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The health of mammals depends on a complex interplay with their microbial ecosystems.

Compartments exposed to external environments such as the mucosal surfaces of the

gastrointestinal tract accommodate the gut microbiota, composed by a wide range

of bacteria. The gut microbiome confers benefits to the host, including expansion

of metabolic potential and the development of an immune system that can robustly

protect from external and internal insults. The cooperation between gut microbiome

and host is enabled in part by the formation of partitioned niches that harbor diverse

bacterial phyla. Bacterial secretion systems are commonly employed to manipulate the

composition of these local environments. Here, we explore the roles of the bacterial

type VI secretion system (T6SS), present in ∼25% of gram-negative bacteria, including

many symbionts, in the establishment and perturbation of bacterial commensalism, and

symbiosis in host mucosal sites. This versatile apparatus drives bacterial competition,

although in some cases can also interfere directly with host cells and facilitate nutrient

acquisition. In addition, some bacterial pathogens cause disease when their T6SS leads

to dysbiosis and subverts host immune responses in defined animal models. This review

explores our knowledge of the T6SS in the context of the “host-microbiota-pathogen”

triumvirate and examines contexts in which the importance of this secretion system may

be underappreciated.

Keywords: gut microbiome, type six secretion system, commensal, symbiosis, dysbiosis, mucosal immunity,

tolerance, MAMPs

INTRODUCTION

The gut tissue is composed of hundreds of millions of cells whilst providing a home for amicrobiota
containing trillions of bacteria (Sender et al., 2016). The association of the microbiota with our
tissues is central for homeostatic and developmental mechanisms and thus governs many aspects
of human health (Belkaid and Harrison, 2017). Due to this relationship, mammals in general may
be considered as holobionts from an ecological perspective, in which the microbiota assists host
metabolism and acts as an environmental training system for the associated tissues (Bäckhed et al.,
2005; Al Nabhani et al., 2019; Tsolis and Bäumler, 2020). Microorganisms associate with the skin
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and mucosal surfaces such as the oral-nasal and vaginal cavities,
respiratory and gastrointestinal tracts; with the gut microbiota
constituting the best characterized community. We note that
although we focus on the gut microbial ecosystem, the concepts
may apply to all mucosal surfaces and potentially to other
complex symbiotic communities.

The composition and community structure of the gut
microbiota is complex and heterogenous. The distribution
of microbial species within the large intestine is to be
accounted with the diversity of residing immune cells, together
forming a biodynamic ecosystem (Human Microbiome Project
Consortium, 2012; James et al., 2020). Indeed, bacterial
communities and immune cell populations exhibit great diversity
in a niche-dependent fashion, with the latter displaying
a wide range of transcriptional profiles within T and B
cells of the adaptive immune system. The niches of gut
commensals are determined by their metabolic activities and
ability to stably associate with their local tissue environment
(Lee et al., 2013; Ost and Round, 2018; Vonaesch et al.,
2018). For example, some of the Bacteroides species are
present in the intestinal lumen while others tightly associate
with the mucus layering the epithelial surface of colonic
crypts (Johansson et al., 2011). Yet, niche residency is
not solely determined through dialogue with the host and
critically depends on interactions with other microbes sharing
nutritional niches (García-Bayona and Comstock, 2018). Here,
bacteria vie for dominance, deploying a range of antibacterial
toxins, some of which are delivered via membrane-embedded
secretion systems.

The T6SS is prevalent in gram-negative bacteria, particularly
in the phyla Proteobacteria and Bacteroidetes (Bingle et al., 2008;
Russell et al., 2014b). This secretion apparatus is evolutionarily
related to the bacteriophage tail, wherein contraction of a
sheath propels a spiked-tube structure out of the bacterial
cell, piercing the cell membrane of their targets to inject
effector proteins (Pukatzki et al., 2007; Coulthurst, 2019). The
cytoplasmic T6SS sheath, composed of a polymeric helix of TssB-
TssC binds to a baseplate-like multi-protein platform, which
itself associates with an envelope-spanning membrane complex
of TssJ, TssL, and TssM (Durand et al., 2015; Nazarov et al.,
2017). Phylogenetic analysis of TssC proteins found that type
VI secretion systems cluster into three main groups, where
subtypes I and II are proteobacterial, while subtype III is
restricted to Bacteroidetes (Russell et al., 2014b). The inner
tube is a stack of hexameric Hcp rings capped with a spike
complex of a VgrG trimer, further sharpened with a PAAR
protein tip; designed for effector and toxin delivery (Leiman
et al., 2009; Shneider et al., 2013). T6SSs can directly target both
prokaryotic and eukaryotic cells, as well as delivering effector
proteins into the extracellular milieu in a contact-independent
manner (Pukatzki et al., 2006; Hood et al., 2010; Si et al.,
2017b). These effectors display a vast range of activities, including
hydrolysis of peptidoglycan of peptidoglycan, nucleic acids,
nucleotides, proteins, and lipids; membrane pore formation and
metal ion binding, thus conferring a competition advantage to
the T6SS-wielding bacterium and promoting its survival (Russell
et al., 2014a; Wang et al., 2015; Ahmad et al., 2019). This
review examines the relationship between the type VI secretion

system and the microbiome in the context of both symbiosis
and dysbiosis.

