the purified AEL was treated with peracetic acid 

(PAA) at a PAA dosage of 0.8g PAA/g lignin, with acetic acid used to dilute the reaction 

mixture to 5% solid loading. The reaction occurred at 60 °C for 1 hour while being mixed 

every 10 min. Once the reaction was completed, the reaction mixture was centrifuged at 

4000 rpm to remove unreacted solids and the supernatant was mixed with water at a 1:4 

ratio to create an aqueous phase prior to liquid-liquid extraction. The lignin 
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depolymerization compounds were extracted from the aqueous phase using ethyl acetate 

at a 1:4 ratio for three times. The ethyl acetate fractions were combined and dried under 

vacuum at 60 °C for 24 hrs to obtain the extracted lignin depolymerization compounds 

(namely bio-oil thereafter) that were then dissolved in ethanol and centrifuged to remove 

any undissolved solids. Bio-oil yield was determined by weighing the total bio-oil content 

dissolved in ethanol and dividing by the starting lignin weight.  

Bio-Oil Characterization 

The weight-average molecular weight (Mw) and the number-average molecular 

weight (Mn) of the purified AEL and PAA derived lignin bio-oils were determined using 

gel permeation chromatography (GPC) [216]. An Ultimate3000 HPLC system equipped 

with an Ultra Violet (UV) detector and Mixed-D PLgel column (5 μm particle size, 300 

mm x 7.5 mm i.d., linear molecular weight range of 200 to 400,000 u, Polymer 

Laboratories, Amherst, MA) were utilized. Separation was accomplished in a mobile phase 

of tetrahydrofuran (THF) at a flow rate of 0.5 ml min-1, at 50°C. Elution profiles were 

monitored at UV absorbance of 280 nm and calibrated using low molecular weight 

polystyrene standards (Product No. 48937, Sigma-Aldrich). Polydispersity Index (PDI) 

was calculated using the equation: PDI= Mw/Mn [216]. 

GC/MS was performed on the bio-oil to quantify monomer yields. The bio-oil was 

derivatized by first dissolving it in 0.5ml of pyridine then adding 0.5 ml of BSTFA and 

incubating at 50°C for 30 min. Monomers were identified and quantified by GC/MS using 

an Agilent 7890B GC coupled 5977B MS with an HP-5ms (60 m × 0.32 mm) capillary 

column. The temperature program started at 40 °C with a holding time of 6 min and 
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increased to 240 °C at 4 °C min-1 with a holding time of 7 min, finally the temperature was 

raised to 280 °C at 20 °C min-1 with a holding time of 8 min. Helium was used as a carrier 

gas with a flow rate of 1.2 mL min-1. Helium was used as a carrier gas at a flow rate of 1.2 

mL min−1. Calibration curves were created using commercially available pure compounds: 

guaiacol, syringaldehyde, vanillin, and 4-propylphenol (Sigma Aldrich, St. Louis, MO, 

USA). 

NMR was performed on the purified lignin and the bio-oil. Approximately 100 mg 

lignin sample was dissolved in DMSO-d6/pyridine-d5 (4:1) or DMSO-d6 under mild heat 

and sonication in an NMR tube until a homogeneous mixture was obtained.  NMR spectra 

were acquired on a 500 MHz JEOL ECZR (Peabody, MA, USA) NMR spectrometer 

equipped with a 5-mm Royal Probe.  The central DMSO solvent peak was used as an 

internal reference (δC 39.5, δH 2.5 ppm).  The 1H–13C correlation experiment was an HSQC 

experiment (JEOL pulse sequence ‘hsqc_edit_dec_en’) with 25% non-uniform sampling 

(NUS).  HSQC experiments were carried out using the following parameters: acquired 

from 11 to -1 ppm in f2 (1H) with 1024 data points (acquisition time 136 ms), 220 to 0 ppm 

in f1 (13C) with 64 increments (rebuilt to 256 with NUS) and 192 scans (384 scans for 

NREL lignin) with a 1.5 s interscan delay.  In all cases, processing used typical sine bell 

(90o) in f2 and squared sine-bell (90o) in f1 (first point 0.5).  Volume integration of contours 

in HSQC plots used Maetrelabs MestReNova 14.0 (Mac version) software, and 

quantification of lignin linkages using methods described by previous work [219]. Spectra 

are displayed in absolute value mode and color coded (in Adobe Illustrator CC 2019) using 

literature reference standards [220].  
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Additionally, the total amount of phenolic compounds present in the bio-oil was 

estimated via microtiter-plated Folin–Ciocalteu assay [257]. In short, reactions took place 

in 96-well microtiter plates and in each well 150 uL of water, 10 uL of Folin–Ciocalteu 

(F-C) reagent, and 2 μL of the proper dilution of test compound were added. After this, the 

wells were mixed for 5 min and 30 uL of a 20% aqueous sodium carbonate solution was 

added to each well. The contents of the were then incubated at 45 °C for 30 min in a dry 

bath. The absorbance of the aliquots at 765 nm after the reaction with F-C reagent was 

measured against a blank using deionized water. The amount of total phenolics were 

quantified by correlating absorbances to standard curve generated from phenol standards 

at different concentrations.  

Microbial Cultivation  

Lactobacillus fermentum (0315-1) was provided by Dr. Chris Skory (Renewable 

Product Technology Research Unit, USDA-Agricultural Research Service, Peoria, IL).  

The other lactic acid producing bacteria used were directly sampled from commercial 

ethanol refiners and they were provided by Dr. Patrick Heist from Ferm-SolutionsTM 

(Danville, KY): Pediococcus pentosaceus, Enterococcus faecalis, Bacillus 

amyloliquefaciens, Lactobacillus fermentum, and Acetobacter pasteurianus. The yeast 

strain used in this study was a commercially available high-performance fuel ethanol yeast 

strain (Saccharomyces cerevisiae) from Ferm-SolutionsTM called Fermpro S ®. Each 

microbe was grown on the recommended liquid media by Agricultural Research Service 

Culture Collection (NRRL) with all LAB using M.R.S broth (Oxoid, CM0359) and S. 

cerevisiae using YPD media (Fisher BioReagentsTM, BP2469). All LAB had frozen 

cultures prepared by first growing each microbe in liquid culture at 180 rpm shaking speed 
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for 12 hrs at 37°C. These culture’s cells were pelletized via centrifugation and washed with 

sterile media, then 500 μL of the washed cultures were added to 500 μL of sterilized 50% 

glycerol in a 2 mL cryovial and frozen at -80°C until use. The yeast strain was provided as 

an active dried product and prior to experiments the dried product was dissolved in YPD 

and allowed to grow overnight at 32°C and shaking speed of 180 rpm in a flask.  

Antimicrobial Assay  

Frozen cultures of each microbe were first revived by adding cryovial contents to 

liquid media and allowed to grow for 12 hr at 180 rpm shaking speed and respective 

incubation temperature above. Afterwards the cells were pelletized, washed, and 

resuspended in fresh liquid media. To test for the bio-oil and sequential extraction fractions 

antimicrobial properties, each microbe was cultivated in 48-well plates and the OD600 was 

monitored for 30 hrs with time points taken at 0, 6, 10, 18, and 30 hrs.  These time points 

were previously found to represent key points of microbial growth curves in unpublished 

data. All wells were brought to an OD600 of 0.2 prior to growth, and the lignin oils were 

tested at 0.5, 1.0, 1.5, 2.0, 2.5, 3, and 4 mg/ml concentrations. To facilitate the solubility 

of the oils in media, all cultures had a final ethanol concentration of 5% (v/v). Two controls 

were used, one having the 5% ethanol concentration, and one having just microbes and 

media.  To determine how the bio-oils affected microbial growth, the percent change in 

OD600 of the ethanol control during the exponential phase of growth was compared to the 

growth of the oils at their different concentrations. This resulted in the percent decrease in 

growth (degree of inhibition) for each oil at each concentration, with the formula described 

in Eq. 1:  
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Degree of Inhibition (%) = �1 −
Max OD600 − Min OD600 of Growth with Oil
Max OD600 − Min OD600 of Ethanol Control�

∗ 100 

  (1) 

Cell membrane integrity  

A cell membrane integrity assay was performed to elucidate the mode of action of 

the bio-oil against L. fermentum (0315-1). Bacterial staining was performed using the 

LIVE/DEAD Bac Light Bacterial Viability Kit L7012 (Invitrogen, CA), according to 

manufacturer’s direction, on bacterial cells incubated with or without bio-oil (4 mg/ml) for 

5 hr at 37°C in a 96 well plate (clear bottom and black sides). This kit uses a SYTO9 (green) 

and propidium iodide (red) nuclear stains to assess cell viability and membrane damage. 

SYTO9 is a fluorescent dye that can penetrate cell membranes freely and once bound to 

nucleic acids it will fluoresce green, while propidium iodide (PI) is a red fluorescent dye 

that can only bind to nucleic acids in cells with damaged membranes. Since PI has a higher 

affinity for nucleic acids compared to SYTO9, damaged cells will fluoresce red instead of 

green [221]. Green fluorescence was measured at Excitation/Emission (Ex/Em) 

wavelengths of 485 nm/530 nm while red fluorescence was measured at 485 nm/630 nm 

using a SpectraMax M2 plate reader (Molecular Devices, Sunnyvale, CA).  

Enzyme Inhibition Assays  

To examine the effects of the lignin bio-oil on enzyme function during enzymatic 

saccharification, both α-amylase and glucoamylase were screened for activity while in the 

presence of the bio-oil at the highest concentration of 4 mg/ml. The DNS method was used 

to screen α-amylase activity [258], which is described below. Prior to hydrolysis reaction, 

the α-amylase was suspended in phosphate buffer with or without the bio-oil, at 
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concentration of 4 mg/ml, and allowed to interact for 30 min at ambient temperature. 

During the DNS assay, hydrolysis reactions took place in 2 ml Eppendorf tubes, where 

0.5% (w/v) of corn starch in phosphate buffer (20 mM Sodium Phosphate with 6.7 mM 

Sodium Chloride, pH 6.9) was reacted with ~1 unit of α-amylase for 10 min at 60°C. 

Additional bio-oil was added to the reaction mixture to ensure a constant concentration of 

4 mg/ml. After the reaction DNS color reagent (5.3 M potassium sodium tartrate and 96 

mM 3,5-Dinitrosalicylic acid solution) was added to the tubes and boiled for 15 min. The 

samples were immediately placed in an ice bath until they reached room temperature and 

then diluted with DI water prior to spectrophotometry. The absorbance at 540 nm was 

measured for the samples via spectrophotometry in 96 well plates. The difference in 

activity were determined by comparing the amount of sugar released in the samples with 

standard curves of maltose.  

Glucoamylase inhibition was screened by measuring glucose content after 

hydrolysis using HPLC, as described below. Prior to hydrolysis reaction, the glucoamylase 

was suspended in acetate buffer (pH 5.6) with or without the bio-oil, at concentration of 4 

mg/ml, and allowed to interact for 30 min at ambient temperature. For hydrolysis, the 

glucoamylase with or without bio-oil was added to a 10 mg/ml maltose solution (in acetate 

buffer) and allowed to react for 30 min at 60°C. Additional bio-oil was added to the reaction 

mixture to ensure a constant concentration of 4 mg/ml. Afterwards, the reaction mixture 

was boiled for 15 min prior to glucose measurement. The glucose concentration released 

after hydrolysis was determined by HPLC (Ultimate 3000, Dionex Corporation, 

Sunnyvale, CA, US) equipped with a refractive index detector and using a Bio-Rad Aminex 
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HPX-87H column and guard assembly. The difference in activity were determined by 

comparing the amount of sugar released in the samples with standard curves of glucose. 

Ethanol Fermentation 

To test the antimicrobial properties of the PAA bio-oil in a fermentation system 

contaminated with LAB, the bio-oil was used at 4 mg/ml concentration against just yeast 

and yeast contaminated with L. fermentum (0315-1). Only L. fermentum (0315-1) was 

tested in these model “stuck” fermentation experiments as it has already been shown to be 

a prominent strain causing contamination in the fuel ethanol industry [239, 253]. We tested 

different inoculation rates of yeast and L. fermentum at 1:100, 1:10, and 1:1 yeast to LAB 

ratios. Stock cultures of yeast and L. fermentum were prepared as previously described 

above. After 24 hr incubation the microbial cells were pelletized via centrifugation and 

resuspended in phosphate buffered saline. Using one OD600 of yeast corresponds to 6× 107 

CFU/mL and one OD600 of L. fermentum is 1×108 CFU/mL, yeast was inoculated at starting 

concentration of 106  CFU/ml and L. fermentum was inoculated at either 106 , 107 , or 108  

CFU/ml.  

Simultaneous saccharification and fermentation (SSF) was performed on raw corn 

starch (17% w/w) in sterile YP medium (10 g of yeast extract and 20 g of peptone per liter 

of water). First, 1 ml α-amylase (Sigma-Aldrich, A8220) was added to 1 L of starch 

solution and brought to 85 °C and held for 15 min. After enzymatic liquefaction, the starch 

solution was autoclaved at 121 °C for 15 min. The mixture was cooled to 85 °C, an 

additional 4 ml of α-amylase was added, and then it was placed in a water bath at 85 °C for 

1 hr with intermittent stirring.  The mixture was then brought down to 32 °C and 
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glucoamylase was added to yield a concentration of 0.05% (v/v) glucoamylase (Sigma-

Aldrich, A7095) right before inoculation and fermentation.  

SSF was performed for 72 hrs at 32 °C in 50 ml serum bottles capped with a rubber 

septum that had a 20-gage needle inserted for gas release. 30 ml of the starch solution was 

added to the serum bottles and inoculated with 0.15 ml yeast and depending on the 

treatment 0.5ml of L. fermentum and/or 0.15 ml of bio-oil dissolved in ethanol. Treatments 

without L. fermentum  had 0.5 ml of PBS added to serve as negative control. SSF treatments 

were performed in duplicate and samples were withdrawn at 0, 12, 24, 36, 48, 60, and 72 

hr time points. The samples were analyzed using the same HPLC methods described above 

to monitor ethanol, lactic acid, acetic acid, and glucose concentrations. Additionally, 

lactobacillus density was enumerated at each time point using colony counting on MRS 

agar media supplemented with cycloheximide (10 µg/ml) to selectively inhibit the growth 

of yeast.  When the bio-oil was added, the fermentation solution had a 3.75 g/L starting 

concentration of ethanol, thus an additional control was used with the same starting 

concentration of ethanol for comparisons.  The final reported ethanol production values for 

all time points were subtracted by 3.75 g/L for the bio-oil treatments and ethanol controls 

to compensate for the addition of ethanol to the system.  

Results and Discussion 

Lignin depolymerization 

After the depolymerization reaction of alkali-extracted corn stover lignin (AEL) 

with peracetic acid, the reaction mixture was diluted with water and the resulting bio-oil 

was extracted with ethyl acetate. The ethyl acetate extracted bio-oil, which is the fraction 
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used for all further experimentation, was found to be 36.1 ± 0.4 wt% of the starting lignin, 

whereas the remaining water soluble and undissolved solids were found to be 23.6 ± 0.9 

and 40.3 ± 1.4 wt%, respectively (Table 4.1). While previous reports using similar reaction 

and extraction conditions with diluted acid corn stover lignin and kraft lignin found bio-oil 

yields of 58 and 16-45 wt% of starting lignin [63, 259, 260], respectively,  the difference 

in lignin origin and purity can greatly affect depolymerization bio-oil yields. For example, 

Ma et al. [63] did not fully characterize their lignin source and without further purification 

there are likely large amounts of carbohydrates still present, which would inflate the 

conversion. The purity of the AEL used in this study (after utilizing precipitation methods 

for purification) was found to be 95.11 ± 0.18% with 3.62 ± 0.16% glucan and 1.27± 0.03% 

xylan, so the comparison of yields may not be truly applicable. Furthermore, Ma et al. [63] 

also found that during their depolymerization reactions the starting lignin was completely 

dissolved. This was not true during the reactions seen here and could indicate that the AEL 

is more resistant to oxidative depolymerization than the other lignin sources.  

Table 4.1: Mass balance of lignin depolymerization into bio-oil as a percentage of starting 
lignin weight. 
Fraction Average Wt% 

Ethyl Acetate Extracted Bio-oil 36.1 ± 0.4 

Remaining Water Soluble 23.6 ± 0.9 

Solids 40.3 ± 1.4 
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Bio-oil characterization  

The weight-average (Mw) and number-average (Mn) molecular weight, as well as 

the polydispersity index (PDI) of unreacted AEL were compared with the PAA 

depolymerized bio-oil, as shown in Table 4.2. After treatment with PAA the weight 

average molecular weight (Mw) of AEL was reduced from approximately 4095 to 2277 

Da (g/mol) in the bio-oil. The PDI was also reduced in the bio-oil, showing there was a 

significant reduction in the molecular weight and a narrower distribution of molecular 

weight products compared to untreated AEL. This is also evident from the GPC 

chromatograms where MWD curves of the bio-oil shifted to the right (i.e., lower MW) 

compared to that of the untreated AEL (Figure 4.1).  Previous studies depolymerizing kraft 

lignin with PAA at varying concentrations of PAA and temperature found that untreated 

kraft lignin was reduced from 2813 Da to bio-oils with Mw ranging from ~750-1500 Da 

[259, 260]. Even though their data also show an approximate two-fold reduction in Mw 

after depolymerization with PAA, the bio-oil created here is more similar in Mw to that of 

unreacted kraft lignin than the previously reported bio-oils. Thus, the GPC results provide 

a general trend on the size distribution of compounds in the PAA derived bio-oil and 

indicate that some depolymerization did occur. In order to identify the specific compounds 

formed after oxidative depolymerization, GC/MS analysis and the Folin–Ciocalteu assay 

were performed.  

