
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2020

Automated Testing and Bug Reproduction of Android Apps Automated Testing and Bug Reproduction of Android Apps

Yu Zhao
University of Kentucky, lunarlightgg@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0002-4417-7655
Digital Object Identifier: https://doi.org/10.13023/etd.2020.454

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Zhao, Yu, "Automated Testing and Bug Reproduction of Android Apps" (2020). Theses and Dissertations--
Computer Science. 101.
https://uknowledge.uky.edu/cs_etds/101

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0002-4417-7655
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Yu Zhao, Student

Dr. Tingting Yu, Major Professor

Dr. Zongming Fei, Director of Graduate Studies

Automated Testing and Bug Reproduction of Android Apps

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Yu Zhao

Lexington, Kentucky

Director: Dr. Tingting Yu, Professor of Computer Science
Lexington, Kentucky 2020

Copyright c© Yu Zhao 2020
https://orcid.org/0000-0002-4417-7655

https://orcid.org/0000-0002-4417-7655

ABSTRACT OF DISSERTATION

Automated Testing and Bug Reproduction of Android Apps

The large demand of mobile devices creates significant concerns about the quality of
mobile applications (apps). The corresponding increase in app complexity has made
app testing and maintenance activities more challenging. During app development
phase, developers need to test the app in order to guarantee its quality before releas-
ing it to the market. During the deployment phase, developers heavily rely on bug
reports to reproduce failures reported by users. Because of the rapid releasing cycle
of apps and limited human resources, it is difficult for developers to manually con-
struct test cases for testing the apps or diagnose failures from a large number of bug
reports. However, existing automated test case generation techniques are ineffective
in exploring most effective events that can quickly improve code coverage and fault
detection capability. In addition, none of existing techniques can reproduce failures
directly from bug reports.

This dissertation provides a framework that employs artifact intelligence (AI)
techniques to improve testing and debugging of mobile apps. Specifically, the testing
approach employs a Q-network that learns a behavior model from a set of existing
apps and the learned model can be used to explore and generate tests for new apps.
The framework is able to capture the fine-grained details of GUI events (e.g., visiting
times of events, text on the widgets) and use them as features that are fed into a deep
neural network, which acts as the agent to guide the app exploration. The debugging
approach focuses on automatically reproducing crashes from bug reports for mobile
apps. The approach uses a combination of natural language processing (NLP), deep
learning, and dynamic GUI exploration to synthesize event sequences with the goal
of reproducing the reported crash.

KEYWORDS: mobile app testing, bug reports, debugging, machine learning, natural
language processing

Author’s signature: Yu Zhao

Date: December 2, 2020

Automated Testing and Bug Reproduction of Android Apps

By
Yu Zhao

Director of Dissertation: Tingting Yu

Director of Graduate Studies: Zongming Fei

Date: December 2, 2020

I dedicate my dissertation work to my parents, my loving spouse, and my child.

ACKNOWLEDGMENTS

I would like to say thanks to the people who accompanied me in my Ph.D. study.

Thanks to their assistance, help, guidance, support, and friendship. First and fore-

most, I would like to thank my advisors Dr. Tingting Yu and Dr. Qian Chen. Dr.

Tingting Yu has been advising me since the second semester of my Ph.D. study. I

have appreciated she giving me a chance to join her research group when I urgent

need to join a new research team because my first advisor left the University of Ken-

tucky. I can not imagine how I would have survived through my Ph.D. study without

this opportunity and financial support that she provided to me. Dr. Tingting Yu

guides me to work on the software testing research area start from scratch. She is

a patient, hard-working, and inspiring mentor. She also would like to do coding by

herself and share the experience with those who are in her research group. I get a

big influence on her hard work and passion for the research. She teaches me how to

do a good research from thinking about an idea to presenting a paper. She always

encourages me to pursue top-notch research. I would like to thank her for everything

she did for me. Specifically, I feel so grateful that she provides valuable advice all the

time. I can not achieve my current accomplishment without her lead. Dr. Qian Chen

had been advising me in the first semester of my Ph.D. study. I appreciated that he

encouraged me to pursue a Ph.D. degree when I had worked in the industry for about

4 years. At that time, he gave me some encouragements and suggestions to pursue

my Ph.D. study on my research presentation. It is no exaggeration to say Dr. Qian

Chen changed my life. Without him, I might not have enough courage to continue

my research career. He had taught me many things in the computer network area. I

always inspire myself with his words ”the most important thing for a Ph.D. student

is hard work”. His wealth of knowledge and insight in research also encourages me

iii

to keep learning new things. He always helped and encouraged me to achieve my full

potential. I am extremely grateful to have Dr. Tingting Yu and Dr. Qian Chen as

my advisors in my Ph.D. study. I want to repay them by achieving higher research

accomplishments in the future.

In my research career, I also want to thank Dr. Yunhuai Liu who was the advisor

and director of me when I was doing my internship and working in the industry

for about 5 years. It was he to find me from crowds and guide me to work on the

computer science research career. He kept reminding me not to give up my research

career. He is also an open-minded and ambitious researcher. I am grateful for his

valuable advice and never forget every working late at night with him before the

paper submission deadline. I want to say thanks for his countless hours to guide me

in my research. I consider myself to be fortunate to have his guidance and mentor in

my life.

I am grateful to Dr. Jane Hayes, Dr. Zongming Fei, and Yuan Liao as my

committee members. They have provided valuable feedback and suggestions through

my Ph.D. journey. I thank the Director of Graduate Studies in the computer science

department Dr. Zongming Fei and Dr. Miros law Truszczyński who helped me through

my whole Ph.D. study time. I am very honorable and very lucky to be a teaching

assistant for both of them in my Ph.D. study. I have learned a lot of teaching skills

from their wealth of teaching experience.

Among all members of Dr. Tingting Yu’s research group and Dr. Qian Chen’s

research group, they are all very nice people. Specifically, I want to thank Dr. Xin

Li and Dr. Huazhe Wang. They helped me to pass through a tough time when I

was new to the US. Thanks for Justin. He was glad to share his 10 years of industry

java coding experience. Without his help, I might need to spend much more time to

learn java coding. Thanks to Dr. Zhouyang Jia, his valuable knowledge in software

engineer research helped a lot in my study.

iv

I am grateful to my language partner in Lexington, Ky, Alex, and Victor. I

cannot write enough about their love, kindness, and support during my years at the

University of Kentucky. They not only helped me to practice my English speaking

but also to be my family members. They helped me a lot in my daily life. They gave

me many valuable suggestions when I met problems in my study and life. They kept

encouraging me to pass through my tough time and celebrating every achievement.

Lastly, I would like to thank my family, Mom, Dad, my loving spouse - Yuanyuan

Wu, and my little son Jack for their continuous love and encouragement.

v

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . vi

List of Figures . x

List of Tables . xi

Chapter 1 Introduction . 1
1.1 Research Summary . 2
1.2 Contributions . 3

Chapter 2 Background . 5
2.1 Natural Language Processing . 5
2.2 Reinforcement Learning . 7

2.2.1 Q-learning . 7
2.2.2 Deep Q learning . 8

2.3 Reproducing Bug Reports . 9
2.4 Android Framework . 11

2.4.1 Lifecycle of Android Activity 13
2.4.2 Android Virtual Devices . 13

2.5 Mobile App Testing . 13
2.6 Android Testing Tools . 14

2.6.1 UI Automator . 16
2.6.2 Robotium . 16
2.6.3 Other Tools . 17

Chapter 3 Related work . 18
3.1 Mobile App Testing . 18
3.2 Reproducing Bug Report . 19

Chapter 4 DinoDroid: Testing Android Apps Using Deep Q Network 21
4.1 Overview . 21
4.2 Motivation and Background . 23

4.2.1 A Motivating Example. 23
4.2.2 Problem Formulation . 24
4.2.3 Limitation of Existing Q-Learning Techniques 25

4.3 DinoDroid Approach . 25
4.3.1 DinoDroid’s Algorithm . 26
4.3.2 Feature Generation . 27

4.3.2.1 Types of Features . 27

vi

4.3.2.2 Compacted Event Flow Graph 29
4.3.3 DinoDroid’s Deep Q-Network 30

4.3.3.1 DNN’s Feature Handler 30
4.3.3.2 Event Selection . 31
4.3.3.3 Reward Function . 31

4.4 Evaluation . 32
4.4.1 Datasets . 33
4.4.2 Implementation . 33
4.4.3 Study Operation . 33
4.4.4 Comparison with Existing Tools 33

4.5 Results and Analysis . 34
4.5.1 RQ1: Code Coverage . 34
4.5.2 RQ2: Bug Detection . 34
4.5.3 RQ3: Understanding the Learned Model 36

4.5.3.1 Understanding the Features 37
4.5.3.2 The Whole DQN Model Behaviors 39

4.6 Limitations . 39
4.7 Conclusions . 40

Chapter 5 ReCDroid: Automatically Reproducing Android Applica-
tion Crashes from Bug Reports 41

5.1 Overview . 41
5.2 Observations . 43
5.3 Design Challenges . 43
5.4 ReCDroid Approach . 46

5.4.1 Phase 1: Analyzing Bug Reports 46
5.4.1.1 Grammar Patterns 46
5.4.1.2 Extracting Event Representations 48
5.4.1.3 Limitations of Using Grammar Patterns 48

5.4.2 Phase 2: Guided Exploration for Reproducing Crashes 48
5.4.2.1 ReCDroid’ Guided Exploration Algorithm 49
5.4.2.2 Dynamic Matching 50
5.4.2.3 A Running Example 51
5.4.2.4 Optimization Strategies 53

5.5 Empirical Study . 53
5.5.1 Datasets . 53
5.5.2 Implementation . 54
5.5.3 Experiment Design . 54

5.5.3.1 RQ1: Effectiveness and Efficiency of ReCDroid . . . 54
5.5.3.2 RQ2: The Role of NLP in ReCDroid 54
5.5.3.3 RQ3: Usefulness of ReCDroid 54
5.5.3.4 RQ4: Handling Low-Quality Bug Reports 55

5.6 Results and Analysis . 55
5.6.0.1 RQ1: Effectiveness and Efficiency of ReCDroid . . . 55
5.6.0.2 RQ2: The Role of NLP in ReCDroid 56

vii

5.6.0.3 RQ3: Usefulness of ReCDroid 57
5.6.0.4 RQ4: Handling Low-Quality Bug Reports 59

5.7 Discussion . 59
5.8 Conclusions and Future Work . 60

Chapter 6 ReCDroid+: Automated End-to-End Crash Reproduction
from Bug Reports for Android Apps 62

6.1 Introduction . 62
6.1.1 Challenges of extracting Information from Bug Reports 63

6.2 S2Rminer Approach . 65
6.2.1 Phase 1: HTML Parsing . 66
6.2.2 Phase 2: S2R Extraction . 66

6.3 ReCDroid+ Approach . 67
6.3.1 Preprocessing Bug Reports . 67

6.3.1.1 HTML parsing . 68
6.3.1.2 Extract S2R and Crash Sentences 68
6.3.1.3 Policy based S2R Sentences Selection 71

6.4 S2Rminer Evaluation . 73
6.4.1 Datasets . 73
6.4.2 Experiment Design . 73

6.4.2.1 Performance Metrics. 74
6.4.2.2 Combinations of Different Text Features. 74

6.4.3 Threats to Validity . 75
6.5 S2Rminer Results and Analysis . 75

6.5.1 RQ1: Performance of S2Rminer. 75
6.5.2 RQ2: Comparison of Different Types of Text Features. 75

6.6 ReCDroid+ Evaluation . 76
6.6.1 Datasets . 76
6.6.2 Implementation . 77
6.6.3 Experiment Design . 77

6.6.3.1 RQ1: Effectiveness and Efficiency of ReCDroid+ . . 77
6.6.3.2 RQ2: Effectiveness and Efficiency of ReCDroid+ in

extracting S2R and crash sentences 78
6.6.3.3 RQ3: The Role of NLP in ReCDroid+ 78
6.6.3.4 RQ4: Usefulness of ReCDroid+ 78
6.6.3.5 RQ5: Handling Low-Quality Bug Reports 79
6.6.3.6 RQ6: Handling Bug Reports Generated by Different

Users . 79
6.7 ReCDroid+ Results and Analysis . 79

6.7.1 RQ1: Effectiveness and Efficiency of ReCDroid+ 79
6.7.2 RQ2: Effectiveness and Efficiency of Extracting S2R and Crash

Sentences . 81
6.7.3 RQ3: The Role of NLP in ReCDroid+ 83
6.7.4 RQ4: Usefulness of ReCDroid+ 83

6.7.4.1 RQ5: Handling Low-Quality Bug Reports 85

viii

6.7.4.2 RQ6: Handling Bug Reports Generated by Different
Reporters . 86

6.8 Discussion . 86
6.9 Conclusions and Future Work . 86

Chapter 7 Conclusion and Future Work 87

Bibliography . 88

Vita . 100

ix

LIST OF FIGURES

1.1 A Summary of My Research . 2

2.1 Dependency parsing and Pos Tagging . 7
2.2 Deep Q Network . 8
2.3 LibreNews-Android Issues on Github [1] 10
2.4 Structured LibreNews-Android’s bug report 10
2.5 Unstructured LibreNews-Android’s bug report 11
2.6 Activity, widget, and action example . 12
2.7 Android Activity Lifecycle [2] . 14
2.8 Android Emulator . 15
2.9 Mobile Test Case . 15

4.1 A Motivating Example . 24
4.2 Approach Overview . 26
4.3 Event Flow Graph Example . 28
4.4 Deep Q-Network Model . 32
4.5 Line Coverage Comparison among Different Testing Tools 36
4.6 Comparison of tools in detecting crashes 37
4.7 Comparison of tools in detecting crashes filter out activity intent 38

5.1 The steps of reproducing the crash described in Fig. 5.2. 42
5.2 Bug Report for LibreNews issue#22 . 43
5.3 Overview of the ReCDroid Framework. 44
5.4 Examples of Dependency Trees . 47
5.5 Dynamic Ordered Event Tree (DOET) for Figure 5.1 52

6.1 A bug report . 64
6.2 HTML format of Fig.6.1 . 64
6.3 Missing S2R . 65
6.4 Overview of the ReCDroid+ Framework. 67
6.5 The convolutional neural network extracts sentence features from each

word. The word embedding vector are per-trained through word2vec. . . 69
6.6 The LSTM classifies the sentence with the dependence information from

neighbor sentences. 70

x

https://github.com/milesmcc/LibreNews-Android/issues/22

LIST OF TABLES

4.1 Testing Result for Comparison . 35
4.2 DinoDroid’s behavior on every specific feature combination 40

5.1 Summary of Grammar Patterns . 46
5.2 RQ1 — RQ3: Different Techniques and User Study 56
5.3 RQ4: Different Quality Levels . 58

6.1 S2R Refining Rules . 72
6.2 Types of Text Features . 74
6.3 GitHub Result . 76
6.4 Google Code Result . 76
6.5 RQ1,RQ4,RQ5: Different Techniques . 80
6.6 RQ3: Different policies . 82
6.7 RQ4: Different Quality Levels . 85

xi

Chapter 1

Introduction

Mobile applications (apps) have become extremely popular – in 2017 there were over
2.2 million apps in Google Play’s app store [3]. As developers add more features and
capabilities to their apps to make them more competitive, the corresponding increase
in app complexity has made testing and maintenance activities more challenging. The
competitive app marketplace has also made these activities more important for an
app’s success. A recent study found that 80% of app users would abandon an app if
they were to repeatedly encounter a functionality issue [4]. This motivates developers
to rapidly identify and resolve issues, or risk losing users.

To guarantee the quality of mobile apps, developers often generate test cases to
detect and resolve bugs before the app is released to the market. Because of the rapid
releasing cycle of apps and limited human resources, it is difficult for developers to
manually construct test cases. Therefore, different automated mobile app testing
techniques have been developed and applied [5, 6, 7, 8, 9].

The test cases for mobile apps are often represented by sequences of Graphical User
Interface (GUI) events (e.g., click, scroll, edit, swipe, etc) to mimic the interactions
between users and apps. The goal of an automated test generator is generating such
event sequences with the goal of achieving higher code coverage and/or detecting
bugs. A successful test generator is able to exercise the correct GUI widget in the
current app page, so that when exercising that widget, it can bring the app to a new
page, leading to the exploration of new events. However, existing mobile app testing
tools [5, 6, 7, 8, 9] often explore a limited set of events because they have limited
capability of understanding which GUI events would expand the exploration like a
human does. This can lead to automated test generators performing unnecessary
actions that are unlikely to lead to new coverage. Therefore, we need an testing
approach that can effectively exercise the important events to lead high coverage and
fault detect capability.

While the goal of testing is to detect bugs, after an app is released, it may still
contain bugs that were failed to be detected during testing phase and these bugs
may be revealed at user’s end. To track and expedite the process of resolving app
issues, many modern software projects use bug-tracking systems (e.g., Bugzilla [10],
Google Code Issue Tracker [11], and Github Issue Tracker [12]). These systems allow
testers and users to report issues they have identified in an app. Reports involving

1

app crashes are of particular concern to developers because it directly impacts an
app’s usability [13]. Once developers receive a crash/bug report, one of the first steps
to debugging the issue is to reproduce the issue in the app. However, this step is
challenging because the provided information is written in natural language. Natural
language is inherently imprecise and incomplete [14]. Even assuming the developers
can perfectly understand the bug report, the actual reproduction can be challenging
since apps can have complex event-driven and GUI related behaviors, and there could
be many GUI-based actions required to reproduce the crash.

Given the foregoing discussion, the overall goal of our research is to provide an
automated framework, targeted at Android apps, that can effectively and efficiently
detect bugs during testing phase and reproduce bugs from bug reports. Our essential
idea is leveraging a variety of artificial intelligence (AI) methods that enable machine
to understand the semantic meaning of GUI widgets and the textual description of bug
reports, so that it can explore important GUI widgets during testing and reproduce
bugs directly from bug reports written by natural language.

Figure 1.1: A Summary of My Research

1.1 Research Summary

This research focuses on handling Android app bugs in both testing and deployment
phases. Fig. 1.1 shows an overview of this research.

We developed DinoDroid, an approach based on deep Q network to automate
testing of Android apps. DinoDroid learns a behavior model from a set of existing
apps and the learned model can be used to explore and generate tests for new apps.
DinoDroid is able to capture the fine-grained details of GUI events (e.g., visiting
times of events, text on the widgets) and use them as features that are fed into a
deep neural network, which acts as the agent to guide the app exploration. DinoDroid

2

automatically adapts the learned model during the exploration without the need of
any modeling strategies or heuristics. We conduct experiments on 64 open-source
Android apps. The results showed DinoDroid outperforms existing Android testing
tools in terms of code coverage and bug detection.

We developed ReCDroid, a novel approach that can automatically reproduce
crashes from bug reports for Android apps. ReCDroid uses natural language pro-
cessing (NLP) to analyze the steps text of the bug report and automatically identify
GUI components and related information (e.g., click events) that are necessary to
reproduce the crashes. Then a dynamic GUI exploration is designed to synthesize
event sequences with the goal of reproducing the reported crash. The results show
that ReCDroid successfully reproduced 33 crashes (63.5% success rate) directly from
the textual description of bug reports. A user study involving 12 participants demon-
strates that ReCDroid can improve the productivity of developers when resolving
crash bug reports.

ReCDroid+ is an extended version of ReCDroid. Besides all of the compo-
nents in ReCDroid, ReCDroid+ includes a new bug report preprocessing component,
which can automatically extract information that be directly processed by ReCDroid.
Therefore, ReCDroid+ is an end-to-end bug reproduction tool, meaning that no hu-
man effort is needed during the process of reproducing bug reports. Specifically
ReCDroid+ leverages a combination of HTML parser [15], convolutional neural net-
works (CNN) [16], and long-short term memory (LSTM) [17] to extract the step-to-
reproduce (S2R) sentences from the bug report text. These S2R sentences are sent
to ReCDroid as input. We have evaluated ReCDroid+ on 66 original bug reports
from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42
crashes (63.6% success rate) directly from the textual description of bug reports.

1.2 Contributions

In summary, our research makes the following contributions:
• We present a learning-based approach, called DinoDroid, to automatically test

android app. DinoDroid involves a novel deep Q-learning model that can pro-
cess complex features at a fine-grained level. An empirical study showing that
the approach is effective in achieving higher code coverage and better bug de-
tection than the state-of-the-art tools. The implementation of the approach as
a publicly available tool, DinoDroid, along with all experiment data [18]
• We design and development of a novel approach ReCDroid to automatically

reproduce crash failures for Android apps directly from the textual descrip-
tion of bug reports. An empirical study showing that ReCDroid is effective
at reproducing Android crashes and likely to improve the productivity of bug
resolution. The implementation of our approach as a publicly available tool,
ReCDroid, along with all experiment data (e.g., datasets, user study) [19].
• We introduce an extension version of ReCDroid as ReCDroid+ which can auto-

matically reproduce the raw HTML bug report downloaded from bug tracking
systems. A novel text analysis technique that uses natural language processing
(NLP) and deep learning to derive a set of heuristics that can automatically

3

capture steps sentence relevant to the bug report. An empirical study show-
ing that ReCDroid+ is effective at reproducing Android crashes and likely to
improve the productivity of raw HTML bug report.

4

Chapter 2

Background

In this chapter, we first describe background related to Android framework, mo-
bile app testing and bug report reproduction, natural language processing, and Q-
Learning. We then discuss related work.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI). It
studies the interaction between human and machine using natural language. In this
dissertation, we utilize NLP to deal with how machine understands human language
on app content and app-related document. We introduce several NLP techniques
that are employed in our work.

Word Embedding is a feature learning technique. Many machine learning algo-
rithms and all deep learning methods can not process the texts as their raw format.
They need real numbers as the input to handle NLP tasks as text classification. So
word embedding is used to transfer a word from a vocabulary into a vector with real
numbers. By leveraging corpora of unlabeled text, the word embedding can be com-
puted for capturing both syntactic and semantic information about words [20]. It
is used as the underlying input representation and has been shown to be a common
part of NLP tasks. In this dissertation, two different Word Embedding methods are
used to map a word to a digit vector.

The count-based word embedding method maps all words in a sentence to vector
with counting. Consider a corpus C of all sentences to be handled. A dictionary
is built by extracting each unique word from the C. To transfer a sentence into a
vector, count-based word embedding method counts the frequency of each word in
the target sentence and fills it to the matched position of the dictionary. After that,
an embedding vector is generated in which each item represents the frequency of
the word in the target sentence. A simple example is used to understand the word
embedding method. Considering, there are 3 sentences ”I click A”, ”I click B”, and
”I click A and click B”. Count based word embedding method puts every word from
sentences into a dictionary. The dictionary is [”I”, ”click”, ”A” ,”and”, ”B”]. Every
word in a sentence will be counted frequency and match the word vector to generate

5

an embedding vector. ”I click A” is embedded to [1 1 1 0 0]. ”I click B” is embedded
to [1 1 0 0 1]. ”I click A and click B” is embedded to [1 2 1 1 1].

Prediction based approaches for word embedding seems to have better perfor-
mance than the count based word embedding across a variety of NLP domains as
text classification and name entity recognition [21]. These methods generate lower
dimensions of the embedding vector to better dense word representation. The pop-
ular Word2vec [22] is one of these prediction based approaches. Word2Vec exploits
a neural network model to learn word associations from a large corpus of text. The
word vectors are randomly initialized and trained to predict the current word from
a window of surrounding context words. After the train, the vectors indicate the
semantic similarity between the words represented by those vectors.

N-gram technique [23] uses n-word rather than 1-word to represent the words’
features. It is used to keep order information or keep word dependence information
as the words’ features. It is very common to use N-gram with count-based word
embedding method. For example, The dictionary [”I”, ”click”, ”A” ,”and”, ”B”] as
the 1-gram can be transferred to 2-gram [”I click”, ”click A”, ”click B”, ...] or 3-gram
[”I click A”, ”click A and”, ...] in before example.

Text Classification is one task of NLP technologies. Text classifiers automati-
cally analyze text then assign a set of categories based on the content of text [24]. It
can be used with broad applications as spam detection, sentiment analysis, and topic
labeling. In this dissertation, we utilize text classification to identify S2R sentences
and crash sentences in a bug report.

The text classification method inputs the feature of text and uses a classifier to
assign the categories. There are multiple types of classifier design. It is important
to find a good classifier for the text classification pipeline [24]. Logistic regression is
one of the simplest classification algorithm [25]. It has been widely addressed in data
mining domains. In the information retrieval tasks, the Naive Bayes Classifier (NBC)
[26] is very popular which is a computationally inexpensive and memory friendly
method. Support Vector Machine (SVM) [27] is a popular technique that employs
a non-probabilistic binary linear classifier. This technique can also be used in all
domains of data mining such as text classification, bioinformatics, image, and video,
etc. Comparing to previous machine learning, deep learning approaches have achieved
surpassing results [24] on tasks as image, NLP, face recognition, etc. CNN and
LSTM as the deep neural network model won several international pattern recognition
competitions and set numerous benchmark records on large and complex data sets
[28]. Deep learning algorithms have the capacity to model complex and non-linear
relationships within data [29]. It is the reason why it is successful on broadly large
data set classifications.

Dependency parsing is the NLP task to extract a dependency parse of a sen-
tence [30]. It represents the sentence’s grammatical structure and uses head and
child to represent the dependency syntactic relation. The syntactic relations form
a tree structure. Every one word has one head in the dependency parse. The syn-
tactic relation includes subject, predicate, object, adjectival modifier and so on. As
shown in Fig. 2.1, the word ”puppy”’s adjectival modifier is ”black” in the tree.
Dependency parsing is one of the mainstream research areas in NLP [31]. Depen-

6

dency representations are useful for a broad applications of NLP tasks, for example,
machine translation [32], information extraction [33], and parser stacking [34].

Part-of-speech tagging is the process of labeling each word in a sentence which
indicates the status of that word according to their morphological and/or syntactic
properties [35]. A part-of-speech is a grammatical category, including verbs, nouns,
adjectives, adverbs, determiner, and so on. As shown in Fig. 2.1, the word ”black”
it labeled as ”ADJ” and ”puppy” is labeled as ”NOUN”. Part-of-speech tagging
has a crucial role in fields of natural language processing (NLP) including machine
translation.

Figure 2.1: Dependency parsing and Pos Tagging

2.2 Reinforcement Learning

We introduce Q-learning and deep Q-learning.

2.2.1 Q-learning

Q learning [36] is a model-free reinforcement learning method that seeks to learn poli-
cies that can maximize a numerical reward for agents interacting with an unknown
environment. Q-learning is based on trial-and-error learning in which an agent in-
teracts with its environment and assigns utility estimates known as Q-values to each
state.

The Q learning can be formalized as a Markov Decision Processes (MDPs) which
can be described by a 4-tuple (S, A,P, R). S represents the set of states and A
represents the set of actions. As shown in Fig. 2.2 the agent iteratively interacts with
the outside environment. At each time step t, an agent interacting with the MDP
observes a state st ∈ S and selects an action at ∈ A. and executes it on the outside
environment. After exercising the action, there is a new state st+1 ∈ S, which can be
observed by the agent. In the meantime, an immediate reward rt ∈ R is received.

Q learning exploits Q function to estimate how good to select an action in a current
state. An expected cumulative reward of a sequence of actions can be returned by
executing a sequence of actions that starts with an action at from a state st and then
follows the policy π. The optimal policy Qπ is the maximum expected cumulative

7

reward which is achievable for a given (state, action) pair.

Q∗(st, at) = max
∑
t>0

(γtrt|s = st, a = at, π) (2.1)

At each step st, with the Bellman equation in dynamic programming [37], the
optimal strategy for the equation 2.1 is to select the action which maximizes the
sum: r +Q∗(st+1; at+1) where r is the immediate reward of the current step st.

Q∗(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1) (2.2)

The Q learning algorithm uses equation 2.2 to value of Q∗ on each state-action
pair iteratively. If the states and actions are discrete and finite, this pair can be
represented in a tabular. In the tabular, the row and column represents the state and
action where all pairs are initialized with default value. As shown in Fig. 2.2, every
time the agent executes an action at to reach state st+1 and gets a reward rt+1, the
relating state-action value is updated as:

Q(st, at)← Q(st, at) + α ∗ (rt + γ ∗max
a
Q(st+1, a)−Q(st, at)) (2.3)

In this equation, α is a learning rate between 0 and 1, γ is a discount factor
between 0 and 1, st is the state at time t, and at is the action taken at time t. In
this equation, the value of subsequent state-action pair will influence the value of
preceding pairs. This estimator can converge to the true value if the environment
is sufficiently explored [38]. Whenever Q-learning is learned to estimate the values
precisely, these Q-values can be used to determine optimal behavior in each state by
selecting action at = arg maxaQ(st, a).

Figure 2.2: Deep Q Network

2.2.2 Deep Q learning

Deep Q network (DQN) is used to scale the classic Q-learning to more complex state
and action spaces [39, 40]. For the classical Q-learning, Q(st, at) are stored and

8

visited in a Q table. It can only handle the fully observed, low-dimensional state and
action space. As shown in Fig. 2.2, A DQN is a multi-layered neural network that for
a given state st outputs a vector of action values Q(st, a). Because neural network
can input and outputs high-dimensional state and action space, DQN can scale more
complex state and action spaces. A neural network can also generalize Q-values to
unseen states, which is not possible when using a Q-table. It utilizes the follow loss
function [40] to alter the network to minimize the loss function:

L(w) = (rt + γ ∗max
a
Q(st+1, a)−Q(st, at))

2. (2.4)

Following is Q-Learning gradient:

(rt + γmaxQ(st+1, a, w)−Q(st, at, w))
dQ(st, at, w)

dw
(2.5)

To minimize the loss function L(w), an optimal w as the multi-layered neural net-
work’s weight is computed by the stochastic gradient descent method. The Q neural
network converges toward the optimal Q-function Q∗ with minimum loss function
L(w). As we can see in the equation 2.4, with the input of (st, at), the neural network
is trained to predict the Q value as:

Q(st, at) = rt + γ ∗max
a
Q(st+1, a) (2.6)

So in a training sample on a current state st, the input is st and at and output of
the multi-layered neural network is the corresponding Q value which can be computed
by rt + γ ∗max

a
Q(st+1, a).

