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bUniversity of Kentucky, Lexington, KY, USA
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Abstract

Previous studies indicate that repetition is affected in primary progressive aphasia (PPA), 

particularly in the logopenic variant, due to limited auditory-verbal short-term memory (avSTM). 

We tested repetition of phrases varied by length (short, long) and meaning (meaningful, non-

meaningful) in 58 participants (22 logopenic, 19 nonfluent, and 17 semantic variants) and 21 

healthy controls using a modified Bayles repetition test. We evaluated the relation between cortical 

thickness and repetition performance and whether sub-scores could discriminate PPA variants.

Logopenic participants showed impaired repetition across all phrases, specifically in repeating 

long phrases and any phrases that were non-meaningful. Nonfluent, semantic, and healthy control 

participants only had difficulty repeating long, non-meaningful phrases. Poor repetition of long 

phrases was associated with cortical thinning in left temporo-parietal areas across all variants, 

highlighting the importance of these areas in avSTM. Finally, Bayles repetition phrases can assist 

classification in PPA, discriminating logopenic from nonfluent/semantic participants with 89% 

accuracy.
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1. Introduction

The neurocognitive basis of language repetition has been intensively studied in patients with 

stroke or, more recently, with primary progressive aphasia (PPA) (e.g., Baldo, Klostermann, 

& Dronkers, 2008; Buchsbaum et al., 2011; Gorno-Tempini et al., 2008; Leyton et al., 

2014). Previous studies used repetition performance to distinguish the three PPA variants: 

nonfluent/agrammatic (nfvPPA), semantic (svPPA), and logopenic (lvPPA) (Bonner, Ash, & 

Grossman, 2010; Gorno-Tempini et al., 2011; Mesulam, 1982; Mesulam, Wieneke, 

Thompson, Rogalski, & Weintraub, 2012; Weintraub, Rubin, & Mesulam, 1990). For 

instance, poor repetition performance is associated with lvPPA (e.g., Gorno-Tempini et al., 

2004, 2008), but also with nfvPPA (e.g., Leyton et al., 2014). Furthermore, imaging studies 

in patients and healthy participants have implicated inferior parietal and frontal cortices in 

repetition processes (see Majerus, 2013).

Repetition is a complex, multilevel process that taxes auditory-verbal short-term memory 

(avSTM). avSTM involves the short-term stores of phonological and semantic information, 

as well as articulatory rehearsal, both of which are necessary for maintenance and execution 

of verbal information (Baddeley, 2000, 2003). The short-term stores of phonological and 

semantic information are part of the phonological loop by which verbal information is 

temporarily stored and processed. These short-term stores can be refreshed by the execution 

of a subvocal articulatory “rehearsal” process (Baddeley, Hitch, & Allen, 2009). Several 

neurocognitive models of language repetition have been proposed (Jacquemot & Scott, 

2006; Hickok & Poeppel, 2007; Friederici, 2012; Hickok, 2009, 2012; also see Majerus, 

2013 for a review). These models propose that in the dorsal stream of speech processing, the 

posterior superior temporal gyrus (pSTG) serves as a sensorimotor interface that links 

acoustic and phonological representations in the STG to articulatory representations and/or 

rehearsal in the posterior inferior frontal gyrus (pIFG). The phonological short-term 

maintenance function has a distinct set of neural substrates, including left inferior parietal 

areas such as supramarginal and angular gyri (SMG/AG).

In the area of stroke research, repetition deficits are considered a hallmark of conduction 

aphasia. This disorder originally was referred to as a “disconnection syndrome” relating to 

damage to a prominent white matter tract, the arcuate fasciculus (AF) (e.g., Geldmacher, 

Quigg, & Elias, 2007; Tanabe et al., 1987; Yamada et al., 2007). However, others have 

indicated that damage to the AF is not a prerequisite for conduction aphasia (Baldo, Katseff, 

& Dronkers, 2012; Dronkers, 2000) and that patients with AF lesions may retain the ability 

to repeat words and phrases (Kreisler et al., 2000; Shuren et al., 1995). Patients with a form 

of conduction aphasia most often present with cortical lesions to the left STG and/or SMG, 

and exhibit deficits in repetition and speech production (Axer, von Keyserlingk, Berks, & 

von Keyserlingk, 2001; Baldo & Dronkers, 2006; Damasio & Damasio, 1980; Green & 

Howes, 1977). These patients have difficulty maintaining verbal information and most often 

produce phonological speech errors, which points to deficits in avSTM (Baldo & Dronkers, 

2006; Baldo et al., 2008; Buchsbaum et al., 2011). Furthermore, researchers argue for 

theoretically separable functional deficits: an inability to retain (“repetition”) and an 

inability to produce (“reproduction”) verbal units, with the former involving avSTM and the 

latter involving speech production process (see Shallice & Warrington, 1977). In an 
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extensive review, Buchsbaum et al. (2011) compared activation patterns in previously 

published fMRI studies of phonological STM with the lesion distribution of conduction 

aphasia. They compared a conjunction analysis of 105 single subject fMRI scans from a 

phonological STM paradigm with the lesion distribution of 14 patients with conduction 

aphasia. The results indicated that the areas of greatest overlap between fMRI activations 

and lesion locations were in the left posterior portion of the planum temporale, area Spt 

(Sylvianparietal–temporal), a site which has been argued to support sensory-motor 

integration for vocal tract actions (Hickok, Okada, & Serences, 2009).