Table 4.2: The molecular weight distribution of raw corn Stover lignin and PAA bio-oil. 
Sample Mw (g/mol) Mn (g/mol) Polydispersity index (PDI) 

Corn Stover Lignin (AEL) 4095 1112 3.6 

PAA Bio-oil 2277 785 2.9 
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Figure 4.1: GPC chromatogram spectra of purified AEL and PAA derived bio-oil.  

GC/MS analysis found 10 lignin-derived phenolic monomers in the bio-oil that 

only accounted for 1.77 wt% of the bio-oil (Table 4.3). Hydroxylated phenolics (i.e. 

hydroquinone) represented 46.9 wt% of the total monomers detected. In terms of the 

depolymerization reactants acetic acid and peracetic acid, GC/MS analysis found that the 

bio-oil was comprised of 2.2% acetic acid, while no residual peracetic acid was found using 

peracetic acid test strips (MilliporeSigmaTM, MQuantTM) that can detect 5-50 ppm of 

peracetic acid. The concentration of the bio-oil used for the test strips was around 500 

mg/ml, so the amount of peracetic acid was below the detection limit of 5 ppm at this bio-

oil concentration. This would mean the bio-oil contains less than 0.001% peracetic acid.  

Considering the final bio-oil concentrations in the antimicrobial tests were less than 4 

mg/ml, the PAA concentration in the antimicrobial tests would be far below the 150-200 
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ppm inhibitory loading of PAA that is found to inhibit microorganisms [261, 262]. Neither 

Ma et al [63] or Park et al [259] found any residual peracetic acid in the resulting lignin 

depolymerization products, which makes sense as peracetic acid will quickly degrade to 

hydrogen peroxide and acetic acid during the dilution step with water and subsequent 

drying. This confirms that the oxidizers used during the depolymerization reaction were 

removed and should not a play a role in the antimicrobial properties of the bio-oil.  

While the monomeric phenolic yields seen here are very low, the Folin–Ciocalteu 

assay revealed that the bio-oil had a total phenolic content of 22.84±0.30% in terms of 

gallic acid equivalents. This is higher than the total monomer phenolic content found in the 

GC/MS results, but the Folin–Ciocalteu assay does not only measure monomeric 

phenolics, and thus larger oligomers can also be represented in this value [263]. These 

results indicate that the degradation compounds from AEL were primarily present as larger 

oligomers.  Despite significant degradation occurring as evidenced by GPC results, PAA 

oxidation was limited in the production of monomers. Ma et al. [63] also found a total 

phenolic yield of 22% using the Folin–Ciocalteu, but they represented this value as total 

monomer yields and utilized total ion chromatogram (TIC) peak area instead of flame 

ionization detector (FID) for individual monomer quantification. On the other hand, Park 

et al. [259] used FID for monomer quantification and found less than 0.08% of lignin 

monomers after treating kraft lignin with PAA, which is similar to the results of this study. 

Nonetheless, the data clearly illustrates that the bio-oil created here is comprised primarily 

of large molecular weight oligomers that are unidentifiable in GC/MS analysis.  
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Table 4.3: GC/MS identifiable monomers in lignin bio-oil, with yields represented as 
mg/ml and wt% of total oil weight. 
Compound Yield (mg/ml) Yield (wt %) 

Hydroquinone 0.69 0.83 

p-Coumaric acid 0.30 0.36 

2,6-Dimethoxyhydroquinone 0.09 0.11 

Syringic acid 0.09 0.11 

Phloroglucinol 0.08 0.10 

4-Hydroxybenzaldehyde 0.07 0.09 

4-Hydroxyacetophenone 0.06 0.07 

Ferulic acid 0.05 0.06 

3-Ethylphenol 0.01 0.02 

2-Hydroxybenzyl alcohol 0.01 0.01 

Totals 1.46 1.77 

 

1H-13C-HSQC NMR was also performed on the starting lignin and PAA 

depolymerized bio-oil (Figure 4.2). Notably, the AEL lignin showed only β-O-4 linkages 

in the linkage region. Additionally, the starting lignin had many conjugate esters as evident 

from the presence of pCA (p-coumaric acid ester) and FA (ferulic acid ester) in the HSQC. 

After treating the lignin with PAA, much of the conjugate esters and G-type structures 

remained relatively unchanged. This is unsurprising given that acid catalyzed hydrolysis 

of esters is kinetically slower than the analogous base catalyzed reaction, and the potential 

for rearrangement of these esters on the lignin polymer under the current reaction 

conditions. Our GC/MS results support the low amounts of bond cleavage seen in the bio-

oil and further indicate the lack of depolymerization into monomeric fragments occurring 

after PAA treatment.  Moreover, HSQC of the PAA lignin revealed the complete loss of 

S-type structures from the bio-oil. We contend that this may be due the increased lability 
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of the S-lignin under acidic oxidizing conditions from the electron donation of the methoxy 

groups to the β-O-4 Cα-OH, however more studies are still needed to confirm this 

hypothesis [63].  

 

Figure 4.2: 1H-13C HSQC NMR of AEL and raw bio-oil derived from PAA oxidation. The 
structures of lignin compositional units and side-chain linkages were coded with colors 
corresponding to the cross peaks in the spectra. 
 

Antimicrobial Assay 

The PAA derived lignin bio-oil was tested against several LAB sampled directly 

from commercial facilities and a commercially available high-performance fuel ethanol 

yeast strain (Fermpro S ®) for antimicrobial properties by measuring growth differences 

utilizing spectrophotometry.  Since the bio-oil is hydrophobic and becomes tar-like after 

drying, ethanol was used as a solvent. Consequently, an ethanol control was used in all 

further analyses to ensure ethanol’s growth effects were accounted for. The results in Table 

4.4 illustrate that the bio-oil as no growth effects against yeast at any of the concentrations 

tested, but that the LAB showed significant growth reduction at all tested concentrations. 
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The bio-oil was more inhibitory to both L. fermentum strains tested, which experienced a 

growth reduction of greater than 60% at bio-oil concentrations ranging from 1-2.5 mg/ml 

and then over 80% at 3 mg/ml. This is important as the L. fermentum (0315-1) strain used 

here is found to be one of the most prolific strains causing stuck fermentation in the fuel 

ethanol industry [239, 253]. Therefore, the bio-oil was effective at reducing LAB growth 

while showing no effects on yeast growth. This provides evidence for a selective mode of 

action that targets Gram-positive bacteria compared to eukaryotic yeast cells.  As stated 

previously, the bio-oil contained 2.2% acetic acid and less than 0.001% peracetic acid, if 

at all. At the highest bio-oil concentration of 4 mg/ml this would represent a maximum of 

0.088 mg/ml of acetic acid and 0.00004 mg/ml of peracetic acid, and at these 

concentrations neither would have an impact on either yeast or LAB growth [261, 264]. 

Our data supports this assertion, as yeast would be more susceptible to acetic acid 

compared to LAB [265], but the data clearly show the bio-oil has no inhibition to yeast and 

only the LAB. Furthermore, since the bio-oil was found to contain mostly unidentifiable 

lignin oligomers, it is these oligomers that are responsible for the highly selective 

antimicrobial activity seen in this bio-oil. 

 

 

 

 



 

125 
 

Table 4.4: Percent inhibition of PAA bio-oil at varying concentrations. Letters indicate 
differences at 95% confidence across all bio-oil concentrations for each organism, where 
values are mean±SE (n=3), using one-way ANOVAs with Tukey’s pairwise comparisons 
or a T-test. 

 Percent Inhibition 

 
PAA Bio-Oil Concentration (mg/ml) 

Organism  0.5 1 1.5 2 2.5 3 4 

S. cerevisiae 

(Fermpro) 

-6.88 

±1.56 a 

4.96  

±2.03 a 

1.73  

±1.44 a 

-6.93 

±1.16 a 

1.01  

±6.31 a 

-6.83 

±1.78 a 

-7.19 

±2.28 a 

L. Fermentum 

(0315-1) 

23.43 

±1.89 a 

43.58 

±1.11 b 

58.72 

±3.98 bc 

61.06 

±4.02 c 

59.74 

±5.06 bc 

66.82 

±3.66 c 

87.45 

±2.03 d 

L. Fermentum  
12.24 

±1.50 a 

75.17 

±1.02 bc 

69.57 

±4.46 b 

74.97 

±0.76 bc 

72.20 

±2.85 bc 

91.25 

±0.63 d 

83.96 

±3.61 dc 

P. pentosaceus N/A N/A N/A 
74.99 

±5.07 a 
N/A N/A 

75.18 

±0.00 a 

E. faecalis N/A N/A N/A 
51.71 

±15.47 a 
N/A N/A 

79.42 

±10.35 a 

B. 

amyloliquefaciens 
N/A N/A N/A 

28.57 

±13.93 a 
N/A N/A 

65.55 

±0.10 a 

A. pasteurianus N/A N/A N/A 
42.48 

±1.86 a 
N/A N/A 

56.40 

±12.41 a 

 

In order to infer the mode of action of the PAA derived lignin bio-oil, L. Fermentum 

(0315-1) was grown in the presence of the bio-oil and assessed for potential membrane 

damage by staining with SYTO9 and propidium iodide (PI) nuclear dyes. SYTO9 is a green 

fluorescent dye, and PI is a red fluorescence dye that both bind to nuclear material in the 

cell. However, while SYTO9 can penetrate cells freely, PI can only penetrate damaged 

membranes and due to its higher affinity for nucleic acids it can displace the weaker bound 

SYTO9 dye causing the damaged cell to show a strong red fluorescence instead of green 

[221]. Therefore, cells that fluoresce green (SYTO9) represent live cells without membrane 

damage and cells that fluoresce red (PI) can be considered membrane damaged or dead. 

Figure 4.3 shows the ratio of SYTO9/PI fluorescence, representing the ratio of live cells 
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to membrane damaged/dead cells, after L. Fermentum (0315-1) was incubated with the 

highest tested concentration of bio-oil (4 mg/ml) for 5 h at 37ºC.  

The data show a significant decrease (p<0.05) in SYTO9/PI ratio when comparing 

the controls with cells in the presence of the bio-oil, where the ratios decreased from ~4.3 

and 3.95 (control and ethanol control, respectively) to 0.7 when treated with the bio-oil.  

By significantly increasing the proportion of cells that fluoresce red when treated with bio-

oil, it is assumed that these treated cells are PI-permeable membranes primarily due to 

death or damaged membranes [221]. Lignin derivatives have been thought to directly cause 

cell membrane damage or have ionophoric activity that ultimately results in cell lysis and 

death [122, 243]. However, since PI stained cells may not only indicate membrane damage, 

the mode of action may still be molecular in nature, which could affect protein synthesis 

or influence expression of genes, also resulting in cellular death [266]. Additionally, this 

data coupled with the percent inhibition data suggests that the bio-oil displays more 

bactericidal activity than bacteriostatic activity [247], due to the direct cell death compared 

to just inhibiting cellular growth. In summary, the bio-oil is effective at selectively 

inhibiting a variety of LAB due to cell death without inhibiting yeast, which supports the 

use of this bio-oil as an alternative to control bacterial contamination in fuel ethanol 

fermentation.   
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Figure 4.3: SYTO9/PI fluorescence ratios of L. Fermentum (0315-1) treated with or 
without bio-oil at a concentration of 4 mg/ml after incubating for 5 hr at 37 °C. These ratios 
indicate the ratio of live/dead or undamaged/membrane-damaged cells. In the Figure, Etoh 
is the control with ethanol added and PAA is the treatment with the bio-oil (4 mg/ml). 
Letters on the bars indicate differences at 95% confidence where values are mean±SE 
(n=3), using students T-tests. 

 

Model Fermentations 

Prior to conducting ethanol fermentation experiments, both α-amylase and 

glucoamylase were screened for inhibition when in the presence of the bio-oil at the highest 

concentration tested of 4 mg/ml. Figure 4.4 shows that α-amylase had a significant 

increase in activity, as measured by an increase in the amount of maltose released from 

hydrolysis of corn starch, while glucoamylase had no significant difference in the amount 

glucose released from hydrolysis of maltose when in the presence of bio-oil compared to 

the control. Thus, enzymatic saccharification during corn ethanol fermentation will not be 

impacted by the bio-oil and may actually be benefited by the slight increase in α-amylase 

activity.  
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Figure 4.4: Sugar concentrations after enzymatic hydrolysis with or without the presence 
of PAA bio-oil at a concentration of 4 mg/ml. α-amylase bars (blue) indicate the amount 
of maltose released after 10 min of starch hydrolysis, while the glucoamylase bars (green) 
indicate amount of glucose released after 30 min of maltose hydrolysis. For the bio-oil 
treatments, the enzymes were pre-incubated for 30 min in the presence of bio-oil, and the 
same concentration of bio-oil was maintained during hydrolysis reactions. Letters on the 
bars indicate differences at 95% confidence where values are mean±SE (n=3), using 
students T-test. 
 

In this study, we tested SSF of corn starch challenged with a previously reported 

bacterial strain that causes “stuck” fermentation in fuel ethanol facilities (L. Fermentum, 

0315-1) [253, 267]. This strain is also known to be virginiamycin-resistant with a MIC 

value of 16 µg/ml compared to ≤2 µg/ml for susceptible strains [267], this is important as 

our study aims to utilize lignin bio-oil as an alternative antibiotic. Based on previous 

surveys of bacterial contaminants in fuel ethanol facilities that found bacterial loads can 

reach 108 CFU/ml [252], we challenged our model fermentations with yeast to lactobacillus 

ratios of 1:1, 1:10, and 1:100, which resulted in initial bacterial loads of  106, 107, and 108, 

respectively. Furthermore, we utilized a bio-oil concentration of 4 mg/ml for all 
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experiments as it was the highest tested concentration in our antimicrobial experiments and 

was the highest concentration that could be achieved due to bio-oil solubility in ethanol.  

Figures 4.5 and 4.6 show the differences in ethanol production, glucose 

consumption, and lactic/acetic acid production for the uncontaminated and contaminated 

SSF runs, respectively. The uncontaminated fermentations showed no significant 

difference in ethanol production, glucose consumption, or acetic acid production after 72 

hrs of fermentation for the control, ethanol control, and bio-oil treatment. Available glucose 

was mostly consumed after 36 hrs (Figure 4.5), which is also marked by no significant 

increase in ethanol production. Since the fermentation broth utilized isolated corn starch 

instead of a traditional corn mash, there was also a large amount of starch solids leftover 

in the fermentation broth and the ethanol production was only 76% of the theoretical yield 

(96.5 g/L compared to 75 g/L). Despite this, the data clearly indicate that the addition of 

the bio-oil had no significant effect on corn starch fermentation and yeast metabolism for 

the uncontaminated controls, supporting our previous antimicrobial results. 

 

Figure 4.5: Ethanol (A), glucose (B), and acetic acid (C) concentrations during 
fermentation without contamination over time. In each graph Etoh is the control with 
ethanol added and PAA is the treatment with the bio-oil.  
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Figure 4.6 shows the fermentation products for the contaminated samples at yeast 

to LAB ratios of 1:1 (A,D,G), 1:10 (B,E,H), and 1:100 (C,F,I). In terms of ethanol 

production, after 72 hrs of fermentation, the 1:100 yeast to LAB ratio saw the greatest 

reduction in ethanol at 17% compared to the uncontaminated controls (Figure 4.6 C). The 

1:1 ratio had no significant reduction in ethanol, and the 1:10 ratio had an 11% reduction 

in ethanol production. Conversely, Rich et al. [253] used yeast to LAB ratio of 1:6 and 

found an ethanol reduction of 23%, while Bischoff et al. [267] found a 17% reduction in 

ethanol at a ratio of 1:10, where both studies used the same lactobacillus strain applied 

here. Thus, the effect of lactobacilli contamination observed in the present study is less 

pronounced than that reported previously. These differences may be attributed to use of 

corn starch instead of corn mash and/or the difference in our yeast strain, which could be 

more vigorous, causing the lactobacillus to be a less potent antagonist. Moreover, the bio-

oil treatment did not significantly improve the ethanol yields for either the 1:1 or 1:10 yeast 

to LAB ratios (Figure 4.6 A and B), but it did significantly improve ethanol yields by 8% 

for the 1:100 ratio (Figure 4.6 C).  This increase was even more drastic at the 24 hr time 

point, where the bio-oil treatment had 212% increase in ethanol produced compared to both 

the contaminated control and ethanol control (Figure 4.6 C). Similarly, the 1:1 and 1:10 

contamination ratios also saw an increase in ethanol production at the 24 hr time point, but 

this did not impact total ethanol production like in the 1:100 ratio. Therefore, as the amount 

of bacterial contamination increased and at earlier time points the bio-oil treatment did 

have a greater beneficial effect on ethanol production compared to untreated contaminated 

samples.   
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Figure 4.6: Ethanol (A-C), lactic/acetic acid (D-F), and glucose (G-I) concentrations 
during fermentation contaminated with L. Fermentum (0315-1) overtime for 72 hrs. The 
inoculation rates for the LAB were at yeast:LAB ratios of 1:1 (A,D,G), 1:10 (B,E,H), and 
1:100 (C,F,I). For D-F the solid lines indicate lactic acid (LA) and the dotted lines indicate 
acetic acid (AA). The uncontaminated control from Figure 4.4 is provided for the ethanol 
and glucose concentrations for comparison and is labeled “Control”. In each graph, C (i.e. 
1:100 C) represents the control, E is control with ethanol added, and PAA is the treatment 
with the bio-oil (4 mg/ml).  