THE T6SS CONTRIBUTES TO THE
FITNESS OF THE MICROBIOTA

The majority of the mammalian microbiome is acquired at
birth, with the prevailing species seeded from the mother during
delivery and influenced by breastfeeding and environmental
exposure (Round et al., 2010). During the first year of life, the
composition of the gut microbiome is highly dynamic, in part
due to the weaning process, before stabilizing, and remaining
consistent through adulthood (Faith et al., 2013; Verster
et al., 2017; Al Nabhani et al., 2019). The major constituents
of the gut community belong to the phyla Bacteroidetes,
Firmicutes, Actinobacteria, and Proteobacteria, with members
of the Bacteroides genus dominating the large intestine (Human
Microbiome Project Consortium, 2012). Subtype III of T6SS
(hereafter referred as T6SSiii) is restricted to the Bacteroidetes
phylum and has been shown to deliver antibacterial effectors
resulting in microbial antagonism (Russell et al., 2014b).

Bioinformatic analyses of T6SS loci within the order
Bacteroidales has classified them into three distinct “genetic
architectures,” designated GA1–3 (Coyne et al., 2016). GA1 and
GA2 are found on integrative conjugative elements. Genomic
analysis of the co-resident Bacteroides spp. isolated from human
gut provided evidence of transfer of these elements between
species in situ, implying that T6SS loci are under positive
selection in the microbiome (Coyne et al., 2014). GA3 T6SSs
are confined to Bacteroides fragilis, an obligate anaerobe, while
GA1 and GA2 loci are more widespread within the phylum
(Coyne et al., 2016). GA1–3 display distinct repertoires of
effector-immunity pairs, possibly driving the incompatibility of
these T6SSs within a single niche of an individual (Coyne and
Comstock, 2019). One strain of B. fragilis tends to dominate
the microbiota of an individual due to strain exclusion as the
composition of the community stabilizes (Kostic et al., 2015;
Yassour et al., 2016; Verster et al., 2017). Indeed, metagenomic
analyses revealed that the abundance of GA3 T6SS loci is higher
in infants, suggesting that competition between B. fragilis strains
leads to stability of themicrobial community in adulthood (Coyte
et al., 2015; Verster et al., 2017). These observations should
also be considered in light of the weaning process, wherein
dietary changes lead to the influx of new bacterial competitors
and dietary metabolites required for the host immune ontogeny
(Al Nabhani et al., 2019). Co-existence of strains with different
T6SSiii “genetic architectures” does arise but solely when bacterial
species with overlapping nutritional niches become spatially
segregated in the presence of a dense and diverse microbiota
(Zitomersky et al., 2011; Hecht et al., 2016).

The use of gnotobiotic mouse models provided the empirical
evidence supporting the roles of the T6SS in Bacteroidetes as
ecological determinants, wherein T6SS expression and activity
have been directly detected in vivo (Russell et al., 2014b;
Chatzidaki-Livanis et al., 2016). In vivo competition assays have
demonstrated that B. fragilis employs the T6SS to displace
competitors from their niche in a contact-dependent manner,
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with several effector proteins supporting this elimination
(Table 1) (Chatzidaki-Livanis et al., 2016; Hecht et al., 2016;
Wexler et al., 2016; Ross et al., 2019). Furthermore, in vitro
competition assays have found that T6SS-mediated antagonism
of Bacteroides spp. targeted a narrow range of species, with
most prey strains resistant to intoxication (Chatzidaki-Livanis
et al., 2016; Wexler et al., 2016). Thus, the susceptibility
to T6SS-dependent antagonism depends as much on the
belligerent’s identity as on the population distribution across
topological niches.

