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ABSTRACT OF DISSERTATION

CARBON OXIDATION AT THE ATOMIC LEVEL: A COMPUTATIONAL
STUDY ON OXIDATIVE GRAPHENE ETCHING AND PITTING OF

GRAPHITIC CARBON SURFACES

In order to understand the oxidation of solid carbon materials by oxygen-containing
gases, carbon oxidation has to be studied on the atomic level where the surface re-
actions occur. Graphene and graphite are etched by oxygen to form characteristic
pits that are scattered across the material surface, and pitting in turn leads to mi-
crostructural changes that determine the macroscopic oxidation behavior. While this
is a well-documented phenomenon, it is heretofore poorly understood due to the
notorious difficulty of experiments and a lack of comprehensive computational stud-
ies. The main objective of the present work is the development of a computational
framework from first principles to study carbon oxidation at the atomic level.

First, the large body of literature on carbon oxidation is examined with regards to
experimental observations of the pitting phenomenon as well as relevant theoretical
studies on different aspects of the mechanistic details of carbon oxidation. Next, a
comprehensive, atomic-scale kinetic mechanism for carbon oxidation is developed,
which comprises only elementary surface reactions with reaction rates derived from
first principles. The mechanism is then implemented using the Kinetic Monte Carlo
(KMC) method. This framework for the first time allows the simulation of oxidative
graphene etching at the atomic scale to relevant time- and lengthscales (up to seconds
and hundreds of nanometers), and in a wide range of conditions (temperatures up to
2000 Kelvin, pressures ranging from vacuum to atmospheric pressure).

The numerical results reveal information about the pitting process in heretofore
unattained detail: Pit growth rates (and therefore intrinsic oxidation rates) are cal-
culated and validated against a set of different experimental data at a wide range of
conditions. Such information is crucial for modelling of material behavior on meso-
and macroscales. The dependence of the pit geometry (hexagonal vs. circular) on
temperature and gas pressure is assessed. This is important for utilizing oxidative
etching as a manufacturing technique for graphene-based nanodevices. More subtle
phenomena like pit inhibition at low pressures and temperatures are also discussed.
Moreover, all these findings are examined with respect to the underlying reaction
mechanism. This unveils the fundamental reasons for the observed reaction behav-



ior, in particular different activation energies and reaction orders at low and high
temperatures, as well as the transition of the pit geometry.

The present work is a first step in an ongoing effort to develop predictive models
for carbon oxidation in Thermal Protection Systems (TPS), with the ultimate goal
of improved safety for hypersonic flight vehicles.
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Chapter 1 Introduction

1.1 Motivation

One of the great challenges in hypersonic flight is the protection of air- and space-

craft against extreme aerodynamic heating [1]. The surface of such flight vehicles is

typically equipped with a heat shield, which is referred to as a thermal protection

system (TPS). Its goal is to keep the structure of the vehicle intact and its payload

safe. Many TPS use carbon as the base material due to its favorable material prop-

erties. At flight speeds much larger than the speed of sound, a compressive shock

wave forms in front of the vehicle, leading to high gas temperatures and ionization of

gas molecules into more reactive atoms, in particular oxygen. This gas impinges on

the TPS, oxidizes the carbon, and thereby gradually burns off the heat shield. This

burnoff process is one of the main contributors to the ablation phenomenon.

There are various different ablative carbon heat shields in use today, and they can

be broadly divided into two classes: surface and charring ablators [2]. Examples for

surface ablators are carbon-carbon (C/C) and carbon-fiber-reinforced silicon carbide

(C/SiC) composite materials. A prominent charring ablator is PICA (Phenolic Im-

pregnated Carbon Ablator), which consists of a three dimensional matrix of carbon

fibers that is impregnated with phenolic resin. Figure 1.1 gives an overview of the

length scales at which ablation takes place in PICA, ranging from the vehicle size all

the way down to the atomic level. The physical and chemical processes in both the

gas phase and the actual solid TPS material on all these length scales are coupled,

making ablation a complex multiscale problem.

In the practical design of TPS, one needs to predict how fast the TPS is receding

under flight conditions. While this recession rate differs between different types of

carbon ablators, carbon oxidation at the atomic scale on the material surface plays

1



Figure 1.1: The multiple scales of oxidation of a porous TPS (PICA). Fiber SEM mi-
crographs from [3], reprinted by permission of the American Institute of Aeronautics
and Astronautics, Inc.; fiber matrix micro-CT rendering reprinted from [4], Copy-
right (2017), with permission from Elsevier; atomic-scale rendering reprinted with
permission from [5], Copyright 2016, American Chemical Society.

a fundamental role, as pictured in Figure 1.1. At that level, the surface consists

of graphene- and graphite-like structures, regardless of the type of carbon ablator.

However, oxidation on such a surface does not proceed uniformly. In fact, one typ-

ically observes localized growth of cavities on the surface and into the bulk carbon

material at the nano- to micrometer level. This phenomenon is called pitting. Pitting

locally increases the oxidation rate by increasing the surface area and the reactivity

per unit surface area, which ultimately affects the recession rate. Although it is well

known that pitting is the characteristic mode through which graphitic carbon sur-

faces oxidize, current ablation models do not account for it directly [6]. Therefore,

to overcome this limitation in ablation models and thereby improve their predic-

tive capabilities, the carbon oxidation process and pitting in particular need to be
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Figure 1.2: Artistic rendering of tunneling transistor based on graphene nanoribbons.
Reprinted with permission from [7].

understood fundamentally at the atomic level.

Moreover, ever since its famed discovery in 2004 [8], graphene has been consid-

ered to potentially revolutionize electronic nanodevices due to its magnificent ma-

terial properties [9, 10]. For instance, graphene has been utilized experimentally in

laboratory environments in the form of nanoporous graphene membranes for water

desalination [11] and DNA sequencing [12, 13], as well as in the form of graphene

nanoribbons (GNR) with open bandgaps that can be utilized as transistors [14, 15].

The function of such devices depends critically on the material structure at the atomic

level. For example, the electric conductivity of GNR is controlled by the structure of

graphene edges, where roughness or irregularity reduces the conductivity and there-

fore diminishes the desired function [16]. Hence, there is a need for manufacturing

techniques that produce atomically smooth edges, for instance as pictured in Fig-

3



ure 1.2. A promising technique that allows control over the edge structure at the

atomic level is etching of graphene through oxidation in a gaseous environment at

elevated temperatures [17]. However, the dynamics of oxidative graphene etching and

its dependence on the reaction conditions are not well understood. For example, the

resulting graphene edge structure can be both atomically smooth or rough based on

temperature and pressure, which culminates in either hexagonal or circular etch fig-

ures [18, 19]. Again, a fundamental understanding of carbon oxidation at the atomic

level is required in order to make reliable predictions that can boost the efficacy of

this manufacturing technique.

1.2 Research Structure and Objectives

The present work seeks to contribute to the fundamental understanding of carbon

oxidation at the atomic level in conditions relevant to the previously described appli-

cations through a first-principle based, comprehensive computational study with full

atomic resolution, both spatial and temporal. For that purpose, Chapter 2 assesses

the existing body of literature on carbon materials and their oxidation behavior.

This is done to show that the oxidation of graphitic carbon surfaces and pitting can

be understood from the basis of oxidative etching of a single graphene sheet. A

review of the experimental and computational work in that respect develops a qual-

itative image of the phenomenology, and points out the need for a comprehensive

computational study that this research provides. Based on this background knowl-

edge, Chapter 3 first formulates in detail the problem setup, namely the oxidation

of single-layer graphene with monovacancy defects in oxygen gas at thermodynamic

equilibrium. Following this, the selection of the appropriate computational methods

with respect to accuracy and feasibility is discussed. Specifically, this study uses the

Kinetic Monte Carlo (KMC) method in conjunction with a kinetic reaction mecha-

nism developed from first-principles. The rates of all reactions included in this novel
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mechanism are calculated on the basis of Transition State Theory (TST), with pa-

rameters derived from quantum chemistry using Density Functional Theory (DFT).

A particular focus is given to the underlying assumptions, both in the selection of the

problem setup and the computational methods, with respect to accuracy, applicabil-

ity and limitations of the present study. The first major contribution of this research,

namely the development of a comprehensive atomic-scale kinetic reaction mechanism

for carbon oxidation from first principles, is described in Chapter 4. Next, Chapter 5

discusses the implementation of the problem setup and kinetic reaction mechanism

in the readily available KMC simulation code Zacros. Furthermore, the statistical

nature of KMC simulation results is examined to justify the statistical analysis ap-

proach taken in this work. The simulation results are finally presented in Chapter 6.

First, to demonstrate the capabilities that this novel comprehensive computational

approach delivers, a complete analysis of a single representative simulation is per-

formed. Next, all details about graphene etching and pitting across the whole range

of simulated conditions are presented, validated, and discussed with respect to the

underlying kinetic reaction mechanism. This is the second major contribution of

this research, since experiments are limited to provide measurable metrics like the

pit growth rate, and previous computational studies have not been able to deliver

comprehensive results. Lastly, Chapter 7 concludes the outcome and added value of

this research, and outlines future directions in which this work may be extended, in

particular with respect to predictive modelling of carbon oxidation in TPS.
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Chapter 2 Background

The purpose of this chapter is to provide a knowledge base on carbon oxidation in the

context of pitting and etching of graphite/graphene, and in particular to assess the

work that has been performed on the fundamental understanding of this process. This

requires an introductory discussion in Section 2.1 of the material structure of graphitic

carbon materials, and the possible defects that are essential for understanding their

oxidation behavior. After that, the carbon oxidation process itself is assessed in

Section 2.2.

2.1 Carbon Material Structure

Solid carbon materials occur in an almost unimaginable number of different forms,

both naturally and synthetically, and new forms are regularly discovered and devel-

oped to this day [20]. This development is largely driven today from the perspective

of graphene based nanomaterials on the one hand, and carbon fibers and their com-

posites on the other hand [21]. In fact, there exist entire journals and conferences

dedicated purely to communicate original research on carbon materials.

In an introductory discussion of the material structure of solid carbon, one typi-

cally begins by examining the crystal structures of the two most prominent allotropes:

diamond and graphite. For reference, the crystal structure of diamond is called dia-

mond cubic, and its carbon atoms are arranged in tetrahedrons such that each atom

bonds with four neighboring atoms. The resulting chemical bonds are sp3 hybridized,

which lends diamond its outstanding hardness among other things. However, this

work is concerned with carbon oxidation of graphene and graphitic carbon materials,

so instead this section focuses on the graphite allotrope.
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Figure 2.1: Material structure of graphite. The crystal is made up of individual layers
of graphene, which are sheets of carbon atoms in a hexagonal arrangement.

2.1.1 Ideal Graphite Structure

Already in the year 1916, using powder diffraction, Debye and Scherrer [22] were

able to identify the crystal structure of graphite, which is displayed in Figure 2.1.

Graphite is composed of distinct layers of carbon in an hexagonal arrangement. A

single of those layers is referred to as graphene. The distinct graphene layers are held

together in a graphite crystal through Van der Waals forces. The interlayer distance

at which the attractive Van der Waals forces balance out with electrostatic repulsion

is around 3.354 Å at standard conditions.

Graphene itself is a sheet of hexagonally arranged (honeycomb) carbon atoms

that each have three neighboring atoms. These form strong covalent bonds with sp2

hybridization. The average bond length of carbon atoms in graphene is around 1.42 Å,

considerably shorter than the interlayer distance in graphite. Since the covalent bonds

in each graphene sheet are much stronger than the Van der Waals forces acting

between the sheets, graphite can sometimes behave as a stack of independent two-
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dimensional graphene layers. One instance for such behavior is the oxidation of the

graphite surface in oxygen gas, as it is examined in this work.

Both graphite and graphene have remarkable material properties due to their

unique crystal structure. Theoretically, graphene is the material of superlatives, often

regarded as the world’s strongest and most conductive material [10]. Besides, graphite

principally has very strong thermal and chemical resistance [23]. However, these

attributes only directly apply to the ideal materials. In reality, structural defects can

dictate the actual material properties to a large degree, and therefore require further

discussion.

2.1.2 Structural Defects and Graphene Edge Structure

In a graphite crystal, defects can exist within a single sheet of graphene as well as

across neighboring layers [24, 25]. Figure 2.2 provides an overview of some com-

mon defects, categorized by their topology [26]. Point defects are essentially zero-

dimensional, since they only occur at a single point in the structure. Of particular

importance for the present study are vacancy defects, since they act as the seeds for

oxidation on the carbon surface. Furthermore, certain adatoms or impurities can act

as catalysts for chemical reactions such as oxidation. Within a graphene sheet, there

can be line defects such as grain boundaries, which are considered one-dimensional.

Lastly, two-dimensional interlayer defects occur between neighboring graphene sheets.

Sheets can be rotated relative to each other, causing stacking faults present in so-

called turbostratic carbons, and single atoms can be trapped in between layers and

create interstitial defects.

In the context of carbon oxidation, vacancy defects are among the most important

types of defects. The removal of distinct carbon atoms from an otherwise pristine

graphene sheet leaves behind carbon atoms with a smaller number of bonds that hold

them in place, which in turn makes those atoms more susceptible to oxidation, as
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Figure 2.2: Common types of defects in graphite/graphene, characterized by their
topology. Reprinted from [26], Copyright (2018), with permission from Elsevier.

will be seen later. Those carbon atoms are referred to as edge carbon atoms, and if

they form extended lines, those line defects are simply referred to as a carbon edges.

It is useful to categorize the types of edges that exist in graphene. Figure 2.3

shows the most commonly used categorizations [27]. The most common types of

carbon edges are armchair and zigzag edges. In armchair edges, there occur pairs of

two (or more) edge carbon atoms, whereas zigzag edges are composed of a sequence

of single carbon edge atoms. Both types of carbon edges align with the principal

crystallographic directions in a graphene sheet. All other types of edges shown in

Figure 2.3 are less frequently used, since they can also be regarded as compositions

of zigzag and armchair edge sites. Hence, only armchair and zigzag are directly

considered for this study.

9



Figure 2.3: Graphene edge structure. The zigzag and armchair edges are of particular
importance for carbon oxidation. Reproduced from [27] (adapted from [28]).

As it turns out, the number of carbon edge sites and their distribution along

the carbon surface are critical for the oxidation behavior of real materials. That in

turn depends on the exact structural composition at the mesoscopic level (tens on

nanometers up to millimeters) of the carbon material. Therefore, while this is not

going to be subject later in this study, it is still instructive to discuss the composition

of realistic graphitic carbon materials at this point.