Patients with PPA, particularly the logopenic variant (lvPPA), have provided evidence that 

posterior temporo-parietal areas support sensory-motor integration and maintenance of 

phonological information during repetition. Voxel-based morphometry studies reveal that 

lvPPA is characterized by damage to the left posterior temporal and inferior parietal grey 

matter (Gorno-Tempini et al., 2004, 2008; Henry & Gorno-Tempini, 2010; Hodges & 

Patterson, 1996; Neary et al., 1998; Mesulam et al., 2009). Furthermore, MRI tractography 

studies show greatest white matter changes in the temporo-parietal component of left 

superior longitudinal fasciculus (SLF) that connects these regions, but also reveal 

abnormalities in the left arcuate fasciculus, in the frontoangular (SLF-II) and the 

frontosupramarginal (SLF-III), and in the right temporoparietal SLF (Galantucci et al., 

2011).

Behaviorally, using both experimental tasks and standardized repetition tests, past research 

demonstrates that repetition is impaired in both lvPPA and nfvPPA (e.g., Gorno-Tempini et 

al., 2004, 2008; Henry & Gorno-Tempini, 2010; Leyton et al., 2014; Rohrer et al., 2010; 

Whitwell et al., 2015). Subsequently, different theoretical accounts of repetition impairments 

in the different variants of PPA are proposed: reduced capacity of the phonological store in 

lvPPA (e.g., Gorno-Tempini et al., 2008; Meyer, Snider, Campbell, & Friedman, 2015), 

and/or disrupted articulatory planning or rehearsal of encoded verbal information in nfvPPA 

(e.g., Gorno-Tempini et al., 2004; Ogar, Dronkers, Brambati, Miller, & Gorno-Tempini, 

2007; see also Martin, 1987, Martin, Shelton, & Yaffee, 1994 on stroke patients). Moreover, 

the inability to repeat phrases or sentences may also arise from loss of semantic memory in 

svPPA (e.g., Hodges & Miller, 2001; Knott, Patterson, & Hodges, 1997; McCarthy & 

Warrington, 1987).

Repetition abilities in healthy individuals are sensitive to factors such as word length and 

phonological similarity, with longer words (e.g., 1–5 syllable words) and similarly sounding 

words (e.g., ‘mad’, ‘map’) being more difficult to recall (Baddeley, Thomson, & Buchanan, 

1975; Conrad & Hull, 1964). These effects are classically associated with normal 

functioning of the phonological store. Gorno-Tempini et al. (2008) tested these effects in 7 

patients with lvPPA using digit, letter (similar and dissimilar), and word span tasks, as well 

as the Western Aphasia Battery (WAB) repetition subtest. These lvPPA patients showed 

normal repetition of single digits or letters, but were severely impaired in sequences of more 

than three digits or letters, and showed no phonological similarity effect. On the word span 

task, these patients could repeat three short words and only one long word, and were 

severely impaired on the WAB sentence repetition subtest. These findings supported their 

hypothesis that reduced phonological store might be the core deficit in lvPPA. Similarly, 
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Leyton et al. (2014) tested verbal repetition in 63 patients (with variants of PPA and 

Alzheimer’s Disease (AD)) and 13 healthy controls (HC) using several experimental tasks. 

They demonstrate impaired verbal repetition across groups: (1) the svPPA patients were 

impaired only in a sentence repetition task, (2) nfvPPA patients were impaired mostly in 

word repetition and digit span tasks, and showed phonological similarity effects on a word 

span task, (3) lvPPA patients were impaired in all tasks, with the most severe impairments in 

the sentence repetition and word span task, and showed a reduced phonological similarity 

effect, and (4) the AD group was impaired in span tasks and sentence repetition.

Past research in stroke and AD has explained the complex relationship between repetition 

deficits and memory resources by attributing difficulties in sentence repetition to reduced 

avSTM or semantic memory (e.g., Baldo and Dronkers, 2006, 2008; Knott et al., 1997). For 

instance, Baldo and Dronkers (2006, 2008) showed that patients with conduction aphasia 

have deficits in repetition recognition tasks, but only when the distractor sentences are 

semantically related to the target sentence. In contrast, patients are able to identify the 

matching sentence when the distractors are semantically distinct, suggesting that these 

patients rely on non-phonologic cues, such as lexical-semantics, to support their avSTM. 

Bayles, Tomoeda, and Rein (1996) tested the semantic memory loss theory by examining the 

ability of patients with AD to repeat phrases varying in length and meaning. A group of mild 

and moderate AD patients (57) and HC subjects (62) were given six- and nine-syllable 

phrases that were meaningful, improbable in meaning, or meaningless. The authors showed 

that both AD patients and HC subjects had the most difficulty repeating meaningless nine-

syllable phrases (e.g., “hairpins leap fluttering riddle games”), which failed to confirm a 

performance pattern consistent with a semantic memory loss theory.

Generally, these results demonstrate that repetition ability is affected when the sequence of 

words is long and has no real meaning. Thus, both phonological and semantic (meaning) 

information contribute to sentence recall performance (see Meltzer et al., 2016 on the 

semantic contribution to short- and long-term sentence recall). Although researchers have 

studied the ability of patients with PPA to repeat words and sentences, none have 

systematically varied length and meaningfulness of stimuli. Similarly, most PPA repetition 

studies have observed repetition deficits across the three variants by using a small number of 

stimuli (5 words, 4 phrases and 6 sentences in the WAB repetition subtest) to enable direct 

comparisons. Using the total score of the widely used WAB repetition subtest across variants 

has precluded an examination of whether specific repetition deficits may assist in the 

classification of PPA into variants, and identification of shared or distinct neurocognitive 

deficits across these variants.