Horizontal gene transfer facilitates the evolution of bacterial
species in polymicrobial environments by enabling the positive
selection of genes conferring a competitive advantage, a
phenomenon also observed for T6SS loci (Unterweger et al.,
2014). The existence of “orphan” T6SS immunity genes
(conferring resistance to deleterious T6SS effector proteins;
bearing no connection to the host immune system) in the absence
of cognate effector genes was discovered in Vibrio cholerae
isolates, leading to the hypothesis that their acquisition would
subsequently protect the bearer against T6SS attacks from non-
kin opponents (Kirchberger et al., 2017). The functionality of
these orphan immunity genes was elegantly shown by Ross and
colleagues in a recent study of members of the microbiome
exhibiting extensive arrays called acquired interbacterial defense
(AID) clusters (Ross et al., 2019). Here, many members of
Bacteroidales were immune to T6SS antagonism by other species
and may even possess immunity genes conferring resistance
to anti-bacterial effectors associated to strategies beyond the
T6SS (Zhang et al., 2012; Ross et al., 2019). However, immunity
proteins are not the only way to mitigate the impact of
antagonistic effectors. Several studies showed the inability of
certain T6SS effectors to intoxicate prey cells lacking the cognate
immunity proteins (Altindis et al., 2015; Ringel et al., 2017;Wood
et al., 2019), and synergistic effector activities have also been
described (LaCourse et al., 2018). Further protection strategies
from T6SS-mediated killing, such as upregulation of envelope

stress responses and production of extracellular polysaccharides,
underscore the complexity of T6SS antagonism (Toska et al.,
2018; Hersch et al., 2020).

T6SS-mediated bacterial antagonism targets specific
competitors in the gut, helping to dictate niche occupancy.
However, when considered in the broader ecological context of
the microbiota and symbiosis with the host, the T6SS may also
promote the symbiotic relationship with the host by enabling
metabolic cooperation (Hooper et al., 2012; Vonaesch et al.,
2018). Additionally, the presence of a stable microbiota provides
resistance to dysbiosis and outcompetes invading microbial
pathogens for nutrients. In terms of direct antibacterial warfare,
the T6SS should be considered as a major armament of the
microbiota in limiting infection (Kamada et al., 2013; Ducarmon
et al., 2019). Indeed, mouse models have shown that the
priority benefit of B. fragilis colonization may be protection
against infection by enterotoxigenic B. fragilis strains, in a
manner that depends on T6SS effector-immunity genotype
(Hecht et al., 2016).

PROMOTION OF IMMUNE HOMEOSTASIS
BY THE MICROBIOTA: A POTENTIAL ROLE
FOR THE T6SS?

The intestinal microbiota is also crucial for the development
of our immune system, as its absence leads to low antibody
titer, poor glycosylation of mucosal surfaces, overt TH2 responses
and defective development of gut-associated lymphoid tissue in
germ-free mice (Smith et al., 2007). The resident microbiota
is proposed to train our immune system to actively tolerate
the presence of distinct commensals whilst providing robust
resistance against invading bacterial pathogens; presenting the
intriguing teleological argument that commensal bacteria co-
opt the host immune system to defend their niche (Round and
Mazmanian, 2009). Evidence now strongly supports the idea

TABLE 1 | T6SSiii effectors of human symbionts.

Commensal bacterium Antibacterial T6SS Effector locus Immunity protein(s) Immunity locus References

effector tag tag(s)

Bacteroides dorei DSM 17855 “GA2_e14” BACDOR_RS22955 “GA2_i14” BACDOR_RS17020 Ross et al., 2019

Bacteroides fragilis 638R Bfe1 BF638R_1988 Bfi1 BF638R_1987 Chatzidaki-Livanis

et al., 2016

Bacteroides fragilis 638R Bfe2 BF638R_1979 Bfi2 BF638R_1978 Chatzidaki-Livanis

et al., 2016

Bacteroides fragilis 638R – – Orphan Bti1 (“GA3_i6”) BF638R_2042 Ross et al., 2019

Bacteroides fragilis 638R – – Orphan Bti2a,b (“GA3_i7ab”) BF638R_2053-4 Ross et al., 2019

Bacteroides fragilis 638R – – Orphan “GA2_i11” BF638R_1388 Ross et al., 2019

Bacteroides fragilis CL03T00C23 “GA2_e2” HMPREF1079_RS08215 “GA2_i2” HMPREF1079_RS08220 Ross et al., 2019

Bacteroides fragilis NCTC 9343 Bte1 (“GA3_e6”) BF9343_1937 Bti1 (“GA3_i6”) BF9343_1936 Wexler et al., 2016

Bacteroides fragilis NCTC 9343 Bte2 BF9343_1928 Bti2a,b (“GA3_i7ab”) BF9343_1927-6 Hecht et al., 2016;