2.1.3 Real Graphitic Carbon Materials

The microstructure of carbon materials has been unraveled in the 1940’s and 1950’s

to a great extent by the pioneering x-ray diffraction work of Franklin [29]. Today

it is well understood that carbon materials are composed of crystals of graphite

of different quality and orientation, connected by more or less amorphous regions

of carbon. This leads to the distinction between non-graphitizing and graphitizing

carbon, as shown in Figure 2.4. Graphitizing carbons tend to be composed of larger
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Figure 2.4: Schematic representations of (a) non-graphitizing and (b) graphitizing
carbon. Republished with permission of Royal Society of London, from [29], Copy-
right (1951), permission conveyed through Copyright Clearance Center, Inc.

individual graphite crystals as compared to non graphitizing, and they have at least

some degree of alignment relative to each other. In contrast, the graphite crystals in

non-graphitizing carbons are mostly disordered. The actual term graphitizing comes

from the process of graphitization, where graphite is annealed at high temperatures

to reduce the number of structural defects by further aligning the distinct graphite

crystals. There are modern models, especially for non-graphitizing carbon, taking

into account more complicated ”building blocks” such as fullerene-like structures (see

e.g. [30] for a review). However the general idea remains the same: Graphitic carbon

materials are composed of graphite crystals at nanometer length scales.

A material of great technological value are carbon fibers [24]. Figure 2.5 shows

a structural model for a typical PAN-derived carbon fiber [31]. In the core of the

fiber, there tends to be a lot of disorder with small graphitic areas, similar to non-

graphitizing carbon. In contrast, on the outside surface of the fiber, large graphite

layers are present that are furthermore oriented such that the carbon basal plane is

facing outward of the fiber. In other words, the carbon fiber tends to be a graphitizing

carbon on the outside. This must obviously have a large effect on its properties. For

example, the thermal strength of carbon fibers can be explained from the basis of their
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Figure 2.5: Carbon fiber structural model for a typical PAN-derived fiber. Repub-
lished with permission of IOP Publishing, from [31], Copyright (1987), permission
conveyed through Copyright Clearance Center, Inc..

microstructure [24], which is particularly helpful in hypersonic related applications.

This is just a single example of a structural model for a particular carbon fiber,

and many more such models for various types of carbon materials exist. However, it

stresses two important ideas: First, all graphitic carbon materials are composed of

nanoscopic or microscopic sized graphite crystals. Second, the composition of the bulk

material from those small crystals is ultimately determining the material behavior.

While this study only focuses on understanding carbon oxidation on a fundamental

level, i.e. a single sheet of graphene and therefore an isolated graphite crystal, it is

nevertheless important to appreciate these ideas when moving forward into building

meso- and macroscopic models on carbon oxidation from first principles in the future.

2.2 Carbon Oxidation

The oxidation of solid carbon materials through gas-surface reactions has been stud-

ied for a long time since it is ubiquitous in modern technological applications [32–34].

In coal power generation, carbon is used directly as a fuel to generate energy through
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combustion. In nuclear power reactors, neutrons can be moderated by graphite. An

important safety concern is the scenario when the graphite moderator gets exposed

to air as a result of a reactor leak, which can ultimately result in degradation of

the graphite moderator through oxidation and subsequent release of radiation among

other things [35]. As discussed in the introduction, carbon is also used as a base

material for ablative thermal protection systems. What these and many other appli-

cations have in common is that a solid carbon material of some sort interacts with

an oxygenic gas environment at high temperatures, which results in oxidation on the

material surface.

From a practical standpoint, carbon oxidation is usually studied on a phenomeno-

logical basis. Due to the structural complexity of carbon materials, models have to

rely on empirical parameters and relations which are specific to the carbon mate-

rial and/or the conditions under which oxidation is performed. Such empirical data

is often deduced from experiments via global analysis methods, for instance using

gravimetric analysis [32]. Somewhat more meaningful structural parameters such as

active surface area [36] are often included in those models, but then the evolution of

those parameters itself with proceeding oxidation is described empirically.

On the other hand, from the fundamental perspective that this study is taking,

carbon oxidation can be understood universally from first principles on the basis

of oxidation of a sheet of graphene. The phenomenon that is always observed on

the surface of oxidizing carbon materials is pitting [37], as introduced already in

Chapter 1. In fact, pitting is the characteristic surface consumption mode on the

atomic scale, and it has been observed experimentally not only in carbon oxidation

[3, 18, 38–43], but also in corrosion of other materials like aluminum [44–47].

It is well known that the oxidation on the atomic level occurs at so-called active

carbon sites on the material surface, where carbon atoms are missing neighboring

atoms compared to atoms in the bulk of the surface graphene sheet [48, 49]. These
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are exactly the edge carbon atoms that are discussed above, which exist at structural

defects in the carbon material. Knowing the number and distribution of those active

sites in principal allows to predict the oxidation rate of the material, provided the

transport of oxygen towards those active sites is known. This is where carbon oxida-

tion is coupled to the material structure, and this holds the key for scaling up from

pitting on the micro- and nanoscale to macroscopic reaction behavior.

Pitting itself is the result of elementary surface processes on the graphene sheet

constituting the material surface, namely oxygen adsorption and dissociation, sur-

face diffusion, surface reactions and desorption of reaction products or other species.

Understanding all these reactions in detail is a crucial part of this work and is the

main subject of Chapter 4. One particular point to notice already is that oxidation

of armchair and zigzag edge carbons have different reaction rates. This can lead to

interesting behavior such as hexagonal pits with sides being purely zigzag edges, as

was heuristically explained by Hughes, Williams, and Thomas [50].

Etch pits originate in point defects such as monovacancies. From there they start

to grow in size as oxidation proceeds. Since defects are mostly distributed randomly

across the material surface, distinct etch pits tend to be scattered randomly across

the surface.

On this basis, pitting experiments can now be interpreted.

2.2.1 Experimental Studies

As it turns out, pitting holds the key for experimentally studying carbon oxidation

on a fundamental level. Brunner and Hammerschmid [51] were the first to observe

”Brandfiguren” (etch pits) in the year 1926 when they examined the remnants of

burned graphite under an optical microscope. Interestingly, they were already mak-

ing the link to the graphite structure as the underlying cause for this phenomenon.

Figure 2.6 a) shows a photomicrograph of the observed etch pit of an observed Brand-
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figur. Later in 1962, Hennig [52] also observed etch pits on oxidized graphite under an

optical microscope, see Figure 2.6 b). In both cases, natural graphite crystals (from

Ticonderoga (NY) and Madagascar) were used as the studied material. In order to

remove as much as possible impurities and defects before oxidation, Hennig [52] ap-

plied a purification procedure which has more or less become the standard procedure,

namely repeated washing of the sample in acid and annealing at high temperatures.

This is extremely important to ensure that the pits actually result from the carbon

oxidation reactions and are not caused for instance by catalyzed reactions through

impurities [52, 53]. As a result, the observed pits can be expected to stem from ac-

tual graphite defects. The actual oxidation is carried out subsequently in a heated

furnace oven, with a controlled level of oxygen gas. The diameters of the observed

pits in those early experiments are on the order of tens of micrometers, and the pits

clearly have a hexagonal shape. Notice that in both cases, the hexagons are terracing

down into the bulk of the graphite crystal. This can be linked to the kind of defect

on which pitting is initiated here, namely screw dislocations that protrude into the

graphite crystal. In most early studies with optical microscopes, only pitting from

screw dislocations is observable, because significant pit depth is required for contrast

[54, 55]. Interestingly, notice that in Figure 2.6 a), the upper most layers are rotated

relative to the lower layers, which indicates the presence of a stacking fault defect in

the graphite crystal. While those early studies do not deliver useful quantitative data

on the dynamics of pit growth and therefore the oxidation reaction, they were used

heavily to understand and experimentally validate the existence of certain structural

defects in graphite [56, 57].

A few years later, it was again Hennig [48] who introduced the so called gold

decoration method into the study of the oxidation of graphite. After oxidation of

the graphite sample, following the same sample preparation procedure as previously,

gold atoms were condensed onto the carbon surface, which are able to diffuse across
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Figure 2.6: Early experimental observation of etch pits in graphite, captured with
optical microscopy. (a) reprinted from [51] with permission from John Wiley & Sons;
(b) reprinted from [52], Copyright (1962), with permission from Elsevier.

the basal plane surface and eventually stick to the carbon edges in the surface layers

were the pits have grown. This conceptually simple idea allowed researchers to study

the oxidation of just a few or even a single graphene layer on the surface of graphite

crystals, since the pits are clearly visible under the transition electron microscope

(TEM). Figure 2.7 shows two graphite surfaces where the etch pits have been deco-

rated with gold. Observable pit sizes with this technique are smaller, on the order of

micrometers. In contrast to the earlier studies, it can be said with certainty that these

are pits that started to grow from vacancy defects in the surface layer of the graphite

crystal. Interestingly, both circular (Figure 2.7 (a)) and hexagonal (Figure 2.7 (b))

pits have been observed that way.

Yet newer inventions on microscopic imaging eventually made the gold decoration

technique unnecessary, namely the scanning electron microscope (SEM) and scanning

tunneling microscope (STM). Figure 2.8 show etch pits recorded with SEM and STM

respectively. In Figure 2.8 (a), the pits are on the order of a hundred nanometers

in size, while Figure 2.8 (b) resolves down to just a few nanometers. Furthermore,

SEM allows to measure the depth of the pits, which delivered the first experimental
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Figure 2.7: Gold decorated etch pits visualized by transition electron microscopy.
Republished with permission of Taylor & Francis Group LLC, from [48] (a) and [58]
(b), permission conveyed through Copyright Clearance Center, Inc..

confirmations that observed etch pits truly are growing only in the single outside

graphene layer of the graphite crystal. In Figure 2.8 (a), it can be seen that pits

start to grow on the outer most layer, which uncovers the second layer which itself

has vacancy defects that eventually cause a pit to grow on that layer. This continues

indefinitely through the graphite crystal. Figure 2.8 (b) is remarkable since it clearly

shows from the alignment of the pit with respect to the graphite lattice vectors (see

Figure inset), that the edges that comprise the pit circumference are zigzag edges.

It is furthermore now possible to observe the growth of pits in-situ with the use

of environmental SEM at low pressures. While the constant exposure to the electron

beam actually affects the oxidation rate, these studies give completely new details

about the dynamics of pitting. Thomsen et al. [18] have studied the oxidation of a

single suspended graphene sheet, and provide videos in their supplementary material.

Figure 2.9 shows the transition of hexagonal pits to circular shape with somewhat

irregular or rough edges. Lastly, Figure 2.10 shows yet another transition of the pit

geometry, where pits become circular with increasing temperature.
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Figure 2.8: Etch pits observed with Scanning Electron Microscope (SEM) and Scan-
ning Tunneling Microscope (STM). (a) reprinted from [43], Copyright (2005), with
permission from Elsevier. (b) reprinted with permission from [59], Copyright 2018,
American Chemical Society.

Figure 2.9: Pit geometry transition with pressure, from hexagonal (low P ) to circular
(high P ). Reprinted with permission from [18], Copyright 2019, American Chemical
Society.

From a dynamic perspective, pit radius growth rates measured in experiments

have always been found to be constant in time. However, direct proof in form of a

highly resolved signal in time was possible only through the recent introduction of

in-situ methods [18]. It is interesting to notice that Hahn et al. [60] realized another

dynamic behavior, namely the inhibition of pit growth early during oxidation when

pits are small and are just starting out to grow from vacancy defects.
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Figure 2.10: Pit geometry transition with temperature, from hexagonal (low T ) to
circular (high T ). Reprinted from [19], with the permission of AIP Publishing.

2.2.2 Computational Studies

While there exists a relatively large number of experimental studies on pitting, fewer

computational studies have been attempted to this day. In order to prove the heuris-

tic argument made by Hughes, Williams, and Thomas [50] that armchair edge sites

need to be oxidizing much faster than zigzag edge sites in order to produce hexagonal

pits, Eklund [61] and later Brown [62] devised simple Monte Carlo computer simula-

tions that would remove either zigzag or armchair carbon sites from a graphene sheet.

The ratio between the rates of removal of either type of edge carbon was changed in

order to demonstrate that this heuristic argument in fact holds true. Later on, Dele-

houzé et al. [19] picked up this same idea in order to explain temperature dependent

shape transition of pits on that same basis. Since the underlying algorithm for these

simulations is somewhat similar to the Kinetic Monte Carlo (KMC) method that is
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used in this study, a reproduction of some of the results is provided in Appendix

A.1. Interestingly, having zigzag edge atoms be removed much faster than armchair

edge atoms does not lead to hexagonal pits with armchair edges. Instead, the pits

become circular, with roughness along the perimeter of the pit. While this gives a

good validation for the heuristic argument made by Hughes, Williams, and Thomas

[50], no further information can be gained from these studies, due to the lack of actual

chemistry that is simulated.

Using molecular dynamics, Poovathingal et al. [63] were able to simulate the

oxidation of graphite by hyperthermal atomic oxygen, using the ReaxFF force field

[64]. To the authors best knowledge, this is the first computational study where

etch pits have been simulated truly from atomic processes. However, with their

approach, only short total times can be simulated. In fact, they had to use a two-

step process to accelerate the simulation such that around a thousand collisions could

be simulated. While hyperthermal atomic oxygen may oxidize graphite fast enough

to produce etch pits with such few collisions, that is not the case with regular oxygen

gas at thermodynamic equilibrium even at temperatures up to 2000 K. At lower

temperatures, pitting can take seconds, which is far out of reach for any molecular

dynamics approach. This is where this work seeks to add value: By providing a

computational framework to simulate carbon oxidation at the atomic level to long

timescales, graphene etching and pitting of graphite are studied from first principles

in heretofore unattainable detail.

On an even more fundamental level, a number of studies have been performed in

order to identify the elementary surface reactions during carbon oxidation and the

corresponding reaction energies. The earliest studies used molecular orbital theory

[65–68] to calculate the intrinsic oxidation rates of different kinds of carbon edge

species occupied with oxygen adsorbates. More recently, the more accurate Density

Functional Theory (DFT) method has been utilized for that same purpose [69–81].
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These studies form the basis upon which the kinetic reaction mechanism for this

study is built in Chapter 4.

It should be noted that the DFT studies are performed on different level of theory,

with varying model geometries. For example, Sendt and Haynes [69–75] as well as

Montoya et al. [78] and Montoya, Mondragón, and Truong [79, 80] have performed

DFT calculations at the B3LYP level of theory, while Larciprete et al. [76, 77] and

Šljivančanin et al. [81] have used PBE functionals. This potentially affects the accu-

racy of the kinetic reaction mechanism, since energies calculated from DFT can vary

slightly when different levels of theory are used. Hence, as is described in Chapter 7,

a complete and coherent DFT study of all reactions comprising the novel mechanism

proposed in this work potentially can further increase its accuracy.
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Chapter 3 Computational Approach

This chapter describes the novel computational framework that has been devised in

this work for the study of carbon oxidation at the atomic level. First, a precise for-

mulation of the computational problem is provided in Section 3.1, and its resulting

applicability and limitations are discussed with respect to the background knowl-

edge about carbon oxidation developed in Chapter 2. After that, the methods that

comprise the novel computational framework are described on a conceptual level in

Section 3.2.

3.1 Problem Formulation

3.1.1 Problem Setup

Figure 3.1 schematically shows the physical setup of the reaction system that is stud-

ied in this work: A single-layer graphene sheet is exposed to oxygen gas from one side.