2.3 Reproducing Bug Reports

When bug or unexpected behavior of software is observed by a user, a bug report
might be written and submitted by user to report the problems using issue trackers
[41]. After the developer receives the bug report in the issue tracker, the first step of
developer to fix bug is reproducing the bug.

The bug tracking systems keeps track of reported software bugs in software devel-
opment projects. There are some public accessing bug tracking systems e.g. Github,
Google Code Archive, and BitBucket. As shown in Fig. 2.3, there are different bugs
are reported to the LibreNews-Android app in Github.

Bug reports are documents that describe the essential information about the found
software bugs. In one bug report there are mainly 3 parts of necessary information:
Observed Behavior (OB), Steps to Reproduce (S2R), and Expected Behavior (EB)
[42]. Developer can use this information to reproduce the bug. For example, in a
bug tracking system, each app may have multiple issues as bug reports. For example,
as we click the last issue in Fig. 2.3, a bug report will come out as shown in Fig.
2.4. In this bug report, these three parts of information are clear and structured by
tags. In the bug report, OB is a crash. EB is no crash. S2R is ”1. Click on the
refresh rate option”, ”2. Set 12hours”, ”3. Exit the app”, and ”4. Change the time

9

Figure 2.3: LibreNews-Android Issues on Github [1]

option”. However, some bug reports may not be structured. For example, in Fig.
2.5, these 3 information require developer to extract manually with understanding of
the meaning of sentences.

Figure 2.4: Structured LibreNews-Android’s bug report

Some bug reports may miss one or more necessary parts. DeMIBuD [42] manually
analysis 3000 bug reports. They find 93.5%, 35.2%, and 51.4% bug reports explicitly
describe OB, EB, and S2R, respectively.

10

Figure 2.5: Unstructured LibreNews-Android’s bug report

Software developers attempt to reproduce software bug report and fix the bug re-
port. However, some of bug reports are hard to reproduce. An existing survey work
[43] analysis the reason of non-Reproducible bugs. They identify 11 key factors to ex-
plain the non-reproducibility of software bugs. In the survey result, 92% of the invited
participants consider missing information it the major cause of non-reproducibility
bug. About 85% of participants consider it is hard to reproduce duplicate bugs, per-
formance bugs, memory misuse related bugs, and third-party defects. Positive bug
reports, bug intermittency, ambiguous software specifications, and restricted security
access are also considered to be the reason for non-reproducibility by 75% of partici-
pants. Finally, touch and gesture related bugs also are agreed by 67% of participants
to be difficult to reproduce.

Erfani et al. [44] conducts a study on analyzing the characteristics of Non-
reproducible Bug Reports. In this work, the authors mine an industrial and five open-
source bug repositories. They extract 32124 non-reproducible bugs from 188319 bug
reports in total. They have some interesting results. Only 17% of bug reports are Non-
reproducible Bug Reports. The Non-reproducible Bug reports can be classified into 6
categories as “Interbug Dependencies” 45%, “Environmental Differences” 24%, “In-
sufficient Information” 14%, “Conflicting Expectations” 12% and “Non-deterministic
Behaviour” 3%.

2.4 Android Framework

This subsection provides background on the Android platform which helps to under-
stand the android testing chapters.

Android is an open-source operating system based on a modified version of Linux
Kernel. It is designed for touchscreen mobile devices which include smartphones and
tablets. Android app is developed in Java. The android code is compiled to standard
Java bytecode, then is converted to customized Dalvik bytecode format and packed
to APK file. Users can download APK from app market and install and use it on the
android device.

Android apps require an AndroidManifest.xml file to be built [45]. This file in-
volves the essential information about the app to the Android build tools, the Android

11

operating system, and Google Play. In this file, many vital contents for managing
the lifecycle of an application are declared as app’s package name, components of the
app, permissions of app, and android versions of the app.

The Android framework defines four types of components [46]: Activities, Ser-
vices, Broadcast Receivers, and Content Providers. These components are supported
by the Android Software Development Kit (SDK). Developers can extend the super
classes (components) provided by SDK and implement their own function based on
app development requirements.

An Activity provides a screen, Graphical User Interface (GUI) that users can
interact with to perform actions. A set of layouts can be contained in an activity
e.g. LinearLayout, TextView, and EditText. The layouts contain GUI controls which
are known as view widgets, for example, TextView for viewing text and EditText for
text inputs. The layouts and their controls are typically described in a configuration
XML file with each layout and control having a unique identifier. As shown in Fig.
2.6, the developer can configure and inject widgets on the layout of activity based
on the requirement. Every widget can be implemented along with an action such as
moving to another page and jumping out a dialog on current activity. Every layouts
and widgets are configured in an XML file with a unique identifier and perform an
action.

Figure 2.6: Activity, widget, and action example

Service does not have any user interact on the screen. It is usually used to
perform long-term running tasks, such as playing music or triggering alarm clocks
[47]. Including Activities and Broadcast Receivers, some other components can start
a service. Once started, a service can run for some time, even after user mores to
activity or another app.

12

Broadcast receiver subscribes to Intents broadcasts from other applications
and the system. Android apps can send or receive broadcast messages similar to the
publish-subscribe design pattern [48]. Android system and other Android apps can
send and receive these messages.

Content provider manages and shares application data to other apps. It enables
users to access data of other applications These data are stored in the files or database,
including contract information, message, book, photo, video, and music.

An intent is an abstract description of an operation of app to be performed.
Activities, Services, and Broadcast Receivers are activated via Intent messages. For
example, to visit a new activity from the current activity, developer can build an
intent with ”Intent intent = new Intent(this, newActivity.class)” and send it with
”startActivity(intent)”.

2.4.1 Lifecycle of Android Activity

The activity instances in app transition through different states in its lifecycle [2]. As
we can see in Fig. 2.7, the operation of an activity in a lifecycle can be onCreate(),
onStart(), onResume(), onPause(), onStop(), onRestart(), and onDestroy(). The
widgets focused by our research are depended by the related activity which are effected
by these different states of activity.

2.4.2 Android Virtual Devices

Android Virtual Devices (AVD) (a.k.a emulators) is provided to developer to simulate
and imitate real devices [49]. Without needing to have each physical device, Developer
can test app on a variety of devices and Android API levels. Emulator provides most
of the capabilities of a real device. User can simulate the network loading, incoming
call, short message, and camera on the AVD. It also supports the hardware sensor
e.g. rotation. As shown in Fig. 2.8, AVD can install a set of application like browser,
Camera, Email. It also supports system level event as ”power”, ”back” and ”home”.

In this research, android emulators are used extensively to install and test apps.
The android emulator can be configured on an x86 architecture host machine. The
Android Debug Bridge (ADB) [50] tool is a versatile command-line tool that can
be used to communicate an android emulator or a real android device with a host
machine.

2.5 Mobile App Testing

Software testing [51] is the process of executing test cases on the program to detect dif-
ferences between the actual output and the expected output. There has been a great
deal of work on software testing, including white-box testing, black-box testing, and
grey-box testing [52]. Test case generation can generate test cases automatically. The
measurement for the performance of the generation involves code coverage, branch
coverage, bug trigger possibility, and so on.

13

Figure 2.7: Android Activity Lifecycle [2]

Compared to traditional software, mobile devices have distinguished character-
istics [53], such as mobile connectivity, limited resources, limited energy, new user
interfaces, and context awareness. Android apps are event-driven. The app is run-
ning in the idle state until a new user GUI interaction comes in. In Android, GUI
events include user interaction as clicks, inputs, scrolls, swipes, or system events such
as new coming message [54]. The test cases for mobile apps are represented by se-
quences of GUI events to mimic the interactions between users and apps. As shown in
Fig. 2.9, the android test case is [click: ”settings”, click: ”minimum length”, input:
”4”, click: ”ok”]. The target of an automated test generator is generating such event
sequences to achieve higher code coverage and detecting bugs.

2.6 Android Testing Tools

There are some GUI modeling frameworks that can provide APIs for performing
GUI testing. These frameworks are low-level frameworks. The provided APIs do
not support automated GUI testing directly. For example, the provided APIs only

14

Figure 2.8: Android Emulator

Figure 2.9: Mobile Test Case

support simulating the basic user actions, such as click, type, and rotate. As for which
view (component) to click and to type has to be manually determined by developers
[9].

User needs to write a script with detailed descriptions of the actions based on the
provided APIs. Then the GUI testing tool can test the applications using the script.
GUI testing tools for mobile applications are very useful as most of the automated

15

mobile testing tools are implemented on top of them, such as GUI ripper [7] and
Robotium [55].

2.6.1 UI Automator

The UI Automator testing framework [56] is a free Google official tool to test the user
interface (UI) of Android applications. It can support UI black-box testing. The UI
Automator supports “Change the device rotation”, “Press a key or D-pad button”,
“Press the Back, Home, or Menu buttons”, “Open the notification shade”, “Take a
screenshot of the current window” actions in Android UI testing [56]. The provided
APIs are very simple and clear. For example, the UiDevice API supports actions
on device buttons. The UiDevice.pressHome() can click the Home button in the
Android application. The UiObject API can be instantiated as a view (component)
of the current page. The UiObject.click() can click on that view.

The attached view tool UIautomatorViewer [57] is an important tool for helping
developers find the view (component) information on the current page. The infor-
mation includes the view dependency tree, view id, view type, view text, view click
type, and so on. A developer can open UIautomatorViewer to find interesting views
with details. Then the developer can write a script to use UI Automator to test
the application. For example, a script can be written by UiObject(button1).click(),
sleep(), UiObject(button2).click(). The actions of button1 and button2 can be ex-
tracted from the UIautomatorViewer. UIautomatorViewer and UIa Automator can
work separately. People can also use UIautomatorViewer to analyze an Android
application written by other people.

UI Automator has several advantages comparing to other Android GUI testing
tools. The first advantage is that UI Automator is developed by Google, which de-
veloped Android. So the reliability and robustness of UI Automator are convincingly
good. The second advantage is that UI Automator supports multi-application GUI
testing. For example, if a user wants to switch from application A to an application
B and switch back, UI Automator supports these actions. In the meantime, UI Au-
tomator has certain drawbacks. First, UI Automator cannot obtain the class name of
activities (page) [58]. In the official API documentation, the API for implementing
this function ”getcurrentactivityname” is unreliable. However, activity name is very
important in GUI testing because it indicates the node name in a GUI event flow
graph. Also, UI Automator does not support web application.

2.6.2 Robotium

Robotium [59] is similar to UI Automator [56]. Robotium is a free black-box Android
testing tool. It is not developed by Google development team but is an open-source
tool [59]. Robotium requires developers to explicitly write actions in java programs.
The basic platform is the JUnit framework. When testing using Robotium, Junit will
output results either pass or fail. Robotium supports a variety of actions, including
click, rotate, and type actions, similar to UIautomator. In addition, Robotium can
find views (components) by the view IDs and support actions on hybird (web) Android

16

applications. The provided APIs in Robitium is clear and simple. For example, the
view v=solo.getview(ID) can choose a view on an arbitrary page. The v.click() can
click on this view.

Robotium has several advantages. For example, Robotium can provide the names
of activities on the current page of the application. The activity names are very
important for GUI testing.In addition, Robotium is an open source tool enabling
free extensions. One disadvantage of Robotium is that it does not support testing
multi-applications. It can not perform actions across multiple applications.

2.6.3 Other Tools

Monkeyrunner [60] is a Google official Android testing tool. It is a python-based
testing framework, which provides python APIs. It is convenient for developers who
are familiar with python. Monkeyrunner provides actions such as press button and
type. It can also take the screenshot of the current page. Monkeyrunner does not rely
on any testing platforms. The python APIs provided by Monkeyrunner can control
any applications running on the device using the commands from terminal. Whereas
the UI Automator depends on the Android Studio testing framework and Robotium
depends on the JUnit testing framework.

Appium [61] is an open-source, cross-platform GUI testing framework. It provides
a standard interface for multi-platform mobile device applications. For example, if
using Appium to test an iOS application, Appium will call the UI Automator driver
for iOS. If using Appium to test an Android device application, Appium will call the
UiAutomator driver for Android. Appium also supports multiple languages, such as
Java, Objective-C, JavaScript, PHP, Python, Ruby, C#, Clojure, and perl.

Espresso [62] can be used to write concise, reliable Android UI test cases. It is
also a Google official GUI testing tool. The core APIs of Espresso are small, so it is
easy to learn. In general, Espresso is similar to UI Automator [56].

17

Chapter 3

Related work

In this section, we discuss related work on mobile app testing. We also discuss existing
work on analyzing bug reports to support software engineering activities.

3.1 Mobile App Testing

There have been a number of techniques on automated Android GUI testing.
Random testing [5] uses random strategies to generate events to test android

applications. Because of its simplicity and availability, it can send thousands of
events per second to the apps and can thus get high code coverage. However, the
generated events may be largely redundant and noneffective. DynoDroid [6] improved
random testing by exploring the app in a manner that can avoid testing redundant
widgets. But it may still be ineffective in reaching functionalities involving deep levels
of the app due to randomness.

Sapienz [63] uses multi-objective search-based testing to maximize coverage and
fault revelation at the same time to optimize test sequences and minimize length.
It extracts statically-defined string constants by reverse-engineering the APK. These
extracted strings can be used as specific inputs for text fields. Sapienz makes use
of a random crossover and mutation algorithm to optimize test sequences. It may
also generate invalid sequences [38] and cost time on the iterative evaluation of new
generated test.

Model-based methods [7, 8, 9, 64, 65, 66, 67, 68] build and use a GUI model of
the app to generate test input. The models are usually represented as finite state
machines or that store the transitions between app window states. For example,
Stoat [69] utilizes a stochastic Finite State Machine model to describe the behavior
of app under test. Unlike model-based testing, DinoDroid does not need to manually
model the app behaviors. Instead, it can automatically learn app behaviors by deep
Q network.

Systematic testing tools, such as symbolic execution [70, 71], aims to generate
test cases to cover some code that is hard to reach. While symbolic execution may
be able to exercise functionalities that are hard to exercise by other strategies, it is
less scalable and not effective in code coverage and bug detection.

18

Machine learning techniques have also been used in testing Android apps. These
techniques can be classified into two categories [38]. The techniques in the first
category typically have an explicit training process to learn knowledge from existing
apps then apply the learned experience on new apps [72, 73, 74, 75, 76]. For example,
QBE [72] learns how to test android apps in a training set by a Q-learning. As
discussed in Section 4.2.3, QBE is not able to capture fine-grained app behaviors due
to the limitations of Q-learning.

In addition to QBE, Degott et al. [73] use learning to identify valid interactions
for a GUI widget (e.g., whether a widget accepts interactions). It then uses this infor-
mation to guide the exploration. Their following work [76] uses MBA reinforcement
learning to guide the exploration based on the abstracted features: valid interactions
and invalid interactions. However, like QBE, these techniques can not handle complex
app features because of the high-level abstraction of state information.

Humanoid [74] employs deep learning to train a model from labeled human-
generated interaction traces and use the model together with a set of heuristic rules
to guide the exploration of new apps. For example, since the result of deep learning
is only used to selected one event from the unexplored events in the current page.
If all events in the current page are explored, the rule asks to compute the shortest
path in a graph to find a page with unexplored events.

The techniques in the second category do not have explicit training process [77, 78,
79, 80, 38]. Instead, they use Q-learning to guide the exploration of individual apps,
where each app generates a unique behavior model. As discussed in Section 4.2.3,
the model learned from one app usually cannot be applied to another app. Also,
they share the same limitations with Q-learning, where complex features cannot be
maintained in the Q-table. QDROID [78] designs a deep neural network agent to guide
the exploration of Android apps. However, like QBE, the widgets are abstracted into
several categories. The neural network is used to predict one of the four categories.
QDROID then randomly selects a widget under the predicted category. However, the
abstraction of the states and actions may cause the loss of information of individual
widgets.

Wuji [81] combines reinforcement learning with evolutionary algorithms to test
android games. It designs a unique state vector for each game used as the position
of the player character or the health points. Therefore, Wuji can not transfer the
learned knowledge to new apps.

3.2 Reproducing Bug Report

There has been some work on improving the quality of bug reports for Android
apps [82, 13]. Specifically, FUSION [82] leverages dynamic analysis to obtain GUI
events of Android apps, and uses these events to help users auto-complete reproduc-
tion steps in bug reports. This approach helps end users to produce more compre-
hensive reports that will ease bug reproduction. However, this technique does not
reproduce crashes from the original bug reports. We see our approach and FUSION
as complementary, if users were to utilize FUSION, this would improve the overall
quality of the bug reports and increase the success rate of our technique even further.

19

A tool called Yakusu [83] on translating executable test cases from bug reports
presented in a recent paper is probably most related to our approach. However, the
goal of Yakusu is translating test cases from bug reports instead of reproducing bugs
(e.g., crashes) described in the bug report.

There has been considerable work on using NLP to summarize and classify bug
reports [84, 85]. For example, Rastkar et al. [84] summarize bug reports automatically
so that developers can perform their tasks by consulting shorter summaries instead of
entire bug reports. Gegick et al. [85] use text mining to classify bug reports as either
security- or non-security-related. Chaparro et al. [42] use several techniques to detect
missing information from bug reports. PerfLearner [86] extracts execution commands
and input parameters from descriptions of performance bug reports and use them to
generate test frames for guiding actual performance test case generation. Zhang et
al. [87] employ NLP to process bug reports and use search-based algorithm to infer
models, which can be used to generate new test cases. While these techniques apply
NLP techniques to analyze bug reports, they cannot synthesize GUI events from bug
reports to help bug reproduction.

There are several techniques on using NLP to facilitate dynamic analysis [88, 89].
For example, PrefFinder [89] uses NLP and information retrieval (IR) to automat-
ically find user preferences for correcting the configuration of a running system.
DASE [88] aims to to extract input constraints from user manuals and uses the
constraints to guide symbolic execution to avoid generating too many invalid inputs.
However, these techniques make assumptions on the format of the textual description
and none of them automatically reproduces bugs from bug reports.

To the best of our knowledge, EULER [90] is the only existing work that can au-
tomatically identify S2R sentences in bug reports. EULER leverages neural sequence
labeling in combination with discourse patterns and dependency parsing to iden-
tify S2R sentences. Compared with EULER in identifying S2R and crash sentences,
ReCDroid+ has several advantages. First, ReCDroid+ employs binary classification,
whereas EULER employs multi-class classification to model the dependence among
sentences. In general, it is computationally more expensive to solve a multi-class
problem than a binary problem with the same size of data [91]. Second, EULER does
not consider other characteristics of S2R sentences, such as listing symbols. Third,
Name leverages a set of heuristic rules to refine the results output by the deep learning
model, which can improve the accuracy of prediction.

There are tools for automatically reproducing in-field failures from various sources,
including core dumps [92, 93], function call sequences [94], call stack [95], and run-
time logs [96, 97]. However, none of these techniques can reproduce bugs from bug
descriptions written in natural language. On the other hand, these techniques are
orthogonal to ReCDroid+ and developers may decide which technique to use based
on the information available in the bug report.

There has been a great deal of work on detecting bugs or achieving high coverage
for Android applications using GUI testing [7, 9, 98, 70, 6, 69, 99]. These techniques
systematically explore the GUI events of the target app, guided by various advanced
algorithms. However, none of these techniques reproduce issues directly from bug
reports.

20

Chapter 4

DinoDroid: Testing Android Apps
Using Deep Q Network

In this chapter, we propose an approach DinoDroid which is an automate testing tool
which is based on deep Q network to test of Android apps. DinoDroid is able to
capture the fine-grained details of GUI events (e.g., visiting times of events, text on
the widgets) and use them as features that are fed into a deep neural network, which
acts as the agent to guide the app exploration. DinoDroid automatically adapts the
learned model during the exploration without the need of any modeling strategies or
heuristics.

4.1 Overview

Many automated GUI testing for mobile apps have been proposed, such as random
testing [5, 6] and model-based testing [7, 8, 9]. Random test generation (e.g., Mon-
key [5]) is popular in testing mobile apps because of its simplicity and availability. It
generates tests by sending thousands of GUI events per second to the app. While ran-
dom testing can sometimes be effective, it is difficult to explore hard-to-reach events
for driving the app to new pages. Model-based testing can improve code coverage
by employing specific strategies or heuristics to guide the exploration. For exam-
ple, A3E [9] employs depth-first search (DFS) to explore the model of app based
on event-flow across app pages. Stoat [69] utilizes a stochastic Finite State Machine
model to describe the behavior of AUT. It then utilizes MCMC sampling to direct
the mutation of the model.

However, model-based testing often relies on human-designed models and it is
almost impossible to precisely model an app’s behavior. Also, many techniques add
heuristics to the model for improving testing. For example, Stoat designed rules to
assign each event an execution weight in order to speed up exploration. However,
heuristics are often derived from limited observations and may not generalize to a
wide categories of apps.

The inherent limitation of the above techniques is that they do not automatically
understand GUI layout and the content of the GUI elements, so it is difficult for
them to exercise the most effective events that can bring the app into new states.

21

Recently, machine learning techniques have been proposed to perform GUI testing in
mobile apps [72, 38, 74, 76]. For example, Humanoid [74] uses deep learning to learn
from human-generated interaction traces and uses the learned model to guide test
generation as a human tester. However, they rely on human-generated datasets (i.e.,
interaction traces) to train the model and need to combine with heuristics to guide
the testing.

Reinforcement learning (RL) can teach machine to decide which events to explore
rather than relying on pre-defined models or human-made strategies [100]. Specif-
ically, a Q-table is used to record the reward of each event and the information of
previous testing knowledge. The reward function can be computed based on the dif-
ferences between pages [38] or the unique activities [72]. Reinforcement learners will
learn utility values that the agent uses to maximize cumulative reward with the goal
of achieving higher code coverage or detecting more bugs.

While existing RL techniques have improved app testing, they focus on abstracting
the information of app pages and use the abstracted features to train behavior models
for testing [73, 78]. For example, QBE [73], a Q-learning-based Android testing
tool, abstracts each app page into five states according to the number of widgets
(e.g., too-few, few, moderate, many, too-many). However, these techniques do not
understand the fine-grained information of the page like human testers normally do
during testing, such as the visiting frequency of GUI widgets, the page layout, and
the content of widgets. Therefore, the learned model may not capture the accurate
behaviors of the app. Also, many RL-based techniques focus on training each app
independently [77, 78, 79, 80, 38] and thus cannot transfer the model learned from
one app to another.

To address the aforementioned challenges, we propose a novel approach, Din-
oDroid, based on deep Q network (DQN). Specifically, DinoDroid learns a behavior
model from a set of existing apps and the learned model can be used to explore and
generate tests for new apps. During the training process, DinoDroid is able to under-
stand and learn the details of app events by leveraging a deep neural network model.
More precisely, DinoDroid takes in a set of features, such as widget visiting frequency
and widget content. The insight of these features represents what a human tester
would do during the exploration. For example, a human tester may decide which
widget to execute based on its textual content or how many times it has been visited.
DinoDroid does not use any heuristics to tune the parameters of these features, but
let the DQN agent learn a behavior model based on the feature values (represented
by vectors) automatically obtained during training and testing phases.

A key novel component of DinoDroid is a deep neural network (DNN) model that
can process multiple complex features to predict Q-value for each GUI event to guide
Q-learning. With the DNN, DinoDroid can be easily extended to take other types
features. Specifically, to test an app, DinoDroid first trains a set of existing apps to
learn a behavior model. The DNN serves as an agent to compute the Q-values used to
decide which event to trigger at each iteration. In the meantime, DinoDroid maintains
a special event flow graph (EFG) to record and update the feature vectors, which are
used for DNN to compute Q-values. Given a new app under test, the learned model
is used as an initial model and the agent continuously adapts the model to the new

22

app by generating new actions to cover the code missed by the existing model. By
applying the initial model, it allows limiting testing time and increasing code coverage
for the new app in a short time.

The remainder of this research is organized as follows. We present motivation and
background in Section 4.2. Section 6.3 describes the approach of DinoDroid, followed
by the evaluation 6.7. We then discuss the limitations in Section 6.8, and finally
conclude our work in Section 6.9.

4.2 Motivation and Background

In this section, we first describe a motivating example of DinoDroid, followed by the
background of the problem formulation and the discussion of existing work.

4.2.1 A Motivating Example.

Fig. 5.5 shows an example of the app lockpatterngenerator [101]. After clicking “Min-
imum length”, a message box popped up with a textfield and two clickable buttons.
Therefore, the current page has a total five clickable widgets (i.e., ”restart”, “back”,
“menu”, “OK”, and “Cancel”) specific to the app. The home buttons is not consid-
ered because it is irrelevant to the app. When a human tester encounters this page,
he/she needs to decide which widget to exercise based on his/her prior experience.
For example, the tester is likely to exercise the widgets that have never been visited
before.

In this example, suppose none of the five widgets in the current page have been
visited before, intuitively, the tester tends to to select “OK” because when clicking
on ”OK”, it is more likely to bring the app to a new page. ”Cancel” is very possible
be the next widget to consider because ”restart”, ”back”, and ”menu” are system
events, the results of clicking them are likely to be expected by the tester based on
his/her past experience of testing a number of other apps. To decide if a widget has
a higher priority to be exercised, the tester may need to consider its “features”, such
as how many times it has been visited, what the next pages are after exercising the
widget, and the content of the widget. DinoDroid is able to automatically learn a
behavior model from a set of existing apps based on these features and the learned
model can be used to test new apps.

Tab.(a)-Tab.(c) in Fig. 5.5 show the learning process of DinoDroid. In this exam-
ple, DinoDroid dynamically records the feature values, including the visiting times of
each event, the number of unvisited events in the next page (i.e., child page), and the
text on the widget. An event is defined as the action taken to exercise a GUI widget
(e.g., click a button). The three types of features represent the knowledge base of
app testing and are used to learning agent to explore the app. DinoDroid uses a deep
neural network to predict the accumulative reward (i.e., Q-value) of each event in the
current page based on the aforementioned features and selects the event that has the
largest Q-value to exercise.

Tab.(a) shows the feature values and the Q-values when the first time the page
appears. Since “OK” has the largest Q-value, it is clicked. DinoDroid will then

23

Figure 4.1: A Motivating Example

continue exploring the events in the new pages and updating the Q-value. When the
second time the page appears, the Q-value associated with “OK” decreases because
it is already visited. As such,“Cancel” has the largest Q-value and is exercised. In
this case (Tab.(b)), the child page of “OK” contains 10 unvisited events. However,
suppose the child page contains zero unvisited events (Tab.(c)), the Q-value becomes
much smaller. This is because DinoDroid tends to select the event whose child page
contains more unvisited events.

4.2.2 Problem Formulation

In the background section 2.2, we have discussed the Q learning agent receives a state
s from environment and reward r from environment and select an action a to execute
on the environment.

In Android GUI testing, a state s is encoded as an app page. We use st to represent
the current state and st+1 to represent the next page. An action a is an event issued
by DinoDroid to exercise a GUI widget. An event e is the exercise of a GUI widget
with a particular action type (e.g., click “search” button). A reward r is calculated
based on the improvement of coverage. If code coverage increases, r is assigned a
positive number (r=5 by default); otherwise, r is assigned a negative number (r=-2

24

by default). An Agent decides what action to take based on the accumulative rewards
(i.e., Q-values) on the current observed state. A Policy is π(a, s) = Pr(at = a|st = s),
which maximizes the expected cumulative reward. Q-learning learns a policy to tell
the agent what action to take.

4.2.3 Limitation of Existing Q-Learning Techniques

The techniques that are mostly related to DinoDroid are Q-learning-based Android
app testing [77, 79, 80, 38]. These techniques all use traditional Q-learning based
on a Q table. They have several limitations. First, Q-table cannot handle high-
dimensional features, such as text and image. Each new feature space for a state
will cause exponential growth in a Q-table. A feature, such as word embedding,
can be represented as an N-dimension vector with M possible values, which would
need O(mn) columns in a Q table. Second, most existing techniques use the resource
ID of an event as the state of a Q table. However, different apps have different
ID assignments. Therefore, they focus on training and testing individual apps and
cannot train a model from multiple apps. Also the model trained from one app cannot
be used to test another app. The only work that uses Q-table to transfer knowledge
among apps is QBE [72]. However, the cost is expensive. Instead of using resource
id to represent each state, QBE abstracts the page information into five states: too-
few, few, moderate, many, and too-many, based on the number of widgets. It also
abstracts actions into seven categories (i.e., menu, back, click, longclick, text, swipe,
contextualg). As such, QBE is able to limit the size of Q-table. However, abstracting
the states and actions could cause the learning to lose a lot of important information
when making decisions of selecting events to explore.

Unlike traditional Q-learning, DinoDroid designs a novel deep neural network
(DNN) model to process complex features with infinite feature space. Specifically,
multiple complex features can be input into the DNN to obtain the Q value. For exam-
ple, the DNN can handle word embedding with n-length vector and high-dimensional
image matrix. By doing this, DinoDroid is able to understand the features at the
widget-level and learn a more accurate behavior model. Since the features are general
across apps, DinoDroid is able to train a model from multiple apps and transfer the
learned knowledge into a new app.