While the lower bacterial contamination ratios of 1:1 and 1:10 did not see 

improvements from the bio-oil treatment for ethanol production, there was still a 10% 

reduction in lactic acid production, indicating there was an effect on the lactobacillus 

growth/metabolism (Figure 4.6 D and E). This was even more pronounced in the 1:100 

contamination ratios where lactic acid was reduced by 33% when treated with bio-oil 

(Figure 4.6 F). To this end, we also monitored the lactobacillus population (CFU/ml) over 
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the 72 hr fermentation period for the 1:100 ratio as it had the most detrimental effect on 

ethanol yields. The results in Figure 4.7 indicate that the lactobacillus population 

drastically decreased overtime for the bio-oil treatment and when compared to the control 

and ethanol control there was an almost 100-fold reduction in the lactobacillus population. 

However, even with this reduction there was still a viable lactobacillus population at 

3.6×106 CFU/ml after 72 hrs of fermentation when treated with the bio-oil, which 

ultimately reduced final ethanol yields.  The presence of a viable lactobacillus population 

in the bio-treatments makes sense, as our initial antimicrobial experiments showed at 4 

mg/ml there was only a 90% reduction in growth (i.e. 10% of the population was still 

viable). Despite the fact that the bio-oil did not completely inhibit LAB growth during SSF, 

the improvement in ethanol production based on the contamination controls clearly 

illustrates the effectiveness of using this lignin bio-oil as an antibiotic replacement to 

control antibiotic-resistant LAB strains.  

It must be noted that during the fermentation experiments with the bio-oil 

treatments, the bio-oil was seen mostly in a solid phase when added to the fermentation 

broth. Over time as the ethanol concentration inevitably increased, more of the bio-oil was 

seen to go into solution (as noted by a color change); thus, future work needs to improve 

the bio-oil’s initial solubility in order to increase its efficacy as an alternative antibiotic. 

The issues with concentrating the bio-oil and limiting the addition of solvent into the 

fermentation system must also be re-examined and improved. Furthermore, since 

traditional antibiotics such as virginiamycin are used at concentrations less than 2 ppm 

[267], the use of the bio-oil here at a maximum of 4 mg/ml is not directly comparable.  As 
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L. Fermentum, 0315-1 is also virginiamycin-resistant the lack of a commercial antibiotic 

control is warranted.  

 

 

Figure 4.7: Colony forming units (CFU) per ml of L. Fermentum (0315-1) during 
contaminated fermentation at a yeast:LAB ratio of 1:100 overtime for 72 hrs. Where Etoh 
is the control with ethanol added and PAA is the treatment with the bio-oil (4 mg/ml). 
 

Conclusions 

In the present study, we have demonstrated that depolymerization of AEL by PAA 

oxidation produces mostly unidentifiable lignin oligomers with highly selective 

antimicrobial properties.  Even though the resulting bio-oil contained less than 1.77 wt% 

of identifiable monomeric phenolic compounds, it demonstrated no inhibition against yeast 

and up to 90% inhibition of commercially sampled LAB at 4 mg/ml. The highly selective 

antimicrobial properties of the bio-oil are attributed to an ionophoric or membrane 

damaging mode of action that results in cell death, based on fluorescent staining. Using the 
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bio-oil (4 mg/ml) as an alternative antibiotic treatment during SSF of raw corn starch 

showed an increase in ethanol production as bacterial contamination increased. At the 

highest contamination ratio of 1:100 yeast to lactobacillus, the bio-oil increased ethanol 

production by 8% compared to the contamination control. While the bio-oil did not 

completely inhibit lactobacillus growth, which still resulted in net losses of ethanol 

production (9%) compared to the uncontaminated control, the ability of the bio-oil to 

improve ethanol yields clearly show its efficacy as an alternative antibiotic. Further 

research must improve the bio-oils solubility during fermentation to increase its 

antimicrobial action and resulting beneficial effects on ethanol production. Therefore, the 

results obtained from this study offer a new application in lignin valorization and a better 

understanding of lignin-based bio-oil’s antimicrobial properties/potential.  
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CHAPTER 5. PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN 

DERIVATIVES USING TRADITIONAL AND MACHINE LEARNING BASED 

QSAR MODELS 
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Abstract 

Lignin is a waste stream from biorefineries, and its polyphenolic structure can be 

depolymerized into small molecules that are inherently antimicrobial. However, during 

depolymerization the bio-oils created can be a complex mixture of mainly unidentifiable 

compounds. This makes the process of identifying active compounds or extracting them 

expensive/time consuming using conventional methods. Therefore, methods need to be 

developed that can predict the antimicrobial potential of lignin derivatives so that the search 

for lignin depolymerization products with enhanced antimicrobial properties can be 

expedited. In this context, the aim of this study was to develop and compare QSAR models 

that can predict the antimicrobial properties of lignin derivatives against representative 

Gram-positive (Bacillus subtilis) and negative bacteria (Escherichia coli). The compounds 

used to construct the models were selected from a large public access database (ChEMBL) 

that were non-specific to lignin, a database created from a metanalysis of available lignin 

compounds with activity measurements (minimum inhibitory concentration, MIC), and an 

experimentally derived dataset of lignin monomers and dimers by measuring activity as 

relative Bacterial Load Difference (BLD). The ChEMBL dataset’s QSAR models were 

developed using different machine learning algorithms (support vector machine, random 

forest, k-nearest neighbor, decision tree, and neural networks) and were found to 

underpredict the antimicrobial activity of actual lignin compounds. The metanalysis data 

used to validate the ChEMBL dataset’s QSAR models for B. subtills and E. coli were used 

to build their own more traditional QSARs using ordinary least square (OLS) regressions.  

An accurate QSAR model for E. coli was not found, but a satisfactory model was obtained 

for the B. subtilis metanalysis dataset.  MOE-type descriptors and the number of aliphatic 
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carboxylic acid groups were the descriptors that showed strong correlations to the MIC 

values (R2 of 0.759). Specifically, as the number of aliphatic carboxylic acid groups 

increased, the model predicted an increase in antimicrobial activity (i.e. lower MIC). 

Comparatively, an additional dataset was experimentally derived by screening 25 lignin 

monomers and three dimers against B. subtilis by measuring BLD.  The experimentally 

based QSAR found that MOE-type descriptors and the number of aromatic hydroxyl 

groups were better predictors of BLD (R2 of 0.831). Thus, the smaller dataset’s models 

show how the variability in antimicrobial measurements and the specific compounds used 

will impact the predictive nature of the resulting QSARs. This study is the first attempt to 

predict the antimicrobial properties of lignin derivatives, and the results provide insights 

into the type of descriptors that correlate to an increase in the antimicrobial properties of 

lignin.   

Keywords: Lignin, Quantitative Structure−Activity Relationship, Machine Learning, 

Open-Source Databases  
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Introduction  

Due to the overuse of antibiotics in our society, there has been a steady rise in highly 

antimicrobial-resistant bacteria in the last decade. This has created a renewed interest in 

natural compounds for antimicrobial discovery amongst the scientific community [81, 82]. 

Plant-based phenolics have a wide spectrum of antimicrobial activity and a variety of ring 

scaffolds and low human toxicity potential that makes them a promising source of potential 

antimicrobial replacements [82, 83].  

To this end, lignin is one of the most abundant naturally occurring sources of 

phenolic polymers on earth and is currently considered a major waste product in the paper 

and pulp industries and industrial lignocellulosic biorefineries [44]. Lignin is already 

known to have antimicrobial properties against different microorganisms, which is due to 

the phenolic subunits that comprise lignin’s polyphenolic structure [122, 170].  Lignin’s 

antimicrobial properties are dictated by the source of the lignin, its extraction methods and 

chemical structure (i.e. monomers, oligomers and functional groups) [12, 122]. In general, 

it is believed that lignin phenolics have a mode of action that centers around their ability 

to increase the ion permeability of cell membranes or cause direct membrane damage 

resulting in cell lysis [99, 119, 124, 207]. However, lignin’s inhomogeneity and complex 

structure greatly reduces its capacity to be used in industrial and commercial sectors.  

For example, while a variety of technical lignins (i.e. Kraft lignin and organosolv 

lignin) with large undefined structures have had notable antimicrobial properties, there 

remain inconsistencies in different batches, across different lignin sources, and extraction 

methods [12, 122]. Conversely, when lignin is depolymerized into smaller more defined 

structures, these smaller oligomers and phenolic monomers have shown increased 
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antimicrobial activity and higher specificity [123].  Thus, to increase the effectiveness and 

selectivity of lignin’s antimicrobial properties, it is necessary to depolymerize the 

polyphenolic structure of technical lignins into smaller units.  

There are a plethora of lignin depolymerization techniques to produce small 

molecule monolignols from lignin including: pyrolysis, acid/base/metal catalyzed 

hydrolysis, hydrogenolysis and oxidation [9, 45, 46]. Depending on the lignin source each 

depolymerization method will produce a variety of different phenolic compounds with 

potential antimicrobial properties. After lignin depolymerization reactions, the resulting 

product is usually a bio-oil that is composed of a complex cocktail of monomers (<50% 

w/w) and larger oligomers. While lignin bio-oils have shown promising antimicrobial 

properties for a variety of industrial applications, as seen in Chapters 3 and 4 of this 

dissertation, there remain questions as to what individual compounds are responsible for 

their diverse antimicrobial properties.  

In practice, when antimicrobials are developed, they are usually composed of a 

single component or compound. When considering the use of lignin-based bio-oils, it 

would be incredibly difficult to attribute a single compound to its antimicrobial properties, 

as it is too complex of a mixture. Separation technologies like chromatography, membrane 

filtration, or liquid-to-liquid extraction could be utilized to extract a specific highly active 

phenolic compound from the bio-oil, but the compound would first need to be identified, 

and those separation technologies can be costly or produce harmful byproducts [68-73]. 

While future separation techniques can be developed at lower cost and hazards, if an 

effective depolymerization method can produce a consistently highly active mixture, then 

separation would not be necessary. Therefore, methods need to be developed that can 
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predict the antimicrobial potential of lignin derivatives so that the search for lignin 

depolymerization products with enhanced antimicrobial properties can be expedited.  

Quantitative structure−activity relationship (QSAR) models are an indispensable 

tool in drug design and discovery. They work by finding relationships between the 

variations in calculated molecular descriptors (properties) or fingerprints (functional 

groups) with the biological activity of a group of compounds so that biological activity of 

new chemical entities can be assessed more quickly [154]. Traditional QSAR modeling 

utilizes experimentally derived datasets with a limited number of compounds (<50) and 

selected descriptors for developing a predictive regression type model, such as multiple 

linear regressions (MLR) [160, 268]. While this increases the specificity of the model to 

predict the identified target compounds, it simultaneously limits the model’s ability to 

predict the activity of new compounds with a wider variety of structures. One of the ways 

to circumvent this issue would be to increase dataset size and compound variability. 

However, due to the lengthy experimental procedures used to measure antimicrobial 

activity, and the fact that many lignin oligomers after depolymerization are currently 

unidentifiable, it would be difficult to drastically increase the number of compounds tested 

in an efficient manner. Given the recent advances in machine learning and the increase in 

the amount of chemical and biological activity data available in the public domain in recent 

years [269], QSAR models that can explore a vaster chemical space (thousands of 

compounds) can now be more widely applied [270].   

In this context, the aim of this study was to develop and compare QSAR models 

that can predict the antimicrobial properties of lignin derivatives against representative 

Gram-positive (Bacillus subtilis) and negative bacteria (Escherichia coli). The compounds 
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used to construct the models were selected from a large public access database that was 

non-specific to lignin, a database created from a metanalysis of available lignin compounds 

with activity measurements, and an experimentally derived dataset of lignin monomers and 

dimers. ChEMBL was used as the open-access database, which contains over 1.9 million 

distinct bioactive molecules with drug-like properties and 16 million activity 

measurements [271]. Since minimum inhibitory concentration (MIC) is one the most 

widely used antimicrobial activity measurements [272], both the ChEMBL and 

metanalyses datasets used MIC to describe the activity of the compound. For both B. 

subtilis and E. coli, three distinct datasets from ChEMBL were obtained by first choosing 

all the available compounds with MIC measurements against both organisms, selecting a 

subset of compounds with only C, H, and O atoms (the only atoms present in lignin), and 

then an additional subset of compounds with at least one phenolic ring. Therefore, 

increasing the potential specificity of the resulting QSAR model’s ability to predict the 

activity of phenolic lignin derivatives. Due to the large sizes of these ChEMBL datasets, 

five different regression-based machine learning algorithms were used to create their 

QSAR models: support vector machine, random forest, k-nearest neighbor, decision tree, 

and neural networks.   

Next, a metanalysis of the available literature with MIC activity measurements for 

lignin derivatives against both B. subtilis and E. coli was conducted. Not only was this 

dataset used to develop a more traditional QSAR model using ordinary least square (OLS) 

regressions, but it was also used as a validation set for determining the ChEMBL-based 

model’s performance for predicting lignin specific compounds. Finally, a variety of 

commercially available lignin monomers and dimers were screened for antimicrobial 
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properties against B. subtilis and a subsequent OLS regression-based QSAR was 

developed. The activity measurement used in the experimental set was the Bacterial Load 

Difference (BLD) (percent inhibition of growth) as it is more easily measured, 

encompasses the low antibacterial activity, absence of antibacterial activity, and potential 

growth-promoting effect sometimes observed with phenolics compared to MIC [160]. The 

results from this study will provide insights into using different types of databases (open 

access, metanalysis, experimentally derived, and lignin specific/non-specific) that can be 

used to develop QSAR models with the potential to predict the antibacterial activity of 

lignin derivatives.  

Materials and Methods 

ChEMBL Datasets  

Antimicrobial data for both Bacillus subtilis and Escherichia coli, used as 

representative Gram-positive and negative bacteria, were obtained from the ChEMBL 

database (version 27) [271]. Using the ChEMBL web server, a dataset was created for each 

bacteria type by selecting minimum inhibitory concentration (MIC) as the 

biological/antimicrobial activity measurement. The datasets were then downloaded, and 

further filtering was performed in the Python environment.  

Firstly, compounds with ‘non standard unit for type’ or ‘outside typical range’ in 

the data validity comments were removed. Then compounds with standard relation values 

of ‘<’ or ‘>’ were also removed, and duplicates based on compound ‘Molecule ChEMBL 

ID’ were averaged into one value. At this point the B. subtilis dataset had 9,828 compounds 

and E. coli had 21,657 compounds, which are hereafter referred to as ‘B-All’ and ‘E-All’, 
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respectively. Since lignin has a chemical composition that only contains carbon (C), 

hydrogen (H), and oxygen (O) atoms, the datasets were further filtered by keeping 

compounds with only those atoms. This was performed by searching for compounds with 

a canonical simplified molecular-input line-entry system (SMILES) string with only C, H, 

and O atoms [273]. The resulting filtering produced a B. subtilis dataset with 768 

compounds and an E. coli dataset with 703 compounds, which are hereafter referred to as 

‘B-Sorted’ and ‘E-Sorted,’ respectively. Finally, to increase the datasets specificity for 

predicting lignin phenolics, the previously SMILE sorted dataset was filtered for 

compounds with at least one phenolic ring. This resulted in a B. subtilis dataset with 309 

compounds and an E. coli dataset with 278 compounds, which are hereafter referred to as 

‘B-Phenolic’ and ‘E-Phenolic,’ respectively. Therefore, three datasets for both B. subtilis 

and E. coli were created with MIC data. Furthermore, MIC values originally determined in 

µg/ml were converted to micromolar values (µM/ml) and then converted to pMIC (i.e. -

logMIC, in molar) for all datasets [268].  

Lignin Monomers Metanalysis Dataset 

A new dataset of MIC biological activity measurements for lignin monomers 

against both B. subtilis and E. coli were compiled from published sources. 