The graphene sheet is flat, and initially free of any adsorbed species. Monovacancy

defects that function as seeds for oxidation are introduced into the graphene sheet

prior to gas exposure. The gas is a homogeneous mixture of molecular and atomic

oxygen.

The temperature Tsolid of the graphene sheet is considered to be uniform, and in

thermal equilibrium with the temperature Tgas of the homogeneous gas mixture, such

that Tsolid = Tgas = T = constant. Note that T is kept constant throughout each

simulation. Simulated temperatures are ranging from T = 850 K to T = 2000 K.

If not mentioned otherwise, the gas is considered to be in chemical equilibrium,

such that the total gas pressure P = PO2 (P, T ) + PO (P, T ) = constant is given by

the sum of the partial pressures of molecular oxygen PO2 and atomic oxygen PO.
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Figure 3.1: Problem setup: graphene is oxidized in an oxygenic environment. C-
atoms are colored in grey, O-atoms are colored in red, and the three zigzag carbon
edge sites surrounding the monovacancy defect are colored in blue.
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Again, notice that P is kept constant for each simulation. The partial pressures and

therefore the composition of the gas depend on both T and P , and must be calculated

for all simulated conditions. Simulated total pressures range from P = 0.01 mbar to

P = 100 mbar.

3.1.2 Applicability and Limitations

Carbon Material From the perspective of the carbon material, it is obvious that

the problem setup mimics the conditions of an ideal graphene etching setup. In

regards to how such a setup compares to practical conditions, there are two major

points that require discussion: the isolation and flatness of the graphene sheet, as

well as its pristine nature with respect to the presence of defects and impurities.

It is well known that single-layer graphene is prone to wrinkling to various extents

for example due to intrinsic thermal fluctuations [82] or structural defects [83]. This

phenomenon itself can be utilized in clever ways for manufacturing GNR, at least on

a laboratory scale [84]. Furthermore, the curvature induced by wrinkling has been

shown to locally affect chemical reactivity [85]. Most of these findings have been made

on the basis of computer simulations of freestanding graphene, which itself is only

an idealized model for real graphene materials. However, there is no evidence that

wrinkling plays any practically significant role in either graphene etching or pitting of

graphite. In fact, it can be argued that practical setups inhibit wrinkling. Graphene

is typically either deposited on a flat solid substrate [86] or suspended between solid

support columns [18]. Graphite on the other hand intrinsically supports the outer

surface layer through intermolecular Van der Waals forces. In all those cases, the

support structure exerts attractive forces on the graphene sheet that counteract the

forces that tend to wrinkle freestanding graphene sheets in simulations. Hence, unless

experimental evidence emerges that clearly shows the effect of wrinkling, there is no

apparent reason for removing the added convenience and simplicity of considering a
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flat graphene sheet on the basis of possibly induced inaccuracy.

Moreover, as it has been shown in Chapter 2, there is no apparent difference

between carbon oxidation in the context of graphene etching and pitting of graphitic

surfaces. The surface layer of graphite reacts just like an isolated graphene sheet on its

own. Again, the reason is that the intermolecular forces between separate graphene

layers in graphite are far weaker than the forces exerted by the covalent carbon bonds

within each graphene layer. Therefore, an isolated flat single-layer graphene sheet is

expected to be an accurate model representation for both graphene and graphite

materials in real applications. Note that pitting a graphite crystal in depth, i.e.

across multiple graphene layers into the bulk graphite crystal, is not directly studied

here. While this can be viewed simply as a consecutive reaction of isolated graphene

sheets, where one layer after another starts to react once it is uncovered by pitting

of the previous layer, effects such as a curved morphology of pit bottoms [40] may

or may not be explicable on this basis, and more complex information about the

structure and defects in the graphite crystal likely needs to be taken into account.

This directly leads into the second point of discussion here regarding possible

defects and impurities in the carbon material. As mentioned in Chapter 2, a num-

ber of different types of crystallographic defects are known to exist in graphite and

graphene, and they certainly can have a combined effect on the macroscopic oxida-

tion behavior of carbon materials. However, as will be seen later, the restriction to

monovacancy defects for the fundamental study of carbon oxidation already delivers

sufficient results to explain many aspects of graphene etching and pitting. Again, it is

expected that moving from graphene into graphite, this simple approach might reach

its limits, based on the complexity in the material structure of the actual graphite

crystal that is studied. In particular, grain boundaries are structurally complex and

diverse, and their exact composition is still poorly understood, which makes a true

fundamental study of those elusive at this point.

25



With regards to impurities, i.e. the existence of foreign atoms in the carbon matrix

itself or adsorbed to its surface, it is well known that they can both speed up or slow

down the reaction [58]. The phenomenology is quite rich, it is both possible to observe

simple etching figures like hexagonal or circular pits, but channeling due to moving

catalyst particles is also often observed [53, 87]. It is however difficult to account for

impurities in a fundamental study for several reasons. First, there is a large number

of possible impurities in even more possible configurations, so accounting for each and

every possible one is elusive. Second, just including a subset that is deemed necessary

would require knowledge about their exact positions in the carbon material, which

is still not existent. Again, this is not to so much a problem for analyzing graphene

etching in the context of this work. But rather, impurities are likely to play a role in

macroscopic oxidation behavior of graphitic carbon materials.

Gas Composition This study is restricted to oxygen in molecular and atomic

form as the only reactive gas species. This assumption is made on the basis that

the carbon-oxygen reaction is at least an order of magnitude faster than the reaction

with other prominent gas species like CO2 and H2O [58]. Hence, as long as gases are

studied with oxygen as a major constituent, this problem setup yields an accurate

model.

In typical oxidative graphene etching experiments, oxygen gas is used with or

without the addition of argon [18, 19, 86]. Besides that, graphite is typically oxidized

in atmospheric air [60, 88]. Hence, for comparison with experimental results, there is

no inaccuracy expected from the restriction to simple oxygen gas.

In respect to ablation in hypersonic applications in the earth’s atmosphere, the

major reactant is atomic oxygen, which is included here. However, atomic nitrogen

can also play a role [89, 90] and therefore may need to be added to the present setup

in order to increase accuracy. Yet even more reactive gas species may be required
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for the study of ablation in other planetary systems, for instance mars where the

atmosphere consists predominantly of carbon dioxide.

Range of Conditions The low temperature cutoff of T = 850 K is chosen due

to the low temperature limit at which carbon oxidation is observable in the form of

etch pits. This limit is naturally given by the reaction kinetics. For the sake of this

argument, let’s assume that the oxidation rate is following an Arrhenius equation

such that it is proportional to temperature as oxidation rate ∝ exp(−1/T ). Hence,

the oxidation rate drastically decreases at low temperatures. The lowest temperature

at which pits have been observed is 773 K [60], with oxygen pressures corresponding

to atmospheric air. At that temperature, the sample needs to be oxidized for hours

up to days in order to create large enough pits that are detectable with microscopy.

Such long physical times are not feasible to simulate with computational methods at

the atomic level. Here, T = 850 K has been found to be the lowest temperature at

which simulations are still feasible for all considered pressures.

On the high temperature end, this study is limited through the selection of the

computational methods. This limitation comes from the kinetic reaction mechanism,

which is described in Chapter 4. The actual reason will become more clear from the

descriptions in Section 4.1, but in general it is due to the fact that more and more

reactions need to be added to the mechanism with increasing temperature. In that

respect, T = 2000 K was chosen as a reasonable compromise between complexity

of the mechanism and high enough temperatures to reach conditions relevant for

ablation. At even higher temperatures, other gas species start to play more significant

roles and would need to be included. Furthermore, the carbon structure itself can

start to undergo transformations [91, 92], which would be hard to capture with the

present computational approach.
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3.2 Selection of Computational Methodologies

To start with, it is instructive to recall at which timescales and length scales graphene

etching and pitting of graphite are taking place. Typically, one observe etch pits

in microscopic images with sizes ranging from a few nanometers (10−9 m) to a few

micrometers (10−6 m) in diameter. At the micrometer level, growth of isolated pits

becomes less likely due to the pit potentially coalescing with other pits or approaching

grain boundaries. To etch those pits, experiments are typically performed anywhere

between a few seconds to minutes or even hours in extremely slow cases (1 s-103 s).

However, the overall carbon oxidation process fundamentally results from elementary

atomic scale processes. These elementary processes are ultimately driven by atomic

motion, which takes place roughly at the timescale of picoseconds (10−12 s).

The objective of this research is to study this phenomenon computationally based

on first principles. For that purpose, a consideration of commonly used computational

methods for the study of comparable chemical surface reactions is useful. Figure 3.2

compares methods that are widely used to study heterogeneous catalysis reactions

according to the length- and time scales that are feasible to reach with current com-

putational resources.

As has been discussed, pitting occurs at nano- to micrometer length scales and

time scales on the order of seconds. From Figure 3.2 it is clear that the Kinetic

Monte Carlo (KMC) falls into that regime. KMC is directly linked to the atomic

scale through a kinetic reaction mechanism that incorporates reaction rates derived

from first principles. Such a kinetic mechanism for carbon oxidation did not exist

prior to this research, and its development is one of the major contributions of this

work. The mechanism development is discussed in detail in Chapter 4.

At the atomic level, the reaction rates are derived on the basis of transition state

theory (TST). TST builds on the concept that surface reactions are governed by the

energetics of the system which are described by a potential energy surface (PES). The
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Figure 3.2: Comparison of common computational methods for chemical surface reac-
tions according to their feasibility in time and length scales. Reprinted by permission
from Springer Nature: Multiscale Molecular Methods in Applied Chemistry by B.
Kirchner et al., Copyright (2011), book chapter [93].

PES itself can be constructed numerically through solutions to the governing quantum

mechanical system using density functional theory (DFT). DFT is the fundamental

element of this approach that links KMC to first principles.

Coming back to Figure 3.2, on even longer time or larger length scales KMC

is replaced by computational fluid dynamics (CFD). However, while it is possible to

retain atomic resolution with KMC, CFD is inherently build on continuum mechanical

formulations. Hence, it is not suited for a fundamental study of carbon oxidation at

the atomic level. On the other hand, at shorter timescales and smaller length scales,

molecular dynamics (MD) methods become more attractive relative to KMC. One

main advantage of MD versus KMC is the fact that while KMC requires a lot of

specific input about the reacting system in the form of a kinetic reaction mechanism,
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MD only needs a more or less general force field to simulate the dynamics of the

atomic system. For the oxidation of hydrocarbons, the ReaxFF force field has been

developed [64, 94], and it has been applied to study oxidation of HOPG in extreme

conditions with hyperthermal atomic oxygen[63]. However, with MD it is elusive to

study carbon oxidation with respect to graphene etching and pitting at more realistic

conditions, due to the long timescales involved.

At this point, the motivation for the selection of computational methods for this

study should be clear. All these elements that comprise this computational approach

are described in more detail on a conceptual level in the following subsections.

3.2.1 Potential Energy Surface and Density Functional Theory

The potential energy surface (PES) of an atomic system such as the one defined in

the problem setup for this work describes the system’s energy E(r) as a function

of its geometry r, i.e. the location of all involved atoms relative to each other. The

dimensionality of the PES is therefore equal to its total number of degrees of freedom.

In a system with N atoms, this typically comes down to a total of 3N−6 dimensions.

While such a large number of dimensions is impossible to visualize, it is useful to think

of the PES as an energy landscape.

To demonstrate the value of this conceptual analogy, consider the three dimen-

sional model PES shown in Figure 3.3 [95]. Each point on the surface corresponds

to a unique geometrical configuration r of the overall system, with its corresponding

energy E(r) given by the height in the vertical direction. A number of characteristic

points on the PES are denoted in Figure 3.3, namely inflection points, second order

saddle points, local minimum points and transition structures. The latter two are

significant from the standpoint of transition state theory, as it is described in the

following section. The important thing to notice here is that those points can be

found purely from geometrical considerations of the PES, and yet they carry useful
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Figure 3.3: Model potential energy surface displaying characteristic points and paths
relevant for transition state theory. Reprinted from [95] with permission from John
Wiley & Sons.

information about the physics and chemistry of the reaction system.

In the context of this computational study, it is important to be able to nu-

merically calculate E(r). Fundamentally, this requires the solution of the system’s

Schrödinger equation. The Schrödinger equation is the most fundamental description

of a quantum mechanical system, and this is where the computational approach truly

is linked to first principles. However, it is impossible to solve the Schrödinger equa-

tion for any but the smallest systems with few atoms. Instead, Density Functional

Theory (DFT) is applied to yield approximate solutions for larger systems. For that

purpose, the first fundamental step is to apply the Born-Oppenheimer approxima-

tion. On the basis that an atom’s nucleus is much heavier (and therefore slower)

than its electrons, the Born-Oppenheimer approximation states that the motion of
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the electrons can be separated from that of the nucleus. Therefore, when calculating

electronic structures and energies, atom locations, i.e. the position of the nucleii, can

be considered stationary. The crucial step in DFT that allows to further simplify

the calculations is the replacement of the wavefunction in the Schrödinger equation

with a single electron density that is only a function of three spatial coordinates and

time, regardless of the number of atoms in the system (unlike the wavefunction).

The theory behind DFT now states that if this electron density is known, the ground

state energy of the system can be derived. In other words, the energy is a function of

the density which is a function of space and time, hence the name density functional

theory.

In practice, DFT is a standard tool for the calculation of energies of systems

with many atoms, particularly in the context of surface reactions [96–98]. In this

work, no DFT calculations have actually been performed. Merely, the results of DFT

calculations in existent literature are utilized in Chapter 4 for the construction of a

kinetic reaction mechanism.

3.2.2 Transition State Theory

Graphene etching, just like many other (catalytic) surface reactions, is the result of

different types of elementary surface reactions: adsorption and dissociation of gas

species onto the graphene surface, migration of surface species through diffusive hops

between nearby carbon sites, and the desorption of surface species as oxygen and CO

oxidation products.