Wexler et al., 2016

Bacteroides fragilis NCTC 9343 – – Orphan “GA1_i5” BF9343_1657 Ross et al., 2019

Bacteroides fragilis YCH46 “GA1_e5” BF2850 “GA1_i5” BF2851 Ross et al., 2019
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of tolerogenic immune responses to commensal flora, rather
than specifically ignoring these residents (Round et al., 2010).
Tolerance is fostered through the detection ofmicrobe-associated
molecular patterns (MAMPs) and microbial metabolites, and
extends beyond the local environment of the gut to promote
appropriate systemic immune responses (Figure 1) (Clarke
et al., 2010; Chu and Mazmanian, 2013). The detection of
conserved MAMPs by pattern recognition receptors (PRRs) is
one of the foundations of the innate immune system. Innate
immune cells, particularly antigen-presenting dendritic cells
(DCs) sense their environment in peripheral organs through
continuous uptake and sampling of exogenously acquired
antigens (Iwasaki and Medzhitov, 2015). Upon microbial
encounter, the engagement of PRRs by MAMPs elicits an
inflammatory genes program, enhances antigen processing and
presentation processes in DCs; all critical for T cell mediated
immune responses against pathogens (Medzhitov and Janeway,
1999; Takeuchi and Akira, 2010; Iwasaki and Medzhitov,
2015). MAMPs include lipopolysaccharide (LPS), peptidoglycan,
lipoproteins and nucleic acids that trigger MAP kinase and NF-
κB signaling leading to pro-inflammatory responses (Fitzgerald
and Kagan, 2020). Yet, there is precedent for MAMPs to
assist in the development of tolerogenic signals. Mucosal
DCs interacting with commensal bacterial components directly
or through indirect acquisition of secreted outer membrane

vesicles (OMVs) prime host regulatory T cells (Tregs), a subset
of T cells promoting tolerance to both food and microbial
antigens, thus dampening immune responses to the resident
bacterial communities.

The homeostasis of the host-microbiota axis is maintained by
continuous immune system monitoring (Belkaid and Harrison,
2017). The best characterized example of immune modulation
is the production of polysaccharide A (PSA) by B. fragilis,
which signals via Toll-like receptor 2 (TLR2) on dendritic
cells. This stimulates the differentiation of Tregs, producing
an immunosuppressive environment through the secretion of
the cytokine IL-10 (Mazmanian et al., 2005; O’Mahony et al.,
2008; Round et al., 2011). In IL-10 deficient mice, commensal
bacteriumHelicobacter hepaticus exhibits colitogenic potential in
the presence of gut microbiota, which has been reported to be
suppressed by the T6SS of this ε-proteobacterium (Mazmanian
et al., 2008; Chow and Mazmanian, 2010; Bartonickova et al.,
2013; Jochum and Stecher, 2020). This highlights the interplay
of tolerogenic signaling and the T6SS of resident members of the
microbiota; however, the mechanistic details of this interaction
are yet to be explored.

Tolerogenic immune signaling is also stimulated by
commensal metabolites including the short chain fatty acids
(SCFAs) acetate, propionate, and butyrate (Parada Venegas et al.,
2019); intermediates of vitamin B2 and B9; and amino acid

FIGURE 1 | Roles of the T6SS in host-microbiota-pathogen interactions. In healthy steady state conditions (middle panel), commensal bacteria use the T6SS to

establish and maintain their niche in the host. The release of MAMPs through T6SS warfare can contribute to the establishment of immune tolerance, enhancing the

symbiotic relationship. In the case of host immune deficiency (right panel), for example due to a genetic polymorphism in the host, cross-talk with the microbiota is

compromised and the balance within the microbial community may be disrupted, resulting in chronic dysbiosis. The T6SS is likely to play a role in the modulation of

competing commensal populations and subsequent decrease in diversity of bacteria phyla, as well as potentially directly manipulating host cells. In the case of infection

by pathogenic bacteria wielding a T6SS (left panel), commensal bacteria are eliminated through both direct delivery of antibacterial effectors and indirect mechanisms

such as host manipulation and nutrient competition. The state of dysbiosis that follows is acute but may be resolved through elimination of the pathogen by the host