Multidisciplinary databases such as Academic OneFile, Academic Search Complete, 

EBSCO, and Google Scholar for terms including combinations such as “lignin,” 

“antimicrobial,” “phenolic,” “MIC,”  “monomer,” “antibacterial,” as well as authors with 

previous work containing appropriate data, were used to find journal articles that contained 

MIC antimicrobial data for phenolics that can be derived from lignin. In total, 16 

compounds were found with MIC data for B. subtilis and 27 compounds for E. coli (Table 
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5.5). MIC values originally determined in µg/ml were converted to micromolar values 

(µM/ml) and then converted to pMIC (i.e. -logMIC, in molar) prior to modeling [268]. The 

resulting datasets for B. subtilis and E. coli are hereafter referred to as ‘B-Meta’ and ‘E-

Meta’, respectively.  

Experimental Dataset 

The antibacterial activity of 25 lignin derived monomers and three dimers were 

assessed by monitoring the cell growth (as represented by the optical density at 600 nm, 

OD600) of B. subtilis (NRRL B-354) using a spectrophotometry. The full list of compounds 

and subsequent antimicrobial activity measurements are listed in Table 5.7. The monomers 

were of analytical quality and purchased from either Sigma Aldrich (St. Louis, MO, USA) 

or TCI America. The guaiacylglycerol-beta-guaiacyl ether  dimer was purchased from TCI 

America, while 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol  and 3-hydroxy-2-

(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-propanone dimers were kindly provided by 

Dr. Mark Crocker at the Center for Applied Energy, University of Kentucky [274].  

Briefly, frozen cultures were first revived in liquid growth media (LB broth, Fisher 

BioReagentsTM, BP9723) and allowed to grow at 180 rpm shaking speed for 12 h at 37°C. 

Afterwards the cells were pelletized, washed, and resuspended in fresh liquid media. To 

test for the antimicrobial properties, each microbe was cultivated in 96-well plates and the 

OD600 was monitored for 24 h with time points taken every 10 min.  All wells were brought 

to an OD600 of 0.2 prior to growth, and the phenolics were added to treatment wells to 

create a final concentration of 1 g/L. To facilitate the solubility of the phenolics in media, 

all cultures had a final ethanol concentration of 5% (v/v). Two controls were used, one 

having the 5% ethanol concentration, and one having just microbes and the media.  To 
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determine how the phenolics affected microbial growth, the percent change in OD600 of the 

ethanol control during the exponential phase of growth was compared to the growth of the 

phenolic treatments. This resulted in the percent decrease in growth or Bacterial Load 

Difference (BLD) for each phenolic treatment [160], with the formula described in Eq. 1:  

BLD (%) = �1 −
Max OD600 − Min OD600 with phenolic

Max OD600 − Min OD600 of Ethanol Control�
∗ 100 

  (1) 

After obtaining the BLD values for each phenolic, the structures of each compound were 

converted to canonical SMILES strings using PubChem for use in descriptor calculations. 

The final experimental dataset for B. subtilis is here after referred to as ‘B-Experimental’.  

Descriptor Calculations and QSAR Modeling 

To calculate the various molecular descriptors, all the compound’s structures in 

each dataset were converted into canonical SMILES strings [273], if not already provided. 

These SMILES were then entered into an open-access molecular descriptor calculator 

software package for Python, RDKit (http://www.rdkit.org).  RDKit has a variety of 

calculatable descriptors that describe a molecule’s lipophilicity (i.e. LogP, LogD), 

topological indices (i.e. fragment complexity, size, polarity), connectivity indices and 

different molecular fingerprints (i.e. number of hydroxyl groups, phenolic rings, carboxylic 

acids etc.). A full list of descriptors and their description is provided in Supplementary 

Table 5.S1. While it is possible to create models with all the calculatable descriptors, a 

variety of descriptor selection methods were utilized to improve model accuracy by 

reducing dimensionality of input space without losing important information.  

http://www.rdkit.org/
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For the B-All, E-ALL, B-Sorted, E-Sorted, B-Phenolic, and E-Phenolic datasets 

200 of RDKit’s available descriptors were calculated. Highly correlated (|r| ≥ 0.8) and 

constant descriptors were eliminated from the list for each individual dataset. To further 

reduce the dimensionality of the predictors (descriptors) a principle component analysis 

(PCA) was performed using scikit-learn [275]. The number of new principle components 

to be used was assessed by plotting the number of components vs the percent explained 

variance, and the number of components that explained 99% of the variance were chosen 

for each dataset. After the optimal number of principle components were chosen and 

calculated these values were used as the independent variables for predicting the pMIC 

values in the subsequent QSAR models. Before modeling, each of the above dataset’s with 

pMIC and PCA data were randomly split into training (80%) and test (20%) sets three 

times for cross-validation. We compared and utilized five machine learning algorithms to 

build the QSAR models for the B-All, E-ALL, B-Sorted, E-Sorted, B-Phenolic, and E-

Phenolic datasets. They were the support vector machine (Epsilon-Support Vector 

Regression), random forest regressor, k-nearest neighbors regressor, decision tree 

regressor, and neural network regressor (Multi-layer Perceptron regressor) algorithms 

provided by scikit-learn. The specific settings and parameters used to build each machine 

learning algorithm are provided below. QSAR models were assessed based on their average 

coefficient of determination (R2) and root mean squared error (RMSE) based on the 

predictions made for the three training and test sets.   

The best QSAR models constructed from the ChEMBL datasets were further tested 

for prediction accuracy, by using the metanalysis datasets as a test set for predicting lignin-

specific compounds. Kernel density estimate (KDE) plots using the Seaborn plugin for 
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python were constructed to determine the distribution of each dataset’s pMIC values. 

Furthermore, the applicability domain (AD) for estimating the reliability in the prediction 

of new compounds from the ChEMBL datasets were evaluated against the metanalysis 

datasets, according to previous work [276].  

For the B-Meta, E-Meta, and B-Experimental datasets all 200 of RDKit’s available 

descriptors were calculated. Pearson’s correlation coefficient  (|r| ≥ 0.5) was used to select 

a fixed subset of predictors (descriptors) best able to predict the antimicrobial activities 

(either pMIC or BLD) using the ordinary least squares (OLS) regression analysis [277]. 

The OLS regressions were performed using  Statsmodels [278]. As the number of 

compounds for each of these datasets were very low (less than 30 compounds), the datasets 

were not separated into training and test sets due to higher risks of chance correlation and 

overfitting [268]. For each dataset, the selected descriptors were fed into an OLS regression 

and backwards elimination was used until the significance of each descriptor coefficient in 

the model (p-value) was less than 0.05, which identified the best fitting model.  

Machine Learning Algorithms 

All machine learning models were created using scikit-learn and either the default 

hyper parameters were used or a number of different parameters through a grid search 

based exploration of model parameter space was utilized [270]. The final parameters used 

for the machine learning algorithms that used grid search for QSAR model development 

are reported in Table 5.2.  

The support vector machine (SVM) or Epsilon-Support Vector regression is a non-

linear regression that calculates an optimal hyper-plane where the distance and error 
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between each data points is minimized [279]. The SVM performed here used the default 

parameters provided by scikit-learn. These included a radial basis function kernel, gamma 

of 1/number of descriptors, parameter cost of 1, and epsilon of 0.1.  

Decision tree regressors (DT) are a non-parametric learning method that works by 

creating a set of binary rules to calculate the target value by dividing the data into subsets 

that contain data with similar values [280]. The DT used a grid search to select the optimal 

maximum depth from 1-21 and minimum number of sample leaves from 1-100 for each 

dataset, by fitting the training set and using five cross-fold validations and RMSE to choose 

the best values. All other parameters utilized the scikit-learn default settings.  

The random forest regressor (RF) is an ensemble learning method for non-linear 

regression analysis, that operates by constructing a multitude of decision trees and 

outputting the mean prediction of the individual trees [281]. We used all the default 

parameters provided by scikit-learn, but the number of estimators was increased from the 

default 100 to 500.  

K-nearest neighbor regressions (KNN) are a non-parametric method that stores all 

available cases and predicts a continuous target based on the similarity measure (distance 

function) between different features in the same neighborhood [282]. The KNN used a grid 

search to select the optimal number of neighbors from 2-15 for each dataset, by fitting the 

training set using five cross-fold validations and RMSE to choose the best number of 

neighbors. The rest of the parameters including the weight function and leaf size utilized 

scikit-learns default settings.  
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Neural networks (NN) are brain-inspired algorithms where input features are fed 

into an input layer, and after a number of nonlinear transformations are performed in a 

hidden layer, the predictions are generated in an output layer to produce a regression [269, 

270, 283].  The NN relied on a Multi-Perceptron regressor along with a grid search 

technique to select the optimal hidden layer sizes [(50,50,50), (50,100,50), (100,)], 

activation (rectified linear unit function ‘relu’ or hyperbolic tan function ‘tanh’), and 

learning rate (constant or adaptive) by using five cross-fold validations and RMSE to 

choose the best values. All other parameters utilized the scikit-learn default settings.  

Software Used  

Python (version 3.7.7) was used with the following libraries: RDKit (version 

2020.03.6) for the calculation of fingerprints and descriptors, Scikit-learn (version 0.23.2) 

for all machine learning algorithms and descriptor selection techniques, seaborn (version 

0.11.0) with Matplotlib (version 3.3.2) for all figure visualizations, and Pandas (version 

1.1.2) for all dataset analysis and manipulation.  

Results and Discussion 

ChEMBL Dataset Models  

The open access database, ChEMBL, was used to develop datasets of compounds 

with antimicrobial activity (MIC) against both B. subtilis and E. coli. These datasets were 

used alongside machine learning algorithms to develop QSAR models with the potential 

to predict the antimicrobial activity of lignin-derived phenolics from compounds that are 

not lignin specific.  
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The initial ChEMBL datasets created for B. subtlis (B-All) and E. coli (E-All) 

contained 9,628 and 21,657 compounds, respectively. These datasets were filtered into two 

additional subsets, that contained compounds having more similar structures to that of 

lignin derivatives. The first subset was created by selecting compounds with only C, H, 

and O atoms, resulting in a B. subtilis dataset with 768 compounds (B-Sort) and an E. coli 

dataset with 703 compounds (E-Sort). By removing compounds with nitrogenous, chlorine, 

or fluorine-based functional groups, the remaining compounds could have more similar 

chemical characteristics to that of lignin derivatives. Then those subsets were further 

filtered by selecting compounds with at least one phenolic ring, resulting in a B. subtilis 

dataset with 309 compounds (B-Phenolic) and an E. coli dataset with 278 compounds (E-

Phenolic). Lignin’s antimicrobial properties have been reported to attribute to its phenolic 

structures, so it was important to include a subset of compounds that contained only 

phenolic-based structures. These were the final six datasets used for QSAR model 

development from the ChEMBL database.  

The QSAR models for these datasets used antimicrobial activities measured in 

pMIC (- log MIC, in µM/mL) values as the dependent variable, and molecular descriptors 

calculated from RDKit were used to develop the independent variables. 200 of RDKit’s 

calculatable descriptors and molecular fingerprints that describe the lipophilicity of a 

compound (i.e. LogP, LogD), topological indices (i.e. fragment complexity, size, polarity), 

connectivity indices, and functional groups were chosen based on previous work [160, 268, 

284, 285]. The specific descriptors used for each dataset after pre-processing are found in 

Supplementary Table 5.S2, and the number of descriptors is summarized in Table 5.1. 
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Principle component analysis (PCA) was used to reduce the number of descriptors used as 

the independent variables and the dimensionality of the feature space.  

PCA reconstructs features of a dataset into a new set of uncorrelated features called 

principal components (PCs). The optimal number of new PCs for each dataset was selected 

by the number of components that explained 99% of the variance in the dependent variable. 

Figure 5.1 shows the number of PCs vs. the percent explained variance, and Table 5.1 

summarizes the number that explained 99% of the variance. Since this feature extraction 

technique creates new independent variables that are less interpretable, the ability to 

examine how each descriptor influences pMIC is no longer easily obtainable. This is 

actually beneficial when using the ChEMBL datasets, as we are attempting to predict the 

antimicrobial properties of lignin with non-lignin based compounds from a data-driven 

perspective and do not need to understand the exact relationship between these compound’s 

descriptors and pMIC values. Therefore, the QSAR models were developed from the pMIC 

and PC values from each dataset using five popular regression-based machine learning 

algorithms: support vector machine (SVM), random forest (RF), k-nearest neighbor 

(KNN), decision tree (DT), and neural networks (NN).  
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Table 5.1: Each dataset’s final number of compounds, descriptors, and hyperparameters 
for machine learning algorithms that used grid search parameterization. The datasets 
denoted with ‘B’ and ‘E’ represent the data utilized from ChEMBL for Bacillus subtilis 
and Escherichia coli, respectively. 
 

 

 

Figure 5.1: Plots showing the number of components from the principle component 
analysis performed on each datasets descriptor set against the explained variance (%). The 
ChEMBL datasets for B. subtilis are B-All (A), B-Sort (B), and B-Phenol, while the E. coli 
sets are  E-All (D), E-Sort (E), and E-Phenol (F). 
 

The performance summary of all five-machine learning QSAR models for each 

ChEMBL dataset is provided in Tables 5.2-4. Each dataset was split randomly into three 

 

Data Processing PCA 
k-Nearest 
Neighbor Decision Tree Neural Network 

Dataset 
Compo
unds 

Descript
ors 

Compone
nts Neighbors Depth 

Sample  
Leaves 

Hidden  
Layers 

Activati
on 

Learni
ng 

Rate 
B-All 9828 118 80 3 14 50 (50, 100, 

50) 
tanh consta

nt 
B-Sort 768 62 40 3 4 50 (50, 50, 

50) 
relu consta

nt 
B-
Phenol 

309 61 40 3 3 10 (50, 100, 
50) 

tanh consta
nt 

E-All 21657 114 80 3 13 20 (100,) tanh consta
nt 

E-Sort 703 67 40 2 4 1 (100,) tanh consta
nt 

E-
Phenol 

278 67 40 5 2 20 (50, 50, 
50) 

relu consta
nt 
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different training (80%) and test (20%) sets for cross-validation. The training sets were 

used to build each machine learning model and the test sets were used for model validation. 

The metrics used for measuring model performance was the average coefficient of 

determination (R2) and root mean square error (RMSE) for the three training and test sets. 

The better performing model is identified as having a high R2 and low RMSE value for the 

average test scores and training scores, and in Tables 5.2-4 they are highlighted in bold. 

When comparing models, if one model had a higher R2 and lower RMSE for the test sets, 

but not the training sets, the model with better performance for the test set was chosen, as 

it is ultimately the more important metric [286]. For example, B-All’s best performing 

QSAR model was the KNN algorithm (Table 5.2), as it had the highest R2 of 0.69 for the 

test set, despite a slightly lower R2 for the training sets (0.86) compared to the RF algorithm 

(0.95).  Accordingly, the E-All, B-Sort, E-Sort, B-Phenol, and E-phenol datasets had the 

most robust QSAR models using the RF, NN, KNN, RF, and KNN algorithms, respectively 

(Tables 5.2-4).  
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Table 5.2: QSAR model performance for the B-All (B. subtilis) and E-All (E. coli) 
ChEMBL datasets using the different machine learning algorithms. Measured by average 
coefficient of determination (R2) and root mean square error (RMSE) for both the training 
and test sets, where values are mean±SE (n=3). Each dataset was split into random test and 
train sets three different times to obtain the average performance score. The number of 
compounds, selected descriptors, and number of principle components used to develop 
models can be found in Table 5.2 and Supplementary Table 5.S2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B-All 

 
Test Train 

Model R2 RMSE R2 RMSE 

SVM 0.64 ± 0.005 0.66 ± 0.005 0.68 ± 0.001 0.50 ± 0.001 

RF 0.65 ± 0.002 0.61 ± 0.006 0.95 ± 0.000 0.24 ± 0.001 

KNN 0.69 ± 0.008 0.58 ± 0.009 0.86 ± 0.001 0.39 ± 0.002 

DT 0.39 ± 0.027 0.81 ± 0.028 0.47 ± 0.008 0.75 ± 0.008 

NN 0.63 ± 0.009 0.63 ± 0.004 0.83 ± 0.002 0.42 ± 0.002 

Model E-All 

SVM 0.63 ± 0.004 0.65 ± 0.005 0.72 ± 0.002 0.52 ± 0.002 

RF 0.69 ± 0.004 0.62 ± 0.002 0.95 ± 0.000 0.24 ± 0.001 

KNN 0.68 ± 0.005 0.68 ± 0.006 0.71 ± 0.000 0.41 ± 0.000 

DT 0.46 ± 0.004 0.82 ± 0.004 0.65 ± 0.004 0.65 ± 0.003 

NN 0.63 ± 0.008 0.68 ± 0.003 0.87 ± 0.014 0.40 ± 0.021 
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Table 5.3: QSAR model performance for the B-Sort (B. subtilis) and E-Sort (E. coli) 
ChEMBL datasets using the different machine learning algorithms. Measured by average 
coefficient of determination (R2) and root mean square error (RMSE) for both the training 
and test sets, where values are mean±SE (n=3). Each dataset was split into random test and 
train sets three different times to obtain the average performance score. The number of 
compounds, selected descriptors, and number of principle components used to develop 
models can be found in Table 5.2 and Supplementary Table 5.S2.. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B-Sort 