In the present study, we examined the effects of length (long vs. short phrases) and meaning 

(meaningful vs. non-meaningful phrases), and frequently-used sentences on repetition 

performance in patients with PPA and HC subjects using a shortened form of a repetition 

test by Bayles et al. (1996). We then used structural neuroimaging to evaluate the 

relationship between cortical thickness and repetition performances across PPA. Lastly, we 

used Receiver Operating Characteristic (ROC) Curve to evaluate whether different phrase 

subscores on the Bayles test can distinguish lvPPA from nfvPPA and svPPA.
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Specifically, we asked (1) whether there are performance differences between different 

repetition conditions (frequent sentences, and short and long meaningful and non-
meaningful phrases) for the given group (the within-group analysis), and (2) whether lvPPA 

patients have more difficulty with long and/or non-meaningful phrases (compared to short 
and meaningful phrases) than nfvPPA patients, svPPA patients, and HCs (the between-group 

analysis). We also extended these analyses by asking (3) whether distinct neural correlates 

are associated with repetition performances on each phrase condition across PPAs, and (4) 

whether the sub-scores from each phrase condition can discriminate lvPPA from nfvPPA and 

svPPA.

We anticipated that the lvPPA group would show poor repetition across all phrases on the 

Bayles repetition test, while svPPA patients, nfvPPA patients and HCs would show no 

repetition impairment overall, except for lower performance on long non-meaningful 

phrases, in line with the original study of AD by Bayles et al. (1996). Based on the auditory-
verbal short-term memory account, we expected to find length and meaning effects, 

specifically that repetition difficulty would increase with phrase length, and also when the 

verbatim information has been lost to lvPPA patients. Like patients with conduction aphasia, 

lvPPA patients are expected to rely on the lexical-semantics of the phrase in order to repeat 

it due to a degraded phonological trace (in line with Baldo et al. (2006, 2008, 2012)). We 

predicted that these repetition deficits would be associated with atrophy in left temporo-

parietal areas. Finally, we expected that the repetition subscores would distinguish lvPPA 

from the other PPA groups, suggesting that these subscores may be a useful tool in 

diagnostic assessment.

2. Methods

2.1. Participants

Fifty-eight patients with primary progressive aphasia (PPA), and twenty-one age- and 

education-matched healthy controls (HC) took part in this study. All participants were 

recruited through the Memory and Aging Center (MAC) at the University of California San 

Francisco (UCSF). All participants provided written informed consent approved by the 

UCSF Institutional Review Board. The fifty-eight patients (36 females, 8 left-handed/

ambidextrous, mean (SD) age = 64 (± 7) years, mean (SD) education = 17 (± 2.9) years) 

were diagnosed with PPA according to proposed consensus clinical criteria (Gorno-Tempini 

et al., 2011), and, hence, classified into one of three PPA variants: logopenic (lvPPA = 22), 

non-fluent/agrammatic (nfvPPA = 19), and semantic (svPPA = 17).

Diagnosis consensus was reached based on the comprehensive multidisciplinary evaluation 

including neurological history and examination, neuropsychological testing, and 

neuroimaging, as previously described (Gorno-Tempini et al., 2004). PPA participants 

selection criteria were: a score 11 or greater on the Mini-Mental State Examination (MMSE; 

Folstein, Folstein, & McHugh, 1975), an assessment of repetition performance, and the 

availability of an MRI scan. Coincidentally, this selection led to a larger number of left-

handed/ambidextrous lvPPA patients than would be expected in the general population or a 

larger cohort of lvPPAs. LvPPA patients presented with impaired repetition on the repetition 

subtest of Western Aphasia Battery (WAB; Kertesz, 1982), and had a low digit span 
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backwards, whilst having spared single word comprehension, motor speech, and grammar. 

SvPPA patients showed single word naming and comprehension deficits as evaluated with 

pictures from the Boston Naming Battery (BNT; Goodglass, Kaplan, & Weintraub, 1983) 

and Peabody Picture Vocabulary Test (PPVT-Revised, Dunn & Dunn, 1981), respectively. 

Both lvPPA and svPPA patients had low semantic (animal) fluency. Finally, nfvPPA patients 

presented with significant impairments in speech fluency on the spontaneous speech section 

from the WAB, and the severity ratings of apraxia of speech. Also, structural neuroimaging 

(MRI) was conducted for all PPA participants but was not considered for diagnosis (see 

Appendix A for cortical atrophy patterns for the three PPA variants).

All HC (n = 21; 15 females, 8 left-handed, mean (SD) age = 67 (± 6) years, mean (SD) 

education = 17 (± 1.4) years) performed within normal limits on neuropsychological and 

speech-language tests, and had no history of speech-language, neurological disorders, or 

psychiatric disturbances (self-reported and screened). Left-handed controls (8/21) were 

recruited in order to match for handedness in the patient group (8/58). Demographics, 

speech-language, and cognitive scores, and expected significant group differences are 

provided in Table 1.