4.3 DinoDroid Approach

Fig. 6.4 shows the overview of DinoDroid. An iteration t begins with an app page.
In the current state st, DinoDroid selects the event et with the highest accumulative
reward (i.e., Q-value), performs the corresponding action (at), and brings the app to
a new state (st+1). After exercising at, DinoDroid employs a special event flow graph
(EFG) to generate feature vectors for each event in st+1. The reward rt is generated
based on the observed code coverage and crash of App. DQN agent uses a neural
network model to compute and update the Q-value for the event et responding with
at. The learning process continues iteratively from the apps provided as the training
set. When testing a new app, DinoDroid uses the learned model as the initial model

25

Figure 4.2: Approach Overview

to guide the testing of the new app. The model is updated following the same process
until it is adapted to the new app (e.g., a time limit is reached or the coverage reaches
a plateau).

4.3.1 DinoDroid’s Algorithm

Alg. 1 shows the details of DinoDroid. When testing or training an app (AUT),
DinoDroid checks If the behavior model exists. If so, the model will be updated
to adapt the AUT; otherwise, DinoDroid starts building a new model (Line 2). A
memory is used to record the samples generated from earlier iterations (Line 3).
The event flow graph (EFG) is initialized for each app at the beginning of training
or testing (Line 4). The details of the EFG will be described in Section 4.3.2.2.
DinoDroid launches the app and reaches the first page. The initial state of DQN
is obtained and the EFG is updated accordingly (Lines 5–6). The algorithm then
takes the current page and the EFG to generate features for each GUI event in the
current page (Line 7). DinoDroid considers three types of features as described in
Section 4.3.2.

Now the iteration begins until a time limit is reached (Lines 8–22). To amplify
the chance of bug detection, DinoDroid issues a random system event every at every
10 iterations (Line 9–10). At each iteration, DinoDroid uses the deep neural network
model to select the event with the highest accumulative reward (i.e., Q-value) and
perform the corresponding action at (Line 11). The details of the getActionEvent
will be described in Section 4.3.3.2. After the execution, the algorithm obtains three
kinds of information: the new page, the current code coverage, and the crash log

26

Algorithm 1 DinoDroid’s testing

Require: App under test AUT , DQN’s Model M with before knowledge, execution time LIMIT
Ensure: updated new M
1: if M not exist then
2: M ← buildNewModel() /*First time to run*/

3: Memory ← ø /*Memory stores previous samples */
4: G ← ø /*Initialize event flow graph */
5: p0 ← execute(AUT) /*First lanuch to get the first page p0*/
6: G ← updateGraph(p0, G) /*update G with new page/
7: s0 ← featureGenerator(p0,G) /Every event in s0 contains 3 features/
8: while t < LIMIT do
9: if t mod 10 equals 0 then

10: sendSystemEvent() /*send random system event*/

11: at ← getActionEvent(st, M) /*Event selection */
12: pt+1, codeCoverage, crash ← execute(AUT, at)
13: rt ← rewardInterpreter(codeCoverage, crash)
14: G ← updateGraph(pt+1, G) /*update G with new page/
15: st+1 ← featureGenerator(pt+1,G)
16: Q(st, at) = rt + γ ∗max

a
Q(st+1, a) where γ = 0.6

17: Q ← Q(st, at)
18: batch ← extactTrainBatch(Memory) ∪ (at,Q)
19: M ← updateModel(batch, M) /*Learning for DQN */
20: Memory ← Memory ∪ (at,Q)
21: st+1 ← st
22: return M

(may be empty) (Line 12). The information is used to compute the reward rt (Line
13). Then, the event flow graph G is updated based on the new page pt+1 (Line
14). With the updated G and the new page, the algorithm can generate features
for each event in the state st+1 (Line 15). Based on st, st+1, at, and rt, DinoDroid
uses the equation 2.6 to compute the Q-value of each event in st (Line 16). To
train the neural network, it uses a set of training samples, including both the current
sample and history samples. Each sample uses at as input and Q-value as output
(i.e., label). The history samples (obtained from earlier iterations) are recorded in a
memory (Lines 17–21).

4.3.2 Feature Generation

DinoDroid’s deep neural network model provides an interface that can handle any fea-
tures provided by users (discussed in Section 4.3.3.1). DinoDroid currently supports
three features: Visiting times of current events, Visiting times of children events, and
textual content of events. DinoDroid employs an event flow graph (EFG) at runtime
to obtain the features and transforms them into numerical vectors provided as inputs
to the neural network.

4.3.2.1 Types of Features

Visiting times of current events (VTCR). The insight behind this feature is
that a human often avoids repeated executing the events that bring the app to the
same page. Therefore, all GUI events should be given chances to execute. Instead of
using heuristics to weigh different events to decide which ones should be given higher

27

Figure 4.3: Event Flow Graph Example

priorities to execute [69], DinoDroid can automatically guide the selection of events
based on the recorded feature value.

DinoDroid uses a vector with a length N as a feature vector to record the visiting
time for each event, i.e., each element in the vector is filled in with the updated
visiting time. The length is the same for all three features to ensure that DQN treats
them equally during training. By default, N=10.

Visiting times of children events (VTCD). A human tester often makes a de-
cision on which event to execute not only based on events of the current page, but

28

also considering the content of succeeding pages (children pages). For example, if
executing an event e can trigger a page with unvisited events, e is likely to have a
higher priority than the events only triggering pages with visited events. Therefore,
DinoDroid considers the event visiting times of K generation of children pages as a
feature. The mth generation of children pages are defined as the succeeding pages
with distance m from the current event in the event flow graph. By default K = 3.

Since each generation of children pages may contain a number of events, adding
them all together into a feature vector (i.e., each element represents the visiting times
of a single event in the children pages) may lead to an unbearable size of vectors for
a neural network to train. Instead, DinoDroid designs a fixed length of feature vector
for each generation children pages. By default, the length is equal to 10, which is the
same size as the VTCR’s feature vector. Each element in the vector represents the
number of events in the target generation of children page that are visited N times,
where N is equal to the index of the vector. For example, if an event is visited zero
time, it is placed as the first element of the vector. If an event is visited 9 or more
times, it is placed as the last element of the vector. For each generation of children
pages, DinoDroid will generate one vector to represent the feature of the generation.
In total, K features are generated to represent VTCD on each generation. One unique
event in the App is only counted for one time in all generations.

Textual content of events (TXCT). The textual content of events may help
DinoDroid make a decision on selecting events to execute. In the example of Fig. 5.5,
the meaning of “OK” event indicates it has a higher chance to bring the app to a new
page than the other events. To obtain the TXCT feature for each event DinoDroid
first employs Word2Vec [102] to convert each word in the event to a vector with
length L. By default, L=400. The Word2Vec model is trained from a public dataset
text8 containing 16 million words and is provided along with the source code of
Word2Vec [22]. As such, each word is associated with a vector. Therefore, the TXCT
feature is encoded as a matrix L * W , where W is the number of the words in the
event.

4.3.2.2 Compacted Event Flow Graph

DinoDroid uses an event flow graph (EFG) to obtain features. The graph is repre-
sented by G = (V , E). The set of vertices, V , represents events by exercising the app’s
clickable and long-clickable events, and the set of edges, E, represents event transi-
tions (i.e., from one page to another by exercising the event). Each vertex records the
three types of features described in Section 4.3.2 Fig. 4.3 shows an example, where
each page is associated with a list of vertices (i.e., events with unique IDs) and their
features. The last label (“Similar”) is discussed later in the section.

DinoDroid’s event flow graph is is compacted in order to accommodate DQN. This
is also the main difference from traditional EFGs [7] . In traditional EFG, whenever
a new page is encountered, it will be added as a vertex to the EFG. However, if
we use the vertices as states in DQN, it could cause the states to be huge or even
unbounded [64, 98, 103, 104, 69]. Also, when encountering a similar page with a minor
difference from an earlier page, if DinoDroid treats it as a new state, it could generate

29

unbounded fake new events and thus waste exploration time. For example, in Fig.
4.3, there are many same events on the pages triggered by the “scroll” event. If we
consider all of the events for each scroll triggered page, DinoDroid could waste time
to visit the same events again and again without code coverage increase. Therefore,
such similar pages should be combined to avoid this problem.

There have been techniques using heuristics to compact EFG for efficient explo-
ration. For example, Stoat [69] ignores the details of ListView events by categorizing
it into “empty” and “non-empty”, so it can merge two similar pages with only the
ListView events different into the same state. However, it may lose important in-
formation since some of the events triggered by the items under the ListView may
be critical. In contrast, DinoDroid compacts the EFG by merging vertices instead
of pages. Specifically, whenever a new page P ′ is encountered, DinoDroid retrieves
the pages with the same Android Activity ID [105] from the existing EFG. It then
compares the text of each vertex in P ′ with the vertices of each of the retrieved pages.
If the texts are the same, the two events are merged as a single vertex. The “Similar”
tag in Fig. 4.3 records the information of the merged vertex (i,e,, page id—event id).
As such, when an event e is executed, the feature vectors/matrices of both e’s vertex
and its merged vertex are updated. Therefore, the same events will get equal chances
to be executed.

4.3.3 DinoDroid’s Deep Q-Network

In deep Q network, DinoDroid employs the learning model (et, rt, st+1), meaning
that if triggering et (i.e., exercising an event), the app will transit to a new state st+1

and the event et is updated with a reward. One of the key components in DinoDroid
is a Deep Neural Network Model, which uses equation 2.6 to compute the Q value.
It takes the event’s features as input and outputs the Q-value, which is equal to
rt + γ ∗ max

a
Q(st+1, a). In the training process, besides the last action’s Q-value,

DinoDroid adds four other randomly selected history samples in a same batch to
train the neural network together. By doing this, it is easy for DQN to remember
history samples when training new samples. Comparing to regular RL with Q-table,
DQN is able to calculate Q-values from any dimensions of features for each event.

4.3.3.1 DNN’s Feature Handler

DinoDroid’s DNN model uses a feature handler to process each feature. A feature
handler transforms the feature value into a vector, For example, in Fig. 4.4, embedding
vectors of text ”status bar shortcut” are input into the CNN and the maxpool will
output a vector as the pre-process result [16]. The output is a vector representing the
text feature. DinoDroid can be easily extended by writing new handlers to process
other features. For example, users can take image as another type of feature by
leveraging existing image classification models. The DNN model accepts the formats
of single value, vector, and matrix. By default, single value and vector are handled
by a fully connected layer and matrix is handled by 1-D CNN [106].

30

DinoDroid combines the vectors generated from all feature vectors into an one-
dimensional vector. DinoDroid utilizes three fully connected layers [107] to process
it. The last layer with a linear activation to output just one value to represent the Q
value. We use a stochastic gradient descent algorithm, Adam [108], to optimize the
model with learning rate 0.0001. The Adam optimization algorithm is an extension to
stochastic gradient descent that has recently seen broader adoption for deep learning
applications in computer vision and natural language processing.

4.3.3.2 Event Selection

DinoDroid maintains a Q-value (reward) for each event. At the first K iterations,
DinoDroid triggers random events to construct the DQN model. Randomness is
necessary for an agent navigating through a stochastic maze to learn the optimal
policy [109]. By default, K=20. After that, DinoDroid starts to use DNN to select
event.

To determine which event to tirgger in the current page, DinoDroid uses the ε-
greedy policy [110], a widely adopted policy in reinforcement learning, to select the
next event. DinoDroid selects the event with the highest Q value with probability
1− ε and a random event with probability ε. The Q value is computed by the neural
network model (Section 2.2). The value of ε can be adjusted by user. By default
ε = 0.2. In order to amplify the chance of bug detection, DinoDroid also generates
system-level events at every 10 iterations, such as screen rotation, volume control,
and phone calls [69].

4.3.3.3 Reward Function

In reinforcement learning, the reward is used to guide training and testing. Din-
oDroid’s reward function is based on code coverage. Specifically, DinoDroid sets the
reward to a positive number (r=5) when the code coverage increases or revealing a
unique bug, and a negative number (r=-2) when the coverage does not change. The
absolute value of positive reward is larger than that of the negative reward is be-
cause we want the machine to favor higher coverage or detecting bugs. The reward
values are configurable, however, these default values work well on different types of
applications, as shown in the experiments.

Other reward functions, such as measuring the app state changes may also be
used [38, 72, 76, 77, 79] For example, Q-testing [38] calculates the difference between
the current state and the recorded states, e.g., the number of unvisited events in a
state. While executing unvisited events may have a positive relationship with higher
code coverage, it is not a direct measurement. It is very likely that new unvisited
states do not lead to code coverage increase. In Fig. 4.3, the scroll event can reach
a new state but it does not increase code coverage. On the other hand, an already
visited event, when being executed again, could lead to coverage increase due to a
different event flow path. For example, in a music play app, every time the ‘play” is
clicked to play a different song, the code coverage may increase. Therefore, DinoDroid

31

Figure 4.4: Deep Q-Network Model

uses code coverage directly to calculate reward while encoding the indirect measures
(e.g., visiting times) as a type of feature.

4.4 Evaluation

To evaluate DinoDroid, we consider three research questions:

RQ1: How does DinoDroid compare with the state-of-the-art Android testing tools
in terms of code coverage?

RQ2: How does DinoDroid compare with the state-of-the-art Android testing tools

32

in terms of bug detection?

RQ3: Can DinoDroid understand the features and learn a correct model?

4.4.1 Datasets

We need to prepare datasets for evaluating our approach. Since Sapienz [63] and
Stoat [69] are two of the baseline tools compared with, we used the dataset [111] in
their papers. The dataset contains a total of 68 apps. We removed four apps because
they crash right after launch on our Intel Atom(x86) emulator. The executable lines
of code in the apps range from 109 to 22,208, indicating that they represent apps
with different levels of complexity.

4.4.2 Implementation

We conducted our experiment on a four-core 3.60ghz CPU physical x86 machine run-
ning with Ubuntu 16.04. The dynamic exploration component is implemented on UI
Automator [112]. The system events issued during testing are obtained from Andro-
guard [113]. DinoDroid uses Emma [114] to obtain statement coverage. Keras [115]
is used to build and run the deep neural network. The DQN agent is implemented
by ourselves using Python.

4.4.3 Study Operation

We performed a two-fold cross validation by random dividing the whole 64 apps data
set into two sets with each set containing 32 apps. The training process is very costly.
With an only 2-fold cross validation, it took 128 hours (nearly 6 days) to finish the
experiment. With an added fold, it could take about three days extra.

The testing time of DinoDroid is set to one hour, which is further divided into three
phases with each phase 20 minutes. For each phase, DinoDroid used the previously
learned model as the initial model to test the app and update the model. By dividing
the testing into multiple phases, it could avoid DinoDroid from repeatedly exploring
the same events.

4.4.4 Comparison with Existing Tools

We compared DinoDroid with four existing Android testing tools: Monkey [5] ,
Stoat [69], Sapienz [63], and QBE [72]. Monkey is a random testing tool, Stoat uses
model-based testing, Sapienz employs evolutionary testing, and QBE uses a tradi-
tional Q-learning. The details of the tools are discussed in Section 3. For Q-learning,
we chose QBE because it is mostly similar with DinoDroid since it is able to transfer
the knowledge learned from the training set to new apps without manual labeling
work.

The testing time for all tools are set to one hour. Specifically, We followed previous
work [111, 38] to set 200 milliseconds delay between events for Monkey to avoid
abnormal behaviors. Stoat’s default time settings have two phases: FSM and MCMC.

33

Following the suggestion of [38], each phase is set to 30 minutes. Since QBE is also
RL method, the testing time was also divided into three phases as DinoDroid did.

4.5 Results and Analysis

4.5.1 RQ1: Code Coverage

Table 4.1 shows the results of code coverage obtained from DinoDroid and the other
four tools on 64 apps. As shown in Fig. 4.5 on average DinoDroid achieves 49%
line coverage, which is 21.6%, 15.8%, 14.5%, and 15% more effective than Monkey,
Stoat, Sapienz, and QBE, respectively. Specifically, DinoDroid achieved the highest
coverage in 32 apps, compared to 20 apps in Sapienz, 12 in Stoat, 3 in QBE, and 3
in Monkey. The results indicate DinoDroid is effective in achieving high coverage.

We analyzed the app code covered by different tools. Taking the app “Nec-
troid” [116] as an example, many events reside in deep levels of EFG, which require
a number of steps to explore. For instance, two widgets are associated with im-
portant functionalities: “add a new site” and “delete a site”. Exercising the first
widget requires 7 steps (launched page → menu → settings → select a site→new
site→fill blankets→OK) and exercising the second widget requires 6 steps. Monkey
and Sapienz failed to cover the two particular sequences because they were not able
to navigate the app to the deep levels. Stoat was very close to reach ”add a site”, but
at the last step, it selected “Cancel” instead of “OK”. On the other hand, DinoDroid
exercised the “OK” widget in 90% of pages that contain “OK”, “Cancel”, and a few
other functional widgets during the learning process. We conjecture that this is be-
cause DinoDroid is able to learn that clicking “OK” widget is more likely to increase
coverage.

4.5.2 RQ2: Bug Detection

Table 4.1 shows the number of unique bugs detected by the five tools (on the left of
“/”). Like Stoat, we consider a bug to be a crash or an exception. The results showed
that DinoDroid detected the largest number of bugs (87) compared to Monkey(25),
Stoat(62), Sapienz(21) and QBE (18). Specifically, DinoDroid detected most faults
in 42 apps, which is more effect than Sapnize (5), Stoat (27), QBE (4), and Monkey
(6).

DinoDroid and Stoat detected a significantly larger number of bugs because they
both use androguard [113] to issue system-level events to amplify the chance of bug
detection (Section 4.3.3.2) Therefore, for a fair comparison with Monkey, Sapienz,
and QBE, we removed the bugs relevant to these system level events from the five
tools.

DinoDroid and Stoat detected a significantly larger number of bugs because they
both use androguard [113] to issue system-level events to amplify the chance of bug
detection (Section 4.3.3.2) Therefore, for a fair comparison with Monkey, Sapienz,
and QBE, we removed the bugs relevant to these system level events from the five

34

Table 4.1: Testing Result for Comparison

#APP. # LOC Code Coverage # Fault Triggered
Mon. QBE. St. Sap. DD. Mon. QBE. St. Sap. DD.

soundboard 109 31 42 42 63 42 0/0 0/0 0/0 0/0 0/0
gestures 121 26 32 32 52 32 0/0 0/0 0/0 0/0 0/0
fileexplorer 126 31 40 40 31 40 0/0 0/0 0/0 0/0 0/0
adsdroid 236 8 29 31 33 29 1/1 0/0 1/0 1/1 1/0
MunchLife 254 66 66 66 71 69 0/0 0/0 0/0 0/0 0/0
Amazed 340 66 69 58 74 73 2/2 0/0 0/0 1/1 1/1
battery 342 72 70 69 46 74 0/0 0/0 0/0 0/0 1/1
manpages 385 58 63 56 69 63 0/0 0/0 1/0 0/0 1/0
RandomMusicPlayer 400 53 54 74 57 60 0/0 1/0 0/0 0/0 1/0
AnyCut 436 61 62 61 65 62 0/0 0/0 0/0 0/0 0/0
autoanswer 479 11 13 26 18 22 0/0 0/0 1/0 0/0 1/0
LNM 492 54 55 61 52 57 0/0 0/0 2/0 0/0 1/0
baterydog 556 62 61 54 67 62 0/0 0/0 1/1 0/0 0/0
yahtzee 597 8 46 42 39 58 0/0 1/1 1/0 0/0 2/1
LolcatBuilder 646 27 20 25 31 53 0/0 0/0 0/0 0/0 0/0
CounterdownTimer 650 58 76 77 50 77 0/0 0/0 0/0 0/0 0/0
lockpatterngenerator 669 78 75 69 79 79 0/0 0/0 0/0 0/0 0/0
whohasmystuff 729 65 72 68 32 74 0/0 0/0 1/0 0/0 1/0
Translate 799 46 44 36 49 47 0/0 0/0 0/0 0/0 0/0
wikipedia 809 24 27 27 28 27 0/0 0/0 0/0 0/0 2/1
DivideAndConquer 814 83 81 52 80 58 0/0 0/0 0/0 1/1 0/0
zooborns 817 34 34 36 37 35 0/0 0/0 1/0 0/0 1/0
multismssender 828 46 46 51 60 68 0/0 0/0 1/0 0/0 1/0
Mirrored 862 44 45 45 46 45 0/0 0/0 1/0 0/0 1/0
myLock 885 26 27 44 30 41 0/0 0/0 2/1 0/0 2/1
aLogCat 901 66 68 71 43 79 0/0 0/0 0/0 0/0 0/0
aGrep 928 36 46 45 55 56 1/0 3/2 1/1 1/1 3/2
dialer2 978 37 39 32 40 46 0/0 0/0 1/0 0/0 1/0
hndroid 1038 9 9 9 10 9 1/1 0/0 1/1 1/1 1/1
Bites 1060 33 25 46 41 51 1/1 0/0 5/4 1/1 5/4
tippy 1083 82 58 72 82 84 0/0 0/0 0/0 0/0 0/0
weight−chart 1116 55 62 46 58 78 0/0 0/0 1/1 0/0 1/1
importcontacts 1139 40 41 31 42 41 0/0 0/0 0/0 0/0 0/0
worldclock 1242 89 92 92 90 91 0/0 0/0 1/0 0/0 1/0
blokish 1245 41 51 36 44 50 1/1 1/1 0/0 0/0 1/1
aka 1307 56 80 79 81 64 1/1 1/1 0/0 2/2 3/3
Photostream 1375 24 14 24 28 21 1/1 1/1 3/2 1/1 2/1
dalvik−explorer 1375 43 70 70 69 71 1/1 2/1 1/0 2/1 2/1
tomdroid 1519 51 50 53 51 53 0/0 0/0 0/0 0/0 1/1
PasswordMaker 1535 62 55 55 37 56 0/0 3/3 4/3 1/1 3/2
frozenbubble 1706 86 59 55 81 69 0/0 0/0 0/0 0/0 0/0
aarddict 2197 13 13 31 14 18 0/0 0/0 2/2 0/0 0/0
swiftp 2214 13 12 13 14 13 0/0 0/0 0/0 0/0 1/0
netcounter 2454 44 69 68 44 77 0/0 0/0 1/0 0/0 1/0
alarmclock 2491 66 67 68 57 71 1/1 0/0 3/1 1/1 2/0
Nectroid 2536 34 32 56 62 71 0/0 0/0 1/0 0/0 1/0
QuickSettings 2934 53 44 38 47 48 0/0 0/0 0/0 0/0 1/1
MyExpenses 2935 46 45 34 38 59 0/0 0/0 2/1 0/0 2/1
a2dp 3523 43 36 40 32 47 0/0 0/0 0/0 0/0 3/1
mnv 3673 18 28 48 12 43 2/2 1/1 1/0 0/0 2/1
hotdeath 3902 43 64 50 69 75 1/1 0/0 0/0 0/0 1/1
SyncMyPix 4104 21 20 25 21 26 0/0 0/0 1/0 0/0 1/0
jamendo 4430 21 23 16 24 28 0/0 0/0 2/1 0/0 3/1
mileage 4628 − 28 26 35 62 1/1 1/1 3/1 1/1 4/2
sanity 4840 15 15 22 15 35 1/1 0/0 1/0 2/1 2/1
fantastichmemo 8419 40 29 29 25 41 0/0 1/1 1/0 0/0 3/1
anymemo 8428 25 30 32 20 43 1/1 0/0 2/1 1/1 4/3
Book−Catalogue 9857 34 9 14 22 35 2/2 1/1 1/0 1/1 3/2
Wordpress 10100 5 4 4 4 6 0/0 0/0 3/2 0/0 2/0
passwordmanager 10833 11 7 12 5 8 0/0 0/0 0/0 0/0 1/0
aagtl 11724 16 17 15 18 18 2/2 1/1 2/2 1/1 2/2
morphoss 17148 10 18 17 15 25 2/2 0/0 0/0 0/0 3/1
addi 19945 14 18 17 19 18 2/2 1/1 2/1 1/1 2/1
k9mail 22208 5 7 8 5 7 0/0 0/0 2/0 1/1 2/0
Overall 40.3 42.3 42.8 42.6 49 25/24 18/16 62/26 21/19 87/41

DD.= DinoDroid. St.= Stoat Mon.= Monkey Sap.= Sapienz “-”=Not applicable(crash emulator) ”a/b”
indicates a=#crashes for all and b=#crashes without system level events

35

Figure 4.5: Line Coverage Comparison among Different Testing Tools

tools. To just consider the event exploration triggered crash, we do not count these
crashes from system-level events. These crashes have particular crash log as below.

(1) android.app.ActivityThread.handleReceiver
(2) at android.app.ActivityThread.performLaunchActivity
(3) at android.app.ActivityThread.handleServiceArgs
(4) android.app.ActivityThread.performResumeActivity
The results (on the right of “/”)still showed that DinoDroid detected the largest

number of bugs (41), compared to Monkey (24), Stoat(26), Sapienz(19), QBE (16).
Specifically, DinoDroid detected most number of bugs in 23 apps, which is more
effective than Sapnize (7), Stoat (13), QBE (6), and Monkey (13).

The above results suggest that DinoDroid is effective in detecting bugs
Figure 4.6 shows the pairwise comparison of bug detection results between tools

(with system-level events). For example, Stoat and DinoDroid detected 50 bugs in
common. However, DinoDroid detected 27 bugs not detected by Stoat and Stoat
detected 12 bugs not detected by DinoDroid. Figure 4.7 shows, with filtered out
system level intent, DinoDroid still triggers more bugs than other methods. For
example, DinoDroid triggers 26 bugs not detected by Stoat and Stoat detected 11
bugs not detected by DinoDroid

4.5.3 RQ3: Understanding the Learned Model

RQ3 is used to understand whether the DQN agent can correctly learn the app
behaviors based on the provided features. To do this, we analyzed the traces generated
by the DQN agent for the 64 apps.

36

Figure 4.6: Comparison of tools in detecting crashes

4.5.3.1 Understanding the Features

VTCR feature. We first would like to understand the behavior of the VTCR fea-
ture. Specifically, we would like to know whether DinoDroid will give higher priority
to unvisited events over visited events in the current page. We hereby computed the
percentage of pages performing expected actions (i.e., triggering unvisited events)
among all pages. We consider only unvisited and visited events instead of the num-
ber of visiting times because we need to control the factors of children pages since
unvisited events do not invoke children pages. In total, there are 16,169 pages con-
taining both visited and unvisited events, with a total of 197,279 events; 85.2% of the
pages performed expected actions.

Note that it is possible that the visited and unvisited events are imbalance, e.g.,
there are significantly more unvisited events in every page, so the results could be
biased because the possibility of selecting unvisited events is higher. We randomly
selected an event from each page and found that 51.6% of the pages performed ex-
pected actions. This shows that our data is balanced and DinoDroid indeed behaves
better than a random selection approach.

37

Figure 4.7: Comparison of tools in detecting crashes filter out activity intent

VTCD feature. We next would like to understand the behavior of the VTCD
feature. Specifically, we would like to know whether DinoDroid tends to select events
with unvisited children events over those with visited children events. To control the
variation of event visiting times, we selected only pages that contain events with the
same visiting times from the traces. As a result, 495 pages with a total of 3182 events
were selected; 81.2 % of the pages performed expected actions (i.e., selecting events
with unvisited children events). When using a random selection, only 33.6% pages
performed expected actions.

TXCT feature. We also examined if DinoDroid is able to understand the content of
events. To do this, we control the variations of VTCR and VTCD features by selecting
pages that do not contain any visited events from the traces. There is a total of 3,060
pages. We hypothesize that if Q-values of these events are different, DinoDroid is
able to recognize the content of the widgets (i.e., the expected action). The results
show that 98% of pages performed expected actions with different Q-values.

The above results suggest that the behaviors of the app features learned by Din-
oDroid are mostly expected.

38

4.5.3.2 The Whole DQN Model Behaviors

The above experiment suggests how individual features affect the learning process
of DinoDroid. We next conducted a deeper analysis to understand the behaviors of
DinoDroid under the combination of the three features. To do this, we randomly
selected a model from the two models learned from the 64 apps (by two cross-fold
validation). We used this model to process the first page of the 32 apps, which were
not used to train the model. We then manually set the values of VTCR and TXCT
features while keeping the TXCT feature as default and see how the model behaves.

As shown in Table 4.2, “VTCR” indicates the number of times the current event
is visited and “VTCD” indicates the three generations of children pages with the
number of unvisited events and the number of events being visited once (i.e., the first
two elements in the feature vector). Each number in the table is the Q-value averaged
across all events with the same feature setting. For example, <(6#1); (1#1); (1#1)>
+ “1” (the second row + the third column) indicates that when an event is visited
once, the first generation of its children page contains six unvisited events and one
event is visited once, and the second and third generation of its children pages have
one unvisited events and one event is visited once.

DinoDroid learned the following behaviors as shown in Table 4.2. First, the Q-
value of (6#1);(1#1);(1#1) is larger than that of (1#6);(1#1);(1#1). This indicates
that an event with more unvisited children events in the first generation is more
likely to be selected. Second, the Q-value of (1#1);(6#1);(1#1) is larger than that
of (1#1);(1#6);(1#1) and the Q-value of (1#1); (1#1); (6#1) is larger than that of
(1#1); (1#1); (1#6). This indicates the second and third generation (or perhaps the
subsequence generations) of children events can also guide the exploration like the first
generation. Third, the unvisited event in the current page has the highest priority to
be selected since its Q-value is significantly larger (i.e., VTCR=0). Fourth, with the
same VTCD feature values, the event with less visiting times in the current page has
a higher priority to be selected since the Q-value is decreasing as the value of VTCR
increases.

All of the above behaviors align with intuition about how human would test apps
with the three types of features and demonstrate that DinoDroid’s DQN can automat-
ically learn these behaviors without the need to manually set heuristic rules.

4.6 Limitations

DinoDroid currently handles only three features. As part of the future work, we will
assess whether other features, such as images of widgets, can improve the performance
of DinoDroid, Second, while DinoDroid can handle any feature on GUI, which can
be represented as matrixes or vectors, some features may not have a straightforward
representation by a simple matrix or a simple vector. For example, the complete vis-
ited event sequence feature with text information can only be represented by multiple
complex matrices. It may be very time consuming for a machine to process this kind
of features.