 
Test Train 

Model R2 RMSE R2 RMSE 

SVM 0.49 ± 0.015 0.63 ± 0.015 0.79 ± 0.013 0.42 ± 0.005 

RF 0.45 ± 0.038 0.65 ± 0.032 0.92 ± 0.002 0.26 ± 0.003 

KNN 0.35 ± 0.028 0.71 ± 0.014 0.78 ± 0.006 0.44 ± 0.006 

DT 0.21 ± 0.026 0.78 ± 0.008 0.29 ± 0.004 0.78 ± 0.001 

NN 0.71 ± 0.014 0.49 ± 0.005 0.79 ± 0.032 0.41 ± 0.036 

Model E-Sort 

SVM 0.41 ± 0.022 0.59 ± 0.024 0.75 ± 0.004 0.53 ± 0.001 

RF 0.38 ± 0.023 0.73 ± 0.025 0.92 ± 0.000 0.28 ± 0.001 

KNN 0.49 ± 0.067 0.79 ± 0.017 0.69 ± 0.007 0.42 ± 0.007 

DT 0.00 ± 0.073 0.94 ± 0.040 0.40 ± 0.009 0.78 ± 0.011 

NN 0.18 ± 0.041 0.85 ± 0.043 0.88 ± 0.051 0.32 ± 0.095 
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Table 5.4: : QSAR model performance for the B-Phenol (B. subtilis) and E-Phenol (E. 
coli) ChEMBL datasets using the different machine learning algorithms. Measured by 
average coefficient of determination (R2) and root mean square error (RMSE) for both the 
training and test sets, where values are mean±SE (n=3). Each dataset was split into random 
test and train sets three different times to obtain the average performance score. The 
number of compounds, selected descriptors, and number of principle components used to 
develop models can be found in Table 5.2 and Supplementary Table 5.S2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

A common theme with all the models in each dataset, was that the R2 for the test 

set was always lower than the training set. This could be a sign of model overfitting or 

unrepresentative data between the training and test sets [286]. However, all the models had 

very low SE values when averaging the R2 values of the three different test/train splits for 

cross-validation, which would suggest compounds are not being underrepresented. The 

number of independent variables (PCs) used for each dataset were also rather large (80 or 

40), which could contribute to overfitting, but they explained 99% of the dependent 

variable’s variation and when smaller numbers of PCs were used the model’s performance 

drastically decreased (data not shown). Coupled with the fact that most models used a grid 

 
B-Sort 

 
Test Train 

Model R2 RMSE R2 RMSE 

SVM 0.55 ± 0.023 0.65 ± 0.113 0.67 ± 0.187 0.31 ± 0.001 

RF 0.50 ± 0.023 0.57 ± 0.033 0.93 ± 0.001 0.22 ± 0.002 

KNN 0.57 ± 0.007 0.59 ± 0.036 0.63 ± 0.005 0.42 ± 0.007 

DT 0.49 ± 0.025 0.63 ± 0.015 0.43 ± 0.010 0.62 ± 0.004 

NN 0.51 ± 0.052 0.58 ± 0.072 0.80 ± 0.046 0.37 ± 0.049 

Model E-Sort 

SVM 0.22 ± 0.011 0.87 ± 0.040 0.69 ± 0.005 0.56 ± 0.003 

RF 0.17 ± 0.049 0.89 ± 0.064 0.89 ± 0.002 0.33 ± 0.007 

KNN 0.38 ± 0.019 0.75 ± 0.041 0.53 ± 0.015 0.76 ± 0.002 

DT 0.02 ± 0.065 1.02 ± 0.053 0.17 ± 0.016 0.90 ± 0.015 

NN 0.00 ± 0.085 1.04 ± 0.094 0.88 ± 0.061 0.30 ± 0.117 
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search parametrization technique to fine-tune the hyperparameters, these discrepancies 

may just be a function of the data itself and not with how the models were evaluated or fit. 

Furthermore, the E-Sort, B-Phenol, and E-Phenol datasets did not have any QSAR models 

with a R2 > 0.6, which is usually needed to describe a truly predictive model [154]. Yet, 

since these datasets are not lignin-specific, the true measure of these model’s performance 

needs to be evaluated with an additional test set of actual lignin-derived compounds.  

To this end, the available literature was searched for lignin-derived monomers that 

had reported MIC values against B. subtilis and E. coli. The results from this metanalysis 

are reported in Table 5.5, where 16 compounds were found with MIC data for B. subtilis 

(B-Meta) and 27 compounds for E. coli (E-Meta). These two datasets were then evaluated 

as an additional test set for each of the best performing QSAR models found for each 

ChEMBL dataset described above. The data is summarized in Figure 5.2, where the 

predicted vs. actual pMIC values of the lignin monomers are plotted. It can immediately 

be seen that none of the ChEMBL QSAR models could accurately predict the lignin 

monomers. All the models predicted the lignin compounds as having pMIC values roughly 

less than 2.5, when they are reported as actually having pMIC values greater than 2.5. This 

suggests these models are grossly underpredicting the pMIC values for the lignin 

compounds, which would correlate to them having a lower MIC and subsequently greater 

antimicrobial activity. To understand this, a kernel density estimate (KDE) plot for the 

ChEMBL and metanalysis datasets were constructed to visualize the distribution of their 

pMIC values (Figure 5.3), and their applicability domains evaluated (Table 5.6 and 5.7).  

The KDE plots show that the metanalysis datasets for both E. coli and B. subtilis 

have pMIC distributions centered around 3-4, while the ChEMBL datasets are centered 
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between 0-2.5. Even though the ChEMBL datasets clearly contain compounds with pMIC 

values within the distribution of the metanalysis datasets, they did not lie within the 

applicability domains (AD) of the ChEMBL datasets.  The AD is a useful measure for 

determining the reliability of a model’s prediction for a new set of compounds.  Based on 

the PCA for each ChEMBL dataset, their ADs were calculated based on the Euclidean 

distances among all their compounds and a final threshold value is determined [276]. Then, 

the same measure is calculated for each of the compounds in the metanalysis dataset to test 

if they lie within the threshold of the ChEMBL dataset’s AD. We can see in Tables 5.6 

and 7 that none of the B-Meta or E-Meta compounds fall within the AD of the ChEMBL 

datasets. Therefore, the use of these ChEMBL datasets, with compounds that are not lignin-

specific, to develop a QSAR model that could accurately predict lignin monomer 

antimicrobial activity was not realized. Even though these results are not what the author 

had hoped, this data just creates a more concrete conclusion that a comprehensive dataset 

of lignin derivatives with antimicrobial measurements need to be developed. Therefore, 

more traditional QSAR models using actual lignin compounds from the metanalysis 

datasets and an experimentally derived dataset were developed and are discussed in the 

further sections.  

Table 5.5: Source articles that reported antimicrobial data (MIC) and converted pMIC 
values for phenolics that can be derived from lignin against both B. subtilis (B-Meta 
dataset) and E. coli (E-Meta dataset). 

Compound  Organism MIC (ug/ml) pMIC Source 
caffeic acid B. subtilis 720.64 3.6 [124] 
caffeic acid B. subtilis 600 3.5 [287] 
coniferaldehyde B. subtilis 712.72 3.6 [124] 
coniferyl alcohol B. subtilis 1441 3.9 [124] 
eugenol B. subtilis 656.8 3.6 [124] 
ferulic acid B. subtilis 388.36 3.3 [124] 
p-coumaraldehyde B. subtilis 296.32 3.3 [124] 
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p-coumaric acid B. subtilis 328.0875 3.3 [124] 
p-coumaryl alcohol B. subtilis 1201.396 3.9 [124] 
pyrocatechol B. subtilis 533 3.7 [287] 
sinapaldehyde B. subtilis 1664.589 3.9 [124] 
sinapic acid B. subtilis 448.42 3.3 [124] 
sinapyl alcohol B. subtilis 1682 3.9 [124] 
gallic acid B. subtilis 1600 3.97 [287] 
protocatechuic acid B. subtilis 2667 4.2 [287] 
pyrogallol B. subtilis 267 3.3 [287] 
resveratrol B. subtilis 2667 4.07 [287] 
1-(4-hydroxy-3-methoxyphenyl)-2-
propanone E. coli 375 3.3 [123] 
2,3-bis(a-hydroxyvanillyl)-l,4-
butanediol E. coli 375 2.99 

[123] 

4-hydroxy-3-methoxy-b-hydroxy-
propiophenonoe E. coli 375 3.3 

[123] 

caffeic acid E. coli 1441.28 3.9 [124] 
caffeic acid E. coli 2667 4. [287] 
coniferaldehyde E. coli 356.36 3.3 [124] 
coniferylalcohol E. coli 375 3.3 [123] 
dehydrodiferulic acid E. coli 150 2.6 [123] 
dehydrodiisoeugenol E. coli 180 2.7 [123] 
di-o-acetylpinoresinol E. coli 150 2.6 [123] 
eugenol E. coli 656.8 3.6 [124] 
eugenol E. coli 3000 4.26 [123] 
ferulic acid E. coli 388.36 3.30 [124] 
ferulic acid  E. coli 375 3.3 [123] 
isoeugenol E. coli 100 2.8 [123] 
p-coumaraldehyde E. coli 296.32 3.3 [124] 
p-coumaric acid E. coli 328.0875 3.3 [124] 
p-coumaryl alcohol E. coli 1201 3.9 [124] 
pyrocatechol E. coli 533 3.7 [287] 
sinapaldehyde E. coli 832.2944 3.6 [124] 
sinapic acid E. coli 448.42 3.3 [124] 
sinapyl alcohol E. coli 1682 3.9 [124] 
syringaldehyde E. coli 375 3.3 [123] 
gallic acid E. coli 600 3.55 [287] 
protocatechuic acid E. coli 2667 4.2 [287] 
pyrogallol E. coli 256 3.3 [288] 
pyrogallol E. coli 83 2.8 [287] 
resveratrol E. coli 3200 4.1 [287] 
p-hydroxy benzoic acid  E. coli 400 3.46 [289] 
vanillic acid  E. coli 400 3.4 [289] 
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Figure 5.2: Plots of predicted vs actual pMIC values for the B-Meta (A-C) and E-Meta 
(D-F) datasets by utilizing the best QSAR models developed from the ChEMBL datasets. 
The ChEMBL datasets used to predict pMIC of the metanalysis datasets for B. subtilis are 
B-All (A), B-Sort (B), and B-Phenol (C), while the E. coli sets are  E-All (D), E-Sort (E), 
and E-Phenol (F). The best QSAR models used in each prediction are as follows: RF (A), 
NN (B), RF (C), RF (D), SVM (E), and KNN (F). 
 

 

Figure 5.3: Kernel density estimates describing the distribution of pMIC values for the B. 
subtilis (A) and E. coli (B) ChEMBL/metanalysis datasets. 
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Table 5.6: The applicability domain (AD) limit value for each of the B. subtilis ChEMBL 
datasets and the respective Euclidian distances for each compound in the B-Meta dataset. 
Where True (T) or False (F) indicates if each compound lies within the AD of the each 
ChEMBL dataset. 

 B-All: Limit 13.95 B-Sort: Limit 9.73 B-Phenol: Limit 9.75 
Compound Distance T/F Distance T/F Distance T/F 
Caffeic acid 37.48 F 20.16 F 17.65 F 
Coniferaldehyde 35.31 F 20.22 F 22.17 F 
Coniferyl alcohol 30.53 F 16.28 F 16.40 F 
Eugenol 35.56 F 18.04 F 18.82 F 
Ferulic acid 36.93 F 21.64 F 20.23 F 
Gallic Acid 39.74 F 18.74 F 16.02 F 
Protocatechuic acid 32.41 F 16.97 F 14.53 F 
Pyrocatechol 26.42 F 15.33 F 14.15 F 
Pyrogallol 32.13 F 15.33 F 14.08 F 
Resveratrol 40.74 F 22.65 F 21.93 F 
Sinapaldehyde 41.58 F 22.93 F 21.52 F 
Sinapic acid 43.76 F 27.10 F 20.81 F 
Sinapyl alcohol 36.09 F 20.85 F 18.25 F 
p-Coumaraldehyde 35.08 F 20.85 F 22.74 F 
p-Coumaric acid 38.10 F 20.33 F 18.98 F 
p-Coumaryl alcohol 28.69 F 16.93 F 15.97 F 

 

 

 

 

 

 

 

 

 



 

162 
 

Table 5.7: The applicability domain (AD) limit value for each of the E. coli ChEMBL 
datasets and the respective Euclidian distances for each compound in the B-Meta dataset. 
Where True (T) or False (F) indicates if each compound lies within the AD of the each 
ChEMBL dataset.  

E-All: Limit 13.95 E-Sort: Limit 
9.77 

E-Phenol: Limit 
9.71 

Compound Distance T/F Distance T/
F Distance T/

F 
1-(4-hydroxy-3-methoxyphenyl)-2-
propanone 

24.47 F 10.50 F 11.11 F 

2,3-Bis(a-hydroxyvanillyl)-l,4-
butanediol 

47.50 F 16.79 F 16.38 F 

4-Hydroxy-3-methoxy-B-hydroxy-
propiophenonoe 

27.64 F 10.76 F 10.77 F 

Caffeic acid 34.22 F 17.03 F 14.54 F 
Coniferaldehyde 44.11 F 17.57 F 17.47 F 
Coniferyl alcohol 30.11 F 13.71 F 12.88 F 
Dehydrodiferulic acid 47.47 F 24.42 F 21.26 F 
Dehydrodiisoeugenol 47.74 F 22.51 F 20.95 F 
Di-O-acetylpinoresinol 52.39 F 18.86 F 18.87 F 
Eugenol 37.00 F 13.11 F 13.22 F 
Ferulic acid 35.01 F 16.36 F 14.47 F 
Ferulic acid  35.01 F 16.36 F 14.47 F 
Gallic Acid 33.16 F 18.92 F 16.70 F 
Protocatechuic acid 27.79 F 15.74 F 14.01 F 
Pyrocatechol 26.27 F 15.69 F 15.04 F 
Pyrogallol 28.18 F 14.92 F 14.43 F 
Resveratrol 36.45 F 16.71 F 16.77 F 
Sinapaldehyde 46.28 F 17.81 F 17.07 F 
Sinapic acid 40.47 F 18.58 F 15.58 F 
Sinapyl alcohol 32.90 F 14.10 F 12.15 F 
Vanillic acid  27.31 F 15.64 F 13.01 F 
isoeugenol 34.04 F 13.21 F 12.52 F 
p-Coumaraldehyde 44.91 F 17.97 F 18.20 F 
p-Coumaric acid 34.51 F 16.83 F 15.33 F 
p-Coumaryl alcohol 29.86 F 14.31 F 14.06 F 
p-hydroxy benzoic acid  25.91 F 15.22 F 13.49 F 
syringaldehyde 40.89 F 15.61 F 14.19 F 
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Metanalysis Dataset Models 

The metanalysis datasets, used for validating the ChEMBL QSAR models, were 

applied to develop their own traditional QSARs using ordinary least square (OLS) 

regressions. Instead of using PCA as a feature extraction technique, univariate feature 

selection relying on Pearson’s correlation coefficient (r) was employed. Since OLS 

regressions rely on linear relationships, it made more sense to utilize Pearson’s correlation 

as it measures the strength of the linear correlation between the independent (descriptors) 

and dependent variables (pMIC). Therefore, the same 200 molecular descriptors from 

RDKIt were calculated for the B-Meta and E-Meta datasets, and the descriptors with a 

r>0.5 were selected to develop the OLS regressions. Subsequently, the selected descriptors 

were fed into an OLS regression and backwards elimination was used until the significance 

of each descriptor coefficient in the model (p-value) was less than 0.05, which indicated 

the best fitting model.  

No reliable QSARs using OLS was obtained for the E-Meta dataset (results not 

shown). This result was not that surprising considering the E-Meta datasets pMIC 

distribution had three different centers, as shown in the KDE plot (Figure 5.3B). Its 

variable distribution and small sample size could prevent the QSAR model from capturing 

any relevant relationships in the feature space [160]. Conversely, even though the B-Meta 

(16 compounds) dataset was smaller than E-Meta (27 compounds), a more successful 

QSAR model was developed.  