2.2. Repetition measure

Participants completed a shorter Bayles repetition test, which was comprised of 20 phrases 

that varied in length and meaning. The test included four conditions: (1) short meaningful 

(SM: Rare poisonous lizard) and non-meaningful (SNM: Crawling summer trombone) 

phrases, and (2) long meaningful (LM: Antique furniture draws good patrons) and non-

meaningful (LNM: Hairpins leap fluttering riddle games) phrases. There were 5 phrases per 

condition. Five frequently-used sentences (FS: That must have cost a pretty penny) were also 

included as a control condition. The meaningful phrases were defined as truthful, logical, 

and likely expressions, whereas the non-meaningful phrases were defined as not logically 

possible. The short phrases contained six syllables (three words) and mainly were comprised 

of a noun as the head-word and two premodifiers complementing the head (e.g., “rare 

poisonous lizard”). The long phrases contained nine syllables (three- to five-word 

sequences) in which a verb functioned as the head, preceded or followed by noun phrases or 

an adverb (e.g., “antique furniture draws good patrons”).

The word-form frequency (the total number of tokens for a given word) was calculated for 

each word within each phrase based on the Corpus of Contemporary American English 

(COCA; Davies, 2008). The average frequency of each multi-word phrase was generated for 

each condition. While no significant difference was found between meaningful and non-

meaningful conditions (p = 0.55), the long and short conditions could not be matched on 

average multi-word frequency (p = 0.002) as the long phrases tended to occur with higher 

frequency (M = 5.20, SD = 0.31) than the short phrases (M = 4.68, SD = 0.34). In addition, 

Bayles et al. (1996) reported that all phrases were words with standard frequency indices 

ranging from 25.10 to 72.70 and there were no statistical differences between the four 

conditions. Appendix B displays a complete list of phrases (see also Bayles et al. (1996) for 

the complete list of original phrases and their characteristics).
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Participants were instructed to repeat each phrase and received two points for each correctly-

repeated syllable. Points were deducted for phonological errors such as substitutions or 

additions of phonemic segments, or deletions of phonemes/whole syllables. However, 

articulatory errors (lack of accuracy or clarity in speech sounds) were not penalized when 

the word was clearly intelligible. Each 6-syllable phrase was worth 6 points and each 9-

syllable phrase was worth 9 points, so participants could score a total of 30 or 45 points 

depending on the condition.

2.3. Data analysis

For the repetition test, accuracy (correct/incorrect) was recorded for each syllable.1 Means 

and standard deviations were calculated for each word, producing the total percent correct of 

repeated syllables for each subject in each condition. The two primary questions were: (1) 

whether there would be performance differences on different repetition conditions within 

each given group (the within-group analysis), and (2) whether the lvPPA patients would 

have more difficulty with long and non-meaningful phrases (compared to short and 

meaningful phrases) than nfvPPA and svPPA patients, and HC (the between-group analysis).

The repetition accuracy on the within-group factor Condition (levels: FS, SM, SNM, LM, 

and LNM) was analyzed using general linear models with the appropriate random effect 

structure (i.e., random by-participant intercepts) as well as Tukey’s honest significant 

difference (HSD) for the planned posthoc comparisons. For the between-group analysis, the 

repetition accuracy was analyzed using general linear models, with mixed-effects: fixed 

effects for Length (short, long) and Meaning (meaningful, non-meaningful), and the 

appropriate random effect structure (i.e., random by-participant intercepts). Length, 

meaning, and group effects, and two-way interactions between group and length or meaning 

of phrases were examined. Age, handedness, gender, and severity (measured by the CDR 

Box Score) were entered as covariates in each regression model. Regression was performed 

using the lme4 package running in R program (http://www.r-project.org). Statistical 

significance was determined based on the 0.05 threshold. The adjusted p values were 

calculated using Tukey’s posthoc as implemented in the lsmeans package (https://cran.r-

project.org/package=lsmeans).

2.4. Neuroimaging

A 3T Trio (Siemens) scanner was used to obtain structural 3D T1-weighted images at UCSF. 

The T1-weighted images were acquired using an MP-RAGE sequence with the following 

parameters: repetition time (TR) = 2300 ms, echo time (TE) = 2.98 ms, inversion time = 

900ms, flip angle 9 degrees, matrix size=256 × 240, voxel size 1 mm cubed isotropic. 

Neuroimaging data pre-processing and statistical analyses were performed using the 

Computational Anatomy Toolbox (CAT12; http://dbm.neuro.uni-jena.de/cat) in Statistical 

Parametric Mapping software (SPM12; http://www.fil.ion.ucl.ac.uk/spm/software/spm12) 

under Matlab 2017 (http://www.mathworks.com). The T1-weighted images were bias-field 

corrected, skull-stripped, aligned to the Montreal Neurological Institute (MNI) standard 
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space, and segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF). Cortical thickness was measured with the Projection-based Thickness Method as 

described in Dahnke, Yotter, and Gaser (2013). This method uses tissue segmentation to 

estimate the WM distance, then projects to the local maxima (which is equal to the cortical 

thickness) to other GM voxels using a neighbor relationship. This method accounts for 

partial volume information, sulcal blurring, and sulcal asymmetry. The local maps were 

resampled and smoothed using a 15-mm Gaussian heat kernel (Yotter, Nenadic, Ziegler, 

Thompson, & Gaser, 2011).