On a more abstract level, one can think of thes elementary processes as transitions

between local minima on the potential energy surface (PES) of the system. This idea

is sketched out in Figure 3.4. Most of the time, the system will oscillate around

the minimum basin of its current state (e.g. epoxy oxygen adsorbate is vibrating in

its current bonded location) at timescales of atomic vibrations. In rare occasions,
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Figure 3.4: Isocontours of model potential energy surface (PES) with typical trajec-
tory of a rare transition event. The dots represent the actual transition states on the
PES. Reprinted by permission from Springer Nature: Radiation Effects in Solids by
K. E. Sickafus et al., Copyright (2007), book chapter [99].

at timescales much slower than atomic vibrations, an elementary event will happen

which is able to overcome the energy barrier on the PES and push the system into

a new state (e.g. diffusive hop of an epoxy to a nearby bridge site). This transition

occurs approximately along the reaction coordinate so that the trajectory is going

through or close by transition structures on the PES. In fact, it is most likely to follow

the minimum energy path connecting the reactant state to the product state. The ef-

fect of the long oscillation periods inside a minimum basin between elementary events

is that the system looses the memory of previous state transitions. In other words, all

elementary events are completely independent of each other, and consecutive events

are uncorrelated.
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In the context of Transition State Theory (TST), the intrinsic rate of each ele-

mentary reaction can be approximated as an Arrhenius rate which takes the form

k = A exp

(
− Ea
kBT

)
, (3.1)

with a pre-exponential factor A and an activation energy Ea (both specific to each

process) as well as temperature T and Boltzmann constant kB. The parameters A and

Ea can in principle be calculated exactly from quantum mechanics. More specifically,

for surface processes A is derived as

A =

∏3N
i νmini∏3N−1
i νsadi

, (3.2)

with the normal mode frequencies νmini at the reactant state and νsadi at the transition

state [99–101]. For adsorption reactions, which are driven by the kinetic energy of

gas particles, A is instead derived from a Boltzmann distribution as described in

Section 4.2 and Appendix A.2. The activation energy Ea is simply calculated as

Ea = Esad − Emin (3.3)

i.e. the difference in energy between the transition state (saddle) and reactant state

(minimum). Both A and Ea for all elementary surface reactions used in this work are

collected from existing DFT literature.

3.2.3 Kinetic Monte Carlo

The Kinetic Monte Carlo (KMC) method inherently builds on the previously de-

scribed property of the reaction system, that consecutive events, i.e. elementary

surface reactions, are uncorrelated. In stochastic terms, the carbon oxidation pro-

cess can therefore be viewed simply as a chain of those uncorrelated events, which is

referred to as a Markov chain, and the process itself is called a Markov process [102].

The idea of KMC is now to neglect all nonreactive vibrations that occur on very

fast timescales in the system and just simulate the slower elementary processes in a
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probabilistic manner, since carbon oxidation is the result only of those elementary

processes taking place on the surface. This allows KMC to simulate to much longer

times as compared to conventional deterministic atomic simulation methods like MD,

which have to fully resolve the atomic vibrations themselves.

To understand how KMC actually works, the stochastic simulation algorithm

(SSA), which is performed within KMC to realize a Markov chain, is briefly outlined

here:

Step 1: Initialize the system in a desired state and set simulation parameters,

Step 2: Identify all elementary events i possible at the initial state, and for each

generate a random inter-arrival time

τi = − 1

ki
ln(1− u), (3.4)

based on its intrinsic rate ki and a random number u ∈ (0, 1),

Step 3: Find the elementary event i with the closest inter-arrival time τi to the current

time t, increment t by τi, and change the state of the system according to that

event,

Step 4: If t > tfinal, stop the simulation. If not, continue with step 5,

Step 5: Discard elementary events that are not possible anymore in the new state,

identify all newly possible elementary events and generate their inter-arrival

times,

Step 6: Go back to step 3.

Notice that the inter-arrival time τi is essentially an exponentially distributed random

number with a mean value of 1/ki. To be more precise, it is a sample from the

probability density function describing the probability that the event i will happen

at time t+ τi, provided that the system at time t is in a state that allows for event i
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to occur. Its form directly follows from treating the elementary processes as Poisson

processes, i.e. uncorrelated events. This algorithm goes back to Gillespie [103, 104],

and has been proven extremely useful for the stochastic simulation of chemically

reacting systems [105–107].

It should be mentioned that the more or less intuitive arguments from above can

be expressed in a more rigorous formalism in terms of a set of coupled stochastic

ordinary differential equations (ODEs). The resulting set of equations in the context

of chemically reacting systems is called chemical master equation (CME) [108]. In the

context of the CME, KMC is a method to generate a random walk on the system’s

state space that satisfies the CME. Such a random walk is also referred to as a

stochastic realization of the overall random oxidation process [106].

From a practical perspective, most of the computational effort in the SSA is

spent on step 5. Modern lattice-based KMC codes utilize search tree algorithms to

efficiently identify possible elementary events [109–113]. In those frameworks, the

reaction system (here the graphene sheet) is directly represented by a lattice. This

makes it possible to fully resolve every atom in the system. Through the search tree

structure, the neighboring structure of those atoms is explicitly accounted for. This

in the end significantly accelerates the search for new possible elementary events at

each KMC simulation step, since the elementary processes act locally by changing the

state of only a few neighboring atoms. The code selected for this study is Zacros [113,

114], which is readily available for academic use. It has been used to study a variety

of different catalytic surface reactions [115–120], and this study adds the oxidation

of graphene as yet another surface reaction to that list. Interestingly, Zacros has also

been used to study fluid transport in porous networks [121].

In order to get accurate results from KMC, all kinds of elementary processes have

to be known beforehand and provided to KMC in the form of a kinetic reaction mech-

anism, each with an intrinsic rate ki. In carbon oxidation, those are the adsorption
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and dissociation of oxygen on the graphene surface, diffusion of oxygen adsorbates,

as well as the desorption of oxygen species or the oxidation of carbon edges. The

development of this mechanism is described in Chapter 4, followed by a discussion of

its implementation in Zacros.
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Chapter 4 Kinetic Carbon Oxidation Mechanism

In this chapter, a comprehensive, atomic-scale reaction mechanism for carbon oxida-

tion is developed. Before actually discussing all elementary reactions that enter in

this mechanism (Section 4.2), it is important to first discuss the guiding principles

that lead into the construction of the mechanism, as well as to recall some of the

assumptions that are made along the way.

4.1 Guiding Principles and Assumptions

In order to construct a kinetic mechanism for graphene etching, it is essential to

have a clear understanding of the reaction system itself, and the elementary surface

reactions that take place. Based on that knowledge, a number of assumptions need to

be made in order to obtain an accurate yet feasible mechanism for KMC simulations.

This clearly has implications towards the applicability of this novel mechanism.

The present study considers only the gas-solid reaction between a single sheet

of graphene and oxygen gas, as described in Section 3.1. Any other gas species,

for instance nitrogen, is not considered in the mechanism, based on the observation

that oxygen reacts orders of magnitudes faster with carbon than other gas species

[58]. Furthermore, only CO is considered as a reaction product, since it is has been

found to be the dominant reaction product at practical reaction conditions [122].

Once desorbed, CO only weakly interacts with graphene as compared to O2, so any

possible reactions between graphene and desorbed CO are neglected. Lastly, oxygen

is contained in both atomic and molecular form, since already small concentrations of

O, which are present in chemically equilibrated oxygen gas at elevated temperatures,

play an important role in the reaction process.

The graphene sheet is considered to be flat at all times, and it is comprised
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of four different types of carbon sites: On the basal plane, carbon sites are fully

incorporated in the hexagonal structure with three carbon neighbors. In contrast,

on the edge, carbon sites are missing at least one neighboring carbon atom. They

are categorized into zigzag, armchair and dangling carbon edge sites, based on the

neighboring structure, as was described in Section 2.1. While zigzag and armchair

sites both have two remaining carbon neighbors, they differ such that the carbon

neighbors are both basal plane carbons in the case of zigzag sites, whereas armchair

sites have at least one edge site as a neighbor. Dangling carbon sites on the other

hand only have a single carbon neighbor. This model of the graphene sheet allows a

straightforward and consistent implementation in the lattice based KMC code Zacros

used for this study.

The only adsorbed surface species are oxygen adsorbates. Other adsorbates, for in-

stance hydrogen species which might be present at graphene edge sites, are neglected.

This assumption has been widely used to study edge processes in the oxidation of

carbon materials with low hydrogen content [66]. However, it should be noted that

studies exist also on carbon structures where the edges are predominantly passivated

with hydrogen, for instance Poly-Aromatic Hydrocarbons (PAH), which are of in-

terest in soot formation during combustion [123]. Hence, since this mechanism is

focusing on carbons with low H/C ratio such as graphite and graphene, it might be

inaccurate if directly applied to carbons with large H/C ratio.

Recall the intrinsic rate equation for elementary surface processes

k = A exp

(
− Ea
kBT

)
.

One interpretation for this rate equation is to view the pre-exponential factor A as

the attempt frequency to perform an elementary process, while the exponential factor

represents the probability that the process is actually performed. Hence, in order to

study carbon oxidation, only those processes that have a high enough probability to

occur at the timescale of pitting itself need to be considered. At the upper temper-
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ature limit of 2000 K, etch pits grow at least at a rate of a few tens of nanometers

per second (≈ 101 nm s−1) at low pressures, which corresponds to a removal rate of

carbon atoms on the order of hundreds of thousands of carbon atoms per second

(≈ 105 carbon atoms/s) or more. With a typical attempt frequency A ≈ 1013 s−1 for

surface processes, which is on the order of magnitude of the frequency of atomic vi-

brations for example in the C-O bond [124], this translates to a minimum probability

of around 10−8 for processes to actually play a role. This translates to a maximum

activation energy of Ea = 3 eV for thermally activated surface processes. Hence,

in the following construction of the mechanism, elementary reactions that might be

identified in the DFT literature, but have higher activation energies than Ea = 3 eV,

are not included. Note that for adsorption processes, the attempt frequency A is

given by the collision frequency of gas particles with the surface, as described in the

following section. The resulting attempt frequencies are significantly lower, on the

order of A ≈ 102 s−1 − 107 s−1, depending on the pressure. However, as will be seen

below, the activation energies are much lower than the cutoff of Ea = 3 eV, so that

the adsorption reactions are still fast enough even at low temperatures.

For oxidation of HOPG at high temperatures by a molecular beam with molecular

and atomic oxygen in the ground state [125], it has been found that oxidation occurred

predominantly from Langmuir-Hinshelwood (LH) type reactions, i.e. thermally acti-

vated oxidation reactions involving adsorbed species. In contrast, Eley-Rideal type

reactions, which directly result from a collision of gas particles with the carbon sur-

face, have found to be insignificant. For that reason, only thermal oxidation reactions

(LH) are included in this mechanism.

4.2 Mechanism Construction

Graphene etching, just like many other (catalytic) surface reactions, is the result of

different types of elementary surface reactions: adsorption and dissociation of gas
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species onto the graphene surface, migration of surface species through diffusive hops

between nearby carbon sites, and the desorption of surface species as oxygen and CO

oxidation products.

Based on their intrinsic rates k, elementary reactions are only included in the

mechanism provided they are faster or on the timescale of interest in graphene etching.

As discussed above, for temperatures below 2000 K and A = 1013 s−1, this is roughly

at Ea < 3 eV. Other reactions that may have been discussed in DFT studies are

neglected in this mechanism. However, these may be important when extending this

mechanism to even higher temperatures in the future.

For adsorption processes, A can be derived as the collision frequency kcollision,O2 of

O2 molecules with the graphene surface based on thermal equilibrium (see Appendix

A.2 for a derivation). This writes as

kcollision,O2 =
PO2Aeff

2πmO2kBT
, (4.1)

where Aeff = 2.6199 Å
2

is the effective surface area of a carbon site on the graphene

basal plane, PO2 is the partial pressure of molecular oxygen, and mO2 is the mass of an

oxygen molecule. Similarly, kcollision,O for atomic oxygen is derived by replacing the

partial pressure and particle mass accordingly. For all other elementary processes, in

cases where only Ea is reported in the literature, A is assumed to be A = 1× 1013 s−1.

This is the timescale of vibrational frequencies for example of a C-O bond in a surface

species, and it is routinely taken as the estimate for A in surface processes in KMC

studies [99].

Figure 4.1 shows all oxygen adsorbates that play a role in the carbon oxidation

process and therefore appear in the mechanism. They have been identified by a

careful cross examination of the available literature, and ultimately some trial and

error going back and forth between simulations and further refining the mechanism. It

should be noted that this is by no means a complete list of all possible configurations

an oxygen species can bind to a graphene sheet.

41



Figure 4.1: Adsorbed oxygen surface species: Molecular oxygen adsorbed to zigzag
edge O2,zz (a), zigzag semiquinone (b), ketone (c), molecular oxygen adsorbed to
armchair edge O2,ac (d), armchair semiquinone (e), epoxide (f).

The following subsections are divided into the different types of elementary surface

reactions, and all reactions entering the mechanism are discussed in detail. The

mechanism itself is listed in Table 4.1 in full. The parameters A and Ea are directly

taken from the DFT literature. In rare cases, where multiple studies can be found

on the same elementary reaction, A and Ea are taken as the average between those

studies. Furthermore, it needs to be noted that select reactions involving complex

edge geometries are not directly calculated in DFT but can be inferred from the

elementary reactions on the simpler edge geometries. This comes back to the idea

expressed in Section 2.1 about zigzag and armchair edges being the basic types of edge

structures, but they can form more complex edge structures like bays, gulfs, coves
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and fjords. The reactions where this step has been necessary are clearly marked with

an asterisk in the ”Reference” column of Table 4.1.

4.2.1 Adsorption and Dissociation

The first surface process that occurs is the adsorption of oxygen atoms and molecules

from the gas phase onto the graphene surface. Since this study considers carbon

oxidation at elevated temperatures, physisorption phenomena can be disregarded,

due to the fact that physisorbed species are stable only at low temperatures. Hence,

only chemisorption reaction are considered. Generally speaking, oxygen can either

adsorb on the basal plane or on edge sites of graphene. On carbon edges, O2 readily

chemisorbs without any activation energy in the case of zigzag edges (ADS1, this and

the following abbreviations refer to the reaction nomenclature in the mechanism in

Table 4.1) [70, 75] and a small activation energy of 0.311 eV on armchair edges (ADS2)

[69, 74]. This chemisorption first occurs in molecular form, i.e. the oxygen molecule

does not dissociate before adsorption. However, once adsorbed, the adsorbed oxygen

molecule readily dissociates and forms two neighboring semiquinones on the edge,

provided that a neighboring edge site is available for adsorption. Other pathways for

dissociation, which become important at higher edge coverage, are discussed later.

On the basal plane, O2 cannot adsorb in molecular form. Rather, the oxygen molecule

has to dissociate in the process of approaching the graphene layer, and finally form

two neighboring epoxides on the graphene surface. This dissociation requires a larger

activation energy of 1.7 eV (ADS3) [76]. On the other hand, O is much more reactive

and chemisorbs barrierless on all types of carbon sites (ADS4-7)[81].

Turning back to the adsorbed O2,zz and O2,ac species, they can dissociate in var-

ious ways. The easiest way, which was already mentioned previously, is the direct

dissociation to form to neighboring oxygen species, provided that free neighboring

edge sites exist. On zigzag sites, this dissociation into two Ozz (semiquinone) species
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is nearly barrierless (DIS1) [70, 75]. On armchair sites, the energy barrier depends on

the exact configuration. If the free neighbor is on the same ring, there is an energy

barrier of 0.694 eV (DIS2) [69], whereas dissociation to a neighbor across two rings

only takes 0.238 eV (DIS3) [74]. If no direct neighbors are free, the dissociation is

much more difficult. In fact, only a single study dealing with this high coverage case

has been found, and it is only dealing with zigzag sites [75]. The two additional

pathways identified there are the migration of the O2,zz species until it finds a free

neighbor to dissociate, and the dissociation to form an epoxide on the basal plane.