 The model for best predicting the antibacterial activity (pMIC) of the lignin 

monomers in the B-Meta dataset is summarized in Table 5.8 and Figure 5.4. As observed, 

the selected OLS model showed good predictive power with a R2 of 0.759. Three 
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descriptors, SLogP_VSA3, SLogP_VSA5, and fr_AL_COO were used to develop the best 

fitting OLS regression model. The SLogP_VSA3 and SLogP_VSA5 descriptors are 

Molecular Operation Environment (MOE)-type descriptors that bin the output from other 

descriptor types (i.e SLogP) and calculate the van der Waals (VDWs) surface area (VSA) 

of atoms contributing to any specified bin of that output. Thus, SLogP_VSA3 and 

SLogP_VSA5 calculate the sum of VSA contributions to the lipophilicity measurement 

SLogP (partition coefficient of a compound in two immiscible solvents) within -0.2-0 and 

0.1-0.15 bin ranges, respectively. While SLogP and VSA are "primary" descriptors that 

have more-or-less interpretable contributions to a compound's mechanism of action, the 

MOE-type descriptors are intended to be used as model predictors and are not as 

interpretable [290]. Therefore, the negative and positive relationships SLogP_VSA3 and 

SLogP_VSA5 contribute to the OLS regression can only be used as a data-driven identifier 

for predicting the pMIC values of lignin compounds. On the other hand, the fr_AL_COO 

descriptor represents the number of aliphatic carboxylic acid groups in each compound and 

can directly be used to infer the mechanism of action.  

Table 5.8: Statistical performance of the best OLS models obtained through backwards 
elimination of descriptors, for predicting pMIC values of lignin phenolics against B. 
subtilis in the B-Meta dataset. The compounds used and their pMIC values can be found 
in Table 5.1 and the descriptor meaning can be found in Supplementary Table 5.S1. N: 
number of compounds; R2: coefficient of determination 

Dataset N R2 Descriptor Coefficient Standard Error p-value 

B-Meta 16 0.759 

SLogP_VSA3 -0.2951 0.108 0.041 
SLogP_VSA5 0.6025 0.129 0.003 
fr_Al_COO -0.2588 0.164 0.047 
Intercept 3.5442 0.117 0.000 
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Figure 5.4: Predicted vs actual pMIC regression from the OLS QSAR model for the B-
Meta dataset, whose parameters can be found in Table 5.6. The shaded region represents 
the 95% confidence interval for the regression 
 

Caffeic, ferulic, sinapic, and p-coumaric acid were the only compounds with an 

aliphatic carboxylic acid group present in this dataset and they had the lowest observed 

pMIC values (~3.3). They also represent hydroxycinnamic acid derivatives that are known 

to have increased antimicrobial properties compared to their more polar hydroxybenzoic 

acid counterparts [140]. This is confirmed here by the fact that gallic and protocatechuic 

acids, with aromatic carboxylic acid groups, had higher MIC values that correspond to 

lower antimicrobial activity. Previous work has suggested that hydroxycinnamic acid’s 

propenoid side chain is responsible for its increased antimicrobial properties, as it 

facilitates the transport of the molecule through the cell membrane of Gram-positive 

bacteria [140, 143, 151]. Therefore, this explains why an increase in aliphatic carboxylic 

acid groups correlated to an increase in antimicrobial activity (lower pMIC) for this dataset. 

Nonetheless, the B-Meta dataset only represents an extremely small number of lignin 
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monomers and more compounds need to be examined to truly understand or predict the 

properties that influence their antimicrobial activity.  

Experimental Dataset Models  

The antibacterial activity of 25 lignin-derived monomers and three relevant dimers 

were assessed by measuring their BLD or percent inhibition against B. subtilis at 

concentrations of 1 g/L. Their BLD values are presented in Table 5.9 and they ranged from 

10% up to 100% (B-Experimental dataset), indicating the existence of completely 

inhibitory effects. The 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-

propanone lignin dimer was the only compound to show complete inhibition against B. 

subtilis, which was ~30% higher than the next highest BLD for 4-ethyl phenol (73.3%). 

Interestingly, the 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol  dimer only had a 

BLD of 66% and its chemical structure differs only by an absence of a methoxy group on 

β-carbon compared to  3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-

propanone. Therefore, the presence of this one methoxy group seems to increase the 

molecules BLD by ~34%. Moreover, by simply examining the chemical structures of the 

compounds and their BLD values in the B-Experimental dataset, we can immediately see 

that alkyl chains on the phenolic subunit (4-ethylphenol) and lignin dimers themselves play 

an important role in these lignin derivatives antimicrobial properties (i.e. higher BLD 

values). However, the development of a QSAR model will provide a statistical relationship 

between these molecules BLD values and descriptors for more predictive purposes.  
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Table 5.9: Experimental antimicrobial activity of lignin monomers and dimers against B. 
subtilis (BLD %), where experimental values are mean±SE (n=3). The predicted BLD 
values obtained from the OLS QSAR model developed for the B-Experimental dataset, 
whose parameters can be found in Table 5.8. 

Type Compound Experimental 
(BLD %) 

Predicted 
(BLD %) 

Monomers 2-6-dimethoxyphenol 42.44±6.05 34.49 
4-ethyl phenol 62.43±1.11 69.22 
4-propyl phenol 73.34±0.04 70.08 
acetovanillone 46.13±3.69 43.97 
coniferyl alcohol 35.74±3.22 31.90 
coniferyl aldehyde 36.89±13.35 38.04 
ethyl 3,4 hydroxy propionate 64.33±0.60 58.48 
eugenol 60.77±2.27 66.71 
ferulic acid 36.89±13.35 33.65 
gallic acid 31.13±0.54 23.27 
guiacol 23.24±2.10 44.67 
homosyringic acid 29.94±3.81 41.05 
homovanillic acid 37.73±2.09 32.43 
hydroquinone 35.06±0.73 29.24 
p-coumaric acid 46.05±3.60 43.83 
p-coumaryl alcohol 43.51±5.88 34.98 
p-creosol 64.68±3.67 57.37 
syringaldehyde 44.29±4.75 38.95 
syringic acid  26.64±1.88 31.89 
syringyl alcohol 37.86±3.41 34.77 
syringyl propane 48.07±0.43 49.46 
vanillic acid 43.82±4.09 36.49 
vanillin 16.10±3.86 34.53 
protocatechuic acid 10.08±2.36 21.03 
Catchetol  19.22±6.99 22.55 

Dimers 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol   66.00±13.79 58.75 
3-hydroxy-2-(2-methoxyphenoxy)-1-(4-
methoxyphenyl)-1-propanone 

100.00±0.00 
100 

Guaiacylglycerol-beta-guaiacyl ether 30.97±1.03 31.51 
 

The same methods used to the develop the QSAR models for the B-Meta dataset 

were used for the B-Experimental dataset. Where RDKit’s calculated descriptors were 

chosen based on univariate feature selection (r>0.5) and an OLS regression with backwards 

elimination was performed until all descriptors had a p-value less than 0.05. The best fitting 
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OLS regression in summarized in Table 5.10 and the predicted vs actual BLD values are 

plotted in Figure 5.5. As observed, the selected OLS model showed better predictive power 

with a R2 of 0.831 than that of the B-Meta dataset. Four descriptors were used to develop 

the best fitting OLS regression model: MinABSEStateIndex, PEOE_VSA13, 

VSA_EState8, and fr_Ar_OH. As stated previously, PEOE_VSA13 and VSA_EState8 are 

MOE-type descriptors that are intended to be used as model predictors and are not 

interpretable for describing the compound's mechanism of action [290]. The 

MinABSEStateIndex is the minimum absolute electrotopological state (E-state) of a 

skeletal atom, formulated as an intrinsic value plus a perturbation term arising from the 

electronic interaction and modified by the molecular topological environment of each atom 

in the molecule [291]. This descriptor, like the MOE-type descriptors, is used as more of a 

classification tool for identifying similar compounds instead of describing a feature that 

could relate to the compound's mode of action. Therefore, while the MinABSEStateIndex, 

PEOE_VSA13 and VSA_EState8 descriptors show a positive relationship to the lignin 

compound’s BLD value against B. subtilis, this information can only be used to classify 

future compounds. Comparatively, fr_Ar_OH represents the number of aromatic hydroxyl 

groups in each compound and is better at elucidating their potential antibacterial 

mechanisms.  

The number of aromatic hydroxyl groups can be seen to have a negative 

relationship with BLD (Table 5.10). Where gallic acid, catechol, and protocatechuic acid 

had more than one aromatic hydroxyl group and the lowest BLD values compared to all 

the other compounds. So, with an increase in the number of aromatic hydroxyl groups, 

there will be a decrease in BLD, correlating to a decrease in the compound’s antibacterial 
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properties against B. subtilis. Bouareab-Chibane et al. [160] found a negative relationship 

between the number of hydrogen donors and the BLD of plant-based polyphenols screened 

against B. subitilis. Since the number of aromatic hydroxyl groups and the number of 

hydrogen donors have a direct positive relationship [292], we can see that in general 

phenolics with higher overall polarity will have a decrease in antimicrobial properties. This 

is supported by the experimental data seen here, where highly lipophilic compounds like 

4-ethylphenol had high BLD values. However, this model does not provide an explanation 

for the 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-1-propanone lignin 

dimers high BLD value compared to the monomers, highlighting the issue QSAR models 

can have with limited data sizes and breadth of compound variability. Additionally, when 

comparing the results from the QSAR models for the B-Meta and B-Experimental datasets, 

we can see that the presence of certain compounds and how antimicrobial activity was 

measured will influence which descriptors play the most important role in describing 

antimicrobial activity.  

For example, even though both datasets used the same descriptors and organisms, 

the best OLS regressions for each dataset found that different descriptors played an 

important role in describing activity. We saw that the hydroxycinnamic derivatives in the 

B-Meta dataset drove the negative relationship between the number of aliphatic carboxylic 

acid groups and pMIC. At the same time, a higher number of aromatic hydroxyl groups 

were shown to decrease the BLD in the B-Experimental dataset. This emphasizes the fact 

that using different measures of antimicrobial properties and different lignin compounds to 

develop QSARs for predicting the antimicrobial properties of lignin will tell different 

stories. While this is intuitive, the data here provide more concrete support for the need to 
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develop a comprehensive and cohesive dataset with lignin derivatives and their 

antimicrobial properties. Without such a dataset, we can see that our ability to accurately 

predict the antimicrobial potential of lignin and its ever-growing variety of derivatives is 

extremely difficult.  

Table 5.10: Statistical performance of the best OLS models obtained through backwards 
elimination of descriptors, for predicting BLD (%) values of lignin phenolics against B. 
subtilis in the B-Experimental dataset. The compounds used and their BLD values can be 
found in Table 5.7 and the descriptor meaning can be found in Supplementary Table 
5.S1. N: number of compounds; R2: coefficient of determination. 

 

 

 

 

 

 

 

Dataset N R2 Descriptor Coefficient Standard 
Error 

p-
value 

B-Experimental 28 0.831 

MinABSEStateIndex 24.7939 7.229 0.002 
PEOE_VSA13 32.0858 11.202 0.009 
VSA_EState8 25.1929 7.769 0.004 
fr_Ar_OH -43.8297 10.158 0.000 
Intercept 43.9883 4.545 0.000 
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Figure 5.5: Predicted vs actual BLD (%) regression from the OLS QSAR model for the 
B-Experimental dataset, whose parameters can be found in Table 5.8. The shaded region 
represents the 95% confidence interval for the regression. 

Conclusions 

The open-access database ChEMBL was used to create three different datasets of 

compounds with MIC activity measurements against both B. subtilis and E. coli. Despite 

the fact these compounds are not lignin-based, two of these datasets had compounds with 

only C, H, and O or phenolic based structures to increase their chemical similarity to lignin. 

The QSAR models developed using machine learning algorithms for each of these datasets 

were found to underpredict the antimicrobial activity of actual lignin compounds compiled 

from a metanalysis of the literature. Therefore, this data creates a more concrete conclusion 

that a dataset of lignin derivatives with antimicrobial measurements must be used to 

develop accurate QSARs. Consequently, more traditional QSAR models using OLS 

regressions were created from datasets with actual lignin compounds.  
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The metanalysis data used to validate the ChEMBL dataset’s QSAR models for B. 

subtills and E. coli were used to build these more traditional QSARs.  An accurate QSAR 

model for E. coli was not found, but a satisfactory model was obtained for the B. subtilis 

metanalysis dataset.  MOE-type descriptors and the number of aliphatic carboxylic acid 

groups were the descriptors that showed strong correlations to the pMIC values (R2 of 

0.759). Specifically, as the number of aliphatic carboxylic acid groups increased, the model 

predicted an increase in antimicrobial activity (i.e. lower MIC). Comparatively, an 

additional dataset was experimentally derived by screening 25 lignin monomers and three 

dimers against B. subtilis by measuring BLD.  The experimentally based QSAR found that 

MOE-type descriptors and the number of aromatic hydroxyl groups were better predictors 

of BLD (R2 of 0.831). Thus, we see that these smaller datasets and their QSARs show how 

the variability in antimicrobial measurements and the specific compounds used will impact 

the predictive nature of the resulting QSARs. In combination, the results from this study 

strongly support that future studies using QSAR to predict the antimicrobial properties of 

lignin-derived compounds must utilize a more comprehensive and cohesive dataset. 
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Supplemental Information 

Figure 5.S1: Molecular descriptors calculated using RDKit and their descriptions.  
Descriptor Name Description Dimension Extended class 
BalabanJ Balaban's J value for a 

molecule,Chem. Phys. Lett. 89:399-
404 (1982). 

2 Topological descriptors 

BertzCT A topological index meant to 
quantify "complexity" of 
molecules.J. Am. Chem. 
Soc. 103:3599-601 (1981). 

2 Topological descriptors 

Chi0 From equations (1),(9) and (10) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi1 From equations (1),(11) and (12) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi0v From equations (5),(9) and (10) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi1v From equations (5),(11) and (12) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi2v From equations (5),(15) and (16) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi3v From equations (5),(15) and (16) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi4v From equations (5),(15) and (16) of 
Rev. Comp. Chem. vol 2, 367-422, 
(1991) 

2 Connectivity 
descriptors 

Chi0n Similar to Hall Kier Chi0v, but uses 
nVal instead of valence This makes 
a big difference after we get out of 
the first row.Rev. Comput. 
Chem. 2:367-422 (1991). 

2 Connectivity 
descriptors 

Chi1n Similar to Hall Kier Chi1v, but uses 
nVal instead of valence.Rev. 
Comput. Chem. 2:367-422 (1991). 

2 Connectivity 
descriptors 

Chi2n Similar to Hall Kier Chi2v, but uses 
nVal instead of valence This makes 
a big difference after we get out of 
the first row.Rev. Comput. 
Chem. 2:367-422 (1991). 

2 Connectivity 
descriptors 

Chi3n Similar to Hall Kier Chi3v, but uses 
nVal instead of valence This makes 
a big difference after we get out of 
the first row.Rev. Comput. 
Chem. 2:367-422 (1991). 

2 Connectivity 
descriptors 

Chi4n Similar to Hall Kier Chi4v, but uses 
nVal instead of valence.This makes 
a big difference after we get out of 

2 Connectivity 
descriptors 
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the first row.Rev. Comput. 
Chem. 2:367-422 (1991). 

EState_VSA1 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA2 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA3 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA4 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA5 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA6 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA7 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA8 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA9 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA10 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

EState_VSA11 MOE-type descriptors using EState 
indices and surface area 
contributions (developed at RD, not 
described in the CCG paper). 

2 MOE-type descriptors 

ExactMolWt The molecule's exact molecular 
weight. 

2 Molecular property 
descriptors 

FractionCSP3 The fraction of C atoms that are 
SP3 hybridized. 

1 Constitutional 
descriptors 

HallKierAlpha The Hall-Kier alpha value for a 
molecule.Rev. Comput. 
Chem. 2:367-422 (1991). 

2 Topological descriptors 

HeavyAtomCount Number of heavy atoms of a 
molecule. 

1 Constitutional 
descriptors 
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HeavyAtomMolWt The average molecular weight of 
the molecule ignoring hydrogens 

1 Constitutional 
descriptors 

Ipc the information content of the 
coefficients of the characteristic 
polynomial of the adjacency matrix 
of a hydrogen-suppressed graph of a 
molecule. 