39

Table 4.2: DinoDroid’s behavior on every specific feature combination

VTCD
VTCR

0 1 2 3 4 5

<(6#1), (1#1), (1#1)> - 3.45 2.32 1.2 -0.65 -0.47
<(1#6); (1#1); (1#1)> - 2.57 0.23 -0.171 -3.35 -3.55
<(1#1); (6#1); (1#1)> - 3.44 2.03 0.16 0.19 0.00
<(1#1); (1#6); (1#1)> - 1.01 0.92 -0.31 -3.59 -3.96
<(1#1); (1#1); (6#1)> - 1.92 0.97 1.07 -0.9 -3.2
<(1#1); (1#1); (1#6)> - 1.09 0.81 0.21 -3.3 -4.53
<(1#1); (1#1); (1#1)> - 1.01 0.78 -1.66 -3.86 -4.32
<(0#0); (0#0); (0#0)> 10.96 -4.42 -4.98 -5.09 -5.13 -5.14

<(A#B); (C#D); (E#F)>: the first generation has A unvisited events and B
events are visited once; the second generation has C unvisited events and D events
are visited once; the third generation has E unvisited events and F events are
visited once.

4.7 Conclusions

We have presented DinoDroid, an automated approach to test Android application. It
is a deep Q-learning-based approach, which can learn how to test android application
rather than depending on heuristic rules. DinoDroid can take more complex features
than existing learning-based methods as the input by using a Deep Q learning-based
structure. With these features, DinoDroid can process complex features on the pages
of an app. Based on these complex features, DinoDroid can learn a policy targeting
at achieving high code coverage. We have evaluated DinoDroid on 64 apps from
a widely used benchmark and showed that DinoDroid outperforms the state-of-the-
art and state-of-practice Android GUI testing tools in both code coverage and bug
detection. By analyzing the testing traces of the 64 apps, we are also able to tell
that the machine really understands the features and provides a sensible strategy to
generate tests.

40

Chapter 5

ReCDroid: Automatically
Reproducing Android Application
Crashes from Bug Reports

In this chapter, we propose an approach ReCDroid 1 which can automatically re-
produce crashes from bug reports for Android apps. ReCDroid uses a combination
of natural language processing (NLP) and dynamic GUI exploration to synthesize
events with the goal of reproducing the reported crash.

5.1 Overview

The goal of our approach is to help developers reproduce issues reported for mobile
apps. We propose a new technique, ReCDroid, targeted at Android apps, that can
automatically analyze bug reports and generate test scripts that will reproduce app
crashes. ReCDroid leverages several natural language processing (NLP) techniques
to analyze the text of the reports and automatically identify GUI components and
related information (e.g., input values) that are necessary to reproduce the crashes.
ReCDroid then employs a novel dynamic exploration guided by the information ex-
tracted from bug reports to fully reproduce the crashes. ReCDroid takes as input a
bug report and an APK and outputs a script containing a sequence of GUI events
leading to the crash, which can be replayed directly on an execution engine (e.g., UI
Automator [112]).

ReCDroid differs from prior work for analyzing the reproducibility of bug re-
ports [42, 82] because most existing techniques focus on improving the quality of
bug reports. None of them have considered using information from bug reports to
automatically guide bug reproduction. In contrast, ReCDroid takes crash description
of the report as input, regardless of its quality, and extracts the information nec-
essary to reproduce crashes. ReCDroid also differs from techniques on synthesizing
information from bug reports [84, 42, 86, 83] because they focus extracting useful
information (e.g., test cases [83]) without directly targeting at reproducing crashes.

1The contents of this chapter have appeared in [117].

41

(a) (b) (c)

(d) (e) (f)

Figure 5.1: The steps of reproducing the crash described in Fig. 5.2.

ReCDroid has been implemented as a software tool on top of two execution en-
gines — Robotium [55] and UI Automator [112]. To determine the effectiveness of
our approach, we ran ReCDroid on 51 bug reports from 33 popular Android apps.
ReCDroid was able to successfully reproduce 33 (63.5%) of the crashes. Furthermore,
12 out of the 18 crashes could have been reproduced by ReCDroid if limitations in
the implementation of the execution engines were to be removed.

To determine the usefulness of our tool, we conducted a light-weighted user study
that showed that ReCDroid can reproduce 18 crashes not reproduced by at least
one developer and was highly preferred by developers in comparison to a manual
process. We also found that ReCDroid was highly robust in handling situations
where reduced amounts of information were provided in the reports. Overall, we
consider these results to be very strong and they indicate that ReCDroid could be a
useful approach for helping developers to automatically reproduce bug crashes.

42

Figure 5.2: Bug Report for LibreNews issue#22

5.2 Observations

As the first step, we spent a month studying a large number of Android bug re-
ports to understand their characteristics for guiding the design and implementation
of ReCDroid.

We collected Android apps from both Google Code Archive [118] and GitHub [12].
We crawled the bug reports from the first 50 pages in Google Code, resulting in 7666
bug reports. We then searched Android apps from GitHub by using the keyworld
“Android”, resulting in 3233 bug reports. Among all 10899 bug reports, we used
keywords, such as “crash” and “exception” to search for reports involving app crashes.
This yielded a total number of 1038 bug reports. The result indicates that a non-
negligible number (9.5%) of bug reports involve app crashes.

ReCDroid focuses on reproducing app crashes from bug reports containing tex-
tual description of reproducing steps, so we analyze the 1038 crash bug reports and
summarize the following findings: 1) 813 bug reports (78.3%) contain reproducing
steps — the maximum is 11 steps, the minimum is 1 step, and the average is 2.3
steps; 2) only 3 out of 813 crashes are related to rotate action — they all occur 1–2
steps right after the rotate; 3) 398 of the 813 crash bug reports (49%) require specific
user inputs on the editable GUI components to manifest the crashes — 29 (3.5%)
of them involve special symbols (e.g., apostrophe, hyphen); 4) 127 crashes (15.6%)
involve generic click actions, including OK (79), Done (9), and Cancel (2).

5.3 Design Challenges

An example bug report is shown in Fig. 5.2. In this example, the reporter describes the
steps to reproduce the crash in five sentences. The goal of ReCDroid is to translate
this sort of description to the event sequence shown in Fig. 5.1 for triggering the
crash. To achieve this goal, our approach must address four main challenges. First,
what types of information need to be extracted from a bug report? Second, how
can such information be extracted from reports written in natural language? Third,
how can this information, which may vary in specificity and completeness, be used to
reproduce the crash? Fourth, how can this process be done efficiently in terms of a
minimal reproduction sequence and the time to find this sequence? In the remainder

43

https://github.com/milesmcc/LibreNews-Android/issues/22

Grammar
Patterns

Bug Report Analysis

Event
Representations

Event Repayable script

<change, server address,
``xxyyzz”>
<click, automatically refresh>
…

Execution
Engine

NLPBug
Report

• Click
• Edit
• Gesture

Dynamic Exploration

Dynamic Ordered
Event Tree (DOET)

Dynamic
Matching

Dependency
parsing

Stemmed
Words

Word2Vec

Figure 5.3: Overview of the ReCDroid Framework.

of this section, we provide an overview of how our approach’s design addresses these
challenges. Details and algorithms of our approach are presented in Section 6.3.

What type of information to extract? From the examination of the 813 bug
reports containing reproducing steps, our insight was that events that trigger new
activities, interact with GUI controls, or provide values are the key parts of the
steps provided by bug reporters. More broadly, these actions involve performing “a
type of user action” on “a particular GUI component” with “specific values” (if the
component is editable). Therefore, action, target GUI component, and input values
are the main elements to be extracted from bug reports.

To illustrate, consider the fourth step in Fig. 5.2. Here, “change” is the user
action, “Server” is the target GUI component, and “xxyyzz” is the input value.

How to map bug report into semantic representations of events? The second
design challenge is the extraction of the semantic representation of the reproducing
steps from the bug reports, defined by a tuple {action, GUI component, input}. A
seemingly straightforward solution to this challenge is to use a simple keyword search
to match each sentence in the bug report against the name (i.e., the displayed text) of
the GUI components from the app. However, keyword search cannot reliably detect
input values or the multitude of syntactical relationships that may exist among user
actions, GUI components, and inputs. For example, consider a sentence “I click the
help button to show the word.” If both help and show happen to be the names of app
buttons, a keyword search could identify both help and show to be the target GUI
components, whereas only help has a relationship with the action click. Moreover,
reporters may use new words that do not match the name of the GUI component of
the app. For example, a reporter may use “play the film” to describe the “movie”
button.

Our insight is that the extraction process can be formulated as a slot filling prob-
lem [119, 120] in natural language processing (NLP). With this formulation each
element of the event tuple is represented as a semantic slot and the goal of the ap-
proach then becomes to fill the slots with concrete values from the bug report. Our
approach uses a mixture of NLP techniques and heuristics to carry out the slot filling.
Specifically, we use the spaCy dependency parser [121] to identify typical grammat-
ical structures that were used in bug reports to describe the relevant user action,
target GUI component, and input values. These were codified into 22 typical pat-
terns, which we summarize and describe in Section 6.3. The patterns are used to
detect event tuples of a new bug report and fill their slots with values.

44

To help bridge the lexical gap between the terminology in the bug report and
the actual GUI components, our approach uses word embeddings computed from a
word2vec model [102] to determine whether two words are semantically related. For
example, the words “movie” and “film” have a fairly high similarity.

How to create complete and correct sequences for bug reproduction? A
key challenge for our approach is that even good bug reports may be incomplete
or inaccurate. For example, steps that are considered obvious may be omitted or
forgotten by the reporter. Therefore, our approach must be able to fill in these
missing steps. Ideally, information already extracted from the report can be used to
provide “hints” to identify and fill in the missing actions.

Existing GUI crawling tools [9, 122, 63, 8, 68] are not a good fit for this particular
need. For example, many existing tools (e.g., A3E [9]) use a depth-first search (DFS)
to systematically explore the GUI components of an app. That is, the procedure
executes the full sequence of events until there are no more to click before searching for
the next sequence. In our experience, this is sub optimal because if an interaction with
an incorrect GUI component is chosen (due to a missing step), then the subsequent
exploration of sub-paths following that step will be wasted.

For our problem domain, a guided DFS with backtracking is more appropriate.
Using this strategy, our approach can check at each search level whether GUI com-
ponents that are more relevant (i.e., match the bug report) to the target step are
appearing and use this information to identify the next component to explore. If
none of the components are relevant to the bug report, instead of deepening the ex-
ploration, ReCDroid can backtrack to a relevant component in a previous search level.
This process continues until all relevant components in previous levels are explored
before navigating to the subsequent levels.

How to make the reproduction efficient? Efficiency in the reproduction pro-
cess is important for developer acceptance. An approach that takes too long may
not seem worth the wait to developers, and an approach that generates a needlessly
long sequence of actions may be overwhelming to developers. These two goals repre-
sent a tradeoff for our approach: identifying the minimal set of actions necessary to
reproduce a crash can require more analysis time.

To achieve a reasonable balance between these two efficiency goals, we designed
a set of optimization strategies and heuristics for our approach. For the guided
crawl, we utilized strategies that included checking the equivalence of screens and
detecting loops to avoid redundant backtracking, and prioritizing GUI components
to be explored based on their likelihood of causing bugs. For minimizing the size of the
sequence of GUI actions, whenever a backtrack was needed, our approach restarted
the search from the home screen of the app and reset the state of the app. This
avoids a common source of inefficiency present in other approaches (e.g., [9, 8, 68])
that add backtracking steps to their crawling sequence, which results in an overall
much longer sequence of reproducing actions.

45

Table 5.1: Summary of Grammar Patterns

Category ID Pct. Grammar Pattern Example

Click
CR1 12.5% action → dobj (→NP) Click[action] {easy level[dobj]}[NP]

CR2 0.7% action → nsubjapss (→ NP) {Easy level[dobj]}[NP] is clicked[action]

CR3 8.6% action → pobj (→ NP) I made a click[action] on {easy level[pobj]}[NP]

Edit
TR1 7.3%

action→dobj|obj|attr→prep→pobj (→NP)
Input[action] xxyyzz[dobj] to[prep] {server address[pobj]}[NP]prep ∈ {on,in,to}

TR2 1.8%
action→dobj|obj|attr(→NP)→prep→pobj

Input[action] {server address[dobj]}NP with[prep] xxyyzz[pobj]prep ∈ {with, by}

TR3 0.7%
action→dobj|obj|attr(→NP)→prep→pobj

Change[action] {server address[dobj]}NP to[prep] xxyyzz[pobj]prep ∈ {to, with}, action ∈ {change}

TR4 0.6%
TR1|TR2 + Input[action] a number[dobj] to kilometer[pobj]
EG(NOUN → NUM → UNIT | STR) e.g., {10[NUM] km[UNIT]}EG

Gesture NR1 0.4% action Rotate[action] the screen

5.4 ReCDroid Approach

The architecture of ReCDroid is shown in Fig. 6.4. ReCDroid consists of two major
phases — bug report analysis and dynamic exploration. To carry out the bug report
analysis, ReCDroid employs NLP techniques to extract GUI event representations
from bug reports. To complete the sequence of extracted steps, the second phase
employs a novel dynamic exploration of an app’s GUI. This exploration is performed
based on a dynamic ordered event tree (DOET) representation of the GUI’s events,
and searches for sequences of events that fill in missing steps and lead to the reported
crash. ReCDroid saves the event sequences into a script that can be automatically
replayed on the execution engine.

5.4.1 Phase 1: Analyzing Bug Reports

ReCDroid uses 22 grammar patterns to extract the the semantic representations of
events (i.e., the tuple {action, GUI component, input}) described in a bug report.

5.4.1.1 Grammar Patterns

The 22 grammar patterns were derived from the corpus of 813 Android bug reports
described in Section 5.2. These patterns are broadly applicable and can be reused
(e.g., by compiling them into a library) for new Android bug reports. Specifically,
for each bug report we analyzed the dependencies among words and phrases in the
sentences describing reproducing steps. Specifically, we use SpaCy’s grammar depen-
dency analysis to identify the part-of-speech (POS) tag (e.g., Noun, Verb) of each
word within a sentence, parse the sentence into clauses (e.g., noun phrase), and label
semantic roles, such as direct objects. Fig. 5.4 shows an example of the results of the
SpaCy dependency analysis on two sentences with different structures.

Broadly, the grammar patterns could be grouped intro three types of interactions
with an app: click events (e.g., click buttons, check checkboxes), edit events (e.g.,
enter a text box with a number), and gesture events (e.g., rotate). Table 6.1 lists
the eight typical grammar patterns (The full list can be found in our artifacts [19]).
Column 3 shows the percentage of the 813 bug reports in which each grammar pattern
applies. We next describe these patterns.

46

(a) (b)

Figure 5.4: Examples of Dependency Trees

Click Events. ReCDroid uses seven grammar patterns to extract the click event
tuple. The “input” element in the tuple is not applicable to click events. In Table 6.1,
CR1 specifies that the direct object (i.e., dobj) of the click action is the target GUI
component. Also, the noun phase (NP) of the direct object corresponds to the target
GUI component. The second pattern (CR2) identifies the GUI component that has
an nsubjpass (i.e., passive nominal subject) relation with the action word. The third
pattern (CR3) specifies that the object of a preposition (pobj) of the click action is
the target GUI component.

Edit Events. We identified 14 grammar patterns for extracting edit events. In
Table 6.1, the first grammar pattern (TR1) specifies that if the preposition is a word
in {on,in,to}, the direct object (dobj) is the input value and the preposition object
(pobj) is the target GUI component. On the other hand, in the second pattern (TR2),
if the preposition is with or by, the direct object (dobj) is the GUI component and
the preposition object (pobj) is the input value. The change action requires a special
grammar pattern to handle (TR3) because the preposition object is often preceded
by a target GUI component and followed by an input value.

As for the fourth grammar pattern (TR4), we observe that words happening after
the phrase (EG) containing an introducing example (e.g., e.g., example, say), espe-
cially NOUN, often involve input values. Therefore, TR4 specifies that if the sentence
prior to EG contains a user action and a GUI component detected by a grammar
pattern (TR1, TR2, or TR3), then EG contains an input value associated with the GUI
component. To extract the input value, ReCDroid first extracts the NOUN from EG

and if the NOUN is a number (NUM), it is identified as an input value. ReCDroid then
searches for the word right after the number and if the word is a unit (UNIT∈{kg, cm,
litter}), it is added as a target GUI component. Otherwise, if no numbers are found
in EG, the whole phrase EG is identified as a regular string input (STR).

Gesture Events. The grammar patterns for gesture events involve only the “ac-
tion” element in the event tuple. The current implementation of ReCDroid supports
only the rotate event. Nevertheless, our grammar patterns can be extended by

47

incorporating other events, such as zoom and swipe.

5.4.1.2 Extracting Event Representations

Given a bug report, ReCDroid uses the grammar patterns to extract event represen-
tations (i.e., event tuples) relevant for reproducing bugs. ReCDroid first splits the
crash description into sentences, where sentence boundaries are detected by syntac-
tic dependency parsing from spaCy [121]. It then applies stemming [123]2 to the
words in each sentence with each word assigned a sentence ID (used for the guided
exploration).

Next, ReCDroid determines if a sentence describes a specific type of event. To do
this, we construct a vocabulary containing words that are commonly used to describe
the three types of actions (e.g., “click”, “enter”, “rotate”). This vocabulary was
manually constructed by manually analyzing the corpus of 813 bug reports. The fre-
quency distribution of the words in the vocabulary can be found in our artifacts [19].
ReCDroid then matches each sentence (using the stemmed words) against the vo-
cabulary and if any match is found, the grammar patterns associated with the event
type are applied to the sentence for extracting the target GUI components and/or
input values. For example, the 4th step in Fig. 5.2 contains a word “change”, so the
grammar pattern TR3 is applied.

5.4.1.3 Limitations of Using Grammar Patterns

The grammar patterns can be used to extract event tuples from well-structured sen-
tences. However, in the case of complicated or ambiguous sentences, NLP techniques
are likely to render incorrect part-of-speech (POS), dependency tags, or sentence seg-
mentation. While this problem can be mitigated by training the tags [124], it comes
with an additional cost. Moreover, the extracted target GUI components from the bug
report may not match their actual names in the app. Such inaccuracy and incomplete-
ness may negatively impact the efficiency of the dynamic exploration. Section 5.4.2.2
illustrates how ReCDroid obtains additional information from unstructured texts to
address the mismatch between bug reports and target apps.

5.4.2 Phase 2: Guided Exploration for Reproducing Crashes

The goal of the second phase is to identify short sequences of events that complete the
sequence identified in the first phase and allow it to fully and automatically reproduce
the reported crash. To do this, ReCDroid builds and uses a Dynamic Ordered Event
Tree T = (V , E) to guide an exploration of the app’s GUI. The set of nodes, V ,
represents the app’s GUI components, and the set of edges, E, represents event
transitions (i.e., from one screen to another by exercising the component) observed
at runtime. The tree nodes of each level (i.e., screen) are ordered (shown as left to
right) according to the descending order of their relevance to the bug report.

2Stemming is the process of removing the ending of a derived word to get its root form. For
example, “clicked” becomes “click”.

48

During the exploration, ReCDroid iteratively selects, for each screen, the most
relevant component to execute. If none of the GUI components match the bug report,
ReCDroid traverses the tree leaves to select another matching but unexplored GUI
component to execute. This process continues until all matching components in
previous levels (i.e., screens) are explored before navigating to the subsequent screens
to expand tree levels. Compared to conventional DFS, our search strategy can avoid
potential traps. The advantage of using the DOET is that by prioritizing the GUI
components, the leaf traversal would always select the leftmost relevant tree leaf to
explore without iterating through all components on the screen.

5.4.2.1 ReCDroid’ Guided Exploration Algorithm

Algorithm 2 outlines the algorithm of ReCDroid’s dynamic exploration. The algo-
rithm begins by launching the app (Line 1) and then enters a loop to iteratively
construct a dynamic ordered event tree (DOET) (Lines 3 – 19). At each iteration,
ReCDroid uses the tree to compute an event sequence S (Line 19) to be executed
in the next iteration (Line 4). The algorithm terminates when 1) the reported crash
is successfully reproduced (Lines 5–7), 2) all paths in the tree are executed (Lines
15–16), or 3) a timeout occurs (Line 3). During the exploration, ReCDroid may acci-
dentally trigger crashes different from the one described in the bug report. ReCDroid
prompts the user when a crash is detected and lets the user decide if it is the correct
crash for the purpose of terminating the search.

After exercising the last GUI component from the event sequence S, ReCDroid
determines whether the DOET should be expanded (Line 8). If a loop or an equivalent
screen is detected (discussed in Section 5.4.2.4), ReCDroid stops exploring the GUI
components in the current screen. Otherwise, ReCDroid obtains all GUI components
from the current screen and matches them against the bug report (Algorithm 3). It
then orders these components and adds them as the leaf nodes of the last exercised
GUI component (Lines 9–14).

A GUI component is considered to be relevant to the bug report and ordered on
the left of the tree level when the following conditions are met: 1) it matches the bug
report and was not explored in previous levels; 2) upon meeting the first condition,
it appears earlier in the bug report according to its associated sentence ID; 3) it
is a clickable component and does not meet the first condition, but its associated
editable component matches the bug report (because only by exercising the clickable
component can the exploration bring the app to a new screen); 4) upon meeting any
of the above conditions, it is naturally more dangerous. Our current implementation
considers OK and Done as naturally more dangerous components (Finding 4), because
the former component is more likely to bring the app to a new screen.

The routine FindSequence (Line 19) determines which GUI component to explore
next to find an event sequence to execute in the next iteration. If any components in
the current tree level are relevant to the bug report, it selects the leftmost leaf and
appends it to S. If none of these components are relevant, ReCDroid traverses the
tree leaves from left to right until finding a leaf node that is relevant to the bug report.
Instead of adding backtracking steps to S, ReCDroid finds the suffix path from the

49

Algorithm 2 Guided Dynamic Exploration

Require: App, stemmed words from bug report: W , Eg
Ensure: Script R /*sequence of events leading to the reported crash*/
1: S ← <Launch>
2: T .root ← Launch
3: while time < LIMIT do
4: P ← Execute(S, App)
5: if P triggers BR’s crash then
6: R ← Save (S)
7: return
8: if IsAddLeafNodes (T , S.last) is true then
9: U ← GetAllElem (P)

10: for each GUI element u ∈ U do /*current screen*/
11: if IsMatch(u, Eg, W) is true then
12: u.status ← ready /*can be explored*/

13: end for
14: T ← AddOrderedNodes (U , OrderCriteria)

15: if for all LeafNodes ∈ T is explored then
16: return
17: if for all LeafNodes ∈ T is not ready then
18: LeafNodes ← ready /*need backtrack*/

19: S ← FindSequence(T) /*select a GUI component to explore*/

leaf to root to be executed in the next iteration. The goal of this is to minimize the
size of the event sequence. If the algorithm detects that none of the leaf nodes are
relevant to the bug report, it means that we may need to deepen the exploration to
discover more matching GUI components. Therefore, ReCDroid resets all leaf nodes
to ready in order to continue the search (Line 19–20).

DOET does not capture the rotate action because it is not a GUI component.
Therefore, we need to find the right locations in an event sequence to insert the
rotate action (Line 4). We use a threshold R to specify the maximum number of
steps to the last event at which rotate was exercised. Finding 2 shows that a crash
often occurs 1–2 steps after the rotate. Therefore, by default, R = 2.

5.4.2.2 Dynamic Matching

To determine whether a GUI component matches a bug report (Line 11), ReCDroid
utilizes Word2Vec [102], a word embedding technique, to check if the name (i.e., the
displayed text) of a GUI component is semantically similar with any of the GUI
components from the extracted event representations or the words from sentences
in which grammar patterns cannot be used. The Word2Vec model is trained from
a public dataset text8 containing 16 million words and is provided along with the
source code of Word2Vec [22]. The model uses a score in the range of [0, 1] to
indicate the degree of semantic similarity between words (1 indicates an exact match).
ReCDroid uses a relatively high score, 0.8, as the threshold. We observed that using
a low threshold may misguide the search toward an incorrect GUI component. For
example, the similarity score of “start” and “stop” is 0.51 but the two words are not
synonymous.

50

Algorithm 3 IsMatch

Require: GUI component in app: u, Events detected by grammar patterns: Eg, A set of bug report
sentences: S

Ensure: A boolean value
20: for each event g ∈ Eg do
21: if u.similar (g.u) > 0.8 then /*use word2vec*/
22: if e.action is edit then
23: u.setText (g.input)

24: return true
25: end for
26: Wb ← GenerateNGram (S - Eg.S)
27: Wu ← GenerateNGram (u)
28: for each wu ∈Wu do
29: for each wb ∈Wb do
30: if wu.similar (wb) > 0.8 then
31: if e.action is edit then
32: u.setText (D)

33: return true
34: end for
35: end for
36: return false

Algorithm 3 outlines the process of matching a GUI component observed at run-
time. ReCDroid first compares the observed GUI component (u) with the event tuples
(Eg) to detect if there is a match. If u is an editable component, the corresponding
input values from e are filled into the text field (Lines 21–24). If no matches are
found from the previous step, ReCDroid analyzes the sentences in which grammar
patterns do not apply (Lines 26 – 35). It generates n-grams3, from both the bug
report description and the GUI component u (Lines 26 – 27). ReCDroid then com-
pares the content of the GUI component against the bug report based their generated
grams (Lines 28 – 30). We consider unigrams (single word tokens) and bigrams (two
consecutive word tokens) that are commonly used in existing work [127, 128, 129].

If an editable GUI component does not match any events extracted from grammar
patterns, ReCDroid associates the component with the following values (D in Line
32): 1) input values for other editable components extracted by grammar patterns
that match the data type (e.g., digit, string) of the editable component, and 2)
special symbols appearing in the bug report, such as “apostrophe”, “comma”, “quote”
because we observed that such symbols are likely to cause problems (Finding 3). If
neither of the two types of values can be found in the bug report, ReCDroid randomly
generates one.

5.4.2.3 A Running Example

Fig. 5.5 shows a partial DOET for the example in Fig. 5.1. The shaded nodes indicate
the GUI components leading to the reported crash. ReCDroid first launches the app
and brings the app to the screen in Fig. 5.1a. There is one clickable GUI component
G in the screen, which is not relevant to the bug report. Since by traversing the
leaf nodes (only G) ReCDroid does not find any relevant component, it sets the

3An n-gram is a contiguous sequence of n items from a given sequence of text, which has been
widely used in information retrieval [125] and natural language processing [126].

51

Figure 5.5: Dynamic Ordered Event Tree (DOET) for Figure 5.1

status of component G to ready and continues the search (Lines 17–18). In the 2nd
iteration, ReCDroid clicks component G and brings the app to Fig. 5.1b. ReCDroid
ranks the GUI components in the current screen and adds them to the tree (Lines
8–16). Specifically, the first four components (i.e., A, S, R, RR) match the bug
report description and are ordered on the left of the tree level. Internally, the four
components are ranked in terms of the orders of their appearance in the bug report.
ReCDroid then checks all nodes in the current level (Fig. 5.1b) and selects the leftmost
leaf (A) to execute, which brings the app to the screen of Fig. 5.1c. At this tree level,
A is placed on the right because it has been explored before. In the 4th iteration,
exercising the leftmost leaf node S brings the app to Fig. 5.1d, since the editable
component Server matches the bug report description, its corresponding input value
is filled in and the associated clickable components are considered to be relevant.
Because OK is more likely to bring the app to a new screen, it is ordered before
Cancel. In the last iteration (Fig. 5.1d), both A and S are placed on the right
because they have been explored. Lastly, R is executed and the crash is triggered.

We next illustrate how ReCDroid backtracks. Suppose in Fig. 5.1c, none of the
components are relevant to the bug report, ReCDroid would traverse the leaf nodes
of the whole DOET from left to right until finding a matching and unexplored GUI
component. Therefore, component S in the screen of Fig. 5.1b would be selected.
So in the next iteration, ReCDroid restarts the search and executes the sequence
L→ G→ S.

52

5.4.2.4 Optimization Strategies

ReCDroid employs several optimization strategies to improve the efficiency of the
algorithm by avoiding exploring irrelevant GUI components (Line 8). For example,
ReCDroid checks if the current screen is the same as the previous screen. A same
screen may suggest either an invalid GUI component was clicked (e.g., a broken
button) or the component always brings the app to the same screen (e.g., refresh).
In this case, creating children nodes for the current screen can potentially cause the
algorithm to explore the same screen again and again. To address this problem,
ReCDroid sets the status of the last exercised GUI component G to dead to avoid
expanding the tree level from G. We also develop an algorithm to detect loops in
each tree path. For example, in a path DABCABCABC, the subsequence ABC is
visited three times in a row. In this case, ReCDroid keeps only one subsequence and
the leaf node is set to dead, so the loop will not be explored in the future. We omit
the details of the loop detection algorithm due to space limitations.

5.5 Empirical Study

To evaluate ReCDroid, we consider four research questions:

RQ1: How effective and efficient is ReCDroid at reproducing crashes in bug reports?

RQ2: To what extent do the NLP techniques in ReCDroid affect its effectiveness
and efficiency?

RQ3: Does ReCDroid benefit developers compared to manual reproduction?

RQ4: Can ReCDroid reproduce crashes from different levels of low-quality bug re-
ports?

5.5.1 Datasets

We need to prepare datasets for evaluating our approach. To avoid overfitting, we
do not consider the 813 Android bug reports that we used to identify the grammar
patterns. Instead, we randomly crawled an additional 330 bug reports containing the
keywords “crash” and “exception” from GitHub. We next included all 15 bug reports
from the FUSION paper [82] and 25 bug reports from a recent paper on translating
Android bug reports into test cases [83]. FUSION considers the quality of these
bug reports as low, so we aim to evaluate whether ReCDroid is capable of handling
low-quality bug reports.