The surface-based morphometry (SBM) statistical analysis was conducted to examine the 

association between cortical thickness and repetition performance across PPA groups using 

multiple (linear) regressions. Specifically, we examined whether there were atrophic regions 

associated with repetition performance on all phrases, and whether these areas were affected 

when longer or non-meaningful phrases were involved as opposed to when short or 

meaningful phrases were involved. Age, handedness, gender, and severity were entered as 

covariates in each regression model. A significance threshold at p < 0.05 family-wise error 

(FWE) cluster-level correction was used to detect areas of peak cortical thinning (atrophy) 

associated with repetition deficits across PPA groups using the threshold-Free Cluster 

Enhancement function in CAT12.

2.5. Receiver Operating Characteristic (ROC) curve analysis for diagnostic repetition test

We also investigated whether certain phrases in the Bayles test could (1) differentiate lvPPAs 

from the other (non-logopenic) patients, and (2) distinguish lvPPA from nfvPPA. Thus, we 

computed the ROC curves displaying the sensitivity and specificity of the repetition test at 

varying thresholds by comparing the subscores in the different repetition conditions for the 

lvPPA patients with non-logopenic patients. The true positive rate (sensitivity) on the y-axes 

denotes the fraction of patients who are correctly identified as logopenic with repetition test 

subscores. The false positive rate (1 – specificity) on the x-axes denotes the fraction of 

patients who are falsely identified as logopenic with repetition test subscores. The subscores 

from each condition were coded with a binary value of 0 or 1 and were used to compute the 

ROC curves across varying thresholds and the area under the curve (AUC) calculated. The 

AUC represents the probability that a randomly selected logopenic patient will have a lower 

test score than a randomly selected non-logopenic patient. The AUC of each subscore was 

then evaluated on the basis of the corresponding 95% confidence interval (CI) according to 

1000 bootstrap replications. A perfect test would have an ROC curve going straight up to 

and over from the top left corner (100% sensitivity, 100% specificity) with an AUC of 1.

3. Results

3.1. Repetition data

Within-group linear regression results—Data from the repetition test were first 

analyzed within each group to evaluate the pattern of performance in the repetition 

conditions (frequent sentences and short and long meaningful and non-meaningful phrases). 

The dependent variable was accuracy calculated as the proportion of syllables repeated 

correctly. The HC, nfvPPA, and svPPA participants were highly accurate in their overall 
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performance on the repetition test with a mean accuracy of 99% ± 2.9%, 92.4% ± 12.8%, 

91.7% ± 13.9%, respectively. Like HC, nfvPA and svPPA participants were less accurate in 

repeating long non-meaningful phrases compared to all other conditions (p < 0.001).

In contrast, lvPPA was less accurate overall (65.9% ± 31.4%) and performed increasingly 

worse as length increased. A Tukey post hoc comparison revealed that the lvPPA group’s 

performance was significantly less accurate on long non-meaningful phrases compared to all 

other conditions (p < 0.001), and also significantly less accurate on long meaningful phrases 

compared to all other conditions (p < 0.001). In addition, the lvPPA group was less accurate 

in repeating short non-meaningful phrases compared to frequent sentences (p = 0.004). 

There was no significant performance difference between the short non-meaningful and 

meaningful phrases (p = 0.828), and short meaningful phrases and frequent sentences (p = 

0.082). Accuracy means and standard deviations for each condition on the repetition test are 

summarized in Table 2. Fig. 1 illustrates regression analysis results across conditions within 

each group.

Between-group linear regression results—In the between-group analyses, the linear 

mixed-effects regression analyses indicated that repetition accuracy was significantly 

predicted by group, length, and meaning. The HC group repeated significantly better 

compared to lvPPA (t (111.04) = 10.981, p < 0.001), nfvPPA (t (103.14) = 4.915, p < 0.001), 

and svPPA groups (t (90.21) = 4.727, p < 0.001). However, lvPPA patients repeated 

significantly less accurately compared to nfvPPA (t (148.66) = 8.078, p < 0.001) and svPPA 

(t (158.18) = 7.685, p < 0.001) participants, while there was no difference in repetition 

performance between nfvPPA and svPPA groups (t (171.55) = 0.325, p = 0.746). Both HC 

and PPA participants’ repetition of long phrases was less accurate than short phrases (t 
(233.00) = 15.558, p < 0.001), and repetition of non-meaningful phrases was less accurate 

than meaningful phrases (t (233.00) = −3.164, p = 0.002).

To determine whether the group effect was driven by length or meaning of the phrases, we 

included two-way interactions in the regression models. A two-way interaction was 

significant between group and length of phrases, indicating that the pattern of performance 

in the different length conditions was different for the three PPA groups and HC. The 

magnitude of the difference between long and short phrases was larger for lvPPA than for 

the HC (t (233.00) = −10.301, p < 0.000), nfvPPA (t (233.00) = −6.728, p < 0.000) and 

svPPA (t (233.00) = −5.910, p < 0.000). Also, the group difference for long phrases was 

more distinct compared to the group difference for short phrases. In contrast, the two-way 

interaction was not significant between group and meaning of phrases, which indicates that 

the pattern of performance in the two meaning conditions was not different for the three PPA 

groups and HC. Fig. 2 illustrates the between-group regression analyses results across 

conditions for the three PPA groups and the group of HC.