2 Topological descriptors 

Kappa1 Hall-Kier Kappa1 value 2 Topological descriptors 
Kappa2 Hall-Kier Kappa2 value 2 Topological descriptors 
Kappa3 Hall-Kier Kappa2 value 2 Topological descriptors 
LabuteASA Labute's Approximate Surface Area 

(ASA from MOE) 
2 MOE-type descriptors 

MolLogP Wildman-Crippen LogP 
value.Wildman and 
Crippen JCICS 39:868-73 (1999) 

2 Molecular property 
descriptors 

MolMR Wildman-Crippen MR 
value.Wildman and 
Crippen JCICS 39:868-73 (1999) 

2 Molecular property 
descriptors 

MolWt The average molecular weight of 
the molecule 

2 Molecular property 
descriptors 

NHOHCount Number of NHs or OHs 1 Constitutional 
descriptors 

NOCount Number of Nitrogens and Oxygens 1 Constitutional 
descriptors 

NumAliphaticCarbocycles The number of aliphatic (containing 
at least one non-aromatic bond) 
carbocycles for a molecule 

1 Constitutional 
descriptors 

NumAliphaticHeterocycles The number of aliphatic (containing 
at least one non-aromatic bond) 
heterocycles for a molecule 

1 Constitutional 
descriptors 

NumAliphaticRings The number of aliphatic (containing 
at least one non-aromatic bond) 
rings for a molecule 

1 Constitutional 
descriptors 

NumAromaticCarbocycles The number of aromatic 
carbocycles for a molecule 

1 Constitutional 
descriptors 

NumAromaticHeterocycles The number of aromatic 
heterocycles for a molecule 

1 Constitutional 
descriptors 

NumAromaticRings The number of aromatic rings for a 
molecule 

1 Constitutional 
descriptors 

NumHAcceptors Number of Hydrogen Bond 
Acceptors 

1 Constitutional 
descriptors 

NumHDonors Number of Hydrogen Bond Donors 1 Constitutional 
descriptors 

NumHeteroatoms Number of Heteroatoms 1 Constitutional 
descriptors 

NumRadicalElectrons The number of radical electrons the 
molecule has (says nothing about 
spin state) 

1 Constitutional 
descriptors 

NumRotatableBonds Number of Rotatable Bonds 1 Constitutional 
descriptors 

NumSaturatedCarbocycles The number of saturated 
carbocycles for a molecule 

1 Constitutional 
descriptors 

NumSaturatedHeterocycles The number of saturated 
heterocycles for a molecule 

1 Constitutional 
descriptors 
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NumSaturatedRings The number of saturated rings for a 
molecule 

1 Constitutional 
descriptors 

NumValenceElectrons The number of valence electrons the 
molecule has 

1 Constitutional 
descriptors 

PEOE_VSA1 MOE Charge VSA Descriptor 1 (-
inf < x < -0.30) 

2 MOE-type descriptors 

PEOE_VSA2 MOE Charge VSA Descriptor 2 (-
0.30 <= x < -0.25) 

2 MOE-type descriptors 

PEOE_VSA3 MOE Charge VSA Descriptor 3 (-
0.25 <= x < -0.20) 

2 MOE-type descriptors 

PEOE_VSA4 MOE Charge VSA Descriptor 4 (-
0.20 <= x < -0.15) 

2 MOE-type descriptors 

PEOE_VSA5 MOE Charge VSA Descriptor 5 (-
0.15 <= x < -0.10) 

2 MOE-type descriptors 

PEOE_VSA6 MOE Charge VSA Descriptor 6 (-
0.10 <= x < -0.05) 

2 MOE-type descriptors 

PEOE_VSA7 MOE Charge VSA Descriptor 7 (-
0.05 <= x < 0.00) 

2 MOE-type descriptors 

PEOE_VSA8 MOE Charge VSA Descriptor 8 
( 0.00 <= x < 0.05) 

2 MOE-type descriptors 

PEOE_VSA9 MOE Charge VSA Descriptor 9 
( 0.05 <= x < 0.10) 

2 MOE-type descriptors 

PEOE_VSA10 MOE Charge VSA Descriptor 10 
( 0.10 <= x < 0.15) 

2 MOE-type descriptors 

PEOE_VSA11 MOE Charge VSA Descriptor 11 
( 0.15 <= x < 0.20) 

2 MOE-type descriptors 

PEOE_VSA12 MOE Charge VSA Descriptor 12 
( 0.20 <= x < 0.25) 

2 MOE-type descriptors 

PEOE_VSA13 MOE Charge VSA Descriptor 13 
( 0.25 <= x < 0.30) 

2 MOE-type descriptors 

PEOE_VSA14 MOE Charge VSA Descriptor 14 
( 0.30 <= x < inf) 

2 MOE-type descriptors 

RingCount The number of rings for a molecule 1 Constitutional 
descriptors 

SMR_VSA1 MOE MR VSA Descriptor 1 (-inf < 
x < 1.29) 

2 MOE-type descriptors 

SMR_VSA2 MOE MR VSA Descriptor 2 ( 1.29 
<= x < 1.82) 

2 MOE-type descriptors 

SMR_VSA3 MOE MR VSA Descriptor 3 ( 1.82 
<= x < 2.24) 

2 MOE-type descriptors 

SMR_VSA4 MOE MR VSA Descriptor 4 ( 2.24 
<= x < 2.45) 

2 MOE-type descriptors 

SMR_VSA5 MOE MR VSA Descriptor 5 ( 2.45 
<= x < 2.75) 

2 MOE-type descriptors 

SMR_VSA6 MOE MR VSA Descriptor 6 ( 2.75 
<= x < 3.05) 

2 MOE-type descriptors 

SMR_VSA7 MOE MR VSA Descriptor 7 ( 3.05 
<= x < 3.63) 

2 MOE-type descriptors 

SMR_VSA8 MOE MR VSA Descriptor 8 ( 3.63 
<= x < 3.80) 

2 MOE-type descriptors 

SMR_VSA9 MOE MR VSA Descriptor 9 ( 3.80 
<= x < 4.00) 

2 MOE-type descriptors 

SMR_VSA10 MOE MR VSA Descriptor 10 ( 4.00 
<= x < inf) 

2 MOE-type descriptors 
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SlogP_VSA1 MOE logP VSA Descriptor 1 (-inf < 
x < -0.40) 

2 MOE-type descriptors 

SlogP_VSA2 MOE logP VSA Descriptor 2 (-0.40 
<= x < -0.20) 

2 MOE-type descriptors 

SlogP_VSA3 MOE logP VSA Descriptor 3 (-0.20 
<= x < 0.00) 

2 MOE-type descriptors 

SlogP_VSA4 MOE logP VSA Descriptor 4 ( 0.00 
<= x < 0.10) 

2 MOE-type descriptors 

SlogP_VSA5 MOE logP VSA Descriptor 5 ( 0.10 
<= x < 0.15) 

2 MOE-type descriptors 

SlogP_VSA6 MOE logP VSA Descriptor 6 ( 0.15 
<= x < 0.20) 

2 MOE-type descriptors 

SlogP_VSA7 MOE logP VSA Descriptor 7 ( 0.20 
<= x < 0.25) 

2 MOE-type descriptors 

SlogP_VSA8 MOE logP VSA Descriptor 8 ( 0.25 
<= x < 0.30) 

2 MOE-type descriptors 

SlogP_VSA9 MOE logP VSA Descriptor 9 ( 0.30 
<= x < 0.40) 

2 MOE-type descriptors 

SlogP_VSA10 MOE logP VSA Descriptor 10 
( 0.40 <= x < 0.50) 

2 MOE-type descriptors 

SlogP_VSA11 MOE logP VSA Descriptor 11 
( 0.50 <= x < 0.60) 

2 MOE-type descriptors 

SlogP_VSA12 MOE logP VSA Descriptor 12 
( 0.60 <= x < inf) 

2 MOE-type descriptors 

TPSA The polar surface area of a molecule 
based upon fragments 

2 Molecular property 
descriptors 

VSA_EState1 VSA EState Descriptor 1 (-inf < x < 
4.78) 

2 MOE-type descriptors 

VSA_EState2 VSA EState Descriptor 2 ( 4.78 <= 
x < 5.00) 

2 MOE-type descriptors 

VSA_EState3 VSA EState Descriptor 3 ( 5.00 <= 
x < 5.41) 

2 MOE-type descriptors 

VSA_EState4 VSA EState Descriptor 4 ( 5.41 <= 
x < 5.74) 

2 MOE-type descriptors 

VSA_EState5 VSA EState Descriptor 5 ( 5.74 <= 
x < 6.00) 

2 MOE-type descriptors 

VSA_EState6 VSA EState Descriptor 6 ( 6.00 <= 
x < 6.07) 

2 MOE-type descriptors 

VSA_EState7 VSA EState Descriptor 7 ( 6.07 <= 
x < 6.45) 

2 MOE-type descriptors 

VSA_EState8 VSA EState Descriptor 8 ( 6.45 <= 
x < 7.00) 

2 MOE-type descriptors 

VSA_EState9 VSA EState Descriptor 9 ( 7.00 <= 
x < 11.00) 

2 MOE-type descriptors 

VSA_EState10 VSA EState Descriptor 10 ( 11.00 
<= x < inf) 

2 MOE-type descriptors 

fr_Al_COO Number of aliphatic carboxylic 
acids 

1 Constitutional 
descriptors 

fr_Al_OH Number of aliphatic hydroxyl 
groups 

1 Constitutional 
descriptors 

fr_Al_OH_noTert Number of aliphatic hydroxyl 
groups excluding tert-OH 

1 Constitutional 
descriptors 

fr_ArN Number of N functional groups 
attached to aromatics 

1 Constitutional 
descriptors 
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fr_Ar_COO Number of Aromatic carboxylic 
acide 

1 Constitutional 
descriptors 

fr_Ar_N Number of aromatic nitrogens 1 Constitutional 
descriptors 

fr_Ar_NH Number of aromatic amines 1 Constitutional 
descriptors 

fr_Ar_OH Number of aromatic hydroxyl 
groups 

1 Constitutional 
descriptors 

fr_COO Number of carboxylic acids 1 Constitutional 
descriptors 

fr_COO2 Number of carboxylic acids 1 Constitutional 
descriptors 

fr_C_O Number of carbonyl O 1 Constitutional 
descriptors 

fr_C_O_noCOO Number of carbonyl O, excluding 
COOH 

1 Constitutional 
descriptors 

fr_C_S Number of thiocarbonyl 1 Constitutional 
descriptors 

fr_HOCCN Number of C(OH)CCN-Ctert-alkyl 
or C(OH)CCNcyclic 

1 Constitutional 
descriptors 

fr_Imine Number of Imines 1 Constitutional 
descriptors 

fr_NH0 Number of Tertiary amines 1 Constitutional 
descriptors 

fr_NH1 Number of Secondary amines 1 Constitutional 
descriptors 

fr_NH2 Number of Primary amines 1 Constitutional 
descriptors 

fr_N_O Number of hydroxylamine groups 1 Constitutional 
descriptors 

fr_Ndealkylation1 Number of XCCNR groups 1 Constitutional 
descriptors 

fr_Ndealkylation2 Number of tert-alicyclic amines (no 
heteroatoms, not quinine-like 
bridged N) 

1 Constitutional 
descriptors 

fr_Nhpyrrole Number of H-pyrrole nitrogens 1 Constitutional 
descriptors 

fr_SH Number of thiol groups 1 Constitutional 
descriptors 

fr_aldehyde Number of aldehydes 1 Constitutional 
descriptors 

fr_alkyl_carbamate Number of alkyl carbamates 
(subject to hydrolysis) 

1 Constitutional 
descriptors 

fr_alkyl_halide Number of alkyl halides 1 Constitutional 
descriptors 

fr_allylic_oxid Number of allylic oxidation sites 
excluding steroid dienone 

1 Constitutional 
descriptors 

fr_amide Number of amides 1 Constitutional 
descriptors 

fr_amidine Number of amidine groups 1 Constitutional 
descriptors 

fr_aniline Number of anilines 1 Constitutional 
descriptors 

fr_aryl_methyl Number of aryl methyl sites for 
hydroxylation 

1 Constitutional 
descriptors 
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fr_azide Number of azide groups 1 Constitutional 
descriptors 

fr_azo Number of azo groups 1 Constitutional 
descriptors 

fr_barbitur Number of barbiturate groups 1 Constitutional 
descriptors 

fr_benzene Number of benzene rings 1 Constitutional 
descriptors 

fr_benzodiazepine Number of benzodiazepines with no 
additional fused rings 

1 Constitutional 
descriptors 

fr_bicyclic Bicyclic 1 Constitutional 
descriptors 

fr_diazo Number of diazo groups 1 Constitutional 
descriptors 

fr_dihydropyridine Number of dihydropyridines 1 Constitutional 
descriptors 

fr_epoxide Number of epoxide rings 1 Constitutional 
descriptors 

fr_ester Number of esters 1 Constitutional 
descriptors 

fr_ether Number of ether oxygens (including 
phenoxy) 

1 Constitutional 
descriptors 

fr_furan Number of furan rings 1 Constitutional 
descriptors 

fr_guanido Number of guanidine groups 1 Constitutional 
descriptors 

fr_halogen Number of halogens 1 Constitutional 
descriptors 

fr_hdrzine Number of hydrazine groups 1 Constitutional 
descriptors 

fr_hdrzone Number of hydrazone groups 1 Constitutional 
descriptors 

fr_imidazole Number of imidazole rings 1 Constitutional 
descriptors 

fr_imide Number of imide groups 1 Constitutional 
descriptors 

fr_isocyan Number of isocyanates 1 Constitutional 
descriptors 

fr_isothiocyan Number of isothiocyanates 1 Constitutional 
descriptors 

fr_ketone Number of ketones 1 Constitutional 
descriptors 

fr_ketone_Topliss Number of ketones excluding 
diaryl, a,b-unsat. 

1 Constitutional 
descriptors 

fr_lactam Number of beta lactams 1 Constitutional 
descriptors 

fr_lactone Number of cyclic esters (lactones) 1 Constitutional 
descriptors 

fr_methoxy Number of methoxy groups -OCH3 1 Constitutional 
descriptors 

fr_morpholine Number of morpholine rings 1 Constitutional 
descriptors 

fr_nitrile Number of nitriles 1 Constitutional 
descriptors 
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fr_nitro Number of nitro groups 1 Constitutional 
descriptors 

fr_nitro_arom Number of nitro benzene ring 
substituents 

1 Constitutional 
descriptors 

fr_nitro_arom_nonortho Number of non-ortho nitro benzene 
ring substituents 

1 Constitutional 
descriptors 

fr_nitroso Number of nitroso groups, 
excluding NO2 

1 Constitutional 
descriptors 

fr_oxazole Number of oxazole rings 1 Constitutional 
descriptors 

fr_oxime Number of oxime groups 1 Constitutional 
descriptors 

fr_para_hydroxylation Number of para-hydroxylation sites 1 Constitutional 
descriptors 

fr_phenol Number of phenols 1 Constitutional 
descriptors 

fr_phenol_noOrthoHbond Number of phenolic OH excluding 
ortho intramolecular Hbond 
substituents 

1 Constitutional 
descriptors 

fr_phos_acid Number of phosphoric acid groups 1 Constitutional 
descriptors 

fr_phos_ester Number of phosphoric ester groups 1 Constitutional 
descriptors 

fr_piperdine Number of piperdine rings 1 Constitutional 
descriptors 

fr_piperzine Number of piperzine rings 1 Constitutional 
descriptors 

fr_priamide Number of primary amides 1 Constitutional 
descriptors 

fr_prisulfonamd Number of primary sulfonamides 1 Constitutional 
descriptors 

fr_pyridine Number of pyridine rings 1 Constitutional 
descriptors 

fr_quatN Number of quarternary nitrogens 1 Constitutional 
descriptors 

fr_sulfide Number of thioether 1 Constitutional 
descriptors 

fr_sulfonamd Number of sulfonamides 1 Constitutional 
descriptors 

fr_sulfone Number of sulfone groups 1 Constitutional 
descriptors 

fr_term_acetylene Number of terminal acetylenes 1 Constitutional 
descriptors 

fr_tetrazole Number of tetrazole rings 1 Constitutional 
descriptors 

fr_thiazole Number of thiazole rings 1 Constitutional 
descriptors 

fr_thiocyan Number of thiocyanates 1 Constitutional 
descriptors 

fr_thiophene Number of thiophene rings 1 Constitutional 
descriptors 

fr_unbrch_alkane Number of unbranched alkanes of at 
least 4 members (excludes 
halogenated alkanes) 

1 Constitutional 
descriptors 
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fr_urea Number of urea groups 1 Constitutional 
descriptors 

MaxAbsEStateIndex Returns a tuple of EState indices for 
the molecule, Reference: Hall, 
Mohney and Kier. JCICS _31_ 76-
81 (1991) 

2 Topological descriptors 

MaxAbsPartialCharge Returns molecular charge 
descriptors 

2 Topological descriptors 

MaxEStateIndex Returns a tuple of EState indices for 
the molecule, Reference: Hall, 
Mohney and Kier. JCICS _31_ 76-
81 (1991) 

2 Topological descriptors 

MaxPartialCharge Returns molecular charge 
descriptors 

2 Topological descriptors 

MinAbsEStateIndex Returns a tuple of EState indices for 
the molecule, Reference: Hall, 
Mohney and Kier. JCICS _31_ 76-
81 (1991) 

2 Topological descriptors 

MinAbsPartialCharge Returns molecular charge 
descriptors 

2 Topological descriptors 

MinEStateIndex Returns a tuple of EState indices for 
the molecule, Reference: Hall, 
Mohney and Kier. JCICS _31_ 76-
81 (1991) 

2 Topological descriptors 

MinPartialCharge Returns molecular charge 
descriptors 

2 Topological descripto 

 