We then manually filtered the 370 collected bug reports to get the final set that
can be used in our experiments. This filtering was performed independently by three
graduate students, who have 2-4 years of industrial software development experience.
We first filtered bug reports involving actual app crashes, because ReCDroid focuses
on crash failures. This yielded 298 bug reports. We then filtered bug reports that
could be reproduced manually by at least one inspector, because some bugs could not
be reproduced due to lack of apks, failed-to-compile apks, environment issues, and
other unknown issues. These bug reports cannot assess RecDroid itself and thus was
excluded from the dataset.

53

In total, we evaluated ReCDroid on 51 bug reports from 33 apks. The cost of
the manual process is quite high: the preparation of the dataset required around 400
hours of researcher time.

5.5.2 Implementation

We conducted our experiment on a physical x86 machine running with Ubuntu 14.04.
The NLP techniques of ReCDroid was implemented based on the spaCy dependency
parser [121]. The dynamic exploration component was implemented on top of two
execution engines, Robotium [55] and UI Automator [112], for handling apps compiled
by a wide range of Android SDK versions. An apk compiled by a lower version
Android SDK (< 6.0) can be handled by Robotium and that by a higher version
SDK (> 5.0) can be handled by UI Automator.

5.5.3 Experiment Design

5.5.3.1 RQ1: Effectiveness and Efficiency of ReCDroid

We measure the effectiveness and efficiency of ReCDroid in terms of whether it can
successfully reproduce crashes described in the bug reports within a time limit (i.e.,
two hours) and efficiency in terms of the time it took to reproduce each crash.

5.5.3.2 RQ2: The Role of NLP in ReCDroid

Within ReCDroid, we assess whether the use of the NLP techniques can affect ReC-
Droid’s effectiveness and efficiency. We consider two “vanilla” versions of ReCDroid.
The first version, ReCDroidN , is used to evaluate the effects of using grammar pat-
terns. ReCDroidN does not apply grammar patterns, but only enables the second
phase on dynamic matching. The second version is ReCDroidD, which evaluates the
effects of applying both grammar patterns and dynamic matching. The comparison
between ReCDroidD and ReCDroidN can assess the effects of using dynamic match-
ing. ReCDroidD is a non-guided systematic GUI exploration technique (discussed in
Section 6.8). The time limits for running ReCDroidN and ReCDroidD were also set
to two hours.

5.5.3.3 RQ3: Usefulness of ReCDroid

The goal of RQ3 is to evaluate the experience developer had using ReCDroid to re-
produce bugs compared to using manual reproduction. We recruited 12 graduate
students as the participants. All had at least 6-month Android development experi-
ence and three were real Android developers working in companies for 3 years before
entering graduate school. Each participant read the 39 bug reports and tried to man-
ually reproduce the crashes. All apps were preinstalled. For each bug report, the 12
participants timed how long it took for them to understand the bug report and repro-
duce the bug. If a participant was not able to reproduce a bug after 30 minutes, that
bug was marked as not reproduced. After the participants attempted to reproduce

54

all bugs, they were asked to use ReCDroid on the 39 bug reports. This was followed
by a survey question: would you prefer to use ReCDroid to reproduce bugs from bug
reports over manual reproduction? Note that to avoid bias, the participants were not
aware of the purpose of this user study.

5.5.3.4 RQ4: Handling Low-Quality Bug Reports

The goal of RQ4 is to assess the ability of ReCDroid to handle different levels of low-
quality bug reports. Since judging the quality of a bug report is often subjective, we
created low-quality bug reports by randomly removing a set of words from the original
bug reports. We focused on removing words from texts containing reproducing steps.
Specifically, we considered three variations for each of the 33 bug report reports
reproduced by ReCDroid in order to mimic different levels of quality: 1) removing
10% of the words in the report, 2) removing 20% of the words in the report, and
3) removing 50% of the words in the report. Due to the randomization of removing
words from bug reports, we repeated the removal operation five times for each bug
report across the three quality levels. We evaluate the effectiveness and efficiency of
ReCDroid in reproducing crashes in the 495 (33×3×5) bug reports. Again, the time
limit was set to 2 hours.

5.6 Results and Analysis

Table 6.5 summarizes the results of applying ReCDroid, ReCDroidN , and ReCDroidD
in 39 out of the 51 bug reports. We did not include the remaining 12 crashes because
they failed to be reproduced due to the technical limitations of the two execution
engines rather than ReCDroid. For example, Robotium failed to click certain buttons
(e.g., [130]). Columns 2–3 show the number of reproducing steps in each bug report
and the number of unique grammar patterns applicable to each bug report. The
numbers in the parenthesis of Column 3 indicate the number of false positives (left)
and false negatives (right) when applied the grammar patterns. A false positive
means that a grammar pattern is applied but the identified text is irrelevant to bug
reproduction. A false negative means that a relevant reproducing step is not identified
by any grammar patterns. Columns 4–12 show whether the technique successfully
reproduced the crash, the size of the event sequence, and the time each technique
took.

5.6.0.1 RQ1: Effectiveness and Efficiency of ReCDroid

As Table 6.5 shows, ReCDroid reproduced 33 out of 39 crashes; a success rate of
84.6%. The time required to reproduce the crashes ranged from 14 to 1,180 seconds
with an average time of 257.9 seconds. All four crash bug reports (marked with ?)
from the FUSION paper [82] and nine bug reports (marked with ∗) from Yakusu [83]
were successfully reproduced. The results indicate that ReCDroid is effective in re-
producing crashes from bug reports. The six cases where ReCDroid failed will be
discussed in Section 6.8.

55

Table 5.2: RQ1 — RQ3: Different Techniques and User Study

#BR. # steps # ptn Reproduce Success # Events in Sequence Time (Seconds) User
RD RDN RDD RD RDN RDD RD RDN RDD (12)

newsblur-1053 5 7 (3, 2) X X X 7 7 7 157.6 133.5 132.3 12
markor-194 3 1 (0, 1) X N N 4 - - 1180.8 > > 12
birthdroid-13 1 5 (3, 0) X X X 5 8 8 106.5 483.7 1088.5 9
car-report-43? 4 4 (0, 0) X X X 16 16 16 309.5 299.4 101 8
opensudoku-173 8 10 (0, 2) X N N 9 - - 576.4 > > 10
acv-11? 5 8 (1, 2) X X X 8 8 5 500.5 489.3 2060.1 7
anymemo-18 1 2 (0, 0) X X X 3 3 3 67.1 60.9 797.7 11
anymemo-440 4 6 (0, 1) X X N 8 8 - 933.9 889.4 - 12
notepad-23? 3 3 (0, 1) X X X 6 6 6 216.2 292 1731.1 11
olam-2? 1 2 (0, 0) X N N 2 - - 56.7 > > 7
olam-1 1 1 (0, 1) X N N 2 - - 35.2 > > 11
FastAdapter-394 1 0 (0, 1) X X X 1 1 1 47.6 27.6 445.1 9
LibreNews-22 4 6 (2, 1) X X X 6 6 5 113.2 138.2 728.5 12
LibreNews-23 6 4 (2, 1) X N N 3 - - 47.7 > > 12
LibreNews-27 4 4 (2, 1) X X X 5 5 5 70.2 67.6 1074.7 11
SMSSync-464 2 0 (0, 2) X X X 4 4 4 751 703.3 5193.8 10
transistor-63 5 8 (6, 2) X X X 3 3 3 41.1 36.6 65.1 12
zom-271 5 1 (0, 1) X X X 5 5 5 125.5 115.8 507.7 11
PixART-125 3 5 (0, 1) X X X 5 5 5 576.9 649.6 1031.6 12
PixART-127∗ 3 5 (1, 0) X X X 5 5 5 137.6 147.1 991.9 12
ScreenCam-25∗ 3 2 (1, 1) X X N 6 6 - 721.7 833.3 > 11
ventriloid-1 3 3 (1, 2) X N N 9 - - 66.8 > > 11
Nextcloud-487 1 2 (3, 1) X X X 2 2 2 63.3 72 943.8 11
obdreader-22 4 0 (0, 4) X X N 8 8 - 891.7 939.7 > 12
dagger-46∗ 1 3 (2, 0) X X X 1 1 1 31.1 26.2 20.6 12
ODK-2086 2 3 (0, 0) X X X 3 3 3 89.6 91.2 2982 12
k9-3255 2 5 (1, 1) X N N 4 - - 177.6 > > 12
k9-2612∗ 4 3 (0, 0) X X X 2 3 2 103 134.6 5730.6 10
k9-2019∗ 1 0 (0, 1) X X X 3 3 3 59.5 58.1 1352.4 11
Anki-4586∗ 5 3 (1, 0) X X N 7 7 - 96.6 100 > 12
TagMo-12∗ 1 2 (0, 0) X X X 2 2 2 14.8 15.7 29.6 12
openMF-734∗ 2 2 (0, 1) X X X 2 2 2 81.9 83.6 440.5 11
FlashCards-13∗ 4 3 (2, 0) X X X 3 3 3 63.5 93.9 93.7 12
FastAdaptor-113 2 3 (1, 1) N N N - - - > > > 7
Memento-169 3 7 (3, 0) N N N - - - > > > 2
ScreenCam-32 1 0 (0, 1) N N N - - - > > > 10
ODK-1796 2 1 (0, 1) N N N - - - > > > 4
AIMSICD-816 3 2 (0, 1) N N N - - - > > > 1
materialistic-76 6 7 (2, 1) N N N - - - > > > 5

Total - - 33 26 22 - - - - - - -

RD.= ReCDroid. “X”=Crash reproduced. “N”=Crash not reproduced. “-”=Not applicable.
“>”=exceeded time limit (2 hours).

5.6.0.2 RQ2: The Role of NLP in ReCDroid

When compared ReCDroid to ReCDroidN and ReCDroidD, ReCDroid successfully
reproduced 26.9% and 50% more crashes than ReCDroidN and ReCDroidD. For
the crashes successfully reproduced by all three techniques, the size of event se-
quence generated by ReCDroid was 4% smaller than ReCDroidN and 1% bigger
than ReCDroidD. Both ReCDroidN and ReCDroidD generated short event sequences
because like ReCDroid, they do not backtrack. Instead, whenever a backtrack was
needed, they restarted the search from the home screen of the app (Algorithm 2).
With regards to efficiency, ReCDroid required 62.6% less time than ReCDroidN and

56

https://github.com/samuelclay/NewsBlur/issues/1053
https://github.com/gsantner/markor/issues/194
https://github.com/rigid/Birthdroid/issues/13
https://bitbucket.org/frigus02/car-report/issues/43/infinity-100-km-and-plot-deathlock
https://code.google.com/archive/p/opensudoku-android/issues/173
https://github.com/robotmedia/droid-comic-viewer/issues/11
https://code.google.com/archive/p/anymemo/issues/18
https://github.com/helloworld1/AnyMemo/issues/440
https://code.google.com/archive/p/banderlabs/issues/23
https://github.com/vishnus/Olam/issues/2
https://github.com/vishnus/Olam/issues/1
https://github.com/mikepenz/FastAdapter/issues/394
https://github.com/milesmcc/LibreNews-Android/issues/22
https://github.com/milesmcc/LibreNews-Android/issues/23
https://github.com/milesmcc/LibreNews-Android/issues/27
https://github.com/ushahidi/SMSSync/issues/464
https://github.com/y20k/transistor/issues/63
https://github.com/zom/Zom-Android/issues/275
https://github.com/kriztan/Pix-Art-Messenger/issues/125
https://github.com/kriztan/Pix-Art-Messenger/issues/127
https://github.com/vijai1996/screenrecorder/issues/25
https://code.google.com/archive/p/ventriloid/issues/1
https://github.com/nextcloud/news-android/issues/487
https://github.com/pires/android-obd-reader/issues/22
https://github.com/vestrel00/android-dagger-butterknife-mvp/issues/46
https://github.com/opendatakit/collect/issues/2086
https://github.com/k9mail/k-9/issues/3255
https://github.com/k9mail/k-9/issues/2612
https://github.com/k9mail/k-9/issues/2019
https://github.com/ankidroid/Anki-Android/issues/4586
https://github.com/HiddenRamblings/TagMo/issues/12
https://github.com/openMF/android-client/issues/734
https://github.com/ASU-CodeDevils/FlashCards/issues/13
https://github.com/mikepenz/FastAdapter/issues/113
https://github.com/alexstyl/Memento-Calendar/issues/169
https://github.com/vijai1996/screenrecorder/issues/32
https://github.com/opendatakit/collect/issues/1796
https://github.com/CellularPrivacy/Android-IMSI-Catcher-Detector/issues/816
https://github.com/hidroh/materialistic/issues/1067

86.4% less than ReCDroidD. Overall, these results indicate that the use of NLP
techniques, including both the grammar patterns and the dynamic word matching,
contributed to enhancing the effectiveness and efficiency of ReCDroid.

We also examined the effects of false positives and false negatives reported when
applying the 22 grammar patterns to each bug report (Column 3), since false positives
may misguide the search and false negatives may jeopardize the search efficiency
(certain useful information is missing). In the 33 crashes successfully reproduced
by ReCDroid, we found that all false positives were discarded during the dynamic
exploration because the identified false GUI components did not match with the
actual GUI components of the apps. With regards to false negatives, we found that
they were all captured by the dynamic word matching. Therefore, the false negatives
and false positives of the grammar patterns did not negatively affect the performance
of ReCDroid, although our results may not generalize to other apps.

5.6.0.3 RQ3: Usefulness of ReCDroid

The last column of Table 6.5 shows the number of participants (out of 12) that
successfully reproduced the crashes. While all crashes were reproduced by the par-
ticipants, among all 33 crashes reproduced by ReCDroid, 18 of them failed to be
reproduced by at least one participant. For the seven bug reports that ReCDroid
failed to reproduce, the success rate of human reproduction is also low. These results
suggest that ReCDroid is able to reproduce crashes that cannot be reproduced by the
developers. One reason for the failures was that developers need to manually search
for the missing steps, which can be difficult due to the large number of GUI compo-
nents. As columns 3 and 8 in Table 6.5 indicate, in 25 bug reports, the number of
described steps is smaller than the number of events actually needed for reproducing
the crashes. Another reason was because of the misunderstanding of reproducing
steps.

We also compute the time required for each participant to successfully reproduce
all 39 bug reports. The results show that the time for successful manual reproduc-
tion ranged from 9 seconds to 1,640 seconds, with an average 248.1 seconds — 3.7%
less than the time required for ReCDroid on the successfully reproduced crashes.
Such results are expected as ReCDroid needs to explore a number of events dur-
ing the reproduction. However, ReCDroid is fully automated and can thus reduce
the painstaking effort of developers in reproducing crashes. Among all 33 crashes
successfully reproduced by ReCDroid, the reproduction time required by individual
participants ranged from 9 to 1,640 seconds. In fact, two out of the 12 participants
spent a little more time (2% on average) than ReCDroid.

It is worth noting that while it is possible the actual app developers could repro-
duce bugs faster than ReCDroid, ReCDroid can still be useful in many cases. First,
ReCDroid is fully automated, so developers can simply push a button and work
on other tasks instead of waiting for the results or manually reproducing crashes.
Second, ReCDroid can be used with a continuous integration server [131] to enable
automated and fast feedback, such that whenever a new issue is submitted, ReC-
Droid will automatically provide a reproducing sequence for developers. Third, users

57

Table 5.3: RQ4: Different Quality Levels

#BR. QL-10% (5) QL-20% (5) QL-50% (5)
Success Time (sec) Success Time (sec) Success Time (sec)

newsblur-1053 5 196(102) 5 94(50) 5 136(88)
markor-194 5 1601(24) 4 1564(85) 4 1608(30)
birthdroid-13 5 159(128) 5 383(205) 5 659(185)
car-report-43 5 280(3) 5 288(6) 5 286(1)
opensudoku-173 5 770(458) 3 2267(1153) 3 2325(1636)
acv-11 5 1077(1299) 5 1844(1448) 5 1911(1321)
anymemo-18 5 90(49) 5 62(9) 5 1527(1009)
anymemo-440 3 1570(85) 3 1488(85) 0 >(-)
notepad-23 5 333(167) 5 683(544) 5 920(671)
olam-2 5 52(2) 4 50(1) 3 50(1)
olam-1 5 27(1) 5 27(1) 3 27(1)
FastAdapter-394 5 48(1) 5 455(374) 5 740(8)
LibreNews-22 5 123(33) 5 176(77) 5 287(239)
LibreNews-23 2 56(12) 2 62(4) 3 108(54)
LibreNews-27 5 93(3) 5 88(1) 5 426(460)
SMSSync-464 4 984(88) 4 1137(82) 3 1181(81)
transistor-63 5 52(21) 5 44(15) 5 52(20)
zom-271 5 277(283) 5 202(74) 5 245(201)
PixART-125 5 924(86) 5 1167(7) 5 1719(253)
PixART-127 5 435(337) 5 338(97) 5 803(536)
ScreenCam-25 5 1545(943) 5 1261(42) 5 1265(37)
ventriloid-1 4 150(103) 4 108(83) 0 >(-)
Nextcloud-487 5 310(461) 5 509(556) 5 1092(2)
obdreader-22 5 1884(1717) 5 1862(1714) 3 1216(142)
dagger-46 5 25(3) 5 24(1) 5 23(1)
ODK-2086 4 644(757) 5 534(672) 5 812(989)
k9-3255 4 255(30) 3 487(463) 1 1022(-)
k9-2612 5 152(20) 5 102(17) 5 1221(2550)
k9-2019 5 56(1) 5 55(0) 5 950(1214)
Anki-4586 5 205(277) 5 275(324) 1 987(-)
TagMo-12 5 14(0) 5 17(5) 5 14(0)
openMF-734 5 82(1) 5 155(162) 5 82(1)
FlashCards-13 5 140(11) 5 135(9) 5 137(10)

can use ReCDroid to assess the quality of bug reports — a bug report may need
improvement if the crash cannot be reproduced by ReCDroid.

The 12 participants were then asked to use ReCDroid and indicate their prefer-
ences for the manual vs tool-based approach. We used the scale very useful, useful,
and not useful. Our results indicated that 7 out of 12 participants found ReCDroid
very useful and would always prefer ReCDroid to manual reproduction, 4 participants
indicated ReCDroid is useful, and one participant indicated that ReCDroid is not use-
ful. The participant who thought ReCDroid is not useful explained that, for some
simple crashes, manual reproduction is more convenient. On the other hand, the par-
ticipate agreed that ReCDroid is useful for handling complex apps (e.g., K-9). The
12 participants also suggested that ReCDroid is useful in the following cases: 1) bugs
that require many steps to reproduce, 2) bugs that require entering specific inputs to
reproduce, and 3) bug reports that contain too much information. The above results
suggest that developers generally feel ReCDroid is useful for reproducing crashes from
bug reports and they prefer to use ReCDroid over manual reproduction.

58

5.6.0.4 RQ4: Handling Low-Quality Bug Reports

Columns 2–7 of Table 6.7 reports the reproducibility of ReCDroid for the bug reports
at the three different quality levels. The column success indicates the number of
mutated bug reports (out of 5) that were successfully reproduced at each quality
level. The column time indicates the average time (and the standard deviation)
required for reproducing the crash. The results show that among all 495 mutated
bug reports for the three quality levels, ReCDroid was able to reproduce 94%, 92%,
and 81% of the bug crashes, respectively. Even when 50% of the words were removed,
ReCDroid could still successfully reproduce 25 crashes. The slowdowns caused by the
missing information with respect to the original bug reports were only 1.7x, 2.2x, and
2.9x, respectively. These results suggest that ReCDroid can be used to effectively
handle low-quality bug reports with different levels of missing information.

5.7 Discussion

Limitations. The current implementation in ReCDroid does not support item-list,
swipe, or scroll actions. In our experiment, three fail-to-be-reproduced bug reports
(FastAdaptor-113, materialistic-1067, AIMSICD-816) were due to the lack of support
on these actions. We believe that ReCDroid can be extended to incorporate these
actions with additional engineering effort. Second, ReCDroid cannot handle concur-
rency bugs or nondeterministic bugs [132, 133]. In our experiment, three fail-to-be-
reproduced bug reports (Memento-169, ScreenCam-32) were due to non-determinism
and one (ODK-1796) was due to a concurrency bug. For example, to trigger the
crash in ODK-1796, it requires waiting on one screen for seconds and then clicking
the next screen at a very fast speed. In some cases, heuristics can be added to handle
timing issues, such as allowing specific actions to wait for a certain time period before
exploration.

Third, ReCDroid focuses on reproducing crashes. It does not generate automated
test oracles from bug reports, so it is not able to reproduce non-crash bugs. Never-
theless, ReCDroid can still be useful in this case with certain human interventions.
For example, during the automated dynamic exploration, a developer can observe if
a non-crashed bug (e.g., an error message) is reproduced. Fourth, ReCDroid does
not support highly specialized text inputs if the input is not specified in the bug
report. Recent approaches in symbolic executions may prove useful in overcoming
this limitation [134]. Finally, ReCDroid is targeted at bug reports containing natu-
ral language description of reproducing steps. In the absence of reproducing steps,
ReCDroid would act as a generic GUI exploration and testing tool (i.e., RDD in the
experiment).

Android Testing Tools. As a generic GUI exploration and testing tool, ReCDroidD
is similar to existing Android testing tools [63, 5, 135, 69, 9, 7], which detect crashes
in an unguided manner. ReCDroidD was shown to be competitive with Monkey [5],
Sapienz [63], and the recent work Stoat [69] on our experiment subjects. Specifically,
ReCDroidD reproduced 7 more crashes than Stoat, 7 more crashes than Sapienz, and
9 more crashes than Monkey. For the crashes successfully reproduced by all three

59

techniques, the size of event sequence generated by ReCDroidD was 98.8% smaller
than Stoat, 98.8% smaller than Sapienz, and 99.9% smaller than Monkey. With
regards to efficiency, ReCDroidD required 6.2% more time than Stoat, 27.6% less
time than Sapienz, and 37.7% less time than Monkey. The details can be found in
our released artifacts [19].

Threats to Validity. The primary threat to external validity for this study involves
the representativeness of our apps and bug reports. However, we do reduce this threat
to some extent by crawling bug reports from open source apps to avoid introducing
biases. We cannot claim that our results can be generalized to all bug reports of all
domains though. The primary threat to internal validity involves the confounding
effects of participants. We assumed that the students participating in the study (for
RQ3) were substitutes for developers. We believe the assumption is reasonable given
that all 12 participants indicated that they had experience in Android programming.
Recent work [136] has also shown that students can represent professionals in software
engineering experiments.

One Related Work A tool called Yakusu [83] translate executable test cases from bug
reports. It is probably most related to our approach. However, Yakusu translates test
cases from bug reports instead of reproducing bugs (e.g., crashes) described in the bug
report. Their dynamic search algorithm stops when all GUI components extracted
from bug reports are explored regardless of whether the crash is found. Therefore,
event sequences generated by Yakusu may not reproduce all relevant crashes. In
addition, Yakusu does not extract input values for editable events. Instead, it will
randomly send an input. In contrast, ReCDroid defines a family of grammar rules
that can systematically extract the relevant inputs from bug reports. As our study
(Finding 3) shows, a non-trivial portion of crashes involve specific user inputs. More-
over, we conducted a more thorough empirical study to show how NLP uncovered
bugs that would not be discovered otherwise. Moreover, we conducted a user study,
although light-weighted, to show usefulness of ReCDroid. Furthermore, in terms of
generality, the family of grammar rules derived by ReCDroid is from a large number
of bug reports. We also provided empirical evidence to explain the assumption and
the heuristics employed in ReCDroid.

5.8 Conclusions and Future Work

We have presented ReCDroid, an automated approach to reproducing crashes from
bug reports for Android applications. ReCDroid leverages natural language process-
ing techniques and heuristics to analyze bug reports and identify GUI events that
are necessary for crash reproduction. It then directs the exploration of the corre-
sponding app toward the extracted events to reproduce the crash. We have evaluated
ReCDroid on 51 bug reports from 33 Android apps and showed that it successfully re-
produced 33 crashes; 12 fail-to-be-reproduced bug reports were due to the limitations
of the execution engines rather than ReCDroid. A user study suggests that ReCDroid
reproduced 18 crashes not reproduced by at least one developer and was preferred
by developers over manual reproduction. Additional evaluation also indicates that

60

ReCDroid is robust in handling low-quality bug reports.
As future work we intend to leverage the user reviews from App store to ex-

tract additional information for helping bug reproduction. We also intend to develop
techniques to automatically extract grammar patterns from bug reports.

61

Chapter 6

ReCDroid+: Automated
End-to-End Crash Reproduction
from Bug Reports for Android
Apps

6.1 Introduction

In this chapter, we propose an approach ReCDroid+ extends and refines a previously
presented section 5. Specifically, in the previous section of ReCDroid, it requires
developers to manually extract S2R from bug report and label crash bug reports as
the input of ReCDroid. Developers also need to manually verify the crash statements
in the bug report because ReCDroid can only reproduce the crash bug report. In this
chapter, ReCDroid+ is designed to automatically extract S2R sentence and identify
the crash sentence. Then ReCDroid+ is a end-to-end bug reproduction tool meaning
that no human-effort is needed in the whole bug reproduction process.

Firstly, we implement a preliminary work S2RMiner that employs support vector
machine (SVM) to extract S2R sentences from a bug report. S2RMiner combines n-
grams and CountVectorizer [137] to transform text features into numerical features.
However the approach of S2RMiner is too straight forward to extract accurate S2R
sentences which only achieves F score as 0.65. The data set of S2RMiner is also small
as 1000 bug reports which are not enough to train a high performance model.

To achieve a higher accuracy of the S2R extraction and add a new functionality of
identifying the crash sentence, we design ReCDroid+ which employs a deep learning
model designed by CNN & LSTM. So ReCDroid+ can potentially achieve better
performance than the traditional SVM used by S2RMiner. ReCDroid+ achieves a
higher F1 score 0.70 in S2R extraction than S2RMiner 0.65. ReCDroid+ achieves a
high crash sentence identification F1 score 0.79. The data set is also extended to 4000
bug reports. Besides the deep model and big data set, a set of rules are developed to
overcome the false positives and false negatives of the extraction. It can also identify
whether the bug report is in reproducing usage scope.

To determine the effectiveness of our approach, we add 15 new bug reports into the

62

51 bug reports data set in original ReCDroid. Different from the original ReCDroid,
ReCDroid+] can input the raw HTML bug reports as the input rather than manual
extracted S2R sentences. We ran ReCDroid+ on 66 raw bug reports from 37 popular
Android apps to end-to-end automatically reproduce crash bug report. ReCDroid+
was able to successfully reproduce 42 (63.6%) of the crashes.

To determine the usefulness of our tool, we repeat the evaluation of ReCDroid
on the extended data set, a light-weighted user study is conducted to show that
ReCDroid+ can reproduce 21 crashes not reproduced by at least one developer. We
invited another four participants to re-write the bug description for the 42 reproduced
crashes. ReCDroid+ can detect all 93% of the 168 bug reports which means ReC-
Droid+ has a high effectiveness in handling bug reports written by different users.
The robustness of ReCDroid+ in handling low-quality bug reports is evaluated on
the data set which 10%, 20%, and 50% content from the 42 original reproduced bug
reports are randomly removed. Among all 630 mutated bug reports, ReCDroid+ can
reproduce 88% of them. We consider ReCDroid+ is a useful approach in automati-
cally reproducing bug crashes.

6.1.1 Challenges of extracting Information from Bug Reports

An example bug report is shown in Fig. 5.2. In this example, the reporter describes the
steps to reproduce the crash in five sentences. The goal of ReCDroid+ is to translate
this sort of description to the event sequence shown in Fig. 5.1 for triggering the
crash. To achieve this goal, our approach contains two general steps: 1) Extracting
the needed information from bug reports, and 2) Using this information to guide the
reproduction of the crash.

There are two challenges in identifying the needed information for crash repro-
ducing. First, we need to determine whether a given bug report involves a crashed
output because our goal is to reproduce crashes. Second, we need to extract S2R
sentences.

A bug report often contains mixed types of information, such as comments, code,
status of the issue, and information unrelated to the bug. Fig.6.1 shows an example
bug report. Given the whole text description, it is unclear which sentence belongs
to S2R. Therefore, existing bug reproduction tools (e.g., YAKUSU and ReCDroid)
cannot directly work on the raw description of the bug report.

Fig.6.1 shows an example bug report. Given the whole text description, it is
unclear which sentence belongs to S2R.

ReCDroid+ is designed and implemented to accurately extract all S2R sentences
from the bug report. Specifically, ReCDroid+ takes the HTML format of the issue
page (Fig.6.2) as input and outputs a sequence of S2R sentences (i.e., the text in-
side the rectangle indicates S2R). If a bug report does not have S2R (e.g., Fig. 3),
ReCDroid+ will report S2R is missing.

To automate the process of identifying crash bug reports and extracting S2R,
we designed a novel deep learning model that can automatically identify sentences
involving the crash symptoms and S2R. Unlike traditional text classification meth-
ods [138, 139, 140], ReCDroid+’s deep learning model targets the bug report sentences

63

Figure 6.1: A bug report

Figure 6.2: HTML format of Fig.6.1

64

Figure 6.3: Missing S2R

and takes into acount their relations. For example, a sentence right after the text
“steps to reproduce:” may have a high possibility of being an S2R. A sentence sitting
between two S2Rs has a high possibility to be an S2R.

It is challenging to create a robust deep learning model because of reasons such as
incorrect labeling, unbalanced dataset, and unpredictable issues during the training
process. To improve the accuracy of our model, we designed 12 rules to model the
context of the bug report. Therefore, the extracted S2R from deep neural models is
refined by these rules in order to increase the success rate of bug reproduction. For
example, a rule may suggest that S2R should be extracted from the user comment
with the largest number of S2R sentences among all user comments. The rationale
behind this is that S2R sentences often appear together in one user comment of a
bug report.