The latter is referred to as oxygen spillover. The activation energies are 0.943 eV

(DIFF2) [75] and 1.513 eV (DIS4) [75] respectively.

4.2.2 Diffusion

All surface species are able to migrate on the graphene surface, provided there are

available neighboring sites. The fastest diffusive species are epoxides on the basal

plane with activation energies of 0.73 eV (DIFF5) [76]. If epoxides are close to the

graphene edge, they can also hop to an edge site and form edge oxygen species

(DIFF8-10) [76]. Oxygen species on the edge can migrate along the edge. On armchair

edges, this takes 1.399 eV (DIFF3, DIFF6) [72] or 1.275 eV (DIFF4,DIFF12,DIFF14)

[72], depending on the armchair configuration, whereas on zigzag edges it takes

1.904 eV (DIFF1, DIFF11, DIFF13, DIFF15) [70, 72]. Furthermore, semiquinones

can diffuse to a ketone with an activation energy of 1.904 eV (DIFF7) [70, 72]. As

will become clear later, diffusion plays a key role in the mechanism in particular

for the epoxide species on the basal plane, since they can significantly accelerate

oxidation processes.
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4.2.3 Oxidation and Desorption

Oxidation, i.e. the desorption of CO species from edge sites with oxygen adsorbates,

has to be considered separately for armchair and zigzag edges in order to be able

to predict isotropic and anisotropic etching. Generally speaking, isolated Ozz and

Oac species are very slowly desorbed. On armchair sites, this takes 2.743 eV (OXac1,

OXac5) [66], and on zigzag sites even 3.622 eV (OXzz1) [66, 72]. If there are neigh-

boring edge oxygen species, the activation energies lower to 1.704 eV on armchair

sites (OXac2, OXac6, OXac7) [66]. However, by far the most significant reduction in

activation energies occurs if epoxide groups are neighboring the edge oxygen species.

Ozz removal is facilitated to 2.3 eV (OXzz2, OXzz3) [66, 72], and Oac even down to

1.829 eV (OXac3) [66] or 1.136 eV (OXac4) [66], depending on the exact neighboring

structure. This is a profoundly important characteristic of the reaction mechanism

and carbon oxidation in general. Moreover, ketones, i.e. dangling carbons with ad-

sorbed oxygen, also can desorb as CO with activation energies ranging from 2.17 eV

(OXd1) [78] down to 0.447 eV (OXd2) [78] depending on the neighboring structure

(OXd1-7) [66, 78].

In contrast, oxygen adsorbates can desorb back into the gas phase without remov-

ing carbon atoms from the graphene sheet. On the basal plane, this is theoretically

possible through breaking both C-O bonds of an epoxide. However, this takes an

activation energy of more than 3 eV and is therefore not included in the mechanism.

Instead, recombination of two nearby epoxides to form gaseous O2 is much more likely

with an activation energy of 1.13 eV (DES3) [76]. The picture on graphene edges is

somewhat similar in the sense that single oxygen species are extremely unlikely to

simply desorb away as atomic O from an edge site. However, the O2 adsorbates

can desorb before dissociation with activation energies of 1.42 eV (DES1) [75] and

1.104 eV respectively for zigzag and armchair (DES2) [69, 74].
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Table 4.1: Kinetic Reaction Mechanism

with rate constant: k = A exp (−Ea/kBT )

# Reaction A (s−1) Ea (eV) Reference

ADS1
+ O2

O

O

POAeff√
2πmO2kBT

0.000 [70, 75]

ADS2
+ O2

O

O

POAeff√
2πmO2kBT

0.311 [69, 74]

ADS3
+ O2

O

O POAeff√
2πmO2kBT

1.700 [76]

ADS4
+ O

O

POAeff√
2πmOkBT

0.0 [81]*

ADS5
+ O

O

POAeff√
2πmOkBT

0.0 [81]*

ADS6
+ O

O POAeff√
2πmOkBT

0.0 [81]

ADS7
POAeff√
2πmOkBT

0.0 [81]*

DIS1
O

O
O O

3.6× 1012 0.041 [70, 75]

DIS2

O O

O

O

1.5× 1012 0.694 [69]

DIS3
O

O

O O

3.5× 1012 0.238 [74]

DIS4 1.2× 1012 1.513 [75]

DIFF1

O O

5.4× 1012 1.904 [70, 72]
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DIFF2
O OO

O

O

O

3.0× 1011 0.943 [75]

DIFF3

O O

4.3× 1012 1.399 [72]

DIFF4

O O

3.4× 1013 1.275 [72]

DIFF5
O O

1.0× 1013 0.730 [76]

DIFF6

CO

O

4.3× 1012 1.399 [72]*

DIFF7

C

C

O

O

5.4× 1012 1.904 [70, 72]*

DIFF8

O

O

1.0× 1013 0.730 [76]*

DIFF9
O

O

1.0× 1013 0.730 [76]*

DIFF10

C

O

C

O

1.0× 1013 0.730 [76]*

DIFF11 5.4× 1012 1.904 [70, 72]*

DIFF12 3.4× 1013 1.275 [72]*

DIFF13 5.4× 1012 1.904 [70, 72]*

DIFF14 3.4× 1013 1.275 [72]*
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DIFF15 5.4× 1012 1.904 [70, 72] *

DES1
O

O

- O2 1.3× 1014 1.420 [75]

DES2
O

O

- O2 6.4× 1014 1.104 [69, 74]

DES3
O

O
- O2 1.0× 1013 1.130 [76]

OXzz1 - CO

O

1.2× 1016 3.622 [66, 72]

OXzz2 - CO

O

O

O

1.2× 1016 2.300 [66, 72]

OXzz3 - CO

O

O O

O O

1.2× 1016 2.300 [66, 72]

OXac1 - CO

O

C

1.0× 1013 2.743 [66]

OXac2 - CO

OO

C

O

1.0× 1013 1.704 [66]

OXac3 - CO

O

C

O

O

1.0× 1013 1.829 [66]

OXac4 - CO

OO

C

O

O

O

1.0× 1013 1.136 [66]

OXac5 - CO

O

CC

1.0× 1013 2.743 [66]*
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OXac6 - CO

O

CC
O

O

1.0× 1013 1.704 [66]*

OXac7 - CO

O

CC
O

O

O

O

1.0× 1013 1.704 [66]*

OXd1 - CO
C

O

1.0× 1013 2.170 [78]

OXd2 - CO

C

O

O

O

1.0× 1013 0.447 [78]

OXd3 - CO

C

O

C

O

C

O

1.0× 1013 1.227 [78]

OXd4 - CO

C

O

O O

1.0× 1013 1.860 [78]

OXd5 - CO

C

O

O O

1.0× 1013 1.860 [78]*

OXd6 - CO

O
C

1.0× 1013 1.704 [66]*

OXd7 - CO

O
C

O
O

1.0× 1013 1.829 [66]*
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Chapter 5 Kinetic Monte Carlo (KMC)

In this chapter, some of the details of the implementation of the reaction setup and

kinetic reaction mechanism are discussed. This is followed by an assessment of the

statistical analysis that has to be performed to derive accurate results from stochastic

KMC simulations.

5.1 Implementation

As mentioned previously, the computational code used in this study is Zacros [113,

114], which offers an efficient implementation of the KMC method based on Gille-

spie’s stochastic simulation algorithm [104]. It uses a binary search tree structure for

efficient bookkeeping of the possible elementary events and their inter-arrival times

during the simulation, and it provides the possibility of having locally different ac-

tivation energies for the same elementary process due to energetic interactions with

surrounding adsorbates. Zacros has been developed and is used extensively for ap-

plications in heterogeneous catalysis. In such simulations, the catalyst is modelled

as a substrate offering sites to adsorbates in a regular lattice configuration. This

formalism is often referred to as a lattice-gas model, and it is used here for modelling

the graphene sheet.

Figure 5.1 shows the lattice used to model graphene in this study. It consists of

corner sites where the carbon atoms in the graphene sheet are located, and bridge

sites where oxygen can adsorb and form epoxy adsorbates on the basal plane. The

distance between carbon atoms in the lattice has been set to 1.42 Å. Furthermore,

periodic boundary conditions are imposed in both in-plane directions. This lattice is

defined in Zacros in the simulation input.dat file. The size of the lattice used for all

simulations is 102 × 59 unit cells, which corresponds to a graphene sheet spanning
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Figure 5.1: Lattice representing graphene with corner (circle) and bridge (triangle)
sites. The corner sites are the locations where carbon atoms are located, the bridge
sites are open for adsorption of oxygen in form of epoxies. The unit cell to build
periodic geometries is also drawn.

an area of 25 nm× 25 nm. This corresponds to a total of 24072 carbon atoms in the

simulation box.

The initial monovacancy defect that is used in this work as the seed for etch pits

is located in the center of the graphene lattice, and is provided to Zacros in the

state input.dat file.

The implementation of the elementary reactions in the mechanism is mostly
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straightforward, and is given to Zacros in the mechanism input.dat file. However,

one trick has to be applied here: While a substrate generally remains unchanged

during catalysis, oxidation removes carbon atoms from the graphene sheet. Modern

KMC codes normally do not provide the possibility of adapting the lattice dynam-

ically through removal of sites. Instead, removed carbon sites have to be treated

as species that are not interacting with any elementary process. Whenever a carbon

atom is removed from an oxidation reaction, new edge sites are created, and they have

to be categorized based on the local geometry. At the end of the mechanism input.dat

file, there is a set of 16 infinitely fast ”reactions” which are denoted as EDGE1-16,

that deliver this categorization of edge carbons during the simulation without inter-

fering with the actual carbon oxidation process. This in turn now allows to track

active sites and the geometry of defect lines in the simulation, from which pitting can

be investigated.

Another trick that has been employed on the mechanism is rate constant rescaling

[126] of fast diffusion reactions to improve computational performance. The rationale

for this is fairly simple: Diffusion reactions tend to have low activation energies as

compared to all other surface reactions in the mechanism, so they are the fastest cate-

gory of processes. Hence, in the course of a simulation, most events performed will be

diffusion events. The effect of fast diffusion reactions shows physically as smoothing

out the different oxygen surface coverages, particularly on the basal plane. The large

separation of timescales can now be shrunk as long as there is no noticeable effect

on the slow dynamics, i.e. the surface coverages or even pit growth rate. While an

automated feature for this exists in Zacros based on previously published schemes

[127–129], rate constant have been manually rescaled for this work. The rescaled re-

actions are DIFF1, DIFF3-5, and DIFF11-15, with a reduction of the pre-exponential

factor A by a factor of 104.

Two more simulation files have to be provided to Zacros by default. The energet-
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ics input.dat file provides the possibility of having locally different activation energies

for the same elementary process due to energetic interactions with surrounding ad-

sorbates. These interactions are however intrinsically part of the mechanism created

in Chapter 4, and therefore the energetics input.dat file doesn’t contain any sort of

energetic interactions for this study. The simulation input.dat file is the main input

to Zacros. All gas parameters are defined in that file. For this study, chemical equilib-

rium compositions for the O2/O gas mixture have to be provided in molar fractions.

Those have been previously calculated as a function of T and P using the widely

used combustion code cantera (see [130] for an example program to calculate chemi-

cal equilibrium of a gas, with fixed T and P ). Furthermore, all surface species that

are used in the mechanism are defined in the simulation input.dat file, together with

all remaining simulation parameters such as the random seed for the pseudorandom

number generator.

A sample of all Zacros simulation files described here is provided for a simulation

at T = 1000 K and P = 1 mbar as supplementary files.

Recently, the Zacros developers have started to offer Zacros-post, a post-processing

and visualization suite for KMC simulations performed with Zacros. For this work,

an in-house suite for postprocessing and analyzing the KMC simulations has been

developed in python.

One method worth noting that is employed in the postprocessing is the removal

of artifacts inside the pit. Figure 5.2 demonstrates clearly what this means, and

why it is important. The mechanism allows in some instance for the oxidation of

carbon edge sites that cut off small carbon chains or artifacts inside the pit. When

the pit is later analyzed on the basis of the carbon edge sites, those artifacts that

remain inside the pit need to be sorted out, in order to get accurate results on

the edge sites of that constitute the pit boundary only. Physically, it is somewhat

questionable that longer carbon chains such as the one in Figure 5.2 (a) can actually

53



Figure 5.2: Two consecutive simulation steps demonstrating the removal of artifacts.
In the first step (a), the semiquinone indicated with a green arrow is removed due to
oxidation. In the second step (b), the artifact remaining inside the pit (green circle)
is removed during postprocessing. For a description of the coloring of atoms, refer to
Figure 6.1.

be stable. However, potential reconfiguration of such atoms is not straightforward,

and capturing it within a lattice-based KMC approach is very difficult and would

require a more or less complex mechanism on its own.

5.2 Statistical Analysis

In order to demonstrate the statistical analysis that is necessary to obtain accurate

results from KMC simulations, a number of simulations have been performed early in

this study, with a very simplified mechanism as described in [131]. A pristine graphene

sheet was considered without any defects, such that the only processes that occur are

dissociative adsorption of molecular oxygen to form two epoxies on the surface, and

the recombinative desorption of two epoxies back to molecular oxygen in the gas

phase. The result is a quickly established constant level of oxygen coverage (which is

much higher than the basal plane coverages encountered later due to the simplified
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Figure 5.3: Sample trajectories for the evolution of oxygen coverage. The random
seeds have been varied from 1 to 5.

nature of the mechanism here). Figure 5.3 shows the evolution of the oxygen coverage

for five 5 different simulation trajectories. All simulation trajectories are run with

the same parameters, except that the random seed is changed in order to generate a

different sequence of random numbers in each trajectory. This demonstrates clearly

the stochastic nature of KMC simulations.

The oxygen coverages in Figure 5.3 have similar forms, such that they quickly

approach a steady state level and then continue to fluctuate around that steady state.

This is also true for most of the results that are calculated from the full mechanism

in Chapter 6. It is interesting that the magnitude of fluctuations stays constant

throughout the simulations reported here. This is due to the fact that no carbon

atoms are ever removed, so the oxygen coverage is always calculated on the same

graphene sheet with a constant number of atoms. In the later simulations, the trend

is often for the fluctuations to decrease in amplitude with growing pit size. This is

particularly true for edge coverages, since the number of edge carbons monotonically
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Figure 5.4: Dependence of the mean oxygen coverage and standard deviation (black
bars) on size of the simulation domain in terms of unit cells. 5 different trajectories
are displayed at each domain size.

increases and therefore delivers a more accurate basis for calculating the coverage.

To further strengthen this argument, Figure 5.4 shows how the fluctuations in this

simple system depends also on the domain size, i.e. the number of carbon atoms. As

was discussed, the amplitude of the fluctuations keeps decreasing with an increasing

number of carbon atoms.

However, notice in Figure 5.4 that although the fluctuations within each trajec-

tory decrease in amplitude, the variance between the mean value of the steady state

oxygen coverage remains essentially constant. This in turn shows that it is extremely

important to sample multiple KMC simulation trajectories for the same parameters,

in order to increase the accuracy of results like mean coverages. Obviously, the more

trajectories are considered, the better the statistical accuracy, if as in this case the

mean value between the results of all trajectories is taken.