 
Figure 5.S2: Selected descriptors used for the ChEMBL database QSAR model 
development. Descriptor meaning can be found in Supplementary Table S1. 
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PEOE_VSA11 PEOE_VSA11 PEOE_VSA12 PEOE_VSA11 PEOE_VSA1 PEOE_VSA10 
PEOE_VSA13 PEOE_VSA12 PEOE_VSA13 PEOE_VSA13 PEOE_VSA10 PEOE_VSA11 
PEOE_VSA14 PEOE_VSA13 PEOE_VSA14 PEOE_VSA3 PEOE_VSA11 PEOE_VSA12 
PEOE_VSA3 PEOE_VSA14 PEOE_VSA2 PEOE_VSA4 PEOE_VSA12 PEOE_VSA13 
PEOE_VSA4 PEOE_VSA2 PEOE_VSA5 PEOE_VSA5 PEOE_VSA13 PEOE_VSA14 
PEOE_VSA5 PEOE_VSA3 PEOE_VSA6 PEOE_VSA6 PEOE_VSA14 PEOE_VSA2 
PEOE_VSA6 PEOE_VSA5 PEOE_VSA7 PEOE_VSA8 PEOE_VSA2 PEOE_VSA3 
PEOE_VSA8 PEOE_VSA6 PEOE_VSA8 PEOE_VSA9 PEOE_VSA3 PEOE_VSA5 
PEOE_VSA9 PEOE_VSA7 PEOE_VSA9 SMR_VSA10 PEOE_VSA5 PEOE_VSA6 
SMR_VSA10 PEOE_VSA8 SMR_VSA10 SMR_VSA2 PEOE_VSA6 PEOE_VSA7 
SMR_VSA2 PEOE_VSA9 SMR_VSA4 SMR_VSA4 PEOE_VSA7 PEOE_VSA8 
SMR_VSA4 SMR_VSA10 SMR_VSA5 SMR_VSA6 PEOE_VSA8 PEOE_VSA9 
SMR_VSA6 SMR_VSA4 SMR_VSA6 SMR_VSA7 PEOE_VSA9 SMR_VSA10 
SMR_VSA7 SMR_VSA6 SMR_VSA7 SMR_VSA9 SMR_VSA10 SMR_VSA6 
SMR_VSA9 SMR_VSA7 SlogP_VSA1 SlogP_VSA10 SMR_VSA6 SMR_VSA7 
SlogP_VSA10 SlogP_VSA1 SlogP_VSA3 SlogP_VSA11 SMR_VSA7 SMR_VSA9 
SlogP_VSA11 SlogP_VSA3 SlogP_VSA4 SlogP_VSA12 SMR_VSA9 SlogP_VSA1 
SlogP_VSA12 SlogP_VSA8 SlogP_VSA8 SlogP_VSA4 SlogP_VSA1 SlogP_VSA3 
SlogP_VSA4 EState_VSA2 EState_VSA2 SlogP_VSA7 SlogP_VSA3 SlogP_VSA8 
SlogP_VSA7 EState_VSA3 EState_VSA3 SlogP_VSA8 SlogP_VSA8 EState_VSA11 
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EState_VSA4 EState_VSA7 EState_VSA7 EState_VSA5 EState_VSA4 EState_VSA5 
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EState_VSA9 VSA_EState5 VSA_EState8 VSA_EState1 EState_VSA9 VSA_EState2 
VSA_EState1 VSA_EState6 NumAliphatic

Carbocycles 
VSA_EState4 VSA_EState2 VSA_EState4 

VSA_EState3 VSA_EState7 NumAliphatic
Heterocycles 

VSA_EState7 VSA_EState4 VSA_EState5 

VSA_EState4 VSA_EState8 NumAliphatic
Rings 

VSA_EState8 VSA_EState5 VSA_EState6 

VSA_EState5 VSA_EState9 NumAromatic
Carbocycles 

VSA_EState9 VSA_EState6 VSA_EState7 

VSA_EState7 FractionCSP3 NumAromatic
Heterocycles 

FractionCSP3 VSA_EState7 VSA_EState8 

VSA_EState8 NumAliphatic
Heterocycles 

NumSaturated
Heterocycles 

NumAliphatic
Carbocycles 

VSA_EState8 NumAliphatic
Heterocycles 

VSA_EState9 NumAromatic
Heterocycles 

NumSaturated
Rings 

NumAliphatic
Heterocycles 

VSA_EState9 NumAromatic
Heterocycles 

FractionCSP3 RingCount MolLogP NumAromatic
Heterocycles 

NumAliphatic
Heterocycles 

NumRotatable
Bonds 

NumAliphatic
Carbocycles 

MolLogP fr_Al_COO RingCount NumAromatic
Heterocycles 

RingCount 
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NumAliphatic
Heterocycles 

fr_Al_COO fr_Al_OH MolLogP RingCount MolLogP 

NumAromatic
Heterocycles 

fr_Ar_COO fr_Ar_COO fr_Al_COO MolLogP fr_Al_COO 

RingCount fr_aldehyde fr_aldehyde fr_Al_OH fr_Al_COO fr_Ar_COO 
MolLogP fr_allylic_oxid fr_allylic_oxid fr_ArN fr_Ar_COO fr_Ar_OH 
fr_Al_COO fr_aryl_methyl fr_aryl_methyl fr_Ar_COO fr_Ar_OH fr_aldehyde 
fr_Al_OH fr_bicyclic fr_bicyclic fr_Ar_NH fr_aldehyde fr_allylic_oxid 
fr_ArN fr_epoxide fr_epoxide fr_Ar_OH fr_allylic_oxid fr_aryl_methyl 
fr_Ar_COO fr_furan fr_furan fr_COO fr_aryl_methyl fr_bicyclic 
fr_Ar_NH fr_ketone fr_ketone fr_C_S fr_bicyclic fr_epoxide 
fr_Ar_OH fr_ketone_Top

liss 
fr_lactone fr_HOCCN fr_epoxide fr_ester 

fr_COO fr_lactone fr_para_hydro
xylation 

fr_Imine fr_ester fr_furan 

fr_C_S fr_para_hydro
xylation 

fr_unbrch_alka
ne 

fr_NH0 fr_furan fr_ketone 

fr_HOCCN fr_term_acetyl
ene 

 
fr_N_O fr_ketone fr_ketone_Top

liss 
fr_Imine 

  
fr_Ndealkylati
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fr_aniline 
  

fr_allylic_oxid 
  

fr_aryl_methyl 
  

fr_amidine 
  

fr_azide 
  

fr_aniline 
  

fr_azo 
  

fr_aryl_methyl 
  

fr_barbitur 
  

fr_azide 
  

fr_bicyclic 
  

fr_azo 
  

fr_dihydropyri
dine 

  

fr_barbitur 
  

fr_epoxide 
  

fr_bicyclic 
  

fr_ester 
  

fr_dihydropyri
dine 

  
fr_ether 

  

fr_epoxide 
  

fr_furan 
  

fr_ester 
  

fr_halogen 
  

fr_ether 
  

fr_hdrzine 
  

fr_furan 
  

fr_hdrzone 
  



 

184 
 

fr_guanido 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

 

Conclusions  

This study aimed to elucidate the antimicrobial potential of lignin derivates as a 

practical strategy for valorizing lignin waste and to improve the economic viability of 

lignocellulosic biorefineries. Knowledge gaps into how lignin can be effectively 

incorporated into different materials, what specific lignin derivatives retain antimicrobial 

properties in materials and as depolymerization products, and which have increased 

activity were addressed in this study.  Firstly, how different lignocellulosic components 

(lignin and hemicellulose) affect the formation and properties of physically cross-linked 

cellulose-based hydrogels was examined. This evaluation sought to understand if whole 

biomass-based hydrogels can be formed using ionic liquid dissolution and if lignin will 

retain its antimicrobial properties when incorporated into cellulose-based hydrogels. Due 

to the lack of research investigating the antimicrobial properties of lignin depolymerization 

products, we also explored the use of reductive and oxidative depolymerization methods 

to produce lignin-based bio-oils and tested their antimicrobial effects. The reduction 

process of catalytic transfer hydrogenolysis (CTH) was used to depolymerize lignin 

biorefinery waste into a phenolic rich bio-oil. The antimicrobial properties of this bio-oil 

and liquid-liquid extracted fractions were examined to better understand the antimicrobial 

potential of different lignin derivatives. Furthermore, an oxidative depolymerization 

strategy using peracetic acid was used on the same biorefinery lignin to create a bio-oil 

with antimicrobial applications in the fuel ethanol industry. Finally, quantitative 

structure−activity relationship (QSAR) models were developed to predict the antimicrobial 
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properties of lignin derivatives. This work provides critical knowledge and guidance on 

using lignin as an antimicrobial source in different industrial processes/products and to 

identify lignin derivatives with enhanced activity.  

The potential of using ILs in the facile preparation of physically crosslinked 

lignocellulose-based hydrogels was evaluated and compared to a traditional chemical 

crosslinking method. Isolated kraft lignin and xylan were added to pure cellulose-based 

hydrogels and were found to improve the mechanical strength and stiffness compared to 

using just cellulose. However, the physically crosslinked hydrogels had less elastic strength 

than the chemical crosslinker method. Conversely, utilizing raw biomass for hydrogel 

formation provided increased mechanical strength (poplar) and similar water retention 

abilities (poplar and sorghum) when compared to the cellulose chemical crosslinker 

method. The kraft lignin-containing and poplar-based hydrogels provided significant 

antimicrobial properties against E. coli, illustrating the retention of lignin’s antimicrobial 

properties when incorporated into hydrogels. Collectively, results from this study 

demonstrated the potential of using ILs to make physically crosslinked hydrogels directly 

from lignocellulosic biomass with increased mechanical and antimicrobial properties.  

Purified alkali-enzymatic corn stover lignin (AEL) was depolymerized by catalytic 

transfer hydrogenolysis using supercritical ethanol and a Ru/C catalyst. The resulting bio-

oil was produced at high conversion yields (~50 wt%) with a large number of monomers 

present (>30 wt%) in the form of alkylated phenols, hydrogenated hydroxycinnamic acid 

derivatives, syringol, and guaiacol-type lignins.  Sequential extraction using hexane, 

petroleum ether, chloroform, and ethyl acetate extracted the raw bio-oil into five different 

fractions at 50.7-5.8 wt% yields of total bio-oil in the order of chloroform > hexane > 



 

187 
 

petroleum ether ≈ water > ethyl acetate. The hexane and petroleum ether SEF’s were 

primarily composed of alkylated phenolics (i.e., syringyl propane, 4-ethylphenol, and 4-

propylguiacol), while the more polar solvent (chloroform, ethyl acetate, and water) SEF’s 

contained large amounts of phenolics with increased oxygenated functional groups (i.e., 

ethyl homovanillate and homovanillyl alcohol).   The Molecular weights of the raw bio-oil 

and sequential extraction fractions (SEF) were much lower than the purified AEL, 

highlighting the depolymerization that occurred after CTH. The antimicrobial results 

suggested that the total monomer concentration and the presence of specific monomers 

(i.e., syringyl propane) may correlate to the antimicrobial activity and that cell death 

occurred due to membrane damage. However, the exact mode of action or antimicrobial 

activity caused by the synergism of the complex mixtures of monomers and unidentified 

oligomers remains unclear. This study provided insights into the types of lignin-derived 

compounds that confer antimicrobial activity and that compounds can be preferentially 

extracted from lignin bio-oils using simple LLE methods. 

The same AEL lignin was depolymerized through oxidative procedures using 

peracetic acid. The resulting bio-oil showed a low degree of depolymerization into 

identifiable monomeric (<2%) with mostly unidentifiable lignin oligomers being produced. 

Nonetheless, this bio-oil displayed highly selective antimicrobial properties with up to 90% 

inhibition of commercially sampled LAB at 4 mg/ml and no inhibition of yeast. Thus, the 

larger oligomers produced after oxidative depolymerization are responsible for this 

selective activity. Based on fluorescent staining, the bio-oil’s mode of action may be 

attributed to an ionophoric or membrane damaging activity that results in cell death.  

Furthermore, the bio-oil also showed no signs of inhibiting the hydrolytic activity of the 



 

188 
 

saccharification enzymes α-amylase or glucoamylase. Using the bio-oil (4 mg/ml) as an 

alternative antibiotic treatment during SSF of raw corn starch showed an increase (up to 

8%) in ethanol production as bacterial contamination increased, compared to untreated 

contaminated controls. While the bio-oil did not completely inhibit lactobacillus growth, 

which still resulted in net losses of ethanol production (9%) compared to the 

uncontaminated control, the ability of the bio-oil to improve ethanol yields clearly show 

its efficacy as an alternative antibiotic. Taken together with the CTH study, these works 

show that different depolymerization methods of the same lignin will produce drastically 

different lignin monomers and oligomers with varying antimicrobial properties and 

applications.   

The final study was the first attempt in the literature to predict the antimicrobial 

properties of lignin derivatives based on their phenolic structure. The open-access database 

ChEMBL was used to create three different datasets of compounds with MIC activity 

measurements against both B. subtilis and E. coli. The first datasets used all compounds, 

and then to increase their chemical similarity to lignin, compounds with only C, H, and O 

or phenolic based structures were utilized. These larger ChEMBL datasets employed 

machine learning algorithms to develop QSAR models that predict pMIC (-LogMIC) using 

selected molecular descriptors. These models were ultimately found to underpredict the 

antimicrobial activity (pMIC values) of actual lignin compounds found in a metanalysis of 

the literature. Next, more traditional QSAR models using ordinary least square regressions 

were created using the compounds in the metanalysis of the literature, which contained 

MIC data of lignin monomers against both B. subtilis and E. coli. An accurate QSAR model 

for E. coli was not found, but a satisfactory model was obtained for the B. subtilis 
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metanalysis dataset.  The best performing model found MOE-type descriptors and the 

number of aliphatic carboxylic acid groups to be the best predictors of the lignin 

monomer’s pMIC values (R2 of 0.759). Finally, an additional dataset was experimentally 

derived by screening 25 lignin monomers and three dimers against B. subtilis by measuring 

the bacterial load difference (BLD). OLS regressions were also employed to develop the 

experimental datasets’ QSAR models. The best OLS model for the experimental dataset 

found that MOE-type descriptors and the number of aromatic hydroxyl groups were better 

predictors of BLD (R2 of 0.831). Thus, the smaller datasets highlighted how the variability 

in antimicrobial measurements and the specific compounds used will impact the predictive 

nature of the resulting QSARs. 

Future Work 

Although the lignocellulosic based hydrogels were found to have tunable 

properties, the use of ILs as a solvent adds extremely high costs to their production. Thus, 

s further work on utilizing lower-cost ILs or cheaper solvents such as deep eutectic solvents 

(DES) with the ability to dissolve all fractions of lignocellulose and whole biomass should 

be further evaluated. Additionally, only two biomass feedstocks were examined here, and 

based on their good performance/properties, future research should include a wider variety 

of feedstocks to create whole biomass-based hydrogels. Furthermore, analyses such as 

NMR should be utilized to examine the exact structures of lignin present in the hydrogels 

to correlate lignin structures to the observed antimicrobial properties.  

The CTH derived bio-oils were shown to be effectively separated into different 

fractions with different lignin monomer composition using LLE. However, there were 
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significant losses in specific monomers due to the removal of the initial solvents after the 

drying stage, so different drying methods at lower temperature and under atmospheric 

pressure should be evaluated. While some correlations were made in relating total 

monomer content and even specific monomers with the antimicrobial properties of the bio-

oil fractions, more work needs to be done. Specifically, future work should examine 

various mixtures of the identifiable monomers in the bio-oils, at low concentrations, to 

elucidate their antimicrobial interactions. With the absence of larger oligomers, these types 

of experiments could reveal the true importance of the unidentified oligomers and 

interactions of model monomers in determining their antimicrobial properties.   

The peracetic acid oxidized lignin bio-oils showed very promising selective 

antimicrobial properties for reducing LAB contamination in fuel ethanol fermentation 

systems. Further research must improve the bio-oils solubility during fermentation as the 

bio-oil was seen to be in a solid form throughout the fermentation process. Thus, by 

improving its solubility using different solvent or surfactants, there could be an increase its 

antimicrobial action and resulting beneficial effects on ethanol production. Additionally, 

this work utilized pure corn starch instead of a traditional corn mash for the SSF 

experiments, and they were performed at extremely small scales (i.e. 30 ml). To determine 

the true efficacy of this bio-oil at industrial scales, a traditional corn mash and larger 

fermentation volumes should be evaluated.   

The results from the modeling study strongly support that using QSARs to predict 

the antimicrobial properties of lignin-derived compounds must utilize a large and more 

comprehensive/cohesive dataset. For example, the results show that utilizing larger open-

access databases (>10,000 non-lignin compounds) and machine learning algorithms could 
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not accurately predict lignin specific compounds. While smaller datasets using direct lignin 

derivates were compiled, with satisfactory/predictive QSARs developed, the low degree of 

variability amongst the compounds and use of different bioactivity measurements (i.e. BLD 

vs. MIC) in the datasets resulted in different descriptors being identified as main 

contributors to their activity. Therefore, future work should create a larger dataset (>100 

compounds) with lignin only derivatives and a consistent bioactivity measurement to 

accurately predict the antimicrobial potential of future lignin depolymerization products.    

Additionally, model lignin dimers and even larger oligomers should be used in these 

models/datasets to help elucidate their antimicrobial potential, not just monomers. 
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