6.2 S2Rminer Approach

S2Rminer 1 consists two major phases. In the first phase, S2Rminer uses a HTML
parser to extract the key text containing S2R from the HTML format of an issue page.
As shown in Fig.2, the HTML issue page contains HTML tags, such as < /li>,,
and <tbody class=”d-block”>. S2Rminer filters out the HTML tags and obtains only
text “start the app”.

In the second phase, S2Rminer uses NLP techniques to extract text features from
the sentences of the filtered text. It then uses machine learning to label whether a
sentence belongs to S2R. Finally, the sentences labeled with S2R are saved into a
output file.

1The contents of this chapter have appeared in [141].

65

6.2.1 Phase 1: HTML Parsing

Many bug tracking systems allow reporters to submit bug reports through web pages
and developers can reply to the bug report by adding comments to the page. There-
fore, bug report descriptions are often downloaded as HTML files. The original HTML
file has a number of HTML tags. In addition, the raw HTML file contains many other
types of information, such as bug symptoms, expected behaviors, developers’ replies,
CSS code, page information, and so on. These types of information are irrelevant to
S2R. Even on a simple bug report shown in Fig.1, the associated HTML file contains
1371 lines and is as large as 104 KB. S2Rminer needs to eliminate all such information
to obtain the minimum amount of text containing S2R.

Specifically, S2Rminer removes all HTML tags and parses the first block of text in
the HTML page. The intuition is that only the first comment involves S2R described
by the reporter.

6.2.2 Phase 2: S2R Extraction

The problem of detecting S2R sentences can be formulated into the problem of text
classification [142]. Given a sentence, a text classification tool can predict whether it
is a S2R sentence or not. S2Rminer performs the classification in three steps. First, it
splits the text into individual sentences by employing several heuristics. Second, for
each sentence, S2Rminer extracts text features used for building a classifier. Third,
leveraging the text features, S2Rminer builds a classifier that can predict whether a
sentence is S2R. All S2R sentences are saved into an output file.

Splitting text into sentences. S2Rminer first needs to detect individual sen-
tences for being labeled as S2R sentence or non-S2R sentence. We cannot simply
view each text line as a sentence because a line may contain more than one sentences.
In the example of Fig. 1, the first line in the second to last paragraph (“The reason
is that . . . ”) contains two sentences. While tools such as spaCy [143] have the capa-
bility of detecting sentences, they are not accurate because they are not intended to
deal with bug report text.

To address this problem, S2Rminer designs several heuristics to identify sentences
from each line of the text: 1) one text line contains at least one sentence; 2) a text
segment ending with a full stop “.” is a sentence; 3) if a full stop is preceded by a
number (e.g., “1.”) or a part of ellipsis, it is not considered to be the end of a sentence.

Extracting text features. S2Rminer employs a well-known NLP tool spaCy [143]
to extract text features from each sentence. We consider three types of features. The
first type of feature is stemming, which transforms each word in the sentence to its
stem. Stemming is the process of removing the ending of a derived word to get its
root form. For example, “clicking”, “clicks”, and “clicked” become “click”. Without
stemming, multiple words with the same meaning would be used as different features,
resulting in too many features and thus a low quality machine learning model.

The second type of feature is part-of-speech (POS) tags, which labels each word
with a POS tag. The features used by S2Rminer are words labeled as “noun”, “verb”,
and “adjective”.

66

Figure 6.4: Overview of the ReCDroid+ Framework.

The third type of features is dependency parsing, which analyzes the grammar
structure of the sentence. Specifically, words labeled as root, predicate, and object
are considered as features.

Building a text classifier. We use n-grams and CountVectorizer [144] to trans-
form text features into numerical features, which is easy to process by a machine
learning tool. A n-gram a contiguous sequence of n items from a given sequence of
text. For example, 1-gram (or unigram) indicates single word tokens and 2-gram (or
bigrams) indicates two consecutive word tokens.

The current implementation of S2Rminer uses Support Vector Machines [145]
(SVM) to do binary classification given the extracted text features. SVM outputs a
“1” if a sentence is a S2R and a “0” otherwise. S2Rminer saves the sentence labeled
with “1” into the result file for each bug report.

6.3 ReCDroid+ Approach

The architecture of ReCDroid+ is shown in Fig. 6.4. ReCDroid+ consists of three
major phases — preprocessing, bug report analysis, and dynamic exploration. The
preprocessing phase employs NLP and deep learning techniques to identify crash
bug reports and S2R sentences. To carry out the bug report analysis, ReCDroid+
employs NLP techniques and heuristics to summarize a set of grammar patterns for
different types of events. It then uses these grammar patterns to extract GUI event
representations from bug reports. To complete the sequence of extracted steps, the
second phase employs a novel dynamic exploration of an app’s GUI. This exploration
is performed based on a dynamic ordered event tree (DOET) representation of the
GUI’s events, and searches for sequences of events that fill in missing steps and lead
to the reported crash. ReCDroid+ saves the event sequences into a script that can
be automatically replayed on the execution engine.

6.3.1 Preprocessing Bug Reports

In the preprocessing phase, ReCDroid+ first leverages HTML parsing to extract the
actual content of bug report from files in HTML format. It then uses NLP techniques,
combined with CNN and LSTM to models identify crash bug reports and extract S2R
sentences. A set of modeling rules are derived to improve the accuracy of learning.

67

6.3.1.1 HTML parsing

In order to perform analysis on bug reports, we will need to download the bug report
files from bug tracking systems. These are often created in HTML format, which
contain mixed types of information, such as CSS/HTML tags, navigation tags, status
tags, and ads. Such noisy information can be overwhelming but is irrelevant to the
actual content of bug reports. For example, in a bug report with only 10 lines of bug
description [146], the associated noisy information contains more than a thousand of
lines. As the very first step, ReCDroid+ needs to eliminate the noises and extracts
only texts that are relevant to the bug (a.k.a. relevant content).

ReCDroid+ employs a parsing technique to extract the relevant content of bug
reports directly downloaded from the bug tracking systems. Specifically, the title and
the comments are considered to be relevant and need to be extracted. The insight is
that some of the titles provide information related to bug descriptions and symptoms,
which may be used to identify S2R and crash reports. The first comment is often
written by the report providing a detailed bug description and the followup comments
are often discussions related to the bug.

For bug reports from the same bug tracking system, there is a unique HTML tag
standard to label the title and comments position. For example, in Github, the title
element is labeled by a particular HTML tag “//span[@class=”js-issue-tittle”]” and
comment element is labeled by HTML tag ”//td”. ReCDroid+ utilizes an HTML
parsing tool called lxml [15] to identify the HTML tag and extract the texts under
the title and comment elements. On a different bug tracking system, the names
of HTML tags may be different. For example, in Google code, the HTML tag for
the title element is “div[@id=”gca-project-header”]”. ReCDroid+ saves different tag
names in a dictionary for each bug tracking system and selects the right one to use
when needed. ReCDroid+ currently supports GitHub, Google Code, Bitbucket, and
GitLab. It can be extended to support other bug tracking systems by creating a
dictionary with system-specific tags.

ReCDroid+ employs a special mechanism to process texts that are related to S2R.
The intuition is that sentences beginning with list symbols (e.g., bullets, numbers),
transformed from the tag in HTML, are more likely to be S2R. Therefore,
ReCDroid+ detects and annotates such tags, which will be later used in extracting
S2R sentences (Section 6.3.1.2).

6.3.1.2 Extract S2R and Crash Sentences

As the first step, ReCDroid+ needs to split the relevant text extracted from the
HTML file into sentences. To do this, ReCDroid+ uses spaCy [121] to detect the
segmentation of sentences based on punctuation (e.g., “.” , “!”, “?”). Given a bug
report with a sequence of sentences, ReCDroid+ builds a deep learning model to
identify S2R and crash sentences. This is a typical binary classification problem.
While there has been much work on addressing different kinds of text classification
problem [147, 148], texts involving S2R and crash have their unique characteristics
that should be considered.

68

Specifically, S2R and crash sentences tend to have adjacent context. In the ex-
ample of Fig. 5.2, a sentence right before or right after a S2R sentence is more likely
to be a S2R sentence than the others. In addition, sentences that follow the text
indicating steps to reproduce (e.g., a word “steps”) has a higher change to be S2R.
Also, sentences that begin with listing symbols (e.g., bullet points, numbers) tend to
be S2R. The crash sentences may also depend with the adjacent context, especially
in the java error message written in multiple adjacent sentences.

Figure 6.5: The convolutional neural network extracts sentence features from
each word. The word embedding vector are per-trained through word2vec.

Given the unique characteristics, we need to build a model that is more suitable
to handle the text classification program for detecting S2R and crash sentences in a
bug report. To do this, ReCDroid+ first transfers a word to a word feature vector by
using word embedding method, as shown in Fig. 6.5. Next, based on the extracted
word feature vector, a CNN and max layer are used to generate a sentence feature
vector, which can be used to predict at the sentence level. Finally, we use an LSTM
to model the inter-sentence sequential dependencies and their role in the eventual
label prediction for the target sentence, as shown in Fig. 6.6. We next describe the
three steps used to detect S2R and crash sentences.

Word embedding. ReCDroid+ uses Word2vec [22] to build pre-trained word vec-
tors that are used as the input of the deep learning model. Word2vec builds word
vector space using a large corpus of text as input. Every word in the corpus will be
represented as real vector (Rd) in the word vector space. In the pre-training process,
10,899 android bug reports are crawled from GitHub and Google Code and the sen-
tences extracted by the HTML parser are fed into Word2vec. To encourage robust

69

Figure 6.6: The LSTM classifies the sentence with the dependence information
from neighbor sentences.

learning, we set the number of epochs 2 to 2000, which is empirically determined in
our evaluation.

Sentence feature vector extraction. A CNN and a maxpool layer (i.e., an output
layer in a neural network [150]) are used to extract the sentence feature vector from
the pre-trained word vectors. Fig. 6.5 shows the overview of the model used to
extract sentence feature vector. The input to the CNN model is a list of word vectors
computed by Word2Vec from each sentence and the output is a 2-D matrix, which
represents the convolutional layer with multiple filters of CNN. A max layer is used
to reduce the spatial dimension of input volume from 2-D matrix to 1-D matrix
representing a sentence feature vector, which is later used as the input to LSTM.
This sentence feature extraction model is inspired by the classical CNN sentence
classification method [16]. However, in addition to the orignal approach, we leverage
LSTM to model the dependency among sentences of bug reports.

We take the sentence ”5. Click refresh” in Fig. 6.5 as an example. After pre-
processing, the sentence is transformed into a list of tokens: {”numDot”, ”Click”,
”refresh”, ”.”}. There are three words and one punctuation in it. By applying
word2vec word embedding, each token is represented as a vector. The four vectors
from four tokens can be combined into a 2-D matrix with 4 rows. Next, the CNN
model processed this 2-D matrix and output an 2-D matrix as the convolution result
to the max layer. Finally, the max layer reduce it to a 1-D matrix as the sentence
feature vector of the original sentence ”5. Click refresh”.

Sentece dependence modeling. ReCDroid+ uses an LSTM to model sentence
dependence, as shown in Fig. 6.6. The insight is that the non-target sentences with
shorter distance to the target sentence are more likely to be an S2R or crash sentence.
In each step, the LSTM learns what to omit and what to retain from the previous

2The number of epochs is a hyper-parameter that defines the number of times the learning
algorithm will iterate through the entire training dataset [149]

70

inputs of the input sequence. Information from sentences that are farther away from
the target sentence is less likely to be retained when compared to those that are
closer to it. [151]. ReCDroid+’s LSTM model orders the non-target sentences by
their distances to the target sentence. By default, ReCDroid+ selects four neighbor
sentences as input to the LSTM model.

In the Figure 5, the target sentence and its four neighbor sentences are represented
as {senb2 , senb1 , sentarget, sena1 , sena2}, where sentarget is the target sentence, senb2
and senb1 are the second and first sentences right before sentarget, and sena1 , sena2
are the first and second sentences right after sentarget. When there are no sentences
before or after the target sentence, i,e., the dependence sentences are missing, we use
an all zero padding vector to represent the missing dependence sentence feature.

Following the idea of Named Entity Recognition(NER) [152], The well-known
dropout method is used to prevent overfitting of the LSTM model [153]. The linear
layer followed by the softmax layer decodes the label of each target sentence. The
last cell used as input to the LSTM model is the target sentence’s feature. This cell
outputs the feature involving sentence dependence information to the dropout, linear,
and softmax layer. The final output is the decoded label. If the output >= 0.5, the
target sentence is an S2R (label = 1), otherwise, it is not (label = 0).

6.3.1.3 Policy based S2R Sentences Selection

The extracted S2R sentences by the deep learning model may not be ready to use
immediately because of the potential high false positive and false negative rates. A
false positive occurs when ReCDroid+ mistakenly labels a non-S2R sentence as a
S2R sentence, which may bring noises to the exploration. A false negative indicates
an S2R sentence is identified as not-S2R, which may cause ReCDroid+ to fail to
reproduce the crash due to a missing reproducing step. The deep learning model
may also output duplicated S2R sentences. For example, the same reproducing step
may be mentioned multiple times in the report. Such duplicate S2R sentences may
misguide bug reproduction.

To address the above challenges, we designed a set of S2R refining rules to refine
the S2R labels of the bug report sentences. The input to the refining rules are the
whole bug report, as well as the S2R sentences output by the the deep model. The
refining rules may extract additional sentences from the bug report as S2R to handle
the model’s false negatives, or eliminate certain S2R sentences identified as positive
by the model to address its false positives. The final output of S2R after applying
the refining rules is denoted as S2Rr.

Table 6.1 lists the eleven rules, their description, and the rationale behind each
rule. In the equation representation of each rule, “cmti” suggests sentences in the ith

comment,“M()” suggests the S2R extraction deep learning model, “title” suggests
the title of a bug report. For example, by applying the first rule, among all labeled
S2R sentences, only the ones in the comment containing the most number of S2R
sentences are used for bug reproduction.

ReCDroid+ applies one rule at a time for reproducing a crash. If a rule does not
take effect, it will be ignored and ReCDroid+ will move to the next rule. For example,

71

Table 6.1: S2R Refining Rules

ID Rule Description Rationale

1
i = arg maxi len(M(cmti))
S2Rr = M(cmti)

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract all S2R from cmti.

The comment with the most
extracted S2R sentences is likely
to describe S2R.

2
i = arg maxi len(M(cmti))
S2Rr = extra1Neib(M(cmti), cmti))

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract neighboring sentences
of the S2R extracted from cmti.

S2R sentences may come from
cmti’s neighboring sentences.

3
i = arg maxi len(M(cmti))
S2Rr = extra2Neib(M(cmti), cmti))

(1) Find the comment cmti with
the most extracted S2R sentences.
(2) Extract two neighboring sentences
of the S2R extracted from cmti.

To deal with false negatives.

4
i = arg maxi len(M(cmti))
S2Rr = cmti

(1) find the comment cmti with
the most extracted S2R sentences.
(2) Use all sentences in cmti as S2R.

To deal with false negatives.

5 S2Rr = cmt[0] Use the first comment as S2R.
Reporter tends to report S2R
in the first comment.

6
i = arg maxi len(cmti)
S2Rr = cmti

Use the comment with the largest
number of sentences as S2R.

This comment may contain more
information than others.

7 S2Rr = title Use title as S2R.
Reporters may write S2R on the
title of the bug report.

8 S2Rr =
∑

i cmti Use all comments as S2R.
S2R may spread across
multiple comments.

9 S2Rr =
∑

i cmti + title Use all texts of the bug report as S2R. To deal with false negative.

10
S2Rr = title
if len(M(title)) > 0

Use the title only when it is an
extracted S2R sentence.

Similar to rule 7, but it saves time
when the title is not S2R.

11

sentIndex, linei =
findF irst(”toreproduce”, line)

S2Rr = extafter(extra2Neib(
M(linei), linei)), sentIndex)

(1) Find the text line linei containing
“to reproduce”.
(2) Use the two neighboring sentences
from extracted S2R right after linei.

Sentences after to reproduce” is
likely to be S2R.
This rule reduces duplicated S2R.

when applying rule 11, if the bug report does not have any ”to produce” text, this
rule will be ignored. In the optimum scenario, developers may use multiple machines
(e.g., devices, VMs) to reproduce the same crash in parallel, where each machine is
applied a different rule. The reproduction process terminates if at least one device
successfully reproduces the crash or a timeout occurs. However, in the cases where
only limited machines are available, ReCDroid+ needs to decide the order of rules to
be applied. For example, if a rule does not take effect or fails to reproduce the crash,
ReCDroid+ will decide which rule to apply next. In this case, the choice of rule order
may substantially affect how much time it takes to reproduce a crash.

ReCDroid+ employs a clustering-based prioritization strategy to prioritize rules
in terms of their likelihood of successfully reproducing crashes in a timely manner.
The clustering-based strategy considers the relationships among different rules. Our
assumption is that if multiple rules have similar effects in reproducing the same crash,
i.e., successfully reproduce the same crash in a similar amount of time, they tend to
expose similar behaviors. Hence such rules ought to belong to the same cluster.

The clustering algorithm is based on the dataset of historical bug reports used for
reproducing crashes. Each bug report in the dataset is recorded as whether it was
successfully reproduced and time cost for reproducing it on each refining rule. Each
rule is associated with a vector, where each element in the vector is associated with
a bug report, indicating the time spent (in seconds) on reproducing the bug report.
The length of the vector is equal to the number of bug reports in the dataset. Given
a rule, if the bug report failed to reproduce the crash, the element associated with

72

the bug report is represented as a large negative number (i.e., -1000), which is used
to distinguish from the successful cases .

We use mean-shift [137], an unsupervised clustering algorithm to cluster the eleven
vectors. Mean-shift is a centroid-based clustering algorithm. Within a given region
in a coordinate system, it updates candidates for centroids to be the mean of the
points. While other clustering algorithms, such as k-mean can also be used, we found
that mean-shift performed better in our evaluation.

The algorithm clusters the rules into different groups. Rules in one group share
similar behaviors. Specifically, ReCDroid+ iterates through each group. It selects
and removes the rule with the lowest reproducing time in each group. The selected
rules are then sorted from lowest reproducing time to the highest reproducing time
and added to a list L. The rationale is that rules in the same group tend to have same
capability in reproducing crashes. This process continues until all rules are removed
from the groups. During the crash reproducing process, a rule is iteratively removed
from the head of the list L and used to extract S2Rs until the crash is successfully
reproduced.

6.4 S2Rminer Evaluation

To evaluate S2Rminer, we consider two research questions:

RQ1: What is the performance of S2Rminer in extracting S2R from bug reports?

RQ2: Which types of text features has the best performance in extracting S2R from
bug reports?

RQ1 lets us evaluate the effectiveness of S2Rminer in extracting S2R. RQ2 lets
us investigate how different types of text features influence of the performance of
S2Rminer.

6.4.1 Datasets

We evaluated S2Rminer on bug reports from GitHub [12] and Google Code [118].
To prepare the training set, we randomly crawled 500 bug reports from GitHub and
500 reports from Google Code. We hired two undergraduate students to label the
sentences of each bug report as S2R and non-S2R. During the labeling process, the
inspector read the reports with sufficient details in the bug descriptions to identify
S2R sentences. To ensure the correctness of our results, the manual inspections were
performed independently by the two undergraduate students. Any time there was
dissension, the authors and the inspectors discussed to reach a consensus.

We randomly divided the 500 bug reports from both datasets into two sets — 400
for training 100 for testing. Each bug report contains one or more sentences, which
are the instances for building machine learning models.

6.4.2 Experiment Design

The experiment was conducted on a physical x86 machine running with Ubuntu
14.04 installed. The NLP techniques of S2Rminer was implemented by the spaCy

73

Table 6.2: Types of Text Features

No NLP techniques only use original words as features
Stem(1 gram) only stem of the word as features
Stem(3 gram) only stem of the word but consider 3 gram relationship
Stem(3 gram)+pos combine stem and part of speech as features
Stem(3 gram)+dep combine stem and dependency as features
Stem(3 gram)+pos+dep combine three of them as features
(Stem+pos+dep)(3 gram) add 3 gram relationship to all of features

dependency parser [143]. The classifier was implemented by Scikit-Learn [137].

6.4.2.1 Performance Metrics.

We chose performance metrics allowing us to answer each of our two research ques-
tions. Specifically, we employ accuracy, precision, recall, and F1-measure. A sentence
can be classified as: S2R when it is truly a S2R sentence (true positive, TP); it can
be classified as a S2R sentence when it is actually not (false positive, FP); it can be
classified as a non-S2R sentence when it is actually a S2R sentence (false negative,
FN); or it can be correctly classified as a non-S2R sentence (true negative, TN).

• Accuracy: the number of instances correctly classified over the total number
of instances.

Accuracy = TP+TN
TP+FP+FN+TN

• Precision: the number of instances correctly classified as S2R over the number
of all instances classified as S2R.

P = TP
TP+FP

• Recall: the number of instances correctly classified as S2R over the total num-
ber of S2R instances.

R = TP
TP+FN

• F-measure: a composite measure of precision and recall for buggy instances.

F (b) = 2∗P∗R
P+R

6.4.2.2 Combinations of Different Text Features.

RQ2 aims to evaluate how S2Rminer performs when using the combinations of dif-
ferent types of text features. Table 6.2 shows the features used for evaluation.

74

6.4.3 Threats to Validity

The primary threat to external validity for this study involves the representativeness
of our subjects and bug reports. Other subjects may exhibit different behaviors.
Data recorded in bug tracking systems can have a systematic bias relative to the full
population of bug reports [154] and can be incomplete or incorrect [155]. However, we
do reduce this threat to some extent by using two well studied open source projects
and bug sources for our study. We cannot claim that our results can be generalized
to all systems of all domains though.

The primary threat to internal validity involves the use of manual inspection to
identify the S2R sentences To minimize the risk of incorrect results given by manual
inspection, the sentences are labeled independently by two people.

The primary threat to construct validity involves the dataset and metrics used
in the study. To mitigate this threat, we used bug reports from two bug tracking
systems, which are publicly available and generally well understood. We also used
the well known, accepted, and validated measures of accuracy, recall, precision, and
F-measure.

6.5 S2Rminer Results and Analysis

Table 6.3 and Table 6.4 summarizes the results of the two datasets.

6.5.1 RQ1: Performance of S2Rminer.

Table 6.3 and Table 6.4 show that S2Rminer is able to extract S2R from bug reports
in GitHub and Google Code. The accuracy is above 0.85 for GitHub and above 0.92
for Google code. Regarding the precision and recall, the best F-score is above 0.6 for
both Github and Google code. We consider F-measures over 0.6 to be good [156].

In both bug tracking systems, the precision scores are better than the scores of
recall. We analyzed the results and found that the low recall could be due to 1) the
small training set; 2) incorrect labels. As part of the future, we intend to expand the
training set and perform more robust labeling work.

In summary, the above results imply that S2Rminer is effective at extracting S2R.

6.5.2 RQ2: Comparison of Different Types of Text Features.

As we can see from the two tables, comparing the text feature without using NLP
technique (Fn) with the other feature combinations in the GitHub dataset, Fn per-
formed the worst. However, this is not true in the Google Code dataset. When
comparing different feature combinations with NLP applied, the dependency parsing
feature type slightly improved the performance in terms of F-measures.

Overall, these results imply that the the stemming and dependency parsing feature
types can potentially improve the performance of S2Rminer.

75

Table 6.3: GitHub Result

GitHub Result TP TN FP FN Accuracy Precision Recall F-score
No NLP techniques 79 612 33 84 0.85 0.69 0.47 0.56

Stem(1 gram) 99 596 49 69 0.86 0.66 0.62 0.64
Stem(3 gram) 88 612 33 71 0.87 0.72 0.55 0.63

Stem(3 gram)+pos 94 605 40 65 0.86 0.70 0.59 0.64
Stem(3 gram)+dep 94 609 36 65 0.87 0.72 0.59 0.65

Stem(3 gram)+pos+dep 90 607 38 69 0.86 0.70 0.57 0.63
(Stem+pos+dep)(3 gram) 87 605 40 72 0.86 0.69 0.55 0.61

Table 6.4: Google Code Result

Google Result TP TN FP FN Accuracy Precision Recall F-score
No NLP techniques 40 516 13 32 0.92 0.75 0.56 0.64

Stem(1 gram) 44 507 22 28 0.92 0.67 0.61 0.64
Stem(3 gram) 38 519 10 34 0.93 0.79 0.53 0.63

Stem(3 gram)+pos 36 518 11 36 0.92 0.77 0.5 0.61
Stem(3 gram)+dep 39 520 9 33 0.93 0.81 0.54 0.65

Stem(3 gram)+pos+dep 40 517 12 32 0.93 0.77 0.56 0.65
(Stem+pos+dep)(3 gram) 36 518 11 36 0.92 0.76 0.5 0.61

6.6 ReCDroid+ Evaluation

To evaluate ReCDroid+, we consider four research questions:

RQ1: How effective and efficient is ReCDroid+ at reproducing crashes in bug re-
ports?

RQ2: How effective and efficient is ReCDroid+ at extracting S2R sentences and
crash sentences?

RQ3: To what extent do the NLP techniques in ReCDroid+ affect its effectiveness
and efficiency?

RQ4: Does ReCDroid+ benefit developers compared to manual reproduction?

RQ5: Can ReCDroid+ reproduce crashes from different levels of low-quality bug
reports and bug reports written by other reporters?

6.6.1 Datasets

We need to prepare datasets for evaluating our approach. To avoid overfitting, we
do not consider the 813 Android bug reports that we used to identify the grammar
patterns. Instead, we randomly crawled an additional 360 bug reports containing the
keywords “crash” and “exception” from GitHub. We next included all 15 bug reports
from the FUSION paper [82] and 25 bug reports from a recent paper on translating
Android bug reports into test cases [83]. FUSION considers the quality of these bug
reports as low, so we aim to evaluate whether ReCDroid+ is capable of handling
low-quality bug reports.

76

We then manually filtered the 400 collected bug reports to get the final set that
can be used in our experiments. This filtering was performed independently by three
graduate students, who have 2-4 years of industrial software development experience.
We first filtered bug reports involving actual app crashes, because ReCDroid+ focuses
on crash failures. This yielded 320 bug reports. We then filtered bug reports that
could be reproduced manually by at least one inspector, because some bugs could not
be reproduced due to lack of apks, failed-to-compile apks, environment issues, and
other unknown issues. These bug reports cannot assess ReCDroid+ itself and thus
was excluded from the dataset. In total, we evaluated ReCDroid+ on 66 bug reports
from 37 apks. The cost of the manual process is quite high: the preparation of the
dataset required around 500 hours of researcher time.

To train the deep learning model for extracting S2R and crash sentences, we
crawled 3,233 bug reports from Github and 7,666 bug reports from Google Code and
randomly selected 4,000 bug reports to build the dataset. These bug reports are
different from the 66 bug reports in the testing set. During the manual inspection,
we read the reports with sufficient details in the bug descriptions and examined the
discussions posted by commentators to decide if a sentence is a S2R or not. To
ensure the correctness of our results, the manual labeling process was performed
independently by two graduate students. Any time there was dissension, a third
graduate student was involved and they discussed until reaching a consensus. Note
that we spent about 20 hours training the three students on how to analyze the bug
reports and label S2R sentences. To make sure they understood the process, we asked
the students to start with a small number of bug reports from the dataset.

6.6.2 Implementation

We conducted our experiment on a physical x86 machine running with Ubuntu 16.04.
The NLP techniques of ReCDroid+ was implemented based on the spaCy dependency
parser [121]. The dynamic exploration component was implemented on top of two
execution engines, Robotium [55] and UI Automator [112], for handling apps compiled
by a wide range of Android SDK versions. An apk compiled by a lower version
Android SDK (< 6.0) can be handled by Robotium and that by a higher version
SDK (> 5.0) can be handled by UI Automator.

6.6.3 Experiment Design

6.6.3.1 RQ1: Effectiveness and Efficiency of ReCDroid+

We measure the effectiveness and efficiency of ReCDroid+ in terms of whether it can
successfully reproduce crashes described in the bug reports within a time limit (i.e.,
3 hours) and efficiency in terms of the time it took to reproduce each crash.

77

6.6.3.2 RQ2: Effectiveness and Efficiency of ReCDroid+ in extracting
S2R and crash sentences

We performed a five cross-validation on the 4000 labeled bug reports. Of these 5
folds, 4 folds are used to train the deep learning model while the 5th fold is used
to evaluate the performance of the model. We used precision, recall, and F-measure
to evaluate the effectiveness of ReCDroid+ in extracting S2R and crash sentences.
We consider F-measures over 0.7 to be good [42]. When measuring the efficiency, we
calculated the time (in seconds) spent on the extraction.

In addition, we evaluated the performance refining rules, i.e., whether they can
increase the success rate of crash reproduction. Specifically, we calculated the time
of crash reproduction with the refining rules. The refining rules were applied to
ReCDroid+ one by one with the clustering-based prioritization strategy described
in Section 6.3.1.3. We showed the results on reproducing success and time on each
single refining rule.

6.6.3.3 RQ3: The Role of NLP in ReCDroid+

Within ReCDroid+, we assess whether the use of the NLP techniques can affect
ReCDroid+’s effectiveness and efficiency. We consider two “vanilla” versions of ReC-
Droid+. The first version, ReCDroid+N , is used to evaluate the effects of using
grammar patterns. ReCDroid+N does not apply grammar patterns, but only en-
ables the second phase on dynamic matching. The second version is ReCDroid+D,
which evaluates the effects of applying both grammar patterns and dynamic match-
ing. The comparison between ReCDroid+D and ReCDroid+N can assess the effects of
using dynamic matching. ReCDroid+D is a non-guided systematic GUI exploration
technique (discussed in Section 6.8). The time limits for running ReCDroid+N and
ReCDroid+D were also set to three hours.