3.2. Cortical thickness and repetition performance correlations across PPAs

Imaging analysis using surface-based morphometry (SBM) revealed that the repetition 

performance on all phrases was positively associated with cortical thickness in the superior 

temporal gyrus (STG) and supramarginal/angular gyri (SMG/AG). The Long phrases versus 
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Short phrases revealed a cluster of significant thinning in the left STG, SMG, and AG. 

However, for Short phrases versus Long phrases, no regions survived the cluster-correction 

for significance. Similarly, the Non-meaningful versus Meaningful phrases and the opposite 

contrast Meaningful versus Non-meaningful phrases revealed no significant areas of 

thinning. Table 3 summarizes the areas where cortical thinning was significantly associated 

with performance on overall repetition and long phrases. Fig. 3 displays cortical thickness 

maps showing areas where cortical thinning was associated with the overall repetition 

performance, and with long over short phrases across PPAs.

3.3. Sensitivity and specificity of different repetition subscores for identifying the lvPPA 
patients

The revised Bayles test subscores were evaluated as a metric for discriminating lvPPA from 

the other (non-logopenic) patients. Therefore, the AUC was generated for various condition 

sub-scores on the Bayles test. The LM and LNM phrases had the AUC [CI] of 0.90 [0.80, 

0.97] and 0.91 [0.82, 0.98], respectively, which indicates that the subscores from the LM and 

LNM are equally good in classifying patient with logopenic PPA. In contrast, the FS, SM 

and SNM phrases had the AUC of 0.67 [0.54, 0.81], 0.74 [0.61, 0.86] and 0.79 [0.65, 0.91], 

respectively, which indicates that these phrases were much less important in characterizing 

the lvPPA and non-logopenic patients.

Similarly, we pursued the more relevant clinical question of whether these phrases on the 

Bayles test could distinguish lvPPA from nfvPPA. The LM and LNM phrases had the AUC 

[CI] of 0.91 [0.79, 0.98] and 0.91 [0.81, 0.98], respectively, which indicates that the 

subscores from the LM and LNM are equally good in classifying patient with logopenic 

PPA. In contrast, the FS, SM and SNM phrases had the AUC of 0.65 [0.48, 0.79], 0.72 [0.57, 

0.86] and 0.80 [0.66, 0.92], respectively, which indicates that these phrases were much less 

important in characterizing the lvPPA and nfvPPA patients. Fig. 4 displays ROC curves 

showing the capacity of different repetition subscores to discriminate the lvPPA from the 

non-logopenic patients (4A) and nfvPPA patients (4B).

4. Discussion

The present study used a set of phrases varying in length and meaning to probe repetition 

processing in PPAs and HC subjects. Specifically, we tested the prediction that reduced 

auditory-verbal short-term memory (avSTM) would give rise to repetition errors whenever 

the verbal repetition process included longer and less meaningful/unfamiliar phrases and 

sentences. In addition, it was predicted that these errors would be associated with atrophy in 

the left temporo-parietal junction. The current findings generally supported these 

predictions. LvPPA patients were impaired in their overall ability to repeat phrases and 

showed impairments in repeating particularly long (over short) phrases, and were the only 

group that showed deficits in repeating short non-meaningful phrases. In contrast, nfvPPA 

and svPPA patients, similar to HCs, were highly accurate on the repetition task but less 

accurate in repeating long, non-meaningful phrases. Thickness in the left temporo-parietal 

areas positively correlated with performance on the repetition test across the three PPA 

subtypes. Last, we showed that long meaningful and non-meaningful phrase subscores 
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discriminated lvPPA from the other (non-logopenic) patients and nfvPPA. These data 

suggest that avSTM is reduced in lvPPA patients, causing poor performance on the current 

modified Bayles test.

4.1. Patterns of repetition impairments

Most previous studies that have investigated repetition processing in PPAs rely on the 

available standardized repetition tests. Not many alternative validated tests of repetition are 

as comprehensive as the WAB repetition subtest. This test contains 15 stimuli of increasing 

difficulty including single words (1–5), phrases (6–9), and sentences (10–15). However, the 

first nine items are easy and all three PPA variants perform quite well; only the six most 

difficult sentences have the sensitivity necessary to capture repetition deficits in PPAs 

(Mesulam et al., 2012; but see also Table 1 in the current study). For example, Mesulam and 

colleagues showed poor sentence repetition in lvPPA patients but also showed such deficits 

to be prominent in nfvPPA patients. Theoretical accounts of these deficits suggest that 

inability to repeat words or sentences is driven by (1) limited verbal short-term memory, 

which is taxed by longer utterances, (2) loss of semantic memory or (3) rehearsal control 
errors, which produce failures in articulatory planning. Yet, this and other studies that 

employed the WAB repetition subtest were unable to differentiate the three repetition 

impairments, and to test effects of word, phrase or sentence length. The WAB subtest was 

not sufficiently sensitive to separate the PPA variants, especially in the early stages of the 

disease, as pointed out by Mesulam et al. (2012).