Hence, for the simulations that follow, a reasonable balance has to be found

between feasibility and statistical accuracy. For that purpose, a lattice size of 102×59
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unit cells has been selected, and a total of 16 trajectories are performed for each set

of parameters. Furthermore, simulations are always run until the pit reaches the

boundary, to ensure the longest possible simulated times.
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Chapter 6 Results

A detailed computational study of graphene etching and pitting of graphitic carbon

surfaces is performed in this chapter. Section 6.1 considers a single typical KMC

simulation in order to demonstrate the kinds of results that this novel computational

study delivers. After that, in Section 6.2 pitting is assessed in detail on the basis

of KMC simulations performed over a wide range of conditions, and the results are

interpreted on the fundamental basis of the underlying kinetic mechanism.

6.1 Example Simulation Analysis

The selected representative simulation has been performed with conditions of T =

1000 K and P = 1 mbar, and system parameters as described in the previous chapters.

For reference, at these conditions, the molar fraction of atomic oxygen XO ≈ 5× 10−9

is extremely low, so the gas is almost purely molecular oxygen.

To start with, Figure 6.1 shows the simulated pit at the end of the simulation

run, where the pit has reached the boundary of the simulation box at the center

left. The snapshot corresponds to a final physical time of tfinal ≈ 1.457 s, which was

reached after roughly 4.8 million KMC simulation steps. A video demonstrating the

growth of the pit throughout the simulation is provided as supplementary material

(Supplementary Video SV1). The coloring of the sites is explained in detail in the

caption of Figure 6.1, and is kept consistent with all simulation snapshots and videos

that are included in the remainder of this work.

The following subsections describe the information that can be gathered from this

and all other simulations that are part of this study.
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Figure 6.1: Simulation snapshot of etch pit at T = 1000 K and P = 1 mbar. Basal
carbon sites are colored in black, with the connecting bridge sites colored in grey.
Zigzag edge sites and the connecting bridge sites are colored in bright blue, all other
carbon and bridge edge sites are colored in dark blue (armchair and dangling). Sites
with oxygen adsorbates are colored in red. On edge sites, only the carbon site where
the oxygen is adsorbed is colored in red, while on the basal plane, both carbon sites
and the connecting bridge site that compose the epoxide adsorbate are colored in red.
A full video of this simulation is provided as Supplementary Video SV1.
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6.1.1 Pit Radius and Growthrate

An obvious result of interest, that can be directly compared to experimental data for

validation purposes, is the growth rate of the pit. To do that, the evolution of the

pit radius r(t) over time t needs to be considered. The pit radius r(t) is calculated as

the mean distance of all edge carbon sites to the location of the initial monovacancy,

i.e. the center of the pit. If we denote the distance of edge carbon site i to the initial

monovacancy as di,center, this writes as

r(t) =

∑N(t)
i=1 di,center
N(t)

,

where N(t) is the total number of edge carbon sites at time t. For instance, at

the beginning of each simulation, N(t = 0) = 3, because there are three zigzag

carbon edge sites surrounding the monovacancy defect. All of them have the same

distance to the monovacancy, namely the carbon-carbon bond length in graphene,

such that r(t = 0) = 0.142 nm. Note that instead of choosing the position of the

initial monovacancy defect as the static center of the pit, the pit center could also

be calculated at each step as the mean position of all carbon edge sites. For the

calculation of the pit radius, this could be important if the position of the center of

the pit undergoes meaningful changes during oxidation. However, as is demonstrated

in Appendix A.3, for the example simulation considered in this section, which shows

a shift of the pit center to the north west direction in Figure 6.1, the calculated radii

only differ insignificantly.

Figure 6.2 shows the evolution of the pit radius in this example simulation. It

is obvious that the pit doesn’t immediately start to grow at a constant growth rate

in time. In fact, for t < 0.5 s, the pit barely grows at all. Notice that the initial

radius r(t = 0) is nonzero as was explained before. The pitting rate then speeds

up considerably between t = 0.5 s to t = 1 s, until it reaches the regime of constant

pit growth rate at t > 1 s. This initial transit phase from inhibited pit growth to
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Inhibition Time

Figure 6.2: Pit radius evolution for a pit simulated at T = 1000 K and P = 1 mbar,
plotted against time (blue) and KMC simulation steps (green). Linear regression is
applied to a late part of the time signal (red line, procedure explained in detail in
text). The inhibition time for pit growth is found as the time where the continuation
of the fit line reaches zero radius.

finally reaching the regime of constant pit growth rate is only rarely recognized in

experimental studies due to reasons that will be discussed in Section 6.2.4. For now

it is sufficient to acknowledge this as a real dynamic phenomenon present in pitting.

For later analysis purposes, there are now two quantities that can deduced from

this graph, namely the pit growth rate in the regime of constant fast growth, as

well as the inhibition time after which pitting enters the fast growth regime. The

simulations generally show that the onset of fast pit growth is depending on the size
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of the pit, and fast growth is reached at latest at a pit size of r = 5 nm. There will be

a longer discussion on the underlying mechanistic reason for this later in this chapter.

However, for now it is important to notice that simulations are carried out to pit sizes

of roughly r(tfinal) = 10 nm, so there is a long enough time spent in the fast growth

regime. In fact, with respect to the KMC simulation steps, it can be seen that more

than half of the simulation steps are performed in that regime, when r > 5 nm. This

is found universally throughout all simulated conditions.

In order to accurately calculate the pit growth rate in an automated way, the

following procedure has been developed: The pit growth rate is calculated as the slope

of a least-square linear regression through the time evolution of r(t) corresponding

to the second half of each simulation based on the number of KMC steps. Looking

at Figure 6.2, this linear fir corresponds to the solid red line, so it can be seen that

taking the last half of the simulation in terms of KMC steps does not necessarily

also correspond to the second half of the time evolution. In this particular case, it

is less than the last third of the time signal. The R-squared value of those linear

regression fits to the pit growth rate are no less than 0.95, and larger than 0.99 at

most simulated conditions. This shows that this procedure of calculating the growth

rate from simulations is generally very accurate.

The linear fit is furthermore utilized to infer the inhibition time. As it is shown in

Figure 6.2, the fit curve can be extended to earlier times (dotted red line), where it

intersects the time axis (r = 0) at some finite non-zero time tintersect. This tintersect is

directly taken as the inhibition time tinhibition for the pit growth. Note that tinhibition

can appear negative in cases where pit growth more or less instantly sets in (high T ,

high P ), as a result of the statistical nature of the fit. However, the magnitude of

tinhibition in those cases is negligible and of no physical relevance, so that tinhibition = 0

can safely be assigned for those cases. An example for such a case is provided in

Appendix A.4.

62



6.1.2 Oxygen Surface Coverages

Another result of interest is the coverage of the graphene sheet with oxygen adsor-

bates. It is important here to differentiate directly between the basal plane and the

edge, because those play different roles in the oxidation process. The coverages are

calculated on a per site basis. This is one of the key advantages that this atomically

resolved simulation approach offers, because all information about the carbon sites

and adsorbates in system is accessible at all times. Taking for example the coverage

of zigzag carbon edge sites θzigzagO (t), it is calculated as

θzigzagO (t) =
number of zigzag carbon edge sites covered with oxygen

total number of carbon zigzag edge sites
.

This is similar for θbasalO , θarmchairO and θdanglingO , with the number of basal, armchair

and dangling sites respectively. Notice that θzigzagO (t) is time dependent as the number

of carbon sites of each type changes with pit growth, and the oxygen adsorbates are

mobile due to diffusion, or can desorb altogether with or without removing carbon

sites from the graphene sheet. In the case of θedgeO , the zigzag, armchair and dangling

coverages are aggregated, such that

θedgeO (t) =
number of all carbon edge sites combined, covered with oxygen

total number of carbon edge sites
.

Note that a single epoxide on the basal plane covers two carbon sites, which is in-

trinsically taken into account by calculating the coverage on the basis of carbon sites

rather than adsorbed species. Similarly, if an edge site is covered with molecular

oxygen, it is only counted as a single covered site.

Figure 6.3 show the evolution of all edge coverages with time, i.e. θedgeO (t),

θzigzagO (t), θarmchairO (t) and θdanglingO (t). Initially, when t < 0.5 s, large fluctuations

can be seen. This is due to the low number of carbon sites that go into the cal-

culations of those quantities. However, as the pit begins to grow more rapidly at

t > 0.5 s, the coverages quickly converge to steady state with only small remaining
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Figure 6.3: Time evolution of edge coverages. All coverages asymptotically approach
a steady state coverage at late times where the pit has grown to a significant size.

fluctuations. Again, the reason for this behavior is simply due to the size of the pit

and therefore the number of edge sites that are taken into account for calculating the

coverage terms.

To quantify the edge coverages for later analysis, a procedure similar to the pit

growth rate is followed. Again, only the second half of the simulation in terms of

KMC steps is considered, i.e. the regime of fast pit growth at a constant rate. The

difference is that instead of a least-square linear regression to the radius, a simple

weighted average with time is performed in order to find the steady state values for

the coverages. This holds for all different types of edge coverages, over all simulated

conditions.

On the other hand, Figure 6.4 shows the time evolution of the basal plane coverage
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Figure 6.4: Time evolution of basal plane coverage. The coverage increases with time
as the pit grows in size and more oxygen spills over from the edge to the basal plane.

θbasalO (t). Clearly, it behaves much different to the edge coverages. First of all, notice

that its magnitude is much smaller than that of the edge coverages. The reason for

this is discussed later. From a dynamic perspective, it is interesting to note that

θbasalO (t) is increasing with time and therefore with the size of the pit. This indicates

that spillover of adsorbed oxygen species from the highly covered edges to the basal

plane is playing an important role, as will be seen later.

For later analysis, it is again important to find a single quantity to denote θbasalO .

One straightforward way would be to use the basal plane coverage θbasalO (t = tfinal)

at the end of the simulation. However, since the fluctuations increase with increas-

ing time, instead a weighted mean value is calculated similar to the procedure of

calculating steady state values of edge coverages. While this is not ideal and some-

what undermines the dynamic nature of θbasalO (t) in this particular case, it will be
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seen that spillover effects are not significant across all conditions. For example, Ap-

pendix A.5 shows the basal plane coverage evolution at T = 2000 K and P = 1 mbar,

where a steady state is reached almost instantly. In the end, this procedure provides

reasonably accurate data that proves itself useful in later analysis.

6.1.3 Carbon Edge Site Ratios (Edgeratios)

The composition of the edge in terms of it’s individual types of edge sites is of interest

in analyzing the pit geometry. Similarly to the oxygen coverages, these can be simply

inferred by counting on a per site basis. For instance, the zigzag edgeratio γzigzag(t)

can be calculated as

γzigzag(t) =
number of zigzag carbon edge sites

total number of carbon edge sites
.

A similar calculation follows for the armchair edgeratio γarmchair(t) and dangling

edgeratio γdangling(t).

Figure 6.5 shows the evolution of those edgeratios with time. They show the

same dynamic behavior as the edge coverages. Initially, before significant pitting

occurs starts at t = 0.5 s, fluctuations are large. Interestingly, it can be seen that

γzigzag(t = 0) = 1, because there are only three edge sites surrounding the initial

monovacancy, and they are all zigzag sites. Then, as the pit grows larger, more sites

are taken into account in their calculation, which decreases the magnitude of the

fluctuations and converges the edgeratios to a steady state.

Again, the corresponding steady state values are calculated from a weighted aver-

age of the second half of the simulation, as is the case with the coverages. These are

utilized as a quantitative measure for determining pit geometries in later analysis.

6.1.4 Gas Production and Consumption

It is interesting to consider how pitting actually consumes oxygen from the gas phase

and in return releases CO as an oxidation product. Figure 6.6 shows the time evo-
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Figure 6.5: Time evolution of edgeratios. All edgeratios asymptotically approach a
steady state coverage at late times where the pit has grown to a significant size.

lution of the net number of species that have been produced or consumed from the

graphene sheet. First, notice that negative numbers denote species consumption,

whereas positive numbers denote species production. Clearly, the production of CO

seems to be balanced with the consumption of O2, while O doesn’t show a significant

change. The behavior of atomic oxygen can simply be explained from the fact that

at the simulated conditions the molar fraction of atomic oxygen XO ≈ 5× 10−9 is

vanishingly small. Hence, most oxygen that is turned into CO comes from molecular

oxygen. In fact, the number of CO species is nearly twice as large as the number of

O2 consumed. There is however a small remaining difference in that balance, namely

the oxygen adsorbates that remain on the graphene surface. Note that under different

conditions, significant amounts of O can be consumed and even produce a net gain in
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Figure 6.6: Gas species evolution: net number of molecular and atomic oxygen con-
sumed, and carbon monoxide produced as a function of time.

O2. Yet even more interestingly, cases exist where initially atomic oxygen produces

a net in O2, which eventually gets turned into a net consumption again by faster

consumption due to a larger pit size (see Appendix A.6).

Considering the shape of the CO evolution, it clearly follows an exponential

growth. In fact, it is roughly quadratic. This is because the production of CO

directly correlates with pit growth. As has been shown in Figure 6.2, the pit grows

linearly in time with a constant rate. This in turn means that the area of the pit

grows roughly quadratically, assuming a circular pit shape. The production of each

CO species through oxidation increases the pit area by an equal amount. This incre-

mental area is basically the surface area of a single carbon atom in the graphene sheet,

which equals about 2.6199 Å. Hence, the quadratic growth of the CO production is
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a consequence of linear pit growth.

This is an interesting thought to bare in mind, considering that usually carbon

materials have somewhat constant macroscopic oxidation rates at otherwise constant

conditions. Obviously, pitting cannot directly yield an explanation for this. Hence,

mesoscopic models will likely need to be developed to predict macroscopic reaction

rates from first principles.

6.2 Pitting Results

Before discussing the results with respect to the dynamics and geometry of pitting,

it is instructive to consider the coverages, as they provide a strong basis for under-

standing those results.

6.2.1 Surface Coverage

Figure 6.7 shows the basal plane oxygen coverage θbasalO and edge oxygen coverage

θedgeO as a function of both temperature and pressure. The first thing to notice is

that the basal plane coverage is extremely small (below one percent at almost all

conditions), whereas the edge is nearly fully covered at low temperatures, and starts

to free up with increasing temperature. The coverage is obviously a result of the

balance between processes that produce adsorbates, such as adsorption and diffusion,

and ones that remove adsorbates, such as desorption and oxidation.

Origin of Epoxide Adsorbates In order to understand the basal plane coverage,

Figure 6.8 gives an overview of the processes from which epoxide adsorbates originate.