6.6.3.4 RQ4: Usefulness of ReCDroid+

The goal of RQ4 is to evaluate the experience developer had using ReCDroid+ to
reproduce bugs compared to using manual reproduction. We recruited 12 graduate
students as the participants. All had at least 6-month Android development experi-
ence and three were real Android developers working in companies for 3 years before
entering graduate school. Each participant read the 54 bug reports and tried to man-
ually reproduce the crashes. All apps were preinstalled. For each bug report, the 12
participants timed how long it took for them to understand the bug report and repro-
duce the bug. If a participant was not able to reproduce a bug after 30 minutes, that
bug was marked as not reproduced. After the participants attempted to reproduce
all bugs, they were asked to use ReCDroid+ on the 54 bug reports. This was followed
by a survey question: would you prefer to use ReCDroid+ to reproduce bugs from
bug reports over manual reproduction? Note that to avoid bias, the participants were
not aware of the purpose of this user study.

78

6.6.3.5 RQ5: Handling Low-Quality Bug Reports

The goal of RQ5 is to assess the ability of ReCDroid+ to handle different levels of
low-quality bug reports. Since judging the quality of a bug report is often subjective,
we created low-quality bug reports by randomly removing a set of words from the
original bug reports. Some words in the original bug reports are not related to S2R or
exist in duplicated S2R, so removing them may not reduce the quality of bug reports
. Therefore, we focused on removing words from texts containing unduplicated S2R
sentences.

Specifically, we considered three variations for each of the 42 bug report reports
reproduced by ReCDroid+ in order to mimic different levels of quality: 1) removing
10% of the words, 2) removing 20% of the words, and 3) removing 50% of the words.
Due to the randomization of removing words from bug reports, we repeated the
removal operation five times for each bug report across the three quality levels. We
evaluate the effectiveness and efficiency of ReCDroid+ in reproducing crashes in the
630 (42× 3× 5) bug reports. Again, the time limit was set to 3 hours.

6.6.3.6 RQ6: Handling Bug Reports Generated by Different Users

Given a bug, different reporters may describe it in different language styles. To assess
the ability of ReCDroid+ to handle bug reports written by different users, we recruited
another four participants to write bug reports using a template similar to Figure 5.2
for the 42 crashes reproduced by ReCDroid+. To avoid introducing bias from the
original bug reports, we recorded videos of the steps needed to manually reproduce
the crash for every bug report. After viewing the video, each participant was asked
to write bug reports for the 42 crashes. In total, the participants constructed 168
bug reports. We then evaluated the effectiveness and efficiency of ReCDroid+ in
reproducing the 168 bug reports.

6.7 ReCDroid+ Results and Analysis

The results of applying ReCDroid+, ReCDroid+N , and ReCDroid+D in 54 out of
the 66 bug reports are summarized in Table 6.5. We did not include the remaining
12 crashes because they failed to be reproduced due to the technical limitations of
the two execution engines rather than ReCDroid+. For example, Robotium failed
to click certain buttons (e.g., [130]). Columns 2 the number of reproducing steps in
each bug report. Columns 3–20 show whether the technique successfully reproduced
the crash, the size of the event sequence, and the time each technique took.

6.7.1 RQ1: Effectiveness and Efficiency of ReCDroid+

As Table 6.5 shows, ReCDroid+ reproduced 42 out of 54 crashes; a success rate of
77.7%. The time required to reproduce the crashes ranged from 16 to 7,331 seconds
with an average time of 466.4 seconds. All four crash bug reports (marked with ?)
from the FUSION paper [82] and nine bug reports (marked with ∗) from Yakusu [83]
were successfully reproduced. The results indicate that ReCDroid+ is effective in

79

Table 6.5: RQ1,RQ4,RQ5: Different Techniques

#BR. # steps Reproduce Success # Event in Sequence Time (Seconds) User
RD RDN RDD Sap. St. Mon. RD RDN RDD Sap. St. Mon. RD RDN RDD Sap. St. Mon. (12)

newsblur-1053 5 Y Y Y Y Y N 7 7 7 360 23 - 47 64 132.3 483 10 > 12
markor-194 3 Y N N N N N 4 - - - - - 1222 > > > > > 12
birthdroid-13 1 Y Y Y N Y N 8 8 8 - 10 - 351 351 1089 > 6600 > 9
car-report-43? 4 Y Y Y N N N 18 18 16 - - - 600 602 101 > > > 8
opensudoku-173 8 Y N N N N N 9 - - - - - 633 > > > > > 10
acv-11? 5 Y Y Y N N N 8 8 5 - - - 479 467 2060 > > > 7
acv-12 4 Y Y Y N N N 4 4 4 - - - 107 108 960 > > > 12
anymemo-18 1 Y Y Y Y Y Y 3 3 3 204 6 7900 150 148 798 245 282 417 11
anymemo-422 3 Y N N N N N 2 - - - - - 257 > > > > > 12
anymemo-440 4 Y Y N N N N 8 8 - - - - 1168 1185 > > > > 12
notepad-23? 3 Y Y Y N N N 6 6 6 - - - 186 194 1731 > > > 11
olam-2? 1 Y N N Y N N 2 - - 354 - - 36 > > 122 > > 7
olam-1 1 Y N N N N N 2 - - - - - 19 > > > > > 11
FastAdapter-394 1 Y Y Y Y Y Y 1 1 1 364 13 6900 26 23 445 123 1860 385 9
LibreNews-22 4 Y Y Y Y Y Y 6 6 5 394 198 30700 126 111 729 1203 120 1729 12
LibreNews-23 6 Y N N N Y Y 3 - - - 516 46600 60 > > > 480 2669 12
LibreNews-27 4 Y Y Y Y Y Y 6 6 5 394 198 30700 116 132 1075 1203 120 1729 11
SMSSync-464 2 Y Y Y N Y N 4 4 4 - 12 - 787 740 5194 > 2258 > 10
transistor-63 5 Y Y Y Y N Y 3 3 3 283 - 1200 28 27 65 120 > 74 12
zom-271 5 Y Y Y Y Y Y 5 5 5 273 2230 1100 75 87 508 72 1800 74 11
PixART-125 3 Y Y Y N N Y 5 5 5 - - 58000 581 607 1032 > > 3068 12
PixART-127∗ 3 Y Y Y N N N 5 5 5 - - - 146 146 992 > > > 12
ScreenCam-25∗ 3 Y Y N - N Y 6 6 - - - 14586 787 795 > - > 3600 11
ventriloid-1 3 Y N N N N Y 9 - - - - 700 56 > > > > 36 11
Nextcloud-487 1 Y Y Y N N N 2 2 2 - - - 69 62 944 > > > 11
obdreader-22 4 Y Y N N N N 8 8 - - - - 912 929 > > > > 12
dagger-46∗ 1 Y Y Y - Y Y 1 1 1 - 419 2500 18 18 21 - 420 1155 12
ODK-1402 2 Y N N N N N 2 - - - - - 73 > > > > > 10
ODK-2075 2 Y Y Y N N N 3 3 3 - - - 91 90 2249 > > > 12
ODK-2086 2 Y Y Y N N N 3 3 3 - - - 101 95 2982 > > > 12
ODK-2191 1 Y Y Y N N N 3 3 3 - - - 231 227 2212 > > > 12
ODK-2525 2 Y Y Y - N N 2 2 2 - - - 47 55 191 - > > 7
ODK-2601 2 Y Y N - N N 3 4 - - - - 193 190 > - > > 10
k9-3255 2 Y N N N N N 4 - - - - - 7331 > > > > > 12
k9-2612∗ 4 Y Y Y - N N 4 4 2 - - - 179 180 5731 - > > 10
k9-2019∗ 1 Y Y Y - N N 3 3 3 - - - 57 65 1352 - > > 11
Anki-4586∗ 5 Y Y N - N N 7 7 - - - - 99 100 > - > > 12
TagMo-12∗ 1 Y Y Y - N N 1 1 2 - - - 16 15 30 - > > 12
FlashCards-13∗ 4 Y Y Y - N N 3 3 3 - - - 68 70 94 - > > 12
Gnu-596 2 Y N N - N N 1 - - - - - 18 > > - > > 12
Gnu-633 2 Y N N - N Y 4 - - - - 40400 72 > > - > 1976 12
TimeTracker-35 2 Y Y Y - N Y 4 4 4 - - 126500 1974 1963 857 - > 6989 10
TimeTracker-10 1 N N N - N N - - - - - - > > > - > > 10
TimeTracker-138 4 N N N - N N - - - - - - > > > - > > 10
FastAdaptor-113 2 N N N - N N - - - - - - > > > - > > 7
Memento-169 3 N N N N N N - - - - - - > > > > > > 2
ScreenCam-32 1 N N N N N N - - - - - - > > > > > > 10
ODK-1796 2 N N N Y N N - - - 254 - - > > > 138 > > 4
AIMSICD-816 3 N N N N N N - - - - - - > > > > > > 1
materialistic-76 6 N N N N N N - - - - - - > > > > > > 5
Gnu-663 2 N N N - N N - - - - - - > > > - > > 11
Fdroid-1821 5 N N N - N N - - - - - - > > > - > > 10
Shortyz-135 1 N N N - N N - - - - - - > > > - > > 5
PdfViewer-33 4 N N N - N N - - - - - - > > > - > > 5

total 42 31 26 8 10 13

RD.= ReCDroid+. “X”=Crash reproduced. “N”=Crash not reproduced. “-”=Not applicable.
“>”=exceeded time limit (3 hours).

80

https://github.com/samuelclay/NewsBlur/issues/1053
https://github.com/gsantner/markor/issues/194
https://github.com/rigid/Birthdroid/issues/13
https://bitbucket.org/frigus02/car-report/issues/43/infinity-100-km-and-plot-deathlock
https://code.google.com/archive/p/opensudoku-android/issues/173
https://github.com/robotmedia/droid-comic-viewer/issues/11
https://github.com/robotmedia/droid-comic-viewer/issues/12
https://code.google.com/archive/p/anymemo/issues/18
https://github.com/helloworld1/AnyMemo/issues/422
https://github.com/helloworld1/AnyMemo/issues/440
https://code.google.com/archive/p/banderlabs/issues/23
https://github.com/vishnus/Olam/issues/2
https://github.com/vishnus/Olam/issues/1
https://github.com/mikepenz/FastAdapter/issues/394
https://github.com/milesmcc/LibreNews-Android/issues/22
https://github.com/milesmcc/LibreNews-Android/issues/23
https://github.com/milesmcc/LibreNews-Android/issues/27
https://github.com/ushahidi/SMSSync/issues/464
https://github.com/y20k/transistor/issues/63
https://github.com/zom/Zom-Android/issues/275
https://github.com/kriztan/Pix-Art-Messenger/issues/125
https://github.com/kriztan/Pix-Art-Messenger/issues/127
https://github.com/vijai1996/screenrecorder/issues/25
https://code.google.com/archive/p/ventriloid/issues/1
https://github.com/nextcloud/news-android/issues/487
https://github.com/pires/android-obd-reader/issues/22
https://github.com/vestrel00/android-dagger-butterknife-mvp/issues/46
https://github.com/opendatakit/collect/issues/1402
https://github.com/opendatakit/collect/issues/2075
https://github.com/opendatakit/collect/issues/2086
https://github.com/opendatakit/collect/issues/2191
https://github.com/opendatakit/collect/issues/2525
https://github.com/opendatakit/collect/issues/2601
https://github.com/k9mail/k-9/issues/3255
https://github.com/k9mail/k-9/issues/2612
https://github.com/k9mail/k-9/issues/2019
https://github.com/ankidroid/Anki-Android/issues/4586
https://github.com/HiddenRamblings/TagMo/issues/12
https://github.com/ASU-CodeDevils/FlashCards/issues/13
https://github.com/codinguser/gnucash-android/issues/596
https://github.com/codinguser/gnucash-android/issues/633
https://github.com/netmackan/ATimeTracker/issues/35
https://github.com/netmackan/ATimeTracker/issues/10
https://github.com/netmackan/ATimeTracker/issues/138
https://github.com/mikepenz/FastAdapter/issues/113
https://github.com/alexstyl/Memento-Calendar/issues/169
https://github.com/vijai1996/screenrecorder/issues/32
https://github.com/opendatakit/collect/issues/1796
https://github.com/CellularPrivacy/Android-IMSI-Catcher-Detector/issues/816
https://github.com/hidroh/materialistic/issues/1067
https://github.com/codinguser/gnucash-android/issues/663
https://gitlab.com/fdroid/fdroidclient/issues/1821
https://github.com/kebernet/shortyz/issues/135
https://github.com/JavaCafe01/PdfViewer/issues/33

reproducing crashes from bug reports. The 12 cases where ReCDroid+ failed will be
discussed in Section 6.8.

For the six cases where ReCDroid+ failed, we found that the failures were due
to the following reasons. First, ReCDroid+ does not support scroll or swipe action
(FastList-113, materialistic-1067, AIMSICD-816). Second, ReCDroid+ cannot deal
with non-deterministic behaviors of the apps (Memento-169, Shortyz-135). Third,
ReCDroid+ cannot handle time-sensitive crashes. To trigger the crash for ODK-1796
(a concurrency bug), requires waiting on one screen for seconds and then clicking the
next screen at a very fast speed. The limitations are summarized in Section 6.8.

6.7.2 RQ2: Effectiveness and Efficiency of Extracting S2R and Crash
Sentences

When performing cross-validation on the 4,000 labeled bug reports, for S2R extrac-
tion, the precision, recall, and F1 score is 0.683, 0.722, and 0.702, respectively. For
crash sentence extraction, the precision, recall, and F1 score is 0.756, 0.849, and 0.789,
respectively. When using all 4,000 bug reports as the training set and the 52 bug
reports of the subject apps as the testing set, the precision, recall, and F1 scores of
S2R sentences extraction are 0.852, 0.821, and 0.836. The crash sentence extraction
results are 0.932, 0.835, and 0.88. ReCDroid+’ reproducing dataset is more accurate
than the random crawled dataset, because bug reports in the reproducing data set
is manually filtered to ensure they are crash reports. These bug reports may have
better written quality than the random crawled dataset, so it is easy to extract the
needed information by the deep learning model.

ReCDroid+ failed to identify crash sentences in two apps: car-report-43 and obd-
22. In car-report-43, the crash sentence contains a keyword “deadlock”, which is
uncommon in the training set (i.e., 4,000 bug reports). In obd-22, the crash sentence
a word “live”, which prevents the deep learning model from correctly labeling it as a
crash sentence even if this sentence contains the word “crash”. We hypothesize that a
larger dataset may help to mitigate the inaccuracy problem. As a result, ReCDroid+
failed to automatically reproduce the crashes for these two apps due to missing oracles.
Nevertheless, if the crashes sentences were correctly labeled, ReCDroid+ successfully
reproduced them

Regarding efficiency, ReCDroid+ spent four hours on training the deep learning
model using the 4,000 bug reports. The model only needs to be trained once. When
applied the model to our reproducing dataset, it took less than five seconds.

The influences of refining rules. We evaluated the influences of the 12 refining
rules on the effectiveness and efficiency of crash reproduction. As in Table 6.6 shows,
for each bug report, there exists at least one rule that can successfully reproduce
it. On the other hand, none of the rules were able to reproduce all bug reports. In
summary, ReCDroid+ requires at least three rules to successfully reproduce all bug
reports.

Table 6.6 shows the reproducing times when applying different rules for each bug
report. The times vary significantly. For example, the crash in Nexcloud-487 was
reproduced in 47 seconds with rule-1, but it took 67 minutes to reproduce the crash

81

Table 6.6: RQ3: Different policies

#BR. Time (sec)
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

newsblur-1053 47 266 163 155 127 127 126 153 160 - -
markor-194 1222 1250 1243 1253 1229 1230 > 1238 1191 - -
birthdroid-13 - - - - 83 84 351 83 351 - -
car-report-43 600 593 592 611 271 260 259 594 593 - -
opensudoku-173 633 556 577 582 571 541 > 686 602 > -
acv-11 479 512 499 512 516 502 1512 525 502 1397 -
acv-12 107 107 107 123 108 110 294 111 95 - 110
anymemo-18 150 145 144 143 39 152 154 42 42 - -
anymemo-422 257 258 259 250 250 250 250 249 249 250 250
anymemo-440 1168 1296 1260 2110 2060 1061 > 1059 1156 > >
notepad-23 - - - - 1497 1505 186 1497 186 186 -
olam-2 - - - - 83 N 83 N 36 79 N 36 37 -
olam-1 - - - - 86 N 84 N 18 88 N 19 - -
FastAdapter-394 26 23 23 27 27 27 495 28 27 513 -
LibreNews-22 126 112 149 152 148 151 714 150 151 - -
LibreNews-23 60 36 39 43 39 36 > 66 59 - -
LibreNews-27 116 184 182 188 187 181 768 328 294 - 71
SMSSync-464 787 810 799 815 823 743 > 728 > > 711
transistor-63 28 26 27 26 26 53 27 28 27 26 -
zom-271 75 73 74 89 90 90 392 90 89 - 73
PixART-125 581 574 578 585 584 588 1482 583 5633 1481 583
PixART-127 146 139 147 141 143 146 418 141 297 417 141
ScreenCam-25 787 724 727 724 728 775 769 953 962 791 >
ventriloid-1 56 52 54 54 54 53 > 61 54 > -
Nextcloud-487 69 4039 4039 4024 4023 4015 52 4102 4114 64 -
obdreader-22 - - - - 910 917 1119 910 912 - -
dagger-46 18 18 18 18 18 19 17 18 17 - 18
ODK-1042 73 72 72 80 73 73 81 87 76 88 78
ODK-2075 91 90 89 89 114 164 243 90 89 232 116
ODK-2086 101 125 103 101 97 99 274 138 153 287 112
ODK-2191 231 225 227 228 227 225 227 229 229 227 -
ODK-2525 47 47 47 48 48 48 47 48 48 - 47
ODK-2601 193 193 192 194 193 194 4050 193 193 - 193
k9-3255 > > > > > > > > > > 131
k9-2612 179 178 178 > > > 133 63 62 134 109
k9-2019 57 53 56 53 55 65 55 1728 3055 - -
Anki-4586 99 96 96 96 > 100 243 121 96 306 115
TagMo-12 16 13 13 13 13 13 13 14 14 13 -
FlashCards-13 68 67 68 67 67 67 67 67 69 - -
Gnu-596 18 21 23 29 30 21 19 20 17 19 18
Gnu-633 72 68 67 68 67 66 138 67 67 138 68
timeTracker-35 1974 1973 1973 1974 1974 2786 418 2788 326 418 -

“P1”=Policy 1. “N”=Crash not reproduced. “-”=Not applicable(empty extraction under the policy).
“>”=Crash not reproduced in exceeded time limit (3 hours).

82

with rule-2, rule-3, and rule-4. On the other hand, rules 1–4 shared similar costs to
reproduce other bug reports. Also, one rule may cost much less on one bug report
than that is on another. For example, rule-7 cost less time on timeTrack-35 than
rule-1, but the situation is opposite on ODK-2601.

We also evaluated our clustering algorithm in generating the rule sequence. We
used a random generation method (i.e., generated a sequence randomly) as a baseline.
Specifically, we split the 42 successfully reproduced bug reports into training set and
testing set. In each iteration, we randomly selected 32 bug reports as training set
and the other 10 bug reports as testing set, and then apply the clustering algorithm
and the random method, respectively. The total number of iterations is set to 1,000.
The results suggest that on average, We used U-test [157] to measure the significant
difference between the average time cost of mean-shift and the random. The results
that, in average, mean-shift took 854 seconds to reproduce a crash, which was almost
half of time taken by random (i.e., 1594 seconds), and the difference is statistically
significant.

6.7.3 RQ3: The Role of NLP in ReCDroid+

When compared ReCDroid+ to ReCDroid+N and ReCDroid+D, ReCDroid+ success-
fully reproduced 35.4% and 57.7% more crashes than ReCDroid+N and ReCDroid+D.

For the crashes successfully reproduced by all three techniques, the size of event
sequence generated by ReCDroid+ was 0.008% smaller than ReCDroid+N and 6.3%
bigger than ReCDroid+D. Both ReCDroid+N and ReCDroid+D generated short
event sequences because like ReCDroid+, they do not backtrack. Instead, whenever
a backtrack was needed, they restarted the search from the home screen of the app
(Algorithm 2). With regards to efficiency, ReCDroid+ required 0.004% less time than
ReCDroid+N and 90.2% less than ReCDroid+D. Overall, these results indicate that
the use of NLP techniques, including both the grammar patterns and the dynamic word
matching, contributed to enhancing the effectiveness and efficiency of ReCDroid+.

We also examined the effects of false positives and false negatives reported when
applying the 22 grammar patterns to each bug report , since false positives may
misguide the search and false negatives may jeopardize the search efficiency (cer-
tain useful information is missing). In the 42 crashes successfully reproduced by
ReCDroid+, we found that all false positives were discarded during the dynamic ex-
ploration because the identified false GUI components did not match with the actual
GUI components of the apps. With regards to false negatives, we found that they
were all captured by the dynamic word matching. Therefore, the false negatives and
false positives of the grammar patterns did not negatively affect the performance of
ReCDroid+, although our results may not generalize to other apps.

6.7.4 RQ4: Usefulness of ReCDroid+

The last column of Table 6.5 shows the number of participants (out of 12) that
successfully reproduced the crashes. While all crashes were reproduced by the par-
ticipants, among all 42 crashes reproduced by ReCDroid+, 21 of them failed to be

83

reproduced by at least one participant. For the twelve bug reports that ReCDroid+
failed to reproduce, the success rate of human reproduction is also low. These results
suggest that ReCDroid+ is able to reproduce crashes that cannot be reproduced by the
developers. One reason for the failures was that developers need to manually search
for the missing steps, which can be difficult due to the large number of GUI compo-
nents. As columns 2 and 9 in Table 6.5 indicate, in 29 bug reports, the number of
described steps is smaller than the number of events actually needed for reproducing
the crashes. Another reason was because of the misunderstanding of reproducing
steps.

We also compute the time required for each participant to successfully reproduce
all 54 bug reports. The results show that the time for successful manual reproduction
ranged from 3 seconds to 1,631 seconds, with an average 170.5 seconds — 63.4%
less than the time required for ReCDroid+ on the successfully reproduced crashes.
Such results are expected as ReCDroid+ needs to explore a number of events during
the reproduction. However, ReCDroid+ is fully automated and can thus reduce the
painstaking effort of developers in reproducing crashes. Among all 42 crashes suc-
cessfully reproduced by ReCDroid+, the reproduction time required by individual
participants ranged from 3 to 1,631 seconds.

It is worth noting that while it is possible the actual app developers could re-
produce bugs faster than ReCDroid+, ReCDroid+ can still be useful in many cases.
First, ReCDroid+ is fully automated, so developers can simply push a button and
work on other tasks instead of waiting for the results or manually reproducing crashes.
Second, ReCDroid+ can be used with a continuous integration server [131] to enable
automated and fast feedback, such that whenever a new issue is submitted, ReC-
Droid+ will automatically provide a reproducing sequence for developers. Third,
users can use ReCDroid+ to assess the quality of bug reports — a bug report may
need improvement if the crash cannot be reproduced by ReCDroid+.

The 12 participants were then asked to use ReCDroid+ and indicate their prefer-
ences for the manual vs tool-based approach. We used the scale very useful, useful,
and not useful. Our results indicated that 7 out of 12 participants found ReCDroid+
very useful and would always prefer ReCDroid+ to manual reproduction, 4 partici-
pants indicated ReCDroid+ is useful, and one participant indicated that ReCDroid+
is not useful. The participant who thought ReCDroid+ is not useful explained that,
for some simple crashes, manual reproduction is more convenient. On the other hand,
the participate agreed that ReCDroid+ is useful for handling complex apps (e.g., K-
9). The 12 participants also suggested that ReCDroid+ is useful in the following
cases: 1) bugs that require many steps to reproduce, 2) bugs that require entering
specific inputs to reproduce, and 3) bug reports that contain too much information.
The above results suggest that developers generally feel ReCDroid+ is useful for re-
producing crashes from bug reports and they prefer to use ReCDroid+ over manual
reproduction.

84

Table 6.7: RQ4: Different Quality Levels

#BR. Pure S2R sentences QL-10% (5) QL-20% (5) QL-50% (5) Re-write (4)
Events Time (sec) Success Time (sec) Success Time (sec) Success Time (sec) Success Time (sec)

newsblur-1053 7 158 5 196(102) 5 94(50) 5 136(88) 4 41(1)
markor-194 4 1181 5 1601(24) 4 1564(85) 4 1608(30) 3 1603(16)

birthdroid-13 5 107 5 159(128) 5 383(205) 5 659(185) 4 136(30)
car-report-43 16 310 5 280(3) 5 288(6) 5 286(1) 4 593(195)

opensudoku-173 9 576 5 770(458) 3 2267(1153) 3 2325(1636) 4 516(6)
acv-11 8 501 5 1077(1299) 5 1844(1448) 5 1911(1321) 3 1543(242)
acv-12 4 104 4 112(4) 1 121(-) 2 475(0) 2 78(1)

anymemo-18 3 67 5 90(49) 5 62(9) 5 1527(1009) 4 126(43)
anymemo-422 2 249 5 293(10) 5 296(6) 5 270(15) 4 255(15)
anymemo-440 8 934 3 1570(85) 3 1488(85) 0 >(-) 4 453(97)

notepad-23 6 216 5 333(167) 5 683(544) 5 920(671) 4 403(271)
olam-2 2 57 5 52(2) 4 50(1) 3 50(1) 4 56(8)
olam-1 2 35 5 27(1) 5 27(1) 3 27(1) 4 31(2)

FastAdapter-394 1 48 5 48(1) 5 455(374) 5 740(8) 3 243(308)
LibreNews-22 6 113 5 123(33) 5 176(77) 5 287(239) 4 253(282)
LibreNews-23 3 48 2 56(12) 2 62(4) 3 108(54) 4 63(10)
LibreNews-27 5 70 5 93(3) 5 88(1) 5 426(460) 4 74(4)
SMSSync-464 4 751 4 984(88) 4 1137(82) 3 1181(81) 4 2427(215)
transistor-63 3 41 5 52(21) 5 44(15) 5 52(20) 4 38(2)

zom-271 5 126 5 277(283) 5 202(74) 5 245(201) 4 185(64)
PixART-125 5 577 5 924(86) 5 1167(7) 5 1719(253) 3 1055(69)
PixART-127 5 138 5 435(337) 5 338(97) 5 803(536) 4 199(12)

ScreenCam-25 6 722 5 1545(943) 5 1261(42) 5 1265(37) 4 1158(30)
ventriloid-1 9 67 4 150(103) 4 108(83) 0 >(-) 4 56(1)

Nextcloud-487 2 63 5 310(461) 5 509(556) 5 1092(2) 4 2116(2467)
obdreader-22 8 892 5 1884(1717) 5 1862(1714) 3 1216(142) 3 976(153)

dagger-46 1 31 5 25(3) 5 24(1) 5 23(1) 4 29(4)
ODK-1042 2 72 4 74(1) 5 97(55) 2 77(4) 4 103(61)
ODK-2075 3 90 5 152(95) 5 164(60) 5 1015(1048) 3 135(73)
ODK-2086 3 90 4 644(757) 5 534(672) 5 812(989) 4 489(711)
ODK-2191 3 230 5 255(11) 5 266(14) 5 270(14) 3 135(73)
ODK-2525 2 81 5 687(136) 5 645(163) 5 448(257) 4 51(1)
ODK-2601 4 185 5 1186(1180) 4 1442(1109) 5 1871(2428) 4 271(132)

k9-3255 4 178 4 255(30) 3 487(463) 1 1022(-) 3 52(3)
k9-2612 2 103 5 152(20) 5 102(17) 5 1221(2550) 4 783(1466)
k9-2019 3 60 5 56(1) 5 55(0) 5 950(1214) 4 70(52)

Anki-4586 7 97 5 205(277) 5 275(324) 1 987(-) 4 116(1)
TagMo-12 2 15 5 14(0) 5 17(5) 5 14(0) 4 16(0)

FlashCards-13 3 64 5 140(11) 5 135(9) 5 137(10) 4 43(0)
Gnu-596 1 18 5 14(1) 4 14(0) 4 14(0) 4 15(2)
Gnu-633 3 84 5 81(2) 3 75(4) 1 142(-) 3 88(14)

timeTracker-35 4 1974 5 1276(797) 5 1032(845) 5 1484(698) 4 141(45)

6.7.4.1 RQ5: Handling Low-Quality Bug Reports

Columns 4–9 of Table 6.7 reports the reproducibility of ReCDroid+ for the bug
reports at the three different quality levels. The column success indicates the number
of mutated bug reports (out of 5) that were successfully reproduced at each quality
level. The column time indicates the average time (and the standard deviation)
required for reproducing the crash. The results show that among all 630 mutated bug
reports for the three quality levels, ReCDroid+ was able to reproduce 94.7%, 90%,
and 80% of the bug crashes, respectively. Even when 50% of the words were removed,
ReCDroid+ could still successfully reproduce 27 bug reports for all 5 crashes. The
slowdowns caused by the missing information with respect to the original bug reports
were only 1.6x, 1.9x, and 2.8x, respectively. These results suggest that ReCDroid+
can be used to effectively handle low-quality bug reports with different levels of missing
information.