In our study, we examined the effects of length and meaning on phrase repetition using a 

between-group design, and found length and meaning effects, with PPAs being less accurate 

in repeating long (over short) and non-meaningful (over meaningful) phrases. Furthermore, 

there was a significant interaction effect between group and length of phrases. For the lvPPA 

group, the magnitude of difference between long and short phrases was larger compared to 

other groups. The two-way interaction was not significant between group and meaning of 
phrases, which indicates that the pattern of performance in the two meaning conditions was 

not different for the three PPA groups and HC. Specifically, we observed some common and 

distinct patterns across groups. Here, the repetition of long frequent sentences was highly 

accurate and the repetition of long non-meaningful phrases was the most inaccurate (in line 

with original findings by Bayles et al., 1996). In contrast to the other groups, lvPPA patients 

showed unique performance patterns: they were significantly worse in repeating long non-

meaningful and meaningful phrases, as well as short non-meaningful phrases. Moreover, 

lvPPA patients performed significantly worse on short non-meaningful phrases as compared 

to frequently-occurring sentences. In contrast to previous studies, these data reveal that 

sentences are not necessarily more difficult (less accurate) to repeat than single phrases. 

These patterns suggest that tasks requiring the repetition of both long and short phrases that 

cannot rely on semantic and/or syntactic information could be crucial in diagnosing lvPPA 

clinically.

The ROC results also demonstrated the ability of short non-meaningful phrases and long 

meaningful and non-meaningful phrases in discriminating lvPPA from non-logopenic 

patients and nfvPPA, suggesting that these subscores could be used in diagnostic 
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assessments. Appendix B lists the seven phrases that best discriminate logopenic from non-

logopenic patients, based on a subjective cut-off (> 85% of the total syllables repeated 

correctly) and the highest Area Under the Curve (AUC > 0.8). These findings are consistent 

with the conclusions of Baldo et al. (2006, 2008) that individuals with conduction aphasia 

and/or inferior parietal lesions are unable to retain the auditory trace of a sentence, and rely 

instead on its meaning. Thus, high-frequency sentences (e.g., “The telephone is ringing”) 

can be repeated with high accuracy, but those that occur infrequently in conversation (e.g., 

“The pastry cook was elated”) are not. In particular, these same patients often reply, “it was 

something about a happy baker” (Dronkers, Redfern, & Ludy, 1998). In the present study, 

our control sentences were not only frequent, but also rather idiomatic, and thus were 

feasible for the lvPPA group to repeat in comparison to phrases that were longer and non-

meaningful. The short, meaningful phrases included a conjoined adjective and noun phrases 

(e.g., “remote tropical isle”), in which two words shared thematic and grammatical roles; 

this may have facilitated phrase repetition through easier access to phrase meaning.

4.2. Anatomical correlates of repetition impairments

Our findings are largely consistent with studies that have investigated neural substrates of 

repetition deficits in stroke and PPA. Previous studies on conduction aphasia in stroke have 

shown that lesions to the left temporal and parietal cortices are associated with repetition 

deficits (Baldo & Dronkers, 2006; see Buchsbaum et al., 2011 for a review). The posterior 

temporo-parietal areas were also the most atrophied in patients with lvPPA who presented 

with core impairments in repetition (e.g., Gorno-Tempini et al., 2008; Meyer et al., 2015).

To build on this observation, we assessed the correlation between cortical thinning and 

repetition performance using whole-brain vertex thickness analyses across PPA groups, 

controlling for severity of the disease, and handedness. The left superior temporal (STG) and 

inferior parietal (SMG/AG) cortices were found to be involved in overall repetition 

performance. With respect to performance on longer phrases, clusters of significant thinning 

were found in the left lateralized STG and SMG.

These results are consistent with volumetric studies showing the distribution of atrophy in 

posterior perisylvian regions as well as altered white matter tracts in the temporoparietal 

component of the dorsal pathway (Gorno-Tempini et al., 2008; Hu et al., 2010; Galantucci et 

al., 2011; Rogalski et al., 2011). These results also are consistent with neurocognitive 

models of language repetition (Jacquemot & Scott, 2006; Hickok & Poeppel, 2007; 

Friederici, 2012; Hickok, 2012). According to these models, structures in left inferior 

parietal and temporal cortices (area Spt (Sylvian-parietal–temporal)) support the sensory-

motor integration that is necessary for the maintenance of phonological information (Hickok 

& Poeppel, 2007; Hickok, 2009; also see Majerus, 2013 for a review). These are avSTM 

components/processes that are common to our repetition measure.

During repetition, long-term phonological and semantic representations are activated and 

temporarily maintained via dorsal (pSTG/inferior parietal areas) and ventral (middle/inferior 

temporal cortex) repetition pathways, respectively (Majerus, 2013). Our lvPPA patients 

present with atrophy in dorsal regions and show repetition impairments, suggesting that 

difficulties in maintaining phonological information during repetition may at least partially 
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explain the deficits observed in these patients. These results confirm the hypothesis that the 

primary anatomical/cognitive deficit in lvPPA patients is caused by damage to the pSTG and 

inferior parietal regions, resulting in the disruption of auditory short term verbal memory 

and perhaps linked to the interaction of sensory and motor systems.

To address the greater-than-expected rate of left-handed participants in our patient group, we 

performed a posthoc correlational analysis of the relationship between cortical thinning and 

repetition performance without covarying for nunisance variables, specifically handedness 

and severity (see supplementary material). The results of this posthoc analysis diverge from 

those obtaining controlling for the above mentioned variables, where significant correlations 

were found in the left temporo-parietal lobe. In the posthoc a more distributed network of 

areas is observed, including the left and right inferior parietal and superior temporal areas, as 

well as the left lateral occipital area. This may be influenced by the trend that left-handed 

patients presented with more symmetrical and bilateral atrophy. Given the statistical power 

granted by our sample, we can only assume that this difference is explained by some 

combination of handedness and/or severity, but cannot evaluate the contribution of each 

variable independently: when thickness values are correlated separately with severity and 

handedness, no significant results are found. The differences in results with and without 

these variables are indeed interesting and worthy of further study with a larger cohort of 

patients selected in a more systematic way. Future studies could properly investigate the 

contribution of the left and right hemispeheres to repetition performance, as well as the role 

of handedness and/or severity.