Figure 6.8 (a) shows that the dissociative adsorption of molecular oxygen on the basal

plane is only contributing significantly at high pressures. This is obviously due to

the adsorption rate being directly proportional to the pressure, and the activation

energy of this process being fairly high. In contrast, adsorption of atomic oxygen,
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Figure 6.7: Oxygen coverage of the basal plane (a) and edge sites (b) as functions
of temperature and pressure. The errorbars correspond to the standard deviation
between all simulated trajectories for each case.
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which is shown in Figure 6.8 (b), occurs without an energy barrier. However, the

amount of atomic oxygen in chemical equilibrium is so low that this process never

occurs at low temperatures. At higher temperatures, the mass fraction of atomic

oxygen increases, and this type of adsorption quickly takes a dominating role. Lastly,

Figure 6.8 (c), shows the role of the spillover mechanism. At low pressures and

low temperatures, spillover is clearly the dominant epoxide forming process. Notice

that the non-monotonic behavior of molecular oxygen adsorption in Figure 6.8(a) is

caused by the onset of atomic oxygen adsorption at relatively higher temperatures as

compared to the decrease in spillover.

Linking this back to the basal plane coverage in Figure 6.7 (a), it is clear that the

coverage is close to zero at low temperatures, since the only processes occurring are

spillover (or dissociative adsorption at high pressure), which are very slow due to their

high activation energies. Any epoxide species produced in that regime get quickly

consumed either in an oxidation or desorption reaction. With increasing temperature,

the small increase in θbasalO can be attested to the spillover reactions, which then start

to rapidly decline between 1000 K-1150 K, causing the rapid decrease to intermediate

minima in θbasalO . Only after atomic oxygen becomes more important at temperatures

higher than 1100 K does the basal plane coverage increase sharply with increasing

temperature.

Edge Coverage The edge coverage has a clear tendency to decrease from high

coverage at low temperatures to zero coverage at high temperatures, irrespective of

the pressure. This trend even holds when considering distinctly the coverages of

zigzag, armchair and dangling edge carbons, as it is shown in Figure 6.9.

The reason for this universal behavior is simple. As long as oxidation reactions

are slow compared to adsorption, the carbon edges are almost fully covered with

oxygen. This stems from the close to barrierless adsorption on edge sites, which even
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Figure 6.8: (Continued on the following page.)
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Figure 6.8: Ratios of basal plane oxygen produced from O2 adsorption (a), O adsorp-
tion (b) and spillover (c) as functions of temperature and pressure. The sum of all
three ratios (a,b,c) equals one. The errorbars correspond to the standard deviation
between all simulated trajectories for each case.

ensures fast adsorption at low pressures. Increasing temperatures disproportionately

accelerates oxidation reactions, which eventually depletes oxygen from edge carbons

faster than they can arrive at the edge.

The intermediate plateau suggests that there is a shift in the dominant type of

oxidation reactions at around 1000 K-1100 K.

6.2.2 Pit Growth Rate

Enough background knowledge has been collected to consider now the actual pit

growth rates. Figure Figure 6.10 shows these as a function of temperature for different

pressures. As was the case with all the coverages reported above, the errorbars show

the variability of the etchrate between different simulated trajectories, which is a

result of the probabilistic nature of KMC. It is fair to say that these errors that stem

from the stochastic nature of KMC are generally negligible.
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Figure 6.9: (Continued on the following page.)
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Figure 6.9: Oxygen coverage of zigzag (a), armchair (b) and dangling edge sites (c)
as functions of temperature and pressure. The errorbars correspond to the standard
deviation between all simulated trajectories for each case.

The simulated growth rates compare only moderately well with experimental re-

sults. Obviously, the qualitative trends of increasing growth rates with higher tem-

perature and pressure are fully captured. However, on a quantitative level there are

regions with varying degree of agreement. Generally, the simulated rates overpre-

dict the experimental rates. It seems that at higher temperatures, KMC produces

rates that are at least on the same order of magnitude, which is great agreement

considering that the kinetic mechanism has not undergone any fine tuning within

the inherent uncertainty limit of DFT derived reaction rates. This point is discussed

in more detail in Section 7.3. However, the weak agreement at lower temperatures

is a point for concern. In the worst case (low T and low P ), the simulated growth

rate differs from experimental rates by up to two orders of magnitude. It is not

clear weather such a large margin can be resolved purely by tweaking reaction rates,

or if the mechanism itself is not accurate enough at those conditions. It should be
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Figure 6.10: Pit growth rates as a function of temperature and pressure. The error-
bars correspond to the standard deviation between all simulated trajectories for each
case. Experimental pit growth rates are included with squared boxes. The reference
keys are Thomsen2019 [18], Oberhuber2015 [132], Dobrik2013 [88], Hahn2005 [43],
Hahn1999 [60].

noted however, that experimental results themselves show considerable variance in

those regimes (see Dobrik2013 vs. Hahn1999 in Figure 6.10). Besides, due to the

Arrhenius dependence of the intrinsic rates of elementary reactions on temperature,

uncertainties in either the pre-exponential factors or activation energies have a more

pronounced effect at lower temperatures, which may explain why the discrepancies

are larger at low temperatures.

Clearly, more work needs to be done on this issue both from a experimental

perspective, as well as from the viewpoint of this study. It can be hoped that the

addition of this computational study in this context facilitates a better assessment
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of the experimental data itself. Nevertheless, the fact that this first attempt on

simulating actual pitting rates already produces moderately reasonable quantitative

results shows the validity of the computational approach and motivates refinement

of this computational study in the future. To the authors best knowledge, this is

the first time that graphene etching has been simulated in long enough timescales to

calculate those rates, with a comprehensive mechanism based on first principles.

Now follows a discussion of the simulated pitting rates on the basis of the kinetic

mechanism. Looking at Figure 6.10, it can be seen that at the low temperature end,

the etchrate is completely independent of pressure. Furthermore, the edge coverage

in those conditions is very high. This clearly indicates that graphene etching is rate

limited by the elementary oxidation reactions in this regime. Even at the lowest

pressure, transport of oxygen to the edge through adsorption reactions is much faster

than oxidation reactions, which causes the edge oxygen coverage to stay high.

Considering now the temperature increase up to around 1100 K, two notable things

stand out. First of, the rate at which the pit growth rate increases with temperature

quickly drops off at the low pressure already at temperatures below 900 K, whereas

the intermediate pressure starts to fall off at 950 K. This coincides with a drop in

the edge coverage, and can be particularly well seen in Figure 6.9 (a) for the zigzag

coverage. Obviously, this behavior is dictated by the relative rate of adsorption reac-

tions to oxidation reactions. Oxidation reaction have much larger activation energies

as adsorption reactions on edge carbon sites. Hence, they speed up much faster with

an increase in temperature. The drop off from the regime where graphene etching is

purely rate limited by oxidation reactions is therefore dependent on both the pres-

sure and temperature. The higher the pressure, the higher a temperature it takes

for oxidation reactions to compete in speed with adsorption reactions on the edge.

Furthermore, the negative slope that is observed in Figure 6.10 gives an indication

to which type of elementary oxidation reaction is actually rate limiting. Looking
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back at the mechanism itself, one can see that oxidation events on zigzag edges

tend to have the highest activation energy, ranging from 3.622 eV (OXzz1) to 2.3 eV

(OXzz2,OXzz3). The difference comes from the possible reduction of activation en-

ergy due to nearby epoxies on the basal plane. From the high pressure curve, a linear

regression through the temperature range T = 850 K− 1000 K returns an activation

energy of roughly 2.8 eV. This clearly demonstrates that zigzag oxidation events are

the rate limiting factor. Figure 6.11 confirms this, since only a small percentage of

all oxidation events at low temperatures and pressures are zigzag oxidation events.

Furthermore, Figure 6.12 shows that most oxidation events in this regime are sped up

through nearby oxygen, which explains the intermediate apparent activation energy

of 2.8 eV.

In the temperature range T = 1100 K − 1250 K, the pit growth rates show the

same qualitative temperature trend. The slope is significantly lower than in the low

temperature regime, which shows that zigzag oxidation reactions are no longer solely

rate limiting. Clearly, there is now a large dependence on the pressure, which stems

from the adsorption reactions.

Looking at the low pressure curve, there is a constant pit growth rate observed

between 1250 K and 1600 K. Similarly, such a regime of constant pit growth rates

is present in the intermediate pressure curve, ranging from T = 1500 K − 1750 K.

In those parameter regimes, graphene etching is truly rate limited by adsorption

of oxygen on the edge. Those adsorption reactions are approximately barrierless,

which explains the constant pit growth rate. In contrast, the oxidation reactions

have much higher activation energies. However, the temperature is high enough that

the resulting reaction probability is high. This behavior is seemingly not encountered

in the high pressure curve, since the rates of adsorption reactions, which are directly

proportional with the pressure, are still fast enough to compete with oxidation.

Finally, the speed up of the pit growth rate at the high temperature end is caused
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Figure 6.11: (Continued on the following page.)
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Figure 6.11: Ratios of zigzag (a), armchair (b) and dangling (c) oxidation events
performed as functions of temperature and pressure. The errorbars correspond to the
standard deviation between all simulated trajectories for each case.

by the increased presence of atomic oxygen. It can be seen in Figure 6.7 that while

the edge coverage is now approaching zero for all pressures due to faster and faster

oxidation, the basal plane coverage starts to noticeably increase. Hence, epoxies that

are formed over the vast surface of the graphene sheet are now able to diffuse to edge

carbons, where they are quickly removed via fast oxidation.

6.2.3 Pit Geometry

Figure 6.13 shows the zigzag edgeratio γzigzag as a function of both temperature

and pressure. Furthermore, Figure 6.14 shows two simulated etch pits at conditions

relating to hexagonal pit growth (a) and circular pit growth (b). Videos showing the

full growth of these simulated etch pits are provided in the supplementary material

(Supplementary Videos SV1 and SV2). First of all, notice that the edges around the

hexagonal pit are almost all zigzag edges. This can also be directly seen in Figure 6.13,
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Figure 6.12: (Continued on the following page.)
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Figure 6.12: Ratios of oxidation events performed with nearby oxygen on the basal
plane (a), nearby oxygen on the edge (b) and without nearby oxygen (c) as functions
of temperature and pressure. The errorbars correspond to the standard deviation
between all simulated trajectories for each case.

where γzigzag is very high at low temperatures and pressures. In contrast, the circular

pit has a very irregular edge, where all edge carbon types are present at roughly equal

amounts. Notice that when pits are observed to be circular (or cylindrical) on the

macroscale of experiments, the irregularity or roughness along the edge is present, but

likely too small to be visually detectable, such that the edge can actually appear to be

smooth. However, in the context of graphene nanoribbons, smoothness of graphene

edges is required at the atomic level, and this can only be found in hexagonal pits.

From Figure 6.13, it is obvious that pits tend to become circular with increasing

temperature. Furthermore, at a constant temperature below 1100 K, an increase in

pressure also leads to lower zigzag edgeratio and therefore circular pits. Qualitatively,

this is in agreement with the two experiments presented in Section 2.2. Thomsen et al.

[18] have observed a pressure dependent transition from hexagonal to circular pits at

a constant temperature of 1073 K. The pressure transition was observed in the range
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Figure 6.13: Zigzag edgeratio as a function of temperature and pressure. The error-
bars correspond to the standard deviation between all simulated trajectories for each
case.

of 0.055 mbar-6 mbar Delehouzé et al. [19] have reported a temperature dependent

transition at a constant oxygen pressure of 1.4 mbar. The temperature transition was

observed in the range of 1018 K-1053 K. The transition in the present KMC simula-

tions has been found to be not as clear as the experiments may suggest. In general

it can be said that all pits with zigzag edgeratios γzigzag >= 0.7 appear hexagonal in

the simulations. Looking for example at T = 1073 K in Figure 6.13, the zigzag edge

ratio is roughly γzigzag = 0.6. At those conditions, different trajectories can produce

both hexagonal and circular pits in the simulation at the low pressure. However,

there is a clear tendency of pits to only grow circular at the higher pressures at this

temperature. Hence, this agrees very well with the Thomsen et al. [18] experiment.

On the other hand, the temperature transition reported by Delehouzé et al. [19] oc-
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Figure 6.14: Geometry comparison of simulated etch pits: hexagonal shape with
smooth zigzag carbon edges at T = 850 K, P = 0.01 mbar (a); circular shape with
rough carbon edges at T = 1500 K, P = 100 mbar (b). A full videos of these simula-
tions are provided as Supplementary Video SV2 (a) and Supplementary Video SV3
(b).
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curs at considerably lower temperatures in the simulations, between 900 K-1000 K.

Again, as was the case with the simulated pit growth rates, this is not in perfect

agreement with available experimental data. But there is undoubtedly better agree-

ment in the predicted pit geometries. This is further evidence for the validity of this

novel computational framework to study graphene etching.

As was explained previously in Chapter 2, anisotropy (hexagonal pits) has been

explained heuristically with removal of zigzag and armchair sites respectively at dif-

ferent rates. If armchair sites are removed much faster than zigzag sites, hexagons are

created. Contrary, if zigzag sites are removed faster, the pits are isotropic (circular)

with different degree of roughness along the edge. It is therefore necessary to consider

how the oxidation rate on zigzag sites depends on the reaction conditions, relative to

the armchair rates. Table 6.2 shows the key reactions in that respect. Generally, it

can be seen that zigzag oxidation (OXzz1, OXzz2) has much higher activation ener-

gies than armchair oxidation (OXac1, OXac3). This already points to the fact that

at armchair oxidation events are faster than zigzag oxidation events. The Arrhenius

behavior of elementary reaction rates now explains the observed temperature depen-

dence. Differences in activation energies have a much more pronounced effect on the

reaction rate at lower temperatures. Hence, zigzag oxidation is relatively speaking

much slower than armchair oxidation at lower temperatures than at high tempera-

tures. This relative change however is enough to cause a transition from hexagonal

pits, where zigzag oxidation is much slower, to circular pits, where zigzag oxidation

is not that much slower anymore.

Table 6.2: Selected reactions of importance for pit geometry.

# Reaction A (s−1) Ea (eV)

OXzz1 - CO

O

1.2× 1016 3.622
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OXzz2 - CO

O

O

O

1.2× 1016 2.300

OXac1 - CO

O

C

1.0× 1013 2.743

OXac3 - CO

O

C

O

O

1.0× 1013 1.829

In order to understand what role the pressure plays, one needs to consider the

effect of epoxides on the basal plane. The higher the pressure, the higher the epoxide

coverage. This in turn has an effect on the zigzag and armchair oxidation rates. It

can be seen in Table 6.2 that epoxides lower the activation energy for zigzag oxidation

by 1.322 eV, whereas the armchair oxidation rate is only lowered by 0.914 eV. Hence,

epoxides speed up zigzag oxidation more than they speed up armchair oxidation. This

in turn means that the presence of epoxides tends to make pits more circular rather

than hexagonal. And this is ultimately why extremely low pressures are necessary

for anisotropic (hexagonal) etching.

6.2.4 Pitting Inhibition

Few studies have reported that etching from a point defect in the graphene basal

plane only starts after a finite inhibition time. For example, Hahn et al. [60] reports

inhibition times on the order of seconds at 833 K and air at atmospheric pressure.