85

6.7.4.2 RQ6: Handling Bug Reports Generated by Different Reporters

The last two columns of Table 6.7 report the reproducibility and cost (and standard
deviation) of ReCDroid+ for bug reports re-written by the four participants. In total,
ReCDroid+ successfully reproduced 157 out of 168 (93.4%) bug reports, with an
average time of 410 seconds — 49.4% more time than reproducing the S2R sentences
from original bug reports. In eleven cases, ReCDroid+ failed to reproduce the crash
due to the following reasons: 1) incorrect input values were provided; 2) important
steps were missing; and 3) important words were misspelled. These results suggest
that ReCDroid+ is robust in handling bug reports written by different users.

6.8 Discussion

Comparing with Android Testing Tools. As a generic GUI exploration and testing tool,
ReCDroid+D is similar to existing Android testing tools [63, 5, 135, 69, 9, 7], which
detect crashes in an unguided manner. ReCDroid+D was shown to be competitive
with Monkey [5], Sapienz [63], and the recent work Stoat [69] on our experiment
subjects. Sapienz can not work on the app which android sdk version is not Android
4.4, so ReCDroid+ only compare the android 4.4 app in our data set with Sapienz.
Specifically, as Table 6.5 shows, ReCDroid+D reproduced 31 more crashes than Stoat,
20 more crashes than Sapienz, and 28 more crashes than Monkey. For the crashes
successfully reproduced by all three techniques, the size of event sequence generated
by ReCDroid+D was 98.8% smaller than Stoat, 98.8% smaller than Sapienz, and
99.9% smaller than Monkey. With regards to efficiency, ReCDroid+D required 87.8%
less time than Stoat, 87.4% less time than Sapienz, and 87.7% less time than Monkey.

6.9 Conclusions and Future Work

We have presented ReCDroid+, an automated approach to reproducing crashes from
bug reports for Android applications. ReCDroid+ leverages natural language pro-
cessing techniques and heuristics to analyze bug reports and identify GUI events that
are necessary for crash reproduction. It then directs the exploration of the corre-
sponding app toward the extracted events to reproduce the crash. We have evaluated
ReCDroid+ on 51 bug reports from 33 Android apps and showed that it success-
fully reproduced 33 crashes; 12 fail-to-be-reproduced bug reports were due to the
limitations of the execution engines rather than ReCDroid+. A user study suggests
that ReCDroid+ reproduced 18 crashes not reproduced by at least one developer and
was preferred by developers over manual reproduction. Additional evaluation also
indicates that ReCDroid+ is robust in handling low-quality bug reports.

As future work we intend to leverage the user reviews from App store to ex-
tract additional information for helping bug reproduction. We also intend to develop
techniques to automatically extract grammar patterns from bug reports.

86

Chapter 7

Conclusion and Future Work

In this dissertation, we have presented AI-based mobile testing and bug reproducing
technologies that allow testers to automatically test mobile app and reproduce mobile
bugs from bug reports. We have introduced DinoDroid, a mobile testing tool that
utilizes AI technologies to learn to understand the text content of the android app.
It can also know how to test android applications rather than depending on heuristic
rules. We have evaluated DinoDroid on 64 apps from a widely used benchmark and
showed that DinoDroid outperforms the state-of-the-art and state-of-practice Android
GUI testing tools in both code coverage and bug detection. We have developed
another tool ReCDroid+ that is an automated approach to reproducing crashes from
bug reports for Android applications. ReCDroid+ leverages AI technology natural
language processing techniques and heuristics to analyze bug reports and identify
GUI events that are necessary for crash reproduction. ReCDroid+ can successfully
reproduce 42 bugs in 66 raw bug reports.

For future work, we intend to improve both of our existing approaches DinoDroid
and ReCDroid+. Given a test case as input, the testing tool will run the tested
software. It should have the ability to distinguish whether the running behavior of
the tested software is normal or not. Otherwise, a human should be involved in the
process to judge the behavior manually. The automatic judgment is called ”Oracle”.
Yet, automatic Oracle generation is still an open question in software testing. If it is
still an open question, the software testing can not be a whole automatic process [158].
In the current version DinoDroid and ReCDroid+, we evade the oracle generation by
only focusing on the crash problem. The crash is a kind of Oracle which can be easily
detected. I am planning to detect the bug report’s Oracle type by a machine learning
method or key work matching. If a sentence is identified as an Oracle sentence in
a bug report, this sentence will be processed by an Nlp technology part. The Nlp
technology may extract the Oracle information from a bug report into an Oracle
pattern. The Oracle pattern will be transferred to the Oracle in the test case. The
steps above combine an automatic Oracle generation method.

87

Bibliography

[1] Librenews-android issues. https://github.com/milesmcc/LibreNews-
Android/issues.

[2] Android activity lifecycle. https://developer.android.com/guide/components/
activities/activity-lifecycle.

[3] Google play data. https://en.wikipedia.org/wiki/Google_Play.

[4] Hewlett Packard. Failing to meet mobile app user expectations: A mobile user
survey. Tech. rep., 2015.

[5] Ui/application exerciser monkey. https://developer.android.com/studio/test/
monkey.html.

[6] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input gen-
eration system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 224–234, 2013.

[7] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. Using gui ripping for automated testing
of android applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 258–261. ACM, 2012.

[8] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. Mobiguitar: Automated model-based testing of mobile
apps. IEEE software, 32(5):53–59, 2015.

[9] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In Acm Sigplan Notices, volume 48, pages
641–660. ACM, 2013.

[10] Bugzilla keyword descriptions, 2016. https://bugzilla.mozilla.org/describekey
words.cgi.

[11] gooledoc. https://code.google.com.

[12] github. https://github.com.

88

https://en.wikipedia.org/wiki/Google_Play
https://code.google.com
https://github.com

[13] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher
Vendome, and Denys Poshyvanyk. Automatically discovering, reporting and
reproducing android application crashes. In Software Testing, Verification
and Validation (ICST), 2016 IEEE International Conference on, pages 33–44.
IEEE, 2016.

[14] Vincenzo Ambriola and Vincenzo Gervasi. Processing natural language require-
ments. In Proceedings of the International Conference Automated Software En-
gineering, pages 36–46, 1997.

[15] lxml.etree. https://lxml.de/tutorial.html, 2014.

[16] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[17] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. 1999.

[18] Dinodroid. https://github.com/softwareTesting123/DinoDroid.

[19] Recdroid. https://github.com/AndroidTestBugReport/ReCDroid.

[20] Rémi Philippe Lebret. Word embeddings for natural language processing. Tech-
nical report, EPFL, 2016.

[21] Word Embedding. http://semanticgeek.com/technical/

a-count-based-and-predictive-vector-models-in-the-semantic-age/,
2020.

[22] word2vec. https://github.com/dav/word2vec.

[23] William B Cavnar, John M Trenkle, et al. N-gram-based text categorization.
In Proceedings of SDAIR-94, 3rd annual symposium on document analysis and
information retrieval, volume 161175. Citeseer, 1994.

[24] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana
Mendu, Laura Barnes, and Donald Brown. Text classification algorithms: A
survey. Information, 10(4):150, 2019.

[25] Ralf Bender and Ulrich Grouven. Ordinal logistic regression in medical research.
Journal of the Royal College of physicians of London, 31(5):546, 1997.

[26] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages 41–46,
2001.

[27] Larry M Manevitz and Malik Yousef. One-class svms for document classifica-
tion. Journal of machine Learning research, 2(Dec):139–154, 2001.

89

https://github.com/AndroidTestBugReport/ReCDroid
http://semanticgeek.com/technical/a-count-based-and-predictive-vector-models-in-the-semantic-age/
http://semanticgeek.com/technical/a-count-based-and-predictive-vector-models-in-the-semantic-age/

[28] Andreas Kamilaris and Francesc X Prenafeta-Boldú. Deep learning in agricul-
ture: A survey. Computers and electronics in agriculture, 147:70–90, 2018.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[30] dependency-parse. https://spacy.io/usage/linguistic-features.

[31] Angelina Ivanova, Stephan Oepen, and Lilja Øvrelid. Survey on parsing three
dependency representations for english. In 51st Annual Meeting of the As-
sociation for Computational Linguistics Proceedings of the Student Research
Workshop, pages 31–37, 2013.

[32] Yuan Ding and Martha Palmer. Machine translation using probabilistic syn-
chronous dependency insertion grammars. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 541–
548, 2005.

[33] Akane Yakushiji, Yusuke Miyao, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. Automatic construction of predicate-argument structure patterns for
biomedical information extraction. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, pages 284–292, 2006.

[34] Lilja Øvrelid, Jonas Kuhn, and Kathrin Spreyer. Cross-framework parser stack-
ing for data-driven dependency parsing. TAL, 50(3):109–138, 2009.

[35] PJ Antony and KP Soman. Parts of speech tagging for indian languages: a
literature survey. International Journal of Computer Applications, 34(8):0975–
8887, 2011.

[36] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[37] Richard Bellman. On the theory of dynamic programming. National Academy
of Sciences of the United States of America, 38(8):716, 1952.

[38] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Re-
inforcement learning based curiosity-driven testing of android applications. In
Proceedings of the International Symposium on Software Testing and Analysis,
pages 153–164, 2020.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015.

[40] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

90

[41] Thomas Zimmermann, Rahul Premraj, Jonathan Sillito, and Silvia Breu. Im-
proving bug tracking systems. In 2009 31st International Conference on Soft-
ware Engineering-Companion Volume, pages 247–250. IEEE, 2009.

[42] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano
Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 396–407. ACM, 2017.

[43] Mohammad Masudur Rahman, Foutse Khomh, and Marco Castelluccio. Why
are some bugs non-reproducible?

[44] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for me!
characterizing non-reproducible bug reports. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 62–71. ACM, 2014.

[45] App manifest. https://developer.android.com/guide/topics/manifest/
manifest-intro.

[46] Application fundamentals. https://developer.android.com/guide/topics/manifest/
manifest-intro.

[47] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Mas-
similiano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. Enabling mutation testing for android apps. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, pages
233–244, 2017.

[48] Android broadcasts. https://developer.android.com/guide/components/broadcasts.

[49] Android emulator. https://developer.android.com/studio/run/emulator.

[50] Android debug bridge. https://developer.android.com/studio/command-
line/adb.

[51] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[52] Mohd Ehmer Khan, Farmeena Khan, et al. A comparative study of white box,
black box and grey box testing techniques. International Journal of Advanced
Computer Sciences and Applications, 3(6):12–1, 2012.

[53] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software testing
of mobile applications: Challenges and future research directions. In Proceedings
of the 7th International Workshop on Automation of Software Test, pages 29–
35. IEEE Press, 2012.

[54] Mirzaei Alvari and Nariman Mirzaei. Automated Input Generation Techniques
for Testing Android Applications. PhD thesis, 2016.

91

[55] Hrushikesh Zadgaonkar. Robotium Automated Testing for Android. Packt Pub-
lishing Ltd, 2013.

[56] uiautomator. https://developer.android.com/training/testing/

ui-automator.html.

[57] uiautomatorview. https://developer.android.com/training/testing/

ui-testing/uiautomator-testing.html.

[58] uiautomatorshortcoming. https://developer.android.com/reference/

android/support/test/uiautomator/UiDevice.html.

[59] robotium. https://plugins.jetbrains.com/plugin/

7513-robotium-recorder.

[60] monkeyrunner. https://developer.android.com/studio/test/

monkeyrunner/index.html.

[61] appiumr. https://github.com/appium/appium.

[62] espresso. https://developer.android.com/training/testing/espresso/

index.html.

[63] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, pages 94–105, 2016.

[64] Young-Min Baek and Doo-Hwan Bae. Automated model-based android gui
testing using multi-level gui comparison criteria. In Proceedings of the Interna-
tional Conference on Automated Software Engineering, pages 238–249, 2016.

[65] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing
Ma, and Jian Lü. Aimdroid: Activity-insulated multi-level automated testing
for android applications. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pages 103–114, 2017.

[66] Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. Land: a user-friendly
and customizable test generation tool for android apps. In Proceedings of the
International Symposium on Software Testing and Analysis, pages 360–363,
2018.

[67] Jiwei Yan, Tianyong Wu, Jun Yan, and Jian Zhang. Widget-sensitive and
back-stack-aware gui exploration for testing android apps. In Proceedings of the
International Conference on Software Quality, Reliability and Security (QRS),
pages 42–53, 2017.

[68] Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for automated
gui-model generation of mobile applications. In FASE, volume 13, pages 250–
265. Springer, 2013.

92

https://developer.android.com/training/testing/ui-automator.html
https://developer.android.com/training/testing/ui-automator.html
 https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
 https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html
https://developer.android.com/reference/android/support/test/uiautomator/UiDevice.html
https://plugins.jetbrains.com/plugin/7513-robotium-recorder
https://plugins.jetbrains.com/plugin/7513-robotium-recorder
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://github.com/appium/appium
https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/training/testing/espresso/index.html

[69] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,
Geguang Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based
gui testing of android apps. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 245–256, 2017.

[70] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 599–
609, 2014.

[71] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. Android
testing via synthetic symbolic execution. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 419–429, 2018.

[72] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga
Tanriverdi, and Yunus Donmez. QBE: Qlearning-based exploration of android
applications. In Proceedings of the International Conference on Software Test-
ing, Verification and Validation (ICST), pages 105–115, 2018.

[73] Nataniel P Borges, Maria Gómez, and Andreas Zeller. Guiding app testing
with mined interaction models. In Proceedings of the International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pages 133–143.
IEEE, 2018.

[74] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: a deep
learning-based approach to automated black-box android app testing. In Pro-
ceedings of the International Conference on Automated Software Engineering
(ASE), pages 1070–1073, 2019.

[75] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. Test transfer across
mobile apps through semantic mapping. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 42–53, 2019.

[76] Christian Degott, Nataniel P Borges Jr, and Andreas Zeller. Learning user
interface element interactions. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 296–306, 2019.

[77] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. Rein-
forcement learning for android gui testing. In Proceedings of the International
Workshop on Automating TEST Case Design, Selection, and Evaluation, pages
2–8, 2018.

[78] Thi Anh Tuyet Vuong and Shingo Takada. Semantic analysis for deep q-network
in android gui testing. In SEKE, pages 123–170, 2019.

[79] Thi Anh Tuyet Vuong and Shingo Takada. A reinforcement learning based ap-
proach to automated testing of android applications. In Proceedings of the In-
ternational Workshop on Automating TEST Case Design, Selection, and Eval-
uation, pages 31–37, 2018.

93

[80] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. Au-
toblacktest: Automatic black-box testing of interactive applications. In Pro-
ceedings of the International Conference on Software Testing, Verification and
Validation, pages 81–90, 2012.

[81] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang
Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic online
combat game testing using evolutionary deep reinforcement learning. In Pro-
ceedings of the International Conference on Automated Software Engineering
(ASE), pages 772–784, 2019.

[82] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. Auto-completing bug reports for android applications. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 673–686. ACM, 2015.

[83] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso.
Automatically translating bug reports into test cases for mobile apps. In Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 141–152, 2018.

[84] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. Automatic summarization
of bug reports. IEEE Transactions on Software Engineering, 40(4):366–380,
2014.

[85] M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports via text min-
ing: An industrial case study. In InternationalWorking Conference on Mining
Software Repositories, pages 11–20, 2010.

[86] Xue Han, Tingting Yu, and David Lo. Learning from bug reports to understand
and generate performance test frames. In Proceedings of the 33rd International
Conference on Automated Software Engineering, ICSE ’17, 2018.

[87] Yuanyuan Zhang, Mark Harman, Yue Jia, and Federica Sarro. Inferring test
models from kate’s bug reports using multi-objective search. In Proceedings
of the International Symposium on Search Based Software Engineering, pages
301–307, 2015.

[88] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. Dase:
Document-assisted symbolic execution for improving automated software test-
ing. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on, volume 1, pages 620–631. IEEE, 2015.

[89] Dongpu Jin, Myra B Cohen, Xiao Qu, and Brian Robinson. Preffinder: getting
the right preference in configurable software systems. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, pages
151–162. ACM, 2014.

94

[90] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Mar-
cus, Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. Assessing the
quality of the steps to reproduce in bug reports. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 86–96, 2019.

[91] Younes Bennani and Khalid Benabdeslem. Dendogram-based svm for multi-
class classification. Journal of Computing and Information Technology,
14(4):283–289, 2006.

[92] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In ASPLOS, pages
155–166, 2010.

[93] Cristian Zamfir and George Candea. Execution synthesis: A technique for
automated software debugging. In EuroSys, pages 321–334, 2010.

[94] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures for in-house
debugging. In ICSE, pages 474–484, 2012.

[95] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. Generating reproducible and replayable bug reports
from android application crashes. In Proceedings of the 2015 IEEE 23rd Inter-
national Conference on Program Comprehension, pages 48–59, 2015.

[96] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices
in open-source software. In ICSE, pages 102–112, 2012.

[97] Tingting Yu, Tarannum S Zaman, and Chao Wang. Descry: reproducing
system-level concurrency failures. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 694–704. ACM, 2017.

[98] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android
apps with minimal restart and approximate learning. In Acm Sigplan Notices,
volume 48, pages 623–640. ACM, 2013.

[99] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and
Lihua Xu. Storydroid: Automated generation of storyboard for android apps.
In Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 596–607. IEEE, 2019.

[100] M Mainegra Hing, Aart van Harten, and PC Schuur. Reinforcement learning
versus heuristics for order acceptance on a single resource. Journal of Heuristics,
13(2):167–187, 2007.

[101] lockpatterngenerator. https://github.com/dharmik/lockpatterngenerator.

[102] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association
for Computational Linguistics, 3:211–225, 2015.

95

[103] Atif M Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: Reverse
engineering of graphical user interfaces for testing. In WCRE, volume 3, page
260, 2003.

[104] Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. Eventbreak:
Analyzing the responsiveness of user interfaces through performance-guided test
generation. ACM SIGPLAN Notices, 49(10):33–47, 2014.

[105] Android activity. https://developer.android.com/reference/android/app/Activity.

[106] Conv1d layer. https://keras.io/api/layers/convolution layers/convolution1d.

[107] Dense layer. https://keras.io/api/layers/core layers/dense/.

[108] adam. https://keras.io/api/optimizers/adam/.

[109] Arryon D Tijsma, Madalina M Drugan, and Marco A Wiering. Comparing ex-
ploration strategies for q-learning in random stochastic mazes. In Proceedings of
the Symposium Series on Computational Intelligence (SSCI), pages 1–8, 2016.

[110] Michel Tokic and Günther Palm. Value-difference based exploration: adap-
tive control between epsilon-greedy and softmax. In Proceedings of the Annual
Conference on Artificial Intelligence, pages 335–346, 2011.

[111] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated
test input generation for android: Are we there yet?(e). In IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 429–440,
2015.

[112] Ui automator. https://developer.android.com/training/testing/ui-automator.

[113] Androguard. https://github.com/androguard/androguard.

[114] Emma. http://emma.sourceforge.net/.

[115] Keras. https://keras.io/.

[116] nectroid. https://github.com/cknave/nectroid.

[117] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William G. J. Halfond. Recdroid: Automatically reproducing android applica-
tion crashes from bug reports. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE -19, pages 128–139, 2019.

[118] Google code archive. https://code.google.com/archive/.

[119] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek
Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, et al. Us-
ing recurrent neural networks for slot filling in spoken language understand-
ing. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
23(3):530–539, 2015.

96

[120] Knowledge Base Population, 2012. https://nlp.stanford.edu/projects/kbp/.

[121] Matthew Honnibal and Ines Montani. spacy 2: Natural language understand-
ing with bloom embeddings, convolutional neural networks and incremental
parsing. To appear, 2017.

[122] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
Puma: programmable ui-automation for large-scale dynamic analysis of mobile
apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services, pages 204–217, 2014.

[123] Anne Kao and Steve R Poteet. Natural language processing and text mining.
Springer Science & Business Media, 2007.

[124] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. icomment: Bugs
or bad comments? In ACM SIGOPS Operating Systems Review, volume 41,
pages 145–158, 2007.

[125] Xuerui Wang, Andrew McCallum, and Xing Wei. Topical n-grams: Phrase and
topic discovery, with an application to information retrieval. In Seventh IEEE
International Conference on Data Mining, pages 697–702, 2007.

[126] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. Class-based n-gram models of natural language. Computational
linguistics, 18(4):467–479, 1992.

[127] Frank Padberg, Philip Pfaffe, and Martin Blersch. On mining concurrency
defect-related reports from bug repositories.

[128] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more
accurate retrieval of duplicate bug reports. In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on, pages 253–262.
IEEE, 2011.

[129] B Ashok, Joseph Joy, Hongkang Liang, Sriram K Rajamani, Gopal Srinivasa,
and Vipindeep Vangala. Debugadvisor: a recommender system for debugging.
In Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 373–382, 2009.

[130] Mark message as unread make app crash. https://github.com/moezbhatti/
qksms/issues/241.

[131] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-
Works) http://www.thoughtworks.com/Continuous Integration.pdf, 122:14,
2006.

97

https://github.com/moezbhatti/qksms/issues/241
https://github.com/moezbhatti/qksms/issues/241

[132] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, and
Geguang Pu. Efficiently manifesting asynchronous programming errors in an-
droid apps. In Proceedings of the International Conference on Automated Soft-
ware Engineering, pages 486–497, 2018.

[133] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang
Pu, and Zhendong Su. Large-scale analysis of framework-specific exceptions in
android apps. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages
408–419, 2018.

[134] Jinseong Jeon, Kristopher K Micinski, and Jeffrey S Foster. Symdroid: Sym-
bolic execution for dalvik bytecode. Technical report, 2012.

[135] Ting Su. Fsmdroid: Guided gui testing of android apps. In Proceedings of the
International Conference on Software Engineering Companion, pages 689–691,
2016.

[136] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students repre-
sentatives of professionals in software engineering experiments? In Proceedings
of the 37th International Conference on Software Engineering-Volume 1, pages
666–676, 2015.

[137] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[138] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Advances in neural information processing
systems, pages 649–657, 2015.

[139] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for
naive bayes text classification. In AAAI-98 workshop on learning for text cate-
gorization, volume 752, pages 41–48. Citeseer, 1998.

[140] Charu C Aggarwal and ChengXiang Zhai. A survey of text classification algo-
rithms. In Mining text data, pages 163–222. Springer, 2012.

[141] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. Automatically
extracting bug reproducing steps from android bug reports. In International
Conference on Software and Systems Reuse, pages 100–111. Springer, 2019.

[142] Jill Burstein, Daniel Marcu, Slava Andreyev, and Martin Chodorow. Towards
automatic classification of discourse elements in essays. In Proceedings of the
39th annual Meeting on Association for Computational Linguistics, pages 98–
105. Association for Computational Linguistics, 2001.

98

[143] spacy. https://spacy.io/.

[144] Akshay Kulkarni and Adarsha Shivananda. Converting text to features. In
Natural Language Processing Recipes, pages 67–96. Springer, 2019.

[145] Thorsten Joachims. Text categorization with support vector machines: Learn-
ing with many relevant features. In European conference on machine learning,
pages 137–142. Springer, 1998.

[146] acv-11. https://github.com/robotmedia/droid-comic-viewer/issues/11, 2013.

[147] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[148] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. A c-lstm neural
network for text classification. arXiv preprint arXiv:1511.08630, 2015.

[149] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent meth-
ods for regularized loss minimization. Journal of Machine Learning Research,
14(Feb):567–599, 2013.

[150] maxpool. https://keras.io/api/layers/pooling layers/, 2020.

[151] Jos Van Der Westhuizen and Joan Lasenby. The unreasonable effectiveness of
the forget gate. arXiv preprint arXiv:1804.04849, 2018.

[152] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirec-
tional lstm-cnns. Transactions of the Association for Computational Linguis-
tics, 4:357–370, 2016.

[153] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[154] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: Bias in bug-fix
datasets. In ESEC, pages 121–130, 2009.

[155] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors
and omissions in software repositories. In ICSE, pages 298–308, 2009.

[156] Geoff Dougherty. Pattern recognition and classification: an introduction.
Springer Science & Business Media, 2012.

[157] Nadim Nachar et al. The mann-whitney u: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative
Methods for Psychology, 4(1):13–20, 2008.

[158] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
The oracle problem in software testing: A survey. IEEE transactions on soft-
ware engineering, 41(5):507–525, 2015.

99

VITA

Yu Zhao started his Ph.D. with the Department of Computer Science at the University

of Kentucky in 2016. His current research mainly focuses on software testing and

computer networks. Yu Zhao received his Bachelor’s degree in Telecom Engineering

from Jilin University in Changchun, China in 2009 and respectively his M.S. Degree in

Computer Science from Changchun University of Science and Technology in Telecom

Engineering, China in 2012.

100

	Automated Testing and Bug Reproduction of Android Apps
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Summary
	1.2 Contributions

	2 Background
	2.1 Natural Language Processing
	2.2 Reinforcement Learning
	2.2.1 Q-learning
	2.2.2 Deep Q learning

	2.3 Reproducing Bug Reports
	2.4 Android Framework
	2.4.1 Lifecycle of Android Activity
	2.4.2 Android Virtual Devices

	2.5 Mobile App Testing
	2.6 Android Testing Tools
	2.6.1 UI Automator
	2.6.2 Robotium
	2.6.3 Other Tools

	3 Related work
	3.1 Mobile App Testing
	3.2 Reproducing Bug Report

	4 DinoDroid: Testing Android Apps Using Deep Q Network
	4.1 Overview
	4.2 Motivation and Background
	4.2.1 A Motivating Example.
	4.2.2 Problem Formulation
	4.2.3 Limitation of Existing Q-Learning Techniques

	4.3 DinoDroid Approach
	4.3.1 DinoDroid's Algorithm
	4.3.2 Feature Generation
	4.3.2.1 Types of Features
	4.3.2.2 Compacted Event Flow Graph

	4.3.3 DinoDroid's Deep Q-Network
	4.3.3.1 DNN's Feature Handler
	4.3.3.2 Event Selection
	4.3.3.3 Reward Function

	4.4 Evaluation
	4.4.1 Datasets
	4.4.2 Implementation
	4.4.3 Study Operation
	4.4.4 Comparison with Existing Tools

	4.5 Results and Analysis
	4.5.1 RQ1: Code Coverage
	4.5.2 RQ2: Bug Detection
	4.5.3 RQ3: Understanding the Learned Model
	4.5.3.1 Understanding the Features
	4.5.3.2 The Whole DQN Model Behaviors

	4.6 Limitations
	4.7 Conclusions

	5 ReCDroid: Automatically Reproducing Android Application Crashes from Bug Reports
	5.1 Overview
	5.2 Observations
	5.3 Design Challenges
	5.4 ReCDroid Approach
	5.4.1 Phase 1: Analyzing Bug Reports
	5.4.1.1 Grammar Patterns
	5.4.1.2 Extracting Event Representations
	5.4.1.3 Limitations of Using Grammar Patterns

	5.4.2 Phase 2: Guided Exploration for Reproducing Crashes
	5.4.2.1 ReCDroid' Guided Exploration Algorithm
	5.4.2.2 Dynamic Matching
	5.4.2.3 A Running Example
	5.4.2.4 Optimization Strategies

	5.5 Empirical Study
	5.5.1 Datasets
	5.5.2 Implementation
	5.5.3 Experiment Design
	5.5.3.1 RQ1: Effectiveness and Efficiency of ReCDroid
	5.5.3.2 RQ2: The Role of NLP in ReCDroid
	5.5.3.3 RQ3: Usefulness of ReCDroid
	5.5.3.4 RQ4: Handling Low-Quality Bug Reports

	5.6 Results and Analysis
	5.6.0.1 RQ1: Effectiveness and Efficiency of ReCDroid
	5.6.0.2 RQ2: The Role of NLP in ReCDroid
	5.6.0.3 RQ3: Usefulness of ReCDroid
	5.6.0.4 RQ4: Handling Low-Quality Bug Reports

	5.7 Discussion
	5.8 Conclusions and Future Work

	6 ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports for Android Apps
	6.1 Introduction
	6.1.1 Challenges of extracting Information from Bug Reports

	6.2 S2Rminer Approach
	6.2.1 Phase 1: HTML Parsing
	6.2.2 Phase 2: S2R Extraction

	6.3 ReCDroid+ Approach
	6.3.1 Preprocessing Bug Reports
	6.3.1.1 HTML parsing
	6.3.1.2 Extract S2R and Crash Sentences
	6.3.1.3 Policy based S2R Sentences Selection

	6.4 S2Rminer Evaluation
	6.4.1 Datasets
	6.4.2 Experiment Design
	6.4.2.1 Performance Metrics.
	6.4.2.2 Combinations of Different Text Features.

	6.4.3 Threats to Validity

	6.5 S2Rminer Results and Analysis
	6.5.1 RQ1: Performance of S2Rminer.
	6.5.2 RQ2: Comparison of Different Types of Text Features.

	6.6 ReCDroid+ Evaluation
	6.6.1 Datasets
	6.6.2 Implementation
	6.6.3 Experiment Design
	6.6.3.1 RQ1: Effectiveness and Efficiency of ReCDroid+
	6.6.3.2 RQ2: Effectiveness and Efficiency of ReCDroid+ in extracting S2R and crash sentences
	6.6.3.3 RQ3: The Role of NLP in ReCDroid+
	6.6.3.4 RQ4: Usefulness of ReCDroid+
	6.6.3.5 RQ5: Handling Low-Quality Bug Reports
	6.6.3.6 RQ6: Handling Bug Reports Generated by Different Users

	6.7 ReCDroid+ Results and Analysis
	6.7.1 RQ1: Effectiveness and Efficiency of ReCDroid+
	6.7.2 RQ2: Effectiveness and Efficiency of Extracting S2R and Crash Sentences
	6.7.3 RQ3: The Role of NLP in ReCDroid+
	6.7.4 RQ4: Usefulness of ReCDroid+
	6.7.4.1 RQ5: Handling Low-Quality Bug Reports
	6.7.4.2 RQ6: Handling Bug Reports Generated by Different Reporters

	6.8 Discussion
	6.9 Conclusions and Future Work

	7 Conclusion and Future Work
	Bibliography
	Vita