immune system. In both states of dysbiosis, the T6SS may play a determining role in eliciting the release of DAMPs, which influences the host immune response.
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metabolism (Kjer-Nielsen et al., 2012; Venkatesh et al., 2014;
Sasabe et al., 2016). Recent work has started to shed light on
the numerous benefits that production of SCFAs by commensal
bacteria confer to the host. One consequence is the upregulation
of oxidative host metabolism by utilization of SCFAs as a carbon
source, which bolsters the hypoxic microenvironment at the
colonocyte surface, favoring the growth of obligate anaerobes
(e.g., Bacteroides spp.) and limiting propagation of facultative
aerobes, such as invasive pathogens like Escherichia coli (Litvak
et al., 2018; Zhang et al., 2019). In addition, SCFAs act directly
via immune cell receptors to modulate T cell subset expansion
and macrophage polarization (Schulthess et al., 2019). These
compounds commonly promote IL-10 production and suppress
inflammation; however, they may also contribute toward
effector T cell differentiation, depending on the overall local
immunological context (Zhang et al., 2019). On the other hand,
microbial metabolites in the intestine may stimulate virulence
programs of invading bacteria, with several two-component
signal transduction systems in T6SS-positive pathogens having
been shown to respond to SCFAs and other metabolites produced
by the microbiome (Lawhon et al., 2002; Gonzalez-Chavez et al.,
2010; Kohli et al., 2018; Goodman et al., 2020). It is likely
that T6SS-mediated turbulent population dynamics occurring
during the microbiome development results in variation in
the levels of these metabolites. Indeed, bacteria activate diverse
antimicrobial programs upon non-kin recognition or danger
sensing, including an as-yet uncharacterized diffusible signal
from lysed Pseudomonas aeruginosa bacteria that heightens the
antibacterial T6SS activity in kin (LeRoux et al., 2015). This
antibacterial warfare would further alter levels of microbial
products in the local milieu, tipping the ecological balance
toward dysbiosis. Moreover, one could hypothesize that bacterial
products resulting from the aftermath of T6SS-mediated
bacterial antagonism may provide the ligands supporting the
development of tolerogenic immune responses. Several lines of
evidence from various models lend support to this hypothesis.
T6SS-dependent exclusion of Aliivibrio fischeri non-kin strains
has been reported during their colonization of the light organs
of the Hawaiian bobtail squid Euprymna scolopes (Speare et al.,
2018, 2020). The ensuing symbiosis results in morphogenesis
of the organs, a process that a combination of A. fischeri LPS
and specific monomeric peptidoglycan fragments, issued from
cell wall remodeling occurring during bacterial growth and
considered as a sign of bacterial viability (referred to as tracheal
cytotoxin; TCT), are sufficient to stimulate (Koropatnick et al.,
2004). In this case, the peptidoglycan fragments are actively
released during A. fischeri growth. In the fruit fly Drosophila
melanogaster, recognition of peptidoglycan by the peptidoglycan
recognition protein (PGRP) scavenger receptors stimulates the
Immune Deficiency (IMD) pathway, similar to that of tumor
necrosis factor (TNF) in mammals (Kleino and Silverman,
2014). Alternative isoforms of PGRP can determine bacterial
viability: recognition of TCT activates the pathway; whereas
recognition of polymeric peptidoglycan fragments (issued from
bacterial killing) by a splice variant exerts an inhibitory effect
of signal transduction (Neyen et al., 2016). This effectively
results in a dampened immune response as reduced pathogen

viability could represent a reduced threat. Such interplay also
occurs in the intestinal lymphoid tissues, where the generation
of IgA-producing B cells is induced following the recognition
of gram-negative bacterial peptidoglycan by NOD1 in epithelial
cells (Bouskra et al., 2008). Other ligands provide additional cues
for microbial viability in host cytosol, such as cyclic dinucleotides
sensed by the cGAS-STING and RECON pathways (Moretti and
Blander, 2018; Whiteley et al., 2019); and bacterial RNA sensing
by TLR8 in the endosome of mammalian epithelial cells (Ugolini
et al., 2018).

Equally, it is reasonable to envision T6SS machineries and
their effectors as direct inducers of immune tolerance at mucosal
sites. In agreement with such possibility, host cells of the innate
immune system may forge tolerance by acquiring antigens
through OMVs (Shen et al., 2012; Kaparakis-Liaskos and Ferrero,
2015; Chu et al., 2016; Durant et al., 2020). The association of
TseF, an iron-acquiring T6SS effector of Pseudomonas aeruginosa,
with OMVs may represent an underappreciated role for T6SS
effectors in host-microbe interplay (Lin et al., 2017). A better
understanding of the activities of T6SS effectors deployed
by bacterial species at the interface of mucosal surfaces will
illuminate the innate immune sensing and response mechanisms
to bacterial molecules released into the host milieu, during
homeostasis or under stress conditions.