An explanation of this phenomenon has not heretofore been given.

The simulated inhibition times are shown in Figure 6.15 as a function of tempera-

ture and pressure. Clearly, reasonably long inhibition times that make pit inhibition

actually measurable in experiments are only present at low temperatures and pres-
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Figure 6.15: Pit growth inhibition time as a function of temperature and pressure.
The errorbars correspond to the standard deviation between all simulated trajectories
for each case.

sure. This explains why there are not many studies that even mention the inhibition

of pit growth. Quantitatively, at T = 875 K and P = 100 mbar, the simulated inhi-

bition time is 50 s. This is in great agreement with the inhibition time reported by

Hahn et al. [60].

Notice that the standard deviation between different trajectories is quite substan-

tial at long inhibition times. This deviation however does not come from uncertainties

induced through KMC, but rather is a manifestation of the stochastic nature of the

carbon oxidation process at the atomic level. The mechanistic reason for the in-

hibition of pit growth reveals the reason for this behavior also: At temperatures

T > 1000 K, the intrinsic rates of elementary oxidation reactions without the influ-

ence of epoxides are already fast enough to facilitate oxidation from small pits. In
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contrast, at low temperatures, zigzag oxidation effectively does not occur without a

nearby epoxide on the basal plane. Hence, the effect of epoxides is of critical im-

portance. The number of edge sites is initially small. As a result, oxygen spillover

is rare, since its apparent rate is proportional to the number of edge sites. This is

actually one reason why pit growth eventually starts speeding up. Larger pits pro-

duce more epoxies through spillover, which are able to keep oxidation sustained at

faster rates. The other reason is that larger pits have elongated edges, where neigh-

boring edge sites are covered with oxygen and can speed up oxidation themselves.

The other way to produce such epoxides is via adsorption, which is determined by

the pressure. This is the reason why there are only short inhibition times at low

temperature and higher pressure, whereas inhibition times increase drastically with

lowering the pressure. These arguments can also be proven on the basis of the sim-

ulation results. Figure 6.12 (c) shows that indeed almost no oxidation events occur

without the influence of neighboring oxygen species at low temperatures and pres-

sures. Furthermore, Figure 6.8 shows where the epoxides required to overcome pit

growth inhibition originate. At low pressures, they are solely created by spillover,

whereas dissociative adsorption is viably fast at higher pressures. The before men-

tioned large deviations in inhibition times result from the slow timescales of either

spillover or dissociative adsorption. While transition state theory predicts intrinsic

reaction rates for these processes, they are still fundamentally rare events that result

from random atomic motion. Hence, they actually occur at random times that follow

a Poisson distribution.
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Chapter 7 Conclusions and Future Work

7.1 Summary

This dissertation describes the development of a novel computational framework for

the study of carbon oxidation at the atomic level, and applies it to understand

graphene etching and pitting of graphitic carbon surfaces from first principles. A

literature review in Chapter 2 shows that oxidative etching of a single graphene layer

is mostly similar to pitting of the outermost layer of graphitic carbon surfaces and is

therefore a sufficient problem for studying carbon oxidation on a fundamental level.

In both cases, starting from structural defects on the material surface, etch pits grow

as a result of localized removal of carbon through oxidation reactions. The lack of

a comprehensive computational study of this phenomenon thus far is identified, and

a discussion of existing experimental work makes apparent the value that such a

fundamental study can add.

The development of the novel computational framework starts in Chapter 3 with a

description of all elements of the computational approach. First, the problem setup,

namely a single layer of graphene with monovacancy defects, subjected to oxygen

gas, is defined and discussed with respect to its applicability and limitations. Af-

ter that, the Kinetic Monte Carlo (KMC) method is identified as the appropriate

method to carry on due to its capability of studying surface reactions at the length-

and timescales at which pit growth is observed in graphene etching. A combination of

Transition State Theory (TST) and Density Functional Theory (DFT) incorporates

first principle based reaction kinetics into this KMC framework through a kinetic

reaction mechanism. Descriptions of these methods are given on a conceptual level in

order to clarify the methodologies, and point out advantages and possible shortcom-

ings of this approach. The kinetic mechanism is then built on the basis of existing
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DFT data in Chapter 4. It incorporates all elementary surface reactions that play

a role in the oxidation of carbon materials at the atomic level under the conditions

relevant to this study. Those are adsorption, dissociation, diffusion, oxidation and

desorption reactions of various different oxygen and carbon-oxygen species. Chapter 5

then describes the implementation of this new mechanism into KMC, and provides a

discussion of the statistical analysis that is necessary to obtain accurate results. This

concludes the development of the novel computational framework.

The computational study of graphene etching is finally carried out in Chapter 6.

It starts with a complete analysis of a single representative simulation, in order to

show the kinds of results that can be inferred from this novel computational frame-

work. In particular, the full picture of the dynamics of pitting is unveiled, which

has heretofore not been attainable from previous studies. After that, pitting is ex-

amined across the whole range of simulated temperatures and pressures selected for

this study. An analysis of the oxygen surface coverages on both edge and basal plane

carbon sites provides the necessary background for the interpretation of following

results. Pit growth rates, which are the most obvious and often only measurable

quantity in experiments, are examined for the validation of the novel computational

framework. Moreover, discussing them with regard to the underlying kinetic reac-

tion mechanism gives a fundamental explanation of the apparent reaction behavior.

At low temperatures and pressures, pitting is rate controlled by elementary oxida-

tion reactions, whereas the rate control shifts to the adsorption reactions at higher

temperatures and pressures. Next, the possible pit geometries, i.e. hexagonal pits

with smooth edges and circular pits with rough edges, are examined as a function of

temperature and pressure, and again discussed with regards to the underlying mech-

anism. It is shown that fast oxidation of armchair edge sites relative to zigzag edge

sites is required for hexagonal etch pits, and this is favored by low temperatures and

pressures. Lastly, the phenomenon of pit inhibition, i.e. a delay in the initial growth
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of etch pits due to the initially small number of edge sites, is assessed. In all cases,

the existence of nearby oxygen adsorbates, especially epoxide adsorbates on the basal

plane, plays a key role in the oxidation process.

7.2 Original Contributions

1. Development of a comprehensive atomic scale kinetic reaction mecha-

nism for carbon oxidation: Prior to this work, kinetic reaction mechanisms

for the study of carbon oxidation in the context of pitting have either been

crudely oversimplified for computational ease without accounting for funda-

mental knowledge from the atomic level, or just dealt with a small subset of

the possible surface reactions due to their complexity. Here, a comprehensive

kinetic reaction mechanism for carbon oxidation at the atomic level is con-

structed with fundamental reaction rate constants compiled from preexisting

DFT simulation results.

2. Implementation of novel mechanism into Kinetic Monte Carlo simula-

tion framework: The newly developed kinetic reaction mechanism is directly

implemented in the readily available Zacros KMC code, which enables simula-

tions of graphene etching and pitting for relevant time and lengthscales, which

have previously not been in reach.

3. First principle based computational study of graphene etching and

pitting of graphitic carbon surfaces: For the first time, graphene etching

and pitting of graphitic carbon surfaces has been studied computationally from

first principles. The simulations reveal on the one hand information about the

dynamics of the oxidizing system, such as the constant pit growth rate. But also

more intricate phenomena like the inhibition of pit growth at low pressures and

temperatures has now we been studied in detail. Furthermore, all phenomena
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can be explained fundamentally on the basis of the actual elementary surface

reactions that control the overall process.

7.3 Future Work

1. Optimization of reaction rate constants in the kinetic mechanism:

The rate constants used in this work have been compiled from several different

DFT studies on different aspects of carbon oxidation from graphite edges as

well as polyaromatic hydrocarbons (PAH). They carry uncertainty due to the

relatively small but intrinsic inaccuracies of DFT itself, and the combination

of such results from different sources that use different DFT setups and poten-

tials. This range of uncertainty can be directly utilized to perform a parameter

optimization for example with the objective of more accurate pit growth rates.

Another route for optimization is to perform a fully coherent DFT study of all

reactions included in the mechanism.

2. Extension of kinetic mechanism to higher temperatures and inclusion

of other gas species: It has been seen that higher temperatures increasingly

give the system access to surface reactions with higher activation energies. The

kinetic mechanism has been built with a cutoff energy of around 3.5 eV. Hence,

reactions with even higher activation energies will need to be added in order to

extend the mechanism to higher temperatures. Furthermore, adding other (less

reactive) gas species to the mechanism make it applicable to gas environments

that are not predominantly composed of oxygen, such as mars’ atmosphere.

3. Extension of KMC framework to directly simulate multilayer graph-

ene and graphite: This work is limited in the setup of the computational

problem to a single graphene layer. Modifications to the lattice based KMC

implementation to include multiple layers could potentially be made with rea-
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sonable effort, starting from this existing setup. Such an extension could explain

the in depth growth of etch pits in graphite from first principles rather than

through simplified model considerations.

4. Oxidation of grain boundaries and other defects in carbon materials:

In order to truly predict macroscopic oxidation behavior of complex graphitic

carbon materials form first principles, it is likely that other defects such as grain

boundaries and impurities need to be considered alongside monovacancy defects

that cause pitting. In principle, the kinetic mechanism developed here should

still hold for those cases, although the necessity for additional surface species

and reactions can not be excluded indefinitely.

5. Pitting modelling: The results found from this computational study of pit-

ting, first and foremost the pit growth rates, could be utilized on a mesoscopic

scale to build models that describe the structural evolution of macroscopic car-

bon materials due to pitting and therefore link first principle information about

the carbon oxidation process on the atomic level to macroscopic material be-

havior. Such a model would have strong predictive capabilities, since the chem-

ical reaction kinetics are effectively decoupled from the material structure, and

therefore are universally valid for all possible conditions, even those encountered

in hypersonic flight.
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rate of zigzag removal

Appendix

A.1 Simple model simulation for pit shape transition

Simulations have been reproduced from [19, 61, 62] to observe the pit shape transition 

as a function of λ = rate of armchair removal .

Figure A.1: Pit shape transition from anisotropic/hexagonal (fast armchair oxidation)
to isotropic/circular (slow armchair oxidation) pits.

A.2 Derivation of the site-specific collision rate of an ideal gas with a

graphene surface

Assuming ideal gas, one can derive the collision rate kcollision of a gas particle with a

surface as follows. Starting with the Maxwell-Boltzmann velocity distribution for an

ideal gas

f (v) =

(
m

2πkBT

)3/2

exp

[
−
m
(
v2x + v2y + v2z

)
2kBT

]
, (A.1)
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with the mass m of a gas particle at velocity v = (vx, vy, vz), one can derive the

Maxwell-Boltzmann distribution for the vx component as

f (vx) dvx =

(
m

2πkBT

)3/2

exp

(
− mv2x

2kBT

)
dvx

∫ ∞
−∞

∫ ∞
−∞

exp

[
−
m
(
v2y + v2z

)
2kBT

]
dvydvz

(A.2)

=

(
m

2πkBT

)1/2

exp

(
− mv2x

2kBT

)
dvx . (A.3)

The Gaussian integral
∫∞
−∞ e

−ax2dx =
(
π
a

)1/2
has been employed here. The Maxwell-

Boltzmann distribution f (vx) dvx represents the fraction of particles in the ideal gas

with velocity vx.

Consider now a differential surface element with area dA exposed to the ideal

gas from one side. Furthermore, consider a region of the gas spanned by dA over a

distance vxdt away from the surface, where dt is an infinitesimal time interval. The

volume of that region is vxdt dA, and it contains nvxdt dA gas particles. Here, n is

the number density of the ideal gas. From above it is known that f (vx) dvx is the

fraction of particles in the region with velocity vx. Hence, the number of particles

hitting dA with a velocity vx in a time interval dt is nvxdt dA f (vx) dvx. As a result,

the flux (number of particles hitting the surface per unit time and unit area) is simply

nvxf (vx) dvx. By integration over vx (only positive vx, which is the direction towards

the surface), the total flux Γ to the surface follows as

Γ = n

∫ ∞
0

f (vx) vx dvx (A.4)

= n

∫ ∞
0

(
m

2πkBT

)1/2

vx exp

(
− mv2x

2kBT

)
dvx (A.5)

= n

(
m

2πkBT

)1/2 ∫ ∞
0

vx exp

(
− mv2x

2kBT

)
dvx . (A.6)
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With the integral identity
∫∞
0
xe−ax

2
dx = 1

2a
one can furthermore obtain

Γ = n

(
m

2πkBT

)1/2
1

2
(

m
2kBT

) (A.7)

= n

(
kBT

2πm

)1/2

. (A.8)

Using the ideal gas law n = N
V

= P
kBT

, the total flux to the surface is derived as

Γ =
P√

2πmkBT
, (A.9)

with units of number of collisions
unit time×unit surface area

. Since kcollision needs to be the collision rate per

adsorption site in KMC, Γ needs to be converted from the unit surface area to an

effective area per adsorption site Aeff . Hence, the collision frequency is finally derived

as

kcollision =
PAeff√
2πmkBT

. (A.10)

This has units of 1
unit time×adsorption site

, which is easily verified by the following unit

check

1

unit time× adsorption site
=
kg m−1 s−2 ×m2 adsorption site−1√

kg ×m2 kg s−2K−1 ×K
(A.11)

=
kg ms−2 adsorption site−1

kg ms−1
(A.12)

=
1

s× adsorption site
. (A.13)

A.3 Comparison of pit radius calculated from initial vacancy and current

position of the center of the pit

Figure A.2 compares the pit radii computed with the initial monovacancy and the

current position of the pit center at conditions of T = 1000 K and P = 1 mbar.

Obviously, the static monovacancy center gives a larger radius than the pit center

that is updated at every step. However, the radii deviate at most by 2 Å at any given

time. More importantly, this deviation is not increasing with time. Furthermore, the

growth rates that are calculated from the linear fits differ by less than one percent.
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Figure A.2: Pit radius evolution with time at T = 1000 K and P = 1 mbar. For
comparison, radii are calculated from the position of the initial monovacancy and the
current position of the pit center, showing only negligible deviation.

A.4 Pit radius evolution zero/negative inhibition time

Figure A.3 demonstrates an example where the inhibition time would be calculated

as negative. In those cases, it is assumed to be zero.

A.5 Constant basal plane coverage

Figure A.4 demonstrates an example where the basal plane coverage reaches a steady

state value (with fluctuations).
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Figure A.3: Pit radius evolution with time at T = 1300 K and P = 100 mbar. The
linear fit does not cross zero radius at a positive time.

A.6 Net consumption/production of gas species

Figure A.5 demonstrates an example where molecular oxygen temporarily sees a net

production, and eventually gets consumed.
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Figure A.4: Basal plane coverage evolution with time at T = 2000 K and P = 1 mbar.
The coverage almost instantly reaches a steady state value.
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Figure A.5: Gas species evolution with time at T = 1500 K and P = 100 mbar. There
is an initial net production of O2, until the pit grows large enough to consume more
O2, turning it back into a net consumption.
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