5. Conclusion

We utilized a modified version of the Bayles repetition to test the effects of two factors, 

length and meaning, on sentence repetition accuracy in three different groups of PPA 

patients. Repetition accuracy was best for short and meaningful phrases across all PPA 

groups. LvPPA patients showed a gradual decrease in repetition accuracy across length and 

meaningfulness conditions. Cortical thinning within the left temporo-parietal regions 

contributed to poor repetition accuracy across PPA groups, providing evidence that these 

regions are implicated in a brain network supporting avSTM. This study shows that specific 

neuroanatomical and linguistic features of the repetition test can inform the diagnosis of 

lvPPA. The insight from these findings may help distinguish clinically-relevant 

subprocesses, such as semantics or phonology, that underlie repetition deficits, which in turn 

has implications for models of avSTM, linguistic knowledge and semantic resources in 

neurodegenerative diseases. This present study provides key insight into poor patient 

performance on tasks that place particular demands on avSTM, including repetition and 

comprehension of spoken sentences and phrases. Given that these scores are a critical source 

of reliable classification of PPA into subtypes, these findings will increase the accuracy by 

which underlying pathology can be predicted from the clinical presentation in PPA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Cortical thickness maps showing atrophy patterns for PPA variants compared to HC. The 

presented map is thresholded at p < 0.001 family-wise error (FWE) corrected both at peak-

level and cluster extent based thresholding. Covariates: age, gender and handedness.

Appendix B

Conditions

Frequent sentences

1 Is there something I can do for you?

2 That must have cost a pretty penny.

3 I don’t know what you’re talking about.

4 I am afraid I have some bad news.

5 Can I talk to you for a second?

Short meaningful phrases

1 Remote tropical isle

2 Cracked enamel surface

3 Shaggy brown buffalo

4 Rare poisonous lizard

5 Foreign owned restaurant

Short non-meaningful phrases

1 Crawling summer trombone

2 Incapable top spoons
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Conditions

3 Quiet pencil jacket

4 Waltzing private island

5 Broken metal sickness

Long meaningful phrases

1 Thoughtful authors write memorably.

2 Carnival men buy cotton candy.

3 Teen girls apply cosmetics daily.

4 Antique furniture draws good patrons.

5 Active volcanos spew hot lava.

Long non-meaningful phrases

1 Her smile swallows shiny desk mallets.

2 Loud ambassadors freeze stable waves.

3 High mountaintops chuckle sweet passion.

4 Hairpins leap fluttering riddle games.

5 Tornadoes judged long eggplant booklets.

Note: The seven sentences in which lvPPA perform the most poorly and nfvPPA and svPPA perform well are in bold. This 
selection is based on a subjective cut-off > 85% of the total syllables repeated correctly, as well as the highest Area Under 
the Curve values (AUC > 0.8).
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Fig. 1. 
The repetition performance distribution for the group of HC and the three PPA variants. 

Mean accuracy (% correct) representing the number of correctly repeated phrases for the 

three PPA variants and the group of HC. Asterisks indicate significantly impaired 

performances across conditions at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).
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Fig. 2. 
Performance on the repetition test across conditions for groups of HC and the three PPA 

variants. (A) Mean accuracy (% correct) for the two length conditions, and (B) Mean 

accuracy (% correct) for the two meaning conditions; significant two-way interactions at p < 

0.001 (***); % differences between short and long, and meaningful and non-meaningful 

conditions for each group are presented above each bar of the graph.
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Fig. 3. 
Cortical thickness maps showing areas where cortical thinning was associated with 

repetition performances on all phrases, and long (over short) phrases across PPAs. The 

presented map is thresholded at p < 0.05 family-wise error (FWE) corrected both at peak-

level and cluster extent based thresholding. Covariates: age, gender, handedness, and 

severity (measured by the Clinical Dementia Rating box score).
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Fig. 4. 
Receiver Operating Characteristics (ROC) curves display the capacity of different subscores 

on the repetition test to discriminate lvPPA from the non-logopenic patients (A), and nfvPPA 

(B). The ROC curves of Frequent Sentences (FS; green solid line), Short Meaningful (SM; 

blue solid line) and Short Non-Meaningful (SNM; blue dashed line), and Long Meaningful 

(LM; red solid line) and Long Non-Meaningful (LNM; red dashed line) phrases. The area 

under the curve (AUC) and Confidence Interval (CI) values are reported for each condition 

showing the overall ability of different sub-scores to correctly identify lvPPA from the 

nfvPPA and svPPA. A value of 1.0 is a perfect test, 0.9–0.99 is an excellent test, 0.8–0.89 is 

a good test, 0.7–0.79 is a fair test, 0.51–0.69 is a poor test, and 0.5 is of no value; A 

prediction model is considered strong with a values of > 0.8 (Carter, Pan, Rai, & Galandiuk, 

2016).
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