T6SS DEPLOYMENT BY BACTERIAL
PATHOGENS: UPSETTING THE
APPLECART

By its sheer density, the microbiota offers high resistance
to colonization by pathogens. Indeed, pathogens are vastly
outnumbered at the start of infection and must compete with
the host microbiota for space and nutrients, notwithstanding the
contact-dependent and -independent mechanisms of bacterial
warfare. Although the T6SS was initially associated with bacterial
virulence, the precise role of this apparatus in host infection has
not always been clear (Hachani et al., 2016). Recently, studies
have highlighted the role of the T6SS in bacterial antagonism
during infection, rather than through a direct interaction with
host cells. Early evidence for T6SS-mediated competition in vivo
emerged from a transposon library screen of Vibrio cholerae
strains for impaired colonization of the infant rabbit intestine
(Fu et al., 2013). The authors found that tsiV3, encoding the
immunity protein to the specialized peptidoglycan hydrolase
effector VgrG3, is necessary to alleviate a colonization bottleneck
in this model of intestinal infection. Further analysis of T6SS
dynamics during V. cholerae colonization found that its role
in commensal elimination is largely confined to the jejunum,
suggesting that this antibacterial activity may be targeted toward
specific microbial residents of this niche (Fu et al., 2018). The
T6SS of gastrointestinal pathogens Salmonella enterica serovar
Typhimurium and Shigella sonnei are also required for complete
virulence, with evidence supporting a role in antagonism of
members of the microbiota (Sana et al., 2016; Anderson et al.,
2017). Yet, similar to V. cholerae, S. Typhimurium exhibited a
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limited target range in bacterial competition assays against gram-
negative members of the microbiota, again hinting at specific
targeting during infection (Sana et al., 2016). Although the
abundance of proteobacterial commensals is low in comparison
to members of the Bacteroidetes and Firmicutes phyla, they
are enriched in many niches, for example Acinetobacter spp.
in colonic crypts, and Escherichia and Shigella species in the
sigmoid colon (Pédron et al., 2012; James et al., 2020). Due to
the clash of nutritional niches between many proteobacterial
gut residents and their pathogenic proteobacterial counterparts,
T6SS-mediated antagonism is likely to unfold between them.
Moreover, metagenomic analyses indicate the presence of species
possessing T6SSi components, which are absent from the
Bacteroidetes subgroup, thereby supporting the notion of T6SSi-
mediated warfare waged by commensal bacteria (Coyne and
Comstock, 2019).

The induction of inflammatory host responses is a common
mechanism of mass disruption by bacterial competitors, which
promotes elimination of the microbial community and dysbiosis
(Ackermann et al., 2008). For example, by triggering macrophage
pyroptosis, an invasive subpopulation of S. Typhimurium can
elicit a large inflammatory response leading to the release of
pro-inflammatory cytokines from epithelial cells (Thiennimitr
et al., 2012). Although this tissue-invasive S. Typhimurium
subpopulation is eliminated by the subsequent infiltration of
immune cells, the ensuing inflammatory response (notably the
IL-22 signaling axis) reduces iron availability in the lumen.
Due to its numerous metal ion acquisition systems, the luminal
S. Typhimurium subpopulation is able to outcompete the
commensal inhabitants and replicate in the lumen (Behnsen
et al., 2014). Similarly, the secretion of cholera toxin by
V. cholerae results in iron depletion to favor the pathogen’s
proliferation at the detriment of the microbiota (Rivera-Chávez
and Mekalanos, 2019). The antibacterial activity of the T6SS
itself can also stimulate host inflammation. Bacterial lysis
mediated by the V. cholerae T6SS in mice mono-colonized
with a commensal E. coli strain elicits a host transcriptional
response, elevating expression of antimicrobial peptides and NF-
κB signaling components (Zhao et al., 2018). NF-κB induction
could be recapitulated in vitro using supernatants from T6SS-
dependent killing assays, suggesting that MAMPs released from
T6SS-mediated bacterial lysis may be the factors supporting
the induction of this host response. Furthermore, El Tor
pandemic strains ofV. cholerae display higher levels of T6SS gene
expression than reference clinical isolates, thus underpinning the
association of T6SS antibacterial activity with pathology (Zhao
et al., 2018). In the TRUC murine model for ulcerative colitis,
the presence of a commensal bacterial population promotes
spontaneous disease onset in this susceptible host (Garrett et al.,
2007). Here, the presence of Proteus mirabilis and Klebsiella
pneumoniae in this commensal community correlated with
colitogenic potential (Garrett et al., 2010). Both of these species
possess T6SSs that display antibacterial activity (Alteri et al., 2013;
Hsieh et al., 2019), while this secretion system has also been
shown to contribute to the fitness of the pathogens in vivo (Lery
et al., 2014; Debnath et al., 2018). One can therefore contemplate
a role for this secretion system in the TRUC model whereby

T6SS-mediated elimination of commensal bacteria promotes an
inflammatory response that cannot be restrained due to the
immune genes deficiency of the host, resulting in colitis.

Non-mammalian models also support the notion of T6SS-
dependent dysbiosis as a driving force for disease symptoms and
pathology. A recent study found that Pseudomonas protegens
uses antibacterial effectors to antagonize the gut microbiota
of butterfly larvae, enabling tissue invasion and disease onset
(Vacheron et al., 2019). Infection of D. melanogaster with V.
cholerae results in diarrheal symptoms and gut inflammation
(Blow et al., 2005), and the T6SS of the pathogen was found
to promote mortality in a manner dependent on the presence
of constituents of the microbiota (Fast et al., 2018). The IMD
pathway also contributes to this pathology, suggesting that
elimination of the fly gut commensal bacteria can be lethal due
to exacerbated host inflammatory response (Ryu et al., 2008;
Fast et al., 2018). T6SS-mediated depletion of the polymicrobial
community impacts tissue repair during fly infection, mirroring
the pioneering work establishing the role of the human gut
microbiota in tissue homeostasis (Rakoff-Nahoum et al., 2004;
Fast et al., 2020).

The competition for nutrients is a key aspect of colonization
resistance in the host environment. As discussed above,
microbiota niche occupancy is partly dictated by the ability to
use specific carbon and nitrogen sources. Around one fifth of
the genome of Bacteroides spp. encodes proteins involved in
polysaccharide catabolism, conferring great metabolic versatility
(Sonnenburg et al., 2005; Schwalm and Groisman, 2017). Besides,
the host accentuates the state of nutritional immunity by
sequestering metal ions upon infection to limit the replication of
pathogens. Recent work by the Shen laboratory and others has
revealed a role for the T6SS in nutrient acquisition, whereby the
secretion of metal ion-binding proteins facilitates the uptake of
zinc, iron, copper or manganese (Wang et al., 2015; Lin et al.,
2017; Si et al., 2017a,b; Han et al., 2019). A T6SS-4 mutant of
Yersinia pestis exhibited reduced pathogenicity in an orogastric
mouse model, indicating the role of this virulence factor in
overcoming nutritional immunity during infection (Wang et al.,
2015). It is likely that members of the microbiota utilize the T6SS
for nutrient acquisition too; however, no T6SS effectors have been
described to date. The role of the T6SS of bacterial pathogens
in disrupting the steady state of microbiota-host ecosystems is
becoming increasingly clear and underscores the importance of
the microbiota in colonization resistance alongside the versatility
of this secretion system.

DIRECT HOST CELL CONTACT: T6SS
ENCOUNTERS OF THE THIRD KIND

The T6SS versatility extends beyond its prominent antibacterial
role in many gram-negative bacteria. As the most evolved
member of the contractile injection systems, it delivers effectors
into the extracellular milieu or directly into neighboring bacteria
and/or eukaryotic targets. Many anti-eukaryotic activities of
the T6SS have been described, including the manipulation of
biochemical processes governing the physiology of phagocytes
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and epithelial cells (reviewed in Hachani et al., 2016).
Furthermore, several studies have found that the T6SS can target
fungal cells, and whereas the human microbiota also harbors
fungi such as Candida albicans, these interactions within a host
remain unexplored (Haapalainen et al., 2012; Trunk et al., 2018;
Storey et al., 2020). A summary of T6SS effector proteins with
roles distinct from direct bacterial antagonism are listed in
Table 2.

Once pathogens gain a foothold by ousting the residing
microbiota in their desired niche, they must contend with the
microbial clearance mechanisms of the host. After phagocytosis
by immune cells, phagosomal bacteria are subjected to the
oxidative burst, where the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase membrane complex produces
superoxide radicals in the vacuole to destroy the engulfed
microbe. During oxidative stress, such as after uptake by
macrophages, enterohaemorrhagic E. coli (EHEC) secretes the
T6SS catalase effector KatN to detoxify the local environment
(Wan et al., 2017). Intriguingly, despite being important in the
survival of EHEC in macrophages, the absence of KatN did
not impact virulence in a streptomycin-treated mouse model.
However, the T6SS itself was required for complete virulence
suggesting the presence of other host cell-targeted effectors or
undescribed compensatory host cell mechanisms. The T6SSs
secreting metal binding effectors are upregulated upon oxidative
stress, suggesting they likely play a role in defense against reactive
oxygen species produced by immune cells (Wang et al., 2015;
Lin et al., 2017; Si et al., 2017a,b). Indeed, the zinc-binding

effector YezP of Y. pestis is required for intracellular survival in
macrophages (Wang et al., 2015).

Burkholderia cenocepacia, an opportunistic pathogen of cystic
fibrosis patients, resides primarily in alveolar macrophages
where it resists killing (Schwab et al., 2014). The delivery of
the T6SS effector TecA into the macrophage cytosol leads to
the deamidation of Rho GTPases, which hampers the activity
of the NADPH complex (Rosales-Reyes et al., 2012; Aubert
et al., 2016). Yet, this inactivation of Rho GTPases is detected
by the pyrin inflammasome, leading to caspase-1 activation,
pyroptosis and inflammation (Xu et al., 2014). Inflammasomes
are vital for enacting cell-autonomous immunity. Thus, they are
frequently targeted by invasive bacterial pathogens (Sanchez-
Garrido et al., 2020). The NLRC4 and NLRP3 inflammasomes
are activated by the type III secretion system of Edwardsiella
piscicida after phagocytosis. However, this bacterium is also able
to impair the activation of caspase-1 using its T6SS effector
EvpP (Chen et al., 2017). The mode of action of this effector
remains elusive but appears to prevent the induction of ASC-
mediated canonical inflammasome seeding by inhibition of
calcium-dependent JNK activation.

The facultative intracellular pathogen Francisella tularensis
avoids destruction by macrophages through the action of its
T6SS (Nano et al., 2004). Proteomics analysis identified several
T6SS effector proteins that are required for escape from the
phagosome, and cytosolic replication (Eshraghi et al., 2016).
One of these is the phosphatidylinositol 3-kinase (PI3K)-like
effector OpiA, which remodels the phospholipid content of

TABLE 2 | T6SS effectors with roles beyond bacterial antagonism.

T6SS Effector Bacterium Function References

VgrG1AD Aeromonas dhakensis Cytoskeletal disruption Suarez et al., 2010

TecA Burkholderia cenocepacia Inhibition of Rho GTPases Rosales-Reyes et al.,

2012; Aubert et al., 2016

TseZ Burkholderia thailandensis Acquisition of Zn2+ Si et al., 2017a

TseM B. thailandensis Acquisition of Mn2+ Si et al., 2017b

VgrG5 Burkholderia pseudomallei; B. thailandensis Formation of multi-nucleated giant cells Schwarz et al., 2014;

Toesca et al., 2014

EvpP Edwardsiella piscicida Inhibition of inflammasome formation Chen et al., 2017

KatN Enterohaemorraghic Escherichia coli Protection against oxidative stress Wan et al., 2017

OpiA Francisella tularensis Phagosomal escape Eshraghi et al., 2016;

Ledvina et al., 2018

Azu Pseudomonas aeruginosa Acquisition of Cu2+ Han et al., 2019

TseF P. aeruginosa Acquisition of Fe3+ Lin et al., 2017

PldA P. aeruginosa Internalization into non-phagocytic cells Jiang et al., 2014

PldB P. aeruginosa Internalization into non-phagocytic cells Jiang et al., 2014

Tle4PA P. aeruginosa Disruption of ER homeostasis Jiang et al., 2016

VgrG2b P. aeruginosa Cytoskeletal manipulation Sana et al., 2012

Tfe1 Serratia marcescens Membrane depolarization Trunk et al., 2018

Tfe2 S. marcescens Metabolic dysregulation Trunk et al., 2018

VgrG1VC Vibrio cholerae Cytoskeletal disruption Pukatzki et al., 2007; Ma

et al., 2009

VasX V. cholerae Formation of membrane pores Miyata et al., 2011

YezP Yersinia pestis Acquisition of Zn2+ Wang et al., 2015
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the phagosomal membrane to delay its maturation in the
endosomal compartment, thereby facilitating pathogen escape
prior to lysosomal fusion (Ledvina et al., 2018). The H2-T6SS
of Pseudomonas aeruginosa also delivers membrane targeting
effector proteins into host cells, namely the phospholipases
PldA, PldB, and Tle4 (Jiang et al., 2014, 2016; Wettstadt et al.,
2019). While PldA and PldB promote internalization of P.
aeruginosa by manipulating the PI3K-Akt signaling axis, Tle4
fragments the endoplasmic reticulum, activating the unfolded
protein response and autophagy. However, the benefits of these
cellular modifications for the bacterium remain unclear. The
T6SS yielded by bacterial pathogens targeting host cells presents
a further risk to the microbiota, since the ensuing subversion
of host processes affects their ecological niche. Indeed, such
indirect impact has been demonstrated in the zebrafish model
of cholera, where the actin-crosslinking domain of VgrG1 of
V. cholerae stimulates peristalsis, resulting in the collapse of
the resident microbial community (Logan et al., 2018). The
gradual repopulation by the commensal microbiota may evict
the invading pathogen despite the reversal of the numerical
advantage; yet the niche must still be conducive for this
repopulation to occur.

CONCLUSIONS

The extended versatility of the T6SS enriches both the panel
of virulence factors of bacterial pathogens, and the mutualism
toolkit of symbiotic bacteria. The T6SS plays an underappreciated
role in the maintenance of this synergistic steady state in
the microbiota. Notwithstanding its original designation as a
virulence factor, the T6SS is clearly beneficial to the host
in facilitating stable colonization of the microbiota. Further
investigation into the genetic architecture of the T6SSiii of

Bacteroidales, its target range, and effector-immunity repertoire
will provide deeper insight into the ecology of the microbiota.
Contact-dependent signaling has been described for CDI toxin
delivery into immune prey (Garcia et al., 2016) and analogous
processes may also be operated by T6SS effectors targeting
both bacteria and eukaryotic cells. Exploring the interactions
between the T6SS of commensal bacterial and host cells
may illuminate the factors commandeering a homeostatic and
balanced tolerogenic signaling; with broader implications in
infection, diet, autoimmune and autoinflammatory disorders. In
all, we describe the underappreciated roles of the T6SS at the
nexus of the microbiota, host and the defense against incoming
pathogens; and propose further avenues of investigation to
dissect the role of this versatile secretion machine in the
establishment and homeostasis of holobionts.
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